add documentation to DoubleTensorAlgebra

This commit is contained in:
AlyaNovikova 2021-05-06 14:23:57 +03:00
parent 35928e7960
commit dc22bd8498

View File

@ -23,6 +23,9 @@ import space.kscience.kmath.tensors.core.getRandomNormals
import space.kscience.kmath.tensors.core.minusIndexFrom import space.kscience.kmath.tensors.core.minusIndexFrom
import kotlin.math.abs import kotlin.math.abs
/**
* Implementation of basic operations over double tensors and basic algebra operations on them.
*/
public open class DoubleTensorAlgebra : TensorPartialDivisionAlgebra<Double> { public open class DoubleTensorAlgebra : TensorPartialDivisionAlgebra<Double> {
public companion object : DoubleTensorAlgebra() public companion object : DoubleTensorAlgebra()
@ -34,6 +37,13 @@ public open class DoubleTensorAlgebra : TensorPartialDivisionAlgebra<Double> {
return tensor.mutableBuffer.array()[tensor.bufferStart] return tensor.mutableBuffer.array()[tensor.bufferStart]
} }
/**
* Constructs a tensor with the specified shape and data.
*
* @param shape the desired shape for the tensor.
* @param buffer one-dimensional data array.
* @return tensor with the [shape] shape and [buffer] data.
*/
public fun fromArray(shape: IntArray, buffer: DoubleArray): DoubleTensor { public fun fromArray(shape: IntArray, buffer: DoubleArray): DoubleTensor {
checkEmptyShape(shape) checkEmptyShape(shape)
checkEmptyDoubleBuffer(buffer) checkEmptyDoubleBuffer(buffer)
@ -48,26 +58,67 @@ public open class DoubleTensorAlgebra : TensorPartialDivisionAlgebra<Double> {
return DoubleTensor(newShape, tensor.mutableBuffer.array(), newStart) return DoubleTensor(newShape, tensor.mutableBuffer.array(), newStart)
} }
/**
* Creates a tensor of a given shape and fills all elements with a given value.
*
* @param value the value to fill the output tensor with.
* @param shape array of integers defining the shape of the output tensor.
* @return tensor with the [shape] shape and filled with [value].
*/
public fun full(value: Double, shape: IntArray): DoubleTensor { public fun full(value: Double, shape: IntArray): DoubleTensor {
checkEmptyShape(shape) checkEmptyShape(shape)
val buffer = DoubleArray(shape.reduce(Int::times)) { value } val buffer = DoubleArray(shape.reduce(Int::times)) { value }
return DoubleTensor(shape, buffer) return DoubleTensor(shape, buffer)
} }
/**
* Returns a tensor with the same shape as `input` filled with [value].
*
* @param value the value to fill the output tensor with.
* @return tensor with the `input` tensor shape and filled with [value].
*/
public fun Tensor<Double>.fullLike(value: Double): DoubleTensor { public fun Tensor<Double>.fullLike(value: Double): DoubleTensor {
val shape = tensor.shape val shape = tensor.shape
val buffer = DoubleArray(tensor.numElements) { value } val buffer = DoubleArray(tensor.numElements) { value }
return DoubleTensor(shape, buffer) return DoubleTensor(shape, buffer)
} }
/**
* Returns a tensor filled with the scalar value 0.0, with the shape defined by the variable argument [shape].
*
* @param shape array of integers defining the shape of the output tensor.
* @return tensor filled with the scalar value 0.0, with the [shape] shape.
*/
public fun zeros(shape: IntArray): DoubleTensor = full(0.0, shape) public fun zeros(shape: IntArray): DoubleTensor = full(0.0, shape)
/**
* Returns a tensor filled with the scalar value 0.0, with the same shape as a given array.
*
* @return tensor filled with the scalar value 0.0, with the same shape as `input` tensor.
*/
public fun Tensor<Double>.zeroesLike(): DoubleTensor = tensor.fullLike(0.0) public fun Tensor<Double>.zeroesLike(): DoubleTensor = tensor.fullLike(0.0)
/**
* Returns a tensor filled with the scalar value 1.0, with the shape defined by the variable argument [shape].
*
* @param shape array of integers defining the shape of the output tensor.
* @return tensor filled with the scalar value 1.0, with the [shape] shape.
*/
public fun ones(shape: IntArray): DoubleTensor = full(1.0, shape) public fun ones(shape: IntArray): DoubleTensor = full(1.0, shape)
/**
* Returns a tensor filled with the scalar value 1.0, with the same shape as a given array.
*
* @return tensor filled with the scalar value 1.0, with the same shape as `input` tensor.
*/
public fun Tensor<Double>.onesLike(): DoubleTensor = tensor.fullLike(1.0) public fun Tensor<Double>.onesLike(): DoubleTensor = tensor.fullLike(1.0)
/**
* Returns a 2-D tensor with shape ([n], [n]), with ones on the diagonal and zeros elsewhere.
*
* @param n the number of rows and columns
* @return a 2-D tensor with ones on the diagonal and zeros elsewhere.
*/
public fun eye(n: Int): DoubleTensor { public fun eye(n: Int): DoubleTensor {
val shape = intArrayOf(n, n) val shape = intArrayOf(n, n)
val buffer = DoubleArray(n * n) { 0.0 } val buffer = DoubleArray(n * n) { 0.0 }
@ -78,6 +129,11 @@ public open class DoubleTensorAlgebra : TensorPartialDivisionAlgebra<Double> {
return res return res
} }
/**
* Return a copy of the tensor.
*
* @return a copy of the `input` tensor with a copied buffer.
*/
public fun Tensor<Double>.copy(): DoubleTensor { public fun Tensor<Double>.copy(): DoubleTensor {
return DoubleTensor(tensor.shape, tensor.mutableBuffer.array().copyOf(), tensor.bufferStart) return DoubleTensor(tensor.shape, tensor.mutableBuffer.array().copyOf(), tensor.bufferStart)
} }
@ -359,7 +415,6 @@ public open class DoubleTensorAlgebra : TensorPartialDivisionAlgebra<Double> {
return resTensor.tensor return resTensor.tensor
} }
public fun Tensor<Double>.map(transform: (Double) -> Double): DoubleTensor { public fun Tensor<Double>.map(transform: (Double) -> Double): DoubleTensor {
return DoubleTensor( return DoubleTensor(
tensor.shape, tensor.shape,