Refactor Dubins path

This commit is contained in:
Alexander Nozik 2022-10-15 18:45:06 +03:00
parent ee569b85f8
commit e24463c58b
No known key found for this signature in database
GPG Key ID: F7FCF2DD25C71357
12 changed files with 201 additions and 192 deletions

View File

@ -14,7 +14,7 @@ allprojects {
} }
group = "space.kscience" group = "space.kscience"
version = "0.3.1-dev-5" version = "0.3.1-dev-6"
} }
subprojects { subprojects {

View File

@ -77,11 +77,13 @@ public abstract class TensorFlowOutput<T, TT : TType>(
} }
} }
@PerformancePitfall
override fun get(index: IntArray): T = actualTensor[index] override fun get(index: IntArray): T = actualTensor[index]
@PerformancePitfall @PerformancePitfall
override fun elements(): Sequence<Pair<IntArray, T>> = actualTensor.elements() override fun elements(): Sequence<Pair<IntArray, T>> = actualTensor.elements()
@PerformancePitfall
override fun set(index: IntArray, value: T) { override fun set(index: IntArray, value: T) {
actualTensor[index] = value actualTensor[index] = value
} }
@ -101,6 +103,7 @@ public abstract class TensorFlowAlgebra<T, TT : TNumber, A : Ring<T>> internal c
protected abstract fun const(value: T): Constant<TT> protected abstract fun const(value: T): Constant<TT>
@OptIn(PerformancePitfall::class)
override fun StructureND<T>.valueOrNull(): T? = if (shape contentEquals ShapeND(1)) override fun StructureND<T>.valueOrNull(): T? = if (shape contentEquals ShapeND(1))
get(intArrayOf(0)) else null get(intArrayOf(0)) else null

View File

@ -13,75 +13,80 @@ import kotlin.math.acos
import kotlin.math.cos import kotlin.math.cos
import kotlin.math.sin import kotlin.math.sin
internal fun Pose2D.getLeftCircle(radius: Double): Circle2D = getTangentCircles(radius).first internal fun DubinsPose2D.getLeftCircle(radius: Double): Circle2D = getTangentCircles(radius).first
internal fun Pose2D.getRightCircle(radius: Double): Circle2D = getTangentCircles(radius).second internal fun DubinsPose2D.getRightCircle(radius: Double): Circle2D = getTangentCircles(radius).second
internal fun Pose2D.getTangentCircles(radius: Double): Pair<Circle2D, Circle2D> = with(Euclidean2DSpace) { internal fun DubinsPose2D.getTangentCircles(radius: Double): Pair<Circle2D, Circle2D> = with(Euclidean2DSpace) {
val dX = radius * cos(theta) val dX = radius * cos(bearing)
val dY = radius * sin(theta) val dY = radius * sin(bearing)
return Circle2D(vector(x - dX, y + dY), radius) to Circle2D(vector(x + dX, y - dY), radius) return Circle2D(vector(x - dX, y + dY), radius) to Circle2D(vector(x + dX, y - dY), radius)
} }
internal fun leftOuterTangent(a: Circle2D, b: Circle2D): StraightTrajectory = outerTangent(a, b, CircleTrajectory.Direction.LEFT) internal fun leftOuterTangent(a: Circle2D, b: Circle2D): StraightTrajectory2D =
outerTangent(a, b, CircleTrajectory2D.Direction.LEFT)
internal fun rightOuterTangent(a: Circle2D, b: Circle2D): StraightTrajectory = outerTangent(a, b, internal fun rightOuterTangent(a: Circle2D, b: Circle2D): StraightTrajectory2D = outerTangent(
CircleTrajectory.Direction.RIGHT a, b,
CircleTrajectory2D.Direction.RIGHT
) )
private fun outerTangent(a: Circle2D, b: Circle2D, side: CircleTrajectory.Direction): StraightTrajectory = with(Euclidean2DSpace){ private fun outerTangent(a: Circle2D, b: Circle2D, side: CircleTrajectory2D.Direction): StraightTrajectory2D =
val centers = StraightTrajectory(a.center, b.center) with(Euclidean2DSpace) {
val centers = StraightTrajectory2D(a.center, b.center)
val p1 = when (side) { val p1 = when (side) {
CircleTrajectory.Direction.LEFT -> vector( CircleTrajectory2D.Direction.LEFT -> vector(
a.center.x - a.radius * cos(centers.theta), a.center.x - a.radius * cos(centers.bearing),
a.center.y + a.radius * sin(centers.theta) a.center.y + a.radius * sin(centers.bearing)
) )
CircleTrajectory.Direction.RIGHT -> vector(
a.center.x + a.radius * cos(centers.theta), CircleTrajectory2D.Direction.RIGHT -> vector(
a.center.y - a.radius * sin(centers.theta) a.center.x + a.radius * cos(centers.bearing),
a.center.y - a.radius * sin(centers.bearing)
) )
} }
return StraightTrajectory( return StraightTrajectory2D(
p1, p1,
vector(p1.x + (centers.end.x - centers.start.x), p1.y + (centers.end.y - centers.start.y)) vector(p1.x + (centers.end.x - centers.start.x), p1.y + (centers.end.y - centers.start.y))
) )
} }
internal fun leftInnerTangent(base: Circle2D, direction: Circle2D): StraightTrajectory? = internal fun leftInnerTangent(base: Circle2D, direction: Circle2D): StraightTrajectory2D? =
innerTangent(base, direction, CircleTrajectory.Direction.LEFT) innerTangent(base, direction, CircleTrajectory2D.Direction.LEFT)
internal fun rightInnerTangent(base: Circle2D, direction: Circle2D): StraightTrajectory? = internal fun rightInnerTangent(base: Circle2D, direction: Circle2D): StraightTrajectory2D? =
innerTangent(base, direction, CircleTrajectory.Direction.RIGHT) innerTangent(base, direction, CircleTrajectory2D.Direction.RIGHT)
private fun innerTangent(base: Circle2D, direction: Circle2D, side: CircleTrajectory.Direction): StraightTrajectory? = with(Euclidean2DSpace){ private fun innerTangent(base: Circle2D, direction: Circle2D, side: CircleTrajectory2D.Direction): StraightTrajectory2D? =
val centers = StraightTrajectory(base.center, direction.center) with(Euclidean2DSpace) {
val centers = StraightTrajectory2D(base.center, direction.center)
if (centers.length < base.radius * 2) return null if (centers.length < base.radius * 2) return null
val angle = theta( val angle = theta(
when (side) { when (side) {
CircleTrajectory.Direction.LEFT -> centers.theta + acos(base.radius * 2 / centers.length) CircleTrajectory2D.Direction.LEFT -> centers.bearing + acos(base.radius * 2 / centers.length)
CircleTrajectory.Direction.RIGHT -> centers.theta - acos(base.radius * 2 / centers.length) CircleTrajectory2D.Direction.RIGHT -> centers.bearing - acos(base.radius * 2 / centers.length)
} }
) )
val dX = base.radius * sin(angle) val dX = base.radius * sin(angle)
val dY = base.radius * cos(angle) val dY = base.radius * cos(angle)
val p1 = vector(base.center.x + dX, base.center.y + dY) val p1 = vector(base.center.x + dX, base.center.y + dY)
val p2 = vector(direction.center.x - dX, direction.center.y - dY) val p2 = vector(direction.center.x - dX, direction.center.y - dY)
return StraightTrajectory(p1, p2) return StraightTrajectory2D(p1, p2)
} }
internal fun theta(theta: Double): Double = (theta + (2 * PI)) % (2 * PI) internal fun theta(theta: Double): Double = (theta + (2 * PI)) % (2 * PI)
@Suppress("DuplicatedCode") @Suppress("DuplicatedCode")
public class DubinsPath( public class DubinsPath(
public val a: CircleTrajectory, public val a: CircleTrajectory2D,
public val b: Trajectory, public val b: Trajectory2D,
public val c: CircleTrajectory, public val c: CircleTrajectory2D,
) : CompositeTrajectory(listOf(a,b,c)) { ) : CompositeTrajectory2D(listOf(a, b, c)) {
public val type: TYPE = TYPE.valueOf( public val type: TYPE = TYPE.valueOf(
arrayOf( arrayOf(
a.direction.name[0], a.direction.name[0],
if (b is CircleTrajectory) b.direction.name[0] else 'S', if (b is CircleTrajectory2D) b.direction.name[0] else 'S',
c.direction.name[0] c.direction.name[0]
).toCharArray().concatToString() ).toCharArray().concatToString()
) )
@ -92,8 +97,8 @@ public class DubinsPath(
public companion object { public companion object {
public fun all( public fun all(
start: Pose2D, start: DubinsPose2D,
end: Pose2D, end: DubinsPose2D,
turningRadius: Double, turningRadius: Double,
): List<DubinsPath> = listOfNotNull( ): List<DubinsPath> = listOfNotNull(
rlr(start, end, turningRadius), rlr(start, end, turningRadius),
@ -104,132 +109,132 @@ public class DubinsPath(
lsr(start, end, turningRadius) lsr(start, end, turningRadius)
) )
public fun shortest(start: Pose2D, end: Pose2D, turningRadius: Double): DubinsPath = public fun shortest(start: DubinsPose2D, end: DubinsPose2D, turningRadius: Double): DubinsPath =
all(start, end, turningRadius).minBy { it.length } all(start, end, turningRadius).minBy { it.length }
public fun rlr(start: Pose2D, end: Pose2D, turningRadius: Double): DubinsPath? = with(Euclidean2DSpace) { public fun rlr(start: DubinsPose2D, end: DubinsPose2D, turningRadius: Double): DubinsPath? = with(Euclidean2DSpace) {
val c1 = start.getRightCircle(turningRadius) val c1 = start.getRightCircle(turningRadius)
val c2 = end.getRightCircle(turningRadius) val c2 = end.getRightCircle(turningRadius)
val centers = StraightTrajectory(c1.center, c2.center) val centers = StraightTrajectory2D(c1.center, c2.center)
if (centers.length > turningRadius * 4) return null if (centers.length > turningRadius * 4) return null
val firstVariant = run { val firstVariant = run {
var theta = theta(centers.theta - acos(centers.length / (turningRadius * 4))) var theta = theta(centers.bearing - acos(centers.length / (turningRadius * 4)))
var dX = turningRadius * sin(theta) var dX = turningRadius * sin(theta)
var dY = turningRadius * cos(theta) var dY = turningRadius * cos(theta)
val p = vector(c1.center.x + dX * 2, c1.center.y + dY * 2) val p = vector(c1.center.x + dX * 2, c1.center.y + dY * 2)
val e = Circle2D(p, turningRadius) val e = Circle2D(p, turningRadius)
val p1 = vector(c1.center.x + dX, c1.center.y + dY) val p1 = vector(c1.center.x + dX, c1.center.y + dY)
theta = theta(centers.theta + acos(centers.length / (turningRadius * 4))) theta = theta(centers.bearing + acos(centers.length / (turningRadius * 4)))
dX = turningRadius * sin(theta) dX = turningRadius * sin(theta)
dY = turningRadius * cos(theta) dY = turningRadius * cos(theta)
val p2 = vector(e.center.x + dX, e.center.y + dY) val p2 = vector(e.center.x + dX, e.center.y + dY)
val a1 = CircleTrajectory.of(c1.center, start, p1, CircleTrajectory.Direction.RIGHT) val a1 = CircleTrajectory2D.of(c1.center, start, p1, CircleTrajectory2D.Direction.RIGHT)
val a2 = CircleTrajectory.of(e.center, p1, p2, CircleTrajectory.Direction.LEFT) val a2 = CircleTrajectory2D.of(e.center, p1, p2, CircleTrajectory2D.Direction.LEFT)
val a3 = CircleTrajectory.of(c2.center, p2, end, CircleTrajectory.Direction.RIGHT) val a3 = CircleTrajectory2D.of(c2.center, p2, end, CircleTrajectory2D.Direction.RIGHT)
DubinsPath(a1, a2, a3) DubinsPath(a1, a2, a3)
} }
val secondVariant = run { val secondVariant = run {
var theta = theta(centers.theta + acos(centers.length / (turningRadius * 4))) var theta = theta(centers.bearing + acos(centers.length / (turningRadius * 4)))
var dX = turningRadius * sin(theta) var dX = turningRadius * sin(theta)
var dY = turningRadius * cos(theta) var dY = turningRadius * cos(theta)
val p = vector(c1.center.x + dX * 2, c1.center.y + dY * 2) val p = vector(c1.center.x + dX * 2, c1.center.y + dY * 2)
val e = Circle2D(p, turningRadius) val e = Circle2D(p, turningRadius)
val p1 = vector(c1.center.x + dX, c1.center.y + dY) val p1 = vector(c1.center.x + dX, c1.center.y + dY)
theta = theta(centers.theta - acos(centers.length / (turningRadius * 4))) theta = theta(centers.bearing - acos(centers.length / (turningRadius * 4)))
dX = turningRadius * sin(theta) dX = turningRadius * sin(theta)
dY = turningRadius * cos(theta) dY = turningRadius * cos(theta)
val p2 = vector(e.center.x + dX, e.center.y + dY) val p2 = vector(e.center.x + dX, e.center.y + dY)
val a1 = CircleTrajectory.of(c1.center, start, p1, CircleTrajectory.Direction.RIGHT) val a1 = CircleTrajectory2D.of(c1.center, start, p1, CircleTrajectory2D.Direction.RIGHT)
val a2 = CircleTrajectory.of(e.center, p1, p2, CircleTrajectory.Direction.LEFT) val a2 = CircleTrajectory2D.of(e.center, p1, p2, CircleTrajectory2D.Direction.LEFT)
val a3 = CircleTrajectory.of(c2.center, p2, end, CircleTrajectory.Direction.RIGHT) val a3 = CircleTrajectory2D.of(c2.center, p2, end, CircleTrajectory2D.Direction.RIGHT)
DubinsPath(a1, a2, a3) DubinsPath(a1, a2, a3)
} }
return if (firstVariant.length < secondVariant.length) firstVariant else secondVariant return if (firstVariant.length < secondVariant.length) firstVariant else secondVariant
} }
public fun lrl(start: Pose2D, end: Pose2D, turningRadius: Double): DubinsPath? = with(Euclidean2DSpace) { public fun lrl(start: DubinsPose2D, end: DubinsPose2D, turningRadius: Double): DubinsPath? = with(Euclidean2DSpace) {
val c1 = start.getLeftCircle(turningRadius) val c1 = start.getLeftCircle(turningRadius)
val c2 = end.getLeftCircle(turningRadius) val c2 = end.getLeftCircle(turningRadius)
val centers = StraightTrajectory(c1.center, c2.center) val centers = StraightTrajectory2D(c1.center, c2.center)
if (centers.length > turningRadius * 4) return null if (centers.length > turningRadius * 4) return null
val firstVariant = run { val firstVariant = run {
var theta = theta(centers.theta + acos(centers.length / (turningRadius * 4))) var theta = theta(centers.bearing + acos(centers.length / (turningRadius * 4)))
var dX = turningRadius * sin(theta) var dX = turningRadius * sin(theta)
var dY = turningRadius * cos(theta) var dY = turningRadius * cos(theta)
val p = vector(c1.center.x + dX * 2, c1.center.y + dY * 2) val p = vector(c1.center.x + dX * 2, c1.center.y + dY * 2)
val e = Circle2D(p, turningRadius) val e = Circle2D(p, turningRadius)
val p1 = vector(c1.center.x + dX, c1.center.y + dY) val p1 = vector(c1.center.x + dX, c1.center.y + dY)
theta = theta(centers.theta - acos(centers.length / (turningRadius * 4))) theta = theta(centers.bearing - acos(centers.length / (turningRadius * 4)))
dX = turningRadius * sin(theta) dX = turningRadius * sin(theta)
dY = turningRadius * cos(theta) dY = turningRadius * cos(theta)
val p2 = vector(e.center.x + dX, e.center.y + dY) val p2 = vector(e.center.x + dX, e.center.y + dY)
val a1 = CircleTrajectory.of(c1.center, start, p1, CircleTrajectory.Direction.LEFT) val a1 = CircleTrajectory2D.of(c1.center, start, p1, CircleTrajectory2D.Direction.LEFT)
val a2 = CircleTrajectory.of(e.center, p1, p2, CircleTrajectory.Direction.RIGHT) val a2 = CircleTrajectory2D.of(e.center, p1, p2, CircleTrajectory2D.Direction.RIGHT)
val a3 = CircleTrajectory.of(c2.center, p2, end, CircleTrajectory.Direction.LEFT) val a3 = CircleTrajectory2D.of(c2.center, p2, end, CircleTrajectory2D.Direction.LEFT)
DubinsPath(a1, a2, a3) DubinsPath(a1, a2, a3)
} }
val secondVariant = run{ val secondVariant = run{
var theta = theta(centers.theta - acos(centers.length / (turningRadius * 4))) var theta = theta(centers.bearing - acos(centers.length / (turningRadius * 4)))
var dX = turningRadius * sin(theta) var dX = turningRadius * sin(theta)
var dY = turningRadius * cos(theta) var dY = turningRadius * cos(theta)
val p = vector(c1.center.x + dX * 2, c1.center.y + dY * 2) val p = vector(c1.center.x + dX * 2, c1.center.y + dY * 2)
val e = Circle2D(p, turningRadius) val e = Circle2D(p, turningRadius)
val p1 = vector(c1.center.x + dX, c1.center.y + dY) val p1 = vector(c1.center.x + dX, c1.center.y + dY)
theta = theta(centers.theta + acos(centers.length / (turningRadius * 4))) theta = theta(centers.bearing + acos(centers.length / (turningRadius * 4)))
dX = turningRadius * sin(theta) dX = turningRadius * sin(theta)
dY = turningRadius * cos(theta) dY = turningRadius * cos(theta)
val p2 = vector(e.center.x + dX, e.center.y + dY) val p2 = vector(e.center.x + dX, e.center.y + dY)
val a1 = CircleTrajectory.of(c1.center, start, p1, CircleTrajectory.Direction.LEFT) val a1 = CircleTrajectory2D.of(c1.center, start, p1, CircleTrajectory2D.Direction.LEFT)
val a2 = CircleTrajectory.of(e.center, p1, p2, CircleTrajectory.Direction.RIGHT) val a2 = CircleTrajectory2D.of(e.center, p1, p2, CircleTrajectory2D.Direction.RIGHT)
val a3 = CircleTrajectory.of(c2.center, p2, end, CircleTrajectory.Direction.LEFT) val a3 = CircleTrajectory2D.of(c2.center, p2, end, CircleTrajectory2D.Direction.LEFT)
DubinsPath(a1, a2, a3) DubinsPath(a1, a2, a3)
} }
return if (firstVariant.length < secondVariant.length) firstVariant else secondVariant return if (firstVariant.length < secondVariant.length) firstVariant else secondVariant
} }
public fun rsr(start: Pose2D, end: Pose2D, turningRadius: Double): DubinsPath { public fun rsr(start: DubinsPose2D, end: DubinsPose2D, turningRadius: Double): DubinsPath {
val c1 = start.getRightCircle(turningRadius) val c1 = start.getRightCircle(turningRadius)
val c2 = end.getRightCircle(turningRadius) val c2 = end.getRightCircle(turningRadius)
val s = leftOuterTangent(c1, c2) val s = leftOuterTangent(c1, c2)
val a1 = CircleTrajectory.of(c1.center, start, s.start, CircleTrajectory.Direction.RIGHT) val a1 = CircleTrajectory2D.of(c1.center, start, s.start, CircleTrajectory2D.Direction.RIGHT)
val a3 = CircleTrajectory.of(c2.center, s.end, end, CircleTrajectory.Direction.RIGHT) val a3 = CircleTrajectory2D.of(c2.center, s.end, end, CircleTrajectory2D.Direction.RIGHT)
return DubinsPath(a1, s, a3) return DubinsPath(a1, s, a3)
} }
public fun lsl(start: Pose2D, end: Pose2D, turningRadius: Double): DubinsPath { public fun lsl(start: DubinsPose2D, end: DubinsPose2D, turningRadius: Double): DubinsPath {
val c1 = start.getLeftCircle(turningRadius) val c1 = start.getLeftCircle(turningRadius)
val c2 = end.getLeftCircle(turningRadius) val c2 = end.getLeftCircle(turningRadius)
val s = rightOuterTangent(c1, c2) val s = rightOuterTangent(c1, c2)
val a1 = CircleTrajectory.of(c1.center, start, s.start, CircleTrajectory.Direction.LEFT) val a1 = CircleTrajectory2D.of(c1.center, start, s.start, CircleTrajectory2D.Direction.LEFT)
val a3 = CircleTrajectory.of(c2.center, s.end, end, CircleTrajectory.Direction.LEFT) val a3 = CircleTrajectory2D.of(c2.center, s.end, end, CircleTrajectory2D.Direction.LEFT)
return DubinsPath(a1, s, a3) return DubinsPath(a1, s, a3)
} }
public fun rsl(start: Pose2D, end: Pose2D, turningRadius: Double): DubinsPath? { public fun rsl(start: DubinsPose2D, end: DubinsPose2D, turningRadius: Double): DubinsPath? {
val c1 = start.getRightCircle(turningRadius) val c1 = start.getRightCircle(turningRadius)
val c2 = end.getLeftCircle(turningRadius) val c2 = end.getLeftCircle(turningRadius)
val s = rightInnerTangent(c1, c2) val s = rightInnerTangent(c1, c2)
if (s == null || c1.center.distanceTo(c2.center) < turningRadius * 2) return null if (s == null || c1.center.distanceTo(c2.center) < turningRadius * 2) return null
val a1 = CircleTrajectory.of(c1.center, start, s.start, CircleTrajectory.Direction.RIGHT) val a1 = CircleTrajectory2D.of(c1.center, start, s.start, CircleTrajectory2D.Direction.RIGHT)
val a3 = CircleTrajectory.of(c2.center, s.end, end, CircleTrajectory.Direction.LEFT) val a3 = CircleTrajectory2D.of(c2.center, s.end, end, CircleTrajectory2D.Direction.LEFT)
return DubinsPath(a1, s, a3) return DubinsPath(a1, s, a3)
} }
public fun lsr(start: Pose2D, end: Pose2D, turningRadius: Double): DubinsPath? { public fun lsr(start: DubinsPose2D, end: DubinsPose2D, turningRadius: Double): DubinsPath? {
val c1 = start.getLeftCircle(turningRadius) val c1 = start.getLeftCircle(turningRadius)
val c2 = end.getRightCircle(turningRadius) val c2 = end.getRightCircle(turningRadius)
val s = leftInnerTangent(c1, c2) val s = leftInnerTangent(c1, c2)
if (s == null || c1.center.distanceTo(c2.center) < turningRadius * 2) return null if (s == null || c1.center.distanceTo(c2.center) < turningRadius * 2) return null
val a1 = CircleTrajectory.of(c1.center, start, s.start, CircleTrajectory.Direction.LEFT) val a1 = CircleTrajectory2D.of(c1.center, start, s.start, CircleTrajectory2D.Direction.LEFT)
val a3 = CircleTrajectory.of(c2.center, s.end, end, CircleTrajectory.Direction.RIGHT) val a3 = CircleTrajectory2D.of(c2.center, s.end, end, CircleTrajectory2D.Direction.RIGHT)
return DubinsPath(a1, s, a3) return DubinsPath(a1, s, a3)
} }
} }

View File

@ -0,0 +1,36 @@
/*
* Copyright 2018-2022 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.trajectory
import space.kscience.kmath.geometry.DoubleVector2D
import space.kscience.kmath.geometry.Vector
import kotlin.math.atan2
/**
* Combination of [Vector] and its view angle (clockwise from positive y-axis direction)
*/
public interface DubinsPose2D : DoubleVector2D {
public val coordinate: DoubleVector2D
public val bearing: Double
}
public class PhaseVector2D(
override val coordinate: DoubleVector2D,
public val velocity: DoubleVector2D,
) : DubinsPose2D, DoubleVector2D by coordinate {
override val bearing: Double get() = atan2(velocity.x, velocity.y)
}
internal class Pose2DImpl(
override val coordinate: DoubleVector2D,
override val bearing: Double,
) : DubinsPose2D, DoubleVector2D by coordinate{
override fun toString(): String = "Pose2D(x=$x, y=$y, bearing=$bearing)"
}
public fun Pose2D(coordinate: DoubleVector2D, theta: Double): DubinsPose2D = Pose2DImpl(coordinate, theta)

View File

@ -1,33 +0,0 @@
/*
* Copyright 2018-2022 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.trajectory
import space.kscience.kmath.geometry.DoubleVector2D
import space.kscience.kmath.geometry.Vector
import kotlin.math.atan2
/**
* Combination of [Vector] and its view angle
*/
public interface Pose2D: DoubleVector2D{
public val coordinate: DoubleVector2D
public val theta: Double
}
public class PhaseVector2D(
override val coordinate: DoubleVector2D,
public val velocity: DoubleVector2D
): Pose2D, DoubleVector2D by coordinate{
override val theta: Double get() = atan2(velocity.y, velocity.x)
}
internal class Pose2DImpl(
override val coordinate: DoubleVector2D,
override val theta: Double
) : Pose2D, DoubleVector2D by coordinate
public fun Pose2D(coordinate: DoubleVector2D, theta: Double): Pose2D = Pose2DImpl(coordinate, theta)

View File

@ -8,58 +8,61 @@ package space.kscience.kmath.trajectory
import space.kscience.kmath.geometry.Circle2D import space.kscience.kmath.geometry.Circle2D
import space.kscience.kmath.geometry.DoubleVector2D import space.kscience.kmath.geometry.DoubleVector2D
import space.kscience.kmath.geometry.Euclidean2DSpace.distanceTo import space.kscience.kmath.geometry.Euclidean2DSpace.distanceTo
import space.kscience.kmath.geometry.circumference
import kotlin.math.PI import kotlin.math.PI
import kotlin.math.atan2 import kotlin.math.atan2
public sealed interface Trajectory { public sealed interface Trajectory2D {
public val length: Double public val length: Double
} }
/** /**
* Straight path segment. The order of start and end defines the direction * Straight path segment. The order of start and end defines the direction
*/ */
public data class StraightTrajectory( public data class StraightTrajectory2D(
internal val start: DoubleVector2D, internal val start: DoubleVector2D,
internal val end: DoubleVector2D, internal val end: DoubleVector2D,
) : Trajectory { ) : Trajectory2D {
override val length: Double get() = start.distanceTo(end) override val length: Double get() = start.distanceTo(end)
internal val theta: Double get() = theta(atan2(end.x - start.x, end.y - start.y)) internal val bearing: Double get() = theta(atan2(end.x - start.x, end.y - start.y))
} }
/** /**
* An arc segment * An arc segment
*/ */
public data class CircleTrajectory( public data class CircleTrajectory2D(
public val circle: Circle2D, public val circle: Circle2D,
public val start: Pose2D, public val start: DubinsPose2D,
public val end: Pose2D, public val end: DubinsPose2D,
) : Trajectory { ) : Trajectory2D {
public enum class Direction { public enum class Direction {
LEFT, RIGHT LEFT, RIGHT
} }
override val length: Double by lazy { /**
val angle: Double = theta( * Arc length in radians
*/
val arcLength: Double
get() = theta(
if (direction == Direction.LEFT) { if (direction == Direction.LEFT) {
start.theta - end.theta start.bearing - end.bearing
} else { } else {
end.theta - start.theta end.bearing - start.bearing
} }
) )
val proportion = angle / (2 * PI)
circle.circumference * proportion override val length: Double by lazy {
circle.radius * arcLength
} }
internal val direction: Direction by lazy { internal val direction: Direction by lazy {
if (start.y < circle.center.y) { if (start.y < circle.center.y) {
if (start.theta > PI) Direction.RIGHT else Direction.LEFT if (start.bearing > PI) Direction.RIGHT else Direction.LEFT
} else if (start.y > circle.center.y) { } else if (start.y > circle.center.y) {
if (start.theta < PI) Direction.RIGHT else Direction.LEFT if (start.bearing < PI) Direction.RIGHT else Direction.LEFT
} else { } else {
if (start.theta == 0.0) { if (start.bearing == 0.0) {
if (start.x < circle.center.x) Direction.RIGHT else Direction.LEFT if (start.x < circle.center.x) Direction.RIGHT else Direction.LEFT
} else { } else {
if (start.x > circle.center.x) Direction.RIGHT else Direction.LEFT if (start.x > circle.center.x) Direction.RIGHT else Direction.LEFT
@ -68,12 +71,17 @@ public data class CircleTrajectory(
} }
public companion object { public companion object {
public fun of(center: DoubleVector2D, start: DoubleVector2D, end: DoubleVector2D, direction: Direction): CircleTrajectory { public fun of(
center: DoubleVector2D,
start: DoubleVector2D,
end: DoubleVector2D,
direction: Direction,
): CircleTrajectory2D {
fun calculatePose( fun calculatePose(
vector: DoubleVector2D, vector: DoubleVector2D,
theta: Double, theta: Double,
direction: Direction, direction: Direction,
): Pose2D = Pose2D( ): DubinsPose2D = Pose2D(
vector, vector,
when (direction) { when (direction) {
Direction.LEFT -> theta(theta - PI / 2) Direction.LEFT -> theta(theta - PI / 2)
@ -81,16 +89,20 @@ public data class CircleTrajectory(
} }
) )
val s1 = StraightTrajectory(center, start) val s1 = StraightTrajectory2D(center, start)
val s2 = StraightTrajectory(center, end) val s2 = StraightTrajectory2D(center, end)
val pose1 = calculatePose(start, s1.theta, direction) val pose1 = calculatePose(start, s1.bearing, direction)
val pose2 = calculatePose(end, s2.theta, direction) val pose2 = calculatePose(end, s2.bearing, direction)
return CircleTrajectory(Circle2D(center, s1.length), pose1, pose2) val trajectory = CircleTrajectory2D(Circle2D(center, s1.length), pose1, pose2)
if(trajectory.direction != direction){
error("Trajectory direction mismatch")
}
return trajectory
} }
} }
} }
public open class CompositeTrajectory(public val segments: Collection<Trajectory>) : Trajectory { public open class CompositeTrajectory2D(public val segments: Collection<Trajectory2D>) : Trajectory2D {
override val length: Double get() = segments.sumOf { it.length } override val length: Double get() = segments.sumOf { it.length }
} }

View File

@ -1,14 +0,0 @@
/*
* Copyright 2018-2022 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.trajectory
public fun interface TrajectoryCost {
public fun estimate(trajectory: Trajectory): Double
public companion object{
public val length: TrajectoryCost = TrajectoryCost { it.length }
}
}

View File

@ -12,5 +12,5 @@ public fun interface MaxCurvature {
public fun DubinsPath.Companion.shortest( public fun DubinsPath.Companion.shortest(
start: PhaseVector2D, start: PhaseVector2D,
end: PhaseVector2D, end: PhaseVector2D,
computer: MaxCurvature, maxCurvature: MaxCurvature,
): DubinsPath = shortest(start, end, computer.compute(start)) ): DubinsPath = shortest(start, end, maxCurvature.compute(start))

View File

@ -15,14 +15,14 @@ const val maxFloatDelta = 0.000001
fun Double.radiansToDegrees() = this * 180 / PI fun Double.radiansToDegrees() = this * 180 / PI
fun Double.equalFloat(other: Double) = abs(this - other) < maxFloatDelta fun Double.equalFloat(other: Double) = abs(this - other) < maxFloatDelta
fun Pose2D.equalsFloat(other: Pose2D) = x.equalFloat(other.x) && y.equalFloat(other.y) && theta.equalFloat(other.theta) fun DubinsPose2D.equalsFloat(other: DubinsPose2D) = x.equalFloat(other.x) && y.equalFloat(other.y) && bearing.equalFloat(other.bearing)
fun StraightTrajectory.inverse() = StraightTrajectory(end, start) fun StraightTrajectory2D.inverse() = StraightTrajectory2D(end, start)
fun StraightTrajectory.shift(shift: Int, width: Double): StraightTrajectory = with(Euclidean2DSpace){ fun StraightTrajectory2D.shift(shift: Int, width: Double): StraightTrajectory2D = with(Euclidean2DSpace){
val dX = width * sin(inverse().theta) val dX = width * sin(inverse().bearing)
val dY = width * sin(theta) val dY = width * sin(bearing)
return StraightTrajectory( return StraightTrajectory2D(
vector(start.x - dX * shift, start.y - dY * shift), vector(start.x - dX * shift, start.y - dY * shift),
vector(end.x - dX * shift, end.y - dY * shift) vector(end.x - dX * shift, end.y - dY * shift)
) )

View File

@ -16,11 +16,11 @@ class DubinsTests {
@Test @Test
fun dubinsTest() = with(Euclidean2DSpace){ fun dubinsTest() = with(Euclidean2DSpace){
val straight = StraightTrajectory(vector(0.0, 0.0), vector(100.0, 100.0)) val straight = StraightTrajectory2D(vector(0.0, 0.0), vector(100.0, 100.0))
val lineP1 = straight.shift(1, 10.0).inverse() val lineP1 = straight.shift(1, 10.0).inverse()
val start = Pose2D(straight.end, straight.theta) val start = Pose2D(straight.end, straight.bearing)
val end = Pose2D(lineP1.start, lineP1.theta) val end = Pose2D(lineP1.start, lineP1.bearing)
val radius = 2.0 val radius = 2.0
val dubins = DubinsPath.all(start, end, radius) val dubins = DubinsPath.all(start, end, radius)
@ -45,14 +45,14 @@ class DubinsTests {
assertTrue(end.equalsFloat(path.c.end)) assertTrue(end.equalsFloat(path.c.end))
// Not working, theta double precision inaccuracy // Not working, theta double precision inaccuracy
if (path.b is CircleTrajectory) { if (path.b is CircleTrajectory2D) {
val b = path.b as CircleTrajectory val b = path.b as CircleTrajectory2D
assertTrue(path.a.end.equalsFloat(b.start)) assertTrue(path.a.end.equalsFloat(b.start))
assertTrue(path.c.start.equalsFloat(b.end)) assertTrue(path.c.start.equalsFloat(b.end))
} else if (path.b is StraightTrajectory) { } else if (path.b is StraightTrajectory2D) {
val b = path.b as StraightTrajectory val b = path.b as StraightTrajectory2D
assertTrue(path.a.end.equalsFloat(Pose2D(b.start, b.theta))) assertTrue(path.a.end.equalsFloat(Pose2D(b.start, b.bearing)))
assertTrue(path.c.start.equalsFloat(Pose2D(b.end, b.theta))) assertTrue(path.c.start.equalsFloat(Pose2D(b.end, b.bearing)))
} }
} }
} }

View File

@ -8,7 +8,7 @@ package space.kscience.kmath.trajectory.segments
import space.kscience.kmath.geometry.Circle2D import space.kscience.kmath.geometry.Circle2D
import space.kscience.kmath.geometry.Euclidean2DSpace import space.kscience.kmath.geometry.Euclidean2DSpace
import space.kscience.kmath.geometry.circumference import space.kscience.kmath.geometry.circumference
import space.kscience.kmath.trajectory.CircleTrajectory import space.kscience.kmath.trajectory.CircleTrajectory2D
import space.kscience.kmath.trajectory.radiansToDegrees import space.kscience.kmath.trajectory.radiansToDegrees
import kotlin.test.Test import kotlin.test.Test
import kotlin.test.assertEquals import kotlin.test.assertEquals
@ -18,9 +18,9 @@ class ArcTests {
@Test @Test
fun arcTest() = with(Euclidean2DSpace){ fun arcTest() = with(Euclidean2DSpace){
val circle = Circle2D(vector(0.0, 0.0), 2.0) val circle = Circle2D(vector(0.0, 0.0), 2.0)
val arc = CircleTrajectory.of(circle.center, vector(-2.0, 0.0), vector(0.0, 2.0), CircleTrajectory.Direction.RIGHT) val arc = CircleTrajectory2D.of(circle.center, vector(-2.0, 0.0), vector(0.0, 2.0), CircleTrajectory2D.Direction.RIGHT)
assertEquals(circle.circumference / 4, arc.length, 1.0) assertEquals(circle.circumference / 4, arc.length, 1.0)
assertEquals(0.0, arc.start.theta.radiansToDegrees()) assertEquals(0.0, arc.start.bearing.radiansToDegrees())
assertEquals(90.0, arc.end.theta.radiansToDegrees()) assertEquals(90.0, arc.end.bearing.radiansToDegrees())
} }
} }

View File

@ -6,7 +6,7 @@
package space.kscience.kmath.trajectory.segments package space.kscience.kmath.trajectory.segments
import space.kscience.kmath.geometry.Euclidean2DSpace import space.kscience.kmath.geometry.Euclidean2DSpace
import space.kscience.kmath.trajectory.StraightTrajectory import space.kscience.kmath.trajectory.StraightTrajectory2D
import space.kscience.kmath.trajectory.radiansToDegrees import space.kscience.kmath.trajectory.radiansToDegrees
import kotlin.math.pow import kotlin.math.pow
import kotlin.math.sqrt import kotlin.math.sqrt
@ -17,21 +17,21 @@ class LineTests {
@Test @Test
fun lineTest() = with(Euclidean2DSpace){ fun lineTest() = with(Euclidean2DSpace){
val straight = StraightTrajectory(vector(0.0, 0.0), vector(100.0, 100.0)) val straight = StraightTrajectory2D(vector(0.0, 0.0), vector(100.0, 100.0))
assertEquals(sqrt(100.0.pow(2) + 100.0.pow(2)), straight.length) assertEquals(sqrt(100.0.pow(2) + 100.0.pow(2)), straight.length)
assertEquals(45.0, straight.theta.radiansToDegrees()) assertEquals(45.0, straight.bearing.radiansToDegrees())
} }
@Test @Test
fun lineAngleTest() = with(Euclidean2DSpace){ fun lineAngleTest() = with(Euclidean2DSpace){
//val zero = Vector2D(0.0, 0.0) //val zero = Vector2D(0.0, 0.0)
val north = StraightTrajectory(Euclidean2DSpace.zero, vector(0.0, 2.0)) val north = StraightTrajectory2D(zero, vector(0.0, 2.0))
assertEquals(0.0, north.theta.radiansToDegrees()) assertEquals(0.0, north.bearing.radiansToDegrees())
val east = StraightTrajectory(Euclidean2DSpace.zero, vector(2.0, 0.0)) val east = StraightTrajectory2D(zero, vector(2.0, 0.0))
assertEquals(90.0, east.theta.radiansToDegrees()) assertEquals(90.0, east.bearing.radiansToDegrees())
val south = StraightTrajectory(Euclidean2DSpace.zero, vector(0.0, -2.0)) val south = StraightTrajectory2D(zero, vector(0.0, -2.0))
assertEquals(180.0, south.theta.radiansToDegrees()) assertEquals(180.0, south.bearing.radiansToDegrees())
val west = StraightTrajectory(Euclidean2DSpace.zero, vector(-2.0, 0.0)) val west = StraightTrajectory2D(zero, vector(-2.0, 0.0))
assertEquals(270.0, west.theta.radiansToDegrees()) assertEquals(270.0, west.bearing.radiansToDegrees())
} }
} }