Merge pull request #244 from mipt-npm/dev

0.3.0-dev-2
This commit is contained in:
Alexander Nozik 2021-03-15 19:52:27 +03:00 committed by GitHub
commit e4d856033a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
130 changed files with 2561 additions and 2974 deletions

View File

@ -3,105 +3,34 @@ name: Gradle build
on: [ push ]
jobs:
build-ubuntu:
runs-on: ubuntu-20.04
build:
strategy:
matrix:
os: [ macOS-latest, windows-latest ]
runs-on: ${{matrix.os}}
steps:
- uses: actions/checkout@v2
- name: Checkout the repo
uses: actions/checkout@v2
- name: Set up JDK 11
uses: actions/setup-java@v1
with:
java-version: 11
- name: Grant execute permission for gradlew
run: chmod +x gradlew
- name: Install Chrome
run: |
sudo apt install -y libappindicator1 fonts-liberation
wget https://dl.google.com/linux/direct/google-chrome-stable_current_amd64.deb
sudo dpkg -i google-chrome*.deb
- name: Cache gradle
uses: actions/cache@v2
with:
path: |
.gradle
build
~/.gradle
key: gradle
restore-keys: gradle
- name: Cache konan
uses: actions/cache@v2
with:
path: |
~/.konan/dependencies
~/.konan/kotlin-native-prebuilt-linux-*
key: ${{ runner.os }}-konan
restore-keys: ${{ runner.os }}-konan
- name: Build with Gradle
run: ./gradlew -Dorg.gradle.daemon=false --build-cache build
build-osx:
runs-on: macos-latest
steps:
- uses: actions/checkout@v2
- name: Set up JDK 11
uses: actions/setup-java@v1
with:
java-version: 11
- name: Grant execute permission for gradlew
run: chmod +x gradlew
- name: Cache gradle
uses: actions/cache@v2
with:
path: |
.gradle
build
~/.gradle
key: gradle
restore-keys: gradle
- name: Cache konan
uses: actions/cache@v2
with:
path: |
~/.konan/dependencies
~/.konan/kotlin-native-prebuilt-macos-*
key: ${{ runner.os }}-konan
restore-keys: ${{ runner.os }}-konan
- name: Build with Gradle
run: sudo ./gradlew -Dorg.gradle.daemon=false --build-cache build
build-windows:
runs-on: windows-latest
steps:
- uses: actions/checkout@v2
- name: Set up JDK 11
uses: actions/setup-java@v1
with:
java-version: 11
- name: Grant execute permission for gradlew
run: chmod +x gradlew
- name: Add msys to path
if: matrix.os == 'windows-latest'
run: SETX PATH "%PATH%;C:\msys64\mingw64\bin"
- name: Cache gradle
uses: actions/cache@v2
with:
path: |
.gradle
build
~/.gradle
key: ${{ runner.os }}-gradle
restore-keys: ${{ runner.os }}-gradle
path: ~/.gradle/caches
key: ${{ runner.os }}-gradle-${{ hashFiles('*.gradle.kts') }}
restore-keys: |
${{ runner.os }}-gradle-
- name: Cache konan
uses: actions/cache@v2
with:
path: |
~/.konan/dependencies
~/.konan/kotlin-native-prebuilt-mingw-*
key: ${{ runner.os }}-konan
restore-keys: ${{ runner.os }}-konan
- name: Build with Gradle
run: ./gradlew --build-cache build
path: ~/.konan
key: ${{ runner.os }}-gradle-${{ hashFiles('*.gradle.kts') }}
restore-keys: |
${{ runner.os }}-gradle-
- name: Build
run: ./gradlew build --no-daemon --stacktrace

59
.github/workflows/publish.yml vendored Normal file
View File

@ -0,0 +1,59 @@
name: Gradle publish
on:
workflow_dispatch:
release:
types:
- created
jobs:
publish:
environment:
name: publish
strategy:
matrix:
os: [macOS-latest, windows-latest]
runs-on: ${{matrix.os}}
steps:
- name: Checkout the repo
uses: actions/checkout@v2
- name: Set up JDK 11
uses: actions/setup-java@v1
with:
java-version: 11
- name: Add msys to path
if: matrix.os == 'windows-latest'
run: SETX PATH "%PATH%;C:\msys64\mingw64\bin"
- name: Cache gradle
uses: actions/cache@v2
with:
path: ~/.gradle/caches
key: ${{ runner.os }}-gradle-${{ hashFiles('*.gradle.kts') }}
restore-keys: |
${{ runner.os }}-gradle-
- name: Cache konan
uses: actions/cache@v2
with:
path: ~/.konan
key: ${{ runner.os }}-gradle-${{ hashFiles('*.gradle.kts') }}
restore-keys: |
${{ runner.os }}-gradle-
- name: Publish Windows Artifacts
if: matrix.os == 'windows-latest'
run: >
./gradlew release --no-daemon
-Ppublishing.enabled=true
-Ppublishing.github.user=${{ secrets.PUBLISHING_GITHUB_USER }}
-Ppublishing.github.token=${{ secrets.PUBLISHING_GITHUB_TOKEN }}
-Ppublishing.space.user=${{ secrets.PUBLISHING_SPACE_USER }}
-Ppublishing.space.token=${{ secrets.PUBLISHING_SPACE_TOKEN }}
- name: Publish Mac Artifacts
if: matrix.os == 'macOS-latest'
run: >
./gradlew release --no-daemon
-Ppublishing.enabled=true
-Ppublishing.platform=macosX64
-Ppublishing.github.user=${{ secrets.PUBLISHING_GITHUB_USER }}
-Ppublishing.github.token=${{ secrets.PUBLISHING_GITHUB_TOKEN }}
-Ppublishing.space.user=${{ secrets.PUBLISHING_SPACE_USER }}
-Ppublishing.space.token=${{ secrets.PUBLISHING_SPACE_TOKEN }}

View File

@ -1,117 +0,0 @@
name: Gradle release
on:
release:
types:
- created
jobs:
build-ubuntu:
runs-on: ubuntu-20.04
steps:
- uses: actions/checkout@v2
- name: Set up JDK 11
uses: actions/setup-java@v1
with:
java-version: 11
- name: Grant execute permission for gradlew
run: chmod +x gradlew
- name: Install Chrome
run: |
sudo apt install -y libappindicator1 fonts-liberation
wget https://dl.google.com/linux/direct/google-chrome-stable_current_amd64.deb
sudo dpkg -i google-chrome*.deb
- name: Cache gradle
uses: actions/cache@v2
with:
path: |
.gradle
build
~/.gradle
key: gradle
restore-keys: gradle
- name: Cache konan
uses: actions/cache@v2
with:
path: |
~/.konan/dependencies
~/.konan/kotlin-native-prebuilt-linux-*
key: ${{ runner.os }}-konan
restore-keys: ${{ runner.os }}-konan
- name: Build with Gradle
run: ./gradlew -Dorg.gradle.daemon=false --build-cache build
- name: Run release task
run: ./gradlew release -PbintrayUser=${{ secrets.BINTRAY_USER }} -PbintrayApiKey=${{ secrets.BINTRAY_KEY }}
build-osx:
runs-on: macos-latest
steps:
- uses: actions/checkout@v2
- name: Set up JDK 11
uses: actions/setup-java@v1
with:
java-version: 11
- name: Grant execute permission for gradlew
run: chmod +x gradlew
- name: Cache gradle
uses: actions/cache@v2
with:
path: |
.gradle
build
~/.gradle
key: gradle
restore-keys: gradle
- name: Cache konan
uses: actions/cache@v2
with:
path: |
~/.konan/dependencies
~/.konan/kotlin-native-prebuilt-macos-*
key: ${{ runner.os }}-konan
restore-keys: ${{ runner.os }}-konan
- name: Build with Gradle
run: sudo ./gradlew -Dorg.gradle.daemon=false --build-cache build
- name: Run release task
run: ./gradlew release -PbintrayUser=${{ secrets.BINTRAY_USER }} -PbintrayApiKey=${{ secrets.BINTRAY_KEY }}
build-windows:
runs-on: windows-latest
steps:
- uses: actions/checkout@v2
- name: Set up JDK 11
uses: actions/setup-java@v1
with:
java-version: 11
- name: Grant execute permission for gradlew
run: chmod +x gradlew
- name: Add msys to path
run: SETX PATH "%PATH%;C:\msys64\mingw64\bin"
- name: Cache gradle
uses: actions/cache@v2
with:
path: |
.gradle
build
~/.gradle
key: ${{ runner.os }}-gradle
restore-keys: ${{ runner.os }}-gradle
- name: Cache konan
uses: actions/cache@v2
with:
path: |
~/.konan/dependencies
~/.konan/kotlin-native-prebuilt-mingw-*
key: ${{ runner.os }}-konan
restore-keys: ${{ runner.os }}-konan
- name: Build with Gradle
run: ./gradlew --build-cache build
- name: Run release task
run: ./gradlew release -PbintrayUser=${{ secrets.BINTRAY_USER }} -PbintrayApiKey=${{ secrets.BINTRAY_KEY }}

5
.gitignore vendored
View File

@ -2,9 +2,14 @@
build/
out/
.idea/
.vscode/
# Avoid ignoring Gradle wrapper jar file (.jar files are usually ignored)
!gradle-wrapper.jar
# Cache of project
.gradletasknamecache
# Generated by javac -h and runtime
*.class
*.log

View File

@ -2,12 +2,20 @@
## [Unreleased]
### Added
- ScaleOperations interface
- Field extends ScaleOperations
### Changed
- Exponential operations merged with hyperbolic functions
- Space is replaced by Group. Space is reserved for vector spaces.
- VectorSpace is now a vector space
- Buffer factories for primitives moved to MutableBuffer.Companion
### Deprecated
### Removed
- Nearest in Domain. To be implemented in geometry package.
- Number multiplication and division in main Algebra chain
### Fixed

View File

@ -1,8 +1,9 @@
[![JetBrains Research](https://jb.gg/badges/research.svg)](https://confluence.jetbrains.com/display/ALL/JetBrains+on+GitHub)
[![DOI](https://zenodo.org/badge/129486382.svg)](https://zenodo.org/badge/latestdoi/129486382)
![Gradle build](https://github.com/mipt-npm/kmath/workflows/Gradle%20build/badge.svg)
[![Kotlin JS IR supported](https://img.shields.io/badge/Kotlin%2FJS-IR%20supported-yellow)](https://kotl.in/jsirsupported)
[![Maven Central](https://img.shields.io/maven-central/v/space.kscience/kmath-core.svg?label=Maven%20Central)](https://search.maven.org/search?q=g:%22space.kscience%22%20AND%20a:%22kmath-core%22)
# KMath
@ -253,8 +254,8 @@ repositories {
}
dependencies {
api("space.kscience.kmath:kmath-core:0.2.1")
// api("space.kscience.kmath:kmath-core-jvm:0.2.1") for jvm-specific version
api("kscience.kmath:kmath-core:0.3.0-dev-2")
// api("kscience.kmath:kmath-core-jvm:0.3.0-dev-2") for jvm-specific version
}
```

View File

@ -1,3 +1,5 @@
import ru.mipt.npm.gradle.KSciencePublishingPlugin
plugins {
id("ru.mipt.npm.gradle.project")
}
@ -18,11 +20,11 @@ allprojects {
}
group = "space.kscience"
version = "0.2.0"
version = "0.3.0-dev-2"
}
subprojects {
if (name.startsWith("kmath")) apply<ru.mipt.npm.gradle.KSciencePublishingPlugin>()
if (name.startsWith("kmath")) apply<KSciencePublishingPlugin>()
}
readme {
@ -30,11 +32,11 @@ readme {
}
ksciencePublish {
spaceRepo = "https://maven.pkg.jetbrains.space/mipt-npm/p/sci/maven"
bintrayRepo = "kscience"
githubProject = "kmath"
github("kmath")
space()
sonatype()
}
apiValidation{
apiValidation {
nonPublicMarkers.add("space.kscience.kmath.misc.UnstableKMathAPI")
}
}

View File

@ -3,9 +3,7 @@
![Gradle build](https://github.com/mipt-npm/kmath/workflows/Gradle%20build/badge.svg)
Bintray: [ ![Download](https://api.bintray.com/packages/mipt-npm/kscience/kmath-core/images/download.svg) ](https://bintray.com/mipt-npm/kscience/kmath-core/_latestVersion)
Bintray-dev: [ ![Download](https://api.bintray.com/packages/mipt-npm/dev/kmath-core/images/download.svg) ](https://bintray.com/mipt-npm/dev/kmath-core/_latestVersion)
[![Maven Central](https://img.shields.io/maven-central/v/space.kscience/kmath-core.svg?label=Maven%20Central)](https://search.maven.org/search?q=g:%22space.kscience%22%20AND%20a:%22kmath-core%22)
# KMath

View File

@ -92,6 +92,14 @@ benchmark {
iterationTimeUnit = "ms" // time unity for iterationTime, default is seconds
include("ExpressionsInterpretersBenchmark")
}
configurations.register("matrixInverse") {
warmups = 1 // number of warmup iterations
iterations = 3 // number of iterations
iterationTime = 500 // time in seconds per iteration
iterationTimeUnit = "ms" // time unity for iterationTime, default is seconds
include("MatrixInverseBenchmark")
}
}
kotlin.sourceSets.all {

View File

@ -1,34 +1,38 @@
package space.kscience.kmath.benchmarks
import org.openjdk.jmh.annotations.Benchmark
import org.openjdk.jmh.annotations.Scope
import org.openjdk.jmh.annotations.State
import kotlinx.benchmark.Benchmark
import kotlinx.benchmark.Blackhole
import kotlinx.benchmark.Scope
import kotlinx.benchmark.State
import java.nio.IntBuffer
@State(Scope.Benchmark)
internal class ArrayBenchmark {
@Benchmark
fun benchmarkArrayRead() {
fun benchmarkArrayRead(blackhole: Blackhole) {
var res = 0
for (i in 1..space.kscience.kmath.benchmarks.ArrayBenchmark.Companion.size) res += space.kscience.kmath.benchmarks.ArrayBenchmark.Companion.array[space.kscience.kmath.benchmarks.ArrayBenchmark.Companion.size - i]
for (i in 1..size) res += array[size - i]
blackhole.consume(res)
}
@Benchmark
fun benchmarkBufferRead() {
fun benchmarkBufferRead(blackhole: Blackhole) {
var res = 0
for (i in 1..space.kscience.kmath.benchmarks.ArrayBenchmark.Companion.size) res += space.kscience.kmath.benchmarks.ArrayBenchmark.Companion.arrayBuffer[space.kscience.kmath.benchmarks.ArrayBenchmark.Companion.size - i]
for (i in 1..size) res += arrayBuffer[size - i]
blackhole.consume(res)
}
@Benchmark
fun nativeBufferRead() {
fun nativeBufferRead(blackhole: Blackhole) {
var res = 0
for (i in 1..space.kscience.kmath.benchmarks.ArrayBenchmark.Companion.size) res += space.kscience.kmath.benchmarks.ArrayBenchmark.Companion.nativeBuffer[space.kscience.kmath.benchmarks.ArrayBenchmark.Companion.size - i]
for (i in 1..size) res += nativeBuffer[size - i]
blackhole.consume(res)
}
companion object {
const val size: Int = 1000
val array: IntArray = IntArray(space.kscience.kmath.benchmarks.ArrayBenchmark.Companion.size) { it }
val arrayBuffer: IntBuffer = IntBuffer.wrap(space.kscience.kmath.benchmarks.ArrayBenchmark.Companion.array)
val nativeBuffer: IntBuffer = IntBuffer.allocate(space.kscience.kmath.benchmarks.ArrayBenchmark.Companion.size).also { for (i in 0 until space.kscience.kmath.benchmarks.ArrayBenchmark.Companion.size) it.put(i, i) }
private companion object {
private const val size = 1000
private val array = IntArray(size) { it }
private val arrayBuffer = IntBuffer.wrap(array)
private val nativeBuffer = IntBuffer.allocate(size).also { for (i in 0 until size) it.put(i, i) }
}
}

View File

@ -1,8 +1,8 @@
package space.kscience.kmath.benchmarks
import org.openjdk.jmh.annotations.Benchmark
import org.openjdk.jmh.annotations.Scope
import org.openjdk.jmh.annotations.State
import kotlinx.benchmark.Benchmark
import kotlinx.benchmark.Scope
import kotlinx.benchmark.State
import space.kscience.kmath.complex.Complex
import space.kscience.kmath.complex.complex
import space.kscience.kmath.structures.MutableBuffer
@ -28,7 +28,7 @@ internal class BufferBenchmark {
}
}
companion object {
const val size: Int = 100
private companion object {
private const val size = 100
}
}

View File

@ -1,67 +1,65 @@
package space.kscience.kmath.benchmarks
import kotlinx.benchmark.Benchmark
import org.openjdk.jmh.annotations.Scope
import org.openjdk.jmh.annotations.State
import space.kscience.kmath.commons.linear.CMMatrixContext
import space.kscience.kmath.ejml.EjmlMatrixContext
import space.kscience.kmath.linear.BufferMatrixContext
import space.kscience.kmath.linear.Matrix
import space.kscience.kmath.linear.RealMatrixContext
import kotlinx.benchmark.Blackhole
import kotlinx.benchmark.Scope
import kotlinx.benchmark.State
import space.kscience.kmath.commons.linear.CMLinearSpace
import space.kscience.kmath.ejml.EjmlLinearSpace
import space.kscience.kmath.linear.LinearSpace
import space.kscience.kmath.linear.invoke
import space.kscience.kmath.operations.RealField
import space.kscience.kmath.operations.invoke
import space.kscience.kmath.structures.Buffer
import kotlin.random.Random
@State(Scope.Benchmark)
internal class DotBenchmark {
companion object {
val random = Random(12224)
val dim = 1000
const val dim = 1000
//creating invertible matrix
val matrix1 = Matrix.real(dim, dim) { i, j -> if (i <= j) random.nextDouble() else 0.0 }
val matrix2 = Matrix.real(dim, dim) { i, j -> if (i <= j) random.nextDouble() else 0.0 }
val matrix1 = LinearSpace.real.buildMatrix(dim, dim) { i, j -> if (i <= j) random.nextDouble() else 0.0 }
val matrix2 = LinearSpace.real.buildMatrix(dim, dim) { i, j -> if (i <= j) random.nextDouble() else 0.0 }
val cmMatrix1 = CMMatrixContext { matrix1.toCM() }
val cmMatrix2 = CMMatrixContext { matrix2.toCM() }
val cmMatrix1 = CMLinearSpace { matrix1.toCM() }
val cmMatrix2 = CMLinearSpace { matrix2.toCM() }
val ejmlMatrix1 = EjmlMatrixContext { matrix1.toEjml() }
val ejmlMatrix2 = EjmlMatrixContext { matrix2.toEjml() }
val ejmlMatrix1 = EjmlLinearSpace { matrix1.toEjml() }
val ejmlMatrix2 = EjmlLinearSpace { matrix2.toEjml() }
}
@Benchmark
fun cmDot() {
CMMatrixContext {
cmMatrix1 dot cmMatrix2
fun cmDot(blackhole: Blackhole) {
CMLinearSpace.run {
blackhole.consume(cmMatrix1 dot cmMatrix2)
}
}
@Benchmark
fun ejmlDot() {
EjmlMatrixContext {
ejmlMatrix1 dot ejmlMatrix2
fun ejmlDot(blackhole: Blackhole) {
EjmlLinearSpace {
blackhole.consume(ejmlMatrix1 dot ejmlMatrix2)
}
}
@Benchmark
fun ejmlDotWithConversion() {
EjmlMatrixContext {
matrix1 dot matrix2
fun ejmlDotWithConversion(blackhole: Blackhole) {
EjmlLinearSpace {
blackhole.consume(matrix1 dot matrix2)
}
}
@Benchmark
fun bufferedDot() {
BufferMatrixContext(RealField, Buffer.Companion::real).invoke {
matrix1 dot matrix2
fun bufferedDot(blackhole: Blackhole) {
LinearSpace.auto(RealField).invoke {
blackhole.consume(matrix1 dot matrix2)
}
}
@Benchmark
fun realDot() {
RealMatrixContext {
matrix1 dot matrix2
fun realDot(blackhole: Blackhole) {
LinearSpace.real {
blackhole.consume(matrix1 dot matrix2)
}
}
}

View File

@ -1,64 +1,62 @@
package space.kscience.kmath.benchmarks
import org.openjdk.jmh.annotations.Benchmark
import org.openjdk.jmh.annotations.Scope
import org.openjdk.jmh.annotations.State
import kotlinx.benchmark.Benchmark
import kotlinx.benchmark.Blackhole
import kotlinx.benchmark.Scope
import kotlinx.benchmark.State
import space.kscience.kmath.asm.compile
import space.kscience.kmath.ast.mstInField
import space.kscience.kmath.expressions.Expression
import space.kscience.kmath.expressions.expressionInField
import space.kscience.kmath.expressions.invoke
import space.kscience.kmath.expressions.symbol
import space.kscience.kmath.operations.Field
import space.kscience.kmath.operations.RealField
import space.kscience.kmath.operations.bindSymbol
import kotlin.random.Random
@State(Scope.Benchmark)
internal class ExpressionsInterpretersBenchmark {
private val algebra: Field<Double> = RealField
val x by symbol
@Benchmark
fun functionalExpression() {
fun functionalExpression(blackhole: Blackhole) {
val expr = algebra.expressionInField {
val x = bindSymbol(x)
x * const(2.0) + const(2.0) / x - const(16.0)
}
invokeAndSum(expr)
invokeAndSum(expr, blackhole)
}
@Benchmark
fun mstExpression() {
fun mstExpression(blackhole: Blackhole) {
val expr = algebra.mstInField {
val x = bindSymbol(x)
x * 2.0 + 2.0 / x - 16.0
x * 2.0 + number(2.0) / x - 16.0
}
invokeAndSum(expr)
invokeAndSum(expr, blackhole)
}
@Benchmark
fun asmExpression() {
fun asmExpression(blackhole: Blackhole) {
val expr = algebra.mstInField {
val x = bindSymbol(x)
x * 2.0 + 2.0 / x - 16.0
x * 2.0 + number(2.0) / x - 16.0
}.compile()
invokeAndSum(expr)
invokeAndSum(expr, blackhole)
}
@Benchmark
fun rawExpression() {
fun rawExpression(blackhole: Blackhole) {
val expr = Expression<Double> { args ->
val x = args.getValue(x)
x * 2.0 + 2.0 / x - 16.0
}
invokeAndSum(expr)
invokeAndSum(expr, blackhole)
}
private fun invokeAndSum(expr: Expression<Double>) {
private fun invokeAndSum(expr: Expression<Double>, blackhole: Blackhole) {
val random = Random(0)
var sum = 0.0
@ -66,6 +64,11 @@ internal class ExpressionsInterpretersBenchmark {
sum += expr(x to random.nextDouble())
}
println(sum)
blackhole.consume(sum)
}
private companion object {
private val algebra = RealField
private val x by symbol
}
}

View File

@ -1,47 +0,0 @@
package space.kscience.kmath.benchmarks
import kotlinx.benchmark.Benchmark
import org.openjdk.jmh.annotations.Scope
import org.openjdk.jmh.annotations.State
import space.kscience.kmath.commons.linear.CMMatrixContext
import space.kscience.kmath.commons.linear.CMMatrixContext.dot
import space.kscience.kmath.commons.linear.inverse
import space.kscience.kmath.ejml.EjmlMatrixContext
import space.kscience.kmath.ejml.inverse
import space.kscience.kmath.linear.Matrix
import space.kscience.kmath.linear.MatrixContext
import space.kscience.kmath.linear.inverseWithLup
import space.kscience.kmath.linear.real
import kotlin.random.Random
@State(Scope.Benchmark)
internal class LinearAlgebraBenchmark {
companion object {
val random = Random(1224)
val dim = 100
//creating invertible matrix
val u = Matrix.real(dim, dim) { i, j -> if (i <= j) random.nextDouble() else 0.0 }
val l = Matrix.real(dim, dim) { i, j -> if (i >= j) random.nextDouble() else 0.0 }
val matrix = l dot u
}
@Benchmark
fun kmathLupInversion() {
MatrixContext.real.inverseWithLup(matrix)
}
@Benchmark
fun cmLUPInversion() {
with(CMMatrixContext) {
inverse(matrix)
}
}
@Benchmark
fun ejmlInverse() {
with(EjmlMatrixContext) {
inverse(matrix)
}
}
}

View File

@ -0,0 +1,48 @@
package space.kscience.kmath.benchmarks
import kotlinx.benchmark.Benchmark
import kotlinx.benchmark.Blackhole
import kotlinx.benchmark.Scope
import kotlinx.benchmark.State
import space.kscience.kmath.commons.linear.CMLinearSpace
import space.kscience.kmath.commons.linear.inverse
import space.kscience.kmath.ejml.EjmlLinearSpace
import space.kscience.kmath.ejml.inverse
import space.kscience.kmath.linear.LinearSpace
import space.kscience.kmath.linear.inverseWithLup
import space.kscience.kmath.linear.invoke
import kotlin.random.Random
@State(Scope.Benchmark)
internal class MatrixInverseBenchmark {
companion object {
val random = Random(1224)
const val dim = 100
private val space = LinearSpace.real
//creating invertible matrix
val u = space.buildMatrix(dim, dim) { i, j -> if (i <= j) random.nextDouble() else 0.0 }
val l = space.buildMatrix(dim, dim) { i, j -> if (i >= j) random.nextDouble() else 0.0 }
val matrix = space { l dot u }
}
@Benchmark
fun kmathLupInversion(blackhole: Blackhole) {
blackhole.consume(LinearSpace.real.inverseWithLup(matrix))
}
@Benchmark
fun cmLUPInversion(blackhole: Blackhole) {
with(CMLinearSpace) {
blackhole.consume(inverse(matrix))
}
}
@Benchmark
fun ejmlInverse(blackhole: Blackhole) {
with(EjmlLinearSpace) {
blackhole.consume(inverse(matrix))
}
}
}

View File

@ -1,8 +1,9 @@
package space.kscience.kmath.benchmarks
import org.openjdk.jmh.annotations.Benchmark
import org.openjdk.jmh.annotations.Scope
import org.openjdk.jmh.annotations.State
import kotlinx.benchmark.Benchmark
import kotlinx.benchmark.Blackhole
import kotlinx.benchmark.Scope
import kotlinx.benchmark.State
import space.kscience.kmath.nd.*
import space.kscience.kmath.operations.RealField
import space.kscience.kmath.structures.Buffer
@ -10,35 +11,38 @@ import space.kscience.kmath.structures.Buffer
@State(Scope.Benchmark)
internal class NDFieldBenchmark {
@Benchmark
fun autoFieldAdd() {
fun autoFieldAdd(blackhole: Blackhole) {
with(autoField) {
var res: NDStructure<Double> = one
repeat(n) { res += one }
blackhole.consume(res)
}
}
@Benchmark
fun specializedFieldAdd() {
fun specializedFieldAdd(blackhole: Blackhole) {
with(specializedField) {
var res: NDStructure<Double> = one
repeat(n) { res += 1.0 }
blackhole.consume(res)
}
}
@Benchmark
fun boxingFieldAdd() {
fun boxingFieldAdd(blackhole: Blackhole) {
with(genericField) {
var res: NDStructure<Double> = one
repeat(n) { res += 1.0 }
blackhole.consume(res)
}
}
companion object {
const val dim: Int = 1000
const val n: Int = 100
val autoField = NDAlgebra.auto(RealField, dim, dim)
val specializedField: RealNDField = NDAlgebra.real(dim, dim)
val genericField = NDAlgebra.field(RealField, Buffer.Companion::boxing, dim, dim)
private companion object {
private const val dim = 1000
private const val n = 100
private val autoField = NDAlgebra.auto(RealField, dim, dim)
private val specializedField = NDAlgebra.real(dim, dim)
private val genericField = NDAlgebra.field(RealField, Buffer.Companion::boxing, dim, dim)
}
}

View File

@ -1,51 +1,61 @@
package space.kscience.kmath.benchmarks
import kotlinx.benchmark.Benchmark
import kotlinx.benchmark.Blackhole
import kotlinx.benchmark.Scope
import kotlinx.benchmark.State
import org.jetbrains.bio.viktor.F64Array
import org.openjdk.jmh.annotations.Benchmark
import org.openjdk.jmh.annotations.Scope
import org.openjdk.jmh.annotations.State
import space.kscience.kmath.nd.*
import space.kscience.kmath.nd.NDAlgebra
import space.kscience.kmath.nd.NDStructure
import space.kscience.kmath.nd.auto
import space.kscience.kmath.nd.real
import space.kscience.kmath.operations.RealField
import space.kscience.kmath.viktor.ViktorNDField
@State(Scope.Benchmark)
internal class ViktorBenchmark {
final val dim: Int = 1000
final val n: Int = 100
// automatically build context most suited for given type.
final val autoField: NDField<Double, RealField> = NDAlgebra.auto(RealField, dim, dim)
final val realField: RealNDField = NDAlgebra.real(dim, dim)
final val viktorField: ViktorNDField = ViktorNDField(dim, dim)
@Benchmark
fun automaticFieldAddition() {
fun automaticFieldAddition(blackhole: Blackhole) {
with(autoField) {
var res: NDStructure<Double> = one
repeat(n) { res += 1.0 }
blackhole.consume(res)
}
}
@Benchmark
fun realFieldAddition() {
fun realFieldAddition(blackhole: Blackhole) {
with(realField) {
var res: NDStructure<Double> = one
repeat(n) { res += 1.0 }
blackhole.consume(res)
}
}
@Benchmark
fun viktorFieldAddition() {
fun viktorFieldAddition(blackhole: Blackhole) {
with(viktorField) {
var res = one
repeat(n) { res += 1.0 }
blackhole.consume(res)
}
}
@Benchmark
fun rawViktor() {
fun rawViktor(blackhole: Blackhole) {
val one = F64Array.full(init = 1.0, shape = intArrayOf(dim, dim))
var res = one
repeat(n) { res = res + one }
blackhole.consume(res)
}
private companion object {
private const val dim = 1000
private const val n = 100
// automatically build context most suited for given type.
private val autoField = NDAlgebra.auto(RealField, dim, dim)
private val realField = NDAlgebra.real(dim, dim)
private val viktorField = ViktorNDField(dim, dim)
}
}

View File

@ -1,48 +1,53 @@
package space.kscience.kmath.benchmarks
import kotlinx.benchmark.Benchmark
import kotlinx.benchmark.Blackhole
import kotlinx.benchmark.Scope
import kotlinx.benchmark.State
import org.jetbrains.bio.viktor.F64Array
import org.openjdk.jmh.annotations.Benchmark
import org.openjdk.jmh.annotations.Scope
import org.openjdk.jmh.annotations.State
import space.kscience.kmath.nd.*
import space.kscience.kmath.nd.NDAlgebra
import space.kscience.kmath.nd.auto
import space.kscience.kmath.nd.real
import space.kscience.kmath.operations.RealField
import space.kscience.kmath.viktor.ViktorNDField
@State(Scope.Benchmark)
internal class ViktorLogBenchmark {
final val dim: Int = 1000
final val n: Int = 100
// automatically build context most suited for given type.
final val autoField: NDField<Double, RealField> = NDAlgebra.auto(RealField, dim, dim)
final val realField: RealNDField = NDAlgebra.real(dim, dim)
final val viktorField: ViktorNDField = ViktorNDField(intArrayOf(dim, dim))
@Benchmark
fun realFieldLog() {
with(realField) {
fun realFieldLog(blackhole: Blackhole) {
with(realNdField) {
val fortyTwo = produce { 42.0 }
var res = one
repeat(n) { res = ln(fortyTwo) }
blackhole.consume(res)
}
}
@Benchmark
fun viktorFieldLog() {
fun viktorFieldLog(blackhole: Blackhole) {
with(viktorField) {
val fortyTwo = produce { 42.0 }
var res = one
repeat(n) { res = ln(fortyTwo) }
blackhole.consume(res)
}
}
@Benchmark
fun rawViktorLog() {
fun rawViktorLog(blackhole: Blackhole) {
val fortyTwo = F64Array.full(dim, dim, init = 42.0)
var res: F64Array
repeat(n) {
res = fortyTwo.log()
}
lateinit var res: F64Array
repeat(n) { res = fortyTwo.log() }
blackhole.consume(res)
}
private companion object {
private const val dim = 1000
private const val n = 100
// automatically build context most suited for given type.
private val autoField = NDAlgebra.auto(RealField, dim, dim)
private val realNdField = NDAlgebra.real(dim, dim)
private val viktorField = ViktorNDField(intArrayOf(dim, dim))
}
}

View File

@ -6,10 +6,10 @@ import space.kscience.kmath.operations.RealField
fun main() {
val expr = RealField.mstInField {
val x = bindSymbol("x")
x * 2.0 + 2.0 / x - 16.0
x * 2.0 + number(2.0) / x - 16.0
}
repeat(10000000){
repeat(10000000) {
expr.invoke("x" to 1.0)
}
}

View File

@ -0,0 +1,28 @@
package space.kscience.kmath.linear
import space.kscience.kmath.real.*
import space.kscience.kmath.structures.RealBuffer
fun main() {
val x0 = Point(0.0, 0.0, 0.0)
val sigma = Point(1.0, 1.0, 1.0)
val gaussian: (Point<Double>) -> Double = { x ->
require(x.size == x0.size)
kotlin.math.exp(-((x - x0) / sigma).square().sum())
}
fun ((Point<Double>) -> Double).grad(x: Point<Double>): Point<Double> {
require(x.size == x0.size)
return RealBuffer(x.size) { i ->
val h = sigma[i] / 5
val dVector = RealBuffer(x.size) { if (it == i) h else 0.0 }
val f1 = invoke(x + dVector / 2)
val f0 = invoke(x - dVector / 2)
(f1 - f0) / h
}
}
println(gaussian.grad(x0))
}

View File

@ -3,8 +3,8 @@ package space.kscience.kmath.structures
import space.kscience.kmath.misc.UnstableKMathAPI
import space.kscience.kmath.nd.*
import space.kscience.kmath.operations.ExtendedField
import space.kscience.kmath.operations.NumbersAddOperations
import space.kscience.kmath.operations.RealField
import space.kscience.kmath.operations.RingWithNumbers
import java.util.*
import java.util.stream.IntStream
@ -15,7 +15,7 @@ import java.util.stream.IntStream
class StreamRealNDField(
override val shape: IntArray,
) : NDField<Double, RealField>,
RingWithNumbers<NDStructure<Double>>,
NumbersAddOperations<NDStructure<Double>>,
ExtendedField<NDStructure<Double>> {
private val strides = DefaultStrides(shape)
@ -79,25 +79,29 @@ class StreamRealNDField(
return NDBuffer(strides, array.asBuffer())
}
override fun power(arg: NDStructure<Double>, pow: Number): NDBuffer<Double> = arg.map() { power(it, pow) }
override fun NDStructure<Double>.unaryMinus(): NDStructure<Double> = map { -it }
override fun exp(arg: NDStructure<Double>): NDBuffer<Double> = arg.map() { exp(it) }
override fun scale(a: NDStructure<Double>, value: Double): NDStructure<Double> = a.map { it * value }
override fun ln(arg: NDStructure<Double>): NDBuffer<Double> = arg.map() { ln(it) }
override fun power(arg: NDStructure<Double>, pow: Number): NDBuffer<Double> = arg.map { power(it, pow) }
override fun sin(arg: NDStructure<Double>): NDBuffer<Double> = arg.map() { sin(it) }
override fun cos(arg: NDStructure<Double>): NDBuffer<Double> = arg.map() { cos(it) }
override fun tan(arg: NDStructure<Double>): NDBuffer<Double> = arg.map() { tan(it) }
override fun asin(arg: NDStructure<Double>): NDBuffer<Double> = arg.map() { asin(it) }
override fun acos(arg: NDStructure<Double>): NDBuffer<Double> = arg.map() { acos(it) }
override fun atan(arg: NDStructure<Double>): NDBuffer<Double> = arg.map() { atan(it) }
override fun exp(arg: NDStructure<Double>): NDBuffer<Double> = arg.map { exp(it) }
override fun sinh(arg: NDStructure<Double>): NDBuffer<Double> = arg.map() { sinh(it) }
override fun cosh(arg: NDStructure<Double>): NDBuffer<Double> = arg.map() { cosh(it) }
override fun tanh(arg: NDStructure<Double>): NDBuffer<Double> = arg.map() { tanh(it) }
override fun asinh(arg: NDStructure<Double>): NDBuffer<Double> = arg.map() { asinh(it) }
override fun acosh(arg: NDStructure<Double>): NDBuffer<Double> = arg.map() { acosh(it) }
override fun atanh(arg: NDStructure<Double>): NDBuffer<Double> = arg.map() { atanh(it) }
override fun ln(arg: NDStructure<Double>): NDBuffer<Double> = arg.map { ln(it) }
override fun sin(arg: NDStructure<Double>): NDBuffer<Double> = arg.map { sin(it) }
override fun cos(arg: NDStructure<Double>): NDBuffer<Double> = arg.map { cos(it) }
override fun tan(arg: NDStructure<Double>): NDBuffer<Double> = arg.map { tan(it) }
override fun asin(arg: NDStructure<Double>): NDBuffer<Double> = arg.map { asin(it) }
override fun acos(arg: NDStructure<Double>): NDBuffer<Double> = arg.map { acos(it) }
override fun atan(arg: NDStructure<Double>): NDBuffer<Double> = arg.map { atan(it) }
override fun sinh(arg: NDStructure<Double>): NDBuffer<Double> = arg.map { sinh(it) }
override fun cosh(arg: NDStructure<Double>): NDBuffer<Double> = arg.map { cosh(it) }
override fun tanh(arg: NDStructure<Double>): NDBuffer<Double> = arg.map { tanh(it) }
override fun asinh(arg: NDStructure<Double>): NDBuffer<Double> = arg.map { asinh(it) }
override fun acosh(arg: NDStructure<Double>): NDBuffer<Double> = arg.map { acosh(it) }
override fun atanh(arg: NDStructure<Double>): NDBuffer<Double> = arg.map { atanh(it) }
}
fun NDAlgebra.Companion.realWithStream(vararg shape: Int): StreamRealNDField = StreamRealNDField(shape)

View File

@ -7,7 +7,7 @@ import kotlin.system.measureTimeMillis
@Suppress("UNUSED_VARIABLE")
fun main() {
val n = 6000
val structure = NDStructure.build(intArrayOf(n, n), Buffer.Companion::auto) { 1.0 }
val structure = NDStructure.buffered(intArrayOf(n, n), Buffer.Companion::auto) { 1.0 }
structure.mapToBuffer { it + 1 } // warm-up
val time1 = measureTimeMillis { val res = structure.mapToBuffer { it + 1 } }
println("Structure mapping finished in $time1 millis")

View File

@ -5,7 +5,7 @@ import space.kscience.kmath.dimensions.D3
import space.kscience.kmath.dimensions.DMatrixContext
import space.kscience.kmath.dimensions.Dimension
private fun DMatrixContext<Double>.simple() {
private fun DMatrixContext<Double, *>.simple() {
val m1 = produce<D2, D3> { i, j -> (i + j).toDouble() }
val m2 = produce<D3, D2> { i, j -> (i + j).toDouble() }
@ -17,7 +17,7 @@ private object D5 : Dimension {
override val dim: UInt = 5u
}
private fun DMatrixContext<Double>.custom() {
private fun DMatrixContext<Double, *>.custom() {
val m1 = produce<D2, D5> { i, j -> (i + j).toDouble() }
val m2 = produce<D5, D2> { i, j -> (i - j).toDouble() }
val m3 = produce<D2, D2> { i, j -> (i - j).toDouble() }

View File

@ -1,9 +1,8 @@
kotlin.code.style=official
kotlin.mpp.enableGranularSourceSetsMetadata=true
kotlin.mpp.stability.nowarn=true
kotlin.native.enableDependencyPropagation=false
kotlin.parallel.tasks.in.project=true
org.gradle.configureondemand=true
org.gradle.jvmargs=-XX:MaxMetaspaceSize=2G
org.gradle.parallel=true
kotlin.mpp.enableGranularSourceSetsMetadata=true
kotlin.native.enableDependencyPropagation=false

View File

@ -1,5 +1,5 @@
distributionBase=GRADLE_USER_HOME
distributionPath=wrapper/dists
distributionUrl=https\://services.gradle.org/distributions/gradle-6.8.2-bin.zip
distributionUrl=https\://services.gradle.org/distributions/gradle-6.8.3-bin.zip
zipStoreBase=GRADLE_USER_HOME
zipStorePath=wrapper/dists

View File

@ -12,7 +12,7 @@ This subproject implements the following features:
> #### Artifact:
>
> This module artifact: `space.kscience:kmath-ast:0.2.0`.
> This module artifact: `space.kscience:kmath-ast:0.3.0-dev-2`.
>
> Bintray release version: [ ![Download](https://api.bintray.com/packages/mipt-npm/kscience/kmath-ast/images/download.svg) ](https://bintray.com/mipt-npm/kscience/kmath-ast/_latestVersion)
>
@ -31,7 +31,7 @@ This subproject implements the following features:
> }
>
> dependencies {
> implementation 'space.kscience:kmath-ast:0.2.0'
> implementation 'space.kscience:kmath-ast:0.3.0-dev-2'
> }
> ```
> **Gradle Kotlin DSL:**
@ -47,7 +47,7 @@ This subproject implements the following features:
> }
>
> dependencies {
> implementation("space.kscience:kmath-ast:0.2.0")
> implementation("space.kscience:kmath-ast:0.3.0-dev-2")
> }
> ```

View File

@ -33,21 +33,23 @@ kotlin.sourceSets {
jsMain {
dependencies {
implementation(npm("astring", "1.4.3"))
implementation(npm("astring", "1.7.0"))
}
}
jvmMain {
dependencies {
api("com.github.h0tk3y.betterParse:better-parse:0.4.0")
implementation("org.ow2.asm:asm:9.0")
implementation("org.ow2.asm:asm-commons:9.0")
api("com.github.h0tk3y.betterParse:better-parse:0.4.1")
implementation("org.ow2.asm:asm:9.1")
implementation("org.ow2.asm:asm-commons:9.1")
}
}
}
//Workaround for https://github.com/Kotlin/dokka/issues/1455
tasks.getByName("dokkaHtml").dependsOn(tasks.getByName("build"))
tasks.dokkaHtml {
dependsOn(tasks.build)
}
readme {
maturity = Maturity.PROTOTYPE

View File

@ -18,25 +18,25 @@ public object MstAlgebra : NumericAlgebra<MST> {
}
/**
* [Space] over [MST] nodes.
* [Group] over [MST] nodes.
*/
public object MstSpace : Space<MST>, NumericAlgebra<MST> {
public override val zero: MST.Numeric by lazy { number(0.0) }
public object MstGroup : Group<MST>, NumericAlgebra<MST>, ScaleOperations<MST> {
public override val zero: MST.Numeric = number(0.0)
public override fun number(value: Number): MST.Numeric = MstAlgebra.number(value)
public override fun bindSymbol(value: String): MST.Symbolic = MstAlgebra.bindSymbol(value)
public override fun add(a: MST, b: MST): MST.Binary = binaryOperationFunction(SpaceOperations.PLUS_OPERATION)(a, b)
public override fun add(a: MST, b: MST): MST.Binary = binaryOperationFunction(GroupOperations.PLUS_OPERATION)(a, b)
public override operator fun MST.unaryPlus(): MST.Unary =
unaryOperationFunction(SpaceOperations.PLUS_OPERATION)(this)
unaryOperationFunction(GroupOperations.PLUS_OPERATION)(this)
public override operator fun MST.unaryMinus(): MST.Unary =
unaryOperationFunction(SpaceOperations.MINUS_OPERATION)(this)
unaryOperationFunction(GroupOperations.MINUS_OPERATION)(this)
public override operator fun MST.minus(b: MST): MST.Binary =
binaryOperationFunction(SpaceOperations.MINUS_OPERATION)(this, b)
binaryOperationFunction(GroupOperations.MINUS_OPERATION)(this, b)
public override fun multiply(a: MST, k: Number): MST.Binary =
binaryOperationFunction(RingOperations.TIMES_OPERATION)(a, number(k))
public override fun scale(a: MST, value: Double): MST.Binary =
binaryOperationFunction(RingOperations.TIMES_OPERATION)(a, number(value))
public override fun binaryOperationFunction(operation: String): (left: MST, right: MST) -> MST.Binary =
MstAlgebra.binaryOperationFunction(operation)
@ -49,25 +49,26 @@ public object MstSpace : Space<MST>, NumericAlgebra<MST> {
* [Ring] over [MST] nodes.
*/
@OptIn(UnstableKMathAPI::class)
public object MstRing : Ring<MST>, RingWithNumbers<MST> {
public override val zero: MST.Numeric
get() = MstSpace.zero
public object MstRing : Ring<MST>, NumbersAddOperations<MST>, ScaleOperations<MST> {
public override val zero: MST.Numeric get() = MstGroup.zero
public override val one: MST.Numeric = number(1.0)
public override val one: MST.Numeric by lazy { number(1.0) }
public override fun number(value: Number): MST.Numeric = MstGroup.number(value)
public override fun bindSymbol(value: String): MST.Symbolic = MstAlgebra.bindSymbol(value)
public override fun add(a: MST, b: MST): MST.Binary = MstGroup.add(a, b)
public override fun scale(a: MST, value: Double): MST.Binary =
MstGroup.binaryOperationFunction(RingOperations.TIMES_OPERATION)(a, MstGroup.number(value))
public override fun number(value: Number): MST.Numeric = MstSpace.number(value)
public override fun bindSymbol(value: String): MST.Symbolic = MstSpace.bindSymbol(value)
public override fun add(a: MST, b: MST): MST.Binary = MstSpace.add(a, b)
public override fun multiply(a: MST, k: Number): MST.Binary = MstSpace.multiply(a, k)
public override fun multiply(a: MST, b: MST): MST.Binary =
binaryOperationFunction(RingOperations.TIMES_OPERATION)(a, b)
public override operator fun MST.unaryPlus(): MST.Unary = MstSpace { +this@unaryPlus }
public override operator fun MST.unaryMinus(): MST.Unary = MstSpace { -this@unaryMinus }
public override operator fun MST.minus(b: MST): MST.Binary = MstSpace { this@minus - b }
public override operator fun MST.unaryPlus(): MST.Unary = MstGroup { +this@unaryPlus }
public override operator fun MST.unaryMinus(): MST.Unary = MstGroup { -this@unaryMinus }
public override operator fun MST.minus(b: MST): MST.Binary = MstGroup { this@minus - b }
public override fun binaryOperationFunction(operation: String): (left: MST, right: MST) -> MST.Binary =
MstSpace.binaryOperationFunction(operation)
MstGroup.binaryOperationFunction(operation)
public override fun unaryOperationFunction(operation: String): (arg: MST) -> MST.Unary =
MstAlgebra.unaryOperationFunction(operation)
@ -77,17 +78,18 @@ public object MstRing : Ring<MST>, RingWithNumbers<MST> {
* [Field] over [MST] nodes.
*/
@OptIn(UnstableKMathAPI::class)
public object MstField : Field<MST>, RingWithNumbers<MST> {
public override val zero: MST.Numeric
get() = MstRing.zero
public object MstField : Field<MST>, NumbersAddOperations<MST>, ScaleOperations<MST> {
public override val zero: MST.Numeric get() = MstRing.zero
public override val one: MST.Numeric
get() = MstRing.one
public override val one: MST.Numeric get() = MstRing.one
public override fun bindSymbol(value: String): MST.Symbolic = MstRing.bindSymbol(value)
public override fun bindSymbol(value: String): MST.Symbolic = MstAlgebra.bindSymbol(value)
public override fun number(value: Number): MST.Numeric = MstRing.number(value)
public override fun add(a: MST, b: MST): MST.Binary = MstRing.add(a, b)
public override fun multiply(a: MST, k: Number): MST.Binary = MstRing.multiply(a, k)
public override fun scale(a: MST, value: Double): MST.Binary =
MstGroup.binaryOperationFunction(RingOperations.TIMES_OPERATION)(a, MstGroup.number(value))
public override fun multiply(a: MST, b: MST): MST.Binary = MstRing.multiply(a, b)
public override fun divide(a: MST, b: MST): MST.Binary =
binaryOperationFunction(FieldOperations.DIV_OPERATION)(a, b)
@ -107,13 +109,10 @@ public object MstField : Field<MST>, RingWithNumbers<MST> {
* [ExtendedField] over [MST] nodes.
*/
public object MstExtendedField : ExtendedField<MST>, NumericAlgebra<MST> {
public override val zero: MST.Numeric
get() = MstField.zero
public override val zero: MST.Numeric get() = MstField.zero
public override val one: MST.Numeric get() = MstField.one
public override val one: MST.Numeric
get() = MstField.one
public override fun bindSymbol(value: String): MST.Symbolic = MstField.bindSymbol(value)
public override fun bindSymbol(value: String): MST.Symbolic = MstAlgebra.bindSymbol(value)
public override fun number(value: Number): MST.Numeric = MstRing.number(value)
public override fun sin(arg: MST): MST.Unary = unaryOperationFunction(TrigonometricOperations.SIN_OPERATION)(arg)
public override fun cos(arg: MST): MST.Unary = unaryOperationFunction(TrigonometricOperations.COS_OPERATION)(arg)
@ -121,14 +120,17 @@ public object MstExtendedField : ExtendedField<MST>, NumericAlgebra<MST> {
public override fun asin(arg: MST): MST.Unary = unaryOperationFunction(TrigonometricOperations.ASIN_OPERATION)(arg)
public override fun acos(arg: MST): MST.Unary = unaryOperationFunction(TrigonometricOperations.ACOS_OPERATION)(arg)
public override fun atan(arg: MST): MST.Unary = unaryOperationFunction(TrigonometricOperations.ATAN_OPERATION)(arg)
public override fun sinh(arg: MST): MST.Unary = unaryOperationFunction(HyperbolicOperations.SINH_OPERATION)(arg)
public override fun cosh(arg: MST): MST.Unary = unaryOperationFunction(HyperbolicOperations.COSH_OPERATION)(arg)
public override fun tanh(arg: MST): MST.Unary = unaryOperationFunction(HyperbolicOperations.TANH_OPERATION)(arg)
public override fun asinh(arg: MST): MST.Unary = unaryOperationFunction(HyperbolicOperations.ASINH_OPERATION)(arg)
public override fun acosh(arg: MST): MST.Unary = unaryOperationFunction(HyperbolicOperations.ACOSH_OPERATION)(arg)
public override fun atanh(arg: MST): MST.Unary = unaryOperationFunction(HyperbolicOperations.ATANH_OPERATION)(arg)
public override fun sinh(arg: MST): MST.Unary = unaryOperationFunction(ExponentialOperations.SINH_OPERATION)(arg)
public override fun cosh(arg: MST): MST.Unary = unaryOperationFunction(ExponentialOperations.COSH_OPERATION)(arg)
public override fun tanh(arg: MST): MST.Unary = unaryOperationFunction(ExponentialOperations.TANH_OPERATION)(arg)
public override fun asinh(arg: MST): MST.Unary = unaryOperationFunction(ExponentialOperations.ASINH_OPERATION)(arg)
public override fun acosh(arg: MST): MST.Unary = unaryOperationFunction(ExponentialOperations.ACOSH_OPERATION)(arg)
public override fun atanh(arg: MST): MST.Unary = unaryOperationFunction(ExponentialOperations.ATANH_OPERATION)(arg)
public override fun add(a: MST, b: MST): MST.Binary = MstField.add(a, b)
public override fun multiply(a: MST, k: Number): MST.Binary = MstField.multiply(a, k)
public override fun scale(a: MST, value: Double): MST =
binaryOperation(GroupOperations.PLUS_OPERATION, a, number(value))
public override fun multiply(a: MST, b: MST): MST.Binary = MstField.multiply(a, b)
public override fun divide(a: MST, b: MST): MST.Binary = MstField.divide(a, b)
public override operator fun MST.unaryPlus(): MST.Unary = MstField { +this@unaryPlus }

View File

@ -54,13 +54,13 @@ public inline fun <reified T : Any, A : Algebra<T>, E : Algebra<MST>> A.mst(
): MstExpression<T, A> = MstExpression(this, mstAlgebra.block())
/**
* Builds [MstExpression] over [Space].
* Builds [MstExpression] over [Group].
*
* @author Alexander Nozik
*/
public inline fun <reified T : Any, A : Space<T>> A.mstInSpace(block: MstSpace.() -> MST): MstExpression<T, A> {
public inline fun <reified T : Any, A : Group<T>> A.mstInGroup(block: MstGroup.() -> MST): MstExpression<T, A> {
contract { callsInPlace(block, InvocationKind.EXACTLY_ONCE) }
return MstExpression(this, MstSpace.block())
return MstExpression(this, MstGroup.block())
}
/**
@ -94,13 +94,13 @@ public inline fun <reified T : Any, A : ExtendedField<T>> A.mstInExtendedField(b
}
/**
* Builds [MstExpression] over [FunctionalExpressionSpace].
* Builds [MstExpression] over [FunctionalExpressionGroup].
*
* @author Alexander Nozik
*/
public inline fun <reified T : Any, A : Space<T>> FunctionalExpressionSpace<T, A>.mstInSpace(block: MstSpace.() -> MST): MstExpression<T, A> {
public inline fun <reified T : Any, A : Group<T>> FunctionalExpressionGroup<T, A>.mstInGroup(block: MstGroup.() -> MST): MstExpression<T, A> {
contract { callsInPlace(block, InvocationKind.EXACTLY_ONCE) }
return algebra.mstInSpace(block)
return algebra.mstInGroup(block)
}
/**

View File

@ -12,12 +12,12 @@ import kotlin.test.assertEquals
internal class TestESTreeConsistencyWithInterpreter {
@Test
fun mstSpace() {
val res1 = MstSpace.mstInSpace {
val res1 = MstGroup.mstInGroup {
binaryOperationFunction("+")(
unaryOperationFunction("+")(
number(3.toByte()) - (number(2.toByte()) + (multiply(
number(3.toByte()) - (number(2.toByte()) + (scale(
add(number(1), number(1)),
2
2.0
) + number(1.toByte()) * 3.toByte() - number(1.toByte())))
),
@ -25,12 +25,12 @@ internal class TestESTreeConsistencyWithInterpreter {
) + bindSymbol("x") + zero
}("x" to MST.Numeric(2))
val res2 = MstSpace.mstInSpace {
val res2 = MstGroup.mstInGroup {
binaryOperationFunction("+")(
unaryOperationFunction("+")(
number(3.toByte()) - (number(2.toByte()) + (multiply(
number(3.toByte()) - (number(2.toByte()) + (scale(
add(number(1), number(1)),
2
2.0
) + number(1.toByte()) * 3.toByte() - number(1.toByte())))
),
@ -46,9 +46,9 @@ internal class TestESTreeConsistencyWithInterpreter {
val res1 = ByteRing.mstInRing {
binaryOperationFunction("+")(
unaryOperationFunction("+")(
(bindSymbol("x") - (2.toByte() + (multiply(
(bindSymbol("x") - (2.toByte() + (scale(
add(number(1), number(1)),
2
2.0
) + 1.toByte()))) * 3.0 - 1.toByte()
),
@ -59,9 +59,9 @@ internal class TestESTreeConsistencyWithInterpreter {
val res2 = ByteRing.mstInRing {
binaryOperationFunction("+")(
unaryOperationFunction("+")(
(bindSymbol("x") - (2.toByte() + (multiply(
(bindSymbol("x") - (2.toByte() + (scale(
add(number(1), number(1)),
2
2.0
) + 1.toByte()))) * 3.0 - 1.toByte()
),
number(1)
@ -75,7 +75,7 @@ internal class TestESTreeConsistencyWithInterpreter {
fun realField() {
val res1 = RealField.mstInField {
+(3 - 2 + 2 * number(1) + 1.0) + binaryOperationFunction("+")(
(3.0 - (bindSymbol("x") + (multiply(add(number(1.0), number(1.0)), 2) + 1.0))) * 3 - 1.0
(3.0 - (bindSymbol("x") + (scale(add(number(1.0), number(1.0)), 2.0) + 1.0))) * 3 - 1.0
+ number(1),
number(1) / 2 + number(2.0) * one
) + zero
@ -83,7 +83,7 @@ internal class TestESTreeConsistencyWithInterpreter {
val res2 = RealField.mstInField {
+(3 - 2 + 2 * number(1) + 1.0) + binaryOperationFunction("+")(
(3.0 - (bindSymbol("x") + (multiply(add(number(1.0), number(1.0)), 2) + 1.0))) * 3 - 1.0
(3.0 - (bindSymbol("x") + (scale(add(number(1.0), number(1.0)), 2.0) + 1.0))) * 3 - 1.0
+ number(1),
number(1) / 2 + number(2.0) * one
) + zero
@ -96,7 +96,7 @@ internal class TestESTreeConsistencyWithInterpreter {
fun complexField() {
val res1 = ComplexField.mstInField {
+(3 - 2 + 2 * number(1) + 1.0) + binaryOperationFunction("+")(
(3.0 - (bindSymbol("x") + (multiply(add(number(1.0), number(1.0)), 2) + 1.0))) * 3 - 1.0
(3.0 - (bindSymbol("x") + (scale(add(number(1.0), number(1.0)), 2.0) + 1.0))) * 3 - 1.0
+ number(1),
number(1) / 2 + number(2.0) * one
) + zero
@ -104,7 +104,7 @@ internal class TestESTreeConsistencyWithInterpreter {
val res2 = ComplexField.mstInField {
+(3 - 2 + 2 * number(1) + 1.0) + binaryOperationFunction("+")(
(3.0 - (bindSymbol("x") + (multiply(add(number(1.0), number(1.0)), 2) + 1.0))) * 3 - 1.0
(3.0 - (bindSymbol("x") + (scale(add(number(1.0), number(1.0)), 2.0) + 1.0))) * 3 - 1.0
+ number(1),
number(1) / 2 + number(2.0) * one
) + zero

View File

@ -2,7 +2,7 @@ package space.kscience.kmath.estree
import space.kscience.kmath.ast.mstInExtendedField
import space.kscience.kmath.ast.mstInField
import space.kscience.kmath.ast.mstInSpace
import space.kscience.kmath.ast.mstInGroup
import space.kscience.kmath.expressions.invoke
import space.kscience.kmath.operations.RealField
import kotlin.random.Random
@ -12,14 +12,14 @@ import kotlin.test.assertEquals
internal class TestESTreeOperationsSupport {
@Test
fun testUnaryOperationInvocation() {
val expression = RealField.mstInSpace { -bindSymbol("x") }.compile()
val expression = RealField.mstInGroup { -bindSymbol("x") }.compile()
val res = expression("x" to 2.0)
assertEquals(-2.0, res)
}
@Test
fun testBinaryOperationInvocation() {
val expression = RealField.mstInSpace { -bindSymbol("x") + number(1.0) }.compile()
val expression = RealField.mstInGroup { -bindSymbol("x") + number(1.0) }.compile()
val res = expression("x" to 2.0)
assertEquals(-1.0, res)
}

View File

@ -1,4 +1,4 @@
// TODO move to common when https://github.com/h0tk3y/better-parse/pull/33 is merged
// TODO move to common when https://github.com/h0tk3y/better-parse/pull/37 is merged
package space.kscience.kmath.ast
@ -14,9 +14,9 @@ import com.github.h0tk3y.betterParse.lexer.regexToken
import com.github.h0tk3y.betterParse.parser.ParseResult
import com.github.h0tk3y.betterParse.parser.Parser
import space.kscience.kmath.operations.FieldOperations
import space.kscience.kmath.operations.GroupOperations
import space.kscience.kmath.operations.PowerOperations
import space.kscience.kmath.operations.RingOperations
import space.kscience.kmath.operations.SpaceOperations
/**
* better-parse implementation of grammar defined in the ArithmeticsEvaluator.g4.
@ -25,8 +25,8 @@ import space.kscience.kmath.operations.SpaceOperations
*/
public object ArithmeticsEvaluator : Grammar<MST>() {
// TODO replace with "...".toRegex() when better-parse 0.4.1 is released
private val num: Token by regexToken("[\\d.]+(?:[eE][-+]?\\d+)?")
private val id: Token by regexToken("[a-z_A-Z][\\da-z_A-Z]*")
private val num: Token by regexToken("[\\d.]+(?:[eE][-+]?\\d+)?".toRegex())
private val id: Token by regexToken("[a-z_A-Z][\\da-z_A-Z]*".toRegex())
private val lpar: Token by literalToken("(")
private val rpar: Token by literalToken(")")
private val comma: Token by literalToken(",")
@ -35,7 +35,7 @@ public object ArithmeticsEvaluator : Grammar<MST>() {
private val div: Token by literalToken("/")
private val minus: Token by literalToken("-")
private val plus: Token by literalToken("+")
private val ws: Token by regexToken("\\s+", ignore = true)
private val ws: Token by regexToken("\\s+".toRegex(), ignore = true)
private val number: Parser<MST> by num use { MST.Numeric(text.toDouble()) }
private val singular: Parser<MST> by id use { MST.Symbolic(text) }
@ -55,7 +55,7 @@ public object ArithmeticsEvaluator : Grammar<MST>() {
.or(binaryFunction)
.or(unaryFunction)
.or(singular)
.or(-minus and parser(ArithmeticsEvaluator::term) map { MST.Unary(SpaceOperations.MINUS_OPERATION, it) })
.or(-minus and parser(ArithmeticsEvaluator::term) map { MST.Unary(GroupOperations.MINUS_OPERATION, it) })
.or(-lpar and parser(ArithmeticsEvaluator::subSumChain) and -rpar)
private val powChain: Parser<MST> by leftAssociative(term = term, operator = pow) { a, _, b ->
@ -77,9 +77,9 @@ public object ArithmeticsEvaluator : Grammar<MST>() {
operator = plus or minus use TokenMatch::type
) { a, op, b ->
if (op == plus)
MST.Binary(SpaceOperations.PLUS_OPERATION, a, b)
MST.Binary(GroupOperations.PLUS_OPERATION, a, b)
else
MST.Binary(SpaceOperations.MINUS_OPERATION, a, b)
MST.Binary(GroupOperations.MINUS_OPERATION, a, b)
}
override val rootParser: Parser<MST> by subSumChain

View File

@ -12,12 +12,12 @@ import kotlin.test.assertEquals
internal class TestAsmConsistencyWithInterpreter {
@Test
fun mstSpace() {
val res1 = MstSpace.mstInSpace {
val res1 = MstGroup.mstInGroup {
binaryOperationFunction("+")(
unaryOperationFunction("+")(
number(3.toByte()) - (number(2.toByte()) + (multiply(
number(3.toByte()) - (number(2.toByte()) + (scale(
add(number(1), number(1)),
2
2.0
) + number(1.toByte()) * 3.toByte() - number(1.toByte())))
),
@ -25,12 +25,12 @@ internal class TestAsmConsistencyWithInterpreter {
) + bindSymbol("x") + zero
}("x" to MST.Numeric(2))
val res2 = MstSpace.mstInSpace {
val res2 = MstGroup.mstInGroup {
binaryOperationFunction("+")(
unaryOperationFunction("+")(
number(3.toByte()) - (number(2.toByte()) + (multiply(
number(3.toByte()) - (number(2.toByte()) + (scale(
add(number(1), number(1)),
2
2.0
) + number(1.toByte()) * 3.toByte() - number(1.toByte())))
),
@ -46,9 +46,9 @@ internal class TestAsmConsistencyWithInterpreter {
val res1 = ByteRing.mstInRing {
binaryOperationFunction("+")(
unaryOperationFunction("+")(
(bindSymbol("x") - (2.toByte() + (multiply(
(bindSymbol("x") - (2.toByte() + (scale(
add(number(1), number(1)),
2
2.0
) + 1.toByte()))) * 3.0 - 1.toByte()
),
@ -59,9 +59,9 @@ internal class TestAsmConsistencyWithInterpreter {
val res2 = ByteRing.mstInRing {
binaryOperationFunction("+")(
unaryOperationFunction("+")(
(bindSymbol("x") - (2.toByte() + (multiply(
(bindSymbol("x") - (2.toByte() + (scale(
add(number(1), number(1)),
2
2.0
) + 1.toByte()))) * 3.0 - 1.toByte()
),
number(1)
@ -75,7 +75,7 @@ internal class TestAsmConsistencyWithInterpreter {
fun realField() {
val res1 = RealField.mstInField {
+(3 - 2 + 2 * number(1) + 1.0) + binaryOperationFunction("+")(
(3.0 - (bindSymbol("x") + (multiply(add(number(1.0), number(1.0)), 2) + 1.0))) * 3 - 1.0
(3.0 - (bindSymbol("x") + (scale(add(number(1.0), number(1.0)), 2.0) + 1.0))) * 3 - 1.0
+ number(1),
number(1) / 2 + number(2.0) * one
) + zero
@ -83,7 +83,7 @@ internal class TestAsmConsistencyWithInterpreter {
val res2 = RealField.mstInField {
+(3 - 2 + 2 * number(1) + 1.0) + binaryOperationFunction("+")(
(3.0 - (bindSymbol("x") + (multiply(add(number(1.0), number(1.0)), 2) + 1.0))) * 3 - 1.0
(3.0 - (bindSymbol("x") + (scale(add(number(1.0), number(1.0)), 2.0) + 1.0))) * 3 - 1.0
+ number(1),
number(1) / 2 + number(2.0) * one
) + zero
@ -96,7 +96,7 @@ internal class TestAsmConsistencyWithInterpreter {
fun complexField() {
val res1 = ComplexField.mstInField {
+(3 - 2 + 2 * number(1) + 1.0) + binaryOperationFunction("+")(
(3.0 - (bindSymbol("x") + (multiply(add(number(1.0), number(1.0)), 2) + 1.0))) * 3 - 1.0
(3.0 - (bindSymbol("x") + (scale(add(number(1.0), number(1.0)), 2.0) + 1.0))) * 3 - 1.0
+ number(1),
number(1) / 2 + number(2.0) * one
) + zero
@ -104,7 +104,7 @@ internal class TestAsmConsistencyWithInterpreter {
val res2 = ComplexField.mstInField {
+(3 - 2 + 2 * number(1) + 1.0) + binaryOperationFunction("+")(
(3.0 - (bindSymbol("x") + (multiply(add(number(1.0), number(1.0)), 2) + 1.0))) * 3 - 1.0
(3.0 - (bindSymbol("x") + (scale(add(number(1.0), number(1.0)), 2.0) + 1.0))) * 3 - 1.0
+ number(1),
number(1) / 2 + number(2.0) * one
) + zero

View File

@ -2,7 +2,7 @@ package space.kscience.kmath.asm
import space.kscience.kmath.ast.mstInExtendedField
import space.kscience.kmath.ast.mstInField
import space.kscience.kmath.ast.mstInSpace
import space.kscience.kmath.ast.mstInGroup
import space.kscience.kmath.expressions.invoke
import space.kscience.kmath.operations.RealField
import kotlin.random.Random
@ -12,14 +12,14 @@ import kotlin.test.assertEquals
internal class TestAsmOperationsSupport {
@Test
fun testUnaryOperationInvocation() {
val expression = RealField.mstInSpace { -bindSymbol("x") }.compile()
val expression = RealField.mstInGroup { -bindSymbol("x") }.compile()
val res = expression("x" to 2.0)
assertEquals(-2.0, res)
}
@Test
fun testBinaryOperationInvocation() {
val expression = RealField.mstInSpace { -bindSymbol("x") + number(1.0) }.compile()
val expression = RealField.mstInGroup { -bindSymbol("x") + number(1.0) }.compile()
val res = expression("x" to 2.0)
assertEquals(-1.0, res)
}

View File

@ -4,7 +4,7 @@ import org.apache.commons.math3.analysis.differentiation.DerivativeStructure
import space.kscience.kmath.expressions.*
import space.kscience.kmath.misc.UnstableKMathAPI
import space.kscience.kmath.operations.ExtendedField
import space.kscience.kmath.operations.RingWithNumbers
import space.kscience.kmath.operations.NumbersAddOperations
/**
* A field over commons-math [DerivativeStructure].
@ -16,7 +16,8 @@ import space.kscience.kmath.operations.RingWithNumbers
public class DerivativeStructureField(
public val order: Int,
bindings: Map<Symbol, Double>,
) : ExtendedField<DerivativeStructure>, ExpressionAlgebra<Double, DerivativeStructure>, RingWithNumbers<DerivativeStructure> {
) : ExtendedField<DerivativeStructure>, ExpressionAlgebra<Double, DerivativeStructure>,
NumbersAddOperations<DerivativeStructure> {
public val numberOfVariables: Int = bindings.size
public override val zero: DerivativeStructure by lazy { DerivativeStructure(numberOfVariables, order) }
@ -62,13 +63,11 @@ public class DerivativeStructureField(
public fun DerivativeStructure.derivative(vararg symbols: Symbol): Double = derivative(symbols.toList())
override fun DerivativeStructure.unaryMinus(): DerivativeStructure = negate()
public override fun add(a: DerivativeStructure, b: DerivativeStructure): DerivativeStructure = a.add(b)
public override fun multiply(a: DerivativeStructure, k: Number): DerivativeStructure = when (k) {
is Double -> a.multiply(k)
is Int -> a.multiply(k)
else -> a.multiply(k.toDouble())
}
public override fun scale(a: DerivativeStructure, value: Double): DerivativeStructure = a.multiply(value)
public override fun multiply(a: DerivativeStructure, b: DerivativeStructure): DerivativeStructure = a.multiply(b)
public override fun divide(a: DerivativeStructure, b: DerivativeStructure): DerivativeStructure = a.divide(b)

View File

@ -3,59 +3,28 @@ package space.kscience.kmath.commons.linear
import org.apache.commons.math3.linear.*
import space.kscience.kmath.linear.*
import space.kscience.kmath.misc.UnstableKMathAPI
import space.kscience.kmath.nd.NDStructure
import space.kscience.kmath.operations.RealField
import space.kscience.kmath.structures.RealBuffer
import kotlin.reflect.KClass
import kotlin.reflect.cast
public inline class CMMatrix(public val origin: RealMatrix) : Matrix<Double> {
public class CMMatrix(public val origin: RealMatrix) : Matrix<Double> {
public override val rowNum: Int get() = origin.rowDimension
public override val colNum: Int get() = origin.columnDimension
@UnstableKMathAPI
override fun <T : Any> getFeature(type: KClass<T>): T? = when (type) {
DiagonalFeature::class -> if (origin is DiagonalMatrix) DiagonalFeature else null
DeterminantFeature::class, LupDecompositionFeature::class -> object :
DeterminantFeature<Double>,
LupDecompositionFeature<Double> {
private val lup by lazy { LUDecomposition(origin) }
override val determinant: Double by lazy { lup.determinant }
override val l: Matrix<Double> by lazy { CMMatrix(lup.l) + LFeature }
override val u: Matrix<Double> by lazy { CMMatrix(lup.u) + UFeature }
override val p: Matrix<Double> by lazy { CMMatrix(lup.p) }
}
CholeskyDecompositionFeature::class -> object : CholeskyDecompositionFeature<Double> {
override val l: Matrix<Double> by lazy {
val cholesky = CholeskyDecomposition(origin)
CMMatrix(cholesky.l) + LFeature
}
}
QRDecompositionFeature::class -> object : QRDecompositionFeature<Double> {
private val qr by lazy { QRDecomposition(origin) }
override val q: Matrix<Double> by lazy { CMMatrix(qr.q) + OrthogonalFeature }
override val r: Matrix<Double> by lazy { CMMatrix(qr.r) + UFeature }
}
SingularValueDecompositionFeature::class -> object : SingularValueDecompositionFeature<Double> {
private val sv by lazy { SingularValueDecomposition(origin) }
override val u: Matrix<Double> by lazy { CMMatrix(sv.u) }
override val s: Matrix<Double> by lazy { CMMatrix(sv.s) }
override val v: Matrix<Double> by lazy { CMMatrix(sv.v) }
override val singularValues: Point<Double> by lazy { RealBuffer(sv.singularValues) }
}
else -> null
}?.let(type::cast)
public override operator fun get(i: Int, j: Int): Double = origin.getEntry(i, j)
override fun equals(other: Any?): Boolean {
if (this === other) return true
if (other !is NDStructure<*>) return false
return NDStructure.contentEquals(this, other)
}
override fun hashCode(): Int = origin.hashCode()
}
public fun RealMatrix.asMatrix(): CMMatrix = CMMatrix(this)
public class CMVector(public val origin: RealVector) : Point<Double> {
public inline class CMVector(public val origin: RealVector) : Point<Double> {
public override val size: Int get() = origin.dimension
public override operator fun get(index: Int): Double = origin.getEntry(index)
@ -63,16 +32,17 @@ public class CMVector(public val origin: RealVector) : Point<Double> {
public override operator fun iterator(): Iterator<Double> = origin.toArray().iterator()
}
public fun Point<Double>.toCM(): CMVector = if (this is CMVector) this else {
val array = DoubleArray(size) { this[it] }
CMVector(ArrayRealVector(array))
}
public fun RealVector.toPoint(): CMVector = CMVector(this)
public object CMMatrixContext : MatrixContext<Double, CMMatrix> {
public override fun produce(rows: Int, columns: Int, initializer: (i: Int, j: Int) -> Double): CMMatrix {
val array = Array(rows) { i -> DoubleArray(columns) { j -> initializer(i, j) } }
public object CMLinearSpace : LinearSpace<Double, RealField> {
override val elementAlgebra: RealField get() = RealField
public override fun buildMatrix(
rows: Int,
columns: Int,
initializer: RealField.(i: Int, j: Int) -> Double,
): CMMatrix {
val array = Array(rows) { i -> DoubleArray(columns) { j -> RealField.initializer(i, j) } }
return CMMatrix(Array2DRowRealMatrix(array))
}
@ -82,37 +52,98 @@ public object CMMatrixContext : MatrixContext<Double, CMMatrix> {
else -> {
//TODO add feature analysis
val array = Array(rowNum) { i -> DoubleArray(colNum) { j -> get(i, j) } }
CMMatrix(Array2DRowRealMatrix(array))
Array2DRowRealMatrix(array).wrap()
}
}
public fun Point<Double>.toCM(): CMVector = if (this is CMVector) this else {
val array = DoubleArray(size) { this[it] }
ArrayRealVector(array).wrap()
}
internal fun RealMatrix.wrap(): CMMatrix = CMMatrix(this)
internal fun RealVector.wrap(): CMVector = CMVector(this)
override fun buildVector(size: Int, initializer: RealField.(Int) -> Double): Point<Double> =
ArrayRealVector(DoubleArray(size) { RealField.initializer(it) }).wrap()
override fun Matrix<Double>.plus(other: Matrix<Double>): CMMatrix =
toCM().origin.add(other.toCM().origin).wrap()
override fun Point<Double>.plus(other: Point<Double>): CMVector =
toCM().origin.add(other.toCM().origin).wrap()
override fun Point<Double>.minus(other: Point<Double>): CMVector =
toCM().origin.subtract(other.toCM().origin).wrap()
public override fun Matrix<Double>.dot(other: Matrix<Double>): CMMatrix =
CMMatrix(toCM().origin.multiply(other.toCM().origin))
toCM().origin.multiply(other.toCM().origin).wrap()
public override fun Matrix<Double>.dot(vector: Point<Double>): CMVector =
CMVector(toCM().origin.preMultiply(vector.toCM().origin))
toCM().origin.preMultiply(vector.toCM().origin).wrap()
public override operator fun Matrix<Double>.unaryMinus(): CMMatrix =
produce(rowNum, colNum) { i, j -> -get(i, j) }
public override fun add(a: Matrix<Double>, b: Matrix<Double>): CMMatrix =
CMMatrix(a.toCM().origin.multiply(b.toCM().origin))
public override operator fun Matrix<Double>.minus(b: Matrix<Double>): CMMatrix =
CMMatrix(toCM().origin.subtract(b.toCM().origin))
public override fun multiply(a: Matrix<Double>, k: Number): CMMatrix =
CMMatrix(a.toCM().origin.scalarMultiply(k.toDouble()))
public override operator fun Matrix<Double>.minus(other: Matrix<Double>): CMMatrix =
toCM().origin.subtract(other.toCM().origin).wrap()
public override operator fun Matrix<Double>.times(value: Double): CMMatrix =
produce(rowNum, colNum) { i, j -> get(i, j) * value }
toCM().origin.scalarMultiply(value).wrap()
override fun Double.times(m: Matrix<Double>): CMMatrix =
m * this
override fun Point<Double>.times(value: Double): CMVector =
toCM().origin.mapMultiply(value).wrap()
override fun Double.times(v: Point<Double>): CMVector =
v * this
@UnstableKMathAPI
override fun <F : Any> getFeature(structure: Matrix<Double>, type: KClass<F>): F? {
//Return the feature if it is intrinsic to the structure
structure.getFeature(type)?.let { return it }
val origin = structure.toCM().origin
return when (type) {
DiagonalFeature::class -> if (origin is DiagonalMatrix) DiagonalFeature else null
DeterminantFeature::class, LupDecompositionFeature::class -> object :
DeterminantFeature<Double>,
LupDecompositionFeature<Double> {
private val lup by lazy { LUDecomposition(origin) }
override val determinant: Double by lazy { lup.determinant }
override val l: Matrix<Double> by lazy { CMMatrix(lup.l) + LFeature }
override val u: Matrix<Double> by lazy { CMMatrix(lup.u) + UFeature }
override val p: Matrix<Double> by lazy { CMMatrix(lup.p) }
}
CholeskyDecompositionFeature::class -> object : CholeskyDecompositionFeature<Double> {
override val l: Matrix<Double> by lazy {
val cholesky = CholeskyDecomposition(origin)
CMMatrix(cholesky.l) + LFeature
}
}
QRDecompositionFeature::class -> object : QRDecompositionFeature<Double> {
private val qr by lazy { QRDecomposition(origin) }
override val q: Matrix<Double> by lazy { CMMatrix(qr.q) + OrthogonalFeature }
override val r: Matrix<Double> by lazy { CMMatrix(qr.r) + UFeature }
}
SingularValueDecompositionFeature::class -> object : SingularValueDecompositionFeature<Double> {
private val sv by lazy { SingularValueDecomposition(origin) }
override val u: Matrix<Double> by lazy { CMMatrix(sv.u) }
override val s: Matrix<Double> by lazy { CMMatrix(sv.s) }
override val v: Matrix<Double> by lazy { CMMatrix(sv.v) }
override val singularValues: Point<Double> by lazy { RealBuffer(sv.singularValues) }
}
else -> null
}?.let(type::cast)
}
}
public operator fun CMMatrix.plus(other: CMMatrix): CMMatrix =
CMMatrix(origin.add(other.origin))
public operator fun CMMatrix.plus(other: CMMatrix): CMMatrix = CMMatrix(origin.add(other.origin))
public operator fun CMMatrix.minus(other: CMMatrix): CMMatrix =
CMMatrix(origin.subtract(other.origin))
public operator fun CMMatrix.minus(other: CMMatrix): CMMatrix = CMMatrix(origin.subtract(other.origin))
public infix fun CMMatrix.dot(other: CMMatrix): CMMatrix =
CMMatrix(origin.multiply(other.origin))
public infix fun CMMatrix.dot(other: CMMatrix): CMMatrix = CMMatrix(origin.multiply(other.origin))

View File

@ -12,7 +12,7 @@ public enum class CMDecomposition {
CHOLESKY
}
public fun CMMatrixContext.solver(
public fun CMLinearSpace.solver(
a: Matrix<Double>,
decomposition: CMDecomposition = CMDecomposition.LUP
): DecompositionSolver = when (decomposition) {
@ -23,19 +23,19 @@ public fun CMMatrixContext.solver(
CMDecomposition.CHOLESKY -> CholeskyDecomposition(a.toCM().origin).solver
}
public fun CMMatrixContext.solve(
public fun CMLinearSpace.solve(
a: Matrix<Double>,
b: Matrix<Double>,
decomposition: CMDecomposition = CMDecomposition.LUP
): CMMatrix = solver(a, decomposition).solve(b.toCM().origin).asMatrix()
): CMMatrix = solver(a, decomposition).solve(b.toCM().origin).wrap()
public fun CMMatrixContext.solve(
public fun CMLinearSpace.solve(
a: Matrix<Double>,
b: Point<Double>,
decomposition: CMDecomposition = CMDecomposition.LUP
): CMVector = solver(a, decomposition).solve(b.toCM().origin).toPoint()
public fun CMMatrixContext.inverse(
public fun CMLinearSpace.inverse(
a: Matrix<Double>,
decomposition: CMDecomposition = CMDecomposition.LUP
): CMMatrix = solver(a, decomposition).inverse.asMatrix()
): CMMatrix = solver(a, decomposition).inverse.wrap()

View File

@ -8,7 +8,7 @@ Complex and hypercomplex number systems in KMath:
> #### Artifact:
>
> This module artifact: `space.kscience:kmath-complex:0.2.0`.
> This module artifact: `space.kscience:kmath-complex:0.3.0-dev-2`.
>
> Bintray release version: [ ![Download](https://api.bintray.com/packages/mipt-npm/kscience/kmath-complex/images/download.svg) ](https://bintray.com/mipt-npm/kscience/kmath-complex/_latestVersion)
>
@ -27,7 +27,7 @@ Complex and hypercomplex number systems in KMath:
> }
>
> dependencies {
> implementation 'space.kscience:kmath-complex:0.2.0'
> implementation 'space.kscience:kmath-complex:0.3.0-dev-2'
> }
> ```
> **Gradle Kotlin DSL:**
@ -43,6 +43,6 @@ Complex and hypercomplex number systems in KMath:
> }
>
> dependencies {
> implementation("space.kscience:kmath-complex:0.2.0")
> implementation("space.kscience:kmath-complex:0.3.0-dev-2")
> }
> ```

View File

@ -4,10 +4,7 @@ import space.kscience.kmath.memory.MemoryReader
import space.kscience.kmath.memory.MemorySpec
import space.kscience.kmath.memory.MemoryWriter
import space.kscience.kmath.misc.UnstableKMathAPI
import space.kscience.kmath.operations.ExtendedField
import space.kscience.kmath.operations.FieldElement
import space.kscience.kmath.operations.Norm
import space.kscience.kmath.operations.RingWithNumbers
import space.kscience.kmath.operations.*
import space.kscience.kmath.structures.Buffer
import space.kscience.kmath.structures.MemoryBuffer
import space.kscience.kmath.structures.MutableBuffer
@ -47,7 +44,8 @@ private val PI_DIV_2 = Complex(PI / 2, 0)
* A field of [Complex].
*/
@OptIn(UnstableKMathAPI::class)
public object ComplexField : ExtendedField<Complex>, Norm<Complex, Complex>, RingWithNumbers<Complex> {
public object ComplexField : ExtendedField<Complex>, Norm<Complex, Complex>, NumbersAddOperations<Complex>,
ScaleOperations<Complex> {
public override val zero: Complex = 0.0.toComplex()
public override val one: Complex = 1.0.toComplex()
@ -56,8 +54,14 @@ public object ComplexField : ExtendedField<Complex>, Norm<Complex, Complex>, Rin
*/
public val i: Complex by lazy { Complex(0.0, 1.0) }
override fun Complex.unaryMinus(): Complex = Complex(-re, -im)
override fun number(value: Number): Complex = Complex(value.toDouble(), 0.0)
override fun scale(a: Complex, value: Double): Complex = Complex(a.re * value, a.im * value)
public override fun add(a: Complex, b: Complex): Complex = Complex(a.re + b.re, a.im + b.im)
public override fun multiply(a: Complex, k: Number): Complex = Complex(a.re * k.toDouble(), a.im * k.toDouble())
// public override fun multiply(a: Complex, k: Number): Complex = Complex(a.re * k.toDouble(), a.im * k.toDouble())
public override fun multiply(a: Complex, b: Complex): Complex =
Complex(a.re * b.re - a.im * b.im, a.re * b.im + a.im * b.re)
@ -86,8 +90,10 @@ public object ComplexField : ExtendedField<Complex>, Norm<Complex, Complex>, Rin
}
}
public override fun sin(arg: Complex): Complex = i * (exp(-i * arg) - exp(i * arg)) / 2
public override fun cos(arg: Complex): Complex = (exp(-i * arg) + exp(i * arg)) / 2
override operator fun Complex.div(k: Number): Complex = Complex(re / k.toDouble(), im / k.toDouble())
public override fun sin(arg: Complex): Complex = i * (exp(-i * arg) - exp(i * arg)) / 2.0
public override fun cos(arg: Complex): Complex = (exp(-i * arg) + exp(i * arg)) / 2.0
public override fun tan(arg: Complex): Complex {
val e1 = exp(-i * arg)
@ -159,7 +165,8 @@ public object ComplexField : ExtendedField<Complex>, Norm<Complex, Complex>, Rin
public override fun norm(arg: Complex): Complex = sqrt(arg.conjugate * arg)
public override fun bindSymbol(value: String): Complex = if (value == "i") i else super<ExtendedField>.bindSymbol(value)
public override fun bindSymbol(value: String): Complex =
if (value == "i") i else super<ExtendedField>.bindSymbol(value)
}
/**
@ -181,7 +188,8 @@ public data class Complex(val re: Double, val im: Double) : FieldElement<Complex
public override val objectSize: Int
get() = 16
public override fun MemoryReader.read(offset: Int): Complex = Complex(readDouble(offset), readDouble(offset + 8))
public override fun MemoryReader.read(offset: Int): Complex =
Complex(readDouble(offset), readDouble(offset + 8))
public override fun MemoryWriter.write(offset: Int, value: Complex) {
writeDouble(offset, value.re)

View File

@ -6,7 +6,7 @@ import space.kscience.kmath.nd.NDAlgebra
import space.kscience.kmath.nd.NDBuffer
import space.kscience.kmath.nd.NDStructure
import space.kscience.kmath.operations.ExtendedField
import space.kscience.kmath.operations.RingWithNumbers
import space.kscience.kmath.operations.NumbersAddOperations
import space.kscience.kmath.structures.Buffer
import kotlin.contracts.InvocationKind
import kotlin.contracts.contract
@ -19,7 +19,7 @@ import kotlin.contracts.contract
public class ComplexNDField(
shape: IntArray,
) : BufferedNDField<Complex, ComplexField>(shape, ComplexField, Buffer.Companion::complex),
RingWithNumbers<NDStructure<Complex>>,
NumbersAddOperations<NDStructure<Complex>>,
ExtendedField<NDStructure<Complex>> {
override val zero: NDBuffer<Complex> by lazy { produce { zero } }
@ -29,6 +29,7 @@ public class ComplexNDField(
val d = value.toComplex() // minimize conversions
return produce { d }
}
//
// @Suppress("OVERRIDE_BY_INLINE")
// override inline fun map(
@ -75,25 +76,25 @@ public class ComplexNDField(
// return BufferedNDFieldElement(this, buffer)
// }
override fun power(arg: NDStructure<Complex>, pow: Number): NDBuffer<Complex> = arg.map() { power(it, pow) }
override fun power(arg: NDStructure<Complex>, pow: Number): NDBuffer<Complex> = arg.map { power(it, pow) }
override fun exp(arg: NDStructure<Complex>): NDBuffer<Complex> = arg.map() { exp(it) }
override fun exp(arg: NDStructure<Complex>): NDBuffer<Complex> = arg.map { exp(it) }
override fun ln(arg: NDStructure<Complex>): NDBuffer<Complex> = arg.map() { ln(it) }
override fun ln(arg: NDStructure<Complex>): NDBuffer<Complex> = arg.map { ln(it) }
override fun sin(arg: NDStructure<Complex>): NDBuffer<Complex> = arg.map() { sin(it) }
override fun cos(arg: NDStructure<Complex>): NDBuffer<Complex> = arg.map() { cos(it) }
override fun tan(arg: NDStructure<Complex>): NDBuffer<Complex> = arg.map() { tan(it) }
override fun asin(arg: NDStructure<Complex>): NDBuffer<Complex> = arg.map() { asin(it) }
override fun acos(arg: NDStructure<Complex>): NDBuffer<Complex> = arg.map() { acos(it) }
override fun atan(arg: NDStructure<Complex>): NDBuffer<Complex> = arg.map() { atan(it) }
override fun sin(arg: NDStructure<Complex>): NDBuffer<Complex> = arg.map { sin(it) }
override fun cos(arg: NDStructure<Complex>): NDBuffer<Complex> = arg.map { cos(it) }
override fun tan(arg: NDStructure<Complex>): NDBuffer<Complex> = arg.map { tan(it) }
override fun asin(arg: NDStructure<Complex>): NDBuffer<Complex> = arg.map { asin(it) }
override fun acos(arg: NDStructure<Complex>): NDBuffer<Complex> = arg.map { acos(it) }
override fun atan(arg: NDStructure<Complex>): NDBuffer<Complex> = arg.map { atan(it) }
override fun sinh(arg: NDStructure<Complex>): NDBuffer<Complex> = arg.map() { sinh(it) }
override fun cosh(arg: NDStructure<Complex>): NDBuffer<Complex> = arg.map() { cosh(it) }
override fun tanh(arg: NDStructure<Complex>): NDBuffer<Complex> = arg.map() { tanh(it) }
override fun asinh(arg: NDStructure<Complex>): NDBuffer<Complex> = arg.map() { asinh(it) }
override fun acosh(arg: NDStructure<Complex>): NDBuffer<Complex> = arg.map() { acosh(it) }
override fun atanh(arg: NDStructure<Complex>): NDBuffer<Complex> = arg.map() { atanh(it) }
override fun sinh(arg: NDStructure<Complex>): NDBuffer<Complex> = arg.map { sinh(it) }
override fun cosh(arg: NDStructure<Complex>): NDBuffer<Complex> = arg.map { cosh(it) }
override fun tanh(arg: NDStructure<Complex>): NDBuffer<Complex> = arg.map { tanh(it) }
override fun asinh(arg: NDStructure<Complex>): NDBuffer<Complex> = arg.map { asinh(it) }
override fun acosh(arg: NDStructure<Complex>): NDBuffer<Complex> = arg.map { acosh(it) }
override fun atanh(arg: NDStructure<Complex>): NDBuffer<Complex> = arg.map { atanh(it) }
}

View File

@ -37,7 +37,7 @@ public val Quaternion.r: Double
*/
@OptIn(UnstableKMathAPI::class)
public object QuaternionField : Field<Quaternion>, Norm<Quaternion, Quaternion>, PowerOperations<Quaternion>,
ExponentialOperations<Quaternion>, RingWithNumbers<Quaternion> {
ExponentialOperations<Quaternion>, NumbersAddOperations<Quaternion>, ScaleOperations<Quaternion> {
override val zero: Quaternion = 0.toQuaternion()
override val one: Quaternion = 1.toQuaternion()
@ -59,10 +59,8 @@ public object QuaternionField : Field<Quaternion>, Norm<Quaternion, Quaternion>,
public override fun add(a: Quaternion, b: Quaternion): Quaternion =
Quaternion(a.w + b.w, a.x + b.x, a.y + b.y, a.z + b.z)
public override fun multiply(a: Quaternion, k: Number): Quaternion {
val d = k.toDouble()
return Quaternion(a.w * d, a.x * d, a.y * d, a.z * d)
}
public override fun scale(a: Quaternion, value: Double): Quaternion =
Quaternion(a.w * value, a.x * value, a.y * value, a.z * value)
public override fun multiply(a: Quaternion, b: Quaternion): Quaternion = Quaternion(
a.w * b.w - a.x * b.x - a.y * b.y - a.z * b.z,
@ -173,6 +171,15 @@ public object QuaternionField : Field<Quaternion>, Norm<Quaternion, Quaternion>,
"k" -> k
else -> super<Field>.bindSymbol(value)
}
override fun number(value: Number): Quaternion =value.toQuaternion()
public override fun sinh(arg: Quaternion): Quaternion = (exp(arg) - exp(-arg)) / 2.0
public override fun cosh(arg: Quaternion): Quaternion = (exp(arg) + exp(-arg)) / 2.0
public override fun tanh(arg: Quaternion): Quaternion = (exp(arg) - exp(-arg)) / (exp(-arg) + exp(arg))
public override fun asinh(arg: Quaternion): Quaternion = ln(sqrt(arg * arg + one) + arg)
public override fun acosh(arg: Quaternion): Quaternion = ln(arg + sqrt((arg - one) * (arg + one)))
public override fun atanh(arg: Quaternion): Quaternion = (ln(arg + one) - ln(one - arg)) / 2.0
}
/**
@ -207,8 +214,7 @@ public data class Quaternion(
require(!z.isNaN()) { "x-component of quaternion is not-a-number" }
}
public override val context: QuaternionField
get() = QuaternionField
public override val context: QuaternionField get() = QuaternionField
/**
* Returns a string representation of this quaternion.

View File

@ -4,7 +4,6 @@ import space.kscience.kmath.expressions.FunctionalExpressionField
import space.kscience.kmath.expressions.bindSymbol
import space.kscience.kmath.expressions.invoke
import space.kscience.kmath.expressions.symbol
import space.kscience.kmath.operations.invoke
import kotlin.test.Test
import kotlin.test.assertEquals
@ -13,14 +12,11 @@ internal class ExpressionFieldForComplexTest {
@Test
fun testComplex() {
val context = FunctionalExpressionField(ComplexField)
val expression = context {
val expression = FunctionalExpressionField(ComplexField).run {
val x = bindSymbol(x)
x * x + 2 * x + one
}
assertEquals(expression(x to Complex(1.0, 0.0)), Complex(4.0, 0.0))
//assertEquals(expression(), Complex(9.0, 0.0))
}
}

View File

@ -15,7 +15,7 @@ performance calculations to code generation.
> #### Artifact:
>
> This module artifact: `space.kscience:kmath-core:0.2.0`.
> This module artifact: `space.kscience:kmath-core:0.3.0-dev-2`.
>
> Bintray release version: [ ![Download](https://api.bintray.com/packages/mipt-npm/kscience/kmath-core/images/download.svg) ](https://bintray.com/mipt-npm/kscience/kmath-core/_latestVersion)
>
@ -34,7 +34,7 @@ performance calculations to code generation.
> }
>
> dependencies {
> implementation 'space.kscience:kmath-core:0.2.0'
> implementation 'space.kscience:kmath-core:0.3.0-dev-2'
> }
> ```
> **Gradle Kotlin DSL:**
@ -50,6 +50,6 @@ performance calculations to code generation.
> }
>
> dependencies {
> implementation("space.kscience:kmath-core:0.2.0")
> implementation("space.kscience:kmath-core:0.3.0-dev-2")
> }
> ```

File diff suppressed because it is too large Load Diff

View File

@ -16,8 +16,8 @@
package space.kscience.kmath.domains
import space.kscience.kmath.linear.Point
import space.kscience.kmath.misc.UnstableKMathAPI
import space.kscience.kmath.structures.Buffer
import space.kscience.kmath.structures.RealBuffer
import space.kscience.kmath.structures.indices
/**
@ -26,6 +26,7 @@ import space.kscience.kmath.structures.indices
*
* @author Alexander Nozik
*/
@UnstableKMathAPI
public class HyperSquareDomain(private val lower: Buffer<Double>, private val upper: Buffer<Double>) : RealDomain {
public override val dimension: Int get() = lower.size
@ -33,26 +34,10 @@ public class HyperSquareDomain(private val lower: Buffer<Double>, private val up
point[i] in lower[i]..upper[i]
}
public override fun getLowerBound(num: Int, point: Point<Double>): Double = lower[num]
public override fun getLowerBound(num: Int): Double = lower[num]
public override fun getUpperBound(num: Int, point: Point<Double>): Double = upper[num]
public override fun getUpperBound(num: Int): Double = upper[num]
public override fun nearestInDomain(point: Point<Double>): Point<Double> {
val res = DoubleArray(point.size) { i ->
when {
point[i] < lower[i] -> lower[i]
point[i] > upper[i] -> upper[i]
else -> point[i]
}
}
return RealBuffer(*res)
}
public override fun volume(): Double {
var res = 1.0

View File

@ -15,45 +15,27 @@
*/
package space.kscience.kmath.domains
import space.kscience.kmath.linear.Point
import space.kscience.kmath.misc.UnstableKMathAPI
/**
* n-dimensional volume
*
* @author Alexander Nozik
*/
@UnstableKMathAPI
public interface RealDomain : Domain<Double> {
public fun nearestInDomain(point: Point<Double>): Point<Double>
/**
* The lower edge for the domain going down from point
* @param num
* @param point
* @return
*/
public fun getLowerBound(num: Int, point: Point<Double>): Double?
/**
* The upper edge of the domain going up from point
* @param num
* @param point
* @return
*/
public fun getUpperBound(num: Int, point: Point<Double>): Double?
/**
* Global lower edge
* @param num
* @return
* @param num axis number
*/
public fun getLowerBound(num: Int): Double?
public fun getLowerBound(num: Int): Double
/**
* Global upper edge
* @param num
* @return
* @param num axis number
*/
public fun getUpperBound(num: Int): Double?
public fun getUpperBound(num: Int): Double
/**
* Hyper volume

View File

@ -16,19 +16,15 @@
package space.kscience.kmath.domains
import space.kscience.kmath.linear.Point
import space.kscience.kmath.misc.UnstableKMathAPI
@UnstableKMathAPI
public class UnconstrainedDomain(public override val dimension: Int) : RealDomain {
public override operator fun contains(point: Point<Double>): Boolean = true
public override fun getLowerBound(num: Int, point: Point<Double>): Double? = Double.NEGATIVE_INFINITY
public override fun getLowerBound(num: Int): Double = Double.NEGATIVE_INFINITY
public override fun getLowerBound(num: Int): Double? = Double.NEGATIVE_INFINITY
public override fun getUpperBound(num: Int, point: Point<Double>): Double? = Double.POSITIVE_INFINITY
public override fun getUpperBound(num: Int): Double? = Double.POSITIVE_INFINITY
public override fun nearestInDomain(point: Point<Double>): Point<Double> = point
public override fun getUpperBound(num: Int): Double = Double.POSITIVE_INFINITY
public override fun volume(): Double = Double.POSITIVE_INFINITY
}

View File

@ -1,11 +1,11 @@
package space.kscience.kmath.domains
import space.kscience.kmath.linear.Point
import space.kscience.kmath.structures.asBuffer
import space.kscience.kmath.misc.UnstableKMathAPI
@UnstableKMathAPI
public inline class UnivariateDomain(public val range: ClosedFloatingPointRange<Double>) : RealDomain {
public override val dimension: Int
get() = 1
public override val dimension: Int get() = 1
public operator fun contains(d: Double): Boolean = range.contains(d)
@ -14,33 +14,12 @@ public inline class UnivariateDomain(public val range: ClosedFloatingPointRange<
return contains(point[0])
}
public override fun nearestInDomain(point: Point<Double>): Point<Double> {
require(point.size == 1)
val value = point[0]
return when {
value in range -> point
value >= range.endInclusive -> doubleArrayOf(range.endInclusive).asBuffer()
else -> doubleArrayOf(range.start).asBuffer()
}
}
public override fun getLowerBound(num: Int, point: Point<Double>): Double? {
public override fun getLowerBound(num: Int): Double {
require(num == 0)
return range.start
}
public override fun getUpperBound(num: Int, point: Point<Double>): Double? {
require(num == 0)
return range.endInclusive
}
public override fun getLowerBound(num: Int): Double? {
require(num == 0)
return range.start
}
public override fun getUpperBound(num: Int): Double? {
public override fun getUpperBound(num: Int): Double {
require(num == 0)
return range.endInclusive
}

View File

@ -28,7 +28,7 @@ public fun <T, R : Expression<T>> DifferentiableExpression<T, R>.derivative(name
/**
* A [DifferentiableExpression] that defines only first derivatives
*/
public abstract class FirstDerivativeExpression<T, R : Expression<T>> : DifferentiableExpression<T,R> {
public abstract class FirstDerivativeExpression<T, R : Expression<T>> : DifferentiableExpression<T, R> {
/**
* Returns first derivative of this expression by given [symbol].
*/

View File

@ -95,7 +95,7 @@ public fun <T, E> ExpressionAlgebra<T, E>.bindSymbol(symbol: Symbol): E =
/**
* A delegate to create a symbol with a string identity in this scope
*/
public val symbol: ReadOnlyProperty<Any?, Symbol> = ReadOnlyProperty { _, property ->
public val symbol: ReadOnlyProperty<Any?, Symbol> = ReadOnlyProperty { _, property ->
StringSymbol(property.name)
}

View File

@ -41,25 +41,28 @@ public abstract class FunctionalExpressionAlgebra<T, A : Algebra<T>>(
}
/**
* A context class for [Expression] construction for [Space] algebras.
* A context class for [Expression] construction for [Group] algebras.
*/
public open class FunctionalExpressionSpace<T, A : Space<T>>(
public open class FunctionalExpressionGroup<T, A : Group<T>>(
algebra: A,
) : FunctionalExpressionAlgebra<T, A>(algebra), Space<Expression<T>> {
) : FunctionalExpressionAlgebra<T, A>(algebra), Group<Expression<T>> {
public override val zero: Expression<T> get() = const(algebra.zero)
override fun Expression<T>.unaryMinus(): Expression<T> =
unaryOperation(GroupOperations.MINUS_OPERATION, this)
/**
* Builds an Expression of addition of two another expressions.
*/
public override fun add(a: Expression<T>, b: Expression<T>): Expression<T> =
binaryOperationFunction(SpaceOperations.PLUS_OPERATION)(a, b)
binaryOperation(GroupOperations.PLUS_OPERATION, a, b)
/**
* Builds an Expression of multiplication of expression by number.
*/
public override fun multiply(a: Expression<T>, k: Number): Expression<T> = Expression { arguments ->
algebra.multiply(a.invoke(arguments), k)
}
// /**
// * Builds an Expression of multiplication of expression by number.
// */
// public override fun multiply(a: Expression<T>, k: Number): Expression<T> = Expression { arguments ->
// algebra.multiply(a.invoke(arguments), k)
// }
public operator fun Expression<T>.plus(arg: T): Expression<T> = this + const(arg)
public operator fun Expression<T>.minus(arg: T): Expression<T> = this - const(arg)
@ -71,13 +74,13 @@ public open class FunctionalExpressionSpace<T, A : Space<T>>(
public override fun binaryOperationFunction(operation: String): (left: Expression<T>, right: Expression<T>) -> Expression<T> =
super<FunctionalExpressionAlgebra>.binaryOperationFunction(operation)
}
public open class FunctionalExpressionRing<T, A : Ring<T>>(
algebra: A,
) : FunctionalExpressionSpace<T, A>(algebra), Ring<Expression<T>> {
public override val one: Expression<T>
get() = const(algebra.one)
) : FunctionalExpressionGroup<T, A>(algebra), Ring<Expression<T>> {
public override val one: Expression<T> get() = const(algebra.one)
/**
* Builds an Expression of multiplication of two expressions.
@ -89,15 +92,16 @@ public open class FunctionalExpressionRing<T, A : Ring<T>>(
public operator fun T.times(arg: Expression<T>): Expression<T> = arg * this
public override fun unaryOperationFunction(operation: String): (arg: Expression<T>) -> Expression<T> =
super<FunctionalExpressionSpace>.unaryOperationFunction(operation)
super<FunctionalExpressionGroup>.unaryOperationFunction(operation)
public override fun binaryOperationFunction(operation: String): (left: Expression<T>, right: Expression<T>) -> Expression<T> =
super<FunctionalExpressionSpace>.binaryOperationFunction(operation)
super<FunctionalExpressionGroup>.binaryOperationFunction(operation)
}
public open class FunctionalExpressionField<T, A : Field<T>>(
algebra: A,
) : FunctionalExpressionRing<T, A>(algebra), Field<Expression<T>> {
) : FunctionalExpressionRing<T, A>(algebra), Field<Expression<T>>,
ScaleOperations<Expression<T>> {
/**
* Builds an Expression of division an expression by another one.
*/
@ -112,6 +116,10 @@ public open class FunctionalExpressionField<T, A : Field<T>>(
public override fun binaryOperationFunction(operation: String): (left: Expression<T>, right: Expression<T>) -> Expression<T> =
super<FunctionalExpressionRing>.binaryOperationFunction(operation)
override fun scale(a: Expression<T>, value: Double): Expression<T> = algebra {
Expression { args -> a(args) * value }
}
}
public open class FunctionalExpressionExtendedField<T, A : ExtendedField<T>>(
@ -151,8 +159,8 @@ public open class FunctionalExpressionExtendedField<T, A : ExtendedField<T>>(
super<FunctionalExpressionField>.binaryOperationFunction(operation)
}
public inline fun <T, A : Space<T>> A.expressionInSpace(block: FunctionalExpressionSpace<T, A>.() -> Expression<T>): Expression<T> =
FunctionalExpressionSpace(this).block()
public inline fun <T, A : Group<T>> A.expressionInSpace(block: FunctionalExpressionGroup<T, A>.() -> Expression<T>): Expression<T> =
FunctionalExpressionGroup(this).block()
public inline fun <T, A : Ring<T>> A.expressionInRing(block: FunctionalExpressionRing<T, A>.() -> Expression<T>): Expression<T> =
FunctionalExpressionRing(this).block()
@ -160,5 +168,6 @@ public inline fun <T, A : Ring<T>> A.expressionInRing(block: FunctionalExpressio
public inline fun <T, A : Field<T>> A.expressionInField(block: FunctionalExpressionField<T, A>.() -> Expression<T>): Expression<T> =
FunctionalExpressionField(this).block()
public inline fun <T, A : ExtendedField<T>> A.expressionInExtendedField(block: FunctionalExpressionExtendedField<T, A>.() -> Expression<T>): Expression<T> =
FunctionalExpressionExtendedField(this).block()
public inline fun <T, A : ExtendedField<T>> A.expressionInExtendedField(
block: FunctionalExpressionExtendedField<T, A>.() -> Expression<T>,
): Expression<T> = FunctionalExpressionExtendedField(this).block()

View File

@ -47,36 +47,6 @@ public fun <T : Any> DerivationResult<T>.grad(vararg variables: Symbol): Point<T
return variables.map(::derivative).asBuffer()
}
/**
* Runs differentiation and establishes [SimpleAutoDiffField] context inside the block of code.
*
* The partial derivatives are placed in argument `d` variable
*
* Example:
* ```
* val x by symbol // define variable(s) and their values
* val y = RealField.withAutoDiff() { sqr(x) + 5 * x + 3 } // write formulate in deriv context
* assertEquals(17.0, y.x) // the value of result (y)
* assertEquals(9.0, x.d) // dy/dx
* ```
*
* @param body the action in [SimpleAutoDiffField] context returning [AutoDiffVariable] to differentiate with respect to.
* @return the result of differentiation.
*/
public fun <T : Any, F : Field<T>> F.simpleAutoDiff(
bindings: Map<Symbol, T>,
body: SimpleAutoDiffField<T, F>.() -> AutoDiffValue<T>,
): DerivationResult<T> {
contract { callsInPlace(body, InvocationKind.EXACTLY_ONCE) }
return SimpleAutoDiffField(this, bindings).differentiate(body)
}
public fun <T : Any, F : Field<T>> F.simpleAutoDiff(
vararg bindings: Pair<Symbol, T>,
body: SimpleAutoDiffField<T, F>.() -> AutoDiffValue<T>,
): DerivationResult<T> = simpleAutoDiff(bindings.toMap(), body)
/**
* Represents field in context of which functions can be derived.
*/
@ -84,12 +54,9 @@ public fun <T : Any, F : Field<T>> F.simpleAutoDiff(
public open class SimpleAutoDiffField<T : Any, F : Field<T>>(
public val context: F,
bindings: Map<Symbol, T>,
) : Field<AutoDiffValue<T>>, ExpressionAlgebra<T, AutoDiffValue<T>>, RingWithNumbers<AutoDiffValue<T>> {
public override val zero: AutoDiffValue<T>
get() = const(context.zero)
public override val one: AutoDiffValue<T>
get() = const(context.one)
) : Field<AutoDiffValue<T>>, ExpressionAlgebra<T, AutoDiffValue<T>>, NumbersAddOperations<AutoDiffValue<T>> {
public override val zero: AutoDiffValue<T> get() = const(context.zero)
public override val one: AutoDiffValue<T> get() = const(context.one)
// this stack contains pairs of blocks and values to apply them to
private var stack: Array<Any?> = arrayOfNulls<Any?>(8)
@ -137,6 +104,8 @@ public open class SimpleAutoDiffField<T : Any, F : Field<T>>(
override fun const(value: T): AutoDiffValue<T> = AutoDiffValue(value)
override fun number(value: Number): AutoDiffValue<T> = const { one * value }
/**
* A variable accessing inner state of derivatives.
* Use this value in inner builders to avoid creating additional derivative bindings.
@ -175,21 +144,24 @@ public open class SimpleAutoDiffField<T : Any, F : Field<T>>(
return DerivationResult(result.value, bindings.mapValues { it.value.d }, context)
}
// Overloads for Double constants
// // Overloads for Double constants
//
// public override operator fun Number.plus(b: AutoDiffValue<T>): AutoDiffValue<T> =
// derive(const { this@plus.toDouble() * one + b.value }) { z ->
// b.d += z.d
// }
//
// public override operator fun AutoDiffValue<T>.plus(b: Number): AutoDiffValue<T> = b.plus(this)
//
// public override operator fun Number.minus(b: AutoDiffValue<T>): AutoDiffValue<T> =
// derive(const { this@minus.toDouble() * one - b.value }) { z -> b.d -= z.d }
//
// public override operator fun AutoDiffValue<T>.minus(b: Number): AutoDiffValue<T> =
// derive(const { this@minus.value - one * b.toDouble() }) { z -> d += z.d }
public override operator fun Number.plus(b: AutoDiffValue<T>): AutoDiffValue<T> =
derive(const { this@plus.toDouble() * one + b.value }) { z ->
b.d += z.d
}
public override operator fun AutoDiffValue<T>.plus(b: Number): AutoDiffValue<T> = b.plus(this)
public override operator fun Number.minus(b: AutoDiffValue<T>): AutoDiffValue<T> =
derive(const { this@minus.toDouble() * one - b.value }) { z -> b.d -= z.d }
public override operator fun AutoDiffValue<T>.minus(b: Number): AutoDiffValue<T> =
derive(const { this@minus.value - one * b.toDouble() }) { z -> this@minus.d += z.d }
override fun AutoDiffValue<T>.unaryMinus(): AutoDiffValue<T> =
derive(const { -value }) { z -> d -= z.d }
// Basic math (+, -, *, /)
@ -211,12 +183,44 @@ public open class SimpleAutoDiffField<T : Any, F : Field<T>>(
b.d -= z.d * a.value / (b.value * b.value)
}
public override fun multiply(a: AutoDiffValue<T>, k: Number): AutoDiffValue<T> =
derive(const { k.toDouble() * a.value }) { z ->
a.d += z.d * k.toDouble()
public override fun scale(a: AutoDiffValue<T>, value: Double): AutoDiffValue<T> =
derive(const { value * a.value }) { z ->
a.d += z.d * value
}
}
/**
* Runs differentiation and establishes [SimpleAutoDiffField] context inside the block of code.
*
* The partial derivatives are placed in argument `d` variable
*
* Example:
* ```
* val x by symbol // define variable(s) and their values
* val y = RealField.withAutoDiff() { sqr(x) + 5 * x + 3 } // write formulate in deriv context
* assertEquals(17.0, y.x) // the value of result (y)
* assertEquals(9.0, x.d) // dy/dx
* ```
*
* @param body the action in [SimpleAutoDiffField] context returning [AutoDiffVariable] to differentiate with respect to.
* @return the result of differentiation.
*/
public fun <T : Any, F : Field<T>> F.simpleAutoDiff(
bindings: Map<Symbol, T>,
body: SimpleAutoDiffField<T, F>.() -> AutoDiffValue<T>,
): DerivationResult<T> {
contract { callsInPlace(body, InvocationKind.EXACTLY_ONCE) }
return SimpleAutoDiffField(this, bindings).differentiate(body)
}
public fun <T : Any, F : Field<T>> F.simpleAutoDiff(
vararg bindings: Pair<Symbol, T>,
body: SimpleAutoDiffField<T, F>.() -> AutoDiffValue<T>,
): DerivationResult<T> = simpleAutoDiff(bindings.toMap(), body)
/**
* A constructs that creates a derivative structure with required order on-demand
*/
@ -247,19 +251,20 @@ public fun <T : Any, F : Field<T>> simpleAutoDiff(field: F): AutoDiffProcessor<T
// Extensions for differentiation of various basic mathematical functions
// x ^ 2
public fun <T : Any, F : Field<T>> SimpleAutoDiffField<T, F>.sqr(x: AutoDiffValue<T>): AutoDiffValue<T> =
derive(const { x.value * x.value }) { z -> x.d += z.d * 2 * x.value }
public fun <T : Any, F : ExtendedField<T>> SimpleAutoDiffField<T, F>.sqr(x: AutoDiffValue<T>): AutoDiffValue<T> =
derive(const { x.value * x.value }) { z -> x.d += z.d * 2.0 * x.value }
// x ^ 1/2
public fun <T : Any, F : ExtendedField<T>> SimpleAutoDiffField<T, F>.sqrt(x: AutoDiffValue<T>): AutoDiffValue<T> =
derive(const { sqrt(x.value) }) { z -> x.d += z.d * 0.5 / z.value }
derive(const { sqrt(x.value) }) { z -> x.d += z.d / 2.0 / z.value }
// x ^ y (const)
public fun <T : Any, F : ExtendedField<T>> SimpleAutoDiffField<T, F>.pow(
x: AutoDiffValue<T>,
y: Double,
): AutoDiffValue<T> =
derive(const { power(x.value, y) }) { z -> x.d += z.d * y * power(x.value, y - 1) }
): AutoDiffValue<T> = derive(const { power(x.value, y) }) { z ->
x.d += z.d * y * power(x.value, y - 1)
}
public fun <T : Any, F : ExtendedField<T>> SimpleAutoDiffField<T, F>.pow(
x: AutoDiffValue<T>,
@ -328,7 +333,13 @@ public fun <T : Any, F : ExtendedField<T>> SimpleAutoDiffField<T, F>.atanh(x: Au
public class SimpleAutoDiffExtendedField<T : Any, F : ExtendedField<T>>(
context: F,
bindings: Map<Symbol, T>,
) : ExtendedField<AutoDiffValue<T>>, SimpleAutoDiffField<T, F>(context, bindings) {
) : ExtendedField<AutoDiffValue<T>>, ScaleOperations<AutoDiffValue<T>>,
SimpleAutoDiffField<T, F>(context, bindings) {
override fun number(value: Number): AutoDiffValue<T> = const { number(value) }
override fun scale(a: AutoDiffValue<T>, value: Double): AutoDiffValue<T> = a * number(value)
// x ^ 2
public fun sqr(x: AutoDiffValue<T>): AutoDiffValue<T> =
(this as SimpleAutoDiffField<T, F>).sqr(x)

View File

@ -2,18 +2,18 @@ package space.kscience.kmath.expressions
import space.kscience.kmath.operations.ExtendedField
import space.kscience.kmath.operations.Field
import space.kscience.kmath.operations.Group
import space.kscience.kmath.operations.Ring
import space.kscience.kmath.operations.Space
import kotlin.contracts.InvocationKind
import kotlin.contracts.contract
/**
* Creates a functional expression with this [Space].
* Creates a functional expression with this [Group].
*/
public inline fun <T> Space<T>.spaceExpression(block: FunctionalExpressionSpace<T, Space<T>>.() -> Expression<T>): Expression<T> {
public inline fun <T> Group<T>.spaceExpression(block: FunctionalExpressionGroup<T, Group<T>>.() -> Expression<T>): Expression<T> {
contract { callsInPlace(block, InvocationKind.EXACTLY_ONCE) }
return FunctionalExpressionSpace(this).block()
return FunctionalExpressionGroup(this).block()
}
/**

View File

@ -1,136 +0,0 @@
package space.kscience.kmath.linear
import space.kscience.kmath.nd.NDStructure
import space.kscience.kmath.nd.Structure2D
import space.kscience.kmath.operations.Ring
import space.kscience.kmath.operations.invoke
import space.kscience.kmath.structures.Buffer
import space.kscience.kmath.structures.BufferFactory
import space.kscience.kmath.structures.asSequence
/**
* Alias for [Structure2D] with more familiar name.
*
* @param T the type of items.
*/
public typealias Matrix<T> = Structure2D<T>
/**
* Basic implementation of Matrix space based on [NDStructure]
*/
public class BufferMatrixContext<T : Any, R : Ring<T>>(
public override val elementContext: R,
private val bufferFactory: BufferFactory<T>,
) : GenericMatrixContext<T, R, BufferMatrix<T>> {
public override fun produce(rows: Int, columns: Int, initializer: (i: Int, j: Int) -> T): BufferMatrix<T> {
val buffer = bufferFactory(rows * columns) { offset -> initializer(offset / columns, offset % columns) }
return BufferMatrix(rows, columns, buffer)
}
public override fun point(size: Int, initializer: (Int) -> T): Point<T> = bufferFactory(size, initializer)
private fun Matrix<T>.toBufferMatrix(): BufferMatrix<T> = if (this is BufferMatrix) this else {
produce(rowNum, colNum) { i, j -> get(i, j) }
}
public fun one(rows: Int, columns: Int): Matrix<Double> = VirtualMatrix(rows, columns) { i, j ->
if (i == j) 1.0 else 0.0
} + DiagonalFeature
public override infix fun Matrix<T>.dot(other: Matrix<T>): BufferMatrix<T> {
require(colNum == other.rowNum) { "Matrix dot operation dimension mismatch: ($rowNum, $colNum) x (${other.rowNum}, ${other.colNum})" }
val bufferMatrix = toBufferMatrix()
val otherBufferMatrix = other.toBufferMatrix()
return elementContext {
produce(rowNum, other.colNum) { i, j ->
var res = one
for (l in 0 until colNum) {
res += bufferMatrix[i, l] * otherBufferMatrix[l, j]
}
res
}
}
}
public override infix fun Matrix<T>.dot(vector: Point<T>): Point<T> {
require(colNum == vector.size) { "Matrix dot vector operation dimension mismatch: ($rowNum, $colNum) x (${vector.size})" }
val bufferMatrix = toBufferMatrix()
return elementContext {
bufferFactory(rowNum) { i ->
var res = one
for (j in 0 until colNum) {
res += bufferMatrix[i, j] * vector[j]
}
res
}
}
}
override fun add(a: Matrix<T>, b: Matrix<T>): BufferMatrix<T> {
require(a.rowNum == b.rowNum) { "Row number mismatch in matrix addition. Left side: ${a.rowNum}, right side: ${b.rowNum}" }
require(a.colNum == b.colNum) { "Column number mismatch in matrix addition. Left side: ${a.colNum}, right side: ${b.colNum}" }
val aBufferMatrix = a.toBufferMatrix()
val bBufferMatrix = b.toBufferMatrix()
return elementContext {
produce(a.rowNum, a.colNum) { i, j ->
aBufferMatrix[i, j] + bBufferMatrix[i, j]
}
}
}
override fun multiply(a: Matrix<T>, k: Number): BufferMatrix<T> {
val aBufferMatrix = a.toBufferMatrix()
return elementContext {
produce(a.rowNum, a.colNum) { i, j -> aBufferMatrix[i, j] * k.toDouble() }
}
}
public companion object
}
public class BufferMatrix<T : Any>(
public override val rowNum: Int,
public override val colNum: Int,
public val buffer: Buffer<T>,
) : Matrix<T> {
init {
require(buffer.size == rowNum * colNum) { "Dimension mismatch for matrix structure" }
}
override val shape: IntArray get() = intArrayOf(rowNum, colNum)
public override operator fun get(index: IntArray): T = get(index[0], index[1])
public override operator fun get(i: Int, j: Int): T = buffer[i * colNum + j]
public override fun elements(): Sequence<Pair<IntArray, T>> = sequence {
for (i in 0 until rowNum) for (j in 0 until colNum) yield(intArrayOf(i, j) to get(i, j))
}
public override fun equals(other: Any?): Boolean {
if (this === other) return true
return when (other) {
is NDStructure<*> -> NDStructure.contentEquals(this, other)
else -> false
}
}
override fun hashCode(): Int {
var result = rowNum
result = 31 * result + colNum
result = 31 * result + buffer.hashCode()
return result
}
public override fun toString(): String {
return if (rowNum <= 5 && colNum <= 5)
"Matrix(rowsNum = $rowNum, colNum = $colNum)\n" +
rows.asSequence().joinToString(prefix = "(", postfix = ")", separator = "\n ") { buffer ->
buffer.asSequence().joinToString(separator = "\t") { it.toString() }
}
else "Matrix(rowsNum = $rowNum, colNum = $colNum)"
}
}

View File

@ -0,0 +1,83 @@
package space.kscience.kmath.linear
import space.kscience.kmath.nd.*
import space.kscience.kmath.operations.Ring
import space.kscience.kmath.operations.invoke
import space.kscience.kmath.structures.Buffer
import space.kscience.kmath.structures.BufferFactory
import space.kscience.kmath.structures.VirtualBuffer
import space.kscience.kmath.structures.indices
public class BufferedLinearSpace<T : Any, A : Ring<T>>(
override val elementAlgebra: A,
private val bufferFactory: BufferFactory<T>,
) : LinearSpace<T, A> {
private fun ndRing(
rows: Int,
cols: Int,
): BufferedNDRing<T, A> = NDAlgebra.ring(elementAlgebra, bufferFactory, rows, cols)
override fun buildMatrix(rows: Int, columns: Int, initializer: A.(i: Int, j: Int) -> T): Matrix<T> =
ndRing(rows, columns).produce { (i, j) -> elementAlgebra.initializer(i, j) }.as2D()
override fun buildVector(size: Int, initializer: A.(Int) -> T): Point<T> =
bufferFactory(size) { elementAlgebra.initializer(it) }
override fun Matrix<T>.unaryMinus(): Matrix<T> = ndRing(rowNum, colNum).run {
unwrap().map { -it }.as2D()
}
override fun Matrix<T>.plus(other: Matrix<T>): Matrix<T> = ndRing(rowNum, colNum).run {
require(shape.contentEquals(other.shape)) { "Shape mismatch on Matrix::plus. Expected $shape but found ${other.shape}" }
unwrap().plus(other.unwrap()).as2D()
}
override fun Matrix<T>.minus(other: Matrix<T>): Matrix<T> = ndRing(rowNum, colNum).run {
require(shape.contentEquals(other.shape)) { "Shape mismatch on Matrix::minus. Expected $shape but found ${other.shape}" }
unwrap().minus(other.unwrap()).as2D()
}
private fun Buffer<T>.linearize() = if (this is VirtualBuffer) {
buildVector(size) { get(it) }
} else {
this
}
override fun Matrix<T>.dot(other: Matrix<T>): Matrix<T> {
require(colNum == other.rowNum) { "Matrix dot operation dimension mismatch: ($rowNum, $colNum) x (${other.rowNum}, ${other.colNum})" }
return elementAlgebra {
val rows = this@dot.rows.map { it.linearize() }
val columns = other.columns.map { it.linearize() }
buildMatrix(rowNum, other.colNum) { i, j ->
val r = rows[i]
val c = columns[j]
var res = zero
for (l in r.indices) {
res += r[l] * c[l]
}
res
}
}
}
override fun Matrix<T>.dot(vector: Point<T>): Point<T> {
require(colNum == vector.size) { "Matrix dot vector operation dimension mismatch: ($rowNum, $colNum) x (${vector.size})" }
return elementAlgebra {
val rows = this@dot.rows.map { it.linearize() }
buildVector(rowNum) { i ->
val r = rows[i]
var res = zero
for (j in r.indices) {
res += r[j] * vector[j]
}
res
}
}
}
override fun Matrix<T>.times(value: T): Matrix<T> = ndRing(rowNum, colNum).run {
unwrap().map { it * value }.as2D()
}
}

View File

@ -1,25 +1,33 @@
package space.kscience.kmath.linear
import space.kscience.kmath.structures.Buffer
import space.kscience.kmath.structures.VirtualBuffer
public typealias Point<T> = Buffer<T>
import space.kscience.kmath.nd.as1D
/**
* A group of methods to resolve equation A dot X = B, where A and B are matrices or vectors
*/
public interface LinearSolver<T : Any> {
/**
* Solve a dot x = b matrix equation and return x
*/
public fun solve(a: Matrix<T>, b: Matrix<T>): Matrix<T>
public fun solve(a: Matrix<T>, b: Point<T>): Point<T> = solve(a, b.asMatrix()).asPoint()
public fun inverse(a: Matrix<T>): Matrix<T>
/**
* Solve a dot x = b vector equation and return b
*/
public fun solve(a: Matrix<T>, b: Point<T>): Point<T> = solve(a, b.asMatrix()).asVector()
/**
* Get inverse of a matrix
*/
public fun inverse(matrix: Matrix<T>): Matrix<T>
}
/**
* Convert matrix to vector if it is possible
*/
public fun <T : Any> Matrix<T>.asPoint(): Point<T> =
public fun <T : Any> Matrix<T>.asVector(): Point<T> =
if (this.colNum == 1)
VirtualBuffer(rowNum) { get(it, 0) }
as1D()
else
error("Can't convert matrix with more than one column to vector")

View File

@ -0,0 +1,202 @@
package space.kscience.kmath.linear
import space.kscience.kmath.misc.UnstableKMathAPI
import space.kscience.kmath.nd.*
import space.kscience.kmath.operations.*
import space.kscience.kmath.structures.Buffer
import space.kscience.kmath.structures.BufferFactory
import space.kscience.kmath.structures.RealBuffer
import kotlin.reflect.KClass
/**
* Alias for [Structure2D] with more familiar name.
*
* @param T the type of items.
*/
public typealias Matrix<T> = Structure2D<T>
/**
* Alias or using [Buffer] as a point/vector in a many-dimensional space.
*/
public typealias Point<T> = Buffer<T>
/**
* Basic operations on matrices and vectors. Operates on [Matrix].
*
* @param T the type of items in the matrices.
* @param M the type of operated matrices.
*/
public interface LinearSpace<T : Any, out A : Ring<T>> {
public val elementAlgebra: A
/**
* Produces a matrix with this context and given dimensions.
*/
public fun buildMatrix(rows: Int, columns: Int, initializer: A.(i: Int, j: Int) -> T): Matrix<T>
/**
* Produces a point compatible with matrix space (and possibly optimized for it).
*/
public fun buildVector(size: Int, initializer: A.(Int) -> T): Point<T>
public operator fun Matrix<T>.unaryMinus(): Matrix<T> = buildMatrix(rowNum, colNum) { i, j ->
-get(i, j)
}
public operator fun Point<T>.unaryMinus(): Point<T> = buildVector(size) {
-get(it)
}
/**
* Matrix sum
*/
public operator fun Matrix<T>.plus(other: Matrix<T>): Matrix<T> = buildMatrix(rowNum, colNum) { i, j ->
get(i, j) + other[i, j]
}
/**
* Vector sum
*/
public operator fun Point<T>.plus(other: Point<T>): Point<T> = buildVector(size) {
get(it) + other[it]
}
/**
* Matrix subtraction
*/
public operator fun Matrix<T>.minus(other: Matrix<T>): Matrix<T> = buildMatrix(rowNum, colNum) { i, j ->
get(i, j) - other[i, j]
}
/**
* Vector subtraction
*/
public operator fun Point<T>.minus(other: Point<T>): Point<T> = buildVector(size) {
get(it) - other[it]
}
/**
* Computes the dot product of this matrix and another one.
*
* @receiver the multiplicand.
* @param other the multiplier.
* @return the dot product.
*/
public infix fun Matrix<T>.dot(other: Matrix<T>): Matrix<T> {
require(colNum == other.rowNum) { "Matrix dot operation dimension mismatch: ($rowNum, $colNum) x (${other.rowNum}, ${other.colNum})" }
return elementAlgebra {
buildMatrix(rowNum, other.colNum) { i, j ->
var res = zero
for (l in 0 until colNum) {
res += this@dot[i, l] * other[l, j]
}
res
}
}
}
/**
* Computes the dot product of this matrix and a vector.
*
* @receiver the multiplicand.
* @param vector the multiplier.
* @return the dot product.
*/
public infix fun Matrix<T>.dot(vector: Point<T>): Point<T> {
require(colNum == vector.size) { "Matrix dot vector operation dimension mismatch: ($rowNum, $colNum) x (${vector.size})" }
return elementAlgebra {
buildVector(rowNum) { i ->
var res = one
for (j in 0 until colNum) {
res += this@dot[i, j] * vector[j]
}
res
}
}
}
/**
* Multiplies a matrix by its element.
*
* @receiver the multiplicand.
* @param value the multiplier.
* @receiver the product.
*/
public operator fun Matrix<T>.times(value: T): Matrix<T> =
buildMatrix(rowNum, colNum) { i, j -> get(i, j) * value }
/**
* Multiplies an element by a matrix of it.
*
* @receiver the multiplicand.
* @param m the multiplier.
* @receiver the product.
*/
public operator fun T.times(m: Matrix<T>): Matrix<T> = m * this
/**
* Multiplies a vector by its element.
*
* @receiver the multiplicand.
* @param value the multiplier.
* @receiver the product.
*/
public operator fun Point<T>.times(value: T): Point<T> =
buildVector(size) { i -> get(i) * value }
/**
* Multiplies an element by a vector of it.
*
* @receiver the multiplicand.
* @param v the multiplier.
* @receiver the product.
*/
public operator fun T.times(v: Point<T>): Point<T> = v * this
/**
* Get a feature of the structure in this scope. Structure features take precedence other context features
*
* @param F the type of feature.
* @param structure the structure.
* @param type the [KClass] instance of [F].
* @return a feature object or `null` if it isn't present.
*/
@UnstableKMathAPI
public fun <F : Any> getFeature(structure: Matrix<T>, type: KClass<F>): F? = structure.getFeature(type)
public companion object {
/**
* A structured matrix with custom buffer
*/
public fun <T : Any, A : Ring<T>> buffered(
algebra: A,
bufferFactory: BufferFactory<T> = Buffer.Companion::boxing,
): LinearSpace<T, A> = BufferedLinearSpace(algebra, bufferFactory)
public val real: LinearSpace<Double, RealField> = buffered(RealField, ::RealBuffer)
/**
* Automatic buffered matrix, unboxed if it is possible
*/
public inline fun <reified T : Any, A : Ring<T>> auto(ring: A): LinearSpace<T, A> =
buffered(ring, Buffer.Companion::auto)
}
}
/**
* Get a feature of the structure in this scope. Structure features take precedence other context features
*
* @param T the type of items in the matrices.
* @param F the type of feature.
* @return a feature object or `null` if it isn't present.
*/
@UnstableKMathAPI
public inline fun <T : Any, reified F : Any> LinearSpace<T, *>.getFeature(structure: Matrix<T>): F? =
getFeature(structure, F::class)
public operator fun <LS : LinearSpace<*, *>, R> LS.invoke(block: LS.() -> R): R = run(block)

View File

@ -3,16 +3,16 @@ package space.kscience.kmath.linear
import space.kscience.kmath.misc.UnstableKMathAPI
import space.kscience.kmath.nd.getFeature
import space.kscience.kmath.operations.*
import space.kscience.kmath.structures.Buffer
import space.kscience.kmath.structures.BufferAccessor2D
import space.kscience.kmath.structures.MutableBuffer
import space.kscience.kmath.structures.MutableBufferFactory
import space.kscience.kmath.structures.RealBuffer
/**
* Common implementation of [LupDecompositionFeature].
*/
public class LupDecomposition<T : Any>(
public val context: MatrixContext<T, Matrix<T>>,
public val context: LinearSpace<T, *>,
public val elementContext: Field<T>,
public val lu: Matrix<T>,
public val pivot: IntArray,
@ -62,15 +62,14 @@ public class LupDecomposition<T : Any>(
}
@PublishedApi
internal fun <T : Comparable<T>, F : Field<T>> GenericMatrixContext<T, F, *>.abs(value: T): T =
if (value > elementContext.zero) value else elementContext { -value }
internal fun <T : Comparable<T>> LinearSpace<T, Ring<T>>.abs(value: T): T =
if (value > elementAlgebra.zero) value else elementAlgebra { -value }
/**
* Create a lup decomposition of generic matrix.
*/
public fun <T : Comparable<T>> MatrixContext<T, Matrix<T>>.lup(
public fun <T : Comparable<T>> LinearSpace<T, Field<T>>.lup(
factory: MutableBufferFactory<T>,
elementContext: Field<T>,
matrix: Matrix<T>,
checkSingular: (T) -> Boolean,
): LupDecomposition<T> {
@ -80,7 +79,7 @@ public fun <T : Comparable<T>> MatrixContext<T, Matrix<T>>.lup(
//TODO just waits for KEEP-176
BufferAccessor2D(matrix.rowNum, matrix.colNum, factory).run {
elementContext {
elementAlgebra {
val lu = create(matrix)
// Initialize permutation array and parity
@ -142,18 +141,18 @@ public fun <T : Comparable<T>> MatrixContext<T, Matrix<T>>.lup(
for (row in col + 1 until m) lu[row, col] /= luDiag
}
return LupDecomposition(this@lup, elementContext, lu.collect(), pivot, even)
return LupDecomposition(this@lup, elementAlgebra, lu.collect(), pivot, even)
}
}
}
public inline fun <reified T : Comparable<T>, F : Field<T>> GenericMatrixContext<T, F, Matrix<T>>.lup(
public inline fun <reified T : Comparable<T>> LinearSpace<T, Field<T>>.lup(
matrix: Matrix<T>,
noinline checkSingular: (T) -> Boolean,
): LupDecomposition<T> = lup(MutableBuffer.Companion::auto, elementContext, matrix, checkSingular)
): LupDecomposition<T> = lup(MutableBuffer.Companion::auto, matrix, checkSingular)
public fun MatrixContext<Double, Matrix<Double>>.lup(matrix: Matrix<Double>): LupDecomposition<Double> =
lup(Buffer.Companion::real, RealField, matrix) { it < 1e-11 }
public fun LinearSpace<Double, RealField>.lup(matrix: Matrix<Double>): LupDecomposition<Double> =
lup(::RealBuffer, matrix) { it < 1e-11 }
public fun <T : Any> LupDecomposition<T>.solveWithLup(
factory: MutableBufferFactory<T>,
@ -198,7 +197,7 @@ public fun <T : Any> LupDecomposition<T>.solveWithLup(
}
}
return context.produce(pivot.size, matrix.colNum) { i, j -> bp[i, j] }
return context.buildMatrix(pivot.size, matrix.colNum) { i, j -> bp[i, j] }
}
}
}
@ -210,18 +209,18 @@ public inline fun <reified T : Any> LupDecomposition<T>.solveWithLup(matrix: Mat
* Solves a system of linear equations *ax = b** using LUP decomposition.
*/
@OptIn(UnstableKMathAPI::class)
public inline fun <reified T : Comparable<T>, F : Field<T>> GenericMatrixContext<T, F, Matrix<T>>.solveWithLup(
public inline fun <reified T : Comparable<T>> LinearSpace<T, Field<T>>.solveWithLup(
a: Matrix<T>,
b: Matrix<T>,
noinline bufferFactory: MutableBufferFactory<T> = MutableBuffer.Companion::auto,
noinline checkSingular: (T) -> Boolean,
): Matrix<T> {
// Use existing decomposition if it is provided by matrix
val decomposition = a.getFeature() ?: lup(bufferFactory, elementContext, a, checkSingular)
val decomposition = a.getFeature() ?: lup(bufferFactory, a, checkSingular)
return decomposition.solveWithLup(bufferFactory, b)
}
public inline fun <reified T : Comparable<T>, F : Field<T>> GenericMatrixContext<T, F, Matrix<T>>.inverseWithLup(
public inline fun <reified T : Comparable<T>> LinearSpace<T, Field<T>>.inverseWithLup(
matrix: Matrix<T>,
noinline bufferFactory: MutableBufferFactory<T> = MutableBuffer.Companion::auto,
noinline checkSingular: (T) -> Boolean,
@ -229,15 +228,15 @@ public inline fun <reified T : Comparable<T>, F : Field<T>> GenericMatrixContext
@OptIn(UnstableKMathAPI::class)
public fun RealMatrixContext.solveWithLup(a: Matrix<Double>, b: Matrix<Double>): Matrix<Double> {
public fun LinearSpace<Double, RealField>.solveWithLup(a: Matrix<Double>, b: Matrix<Double>): Matrix<Double> {
// Use existing decomposition if it is provided by matrix
val bufferFactory: MutableBufferFactory<Double> = MutableBuffer.Companion::real
val decomposition: LupDecomposition<Double> = a.getFeature() ?: lup(bufferFactory, RealField, a) { it < 1e-11 }
val bufferFactory: MutableBufferFactory<Double> = ::RealBuffer
val decomposition: LupDecomposition<Double> = a.getFeature() ?: lup(bufferFactory, a) { it < 1e-11 }
return decomposition.solveWithLup(bufferFactory, b)
}
/**
* Inverses a square matrix using LUP decomposition. Non square matrix will throw a error.
*/
public fun RealMatrixContext.inverseWithLup(matrix: Matrix<Double>): Matrix<Double> =
public fun LinearSpace<Double, RealField>.inverseWithLup(matrix: Matrix<Double>): Matrix<Double> =
solveWithLup(matrix, one(matrix.rowNum, matrix.colNum))

View File

@ -1,46 +1,43 @@
package space.kscience.kmath.linear
import space.kscience.kmath.nd.Structure2D
import space.kscience.kmath.structures.Buffer
import space.kscience.kmath.structures.BufferFactory
import space.kscience.kmath.structures.asBuffer
import space.kscience.kmath.misc.UnstableKMathAPI
import space.kscience.kmath.operations.Ring
public class MatrixBuilder(public val rows: Int, public val columns: Int) {
public operator fun <T : Any> invoke(vararg elements: T): Matrix<T> {
public class MatrixBuilder<T : Any, A : Ring<T>>(
public val linearSpace: LinearSpace<T, A>,
public val rows: Int,
public val columns: Int,
) {
public operator fun invoke(vararg elements: T): Matrix<T> {
require(rows * columns == elements.size) { "The number of elements ${elements.size} is not equal $rows * $columns" }
val buffer = elements.asBuffer()
return BufferMatrix(rows, columns, buffer)
return linearSpace.buildMatrix(rows, columns) { i, j -> elements[i * columns + j] }
}
//TODO add specific matrix builder functions like diagonal, etc
}
public fun Structure2D.Companion.build(rows: Int, columns: Int): MatrixBuilder = MatrixBuilder(rows, columns)
/**
* Create a matrix builder with given number of rows and columns
*/
@UnstableKMathAPI
public fun <T : Any, A : Ring<T>> LinearSpace<T, A>.matrix(rows: Int, columns: Int): MatrixBuilder<T, A> =
MatrixBuilder(this, rows, columns)
public fun <T : Any> Structure2D.Companion.row(vararg values: T): Matrix<T> {
val buffer = values.asBuffer()
return BufferMatrix(1, values.size, buffer)
@UnstableKMathAPI
public fun <T : Any> LinearSpace<T, Ring<T>>.vector(vararg elements: T): Point<T> {
return buildVector(elements.size) { elements[it] }
}
public inline fun <reified T : Any> Structure2D.Companion.row(
public inline fun <T : Any> LinearSpace<T, Ring<T>>.row(
size: Int,
factory: BufferFactory<T> = Buffer.Companion::auto,
noinline builder: (Int) -> T,
): Matrix<T> {
val buffer = factory(size, builder)
return BufferMatrix(1, size, buffer)
}
crossinline builder: (Int) -> T,
): Matrix<T> = buildMatrix(1, size) { _, j -> builder(j) }
public fun <T : Any> Structure2D.Companion.column(vararg values: T): Matrix<T> {
val buffer = values.asBuffer()
return BufferMatrix(values.size, 1, buffer)
}
public fun <T : Any> LinearSpace<T, Ring<T>>.row(vararg values: T): Matrix<T> = row(values.size, values::get)
public inline fun <reified T : Any> Structure2D.Companion.column(
public inline fun <T : Any> LinearSpace<T, Ring<T>>.column(
size: Int,
factory: BufferFactory<T> = Buffer.Companion::auto,
noinline builder: (Int) -> T,
): Matrix<T> {
val buffer = factory(size, builder)
return BufferMatrix(size, 1, buffer)
}
crossinline builder: (Int) -> T,
): Matrix<T> = buildMatrix(size, 1) { i, _ -> builder(i) }
public fun <T : Any> LinearSpace<T, Ring<T>>.column(vararg values: T): Matrix<T> = column(values.size, values::get)

View File

@ -1,176 +0,0 @@
package space.kscience.kmath.linear
import space.kscience.kmath.misc.UnstableKMathAPI
import space.kscience.kmath.operations.Ring
import space.kscience.kmath.operations.SpaceOperations
import space.kscience.kmath.operations.invoke
import space.kscience.kmath.operations.sum
import space.kscience.kmath.structures.Buffer
import space.kscience.kmath.structures.BufferFactory
import space.kscience.kmath.structures.asSequence
import kotlin.reflect.KClass
/**
* Basic operations on matrices. Operates on [Matrix].
*
* @param T the type of items in the matrices.
* @param M the type of operated matrices.
*/
public interface MatrixContext<T : Any, out M : Matrix<T>> : SpaceOperations<Matrix<T>> {
/**
* Produces a matrix with this context and given dimensions.
*/
public fun produce(rows: Int, columns: Int, initializer: (i: Int, j: Int) -> T): M
/**
* Produces a point compatible with matrix space (and possibly optimized for it).
*/
public fun point(size: Int, initializer: (Int) -> T): Point<T> = Buffer.boxing(size, initializer)
@Suppress("UNCHECKED_CAST")
public override fun binaryOperationFunction(operation: String): (left: Matrix<T>, right: Matrix<T>) -> M =
when (operation) {
"dot" -> { left, right -> left dot right }
else -> super.binaryOperationFunction(operation) as (Matrix<T>, Matrix<T>) -> M
}
/**
* Computes the dot product of this matrix and another one.
*
* @receiver the multiplicand.
* @param other the multiplier.
* @return the dot product.
*/
public infix fun Matrix<T>.dot(other: Matrix<T>): M
/**
* Computes the dot product of this matrix and a vector.
*
* @receiver the multiplicand.
* @param vector the multiplier.
* @return the dot product.
*/
public infix fun Matrix<T>.dot(vector: Point<T>): Point<T>
/**
* Multiplies a matrix by its element.
*
* @receiver the multiplicand.
* @param value the multiplier.
* @receiver the product.
*/
public operator fun Matrix<T>.times(value: T): M
/**
* Multiplies an element by a matrix of it.
*
* @receiver the multiplicand.
* @param m the multiplier.
* @receiver the product.
*/
public operator fun T.times(m: Matrix<T>): M = m * this
/**
* Gets a feature from the matrix. This function may return some additional features to
* [kscience.kmath.nd.NDStructure.getFeature].
*
* @param F the type of feature.
* @param m the matrix.
* @param type the [KClass] instance of [F].
* @return a feature object or `null` if it isn't present.
*/
@UnstableKMathAPI
public fun <F : Any> getFeature(m: Matrix<T>, type: KClass<F>): F? = m.getFeature(type)
public companion object {
/**
* A structured matrix with custom buffer
*/
public fun <T : Any, R : Ring<T>> buffered(
ring: R,
bufferFactory: BufferFactory<T> = Buffer.Companion::boxing,
): GenericMatrixContext<T, R, BufferMatrix<T>> = BufferMatrixContext(ring, bufferFactory)
/**
* Automatic buffered matrix, unboxed if it is possible
*/
public inline fun <reified T : Any, R : Ring<T>> auto(ring: R): GenericMatrixContext<T, R, BufferMatrix<T>> =
buffered(ring, Buffer.Companion::auto)
}
}
/**
* Gets a feature from the matrix. This function may return some additional features to
* [kscience.kmath.nd.NDStructure.getFeature].
*
* @param T the type of items in the matrices.
* @param M the type of operated matrices.
* @param F the type of feature.
* @receiver the [MatrixContext] of [T].
* @param m the matrix.
* @return a feature object or `null` if it isn't present.
*/
@UnstableKMathAPI
public inline fun <T : Any, reified F : Any> MatrixContext<T, *>.getFeature(m: Matrix<T>): F? =
getFeature(m, F::class)
/**
* Partial implementation of [MatrixContext] for matrices of [Ring].
*
* @param T the type of items in the matrices.
* @param R the type of ring of matrix elements.
* @param M the type of operated matrices.
*/
public interface GenericMatrixContext<T : Any, R : Ring<T>, out M : Matrix<T>> : MatrixContext<T, M> {
/**
* The ring over matrix elements.
*/
public val elementContext: R
public override infix fun Matrix<T>.dot(other: Matrix<T>): M {
//TODO add typed error
require(colNum == other.rowNum) { "Matrix dot operation dimension mismatch: ($rowNum, $colNum) x (${other.rowNum}, ${other.colNum})" }
return produce(rowNum, other.colNum) { i, j ->
val row = rows[i]
val column = other.columns[j]
elementContext { sum(row.asSequence().zip(column.asSequence(), ::multiply)) }
}
}
public override infix fun Matrix<T>.dot(vector: Point<T>): Point<T> {
//TODO add typed error
require(colNum == vector.size) { "Matrix dot vector operation dimension mismatch: ($rowNum, $colNum) x (${vector.size})" }
return point(rowNum) { i ->
val row = rows[i]
elementContext { sum(row.asSequence().zip(vector.asSequence(), ::multiply)) }
}
}
public override operator fun Matrix<T>.unaryMinus(): M =
produce(rowNum, colNum) { i, j -> elementContext { -get(i, j) } }
public override fun add(a: Matrix<T>, b: Matrix<T>): M {
require(a.rowNum == b.rowNum && a.colNum == b.colNum) {
"Matrix operation dimension mismatch. [${a.rowNum},${a.colNum}] + [${b.rowNum},${b.colNum}]"
}
return produce(a.rowNum, a.colNum) { i, j -> elementContext { a[i, j] + b[i, j] } }
}
public override operator fun Matrix<T>.minus(b: Matrix<T>): M {
require(rowNum == b.rowNum && colNum == b.colNum) {
"Matrix operation dimension mismatch. [$rowNum,$colNum] - [${b.rowNum},${b.colNum}]"
}
return produce(rowNum, colNum) { i, j -> elementContext { get(i, j) + b[i, j] } }
}
public override fun multiply(a: Matrix<T>, k: Number): M =
produce(a.rowNum, a.colNum) { i, j -> elementContext { a[i, j] * k } }
public override operator fun Matrix<T>.times(value: T): M =
produce(rowNum, colNum) { i, j -> elementContext { get(i, j) * value } }
}

View File

@ -1,20 +1,16 @@
package space.kscience.kmath.linear
import space.kscience.kmath.misc.UnstableKMathAPI
import space.kscience.kmath.nd.Structure2D
import space.kscience.kmath.nd.getFeature
import space.kscience.kmath.operations.Ring
import space.kscience.kmath.structures.asBuffer
import kotlin.math.sqrt
import kotlin.reflect.KClass
import kotlin.reflect.safeCast
/**
* A [Matrix] that holds [MatrixFeature] objects.
*
* @param T the type of items.
*/
public class MatrixWrapper<T : Any> internal constructor(
public class MatrixWrapper<T : Any> internal constructor(
public val origin: Matrix<T>,
public val features: Set<MatrixFeature>,
) : Matrix<T> by origin {
@ -23,7 +19,8 @@ public class MatrixWrapper<T : Any> internal constructor(
* Get the first feature matching given class. Does not guarantee that matrix has only one feature matching the criteria
*/
@UnstableKMathAPI
override fun <T : Any> getFeature(type: KClass<T>): T? = type.safeCast(features.find { type.isInstance(it) })
@Suppress("UNCHECKED_CAST")
override fun <T : Any> getFeature(type: KClass<T>): T? = features.singleOrNull { type.isInstance(it) } as? T
?: origin.getFeature(type)
override fun equals(other: Any?): Boolean = origin == other
@ -60,30 +57,26 @@ public operator fun <T : Any> Matrix<T>.plus(newFeatures: Collection<MatrixFeatu
MatrixWrapper(this, newFeatures.toSet())
}
/**
* Build a square matrix from given elements.
*/
public fun <T : Any> Structure2D.Companion.square(vararg elements: T): Matrix<T> {
val size: Int = sqrt(elements.size.toDouble()).toInt()
require(size * size == elements.size) { "The number of elements ${elements.size} is not a full square" }
val buffer = elements.asBuffer()
return BufferMatrix(size, size, buffer)
}
/**
* Diagonal matrix of ones. The matrix is virtual no actual matrix is created
*/
public fun <T : Any, R : Ring<T>> GenericMatrixContext<T, R, *>.one(rows: Int, columns: Int): Matrix<T> =
VirtualMatrix(rows, columns) { i, j ->
if (i == j) elementContext.one else elementContext.zero
} + UnitFeature
public fun <T : Any> LinearSpace<T, Ring<T>>.one(
rows: Int,
columns: Int,
): Matrix<T> = VirtualMatrix(rows, columns) { i, j ->
if (i == j) elementAlgebra.one else elementAlgebra.zero
} + UnitFeature
/**
* A virtual matrix of zeroes
*/
public fun <T : Any, R : Ring<T>> GenericMatrixContext<T, R, *>.zero(rows: Int, columns: Int): Matrix<T> =
VirtualMatrix(rows, columns) { _, _ -> elementContext.zero } + ZeroFeature
public fun <T : Any> LinearSpace<T, Ring<T>>.zero(
rows: Int,
columns: Int,
): Matrix<T> = VirtualMatrix(rows, columns) { _, _ ->
elementAlgebra.zero
} + ZeroFeature
public class TransposedFeature<T : Any>(public val original: Matrix<T>) : MatrixFeature
@ -91,9 +84,7 @@ public class TransposedFeature<T : Any>(public val original: Matrix<T>) : Matrix
* Create a virtual transposed matrix without copying anything. `A.transpose().transpose() === A`
*/
@OptIn(UnstableKMathAPI::class)
public fun <T : Any> Matrix<T>.transpose(): Matrix<T> {
return getFeature<TransposedFeature<T>>()?.original ?: VirtualMatrix(
colNum,
rowNum,
) { i, j -> get(j, i) } + TransposedFeature(this)
}
public fun <T : Any> Matrix<T>.transpose(): Matrix<T> = getFeature<TransposedFeature<T>>()?.original ?: VirtualMatrix(
colNum,
rowNum,
) { i, j -> get(j, i) } + TransposedFeature(this)

View File

@ -1,75 +0,0 @@
package space.kscience.kmath.linear
import space.kscience.kmath.structures.RealBuffer
public object RealMatrixContext : MatrixContext<Double, BufferMatrix<Double>> {
public override fun produce(
rows: Int,
columns: Int,
initializer: (i: Int, j: Int) -> Double,
): BufferMatrix<Double> {
val buffer = RealBuffer(rows * columns) { offset -> initializer(offset / columns, offset % columns) }
return BufferMatrix(rows, columns, buffer)
}
public fun Matrix<Double>.toBufferMatrix(): BufferMatrix<Double> = if (this is BufferMatrix) this else {
produce(rowNum, colNum) { i, j -> get(i, j) }
}
public fun one(rows: Int, columns: Int): Matrix<Double> = VirtualMatrix(rows, columns) { i, j ->
if (i == j) 1.0 else 0.0
} + DiagonalFeature
public override infix fun Matrix<Double>.dot(other: Matrix<Double>): BufferMatrix<Double> {
require(colNum == other.rowNum) { "Matrix dot operation dimension mismatch: ($rowNum, $colNum) x (${other.rowNum}, ${other.colNum})" }
val bufferMatrix = toBufferMatrix()
val otherBufferMatrix = other.toBufferMatrix()
return produce(rowNum, other.colNum) { i, j ->
var res = 0.0
for (l in 0 until colNum) {
res += bufferMatrix[i, l] * otherBufferMatrix[l, j]
}
res
}
}
public override infix fun Matrix<Double>.dot(vector: Point<Double>): Point<Double> {
require(colNum == vector.size) { "Matrix dot vector operation dimension mismatch: ($rowNum, $colNum) x (${vector.size})" }
val bufferMatrix = toBufferMatrix()
return RealBuffer(rowNum) { i ->
var res = 0.0
for (j in 0 until colNum) {
res += bufferMatrix[i, j] * vector[j]
}
res
}
}
override fun add(a: Matrix<Double>, b: Matrix<Double>): BufferMatrix<Double> {
require(a.rowNum == b.rowNum) { "Row number mismatch in matrix addition. Left side: ${a.rowNum}, right side: ${b.rowNum}" }
require(a.colNum == b.colNum) { "Column number mismatch in matrix addition. Left side: ${a.colNum}, right side: ${b.colNum}" }
val aBufferMatrix = a.toBufferMatrix()
val bBufferMatrix = b.toBufferMatrix()
return produce(a.rowNum, a.colNum) { i, j ->
aBufferMatrix[i, j] + bBufferMatrix[i, j]
}
}
override fun Matrix<Double>.times(value: Double): BufferMatrix<Double> {
val bufferMatrix = toBufferMatrix()
return produce(rowNum, colNum) { i, j -> bufferMatrix[i, j] * value }
}
override fun multiply(a: Matrix<Double>, k: Number): BufferMatrix<Double> {
val aBufferMatrix = a.toBufferMatrix()
return produce(a.rowNum, a.colNum) { i, j -> aBufferMatrix[i, j] * k.toDouble() }
}
}
/**
* Partially optimized real-valued matrix
*/
public val MatrixContext.Companion.real: RealMatrixContext get() = RealMatrixContext

View File

@ -1,70 +0,0 @@
package space.kscience.kmath.linear
import space.kscience.kmath.operations.RealField
import space.kscience.kmath.operations.Space
import space.kscience.kmath.operations.invoke
import space.kscience.kmath.structures.Buffer
import space.kscience.kmath.structures.BufferFactory
/**
* A linear space for vectors.
* Could be used on any point-like structure
*/
public interface VectorSpace<T : Any, S : Space<T>> : Space<Point<T>> {
public val size: Int
public val space: S
override val zero: Point<T> get() = produce { space.zero }
public fun produce(initializer: S.(Int) -> T): Point<T>
/**
* Produce a space-element of this vector space for expressions
*/
//fun produceElement(initializer: (Int) -> T): Vector<T, S>
override fun add(a: Point<T>, b: Point<T>): Point<T> = produce { space { a[it] + b[it] } }
override fun multiply(a: Point<T>, k: Number): Point<T> = produce { space { a[it] * k } }
//TODO add basis
public companion object {
private val realSpaceCache: MutableMap<Int, BufferVectorSpace<Double, RealField>> = hashMapOf()
/**
* Non-boxing double vector space
*/
public fun real(size: Int): BufferVectorSpace<Double, RealField> = realSpaceCache.getOrPut(size) {
BufferVectorSpace(
size,
RealField,
Buffer.Companion::auto
)
}
/**
* A structured vector space with custom buffer
*/
public fun <T : Any, S : Space<T>> buffered(
size: Int,
space: S,
bufferFactory: BufferFactory<T> = Buffer.Companion::boxing,
): BufferVectorSpace<T, S> = BufferVectorSpace(size, space, bufferFactory)
/**
* Automatic buffered vector, unboxed if it is possible
*/
public inline fun <reified T : Any, S : Space<T>> auto(size: Int, space: S): VectorSpace<T, S> =
buffered(size, space, Buffer.Companion::auto)
}
}
public class BufferVectorSpace<T : Any, S : Space<T>>(
override val size: Int,
override val space: S,
public val bufferFactory: BufferFactory<T>,
) : VectorSpace<T, S> {
override fun produce(initializer: S.(Int) -> T): Buffer<T> = bufferFactory(size) { space.initializer(it) }
//override fun produceElement(initializer: (Int) -> T): Vector<T, S> = BufferVector(this, produce(initializer))
}

View File

@ -1,5 +1,7 @@
package space.kscience.kmath.linear
import space.kscience.kmath.nd.NDStructure
/**
* The matrix where each element is evaluated each time when is being accessed.
*
@ -8,7 +10,7 @@ package space.kscience.kmath.linear
public class VirtualMatrix<T : Any>(
override val rowNum: Int,
override val colNum: Int,
public val generator: (i: Int, j: Int) -> T
public val generator: (i: Int, j: Int) -> T,
) : Matrix<T> {
override val shape: IntArray get() = intArrayOf(rowNum, colNum)
@ -17,12 +19,8 @@ public class VirtualMatrix<T : Any>(
override fun equals(other: Any?): Boolean {
if (this === other) return true
if (other !is Matrix<*>) return false
if (rowNum != other.rowNum) return false
if (colNum != other.colNum) return false
return elements().all { (index, value) -> value == other[index] }
if (other !is NDStructure<*>) return false
return NDStructure.contentEquals(this, other)
}
override fun hashCode(): Int {
@ -31,6 +29,4 @@ public class VirtualMatrix<T : Any>(
result = 31 * result + generator.hashCode()
return result
}
}

View File

@ -1,6 +1,6 @@
package space.kscience.kmath.misc
import space.kscience.kmath.operations.Space
import space.kscience.kmath.operations.Group
import space.kscience.kmath.operations.invoke
import kotlin.jvm.JvmName
@ -37,7 +37,7 @@ public fun <T, R> List<T>.cumulative(initial: R, operation: (R, T) -> R): List<R
/**
* Cumulative sum with custom space
*/
public fun <T> Iterable<T>.cumulativeSum(space: Space<T>): Iterable<T> =
public fun <T> Iterable<T>.cumulativeSum(space: Group<T>): Iterable<T> =
space { cumulative(zero) { element: T, sum: T -> sum + element } }
@JvmName("cumulativeSumOfDouble")
@ -49,7 +49,7 @@ public fun Iterable<Int>.cumulativeSum(): Iterable<Int> = cumulative(0) { elemen
@JvmName("cumulativeSumOfLong")
public fun Iterable<Long>.cumulativeSum(): Iterable<Long> = cumulative(0L) { element, sum -> sum + element }
public fun <T> Sequence<T>.cumulativeSum(space: Space<T>): Sequence<T> =
public fun <T> Sequence<T>.cumulativeSum(space: Group<T>): Sequence<T> =
space { cumulative(zero) { element: T, sum: T -> sum + element } }
@JvmName("cumulativeSumOfDouble")
@ -61,7 +61,7 @@ public fun Sequence<Int>.cumulativeSum(): Sequence<Int> = cumulative(0) { elemen
@JvmName("cumulativeSumOfLong")
public fun Sequence<Long>.cumulativeSum(): Sequence<Long> = cumulative(0L) { element, sum -> sum + element }
public fun <T> List<T>.cumulativeSum(space: Space<T>): List<T> =
public fun <T> List<T>.cumulativeSum(space: Group<T>): List<T> =
space { cumulative(zero) { element: T, sum: T -> sum + element } }
@JvmName("cumulativeSumOfDouble")

View File

@ -1,19 +1,16 @@
package space.kscience.kmath.nd
import space.kscience.kmath.operations.Field
import space.kscience.kmath.operations.RealField
import space.kscience.kmath.operations.Ring
import space.kscience.kmath.operations.Space
import space.kscience.kmath.operations.*
import space.kscience.kmath.structures.Buffer
import space.kscience.kmath.structures.BufferFactory
import kotlin.contracts.InvocationKind
import kotlin.contracts.contract
public interface BufferNDAlgebra<T, C> : NDAlgebra<T, C> {
public interface BufferNDAlgebra<T, A : Algebra<T>> : NDAlgebra<T, A> {
public val strides: Strides
public val bufferFactory: BufferFactory<T>
override fun produce(initializer: C.(IntArray) -> T): NDBuffer<T> = NDBuffer(
override fun produce(initializer: A.(IntArray) -> T): NDBuffer<T> = NDBuffer(
strides,
bufferFactory(strides.linearSize) { offset ->
elementContext.initializer(strides.index(offset))
@ -30,14 +27,14 @@ public interface BufferNDAlgebra<T, C> : NDAlgebra<T, C> {
else -> bufferFactory(strides.linearSize) { offset -> get(strides.index(offset)) }
}
override fun NDStructure<T>.map(transform: C.(T) -> T): NDBuffer<T> {
override fun NDStructure<T>.map(transform: A.(T) -> T): NDBuffer<T> {
val buffer = bufferFactory(strides.linearSize) { offset ->
elementContext.transform(buffer[offset])
}
return NDBuffer(strides, buffer)
}
override fun NDStructure<T>.mapIndexed(transform: C.(index: IntArray, T) -> T): NDBuffer<T> {
override fun NDStructure<T>.mapIndexed(transform: A.(index: IntArray, T) -> T): NDBuffer<T> {
val buffer = bufferFactory(strides.linearSize) { offset ->
elementContext.transform(
strides.index(offset),
@ -47,7 +44,7 @@ public interface BufferNDAlgebra<T, C> : NDAlgebra<T, C> {
return NDBuffer(strides, buffer)
}
override fun combine(a: NDStructure<T>, b: NDStructure<T>, transform: C.(T, T) -> T): NDBuffer<T> {
override fun combine(a: NDStructure<T>, b: NDStructure<T>, transform: A.(T, T) -> T): NDBuffer<T> {
val buffer = bufferFactory(strides.linearSize) { offset ->
elementContext.transform(a.buffer[offset], b.buffer[offset])
}
@ -55,20 +52,21 @@ public interface BufferNDAlgebra<T, C> : NDAlgebra<T, C> {
}
}
public open class BufferedNDSpace<T, R : Space<T>>(
public open class BufferedNDGroup<T, A : Group<T>>(
final override val shape: IntArray,
final override val elementContext: R,
final override val elementContext: A,
final override val bufferFactory: BufferFactory<T>,
) : NDSpace<T, R>, BufferNDAlgebra<T, R> {
) : NDGroup<T, A>, BufferNDAlgebra<T, A> {
override val strides: Strides = DefaultStrides(shape)
override val zero: NDBuffer<T> by lazy { produce { zero } }
override fun NDStructure<T>.unaryMinus(): NDStructure<T> = produce { -get(it) }
}
public open class BufferedNDRing<T, R : Ring<T>>(
shape: IntArray,
elementContext: R,
bufferFactory: BufferFactory<T>,
) : BufferedNDSpace<T, R>(shape, elementContext, bufferFactory), NDRing<T, R> {
) : BufferedNDGroup<T, R>(shape, elementContext, bufferFactory), NDRing<T, R> {
override val one: NDBuffer<T> by lazy { produce { one } }
}
@ -76,22 +74,25 @@ public open class BufferedNDField<T, R : Field<T>>(
shape: IntArray,
elementContext: R,
bufferFactory: BufferFactory<T>,
) : BufferedNDRing<T, R>(shape, elementContext, bufferFactory), NDField<T, R>
) : BufferedNDRing<T, R>(shape, elementContext, bufferFactory), NDField<T, R> {
// space factories
public fun <T, A : Space<T>> NDAlgebra.Companion.space(
override fun scale(a: NDStructure<T>, value: Double): NDStructure<T> = a.map { it * value }
}
// group factories
public fun <T, A : Group<T>> NDAlgebra.Companion.group(
space: A,
bufferFactory: BufferFactory<T>,
vararg shape: Int,
): BufferedNDSpace<T, A> = BufferedNDSpace(shape, space, bufferFactory)
): BufferedNDGroup<T, A> = BufferedNDGroup(shape, space, bufferFactory)
public inline fun <T, A : Space<T>, R> A.ndSpace(
public inline fun <T, A : Group<T>, R> A.ndGroup(
noinline bufferFactory: BufferFactory<T>,
vararg shape: Int,
action: BufferedNDSpace<T, A>.() -> R,
action: BufferedNDGroup<T, A>.() -> R,
): R {
contract { callsInPlace(action, InvocationKind.EXACTLY_ONCE) }
return NDAlgebra.space(this, bufferFactory, *shape).run(action)
return NDAlgebra.group(this, bufferFactory, *shape).run(action)
}
//ring factories

View File

@ -1,9 +1,9 @@
package space.kscience.kmath.nd
import space.kscience.kmath.operations.Field
import space.kscience.kmath.operations.Ring
import space.kscience.kmath.operations.Space
import space.kscience.kmath.misc.UnstableKMathAPI
import space.kscience.kmath.operations.*
import space.kscience.kmath.structures.*
import kotlin.reflect.KClass
/**
* An exception is thrown when the expected ans actual shape of NDArray differs.
@ -21,7 +21,7 @@ public class ShapeMismatchException(public val expected: IntArray, public val ac
* @param C the type of the element context.
* @param N the type of the structure.
*/
public interface NDAlgebra<T, C> {
public interface NDAlgebra<T, C : Algebra<T>> {
/**
* The shape of ND-structures this algebra operates on.
*/
@ -33,7 +33,7 @@ public interface NDAlgebra<T, C> {
public val elementContext: C
/**
* Produces a new [N] structure using given initializer function.
* Produces a new NDStructure using given initializer function.
*/
public fun produce(initializer: C.(IntArray) -> T): NDStructure<T>
@ -56,22 +56,46 @@ public interface NDAlgebra<T, C> {
* Element-wise invocation of function working on [T] on a [NDStructure].
*/
public operator fun Function1<T, T>.invoke(structure: NDStructure<T>): NDStructure<T> =
structure.map() { value -> this@invoke(value) }
structure.map { value -> this@invoke(value) }
/**
* Get a feature of the structure in this scope. Structure features take precedence other context features
*
* @param F the type of feature.
* @param structure the structure.
* @param type the [KClass] instance of [F].
* @return a feature object or `null` if it isn't present.
*/
@UnstableKMathAPI
public fun <F : Any> getFeature(structure: NDStructure<T>, type: KClass<F>): F? = structure.getFeature(type)
public companion object
}
/**
* Get a feature of the structure in this scope. Structure features take precedence other context features
*
* @param T the type of items in the matrices.
* @param F the type of feature.
* @return a feature object or `null` if it isn't present.
*/
@UnstableKMathAPI
public inline fun <T : Any, reified F : Any> NDAlgebra<T, *>.getFeature(structure: NDStructure<T>): F? =
getFeature(structure, F::class)
/**
* Checks if given elements are consistent with this context.
*
* @param structures the structures to check.
* @return the array of valid structures.
*/
internal fun <T, C> NDAlgebra<T, C>.checkShape(vararg structures: NDStructure<T>): Array<out NDStructure<T>> = structures
.map(NDStructure<T>::shape)
.singleOrNull { !shape.contentEquals(it) }
?.let<IntArray, Array<out NDStructure<T>>> { throw ShapeMismatchException(shape, it) }
?: structures
internal fun <T, C : Algebra<T>> NDAlgebra<T, C>.checkShape(vararg structures: NDStructure<T>): Array<out NDStructure<T>> =
structures
.map(NDStructure<T>::shape)
.singleOrNull { !shape.contentEquals(it) }
?.let<IntArray, Array<out NDStructure<T>>> { throw ShapeMismatchException(shape, it) }
?: structures
/**
* Checks if given element is consistent with this context.
@ -79,7 +103,7 @@ internal fun <T, C> NDAlgebra<T, C>.checkShape(vararg structures: NDStructure<T>
* @param element the structure to check.
* @return the valid structure.
*/
internal fun <T, C> NDAlgebra<T, C>.checkShape(element: NDStructure<T>): NDStructure<T> {
internal fun <T, C : Algebra<T>> NDAlgebra<T, C>.checkShape(element: NDStructure<T>): NDStructure<T> {
if (!element.shape.contentEquals(shape)) throw ShapeMismatchException(shape, element.shape)
return element
}
@ -91,7 +115,7 @@ internal fun <T, C> NDAlgebra<T, C>.checkShape(element: NDStructure<T>): NDStruc
* @param N the type of ND structure.
* @param S the type of space of structure elements.
*/
public interface NDSpace<T, S : Space<T>> : Space<NDStructure<T>>, NDAlgebra<T, S> {
public interface NDGroup<T, S : Group<T>> : Group<NDStructure<T>>, NDAlgebra<T, S> {
/**
* Element-wise addition.
*
@ -102,14 +126,14 @@ public interface NDSpace<T, S : Space<T>> : Space<NDStructure<T>>, NDAlgebra<T,
public override fun add(a: NDStructure<T>, b: NDStructure<T>): NDStructure<T> =
combine(a, b) { aValue, bValue -> add(aValue, bValue) }
/**
* Element-wise multiplication by scalar.
*
* @param a the multiplicand.
* @param k the multiplier.
* @return the product.
*/
public override fun multiply(a: NDStructure<T>, k: Number): NDStructure<T> = a.map() { multiply(it, k) }
// /**
// * Element-wise multiplication by scalar.
// *
// * @param a the multiplicand.
// * @param k the multiplier.
// * @return the product.
// */
// public override fun multiply(a: NDStructure<T>, k: Number): NDStructure<T> = a.map { multiply(it, k) }
// TODO move to extensions after KEEP-176
@ -120,7 +144,7 @@ public interface NDSpace<T, S : Space<T>> : Space<NDStructure<T>>, NDAlgebra<T,
* @param arg the augend.
* @return the sum.
*/
public operator fun NDStructure<T>.plus(arg: T): NDStructure<T> = this.map() { value -> add(arg, value) }
public operator fun NDStructure<T>.plus(arg: T): NDStructure<T> = this.map { value -> add(arg, value) }
/**
* Subtracts an element from ND structure of it.
@ -129,7 +153,7 @@ public interface NDSpace<T, S : Space<T>> : Space<NDStructure<T>>, NDAlgebra<T,
* @param arg the divisor.
* @return the quotient.
*/
public operator fun NDStructure<T>.minus(arg: T): NDStructure<T> = this.map() { value -> add(arg, -value) }
public operator fun NDStructure<T>.minus(arg: T): NDStructure<T> = this.map { value -> add(arg, -value) }
/**
* Adds an element to ND structure of it.
@ -138,7 +162,7 @@ public interface NDSpace<T, S : Space<T>> : Space<NDStructure<T>>, NDAlgebra<T,
* @param arg the augend.
* @return the sum.
*/
public operator fun T.plus(arg: NDStructure<T>): NDStructure<T> = arg.map() { value -> add(this@plus, value) }
public operator fun T.plus(arg: NDStructure<T>): NDStructure<T> = arg.map { value -> add(this@plus, value) }
/**
* Subtracts an ND structure from an element of it.
@ -147,7 +171,7 @@ public interface NDSpace<T, S : Space<T>> : Space<NDStructure<T>>, NDAlgebra<T,
* @param arg the divisor.
* @return the quotient.
*/
public operator fun T.minus(arg: NDStructure<T>): NDStructure<T> = arg.map() { value -> add(-this@minus, value) }
public operator fun T.minus(arg: NDStructure<T>): NDStructure<T> = arg.map { value -> add(-this@minus, value) }
public companion object
}
@ -159,7 +183,7 @@ public interface NDSpace<T, S : Space<T>> : Space<NDStructure<T>>, NDAlgebra<T,
* @param N the type of ND structure.
* @param R the type of ring of structure elements.
*/
public interface NDRing<T, R : Ring<T>> : Ring<NDStructure<T>>, NDSpace<T, R> {
public interface NDRing<T, R : Ring<T>> : Ring<NDStructure<T>>, NDGroup<T, R> {
/**
* Element-wise multiplication.
*
@ -179,7 +203,7 @@ public interface NDRing<T, R : Ring<T>> : Ring<NDStructure<T>>, NDSpace<T, R> {
* @param arg the multiplier.
* @return the product.
*/
public operator fun NDStructure<T>.times(arg: T): NDStructure<T> = this.map() { value -> multiply(arg, value) }
public operator fun NDStructure<T>.times(arg: T): NDStructure<T> = this.map { value -> multiply(arg, value) }
/**
* Multiplies an element by a ND structure of it.
@ -188,7 +212,7 @@ public interface NDRing<T, R : Ring<T>> : Ring<NDStructure<T>>, NDSpace<T, R> {
* @param arg the multiplier.
* @return the product.
*/
public operator fun T.times(arg: NDStructure<T>): NDStructure<T> = arg.map() { value -> multiply(this@times, value) }
public operator fun T.times(arg: NDStructure<T>): NDStructure<T> = arg.map { value -> multiply(this@times, value) }
public companion object
}
@ -200,7 +224,7 @@ public interface NDRing<T, R : Ring<T>> : Ring<NDStructure<T>>, NDSpace<T, R> {
* @param N the type of ND structure.
* @param F the type field of structure elements.
*/
public interface NDField<T, F : Field<T>> : Field<NDStructure<T>>, NDRing<T, F> {
public interface NDField<T, F : Field<T>> : Field<NDStructure<T>>, NDRing<T, F>, ScaleOperations<NDStructure<T>> {
/**
* Element-wise division.
*
@ -219,7 +243,7 @@ public interface NDField<T, F : Field<T>> : Field<NDStructure<T>>, NDRing<T, F>
* @param arg the divisor.
* @return the quotient.
*/
public operator fun NDStructure<T>.div(arg: T): NDStructure<T> = this.map() { value -> divide(arg, value) }
public operator fun NDStructure<T>.div(arg: T): NDStructure<T> = this.map { value -> divide(arg, value) }
/**
* Divides an element by an ND structure of it.
@ -228,7 +252,7 @@ public interface NDField<T, F : Field<T>> : Field<NDStructure<T>>, NDRing<T, F>
* @param arg the divisor.
* @return the quotient.
*/
public operator fun T.div(arg: NDStructure<T>): NDStructure<T> = arg.map() { divide(it, this@div) }
public operator fun T.div(arg: NDStructure<T>): NDStructure<T> = arg.map { divide(it, this@div) }
// @ThreadLocal
// public companion object {

View File

@ -48,11 +48,11 @@ public interface NDStructure<T> {
public override fun hashCode(): Int
/**
* Feature is additional property or hint that does not directly affect the structure, but could in some cases help
* optimize operations and performance. If the feature is not present, null is defined.
* Feature is some additional strucure information which allows to access it special properties or hints.
* If the feature is not present, null is returned.
*/
@UnstableKMathAPI
public fun <T : Any> getFeature(type: KClass<T>): T? = null
public fun <F : Any> getFeature(type: KClass<F>): F? = null
public companion object {
/**
@ -74,7 +74,7 @@ public interface NDStructure<T> {
*
* Strides should be reused if possible.
*/
public fun <T> build(
public fun <T> buffered(
strides: Strides,
bufferFactory: BufferFactory<T> = Buffer.Companion::boxing,
initializer: (IntArray) -> T,
@ -94,11 +94,11 @@ public interface NDStructure<T> {
crossinline initializer: (IntArray) -> T,
): NDBuffer<T> = NDBuffer(strides, Buffer.auto(type, strides.linearSize) { i -> initializer(strides.index(i)) })
public fun <T> build(
public fun <T> buffered(
shape: IntArray,
bufferFactory: BufferFactory<T> = Buffer.Companion::boxing,
initializer: (IntArray) -> T,
): NDBuffer<T> = build(DefaultStrides(shape), bufferFactory, initializer)
): NDBuffer<T> = buffered(DefaultStrides(shape), bufferFactory, initializer)
public inline fun <reified T : Any> auto(
shape: IntArray,

View File

@ -2,9 +2,9 @@ package space.kscience.kmath.nd
import space.kscience.kmath.misc.UnstableKMathAPI
import space.kscience.kmath.operations.ExtendedField
import space.kscience.kmath.operations.NumbersAddOperations
import space.kscience.kmath.operations.RealField
import space.kscience.kmath.operations.RingWithNumbers
import space.kscience.kmath.structures.Buffer
import space.kscience.kmath.operations.ScaleOperations
import space.kscience.kmath.structures.RealBuffer
import kotlin.contracts.InvocationKind
import kotlin.contracts.contract
@ -12,8 +12,9 @@ import kotlin.contracts.contract
@OptIn(UnstableKMathAPI::class)
public class RealNDField(
shape: IntArray,
) : BufferedNDField<Double, RealField>(shape, RealField, Buffer.Companion::real),
RingWithNumbers<NDStructure<Double>>,
) : BufferedNDField<Double, RealField>(shape, RealField, ::RealBuffer),
NumbersAddOperations<NDStructure<Double>>,
ScaleOperations<NDStructure<Double>>,
ExtendedField<NDStructure<Double>> {
override val zero: NDBuffer<Double> by lazy { produce { zero } }
@ -75,6 +76,8 @@ public class RealNDField(
return NDBuffer(strides, buffer)
}
override fun scale(a: NDStructure<Double>, value: Double): NDStructure<Double> = a.map { it * value }
override fun power(arg: NDStructure<Double>, pow: Number): NDBuffer<Double> = arg.map { power(it, pow) }
override fun exp(arg: NDStructure<Double>): NDBuffer<Double> = arg.map { exp(it) }

View File

@ -1,7 +1,7 @@
package space.kscience.kmath.nd
import space.kscience.kmath.misc.UnstableKMathAPI
import space.kscience.kmath.operations.RingWithNumbers
import space.kscience.kmath.operations.NumbersAddOperations
import space.kscience.kmath.operations.ShortRing
import space.kscience.kmath.structures.Buffer
import space.kscience.kmath.structures.ShortBuffer
@ -12,7 +12,7 @@ import kotlin.contracts.contract
public class ShortNDRing(
shape: IntArray,
) : BufferedNDRing<Short, ShortRing>(shape, ShortRing, Buffer.Companion::auto),
RingWithNumbers<NDStructure<Short>> {
NumbersAddOperations<NDStructure<Short>> {
override val zero: NDBuffer<Short> by lazy { produce { zero } }
override val one: NDBuffer<Short> by lazy { produce { one } }

View File

@ -45,12 +45,23 @@ private inline class Buffer1DWrapper<T>(val buffer: Buffer<T>) : Structure1D<T>
/**
* Represent a [NDStructure] as [Structure1D]. Throw error in case of dimension mismatch
*/
public fun <T> NDStructure<T>.as1D(): Structure1D<T> = if (shape.size == 1) {
if (this is NDBuffer) Buffer1DWrapper(this.buffer) else Structure1DWrapper(this)
} else
error("Can't create 1d-structure from ${shape.size}d-structure")
public fun <T> NDStructure<T>.as1D(): Structure1D<T> = this as? Structure1D<T> ?: if (shape.size == 1) {
when (this) {
is NDBuffer -> Buffer1DWrapper(this.buffer)
else -> Structure1DWrapper(this)
}
} else error("Can't create 1d-structure from ${shape.size}d-structure")
/**
* Represent this buffer as 1D structure
*/
public fun <T> Buffer<T>.asND(): Structure1D<T> = Buffer1DWrapper(this)
/**
* Expose inner buffer of this [Structure1D] if possible
*/
internal fun <T : Any> Structure1D<T>.unwrap(): Buffer<T> = when {
this is Buffer1DWrapper<T> -> buffer
this is Structure1DWrapper && structure is NDBuffer<T> -> structure.buffer
else -> this
}

View File

@ -1,9 +1,9 @@
package space.kscience.kmath.nd
import space.kscience.kmath.linear.BufferMatrix
import space.kscience.kmath.linear.RealMatrixContext
import space.kscience.kmath.misc.UnstableKMathAPI
import space.kscience.kmath.structures.Buffer
import space.kscience.kmath.structures.VirtualBuffer
import kotlin.reflect.KClass
/**
* A structure that is guaranteed to be two-dimensional.
@ -26,14 +26,14 @@ public interface Structure2D<T> : NDStructure<T> {
/**
* The buffer of rows of this structure. It gets elements from the structure dynamically.
*/
public val rows: Buffer<Buffer<T>>
get() = VirtualBuffer(rowNum) { i -> VirtualBuffer(colNum) { j -> get(i, j) } }
public val rows: List<Buffer<T>>
get() = List(rowNum) { i -> VirtualBuffer(colNum) { j -> get(i, j) } }
/**
* The buffer of columns of this structure. It gets elements from the structure dynamically.
*/
public val columns: Buffer<Buffer<T>>
get() = VirtualBuffer(colNum) { j -> VirtualBuffer(rowNum) { i -> get(i, j) } }
public val columns: List<Buffer<T>>
get() = List(colNum) { j -> VirtualBuffer(rowNum) { i -> get(i, j) } }
/**
* Retrieves an element from the structure by two indices.
@ -54,21 +54,13 @@ public interface Structure2D<T> : NDStructure<T> {
for (j in 0 until colNum) yield(intArrayOf(i, j) to get(i, j))
}
public companion object {
public inline fun real(
rows: Int,
columns: Int,
crossinline init: (i: Int, j: Int) -> Double,
): BufferMatrix<Double> = RealMatrixContext.produce(rows,columns) { i, j ->
init(i, j)
}
}
public companion object
}
/**
* A 2D wrapper for nd-structure
*/
private inline class Structure2DWrapper<T>(val structure: NDStructure<T>) : Structure2D<T> {
private class Structure2DWrapper<T>(val structure: NDStructure<T>) : Structure2D<T> {
override val shape: IntArray get() = structure.shape
override val rowNum: Int get() = shape[0]
@ -76,20 +68,27 @@ private inline class Structure2DWrapper<T>(val structure: NDStructure<T>) : Stru
override operator fun get(i: Int, j: Int): T = structure[i, j]
@UnstableKMathAPI
override fun <F : Any> getFeature(type: KClass<F>): F? = structure.getFeature(type)
override fun elements(): Sequence<Pair<IntArray, T>> = structure.elements()
override fun equals(other: Any?): Boolean = structure == other
override fun hashCode(): Int = structure.hashCode()
}
/**
* Represent a [NDStructure] as [Structure1D]. Throw error in case of dimension mismatch
*/
public fun <T> NDStructure<T>.as2D(): Structure2D<T> = if (shape.size == 2)
Structure2DWrapper(this)
else
error("Can't create 2d-structure from ${shape.size}d-structure")
public fun <T> NDStructure<T>.as2D(): Structure2D<T> = this as? Structure2D<T> ?: when (shape.size) {
2 -> Structure2DWrapper(this)
else -> error("Can't create 2d-structure from ${shape.size}d-structure")
}
/**
* Alias for [Structure2D] with more familiar name.
*
* @param T the type of items in the matrix.
* Expose inner [NDStructure] if possible
*/
public typealias Matrix<T> = Structure2D<T>
internal fun <T> Structure2D<T>.unwrap(): NDStructure<T> =
if (this is Structure2DWrapper) structure
else this

View File

@ -87,10 +87,11 @@ public interface Algebra<T> {
* @param right the second argument of operation.
* @return a result of operation.
*/
public fun binaryOperation(operation: String, left: T, right: T): T = binaryOperationFunction(operation)(left, right)
public fun binaryOperation(operation: String, left: T, right: T): T =
binaryOperationFunction(operation)(left, right)
}
public fun <T: Any> Algebra<T>.bindSymbol(symbol: Symbol): T = bindSymbol(symbol.identity)
public fun <T : Any> Algebra<T>.bindSymbol(symbol: Symbol): T = bindSymbol(symbol.identity)
/**
* Call a block with an [Algebra] as receiver.
@ -104,7 +105,7 @@ public inline operator fun <A : Algebra<*>, R> A.invoke(block: A.() -> R): R = r
*
* @param T the type of element of this semispace.
*/
public interface SpaceOperations<T> : Algebra<T> {
public interface GroupOperations<T> : Algebra<T> {
/**
* Addition of two elements.
*
@ -114,15 +115,6 @@ public interface SpaceOperations<T> : Algebra<T> {
*/
public fun add(a: T, b: T): T
/**
* Multiplication of element by scalar.
*
* @param a the multiplier.
* @param k the multiplicand.
* @return the produce.
*/
public fun multiply(a: T, k: Number): T
// Operations to be performed in this context. Could be moved to extensions in case of KEEP-176
/**
@ -131,7 +123,7 @@ public interface SpaceOperations<T> : Algebra<T> {
* @receiver this value.
* @return the additive inverse of this value.
*/
public operator fun T.unaryMinus(): T = multiply(this, -1.0)
public operator fun T.unaryMinus(): T
/**
* Returns this value.
@ -159,35 +151,8 @@ public interface SpaceOperations<T> : Algebra<T> {
*/
public operator fun T.minus(b: T): T = add(this, -b)
/**
* Multiplication of this element by a scalar.
*
* @receiver the multiplier.
* @param k the multiplicand.
* @return the product.
*/
public operator fun T.times(k: Number): T = multiply(this, k)
/**
* Division of this element by scalar.
*
* @receiver the dividend.
* @param k the divisor.
* @return the quotient.
*/
public operator fun T.div(k: Number): T = multiply(this, 1.0 / k.toDouble())
/**
* Multiplication of this number by element.
*
* @receiver the multiplier.
* @param b the multiplicand.
* @return the product.
*/
public operator fun Number.times(b: T): T = b * this
public override fun unaryOperationFunction(operation: String): (arg: T) -> T = when (operation) {
PLUS_OPERATION -> { arg -> arg }
PLUS_OPERATION -> { arg -> +arg }
MINUS_OPERATION -> { arg -> -arg }
else -> super.unaryOperationFunction(operation)
}
@ -212,12 +177,11 @@ public interface SpaceOperations<T> : Algebra<T> {
}
/**
* Represents linear space with neutral element, i.e. algebraic structure with associative, binary operation [add] and
* scalar multiplication [multiply].
* Represents linear space with neutral element, i.e. algebraic structure with associative, binary operation [add].
*
* @param T the type of element of this semispace.
*/
public interface Space<T> : SpaceOperations<T> {
public interface Group<T> : GroupOperations<T> {
/**
* The neutral element of addition.
*/
@ -230,7 +194,7 @@ public interface Space<T> : SpaceOperations<T> {
*
* @param T the type of element of this semiring.
*/
public interface RingOperations<T> : SpaceOperations<T> {
public interface RingOperations<T> : GroupOperations<T> {
/**
* Multiplies two elements.
*
@ -266,7 +230,7 @@ public interface RingOperations<T> : SpaceOperations<T> {
*
* @param T the type of element of this ring.
*/
public interface Ring<T> : Space<T>, RingOperations<T> {
public interface Ring<T> : Group<T>, RingOperations<T> {
/**
* neutral operation for multiplication
*/
@ -317,13 +281,6 @@ public interface FieldOperations<T> : RingOperations<T> {
*
* @param T the type of element of this semifield.
*/
public interface Field<T> : Ring<T>, FieldOperations<T> {
/**
* Division of element by scalar.
*
* @receiver the dividend.
* @param b the divisor.
* @return the quotient.
*/
public operator fun Number.div(b: T): T = this * divide(one, b)
}
public interface Field<T> : Ring<T>, FieldOperations<T>, ScaleOperations<T>, NumericAlgebra<T> {
override fun number(value: Number): T = scale(one, value.toDouble())
}

View File

@ -14,24 +14,24 @@ public interface AlgebraElement<T, C : Algebra<T>> {
*/
public val context: C
}
/**
* Divides this element by number.
*
* @param k the divisor.
* @return the quotient.
*/
public operator fun <T : AlgebraElement<T, S>, S : Space<T>> T.div(k: Number): T =
context.multiply(this, 1.0 / k.toDouble())
/**
* Multiplies this element by number.
*
* @param k the multiplicand.
* @return the product.
*/
public operator fun <T : AlgebraElement<T, S>, S : Space<T>> T.times(k: Number): T =
context.multiply(this, k.toDouble())
//
///**
// * Divides this element by number.
// *
// * @param k the divisor.
// * @return the quotient.
// */
//public operator fun <T : AlgebraElement<T, S>, S : Space<T>> T.div(k: Number): T =
// context.multiply(this, 1.0 / k.toDouble())
//
///**
// * Multiplies this element by number.
// *
// * @param k the multiplicand.
// * @return the product.
// */
//public operator fun <T : AlgebraElement<T, S>, S : Space<T>> T.times(k: Number): T =
// context.multiply(this, k.toDouble())
/**
* Subtracts element from this one.
@ -39,8 +39,9 @@ public operator fun <T : AlgebraElement<T, S>, S : Space<T>> T.times(k: Number):
* @param b the subtrahend.
* @return the difference.
*/
public operator fun <T : AlgebraElement<T, S>, S : Space<T>> T.minus(b: T): T =
context.add(this, context.multiply(b, -1.0))
@UnstableKMathAPI
public operator fun <T : AlgebraElement<T, S>, S : NumbersAddOperations<T>> T.minus(b: T): T =
context.add(this, context.run { -b })
/**
* Adds element to this one.
@ -48,14 +49,14 @@ public operator fun <T : AlgebraElement<T, S>, S : Space<T>> T.minus(b: T): T =
* @param b the augend.
* @return the sum.
*/
public operator fun <T : AlgebraElement<T, S>, S : Space<T>> T.plus(b: T): T =
public operator fun <T : AlgebraElement<T, S>, S : Group<T>> T.plus(b: T): T =
context.add(this, b)
/**
* Number times element
*/
public operator fun <T : AlgebraElement<T, S>, S : Space<T>> Number.times(element: T): T =
element.times(this)
///**
// * Number times element
// */
//public operator fun <T : AlgebraElement<T, S>, S : Space<T>> Number.times(element: T): T =
// element.times(this)
/**
@ -79,14 +80,14 @@ public operator fun <T : AlgebraElement<T, F>, F : Field<T>> T.div(b: T): T =
/**
* The element of [Space].
* The element of [Group].
*
* @param T the type of space operation results.
* @param I self type of the element. Needed for static type checking.
* @param S the type of space.
*/
@UnstableKMathAPI
public interface SpaceElement<T : SpaceElement<T, S>, S : Space<T>> : AlgebraElement<T, S>
public interface SpaceElement<T : SpaceElement<T, S>, S : Group<T>> : AlgebraElement<T, S>
/**
* The element of [Ring].

View File

@ -21,29 +21,28 @@ public typealias TBase = ULong
* @author Robert Drynkin (https://github.com/robdrynkin) and Peter Klimai (https://github.com/pklimai)
*/
@OptIn(UnstableKMathAPI::class)
public object BigIntField : Field<BigInt>, RingWithNumbers<BigInt> {
public object BigIntField : Field<BigInt>, NumbersAddOperations<BigInt>, ScaleOperations<BigInt> {
override val zero: BigInt = BigInt.ZERO
override val one: BigInt = BigInt.ONE
override fun add(a: BigInt, b: BigInt): BigInt = a.plus(b)
override fun number(value: Number): BigInt = value.toLong().toBigInt()
override fun multiply(a: BigInt, k: Number): BigInt = a.times(number(k))
@Suppress("EXTENSION_SHADOWED_BY_MEMBER")
override fun BigInt.unaryMinus(): BigInt = -this
override fun add(a: BigInt, b: BigInt): BigInt = a.plus(b)
override fun scale(a: BigInt, value: Double): BigInt = a.times(number(value))
override fun multiply(a: BigInt, b: BigInt): BigInt = a.times(b)
override fun divide(a: BigInt, b: BigInt): BigInt = a.div(b)
public operator fun String.unaryPlus(): BigInt = this.parseBigInteger() ?: error("Can't parse $this as big integer")
public operator fun String.unaryMinus(): BigInt =
-(this.parseBigInteger() ?: error("Can't parse $this as big integer"))
override fun divide(a: BigInt, b: BigInt): BigInt = a.div(b)
}
public class BigInt internal constructor(
private val sign: Byte,
private val magnitude: Magnitude
) : Comparable<BigInt> {
private val magnitude: Magnitude,
) : Comparable<BigInt> {
public override fun compareTo(other: BigInt): Int = when {
(sign == 0.toByte()) and (other.sign == 0.toByte()) -> 0
sign < other.sign -> -1

View File

@ -81,14 +81,53 @@ public interface NumericAlgebra<T> : Algebra<T> {
rightSideNumberOperationFunction(operation)(left, right)
}
/**
* Scale by scalar operations
*/
public interface ScaleOperations<T> : Algebra<T> {
/**
* Scaling an element by a scalar.
*
* @param a the multiplier.
* @param value the multiplicand.
* @return the produce.
*/
public fun scale(a: T, value: Double): T
/**
* Multiplication of this element by a scalar.
*
* @receiver the multiplier.
* @param k the multiplicand.
* @return the product.
*/
public operator fun T.times(k: Number): T = scale(this, k.toDouble())
/**
* Division of this element by scalar.
*
* @receiver the dividend.
* @param k the divisor.
* @return the quotient.
*/
public operator fun T.div(k: Number): T = scale(this, 1.0 / k.toDouble())
/**
* Multiplication of this number by element.
*
* @receiver the multiplier.
* @param b the multiplicand.
* @return the product.
*/
public operator fun Number.times(b: T): T = b * this
}
/**
* A combination of [NumericAlgebra] and [Ring] that adds intrinsic simple operations on numbers like `T+1`
* TODO to be removed and replaced by extensions after multiple receivers are there
*/
@UnstableKMathAPI
public interface RingWithNumbers<T>: Ring<T>, NumericAlgebra<T>{
public override fun number(value: Number): T = one * value
public interface NumbersAddOperations<T> : Group<T>, NumericAlgebra<T> {
/**
* Addition of element and scalar.
*

View File

@ -107,111 +107,6 @@ public fun <T : AlgebraElement<T, out TrigonometricOperations<T>>> acos(arg: T):
@UnstableKMathAPI
public fun <T : AlgebraElement<T, out TrigonometricOperations<T>>> atan(arg: T): T = arg.context.atan(arg)
/**
* A container for hyperbolic trigonometric operations for specific type.
*
* @param T the type of element of this structure.
*/
public interface HyperbolicOperations<T> : Algebra<T> {
/**
* Computes the hyperbolic sine of [arg].
*/
public fun sinh(arg: T): T
/**
* Computes the hyperbolic cosine of [arg].
*/
public fun cosh(arg: T): T
/**
* Computes the hyperbolic tangent of [arg].
*/
public fun tanh(arg: T): T
/**
* Computes the inverse hyperbolic sine of [arg].
*/
public fun asinh(arg: T): T
/**
* Computes the inverse hyperbolic cosine of [arg].
*/
public fun acosh(arg: T): T
/**
* Computes the inverse hyperbolic tangent of [arg].
*/
public fun atanh(arg: T): T
public companion object {
/**
* The identifier of hyperbolic sine.
*/
public const val SINH_OPERATION: String = "sinh"
/**
* The identifier of hyperbolic cosine.
*/
public const val COSH_OPERATION: String = "cosh"
/**
* The identifier of hyperbolic tangent.
*/
public const val TANH_OPERATION: String = "tanh"
/**
* The identifier of inverse hyperbolic sine.
*/
public const val ASINH_OPERATION: String = "asinh"
/**
* The identifier of inverse hyperbolic cosine.
*/
public const val ACOSH_OPERATION: String = "acosh"
/**
* The identifier of inverse hyperbolic tangent.
*/
public const val ATANH_OPERATION: String = "atanh"
}
}
/**
* Computes the hyperbolic sine of [arg].
*/
@UnstableKMathAPI
public fun <T : AlgebraElement<T, out HyperbolicOperations<T>>> sinh(arg: T): T = arg.context.sinh(arg)
/**
* Computes the hyperbolic cosine of [arg].
*/
@UnstableKMathAPI
public fun <T : AlgebraElement<T, out HyperbolicOperations<T>>> cosh(arg: T): T = arg.context.cosh(arg)
/**
* Computes the hyperbolic tangent of [arg].
*/
@UnstableKMathAPI
public fun <T : AlgebraElement<T, out HyperbolicOperations<T>>> tanh(arg: T): T = arg.context.tanh(arg)
/**
* Computes the inverse hyperbolic sine of [arg].
*/
@UnstableKMathAPI
public fun <T : AlgebraElement<T, out HyperbolicOperations<T>>> asinh(arg: T): T = arg.context.asinh(arg)
/**
* Computes the inverse hyperbolic cosine of [arg].
*/
@UnstableKMathAPI
public fun <T : AlgebraElement<T, out HyperbolicOperations<T>>> acosh(arg: T): T = arg.context.acosh(arg)
/**
* Computes the inverse hyperbolic tangent of [arg].
*/
@UnstableKMathAPI
public fun <T : AlgebraElement<T, out HyperbolicOperations<T>>> atanh(arg: T): T = arg.context.atanh(arg)
/**
* A context extension to include power operations based on exponentiation.
*
@ -284,6 +179,36 @@ public interface ExponentialOperations<T> : Algebra<T> {
*/
public fun ln(arg: T): T
/**
* Computes the hyperbolic sine of [arg].
*/
public fun sinh(arg: T): T
/**
* Computes the hyperbolic cosine of [arg].
*/
public fun cosh(arg: T): T
/**
* Computes the hyperbolic tangent of [arg].
*/
public fun tanh(arg: T): T
/**
* Computes the inverse hyperbolic sine of [arg].
*/
public fun asinh(arg: T): T
/**
* Computes the inverse hyperbolic cosine of [arg].
*/
public fun acosh(arg: T): T
/**
* Computes the inverse hyperbolic tangent of [arg].
*/
public fun atanh(arg: T): T
public companion object {
/**
* The identifier of exponential function.
@ -294,6 +219,36 @@ public interface ExponentialOperations<T> : Algebra<T> {
* The identifier of natural logarithm.
*/
public const val LN_OPERATION: String = "ln"
/**
* The identifier of hyperbolic sine.
*/
public const val SINH_OPERATION: String = "sinh"
/**
* The identifier of hyperbolic cosine.
*/
public const val COSH_OPERATION: String = "cosh"
/**
* The identifier of hyperbolic tangent.
*/
public const val TANH_OPERATION: String = "tanh"
/**
* The identifier of inverse hyperbolic sine.
*/
public const val ASINH_OPERATION: String = "asinh"
/**
* The identifier of inverse hyperbolic cosine.
*/
public const val ACOSH_OPERATION: String = "acosh"
/**
* The identifier of inverse hyperbolic tangent.
*/
public const val ATANH_OPERATION: String = "atanh"
}
}
@ -309,6 +264,43 @@ public fun <T : AlgebraElement<T, out ExponentialOperations<T>>> exp(arg: T): T
@UnstableKMathAPI
public fun <T : AlgebraElement<T, out ExponentialOperations<T>>> ln(arg: T): T = arg.context.ln(arg)
/**
* Computes the hyperbolic sine of [arg].
*/
@UnstableKMathAPI
public fun <T : AlgebraElement<T, out ExponentialOperations<T>>> sinh(arg: T): T = arg.context.sinh(arg)
/**
* Computes the hyperbolic cosine of [arg].
*/
@UnstableKMathAPI
public fun <T : AlgebraElement<T, out ExponentialOperations<T>>> cosh(arg: T): T = arg.context.cosh(arg)
/**
* Computes the hyperbolic tangent of [arg].
*/
@UnstableKMathAPI
public fun <T : AlgebraElement<T, out ExponentialOperations<T>>> tanh(arg: T): T = arg.context.tanh(arg)
/**
* Computes the inverse hyperbolic sine of [arg].
*/
@UnstableKMathAPI
public fun <T : AlgebraElement<T, out ExponentialOperations<T>>> asinh(arg: T): T = arg.context.asinh(arg)
/**
* Computes the inverse hyperbolic cosine of [arg].
*/
@UnstableKMathAPI
public fun <T : AlgebraElement<T, out ExponentialOperations<T>>> acosh(arg: T): T = arg.context.acosh(arg)
/**
* Computes the inverse hyperbolic tangent of [arg].
*/
@UnstableKMathAPI
public fun <T : AlgebraElement<T, out ExponentialOperations<T>>> atanh(arg: T): T = arg.context.atanh(arg)
/**
* A container for norm functional on element.
*

View File

@ -1,47 +1,49 @@
package space.kscience.kmath.operations
/**
* Returns the sum of all elements in the iterable in this [Space].
* Returns the sum of all elements in the iterable in this [Group].
*
* @receiver the algebra that provides addition.
* @param data the iterable to sum up.
* @return the sum.
*/
public fun <T> Space<T>.sum(data: Iterable<T>): T = data.fold(zero) { left, right -> add(left, right) }
public fun <T> Group<T>.sum(data: Iterable<T>): T = data.fold(zero) { left, right -> add(left, right) }
/**
* Returns the sum of all elements in the sequence in this [Space].
* Returns the sum of all elements in the sequence in this [Group].
*
* @receiver the algebra that provides addition.
* @param data the sequence to sum up.
* @return the sum.
*/
public fun <T> Space<T>.sum(data: Sequence<T>): T = data.fold(zero) { left, right -> add(left, right) }
public fun <T> Group<T>.sum(data: Sequence<T>): T = data.fold(zero) { left, right -> add(left, right) }
/**
* Returns an average value of elements in the iterable in this [Space].
* Returns an average value of elements in the iterable in this [Group].
*
* @receiver the algebra that provides addition and division.
* @param data the iterable to find average.
* @return the average value.
* @author Iaroslav Postovalov
*/
public fun <T> Space<T>.average(data: Iterable<T>): T = sum(data) / data.count()
public fun <T, S> S.average(data: Iterable<T>): T where S : Group<T>, S : ScaleOperations<T> =
sum(data) / data.count()
/**
* Returns an average value of elements in the sequence in this [Space].
* Returns an average value of elements in the sequence in this [Group].
*
* @receiver the algebra that provides addition and division.
* @param data the sequence to find average.
* @return the average value.
* @author Iaroslav Postovalov
*/
public fun <T> Space<T>.average(data: Sequence<T>): T = sum(data) / data.count()
public fun <T, S> S.average(data: Sequence<T>): T where S : Group<T>, S : ScaleOperations<T> =
sum(data) / data.count()
/**
* Absolute of the comparable [value]
*/
public fun <T : Comparable<T>> Space<T>.abs(value: T): T = if (value > zero) value else -value
public fun <T : Comparable<T>> Group<T>.abs(value: T): T = if (value > zero) value else -value
/**
* Returns the sum of all elements in the iterable in provided space.
@ -50,7 +52,7 @@ public fun <T : Comparable<T>> Space<T>.abs(value: T): T = if (value > zero) val
* @param space the algebra that provides addition.
* @return the sum.
*/
public fun <T> Iterable<T>.sumWith(space: Space<T>): T = space.sum(this)
public fun <T> Iterable<T>.sumWith(space: Group<T>): T = space.sum(this)
/**
* Returns the sum of all elements in the sequence in provided space.
@ -59,27 +61,29 @@ public fun <T> Iterable<T>.sumWith(space: Space<T>): T = space.sum(this)
* @param space the algebra that provides addition.
* @return the sum.
*/
public fun <T> Sequence<T>.sumWith(space: Space<T>): T = space.sum(this)
public fun <T> Sequence<T>.sumWith(space: Group<T>): T = space.sum(this)
/**
* Returns an average value of elements in the iterable in this [Space].
* Returns an average value of elements in the iterable in this [Group].
*
* @receiver the iterable to find average.
* @param space the algebra that provides addition and division.
* @return the average value.
* @author Iaroslav Postovalov
*/
public fun <T> Iterable<T>.averageWith(space: Space<T>): T = space.average(this)
public fun <T, S> Iterable<T>.averageWith(space: S): T where S : Group<T>, S : ScaleOperations<T> =
space.average(this)
/**
* Returns an average value of elements in the sequence in this [Space].
* Returns an average value of elements in the sequence in this [Group].
*
* @receiver the sequence to find average.
* @param space the algebra that provides addition and division.
* @return the average value.
* @author Iaroslav Postovalov
*/
public fun <T> Sequence<T>.averageWith(space: Space<T>): T = space.average(this)
public fun <T, S> Sequence<T>.averageWith(space: S): T where S : Group<T>, S : ScaleOperations<T> =
space.average(this)
//TODO optimized power operation

View File

@ -8,7 +8,6 @@ import kotlin.math.pow as kpow
public interface ExtendedFieldOperations<T> :
FieldOperations<T>,
TrigonometricOperations<T>,
HyperbolicOperations<T>,
PowerOperations<T>,
ExponentialOperations<T> {
public override fun tan(arg: T): T = sin(arg) / cos(arg)
@ -21,15 +20,15 @@ public interface ExtendedFieldOperations<T> :
TrigonometricOperations.ACOS_OPERATION -> ::acos
TrigonometricOperations.ASIN_OPERATION -> ::asin
TrigonometricOperations.ATAN_OPERATION -> ::atan
HyperbolicOperations.COSH_OPERATION -> ::cosh
HyperbolicOperations.SINH_OPERATION -> ::sinh
HyperbolicOperations.TANH_OPERATION -> ::tanh
HyperbolicOperations.ACOSH_OPERATION -> ::acosh
HyperbolicOperations.ASINH_OPERATION -> ::asinh
HyperbolicOperations.ATANH_OPERATION -> ::atanh
PowerOperations.SQRT_OPERATION -> ::sqrt
ExponentialOperations.EXP_OPERATION -> ::exp
ExponentialOperations.LN_OPERATION -> ::ln
ExponentialOperations.COSH_OPERATION -> ::cosh
ExponentialOperations.SINH_OPERATION -> ::sinh
ExponentialOperations.TANH_OPERATION -> ::tanh
ExponentialOperations.ACOSH_OPERATION -> ::acosh
ExponentialOperations.ASINH_OPERATION -> ::asinh
ExponentialOperations.ATANH_OPERATION -> ::atanh
else -> super<FieldOperations>.unaryOperationFunction(operation)
}
}
@ -37,18 +36,18 @@ public interface ExtendedFieldOperations<T> :
/**
* Advanced Number-like field that implements basic operations.
*/
public interface ExtendedField<T> : ExtendedFieldOperations<T>, Field<T>, NumericAlgebra<T> {
public override fun sinh(arg: T): T = (exp(arg) - exp(-arg)) / 2
public override fun cosh(arg: T): T = (exp(arg) + exp(-arg)) / 2
public interface ExtendedField<T> : ExtendedFieldOperations<T>, Field<T>, NumericAlgebra<T>, ScaleOperations<T> {
public override fun sinh(arg: T): T = (exp(arg) - exp(-arg)) / 2.0
public override fun cosh(arg: T): T = (exp(arg) + exp(-arg)) / 2.0
public override fun tanh(arg: T): T = (exp(arg) - exp(-arg)) / (exp(-arg) + exp(arg))
public override fun asinh(arg: T): T = ln(sqrt(arg * arg + one) + arg)
public override fun acosh(arg: T): T = ln(arg + sqrt((arg - one) * (arg + one)))
public override fun atanh(arg: T): T = (ln(arg + one) - ln(one - arg)) / 2
public override fun atanh(arg: T): T = (ln(arg + one) - ln(one - arg)) / 2.0
public override fun rightSideNumberOperationFunction(operation: String): (left: T, right: Number) -> T =
when (operation) {
PowerOperations.POW_OPERATION -> ::power
else -> super.rightSideNumberOperationFunction(operation)
else -> super<Field>.rightSideNumberOperationFunction(operation)
}
}
@ -56,28 +55,27 @@ public interface ExtendedField<T> : ExtendedFieldOperations<T>, Field<T>, Numeri
* A field for [Double] without boxing. Does not produce appropriate field element.
*/
@Suppress("EXTENSION_SHADOWED_BY_MEMBER", "OVERRIDE_BY_INLINE", "NOTHING_TO_INLINE")
public object RealField : ExtendedField<Double>, Norm<Double, Double> {
public override val zero: Double
get() = 0.0
public override val one: Double
get() = 1.0
public object RealField : ExtendedField<Double>, Norm<Double, Double>, ScaleOperations<Double> {
public override val zero: Double = 0.0
public override val one: Double = 1.0
override fun number(value: Number): Double = value.toDouble()
public override fun binaryOperationFunction(operation: String): (left: Double, right: Double) -> Double =
when (operation) {
PowerOperations.POW_OPERATION -> ::power
else -> super.binaryOperationFunction(operation)
else -> super<ExtendedField>.binaryOperationFunction(operation)
}
public override inline fun add(a: Double, b: Double): Double = a + b
public override inline fun multiply(a: Double, k: Number): Double = a * k.toDouble()
// public override inline fun multiply(a: Double, k: Number): Double = a * k.toDouble()
// override fun divide(a: Double, k: Number): Double = a / k.toDouble()
public override inline fun multiply(a: Double, b: Double): Double = a * b
public override inline fun divide(a: Double, b: Double): Double = a / b
override fun scale(a: Double, value: Double): Double = a * value
public override inline fun sin(arg: Double): Double = kotlin.math.sin(arg)
public override inline fun cos(arg: Double): Double = kotlin.math.cos(arg)
public override inline fun tan(arg: Double): Double = kotlin.math.tan(arg)
@ -110,11 +108,8 @@ public object RealField : ExtendedField<Double>, Norm<Double, Double> {
*/
@Suppress("EXTENSION_SHADOWED_BY_MEMBER", "OVERRIDE_BY_INLINE", "NOTHING_TO_INLINE")
public object FloatField : ExtendedField<Float>, Norm<Float, Float> {
public override val zero: Float
get() = 0.0f
public override val one: Float
get() = 1.0f
public override val zero: Float = 0.0f
public override val one: Float = 1.0f
override fun number(value: Number): Float = value.toFloat()
@ -125,7 +120,7 @@ public object FloatField : ExtendedField<Float>, Norm<Float, Float> {
}
public override inline fun add(a: Float, b: Float): Float = a + b
public override inline fun multiply(a: Float, k: Number): Float = a * k.toFloat()
override fun scale(a: Float, value: Double): Float = a * value.toFloat()
public override inline fun multiply(a: Float, b: Float): Float = a * b
@ -170,12 +165,8 @@ public object IntRing : Ring<Int>, Norm<Int, Int>, NumericAlgebra<Int> {
get() = 1
override fun number(value: Number): Int = value.toInt()
public override inline fun add(a: Int, b: Int): Int = a + b
public override inline fun multiply(a: Int, k: Number): Int = k.toInt() * a
public override inline fun multiply(a: Int, b: Int): Int = a * b
public override inline fun norm(arg: Int): Int = abs(arg)
public override inline fun Int.unaryMinus(): Int = -this
@ -196,12 +187,8 @@ public object ShortRing : Ring<Short>, Norm<Short, Short>, NumericAlgebra<Short>
get() = 1
override fun number(value: Number): Short = value.toShort()
public override inline fun add(a: Short, b: Short): Short = (a + b).toShort()
public override inline fun multiply(a: Short, k: Number): Short = (a * k.toShort()).toShort()
public override inline fun multiply(a: Short, b: Short): Short = (a * b).toShort()
public override fun norm(arg: Short): Short = if (arg > 0) arg else (-arg).toShort()
public override inline fun Short.unaryMinus(): Short = (-this).toShort()
@ -222,12 +209,8 @@ public object ByteRing : Ring<Byte>, Norm<Byte, Byte>, NumericAlgebra<Byte> {
get() = 1
override fun number(value: Number): Byte = value.toByte()
public override inline fun add(a: Byte, b: Byte): Byte = (a + b).toByte()
public override inline fun multiply(a: Byte, k: Number): Byte = (a * k.toByte()).toByte()
public override inline fun multiply(a: Byte, b: Byte): Byte = (a * b).toByte()
public override fun norm(arg: Byte): Byte = if (arg > 0) arg else (-arg).toByte()
public override inline fun Byte.unaryMinus(): Byte = (-this).toByte()
@ -248,12 +231,8 @@ public object LongRing : Ring<Long>, Norm<Long, Long>, NumericAlgebra<Long> {
get() = 1L
override fun number(value: Number): Long = value.toLong()
public override inline fun add(a: Long, b: Long): Long = a + b
public override inline fun multiply(a: Long, k: Number): Long = a * k.toLong()
public override inline fun multiply(a: Long, b: Long): Long = a * b
public override fun norm(arg: Long): Long = abs(arg)
public override inline fun Long.unaryMinus(): Long = (-this)

View File

@ -44,21 +44,12 @@ public interface Buffer<out T> {
asSequence().mapIndexed { index, value -> value == other[index] }.all { it }
public companion object {
/**
* Creates a [RealBuffer] with the specified [size], where each element is calculated by calling the specified
* [initializer] function.
*/
public inline fun real(size: Int, initializer: (Int) -> Double): RealBuffer =
RealBuffer(size) { initializer(it) }
/**
* Creates a [ListBuffer] of given type [T] with given [size]. Each element is calculated by calling the
* specified [initializer] function.
*/
public inline fun <T> boxing(size: Int, initializer: (Int) -> T): Buffer<T> =
ListBuffer(List(size, initializer))
// TODO add resolution based on Annotation or companion resolution
List(size, initializer).asBuffer()
/**
* Creates a [Buffer] of given [type]. If the type is primitive, specialized buffers are used ([IntBuffer],
@ -69,11 +60,11 @@ public interface Buffer<out T> {
@Suppress("UNCHECKED_CAST")
public inline fun <T : Any> auto(type: KClass<T>, size: Int, initializer: (Int) -> T): Buffer<T> =
when (type) {
Double::class -> RealBuffer(size) { initializer(it) as Double } as Buffer<T>
Short::class -> ShortBuffer(size) { initializer(it) as Short } as Buffer<T>
Int::class -> IntBuffer(size) { initializer(it) as Int } as Buffer<T>
Long::class -> LongBuffer(size) { initializer(it) as Long } as Buffer<T>
Float::class -> FloatBuffer(size) { initializer(it) as Float } as Buffer<T>
Double::class -> MutableBuffer.real(size) { initializer(it) as Double } as Buffer<T>
Short::class -> MutableBuffer.short(size) { initializer(it) as Short } as Buffer<T>
Int::class -> MutableBuffer.int(size) { initializer(it) as Int } as Buffer<T>
Long::class -> MutableBuffer.long(size) { initializer(it) as Long } as Buffer<T>
Float::class -> MutableBuffer.float(size) { initializer(it) as Float } as Buffer<T>
else -> boxing(size, initializer)
}
@ -89,21 +80,6 @@ public interface Buffer<out T> {
}
}
/**
* Creates a sequence that returns all elements from this [Buffer].
*/
public fun <T> Buffer<T>.asSequence(): Sequence<T> = Sequence(::iterator)
/**
* Creates an iterable that returns all elements from this [Buffer].
*/
public fun <T> Buffer<T>.asIterable(): Iterable<T> = Iterable(::iterator)
/**
* Converts this [Buffer] to a new [List]
*/
public fun <T> Buffer<T>.toList(): List<T> = asSequence().toList()
/**
* Returns an [IntRange] of the valid indices for this [Buffer].
*/
@ -126,6 +102,44 @@ public interface MutableBuffer<T> : Buffer<T> {
public fun copy(): MutableBuffer<T>
public companion object {
/**
* Creates a [RealBuffer] with the specified [size], where each element is calculated by calling the specified
* [initializer] function.
*/
public inline fun real(size: Int, initializer: (Int) -> Double): RealBuffer =
RealBuffer(size, initializer)
/**
* Creates a [ShortBuffer] with the specified [size], where each element is calculated by calling the specified
* [initializer] function.
*/
public inline fun short(size: Int, initializer: (Int) -> Short): ShortBuffer =
ShortBuffer(size, initializer)
/**
* Creates a [IntBuffer] with the specified [size], where each element is calculated by calling the specified
* [initializer] function.
*/
public inline fun int(size: Int, initializer: (Int) -> Int): IntBuffer =
IntBuffer(size, initializer)
/**
* Creates a [LongBuffer] with the specified [size], where each element is calculated by calling the specified
* [initializer] function.
*/
public inline fun long(size: Int, initializer: (Int) -> Long): LongBuffer =
LongBuffer(size, initializer)
/**
* Creates a [FloatBuffer] with the specified [size], where each element is calculated by calling the specified
* [initializer] function.
*/
public inline fun float(size: Int, initializer: (Int) -> Float): FloatBuffer =
FloatBuffer(size, initializer)
/**
* Create a boxing mutable buffer of given type
*/
@ -141,11 +155,11 @@ public interface MutableBuffer<T> : Buffer<T> {
@Suppress("UNCHECKED_CAST")
public inline fun <T : Any> auto(type: KClass<out T>, size: Int, initializer: (Int) -> T): MutableBuffer<T> =
when (type) {
Double::class -> RealBuffer(size) { initializer(it) as Double } as MutableBuffer<T>
Short::class -> ShortBuffer(size) { initializer(it) as Short } as MutableBuffer<T>
Int::class -> IntBuffer(size) { initializer(it) as Int } as MutableBuffer<T>
Float::class -> FloatBuffer(size) { initializer(it) as Float } as MutableBuffer<T>
Long::class -> LongBuffer(size) { initializer(it) as Long } as MutableBuffer<T>
Double::class -> real(size) { initializer(it) as Double } as MutableBuffer<T>
Short::class -> short(size) { initializer(it) as Short } as MutableBuffer<T>
Int::class -> int(size) { initializer(it) as Int } as MutableBuffer<T>
Float::class -> float(size) { initializer(it) as Float } as MutableBuffer<T>
Long::class -> long(size) { initializer(it) as Long } as MutableBuffer<T>
else -> boxing(size, initializer)
}
@ -158,13 +172,6 @@ public interface MutableBuffer<T> : Buffer<T> {
@Suppress("UNCHECKED_CAST")
public inline fun <reified T : Any> auto(size: Int, initializer: (Int) -> T): MutableBuffer<T> =
auto(T::class, size, initializer)
/**
* Creates a [RealBuffer] with the specified [size], where each element is calculated by calling the specified
* [initializer] function.
*/
public inline fun real(size: Int, initializer: (Int) -> Double): RealBuffer =
RealBuffer(size) { initializer(it) }
}
}
@ -187,15 +194,6 @@ public inline class ListBuffer<T>(public val list: List<T>) : Buffer<T> {
*/
public fun <T> List<T>.asBuffer(): ListBuffer<T> = ListBuffer(this)
/**
* Creates a new [ListBuffer] with the specified [size], where each element is calculated by calling the specified
* [init] function.
*
* The function [init] is called for each array element sequentially starting from the first one.
* It should return the value for an array element given its index.
*/
public inline fun <T> ListBuffer(size: Int, init: (Int) -> T): ListBuffer<T> = List(size, init).asBuffer()
/**
* [MutableBuffer] implementation over [MutableList].
*
@ -216,16 +214,20 @@ public inline class MutableListBuffer<T>(public val list: MutableList<T>) : Muta
override fun copy(): MutableBuffer<T> = MutableListBuffer(ArrayList(list))
}
/**
* Returns an [ListBuffer] that wraps the original list.
*/
public fun <T> MutableList<T>.asMutableBuffer(): MutableListBuffer<T> = MutableListBuffer(this)
/**
* [MutableBuffer] implementation over [Array].
*
* @param T the type of elements contained in the buffer.
* @property array The underlying array.
*/
public class ArrayBuffer<T>(private val array: Array<T>) : MutableBuffer<T> {
public class ArrayBuffer<T>(internal val array: Array<T>) : MutableBuffer<T> {
// Can't inline because array is invariant
override val size: Int
get() = array.size
override val size: Int get() = array.size
override operator fun get(index: Int): T = array[index]
@ -243,16 +245,6 @@ public class ArrayBuffer<T>(private val array: Array<T>) : MutableBuffer<T> {
*/
public fun <T> Array<T>.asBuffer(): ArrayBuffer<T> = ArrayBuffer(this)
/**
* Creates a new [ArrayBuffer] with the specified [size], where each element is calculated by calling the specified
* [init] function.
*
* The function [init] is called for each array element sequentially starting from the first one.
* It should return the value for an array element given its index.
*/
public inline fun <reified T> ArrayBuffer(size: Int, init: (Int) -> T): ArrayBuffer<T> =
Array(size) { i -> init(i) }.asBuffer()
/**
* Immutable wrapper for [MutableBuffer].
*
@ -293,14 +285,4 @@ public class VirtualBuffer<T>(override val size: Int, private val generator: (In
/**
* Convert this buffer to read-only buffer.
*/
public fun <T> Buffer<T>.asReadOnly(): Buffer<T> = if (this is MutableBuffer) ReadOnlyBuffer(this) else this
/**
* Typealias for buffer transformations.
*/
public typealias BufferTransform<T, R> = (Buffer<T>) -> Buffer<R>
/**
* Typealias for buffer transformations with suspend function.
*/
public typealias SuspendBufferTransform<T, R> = suspend (Buffer<T>) -> Buffer<R>
public fun <T> Buffer<T>.asReadOnly(): Buffer<T> = if (this is MutableBuffer) ReadOnlyBuffer(this) else this

View File

@ -13,10 +13,10 @@ internal class BufferAccessor2D<T : Any>(
public val colNum: Int,
val factory: MutableBufferFactory<T>,
) {
public operator fun Buffer<T>.get(i: Int, j: Int): T = get(i + colNum * j)
public operator fun Buffer<T>.get(i: Int, j: Int): T = get(i * colNum + j)
public operator fun MutableBuffer<T>.set(i: Int, j: Int, value: T) {
set(i + colNum * j, value)
set(i * colNum + j, value)
}
public inline fun create(crossinline init: (i: Int, j: Int) -> T): MutableBuffer<T> =
@ -25,7 +25,7 @@ internal class BufferAccessor2D<T : Any>(
public fun create(mat: Structure2D<T>): MutableBuffer<T> = create { i, j -> mat[i, j] }
//TODO optimize wrapper
public fun MutableBuffer<T>.collect(): Structure2D<T> = NDStructure.build(
public fun MutableBuffer<T>.collect(): Structure2D<T> = NDStructure.buffered(
DefaultStrides(intArrayOf(rowNum, colNum)),
factory
) { (i, j) ->

View File

@ -36,10 +36,12 @@ public inline fun FloatBuffer(size: Int, init: (Int) -> Float): FloatBuffer = Fl
public fun FloatBuffer(vararg floats: Float): FloatBuffer = FloatBuffer(floats)
/**
* Returns a [FloatArray] containing all of the elements of this [MutableBuffer].
* Returns a new [FloatArray] containing all of the elements of this [Buffer].
*/
public val MutableBuffer<out Float>.array: FloatArray
get() = (if (this is FloatBuffer) array else FloatArray(size) { get(it) })
public fun Buffer<Float>.toFloatArray(): FloatArray = when (this) {
is FloatBuffer -> array.copyOf()
else -> FloatArray(size, ::get)
}
/**
* Returns [FloatBuffer] over this array.

View File

@ -35,10 +35,12 @@ public inline fun IntBuffer(size: Int, init: (Int) -> Int): IntBuffer = IntBuffe
public fun IntBuffer(vararg ints: Int): IntBuffer = IntBuffer(ints)
/**
* Returns a [IntArray] containing all of the elements of this [MutableBuffer].
* Returns a new [IntArray] containing all of the elements of this [Buffer].
*/
public val MutableBuffer<out Int>.array: IntArray
get() = (if (this is IntBuffer) array else IntArray(size) { get(it) })
public fun Buffer<Int>.toIntArray(): IntArray = when (this) {
is IntBuffer -> array.copyOf()
else -> IntArray(size, ::get)
}
/**
* Returns [IntBuffer] over this array.

View File

@ -35,10 +35,12 @@ public inline fun LongBuffer(size: Int, init: (Int) -> Long): LongBuffer = LongB
public fun LongBuffer(vararg longs: Long): LongBuffer = LongBuffer(longs)
/**
* Returns a [IntArray] containing all of the elements of this [MutableBuffer].
* Returns a new [LongArray] containing all of the elements of this [Buffer].
*/
public val MutableBuffer<out Long>.array: LongArray
get() = (if (this is LongBuffer) array else LongArray(size) { get(it) })
public fun Buffer<Long>.toLongArray(): LongArray = when (this) {
is LongBuffer -> array.copyOf()
else -> LongArray(size, ::get)
}
/**
* Returns [LongBuffer] over this array.

View File

@ -24,7 +24,7 @@ public open class MemoryBuffer<T : Any>(protected val memory: Memory, protected
public inline fun <T : Any> create(
spec: MemorySpec<T>,
size: Int,
initializer: (Int) -> T
initializer: (Int) -> T,
): MemoryBuffer<T> = MutableMemoryBuffer(Memory.allocate(size * spec.objectSize), spec).also { buffer ->
(0 until size).forEach { buffer[it] = initializer(it) }
}
@ -53,7 +53,7 @@ public class MutableMemoryBuffer<T : Any>(memory: Memory, spec: MemorySpec<T>) :
public inline fun <T : Any> create(
spec: MemorySpec<T>,
size: Int,
initializer: (Int) -> T
initializer: (Int) -> T,
): MutableMemoryBuffer<T> = MutableMemoryBuffer(Memory.allocate(size * spec.objectSize), spec).also { buffer ->
(0 until size).forEach { buffer[it] = initializer(it) }
}

View File

@ -40,10 +40,12 @@ public fun RealBuffer(vararg doubles: Double): RealBuffer = RealBuffer(doubles)
public fun RealBuffer.contentEquals(vararg doubles: Double): Boolean = array.contentEquals(doubles)
/**
* Returns a [DoubleArray] containing all of the elements of this [MutableBuffer].
* Returns a new [DoubleArray] containing all of the elements of this [Buffer].
*/
public val MutableBuffer<out Double>.array: DoubleArray
get() = (if (this is RealBuffer) array else DoubleArray(size) { get(it) })
public fun Buffer<Double>.toDoubleArray(): DoubleArray = when (this) {
is RealBuffer -> array.copyOf()
else -> DoubleArray(size, ::get)
}
/**
* Returns [RealBuffer] over this array.

View File

@ -8,6 +8,12 @@ import kotlin.math.*
* [ExtendedFieldOperations] over [RealBuffer].
*/
public object RealBufferFieldOperations : ExtendedFieldOperations<Buffer<Double>> {
override fun Buffer<Double>.unaryMinus(): RealBuffer = if (this is RealBuffer) {
RealBuffer(size) { -array[it] }
} else {
RealBuffer(size) { -get(it) }
}
public override fun add(a: Buffer<Double>, b: Buffer<Double>): RealBuffer {
require(b.size == a.size) {
"The size of the first buffer ${a.size} should be the same as for second one: ${b.size} "
@ -19,15 +25,24 @@ public object RealBufferFieldOperations : ExtendedFieldOperations<Buffer<Double>
RealBuffer(DoubleArray(a.size) { aArray[it] + bArray[it] })
} else RealBuffer(DoubleArray(a.size) { a[it] + b[it] })
}
public override fun multiply(a: Buffer<Double>, k: Number): RealBuffer {
val kValue = k.toDouble()
return if (a is RealBuffer) {
val aArray = a.array
RealBuffer(DoubleArray(a.size) { aArray[it] * kValue })
} else RealBuffer(DoubleArray(a.size) { a[it] * kValue })
}
//
// public override fun multiply(a: Buffer<Double>, k: Number): RealBuffer {
// val kValue = k.toDouble()
//
// return if (a is RealBuffer) {
// val aArray = a.array
// RealBuffer(DoubleArray(a.size) { aArray[it] * kValue })
// } else RealBuffer(DoubleArray(a.size) { a[it] * kValue })
// }
//
// public override fun divide(a: Buffer<Double>, k: Number): RealBuffer {
// val kValue = k.toDouble()
//
// return if (a is RealBuffer) {
// val aArray = a.array
// RealBuffer(DoubleArray(a.size) { aArray[it] / kValue })
// } else RealBuffer(DoubleArray(a.size) { a[it] / kValue })
// }
public override fun multiply(a: Buffer<Double>, b: Buffer<Double>): RealBuffer {
require(b.size == a.size) {
@ -152,14 +167,22 @@ public class RealBufferField(public val size: Int) : ExtendedField<Buffer<Double
override fun number(value: Number): Buffer<Double> = RealBuffer(size) { value.toDouble() }
override fun Buffer<Double>.unaryMinus(): Buffer<Double> = RealBufferFieldOperations.run {
-this@unaryMinus
}
public override fun add(a: Buffer<Double>, b: Buffer<Double>): RealBuffer {
require(a.size == size) { "The buffer size ${a.size} does not match context size $size" }
return RealBufferFieldOperations.add(a, b)
}
public override fun multiply(a: Buffer<Double>, k: Number): RealBuffer {
public override fun scale(a: Buffer<Double>, value: Double): RealBuffer {
require(a.size == size) { "The buffer size ${a.size} does not match context size $size" }
return RealBufferFieldOperations.multiply(a, k)
return if (a is RealBuffer) {
val aArray = a.array
RealBuffer(DoubleArray(a.size) { aArray[it] * value })
} else RealBuffer(DoubleArray(a.size) { a[it] * value })
}
public override fun multiply(a: Buffer<Double>, b: Buffer<Double>): RealBuffer {

View File

@ -33,10 +33,12 @@ public inline fun ShortBuffer(size: Int, init: (Int) -> Short): ShortBuffer = Sh
public fun ShortBuffer(vararg shorts: Short): ShortBuffer = ShortBuffer(shorts)
/**
* Returns a [ShortArray] containing all of the elements of this [MutableBuffer].
* Returns a new [ShortArray] containing all of the elements of this [Buffer].
*/
public val MutableBuffer<out Short>.array: ShortArray
get() = (if (this is ShortBuffer) array else ShortArray(size) { get(it) })
public fun Buffer<Short>.toShortArray(): ShortArray = when (this) {
is ShortBuffer -> array.copyOf()
else -> ShortArray(size, ::get)
}
/**
* Returns [ShortBuffer] over this array.

View File

@ -0,0 +1,84 @@
package space.kscience.kmath.structures
import space.kscience.kmath.misc.UnstableKMathAPI
/**
* Typealias for buffer transformations.
*/
public typealias BufferTransform<T, R> = (Buffer<T>) -> Buffer<R>
/**
* Typealias for buffer transformations with suspend function.
*/
public typealias SuspendBufferTransform<T, R> = suspend (Buffer<T>) -> Buffer<R>
/**
* Creates a sequence that returns all elements from this [Buffer].
*/
public fun <T> Buffer<T>.asSequence(): Sequence<T> = Sequence(::iterator)
/**
* Creates an iterable that returns all elements from this [Buffer].
*/
public fun <T> Buffer<T>.asIterable(): Iterable<T> = Iterable(::iterator)
/**
* Returns a new [List] containing all elements of this buffer.
*/
public fun <T> Buffer<T>.toList(): List<T> = when (this) {
is ArrayBuffer<T> -> array.toList()
is ListBuffer<T> -> list.toList()
is MutableListBuffer<T> -> list.toList()
else -> asSequence().toList()
}
/**
* Returns a new [MutableList] filled with all elements of this buffer.
* **NOTE:** this method uses a protective copy, so it should not be used in performance-critical code.
*/
@UnstableKMathAPI
public fun <T> Buffer<T>.toMutableList(): MutableList<T> = when (this) {
is ArrayBuffer<T> -> array.toMutableList()
is ListBuffer<T> -> list.toMutableList()
is MutableListBuffer<T> -> list.toMutableList()
else -> MutableList(size, ::get)
}
/**
* Returns a new [Array] containing all elements of this buffer.
* **NOTE:** this method uses a protective copy, so it should not be used in performance-critical code.
*/
@UnstableKMathAPI
public inline fun <reified T> Buffer<T>.toTypedArray(): Array<T> = Array(size, ::get)
/**
* Create a new buffer from this one with the given mapping function.
* Provided [BufferFactory] is used to construct the new buffer.
*/
public inline fun <T : Any, reified R : Any> Buffer<T>.map(
bufferFactory: BufferFactory<R> = Buffer.Companion::auto,
crossinline block: (T) -> R,
): Buffer<R> = bufferFactory(size) { block(get(it)) }
/**
* Create a new buffer from this one with the given indexed mapping function.
* Provided [BufferFactory] is used to construct the new buffer.
*/
public inline fun <T : Any, reified R : Any> Buffer<T>.mapIndexed(
bufferFactory: BufferFactory<R> = Buffer.Companion::auto,
crossinline block: (index: Int, value: T) -> R,
): Buffer<R> = bufferFactory(size) { block(it, get(it)) }
/**
* Zip two buffers using given [transform].
*/
@UnstableKMathAPI
public inline fun <T1 : Any, T2 : Any, reified R : Any> Buffer<T1>.zip(
other: Buffer<T2>,
bufferFactory: BufferFactory<R> = Buffer.Companion::auto,
crossinline transform: (T1, T2) -> R,
): Buffer<R> {
require(size == other.size) { "Buffer size mismatch in zip: expected $size but found ${other.size}" }
return bufferFactory(size) { transform(get(it), other[it]) }
}

View File

@ -11,9 +11,7 @@ class ExpressionFieldTest {
@Test
fun testExpression() {
val context = FunctionalExpressionField(RealField)
val expression = context {
val expression = FunctionalExpressionField(RealField).invoke {
val x by binding()
x * x + 2 * x + one
}

View File

@ -1,23 +1,24 @@
package space.kscience.kmath.linear
import space.kscience.kmath.misc.UnstableKMathAPI
import space.kscience.kmath.nd.NDStructure
import space.kscience.kmath.nd.as2D
import space.kscience.kmath.operations.invoke
import kotlin.test.Test
import kotlin.test.assertEquals
@UnstableKMathAPI
@Suppress("UNUSED_VARIABLE")
class MatrixTest {
@Test
fun testTranspose() {
val matrix = MatrixContext.real.one(3, 3)
val matrix = LinearSpace.real.one(3, 3)
val transposed = matrix.transpose()
assertEquals(matrix, transposed)
}
@Test
fun testBuilder() {
val matrix = Matrix.build(2, 3)(
val matrix = LinearSpace.real.matrix(2, 3)(
1.0, 0.0, 0.0,
0.0, 1.0, 2.0
)
@ -39,7 +40,7 @@ class MatrixTest {
infix fun Matrix<Double>.pow(power: Int): Matrix<Double> {
var res = this
repeat(power - 1) {
res = RealMatrixContext.invoke { res dot this@pow }
res = LinearSpace.real.run { res dot this@pow }
}
return res
}
@ -52,7 +53,7 @@ class MatrixTest {
val firstMatrix = NDStructure.auto(2, 3) { (i, j) -> (i + j).toDouble() }.as2D()
val secondMatrix = NDStructure.auto(3, 2) { (i, j) -> (i + j).toDouble() }.as2D()
MatrixContext.real.run {
LinearSpace.real.run {
// val firstMatrix = produce(2, 3) { i, j -> (i + j).toDouble() }
// val secondMatrix = produce(3, 2) { i, j -> (i + j).toDouble() }
val result = firstMatrix dot secondMatrix

View File

@ -1,29 +1,31 @@
package space.kscience.kmath.linear
import space.kscience.kmath.misc.UnstableKMathAPI
import kotlin.test.Test
import kotlin.test.assertEquals
@UnstableKMathAPI
class RealLUSolverTest {
@Test
fun testInvertOne() {
val matrix = MatrixContext.real.one(2, 2)
val inverted = MatrixContext.real.inverseWithLup(matrix)
val matrix = LinearSpace.real.one(2, 2)
val inverted = LinearSpace.real.inverseWithLup(matrix)
assertEquals(matrix, inverted)
}
@Test
fun testDecomposition() {
val matrix = Matrix.square(
3.0, 1.0,
1.0, 3.0
)
LinearSpace.real.run {
val matrix = matrix(2, 2)(
3.0, 1.0,
2.0, 3.0
)
MatrixContext.real.run {
val lup = lup(matrix)
//Check determinant
assertEquals(8.0, lup.determinant)
assertEquals(7.0, lup.determinant)
assertEquals(lup.p dot matrix, lup.l dot lup.u)
}
@ -31,14 +33,14 @@ class RealLUSolverTest {
@Test
fun testInvert() {
val matrix = Matrix.square(
val matrix = LinearSpace.real.matrix(2, 2)(
3.0, 1.0,
1.0, 3.0
)
val inverted = MatrixContext.real.inverseWithLup(matrix)
val inverted = LinearSpace.real.inverseWithLup(matrix)
val expected = Matrix.square(
val expected = LinearSpace.real.matrix(2, 2)(
0.375, -0.125,
-0.125, 0.375
)

View File

@ -1,5 +1,6 @@
package space.kscience.kmath.structures
import space.kscience.kmath.linear.LinearSpace
import space.kscience.kmath.nd.*
import space.kscience.kmath.operations.Norm
import space.kscience.kmath.operations.invoke
@ -10,7 +11,7 @@ import kotlin.test.assertEquals
@Suppress("UNUSED_VARIABLE")
class NumberNDFieldTest {
val algebra = NDAlgebra.real(3,3)
val algebra = NDAlgebra.real(3, 3)
val array1 = algebra.produce { (i, j) -> (i + j).toDouble() }
val array2 = algebra.produce { (i, j) -> (i - j).toDouble() }
@ -33,7 +34,9 @@ class NumberNDFieldTest {
@Test
fun testGeneration() {
val array = Structure2D.real(3, 3) { i, j -> (i * 10 + j).toDouble() }
val array = LinearSpace.real.buildMatrix(3, 3) { i, j ->
(i * 10 + j).toDouble()
}
for (i in 0..2) {
for (j in 0..2) {

View File

@ -5,8 +5,9 @@ import space.kscience.kmath.operations.invoke
import kotlin.test.assertEquals
import kotlin.test.assertNotEquals
internal class FieldVerifier<T>(override val algebra: Field<T>, a: T, b: T, c: T, x: Number) :
RingVerifier<T>(algebra, a, b, c, x) {
internal class FieldVerifier<T, A : Field<T>>(
algebra: A, a: T, b: T, c: T, x: Number,
) : RingVerifier<T, A>(algebra, a, b, c, x) {
override fun verify() {
super.verify()

View File

@ -1,11 +1,13 @@
package space.kscience.kmath.testutils
import space.kscience.kmath.operations.Ring
import space.kscience.kmath.operations.ScaleOperations
import space.kscience.kmath.operations.invoke
import kotlin.test.assertEquals
internal open class RingVerifier<T>(override val algebra: Ring<T>, a: T, b: T, c: T, x: Number) :
SpaceVerifier<T>(algebra, a, b, c, x) {
internal open class RingVerifier<T, A>(algebra: A, a: T, b: T, c: T, x: Number) :
SpaceVerifier<T, A>(algebra, a, b, c, x) where A : Ring<T>, A : ScaleOperations<T> {
override fun verify() {
super.verify()

View File

@ -1,18 +1,18 @@
package space.kscience.kmath.testutils
import space.kscience.kmath.operations.Space
import space.kscience.kmath.operations.Group
import space.kscience.kmath.operations.ScaleOperations
import space.kscience.kmath.operations.invoke
import kotlin.test.assertEquals
import kotlin.test.assertNotEquals
internal open class SpaceVerifier<T>(
override val algebra: Space<T>,
internal open class SpaceVerifier<T, out S>(
override val algebra: S,
val a: T,
val b: T,
val c: T,
val x: Number
) :
AlgebraicVerifier<T, Space<T>> {
val x: Number,
) : AlgebraicVerifier<T, Group<T>> where S : Group<T>, S : ScaleOperations<T> {
override fun verify() {
algebra {
assertEquals(a + b + c, a + (b + c), "Addition in $algebra is not associative.")

View File

@ -7,19 +7,16 @@ import java.math.MathContext
/**
* A field over [BigInteger].
*/
public object JBigIntegerField : Field<BigInteger>, NumericAlgebra<BigInteger> {
public override val zero: BigInteger
get() = BigInteger.ZERO
public object JBigIntegerField : Ring<BigInteger>, NumericAlgebra<BigInteger> {
public override val zero: BigInteger get() = BigInteger.ZERO
public override val one: BigInteger
get() = BigInteger.ONE
public override val one: BigInteger get() = BigInteger.ONE
public override fun number(value: Number): BigInteger = BigInteger.valueOf(value.toLong())
public override fun divide(a: BigInteger, b: BigInteger): BigInteger = a.div(b)
public override fun add(a: BigInteger, b: BigInteger): BigInteger = a.add(b)
public override operator fun BigInteger.minus(b: BigInteger): BigInteger = subtract(b)
public override fun multiply(a: BigInteger, k: Number): BigInteger = a.multiply(k.toInt().toBigInteger())
public override fun multiply(a: BigInteger, b: BigInteger): BigInteger = a.multiply(b)
public override operator fun BigInteger.unaryMinus(): BigInteger = negate()
}
@ -30,7 +27,7 @@ public object JBigIntegerField : Field<BigInteger>, NumericAlgebra<BigInteger> {
*/
public abstract class JBigDecimalFieldBase internal constructor(
private val mathContext: MathContext = MathContext.DECIMAL64,
) : Field<BigDecimal>, PowerOperations<BigDecimal>, NumericAlgebra<BigDecimal> {
) : Field<BigDecimal>, PowerOperations<BigDecimal>, NumericAlgebra<BigDecimal>, ScaleOperations<BigDecimal> {
public override val zero: BigDecimal
get() = BigDecimal.ZERO
@ -41,8 +38,8 @@ public abstract class JBigDecimalFieldBase internal constructor(
public override operator fun BigDecimal.minus(b: BigDecimal): BigDecimal = subtract(b)
public override fun number(value: Number): BigDecimal = BigDecimal.valueOf(value.toDouble())
public override fun multiply(a: BigDecimal, k: Number): BigDecimal =
a.multiply(k.toDouble().toBigDecimal(mathContext), mathContext)
public override fun scale(a: BigDecimal, value: Double): BigDecimal =
a.multiply(value.toBigDecimal(mathContext), mathContext)
public override fun multiply(a: BigDecimal, b: BigDecimal): BigDecimal = a.multiply(b, mathContext)
public override fun divide(a: BigDecimal, b: BigDecimal): BigDecimal = a.divide(b, mathContext)

View File

@ -5,16 +5,16 @@ import kotlinx.coroutines.flow.Flow
import kotlinx.coroutines.flow.map
import kotlinx.coroutines.flow.runningReduce
import kotlinx.coroutines.flow.scan
import space.kscience.kmath.operations.Space
import space.kscience.kmath.operations.SpaceOperations
import space.kscience.kmath.operations.Group
import space.kscience.kmath.operations.GroupOperations
import space.kscience.kmath.operations.ScaleOperations
import space.kscience.kmath.operations.invoke
@ExperimentalCoroutinesApi
public fun <T> Flow<T>.cumulativeSum(space: SpaceOperations<T>): Flow<T> =
space { runningReduce { sum, element -> sum + element } }
public fun <T> Flow<T>.cumulativeSum(group: GroupOperations<T>): Flow<T> =
group { runningReduce { sum, element -> sum + element } }
@ExperimentalCoroutinesApi
public fun <T> Flow<T>.mean(space: Space<T>): Flow<T> = space {
public fun <T, S> Flow<T>.mean(algebra: S): Flow<T> where S : Group<T>, S : ScaleOperations<T> = algebra {
data class Accumulator(var sum: T, var num: Int)
scan(Accumulator(zero, 0)) { sum, element ->

View File

@ -2,7 +2,8 @@ package space.kscience.kmath.dimensions
import space.kscience.kmath.linear.*
import space.kscience.kmath.nd.Structure2D
import space.kscience.kmath.operations.invoke
import space.kscience.kmath.operations.RealField
import space.kscience.kmath.operations.Ring
/**
* A matrix with compile-time controlled dimension
@ -77,7 +78,7 @@ public inline class DPointWrapper<T, D : Dimension>(public val point: Point<T>)
/**
* Basic operations on dimension-safe matrices. Operates on [Matrix]
*/
public inline class DMatrixContext<T : Any>(public val context: MatrixContext<T, Matrix<T>>) {
public inline class DMatrixContext<T : Any, out A : Ring<T>>(public val context: LinearSpace<T, A>) {
public inline fun <reified R : Dimension, reified C : Dimension> Matrix<T>.coerce(): DMatrix<T, R, C> {
require(rowNum == Dimension.dim<R>().toInt()) {
"Row number mismatch: expected ${Dimension.dim<R>()} but found $rowNum"
@ -93,17 +94,19 @@ public inline class DMatrixContext<T : Any>(public val context: MatrixContext<T,
/**
* Produce a matrix with this context and given dimensions
*/
public inline fun <reified R : Dimension, reified C : Dimension> produce(noinline initializer: (i: Int, j: Int) -> T): DMatrix<T, R, C> {
public inline fun <reified R : Dimension, reified C : Dimension> produce(
noinline initializer: A.(i: Int, j: Int) -> T
): DMatrix<T, R, C> {
val rows = Dimension.dim<R>()
val cols = Dimension.dim<C>()
return context.produce(rows.toInt(), cols.toInt(), initializer).coerce<R, C>()
return context.buildMatrix(rows.toInt(), cols.toInt(), initializer).coerce<R, C>()
}
public inline fun <reified D : Dimension> point(noinline initializer: (Int) -> T): DPoint<T, D> {
public inline fun <reified D : Dimension> point(noinline initializer: A.(Int) -> T): DPoint<T, D> {
val size = Dimension.dim<D>()
return DPoint.coerceUnsafe(
context.point(
context.buildVector(
size.toInt(),
initializer
)
@ -112,31 +115,31 @@ public inline class DMatrixContext<T : Any>(public val context: MatrixContext<T,
public inline infix fun <reified R1 : Dimension, reified C1 : Dimension, reified C2 : Dimension> DMatrix<T, R1, C1>.dot(
other: DMatrix<T, C1, C2>,
): DMatrix<T, R1, C2> = context { this@dot dot other }.coerce()
): DMatrix<T, R1, C2> = context.run { this@dot dot other }.coerce()
public inline infix fun <reified R : Dimension, reified C : Dimension> DMatrix<T, R, C>.dot(vector: DPoint<T, C>): DPoint<T, R> =
DPoint.coerceUnsafe(context { this@dot dot vector })
DPoint.coerceUnsafe(context.run { this@dot dot vector })
public inline operator fun <reified R : Dimension, reified C : Dimension> DMatrix<T, R, C>.times(value: T): DMatrix<T, R, C> =
context { this@times.times(value) }.coerce()
context.run { this@times.times(value) }.coerce()
public inline operator fun <reified R : Dimension, reified C : Dimension> T.times(m: DMatrix<T, R, C>): DMatrix<T, R, C> =
m * this
public inline operator fun <reified R : Dimension, reified C : Dimension> DMatrix<T, C, R>.plus(other: DMatrix<T, C, R>): DMatrix<T, C, R> =
context { this@plus + other }.coerce()
context.run { this@plus + other }.coerce()
public inline operator fun <reified R : Dimension, reified C : Dimension> DMatrix<T, C, R>.minus(other: DMatrix<T, C, R>): DMatrix<T, C, R> =
context { this@minus + other }.coerce()
context.run { this@minus + other }.coerce()
public inline operator fun <reified R : Dimension, reified C : Dimension> DMatrix<T, C, R>.unaryMinus(): DMatrix<T, C, R> =
context { this@unaryMinus.unaryMinus() }.coerce()
context.run { this@unaryMinus.unaryMinus() }.coerce()
public inline fun <reified R : Dimension, reified C : Dimension> DMatrix<T, C, R>.transpose(): DMatrix<T, R, C> =
context { (this@transpose as Matrix<T>).transpose() }.coerce()
context.run { (this@transpose as Matrix<T>).transpose() }.coerce()
public companion object {
public val real: DMatrixContext<Double> = DMatrixContext(MatrixContext.real)
public val real: DMatrixContext<Double, RealField> = DMatrixContext(LinearSpace.real)
}
}
@ -144,11 +147,11 @@ public inline class DMatrixContext<T : Any>(public val context: MatrixContext<T,
/**
* A square unit matrix
*/
public inline fun <reified D : Dimension> DMatrixContext<Double>.one(): DMatrix<Double, D, D> = produce { i, j ->
public inline fun <reified D : Dimension> DMatrixContext<Double, RealField>.one(): DMatrix<Double, D, D> = produce { i, j ->
if (i == j) 1.0 else 0.0
}
public inline fun <reified R : Dimension, reified C : Dimension> DMatrixContext<Double>.zero(): DMatrix<Double, R, C> =
public inline fun <reified R : Dimension, reified C : Dimension> DMatrixContext<Double, RealField>.zero(): DMatrix<Double, R, C> =
produce { _, _ ->
0.0
}

View File

@ -0,0 +1,187 @@
package space.kscience.kmath.ejml
import org.ejml.dense.row.factory.DecompositionFactory_DDRM
import org.ejml.simple.SimpleMatrix
import space.kscience.kmath.linear.*
import space.kscience.kmath.misc.UnstableKMathAPI
import space.kscience.kmath.nd.getFeature
import space.kscience.kmath.operations.RealField
import space.kscience.kmath.structures.RealBuffer
import kotlin.reflect.KClass
import kotlin.reflect.cast
/**
* Represents context of basic operations operating with [EjmlMatrix].
*
* @author Iaroslav Postovalov
*/
public object EjmlLinearSpace : LinearSpace<Double, RealField> {
override val elementAlgebra: RealField get() = RealField
/**
* Converts this matrix to EJML one.
*/
@OptIn(UnstableKMathAPI::class)
public fun Matrix<Double>.toEjml(): EjmlMatrix = when (val matrix = origin) {
is EjmlMatrix -> matrix
else -> buildMatrix(rowNum, colNum) { i, j -> get(i, j) }
}
/**
* Converts this vector to EJML one.
*/
public fun Point<Double>.toEjml(): EjmlVector = when (this) {
is EjmlVector -> this
else -> EjmlVector(SimpleMatrix(size, 1).also {
(0 until it.numRows()).forEach { row -> it[row, 0] = get(row) }
})
}
override fun buildMatrix(rows: Int, columns: Int, initializer: RealField.(i: Int, j: Int) -> Double): EjmlMatrix =
EjmlMatrix(SimpleMatrix(rows, columns).also {
(0 until rows).forEach { row ->
(0 until columns).forEach { col -> it[row, col] = RealField.initializer(row, col) }
}
})
override fun buildVector(size: Int, initializer: RealField.(Int) -> Double): Point<Double> =
EjmlVector(SimpleMatrix(size, 1).also {
(0 until it.numRows()).forEach { row -> it[row, 0] = RealField.initializer(row) }
})
private fun SimpleMatrix.wrapMatrix() = EjmlMatrix(this)
private fun SimpleMatrix.wrapVector() = EjmlVector(this)
override fun Matrix<Double>.unaryMinus(): Matrix<Double> = this * (-1.0)
public override fun Matrix<Double>.dot(other: Matrix<Double>): EjmlMatrix =
EjmlMatrix(toEjml().origin.mult(other.toEjml().origin))
public override fun Matrix<Double>.dot(vector: Point<Double>): EjmlVector =
EjmlVector(toEjml().origin.mult(vector.toEjml().origin))
public override operator fun Matrix<Double>.minus(other: Matrix<Double>): EjmlMatrix =
(toEjml().origin - other.toEjml().origin).wrapMatrix()
public override operator fun Matrix<Double>.times(value: Double): EjmlMatrix =
toEjml().origin.scale(value).wrapMatrix()
override fun Point<Double>.unaryMinus(): EjmlVector =
toEjml().origin.negative().wrapVector()
override fun Matrix<Double>.plus(other: Matrix<Double>): EjmlMatrix =
(toEjml().origin + other.toEjml().origin).wrapMatrix()
override fun Point<Double>.plus(other: Point<Double>): EjmlVector =
(toEjml().origin + other.toEjml().origin).wrapVector()
override fun Point<Double>.minus(other: Point<Double>): EjmlVector =
(toEjml().origin - other.toEjml().origin).wrapVector()
override fun Double.times(m: Matrix<Double>): EjmlMatrix =
m.toEjml().origin.scale(this).wrapMatrix()
override fun Point<Double>.times(value: Double): EjmlVector =
toEjml().origin.scale(value).wrapVector()
override fun Double.times(v: Point<Double>): EjmlVector =
v.toEjml().origin.scale(this).wrapVector()
@UnstableKMathAPI
override fun <F : Any> getFeature(structure: Matrix<Double>, type: KClass<F>): F? {
//Return the feature if it is intrinsic to the structure
structure.getFeature(type)?.let { return it }
val origin = structure.toEjml().origin
return when (type) {
InverseMatrixFeature::class -> object : InverseMatrixFeature<Double> {
override val inverse: Matrix<Double> by lazy { EjmlMatrix(origin.invert()) }
}
DeterminantFeature::class -> object : DeterminantFeature<Double> {
override val determinant: Double by lazy(origin::determinant)
}
SingularValueDecompositionFeature::class -> object : SingularValueDecompositionFeature<Double> {
private val svd by lazy {
DecompositionFactory_DDRM.svd(origin.numRows(), origin.numCols(), true, true, false)
.apply { decompose(origin.ddrm.copy()) }
}
override val u: Matrix<Double> by lazy { EjmlMatrix(SimpleMatrix(svd.getU(null, false))) }
override val s: Matrix<Double> by lazy { EjmlMatrix(SimpleMatrix(svd.getW(null))) }
override val v: Matrix<Double> by lazy { EjmlMatrix(SimpleMatrix(svd.getV(null, false))) }
override val singularValues: Point<Double> by lazy { RealBuffer(svd.singularValues) }
}
QRDecompositionFeature::class -> object : QRDecompositionFeature<Double> {
private val qr by lazy {
DecompositionFactory_DDRM.qr().apply { decompose(origin.ddrm.copy()) }
}
override val q: Matrix<Double> by lazy {
EjmlMatrix(SimpleMatrix(qr.getQ(null, false))) + OrthogonalFeature
}
override val r: Matrix<Double> by lazy { EjmlMatrix(SimpleMatrix(qr.getR(null, false))) + UFeature }
}
CholeskyDecompositionFeature::class -> object : CholeskyDecompositionFeature<Double> {
override val l: Matrix<Double> by lazy {
val cholesky =
DecompositionFactory_DDRM.chol(structure.rowNum, true).apply { decompose(origin.ddrm.copy()) }
EjmlMatrix(SimpleMatrix(cholesky.getT(null))) + LFeature
}
}
LupDecompositionFeature::class -> object : LupDecompositionFeature<Double> {
private val lup by lazy {
DecompositionFactory_DDRM.lu(origin.numRows(), origin.numCols())
.apply { decompose(origin.ddrm.copy()) }
}
override val l: Matrix<Double> by lazy {
EjmlMatrix(SimpleMatrix(lup.getLower(null))) + LFeature
}
override val u: Matrix<Double> by lazy {
EjmlMatrix(SimpleMatrix(lup.getUpper(null))) + UFeature
}
override val p: Matrix<Double> by lazy { EjmlMatrix(SimpleMatrix(lup.getRowPivot(null))) }
}
else -> null
}?.let(type::cast)
}
}
/**
* Solves for X in the following equation: x = a^-1*b, where 'a' is base matrix and 'b' is an n by p matrix.
*
* @param a the base matrix.
* @param b n by p matrix.
* @return the solution for 'x' that is n by p.
* @author Iaroslav Postovalov
*/
public fun EjmlLinearSpace.solve(a: Matrix<Double>, b: Matrix<Double>): EjmlMatrix =
EjmlMatrix(a.toEjml().origin.solve(b.toEjml().origin))
/**
* Solves for X in the following equation: x = a^(-1)*b, where 'a' is base matrix and 'b' is an n by p matrix.
*
* @param a the base matrix.
* @param b n by p vector.
* @return the solution for 'x' that is n by p.
* @author Iaroslav Postovalov
*/
public fun EjmlLinearSpace.solve(a: Matrix<Double>, b: Point<Double>): EjmlVector =
EjmlVector(a.toEjml().origin.solve(b.toEjml().origin))
@OptIn(UnstableKMathAPI::class)
public fun EjmlMatrix.inverted(): EjmlMatrix = getFeature<InverseMatrixFeature<Double>>()!!.inverse as EjmlMatrix
public fun EjmlLinearSpace.inverse(matrix: Matrix<Double>): Matrix<Double> = matrix.toEjml().inverted()

Some files were not shown because too many files have changed in this diff Show More