MHS first implementation | STUD-7

This commit is contained in:
vasilev.ilia 2024-04-22 21:57:24 +03:00
parent fc0393436f
commit d0d250c67f

View File

@ -0,0 +1,42 @@
/*
* Copyright 2018-2024 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.samplers
import space.kscience.kmath.chains.BlockingDoubleChain
import space.kscience.kmath.distributions.NormalDistribution
import space.kscience.kmath.random.RandomGenerator
import space.kscience.kmath.structures.Float64Buffer
/**
* [MetropolisHastings algorithm](https://en.wikipedia.org/wiki/Metropolis%E2%80%93Hastings_algorithm) for sampling
* target distribution [distribution].
*
*/
public class MetropolisHastingsSampler(
public val distribution: (x : Double) -> Double,
public val initState : Double = 0.0,
) : BlockingDoubleSampler {
override fun sample(generator: RandomGenerator): BlockingDoubleChain = object : BlockingDoubleChain {
var currState = initState
override fun nextBufferBlocking(size: Int): Float64Buffer {
val u = generator.nextDoubleBuffer(size)
return Float64Buffer(size) {index ->
val proposalDist = NormalDistribution(currState, 0.01)
val newState = proposalDist.sample(RandomGenerator.default(1)).nextBufferBlocking(1).get(0)
val acceptanceRatio = distribution(newState) / distribution(currState)
if (u[index] <= acceptanceRatio) {
currState = newState
}
currState
}
}
override suspend fun fork(): BlockingDoubleChain = BoxMullerSampler.sample(generator.fork())
}
}