Refactor Dubins path
This commit is contained in:
parent
ee569b85f8
commit
e24463c58b
@ -14,7 +14,7 @@ allprojects {
|
||||
}
|
||||
|
||||
group = "space.kscience"
|
||||
version = "0.3.1-dev-5"
|
||||
version = "0.3.1-dev-6"
|
||||
}
|
||||
|
||||
subprojects {
|
||||
|
@ -77,11 +77,13 @@ public abstract class TensorFlowOutput<T, TT : TType>(
|
||||
}
|
||||
}
|
||||
|
||||
@PerformancePitfall
|
||||
override fun get(index: IntArray): T = actualTensor[index]
|
||||
|
||||
@PerformancePitfall
|
||||
override fun elements(): Sequence<Pair<IntArray, T>> = actualTensor.elements()
|
||||
|
||||
@PerformancePitfall
|
||||
override fun set(index: IntArray, value: T) {
|
||||
actualTensor[index] = value
|
||||
}
|
||||
@ -101,6 +103,7 @@ public abstract class TensorFlowAlgebra<T, TT : TNumber, A : Ring<T>> internal c
|
||||
|
||||
protected abstract fun const(value: T): Constant<TT>
|
||||
|
||||
@OptIn(PerformancePitfall::class)
|
||||
override fun StructureND<T>.valueOrNull(): T? = if (shape contentEquals ShapeND(1))
|
||||
get(intArrayOf(0)) else null
|
||||
|
||||
|
@ -13,75 +13,80 @@ import kotlin.math.acos
|
||||
import kotlin.math.cos
|
||||
import kotlin.math.sin
|
||||
|
||||
internal fun Pose2D.getLeftCircle(radius: Double): Circle2D = getTangentCircles(radius).first
|
||||
internal fun DubinsPose2D.getLeftCircle(radius: Double): Circle2D = getTangentCircles(radius).first
|
||||
|
||||
internal fun Pose2D.getRightCircle(radius: Double): Circle2D = getTangentCircles(radius).second
|
||||
internal fun DubinsPose2D.getRightCircle(radius: Double): Circle2D = getTangentCircles(radius).second
|
||||
|
||||
internal fun Pose2D.getTangentCircles(radius: Double): Pair<Circle2D, Circle2D> = with(Euclidean2DSpace) {
|
||||
val dX = radius * cos(theta)
|
||||
val dY = radius * sin(theta)
|
||||
internal fun DubinsPose2D.getTangentCircles(radius: Double): Pair<Circle2D, Circle2D> = with(Euclidean2DSpace) {
|
||||
val dX = radius * cos(bearing)
|
||||
val dY = radius * sin(bearing)
|
||||
return Circle2D(vector(x - dX, y + dY), radius) to Circle2D(vector(x + dX, y - dY), radius)
|
||||
}
|
||||
|
||||
internal fun leftOuterTangent(a: Circle2D, b: Circle2D): StraightTrajectory = outerTangent(a, b, CircleTrajectory.Direction.LEFT)
|
||||
internal fun leftOuterTangent(a: Circle2D, b: Circle2D): StraightTrajectory2D =
|
||||
outerTangent(a, b, CircleTrajectory2D.Direction.LEFT)
|
||||
|
||||
internal fun rightOuterTangent(a: Circle2D, b: Circle2D): StraightTrajectory = outerTangent(a, b,
|
||||
CircleTrajectory.Direction.RIGHT
|
||||
internal fun rightOuterTangent(a: Circle2D, b: Circle2D): StraightTrajectory2D = outerTangent(
|
||||
a, b,
|
||||
CircleTrajectory2D.Direction.RIGHT
|
||||
)
|
||||
|
||||
private fun outerTangent(a: Circle2D, b: Circle2D, side: CircleTrajectory.Direction): StraightTrajectory = with(Euclidean2DSpace){
|
||||
val centers = StraightTrajectory(a.center, b.center)
|
||||
val p1 = when (side) {
|
||||
CircleTrajectory.Direction.LEFT -> vector(
|
||||
a.center.x - a.radius * cos(centers.theta),
|
||||
a.center.y + a.radius * sin(centers.theta)
|
||||
)
|
||||
CircleTrajectory.Direction.RIGHT -> vector(
|
||||
a.center.x + a.radius * cos(centers.theta),
|
||||
a.center.y - a.radius * sin(centers.theta)
|
||||
private fun outerTangent(a: Circle2D, b: Circle2D, side: CircleTrajectory2D.Direction): StraightTrajectory2D =
|
||||
with(Euclidean2DSpace) {
|
||||
val centers = StraightTrajectory2D(a.center, b.center)
|
||||
val p1 = when (side) {
|
||||
CircleTrajectory2D.Direction.LEFT -> vector(
|
||||
a.center.x - a.radius * cos(centers.bearing),
|
||||
a.center.y + a.radius * sin(centers.bearing)
|
||||
)
|
||||
|
||||
CircleTrajectory2D.Direction.RIGHT -> vector(
|
||||
a.center.x + a.radius * cos(centers.bearing),
|
||||
a.center.y - a.radius * sin(centers.bearing)
|
||||
)
|
||||
}
|
||||
return StraightTrajectory2D(
|
||||
p1,
|
||||
vector(p1.x + (centers.end.x - centers.start.x), p1.y + (centers.end.y - centers.start.y))
|
||||
)
|
||||
}
|
||||
return StraightTrajectory(
|
||||
p1,
|
||||
vector(p1.x + (centers.end.x - centers.start.x), p1.y + (centers.end.y - centers.start.y))
|
||||
)
|
||||
}
|
||||
|
||||
internal fun leftInnerTangent(base: Circle2D, direction: Circle2D): StraightTrajectory? =
|
||||
innerTangent(base, direction, CircleTrajectory.Direction.LEFT)
|
||||
internal fun leftInnerTangent(base: Circle2D, direction: Circle2D): StraightTrajectory2D? =
|
||||
innerTangent(base, direction, CircleTrajectory2D.Direction.LEFT)
|
||||
|
||||
internal fun rightInnerTangent(base: Circle2D, direction: Circle2D): StraightTrajectory? =
|
||||
innerTangent(base, direction, CircleTrajectory.Direction.RIGHT)
|
||||
internal fun rightInnerTangent(base: Circle2D, direction: Circle2D): StraightTrajectory2D? =
|
||||
innerTangent(base, direction, CircleTrajectory2D.Direction.RIGHT)
|
||||
|
||||
private fun innerTangent(base: Circle2D, direction: Circle2D, side: CircleTrajectory.Direction): StraightTrajectory? = with(Euclidean2DSpace){
|
||||
val centers = StraightTrajectory(base.center, direction.center)
|
||||
if (centers.length < base.radius * 2) return null
|
||||
val angle = theta(
|
||||
when (side) {
|
||||
CircleTrajectory.Direction.LEFT -> centers.theta + acos(base.radius * 2 / centers.length)
|
||||
CircleTrajectory.Direction.RIGHT -> centers.theta - acos(base.radius * 2 / centers.length)
|
||||
}
|
||||
)
|
||||
val dX = base.radius * sin(angle)
|
||||
val dY = base.radius * cos(angle)
|
||||
val p1 = vector(base.center.x + dX, base.center.y + dY)
|
||||
val p2 = vector(direction.center.x - dX, direction.center.y - dY)
|
||||
return StraightTrajectory(p1, p2)
|
||||
}
|
||||
private fun innerTangent(base: Circle2D, direction: Circle2D, side: CircleTrajectory2D.Direction): StraightTrajectory2D? =
|
||||
with(Euclidean2DSpace) {
|
||||
val centers = StraightTrajectory2D(base.center, direction.center)
|
||||
if (centers.length < base.radius * 2) return null
|
||||
val angle = theta(
|
||||
when (side) {
|
||||
CircleTrajectory2D.Direction.LEFT -> centers.bearing + acos(base.radius * 2 / centers.length)
|
||||
CircleTrajectory2D.Direction.RIGHT -> centers.bearing - acos(base.radius * 2 / centers.length)
|
||||
}
|
||||
)
|
||||
val dX = base.radius * sin(angle)
|
||||
val dY = base.radius * cos(angle)
|
||||
val p1 = vector(base.center.x + dX, base.center.y + dY)
|
||||
val p2 = vector(direction.center.x - dX, direction.center.y - dY)
|
||||
return StraightTrajectory2D(p1, p2)
|
||||
}
|
||||
|
||||
internal fun theta(theta: Double): Double = (theta + (2 * PI)) % (2 * PI)
|
||||
|
||||
@Suppress("DuplicatedCode")
|
||||
public class DubinsPath(
|
||||
public val a: CircleTrajectory,
|
||||
public val b: Trajectory,
|
||||
public val c: CircleTrajectory,
|
||||
) : CompositeTrajectory(listOf(a,b,c)) {
|
||||
public val a: CircleTrajectory2D,
|
||||
public val b: Trajectory2D,
|
||||
public val c: CircleTrajectory2D,
|
||||
) : CompositeTrajectory2D(listOf(a, b, c)) {
|
||||
|
||||
public val type: TYPE = TYPE.valueOf(
|
||||
arrayOf(
|
||||
a.direction.name[0],
|
||||
if (b is CircleTrajectory) b.direction.name[0] else 'S',
|
||||
if (b is CircleTrajectory2D) b.direction.name[0] else 'S',
|
||||
c.direction.name[0]
|
||||
).toCharArray().concatToString()
|
||||
)
|
||||
@ -92,8 +97,8 @@ public class DubinsPath(
|
||||
|
||||
public companion object {
|
||||
public fun all(
|
||||
start: Pose2D,
|
||||
end: Pose2D,
|
||||
start: DubinsPose2D,
|
||||
end: DubinsPose2D,
|
||||
turningRadius: Double,
|
||||
): List<DubinsPath> = listOfNotNull(
|
||||
rlr(start, end, turningRadius),
|
||||
@ -104,132 +109,132 @@ public class DubinsPath(
|
||||
lsr(start, end, turningRadius)
|
||||
)
|
||||
|
||||
public fun shortest(start: Pose2D, end: Pose2D, turningRadius: Double): DubinsPath =
|
||||
public fun shortest(start: DubinsPose2D, end: DubinsPose2D, turningRadius: Double): DubinsPath =
|
||||
all(start, end, turningRadius).minBy { it.length }
|
||||
|
||||
public fun rlr(start: Pose2D, end: Pose2D, turningRadius: Double): DubinsPath? = with(Euclidean2DSpace) {
|
||||
public fun rlr(start: DubinsPose2D, end: DubinsPose2D, turningRadius: Double): DubinsPath? = with(Euclidean2DSpace) {
|
||||
val c1 = start.getRightCircle(turningRadius)
|
||||
val c2 = end.getRightCircle(turningRadius)
|
||||
val centers = StraightTrajectory(c1.center, c2.center)
|
||||
val centers = StraightTrajectory2D(c1.center, c2.center)
|
||||
if (centers.length > turningRadius * 4) return null
|
||||
|
||||
val firstVariant = run {
|
||||
var theta = theta(centers.theta - acos(centers.length / (turningRadius * 4)))
|
||||
var theta = theta(centers.bearing - acos(centers.length / (turningRadius * 4)))
|
||||
var dX = turningRadius * sin(theta)
|
||||
var dY = turningRadius * cos(theta)
|
||||
val p = vector(c1.center.x + dX * 2, c1.center.y + dY * 2)
|
||||
val e = Circle2D(p, turningRadius)
|
||||
val p1 = vector(c1.center.x + dX, c1.center.y + dY)
|
||||
theta = theta(centers.theta + acos(centers.length / (turningRadius * 4)))
|
||||
theta = theta(centers.bearing + acos(centers.length / (turningRadius * 4)))
|
||||
dX = turningRadius * sin(theta)
|
||||
dY = turningRadius * cos(theta)
|
||||
val p2 = vector(e.center.x + dX, e.center.y + dY)
|
||||
val a1 = CircleTrajectory.of(c1.center, start, p1, CircleTrajectory.Direction.RIGHT)
|
||||
val a2 = CircleTrajectory.of(e.center, p1, p2, CircleTrajectory.Direction.LEFT)
|
||||
val a3 = CircleTrajectory.of(c2.center, p2, end, CircleTrajectory.Direction.RIGHT)
|
||||
val a1 = CircleTrajectory2D.of(c1.center, start, p1, CircleTrajectory2D.Direction.RIGHT)
|
||||
val a2 = CircleTrajectory2D.of(e.center, p1, p2, CircleTrajectory2D.Direction.LEFT)
|
||||
val a3 = CircleTrajectory2D.of(c2.center, p2, end, CircleTrajectory2D.Direction.RIGHT)
|
||||
DubinsPath(a1, a2, a3)
|
||||
}
|
||||
|
||||
val secondVariant = run {
|
||||
var theta = theta(centers.theta + acos(centers.length / (turningRadius * 4)))
|
||||
var theta = theta(centers.bearing + acos(centers.length / (turningRadius * 4)))
|
||||
var dX = turningRadius * sin(theta)
|
||||
var dY = turningRadius * cos(theta)
|
||||
val p = vector(c1.center.x + dX * 2, c1.center.y + dY * 2)
|
||||
val e = Circle2D(p, turningRadius)
|
||||
val p1 = vector(c1.center.x + dX, c1.center.y + dY)
|
||||
theta = theta(centers.theta - acos(centers.length / (turningRadius * 4)))
|
||||
theta = theta(centers.bearing - acos(centers.length / (turningRadius * 4)))
|
||||
dX = turningRadius * sin(theta)
|
||||
dY = turningRadius * cos(theta)
|
||||
val p2 = vector(e.center.x + dX, e.center.y + dY)
|
||||
val a1 = CircleTrajectory.of(c1.center, start, p1, CircleTrajectory.Direction.RIGHT)
|
||||
val a2 = CircleTrajectory.of(e.center, p1, p2, CircleTrajectory.Direction.LEFT)
|
||||
val a3 = CircleTrajectory.of(c2.center, p2, end, CircleTrajectory.Direction.RIGHT)
|
||||
val a1 = CircleTrajectory2D.of(c1.center, start, p1, CircleTrajectory2D.Direction.RIGHT)
|
||||
val a2 = CircleTrajectory2D.of(e.center, p1, p2, CircleTrajectory2D.Direction.LEFT)
|
||||
val a3 = CircleTrajectory2D.of(c2.center, p2, end, CircleTrajectory2D.Direction.RIGHT)
|
||||
DubinsPath(a1, a2, a3)
|
||||
}
|
||||
|
||||
return if (firstVariant.length < secondVariant.length) firstVariant else secondVariant
|
||||
}
|
||||
|
||||
public fun lrl(start: Pose2D, end: Pose2D, turningRadius: Double): DubinsPath? = with(Euclidean2DSpace) {
|
||||
public fun lrl(start: DubinsPose2D, end: DubinsPose2D, turningRadius: Double): DubinsPath? = with(Euclidean2DSpace) {
|
||||
val c1 = start.getLeftCircle(turningRadius)
|
||||
val c2 = end.getLeftCircle(turningRadius)
|
||||
val centers = StraightTrajectory(c1.center, c2.center)
|
||||
val centers = StraightTrajectory2D(c1.center, c2.center)
|
||||
if (centers.length > turningRadius * 4) return null
|
||||
|
||||
val firstVariant = run {
|
||||
var theta = theta(centers.theta + acos(centers.length / (turningRadius * 4)))
|
||||
var theta = theta(centers.bearing + acos(centers.length / (turningRadius * 4)))
|
||||
var dX = turningRadius * sin(theta)
|
||||
var dY = turningRadius * cos(theta)
|
||||
val p = vector(c1.center.x + dX * 2, c1.center.y + dY * 2)
|
||||
val e = Circle2D(p, turningRadius)
|
||||
val p1 = vector(c1.center.x + dX, c1.center.y + dY)
|
||||
theta = theta(centers.theta - acos(centers.length / (turningRadius * 4)))
|
||||
theta = theta(centers.bearing - acos(centers.length / (turningRadius * 4)))
|
||||
dX = turningRadius * sin(theta)
|
||||
dY = turningRadius * cos(theta)
|
||||
val p2 = vector(e.center.x + dX, e.center.y + dY)
|
||||
val a1 = CircleTrajectory.of(c1.center, start, p1, CircleTrajectory.Direction.LEFT)
|
||||
val a2 = CircleTrajectory.of(e.center, p1, p2, CircleTrajectory.Direction.RIGHT)
|
||||
val a3 = CircleTrajectory.of(c2.center, p2, end, CircleTrajectory.Direction.LEFT)
|
||||
val a1 = CircleTrajectory2D.of(c1.center, start, p1, CircleTrajectory2D.Direction.LEFT)
|
||||
val a2 = CircleTrajectory2D.of(e.center, p1, p2, CircleTrajectory2D.Direction.RIGHT)
|
||||
val a3 = CircleTrajectory2D.of(c2.center, p2, end, CircleTrajectory2D.Direction.LEFT)
|
||||
DubinsPath(a1, a2, a3)
|
||||
}
|
||||
|
||||
val secondVariant = run{
|
||||
var theta = theta(centers.theta - acos(centers.length / (turningRadius * 4)))
|
||||
var theta = theta(centers.bearing - acos(centers.length / (turningRadius * 4)))
|
||||
var dX = turningRadius * sin(theta)
|
||||
var dY = turningRadius * cos(theta)
|
||||
val p = vector(c1.center.x + dX * 2, c1.center.y + dY * 2)
|
||||
val e = Circle2D(p, turningRadius)
|
||||
val p1 = vector(c1.center.x + dX, c1.center.y + dY)
|
||||
theta = theta(centers.theta + acos(centers.length / (turningRadius * 4)))
|
||||
theta = theta(centers.bearing + acos(centers.length / (turningRadius * 4)))
|
||||
dX = turningRadius * sin(theta)
|
||||
dY = turningRadius * cos(theta)
|
||||
val p2 = vector(e.center.x + dX, e.center.y + dY)
|
||||
val a1 = CircleTrajectory.of(c1.center, start, p1, CircleTrajectory.Direction.LEFT)
|
||||
val a2 = CircleTrajectory.of(e.center, p1, p2, CircleTrajectory.Direction.RIGHT)
|
||||
val a3 = CircleTrajectory.of(c2.center, p2, end, CircleTrajectory.Direction.LEFT)
|
||||
val a1 = CircleTrajectory2D.of(c1.center, start, p1, CircleTrajectory2D.Direction.LEFT)
|
||||
val a2 = CircleTrajectory2D.of(e.center, p1, p2, CircleTrajectory2D.Direction.RIGHT)
|
||||
val a3 = CircleTrajectory2D.of(c2.center, p2, end, CircleTrajectory2D.Direction.LEFT)
|
||||
DubinsPath(a1, a2, a3)
|
||||
}
|
||||
|
||||
return if (firstVariant.length < secondVariant.length) firstVariant else secondVariant
|
||||
}
|
||||
|
||||
public fun rsr(start: Pose2D, end: Pose2D, turningRadius: Double): DubinsPath {
|
||||
public fun rsr(start: DubinsPose2D, end: DubinsPose2D, turningRadius: Double): DubinsPath {
|
||||
val c1 = start.getRightCircle(turningRadius)
|
||||
val c2 = end.getRightCircle(turningRadius)
|
||||
val s = leftOuterTangent(c1, c2)
|
||||
val a1 = CircleTrajectory.of(c1.center, start, s.start, CircleTrajectory.Direction.RIGHT)
|
||||
val a3 = CircleTrajectory.of(c2.center, s.end, end, CircleTrajectory.Direction.RIGHT)
|
||||
val a1 = CircleTrajectory2D.of(c1.center, start, s.start, CircleTrajectory2D.Direction.RIGHT)
|
||||
val a3 = CircleTrajectory2D.of(c2.center, s.end, end, CircleTrajectory2D.Direction.RIGHT)
|
||||
return DubinsPath(a1, s, a3)
|
||||
}
|
||||
|
||||
public fun lsl(start: Pose2D, end: Pose2D, turningRadius: Double): DubinsPath {
|
||||
public fun lsl(start: DubinsPose2D, end: DubinsPose2D, turningRadius: Double): DubinsPath {
|
||||
val c1 = start.getLeftCircle(turningRadius)
|
||||
val c2 = end.getLeftCircle(turningRadius)
|
||||
val s = rightOuterTangent(c1, c2)
|
||||
val a1 = CircleTrajectory.of(c1.center, start, s.start, CircleTrajectory.Direction.LEFT)
|
||||
val a3 = CircleTrajectory.of(c2.center, s.end, end, CircleTrajectory.Direction.LEFT)
|
||||
val a1 = CircleTrajectory2D.of(c1.center, start, s.start, CircleTrajectory2D.Direction.LEFT)
|
||||
val a3 = CircleTrajectory2D.of(c2.center, s.end, end, CircleTrajectory2D.Direction.LEFT)
|
||||
return DubinsPath(a1, s, a3)
|
||||
}
|
||||
|
||||
public fun rsl(start: Pose2D, end: Pose2D, turningRadius: Double): DubinsPath? {
|
||||
public fun rsl(start: DubinsPose2D, end: DubinsPose2D, turningRadius: Double): DubinsPath? {
|
||||
val c1 = start.getRightCircle(turningRadius)
|
||||
val c2 = end.getLeftCircle(turningRadius)
|
||||
val s = rightInnerTangent(c1, c2)
|
||||
if (s == null || c1.center.distanceTo(c2.center) < turningRadius * 2) return null
|
||||
|
||||
val a1 = CircleTrajectory.of(c1.center, start, s.start, CircleTrajectory.Direction.RIGHT)
|
||||
val a3 = CircleTrajectory.of(c2.center, s.end, end, CircleTrajectory.Direction.LEFT)
|
||||
val a1 = CircleTrajectory2D.of(c1.center, start, s.start, CircleTrajectory2D.Direction.RIGHT)
|
||||
val a3 = CircleTrajectory2D.of(c2.center, s.end, end, CircleTrajectory2D.Direction.LEFT)
|
||||
return DubinsPath(a1, s, a3)
|
||||
}
|
||||
|
||||
public fun lsr(start: Pose2D, end: Pose2D, turningRadius: Double): DubinsPath? {
|
||||
public fun lsr(start: DubinsPose2D, end: DubinsPose2D, turningRadius: Double): DubinsPath? {
|
||||
val c1 = start.getLeftCircle(turningRadius)
|
||||
val c2 = end.getRightCircle(turningRadius)
|
||||
val s = leftInnerTangent(c1, c2)
|
||||
if (s == null || c1.center.distanceTo(c2.center) < turningRadius * 2) return null
|
||||
|
||||
val a1 = CircleTrajectory.of(c1.center, start, s.start, CircleTrajectory.Direction.LEFT)
|
||||
val a3 = CircleTrajectory.of(c2.center, s.end, end, CircleTrajectory.Direction.RIGHT)
|
||||
val a1 = CircleTrajectory2D.of(c1.center, start, s.start, CircleTrajectory2D.Direction.LEFT)
|
||||
val a3 = CircleTrajectory2D.of(c2.center, s.end, end, CircleTrajectory2D.Direction.RIGHT)
|
||||
return DubinsPath(a1, s, a3)
|
||||
}
|
||||
}
|
||||
|
@ -0,0 +1,36 @@
|
||||
/*
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
package space.kscience.kmath.trajectory
|
||||
|
||||
import space.kscience.kmath.geometry.DoubleVector2D
|
||||
import space.kscience.kmath.geometry.Vector
|
||||
import kotlin.math.atan2
|
||||
|
||||
/**
|
||||
* Combination of [Vector] and its view angle (clockwise from positive y-axis direction)
|
||||
*/
|
||||
public interface DubinsPose2D : DoubleVector2D {
|
||||
public val coordinate: DoubleVector2D
|
||||
public val bearing: Double
|
||||
}
|
||||
|
||||
public class PhaseVector2D(
|
||||
override val coordinate: DoubleVector2D,
|
||||
public val velocity: DoubleVector2D,
|
||||
) : DubinsPose2D, DoubleVector2D by coordinate {
|
||||
override val bearing: Double get() = atan2(velocity.x, velocity.y)
|
||||
}
|
||||
|
||||
internal class Pose2DImpl(
|
||||
override val coordinate: DoubleVector2D,
|
||||
override val bearing: Double,
|
||||
) : DubinsPose2D, DoubleVector2D by coordinate{
|
||||
|
||||
override fun toString(): String = "Pose2D(x=$x, y=$y, bearing=$bearing)"
|
||||
}
|
||||
|
||||
|
||||
public fun Pose2D(coordinate: DoubleVector2D, theta: Double): DubinsPose2D = Pose2DImpl(coordinate, theta)
|
@ -1,33 +0,0 @@
|
||||
/*
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
package space.kscience.kmath.trajectory
|
||||
|
||||
import space.kscience.kmath.geometry.DoubleVector2D
|
||||
import space.kscience.kmath.geometry.Vector
|
||||
import kotlin.math.atan2
|
||||
|
||||
/**
|
||||
* Combination of [Vector] and its view angle
|
||||
*/
|
||||
public interface Pose2D: DoubleVector2D{
|
||||
public val coordinate: DoubleVector2D
|
||||
public val theta: Double
|
||||
}
|
||||
|
||||
public class PhaseVector2D(
|
||||
override val coordinate: DoubleVector2D,
|
||||
public val velocity: DoubleVector2D
|
||||
): Pose2D, DoubleVector2D by coordinate{
|
||||
override val theta: Double get() = atan2(velocity.y, velocity.x)
|
||||
}
|
||||
|
||||
internal class Pose2DImpl(
|
||||
override val coordinate: DoubleVector2D,
|
||||
override val theta: Double
|
||||
) : Pose2D, DoubleVector2D by coordinate
|
||||
|
||||
|
||||
public fun Pose2D(coordinate: DoubleVector2D, theta: Double): Pose2D = Pose2DImpl(coordinate, theta)
|
@ -8,58 +8,61 @@ package space.kscience.kmath.trajectory
|
||||
import space.kscience.kmath.geometry.Circle2D
|
||||
import space.kscience.kmath.geometry.DoubleVector2D
|
||||
import space.kscience.kmath.geometry.Euclidean2DSpace.distanceTo
|
||||
import space.kscience.kmath.geometry.circumference
|
||||
import kotlin.math.PI
|
||||
import kotlin.math.atan2
|
||||
|
||||
public sealed interface Trajectory {
|
||||
public sealed interface Trajectory2D {
|
||||
public val length: Double
|
||||
}
|
||||
|
||||
/**
|
||||
* Straight path segment. The order of start and end defines the direction
|
||||
*/
|
||||
public data class StraightTrajectory(
|
||||
public data class StraightTrajectory2D(
|
||||
internal val start: DoubleVector2D,
|
||||
internal val end: DoubleVector2D,
|
||||
) : Trajectory {
|
||||
) : Trajectory2D {
|
||||
override val length: Double get() = start.distanceTo(end)
|
||||
|
||||
internal val theta: Double get() = theta(atan2(end.x - start.x, end.y - start.y))
|
||||
internal val bearing: Double get() = theta(atan2(end.x - start.x, end.y - start.y))
|
||||
}
|
||||
|
||||
/**
|
||||
* An arc segment
|
||||
*/
|
||||
public data class CircleTrajectory(
|
||||
public data class CircleTrajectory2D(
|
||||
public val circle: Circle2D,
|
||||
public val start: Pose2D,
|
||||
public val end: Pose2D,
|
||||
) : Trajectory {
|
||||
public val start: DubinsPose2D,
|
||||
public val end: DubinsPose2D,
|
||||
) : Trajectory2D {
|
||||
|
||||
public enum class Direction {
|
||||
LEFT, RIGHT
|
||||
}
|
||||
|
||||
override val length: Double by lazy {
|
||||
val angle: Double = theta(
|
||||
/**
|
||||
* Arc length in radians
|
||||
*/
|
||||
val arcLength: Double
|
||||
get() = theta(
|
||||
if (direction == Direction.LEFT) {
|
||||
start.theta - end.theta
|
||||
start.bearing - end.bearing
|
||||
} else {
|
||||
end.theta - start.theta
|
||||
end.bearing - start.bearing
|
||||
}
|
||||
)
|
||||
val proportion = angle / (2 * PI)
|
||||
circle.circumference * proportion
|
||||
|
||||
override val length: Double by lazy {
|
||||
circle.radius * arcLength
|
||||
}
|
||||
|
||||
internal val direction: Direction by lazy {
|
||||
if (start.y < circle.center.y) {
|
||||
if (start.theta > PI) Direction.RIGHT else Direction.LEFT
|
||||
if (start.bearing > PI) Direction.RIGHT else Direction.LEFT
|
||||
} else if (start.y > circle.center.y) {
|
||||
if (start.theta < PI) Direction.RIGHT else Direction.LEFT
|
||||
if (start.bearing < PI) Direction.RIGHT else Direction.LEFT
|
||||
} else {
|
||||
if (start.theta == 0.0) {
|
||||
if (start.bearing == 0.0) {
|
||||
if (start.x < circle.center.x) Direction.RIGHT else Direction.LEFT
|
||||
} else {
|
||||
if (start.x > circle.center.x) Direction.RIGHT else Direction.LEFT
|
||||
@ -68,12 +71,17 @@ public data class CircleTrajectory(
|
||||
}
|
||||
|
||||
public companion object {
|
||||
public fun of(center: DoubleVector2D, start: DoubleVector2D, end: DoubleVector2D, direction: Direction): CircleTrajectory {
|
||||
public fun of(
|
||||
center: DoubleVector2D,
|
||||
start: DoubleVector2D,
|
||||
end: DoubleVector2D,
|
||||
direction: Direction,
|
||||
): CircleTrajectory2D {
|
||||
fun calculatePose(
|
||||
vector: DoubleVector2D,
|
||||
theta: Double,
|
||||
direction: Direction,
|
||||
): Pose2D = Pose2D(
|
||||
): DubinsPose2D = Pose2D(
|
||||
vector,
|
||||
when (direction) {
|
||||
Direction.LEFT -> theta(theta - PI / 2)
|
||||
@ -81,16 +89,20 @@ public data class CircleTrajectory(
|
||||
}
|
||||
)
|
||||
|
||||
val s1 = StraightTrajectory(center, start)
|
||||
val s2 = StraightTrajectory(center, end)
|
||||
val pose1 = calculatePose(start, s1.theta, direction)
|
||||
val pose2 = calculatePose(end, s2.theta, direction)
|
||||
return CircleTrajectory(Circle2D(center, s1.length), pose1, pose2)
|
||||
val s1 = StraightTrajectory2D(center, start)
|
||||
val s2 = StraightTrajectory2D(center, end)
|
||||
val pose1 = calculatePose(start, s1.bearing, direction)
|
||||
val pose2 = calculatePose(end, s2.bearing, direction)
|
||||
val trajectory = CircleTrajectory2D(Circle2D(center, s1.length), pose1, pose2)
|
||||
if(trajectory.direction != direction){
|
||||
error("Trajectory direction mismatch")
|
||||
}
|
||||
return trajectory
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
public open class CompositeTrajectory(public val segments: Collection<Trajectory>) : Trajectory {
|
||||
public open class CompositeTrajectory2D(public val segments: Collection<Trajectory2D>) : Trajectory2D {
|
||||
override val length: Double get() = segments.sumOf { it.length }
|
||||
}
|
||||
|
@ -1,14 +0,0 @@
|
||||
/*
|
||||
* Copyright 2018-2022 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
package space.kscience.kmath.trajectory
|
||||
|
||||
public fun interface TrajectoryCost {
|
||||
public fun estimate(trajectory: Trajectory): Double
|
||||
|
||||
public companion object{
|
||||
public val length: TrajectoryCost = TrajectoryCost { it.length }
|
||||
}
|
||||
}
|
@ -12,5 +12,5 @@ public fun interface MaxCurvature {
|
||||
public fun DubinsPath.Companion.shortest(
|
||||
start: PhaseVector2D,
|
||||
end: PhaseVector2D,
|
||||
computer: MaxCurvature,
|
||||
): DubinsPath = shortest(start, end, computer.compute(start))
|
||||
maxCurvature: MaxCurvature,
|
||||
): DubinsPath = shortest(start, end, maxCurvature.compute(start))
|
||||
|
@ -15,14 +15,14 @@ const val maxFloatDelta = 0.000001
|
||||
fun Double.radiansToDegrees() = this * 180 / PI
|
||||
|
||||
fun Double.equalFloat(other: Double) = abs(this - other) < maxFloatDelta
|
||||
fun Pose2D.equalsFloat(other: Pose2D) = x.equalFloat(other.x) && y.equalFloat(other.y) && theta.equalFloat(other.theta)
|
||||
fun DubinsPose2D.equalsFloat(other: DubinsPose2D) = x.equalFloat(other.x) && y.equalFloat(other.y) && bearing.equalFloat(other.bearing)
|
||||
|
||||
fun StraightTrajectory.inverse() = StraightTrajectory(end, start)
|
||||
fun StraightTrajectory.shift(shift: Int, width: Double): StraightTrajectory = with(Euclidean2DSpace){
|
||||
val dX = width * sin(inverse().theta)
|
||||
val dY = width * sin(theta)
|
||||
fun StraightTrajectory2D.inverse() = StraightTrajectory2D(end, start)
|
||||
fun StraightTrajectory2D.shift(shift: Int, width: Double): StraightTrajectory2D = with(Euclidean2DSpace){
|
||||
val dX = width * sin(inverse().bearing)
|
||||
val dY = width * sin(bearing)
|
||||
|
||||
return StraightTrajectory(
|
||||
return StraightTrajectory2D(
|
||||
vector(start.x - dX * shift, start.y - dY * shift),
|
||||
vector(end.x - dX * shift, end.y - dY * shift)
|
||||
)
|
||||
|
@ -16,11 +16,11 @@ class DubinsTests {
|
||||
|
||||
@Test
|
||||
fun dubinsTest() = with(Euclidean2DSpace){
|
||||
val straight = StraightTrajectory(vector(0.0, 0.0), vector(100.0, 100.0))
|
||||
val straight = StraightTrajectory2D(vector(0.0, 0.0), vector(100.0, 100.0))
|
||||
val lineP1 = straight.shift(1, 10.0).inverse()
|
||||
|
||||
val start = Pose2D(straight.end, straight.theta)
|
||||
val end = Pose2D(lineP1.start, lineP1.theta)
|
||||
val start = Pose2D(straight.end, straight.bearing)
|
||||
val end = Pose2D(lineP1.start, lineP1.bearing)
|
||||
val radius = 2.0
|
||||
val dubins = DubinsPath.all(start, end, radius)
|
||||
|
||||
@ -45,14 +45,14 @@ class DubinsTests {
|
||||
assertTrue(end.equalsFloat(path.c.end))
|
||||
|
||||
// Not working, theta double precision inaccuracy
|
||||
if (path.b is CircleTrajectory) {
|
||||
val b = path.b as CircleTrajectory
|
||||
if (path.b is CircleTrajectory2D) {
|
||||
val b = path.b as CircleTrajectory2D
|
||||
assertTrue(path.a.end.equalsFloat(b.start))
|
||||
assertTrue(path.c.start.equalsFloat(b.end))
|
||||
} else if (path.b is StraightTrajectory) {
|
||||
val b = path.b as StraightTrajectory
|
||||
assertTrue(path.a.end.equalsFloat(Pose2D(b.start, b.theta)))
|
||||
assertTrue(path.c.start.equalsFloat(Pose2D(b.end, b.theta)))
|
||||
} else if (path.b is StraightTrajectory2D) {
|
||||
val b = path.b as StraightTrajectory2D
|
||||
assertTrue(path.a.end.equalsFloat(Pose2D(b.start, b.bearing)))
|
||||
assertTrue(path.c.start.equalsFloat(Pose2D(b.end, b.bearing)))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -8,7 +8,7 @@ package space.kscience.kmath.trajectory.segments
|
||||
import space.kscience.kmath.geometry.Circle2D
|
||||
import space.kscience.kmath.geometry.Euclidean2DSpace
|
||||
import space.kscience.kmath.geometry.circumference
|
||||
import space.kscience.kmath.trajectory.CircleTrajectory
|
||||
import space.kscience.kmath.trajectory.CircleTrajectory2D
|
||||
import space.kscience.kmath.trajectory.radiansToDegrees
|
||||
import kotlin.test.Test
|
||||
import kotlin.test.assertEquals
|
||||
@ -18,9 +18,9 @@ class ArcTests {
|
||||
@Test
|
||||
fun arcTest() = with(Euclidean2DSpace){
|
||||
val circle = Circle2D(vector(0.0, 0.0), 2.0)
|
||||
val arc = CircleTrajectory.of(circle.center, vector(-2.0, 0.0), vector(0.0, 2.0), CircleTrajectory.Direction.RIGHT)
|
||||
val arc = CircleTrajectory2D.of(circle.center, vector(-2.0, 0.0), vector(0.0, 2.0), CircleTrajectory2D.Direction.RIGHT)
|
||||
assertEquals(circle.circumference / 4, arc.length, 1.0)
|
||||
assertEquals(0.0, arc.start.theta.radiansToDegrees())
|
||||
assertEquals(90.0, arc.end.theta.radiansToDegrees())
|
||||
assertEquals(0.0, arc.start.bearing.radiansToDegrees())
|
||||
assertEquals(90.0, arc.end.bearing.radiansToDegrees())
|
||||
}
|
||||
}
|
||||
|
@ -6,7 +6,7 @@
|
||||
package space.kscience.kmath.trajectory.segments
|
||||
|
||||
import space.kscience.kmath.geometry.Euclidean2DSpace
|
||||
import space.kscience.kmath.trajectory.StraightTrajectory
|
||||
import space.kscience.kmath.trajectory.StraightTrajectory2D
|
||||
import space.kscience.kmath.trajectory.radiansToDegrees
|
||||
import kotlin.math.pow
|
||||
import kotlin.math.sqrt
|
||||
@ -17,21 +17,21 @@ class LineTests {
|
||||
|
||||
@Test
|
||||
fun lineTest() = with(Euclidean2DSpace){
|
||||
val straight = StraightTrajectory(vector(0.0, 0.0), vector(100.0, 100.0))
|
||||
val straight = StraightTrajectory2D(vector(0.0, 0.0), vector(100.0, 100.0))
|
||||
assertEquals(sqrt(100.0.pow(2) + 100.0.pow(2)), straight.length)
|
||||
assertEquals(45.0, straight.theta.radiansToDegrees())
|
||||
assertEquals(45.0, straight.bearing.radiansToDegrees())
|
||||
}
|
||||
|
||||
@Test
|
||||
fun lineAngleTest() = with(Euclidean2DSpace){
|
||||
//val zero = Vector2D(0.0, 0.0)
|
||||
val north = StraightTrajectory(Euclidean2DSpace.zero, vector(0.0, 2.0))
|
||||
assertEquals(0.0, north.theta.radiansToDegrees())
|
||||
val east = StraightTrajectory(Euclidean2DSpace.zero, vector(2.0, 0.0))
|
||||
assertEquals(90.0, east.theta.radiansToDegrees())
|
||||
val south = StraightTrajectory(Euclidean2DSpace.zero, vector(0.0, -2.0))
|
||||
assertEquals(180.0, south.theta.radiansToDegrees())
|
||||
val west = StraightTrajectory(Euclidean2DSpace.zero, vector(-2.0, 0.0))
|
||||
assertEquals(270.0, west.theta.radiansToDegrees())
|
||||
val north = StraightTrajectory2D(zero, vector(0.0, 2.0))
|
||||
assertEquals(0.0, north.bearing.radiansToDegrees())
|
||||
val east = StraightTrajectory2D(zero, vector(2.0, 0.0))
|
||||
assertEquals(90.0, east.bearing.radiansToDegrees())
|
||||
val south = StraightTrajectory2D(zero, vector(0.0, -2.0))
|
||||
assertEquals(180.0, south.bearing.radiansToDegrees())
|
||||
val west = StraightTrajectory2D(zero, vector(-2.0, 0.0))
|
||||
assertEquals(270.0, west.bearing.radiansToDegrees())
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user