Initial Optimization API
This commit is contained in:
parent
e216fd50f5
commit
cd05ca6e95
@ -11,10 +11,7 @@ allprojects {
|
||||
jcenter()
|
||||
maven("https://clojars.org/repo")
|
||||
maven("https://dl.bintray.com/egor-bogomolov/astminer/")
|
||||
maven("https://dl.bintray.com/kotlin/kotlin-eap")
|
||||
maven("https://dl.bintray.com/kotlin/kotlinx")
|
||||
maven("https://dl.bintray.com/mipt-npm/dev")
|
||||
maven("https://dl.bintray.com/mipt-npm/kscience")
|
||||
maven("https://dl.bintray.com/hotkeytlt/maven")
|
||||
maven("https://jitpack.io")
|
||||
maven("http://logicrunch.research.it.uu.se/maven/")
|
||||
mavenCentral()
|
||||
|
@ -15,10 +15,7 @@ import space.kscience.kmath.expressions.SymbolIndexer
|
||||
import space.kscience.kmath.expressions.derivative
|
||||
import space.kscience.kmath.misc.Symbol
|
||||
import space.kscience.kmath.misc.UnstableKMathAPI
|
||||
import space.kscience.kmath.optimization.FunctionOptimization
|
||||
import space.kscience.kmath.optimization.OptimizationFeature
|
||||
import space.kscience.kmath.optimization.OptimizationProblemFactory
|
||||
import space.kscience.kmath.optimization.OptimizationResult
|
||||
import space.kscience.kmath.optimization.*
|
||||
import kotlin.reflect.KClass
|
||||
|
||||
public operator fun PointValuePair.component1(): DoubleArray = point
|
||||
@ -27,7 +24,8 @@ public operator fun PointValuePair.component2(): Double = value
|
||||
@OptIn(UnstableKMathAPI::class)
|
||||
public class CMOptimization(
|
||||
override val symbols: List<Symbol>,
|
||||
) : FunctionOptimization<Double>, SymbolIndexer, OptimizationFeature {
|
||||
) : FunctionOptimization<Double>, NoDerivFunctionOptimization<Double>, SymbolIndexer, OptimizationFeature {
|
||||
|
||||
private val optimizationData: HashMap<KClass<out OptimizationData>, OptimizationData> = HashMap()
|
||||
private var optimizerBuilder: (() -> MultivariateOptimizer)? = null
|
||||
public var convergenceChecker: ConvergenceChecker<PointValuePair> = SimpleValueChecker(
|
||||
@ -36,6 +34,12 @@ public class CMOptimization(
|
||||
DEFAULT_MAX_ITER
|
||||
)
|
||||
|
||||
override var maximize: Boolean
|
||||
get() = optimizationData[GoalType::class] == GoalType.MAXIMIZE
|
||||
set(value) {
|
||||
optimizationData[GoalType::class] = if (value) GoalType.MAXIMIZE else GoalType.MINIMIZE
|
||||
}
|
||||
|
||||
public fun addOptimizationData(data: OptimizationData) {
|
||||
optimizationData[data::class] = data
|
||||
}
|
||||
@ -50,7 +54,7 @@ public class CMOptimization(
|
||||
addOptimizationData(InitialGuess(map.toDoubleArray()))
|
||||
}
|
||||
|
||||
public override fun expression(expression: Expression<Double>): Unit {
|
||||
public override fun function(expression: Expression<Double>): Unit {
|
||||
val objectiveFunction = ObjectiveFunction {
|
||||
val args = it.toMap()
|
||||
expression(args)
|
||||
@ -58,8 +62,8 @@ public class CMOptimization(
|
||||
addOptimizationData(objectiveFunction)
|
||||
}
|
||||
|
||||
public override fun diffExpression(expression: DifferentiableExpression<Double, Expression<Double>>) {
|
||||
expression(expression)
|
||||
public override fun diffFunction(expression: DifferentiableExpression<Double, Expression<Double>>) {
|
||||
function(expression)
|
||||
val gradientFunction = ObjectiveFunctionGradient {
|
||||
val args = it.toMap()
|
||||
DoubleArray(symbols.size) { index ->
|
||||
|
@ -1,13 +1,13 @@
|
||||
package space.kscience.kmath.commons.optimization
|
||||
|
||||
import org.apache.commons.math3.analysis.differentiation.DerivativeStructure
|
||||
import org.apache.commons.math3.optim.nonlinear.scalar.GoalType
|
||||
import space.kscience.kmath.commons.expressions.DerivativeStructureField
|
||||
import space.kscience.kmath.expressions.DifferentiableExpression
|
||||
import space.kscience.kmath.expressions.Expression
|
||||
import space.kscience.kmath.misc.Symbol
|
||||
import space.kscience.kmath.optimization.FunctionOptimization
|
||||
import space.kscience.kmath.optimization.OptimizationResult
|
||||
import space.kscience.kmath.optimization.noDerivOptimizeWith
|
||||
import space.kscience.kmath.optimization.optimizeWith
|
||||
import space.kscience.kmath.structures.Buffer
|
||||
import space.kscience.kmath.structures.asBuffer
|
||||
@ -44,7 +44,7 @@ public fun FunctionOptimization.Companion.chiSquared(
|
||||
public fun Expression<Double>.optimize(
|
||||
vararg symbols: Symbol,
|
||||
configuration: CMOptimization.() -> Unit,
|
||||
): OptimizationResult<Double> = optimizeWith(CMOptimization, symbols = symbols, configuration)
|
||||
): OptimizationResult<Double> = noDerivOptimizeWith(CMOptimization, symbols = symbols, configuration)
|
||||
|
||||
/**
|
||||
* Optimize differentiable expression
|
||||
@ -58,10 +58,11 @@ public fun DifferentiableExpression<Double, Expression<Double>>.minimize(
|
||||
vararg startPoint: Pair<Symbol, Double>,
|
||||
configuration: CMOptimization.() -> Unit = {},
|
||||
): OptimizationResult<Double> {
|
||||
require(startPoint.isNotEmpty()) { "Must provide a list of symbols for optimization" }
|
||||
val problem = CMOptimization(startPoint.map { it.first }).apply(configuration)
|
||||
problem.diffExpression(this)
|
||||
problem.initialGuess(startPoint.toMap())
|
||||
problem.goal(GoalType.MINIMIZE)
|
||||
return problem.optimize()
|
||||
val symbols = startPoint.map { it.first }.toTypedArray()
|
||||
return optimize(*symbols){
|
||||
maximize = false
|
||||
initialGuess(startPoint.toMap())
|
||||
diffFunction(this@minimize)
|
||||
configuration()
|
||||
}
|
||||
}
|
@ -1,3 +1,18 @@
|
||||
public final class space/kscience/kmath/data/ColumnarDataKt {
|
||||
}
|
||||
|
||||
public final class space/kscience/kmath/data/XYColumnarData$DefaultImpls {
|
||||
public static fun get (Lspace/kscience/kmath/data/XYColumnarData;Lspace/kscience/kmath/misc/Symbol;)Lspace/kscience/kmath/structures/Buffer;
|
||||
}
|
||||
|
||||
public final class space/kscience/kmath/data/XYColumnarDataKt {
|
||||
public static synthetic fun asXYData$default (Lspace/kscience/kmath/nd/Structure2D;IIILjava/lang/Object;)Lspace/kscience/kmath/data/XYColumnarData;
|
||||
}
|
||||
|
||||
public final class space/kscience/kmath/data/XYZColumnarData$DefaultImpls {
|
||||
public static fun get (Lspace/kscience/kmath/data/XYZColumnarData;Lspace/kscience/kmath/misc/Symbol;)Lspace/kscience/kmath/structures/Buffer;
|
||||
}
|
||||
|
||||
public abstract interface class space/kscience/kmath/domains/Domain {
|
||||
public abstract fun contains (Lspace/kscience/kmath/structures/Buffer;)Z
|
||||
public abstract fun getDimension ()I
|
||||
@ -603,15 +618,6 @@ public final class space/kscience/kmath/misc/CumulativeKt {
|
||||
public static final fun cumulativeSumOfLong (Lkotlin/sequences/Sequence;)Lkotlin/sequences/Sequence;
|
||||
}
|
||||
|
||||
public final class space/kscience/kmath/misc/NDStructureColumn : space/kscience/kmath/structures/Buffer {
|
||||
public fun <init> (Lspace/kscience/kmath/nd/Structure2D;I)V
|
||||
public fun get (I)Ljava/lang/Object;
|
||||
public final fun getColumn ()I
|
||||
public fun getSize ()I
|
||||
public final fun getStructure ()Lspace/kscience/kmath/nd/Structure2D;
|
||||
public fun iterator ()Ljava/util/Iterator;
|
||||
}
|
||||
|
||||
public final class space/kscience/kmath/misc/StringSymbol : space/kscience/kmath/misc/Symbol {
|
||||
public static final synthetic fun box-impl (Ljava/lang/String;)Lspace/kscience/kmath/misc/StringSymbol;
|
||||
public static fun constructor-impl (Ljava/lang/String;)Ljava/lang/String;
|
||||
@ -644,17 +650,6 @@ public final class space/kscience/kmath/misc/SymbolKt {
|
||||
public abstract interface annotation class space/kscience/kmath/misc/UnstableKMathAPI : java/lang/annotation/Annotation {
|
||||
}
|
||||
|
||||
public final class space/kscience/kmath/misc/XYPointSet$DefaultImpls {
|
||||
public static fun get (Lspace/kscience/kmath/misc/XYPointSet;Lspace/kscience/kmath/misc/Symbol;)Lspace/kscience/kmath/structures/Buffer;
|
||||
}
|
||||
|
||||
public final class space/kscience/kmath/misc/XYPointSetKt {
|
||||
}
|
||||
|
||||
public final class space/kscience/kmath/misc/XYZPointSet$DefaultImpls {
|
||||
public static fun get (Lspace/kscience/kmath/misc/XYZPointSet;Lspace/kscience/kmath/misc/Symbol;)Lspace/kscience/kmath/structures/Buffer;
|
||||
}
|
||||
|
||||
public abstract interface class space/kscience/kmath/nd/AlgebraND {
|
||||
public static final field Companion Lspace/kscience/kmath/nd/AlgebraND$Companion;
|
||||
public abstract fun combine (Lspace/kscience/kmath/nd/StructureND;Lspace/kscience/kmath/nd/StructureND;Lkotlin/jvm/functions/Function3;)Lspace/kscience/kmath/nd/StructureND;
|
||||
|
@ -0,0 +1,34 @@
|
||||
package space.kscience.kmath.data
|
||||
|
||||
import space.kscience.kmath.misc.Symbol
|
||||
import space.kscience.kmath.misc.UnstableKMathAPI
|
||||
import space.kscience.kmath.nd.Structure2D
|
||||
import space.kscience.kmath.structures.Buffer
|
||||
|
||||
/**
|
||||
* A column-based data set with all columns of the same size (not necessary fixed in time).
|
||||
* The column could be retrieved by a [get] operation.
|
||||
*/
|
||||
@UnstableKMathAPI
|
||||
public interface ColumnarData<out T> {
|
||||
public val size: Int
|
||||
|
||||
public operator fun get(symbol: Symbol): Buffer<T>
|
||||
}
|
||||
|
||||
/**
|
||||
* A zero-copy method to represent a [Structure2D] as a two-column x-y data.
|
||||
* There could more than two columns in the structure.
|
||||
*/
|
||||
@UnstableKMathAPI
|
||||
public fun <T> Structure2D<T>.asColumnarData(mapping: Map<Symbol, Int>): ColumnarData<T> {
|
||||
require(shape[1] >= mapping.maxOf { it.value }) { "Column index out of bounds" }
|
||||
return object : ColumnarData<T> {
|
||||
override val size: Int get() = shape[0]
|
||||
override fun get(symbol: Symbol): Buffer<T> {
|
||||
val index = mapping[symbol] ?: error("No column mapping for symbol $symbol")
|
||||
return columns[index]
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -0,0 +1,55 @@
|
||||
package space.kscience.kmath.data
|
||||
|
||||
import space.kscience.kmath.misc.Symbol
|
||||
import space.kscience.kmath.misc.UnstableKMathAPI
|
||||
import space.kscience.kmath.nd.Structure2D
|
||||
import space.kscience.kmath.structures.Buffer
|
||||
import kotlin.math.max
|
||||
|
||||
/**
|
||||
* The buffer of X values.
|
||||
*/
|
||||
@UnstableKMathAPI
|
||||
public interface XYColumnarData<T, out X : T, out Y : T> : ColumnarData<T> {
|
||||
/**
|
||||
* The buffer of X values
|
||||
*/
|
||||
public val x: Buffer<X>
|
||||
|
||||
/**
|
||||
* The buffer of Y values.
|
||||
*/
|
||||
public val y: Buffer<Y>
|
||||
|
||||
override fun get(symbol: Symbol): Buffer<T> = when (symbol) {
|
||||
Symbol.x -> x
|
||||
Symbol.y -> y
|
||||
else -> error("A column for symbol $symbol not found")
|
||||
}
|
||||
}
|
||||
|
||||
@Suppress("FunctionName")
|
||||
@UnstableKMathAPI
|
||||
public fun <T, X : T, Y : T> XYColumnarData(x: Buffer<X>, y: Buffer<Y>): XYColumnarData<T, X, Y> {
|
||||
require(x.size == y.size) { "Buffer size mismatch. x buffer size is ${x.size}, y buffer size is ${y.size}" }
|
||||
return object : XYColumnarData<T, X, Y> {
|
||||
override val size: Int = x.size
|
||||
override val x: Buffer<X> = x
|
||||
override val y: Buffer<Y> = y
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* A zero-copy method to represent a [Structure2D] as a two-column x-y data.
|
||||
* There could more than two columns in the structure.
|
||||
*/
|
||||
@UnstableKMathAPI
|
||||
public fun <T> Structure2D<T>.asXYData(xIndex: Int = 0, yIndex: Int = 1): XYColumnarData<T, T, T> {
|
||||
require(shape[1] >= max(xIndex, yIndex)) { "Column index out of bounds" }
|
||||
return object : XYColumnarData<T, T, T> {
|
||||
override val size: Int get() = this@asXYData.shape[0]
|
||||
override val x: Buffer<T> get() = columns[xIndex]
|
||||
override val y: Buffer<T> get() = columns[yIndex]
|
||||
}
|
||||
}
|
@ -0,0 +1,21 @@
|
||||
package space.kscience.kmath.data
|
||||
|
||||
import space.kscience.kmath.misc.Symbol
|
||||
import space.kscience.kmath.misc.UnstableKMathAPI
|
||||
import space.kscience.kmath.structures.Buffer
|
||||
|
||||
/**
|
||||
* A [XYColumnarData] with guaranteed [x], [y] and [z] columns designated by corresponding symbols.
|
||||
* Inherits [XYColumnarData].
|
||||
*/
|
||||
@UnstableKMathAPI
|
||||
public interface XYZColumnarData<T, out X : T, out Y : T, out Z : T> : XYColumnarData<T, X, Y> {
|
||||
public val z: Buffer<Z>
|
||||
|
||||
override fun get(symbol: Symbol): Buffer<T> = when (symbol) {
|
||||
Symbol.x -> x
|
||||
Symbol.y -> y
|
||||
Symbol.z -> z
|
||||
else -> error("A column for symbol $symbol not found")
|
||||
}
|
||||
}
|
@ -1,15 +0,0 @@
|
||||
package space.kscience.kmath.misc
|
||||
|
||||
import space.kscience.kmath.structures.Buffer
|
||||
|
||||
/**
|
||||
* A column-based data set with all columns of the same size (not necessary fixed in time).
|
||||
* The column could be retrieved by a [get] operation.
|
||||
*/
|
||||
@UnstableKMathAPI
|
||||
public interface ColumnarData<out T> {
|
||||
public val size: Int
|
||||
|
||||
public operator fun get(symbol: Symbol): Buffer<T>
|
||||
}
|
||||
|
@ -1,98 +0,0 @@
|
||||
package space.kscience.kmath.misc
|
||||
|
||||
import space.kscience.kmath.nd.Structure2D
|
||||
import space.kscience.kmath.structures.Buffer
|
||||
|
||||
/**
|
||||
* Pair of associated buffers for X and Y axes values.
|
||||
*
|
||||
* @param X the type of X values.
|
||||
* @param Y the type of Y values.
|
||||
*/
|
||||
public interface XYPointSet<X, Y> {
|
||||
/**
|
||||
* The size of all the involved buffers.
|
||||
*/
|
||||
public val size: Int
|
||||
|
||||
/**
|
||||
* The buffer of X values.
|
||||
*/
|
||||
@UnstableKMathAPI
|
||||
public interface XYPointSet<T, X : T, Y : T> : ColumnarData<T> {
|
||||
public val x: Buffer<X>
|
||||
|
||||
/**
|
||||
* The buffer of Y values.
|
||||
*/
|
||||
public val y: Buffer<Y>
|
||||
|
||||
override fun get(symbol: Symbol): Buffer<T> = when (symbol) {
|
||||
Symbol.x -> x
|
||||
Symbol.y -> y
|
||||
else -> error("A column for symbol $symbol not found")
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Triple of associated buffers for X, Y, and Z axes values.
|
||||
*
|
||||
* @param X the type of X values.
|
||||
* @param Y the type of Y values.
|
||||
* @param Z the type of Z values.
|
||||
*/
|
||||
public interface XYZPointSet<X, Y, Z> : XYPointSet<X, Y> {
|
||||
/**
|
||||
* The buffer of Z values.
|
||||
*/
|
||||
@UnstableKMathAPI
|
||||
public interface XYZPointSet<T, X : T, Y : T, Z : T> : XYPointSet<T, X, Y> {
|
||||
public val z: Buffer<Z>
|
||||
|
||||
override fun get(symbol: Symbol): Buffer<T> = when (symbol) {
|
||||
Symbol.x -> x
|
||||
Symbol.y -> y
|
||||
Symbol.z -> z
|
||||
else -> error("A column for symbol $symbol not found")
|
||||
}
|
||||
}
|
||||
|
||||
internal fun <T : Comparable<T>> insureSorted(points: XYPointSet<T, *>) {
|
||||
for (i in 0 until points.size - 1)
|
||||
require(points.x[i + 1] > points.x[i]) { "Input data is not sorted at index $i" }
|
||||
}
|
||||
|
||||
public class NDStructureColumn<T>(public val structure: Structure2D<T>, public val column: Int) : Buffer<T> {
|
||||
public override val size: Int
|
||||
get() = structure.rowNum
|
||||
|
||||
init {
|
||||
require(column < structure.colNum) { "Column index is outside of structure column range" }
|
||||
}
|
||||
|
||||
public override operator fun get(index: Int): T = structure[index, column]
|
||||
public override operator fun iterator(): Iterator<T> = sequence { repeat(size) { yield(get(it)) } }.iterator()
|
||||
}
|
||||
|
||||
@UnstableKMathAPI
|
||||
public class BufferXYPointSet<T, X : T, Y : T>(
|
||||
public override val x: Buffer<X>,
|
||||
public override val y: Buffer<Y>,
|
||||
) : XYPointSet<T, X, Y> {
|
||||
public override val size: Int get() = x.size
|
||||
|
||||
init {
|
||||
require(x.size == y.size) { "Sizes of x and y buffers should be the same" }
|
||||
}
|
||||
}
|
||||
|
||||
@UnstableKMathAPI
|
||||
public fun <T> Structure2D<T>.asXYPointSet(): XYPointSet<T, T, T> {
|
||||
require(shape[1] == 2) { "Structure second dimension should be of size 2" }
|
||||
|
||||
return object : XYPointSet<T, T, T> {
|
||||
override val size: Int get() = this@asXYPointSet.shape[0]
|
||||
override val x: Buffer<T> get() = NDStructureColumn(this@asXYPointSet, 0)
|
||||
override val y: Buffer<T> get() = NDStructureColumn(this@asXYPointSet, 1)
|
||||
}
|
||||
}
|
@ -1,17 +1,17 @@
|
||||
@file:OptIn(UnstableKMathAPI::class)
|
||||
|
||||
package space.kscience.kmath.interpolation
|
||||
|
||||
import space.kscience.kmath.data.XYColumnarData
|
||||
import space.kscience.kmath.functions.PiecewisePolynomial
|
||||
import space.kscience.kmath.functions.value
|
||||
import space.kscience.kmath.misc.BufferXYPointSet
|
||||
import space.kscience.kmath.misc.UnstableKMathAPI
|
||||
import space.kscience.kmath.misc.XYPointSet
|
||||
import space.kscience.kmath.operations.Ring
|
||||
import space.kscience.kmath.structures.Buffer
|
||||
import space.kscience.kmath.structures.asBuffer
|
||||
|
||||
public fun interface Interpolator<T, X : T, Y : T> {
|
||||
public fun interpolate(points: XYPointSet<T, X, Y>): (X) -> Y
|
||||
public fun interpolate(points: XYColumnarData<T, X, Y>): (X) -> Y
|
||||
}
|
||||
|
||||
public interface PolynomialInterpolator<T : Comparable<T>> : Interpolator<T, T, T> {
|
||||
@ -19,9 +19,9 @@ public interface PolynomialInterpolator<T : Comparable<T>> : Interpolator<T, T,
|
||||
|
||||
public fun getDefaultValue(): T = error("Out of bounds")
|
||||
|
||||
public fun interpolatePolynomials(points: XYPointSet<T, T, T>): PiecewisePolynomial<T>
|
||||
public fun interpolatePolynomials(points: XYColumnarData<T, T, T>): PiecewisePolynomial<T>
|
||||
|
||||
override fun interpolate(points: XYPointSet<T, T, T>): (T) -> T = { x ->
|
||||
override fun interpolate(points: XYColumnarData<T, T, T>): (T) -> T = { x ->
|
||||
interpolatePolynomials(points).value(algebra, x) ?: getDefaultValue()
|
||||
}
|
||||
}
|
||||
@ -31,20 +31,20 @@ public fun <T : Comparable<T>> PolynomialInterpolator<T>.interpolatePolynomials(
|
||||
x: Buffer<T>,
|
||||
y: Buffer<T>,
|
||||
): PiecewisePolynomial<T> {
|
||||
val pointSet = BufferXYPointSet(x, y)
|
||||
val pointSet = XYColumnarData(x, y)
|
||||
return interpolatePolynomials(pointSet)
|
||||
}
|
||||
|
||||
public fun <T : Comparable<T>> PolynomialInterpolator<T>.interpolatePolynomials(
|
||||
data: Map<T, T>,
|
||||
): PiecewisePolynomial<T> {
|
||||
val pointSet = BufferXYPointSet(data.keys.toList().asBuffer(), data.values.toList().asBuffer())
|
||||
val pointSet = XYColumnarData(data.keys.toList().asBuffer(), data.values.toList().asBuffer())
|
||||
return interpolatePolynomials(pointSet)
|
||||
}
|
||||
|
||||
public fun <T : Comparable<T>> PolynomialInterpolator<T>.interpolatePolynomials(
|
||||
data: List<Pair<T, T>>,
|
||||
): PiecewisePolynomial<T> {
|
||||
val pointSet = BufferXYPointSet(data.map { it.first }.asBuffer(), data.map { it.second }.asBuffer())
|
||||
val pointSet = XYColumnarData(data.map { it.first }.asBuffer(), data.map { it.second }.asBuffer())
|
||||
return interpolatePolynomials(pointSet)
|
||||
}
|
||||
|
@ -1,15 +1,15 @@
|
||||
package space.kscience.kmath.interpolation
|
||||
|
||||
import space.kscience.kmath.data.XYColumnarData
|
||||
import space.kscience.kmath.functions.OrderedPiecewisePolynomial
|
||||
import space.kscience.kmath.functions.PiecewisePolynomial
|
||||
import space.kscience.kmath.functions.Polynomial
|
||||
import space.kscience.kmath.misc.UnstableKMathAPI
|
||||
import space.kscience.kmath.misc.XYPointSet
|
||||
import space.kscience.kmath.operations.Field
|
||||
import space.kscience.kmath.operations.invoke
|
||||
|
||||
@OptIn(UnstableKMathAPI::class)
|
||||
internal fun <T : Comparable<T>> insureSorted(points: XYPointSet<*, T, *>) {
|
||||
internal fun <T : Comparable<T>> insureSorted(points: XYColumnarData<*, T, *>) {
|
||||
for (i in 0 until points.size - 1)
|
||||
require(points.x[i + 1] > points.x[i]) { "Input data is not sorted at index $i" }
|
||||
}
|
||||
@ -19,7 +19,7 @@ internal fun <T : Comparable<T>> insureSorted(points: XYPointSet<*, T, *>) {
|
||||
*/
|
||||
public class LinearInterpolator<T : Comparable<T>>(public override val algebra: Field<T>) : PolynomialInterpolator<T> {
|
||||
@OptIn(UnstableKMathAPI::class)
|
||||
public override fun interpolatePolynomials(points: XYPointSet<T, T, T>): PiecewisePolynomial<T> = algebra {
|
||||
public override fun interpolatePolynomials(points: XYColumnarData<T, T, T>): PiecewisePolynomial<T> = algebra {
|
||||
require(points.size > 0) { "Point array should not be empty" }
|
||||
insureSorted(points)
|
||||
|
||||
|
@ -1,10 +1,10 @@
|
||||
package space.kscience.kmath.interpolation
|
||||
|
||||
import space.kscience.kmath.data.XYColumnarData
|
||||
import space.kscience.kmath.functions.OrderedPiecewisePolynomial
|
||||
import space.kscience.kmath.functions.PiecewisePolynomial
|
||||
import space.kscience.kmath.functions.Polynomial
|
||||
import space.kscience.kmath.misc.UnstableKMathAPI
|
||||
import space.kscience.kmath.misc.XYPointSet
|
||||
import space.kscience.kmath.operations.Field
|
||||
import space.kscience.kmath.operations.invoke
|
||||
import space.kscience.kmath.structures.MutableBufferFactory
|
||||
@ -23,7 +23,7 @@ public class SplineInterpolator<T : Comparable<T>>(
|
||||
//TODO possibly optimize zeroed buffers
|
||||
|
||||
@OptIn(UnstableKMathAPI::class)
|
||||
public override fun interpolatePolynomials(points: XYPointSet<T, T, T>): PiecewisePolynomial<T> = algebra {
|
||||
public override fun interpolatePolynomials(points: XYColumnarData<T, T, T>): PiecewisePolynomial<T> = algebra {
|
||||
require(points.size >= 3) { "Can't use spline interpolator with less than 3 points" }
|
||||
insureSorted(points)
|
||||
// Number of intervals. The number of data points is n + 1.
|
||||
|
@ -18,8 +18,10 @@ import space.kscience.kmath.operations.NumericAlgebra
|
||||
* @param A the [NumericAlgebra] of [T].
|
||||
* @property expr the underlying [MstExpression].
|
||||
*/
|
||||
public inline class DifferentiableMstExpression<T, A>(public val expr: MstExpression<T, A>) :
|
||||
DifferentiableExpression<T, MstExpression<T, A>> where A : NumericAlgebra<T>, T : Number {
|
||||
public inline class DifferentiableMstExpression<T: Number, A>(
|
||||
public val expr: MstExpression<T, A>,
|
||||
) : DifferentiableExpression<T, MstExpression<T, A>> where A : NumericAlgebra<T> {
|
||||
|
||||
public constructor(algebra: A, mst: MST) : this(MstExpression(algebra, mst))
|
||||
|
||||
/**
|
||||
|
@ -1,17 +0,0 @@
|
||||
package space.kscience.kmath.optimization
|
||||
|
||||
import space.kscience.kmath.expressions.DifferentiableExpression
|
||||
import space.kscience.kmath.misc.StringSymbol
|
||||
import space.kscience.kmath.misc.Symbol
|
||||
import space.kscience.kmath.structures.Buffer
|
||||
|
||||
public interface DataFit<T : Any> : Optimization<T> {
|
||||
|
||||
public fun modelAndData(
|
||||
x: Buffer<T>,
|
||||
y: Buffer<T>,
|
||||
yErr: Buffer<T>,
|
||||
model: DifferentiableExpression<T, *>,
|
||||
xSymbol: Symbol = StringSymbol("x"),
|
||||
)
|
||||
}
|
@ -4,43 +4,29 @@ import space.kscience.kmath.expressions.AutoDiffProcessor
|
||||
import space.kscience.kmath.expressions.DifferentiableExpression
|
||||
import space.kscience.kmath.expressions.Expression
|
||||
import space.kscience.kmath.expressions.ExpressionAlgebra
|
||||
import space.kscience.kmath.misc.StringSymbol
|
||||
import space.kscience.kmath.misc.Symbol
|
||||
import space.kscience.kmath.operations.ExtendedField
|
||||
import space.kscience.kmath.structures.Buffer
|
||||
import space.kscience.kmath.structures.indices
|
||||
import kotlin.math.pow
|
||||
|
||||
/**
|
||||
* A likelihood function optimization problem
|
||||
* A likelihood function optimization problem with provided derivatives
|
||||
*/
|
||||
public interface FunctionOptimization<T: Any>: Optimization<T>, DataFit<T> {
|
||||
public interface FunctionOptimization<T : Any> : Optimization<T> {
|
||||
/**
|
||||
* The optimization direction. If true search for function maximum, if false, search for the minimum
|
||||
*/
|
||||
public var maximize: Boolean
|
||||
|
||||
/**
|
||||
* Define the initial guess for the optimization problem
|
||||
*/
|
||||
public fun initialGuess(map: Map<Symbol, T>)
|
||||
|
||||
/**
|
||||
* Set an objective function expression
|
||||
*/
|
||||
public fun expression(expression: Expression<T>)
|
||||
|
||||
/**
|
||||
* Set a differentiable expression as objective function as function and gradient provider
|
||||
*/
|
||||
public fun diffExpression(expression: DifferentiableExpression<T, Expression<T>>)
|
||||
|
||||
override fun modelAndData(
|
||||
x: Buffer<T>,
|
||||
y: Buffer<T>,
|
||||
yErr: Buffer<T>,
|
||||
model: DifferentiableExpression<T, *>,
|
||||
xSymbol: Symbol,
|
||||
) {
|
||||
require(x.size == y.size) { "X and y buffers should be of the same size" }
|
||||
require(y.size == yErr.size) { "Y and yErr buffer should of the same size" }
|
||||
|
||||
}
|
||||
public fun diffFunction(expression: DifferentiableExpression<T, Expression<T>>)
|
||||
|
||||
public companion object {
|
||||
/**
|
||||
@ -70,46 +56,22 @@ public interface FunctionOptimization<T: Any>: Optimization<T>, DataFit<T> {
|
||||
sum
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Generate a chi squared expression from given x-y-sigma model represented by an expression. Does not provide derivatives
|
||||
*/
|
||||
public fun chiSquared(
|
||||
x: Buffer<Double>,
|
||||
y: Buffer<Double>,
|
||||
yErr: Buffer<Double>,
|
||||
model: Expression<Double>,
|
||||
xSymbol: Symbol = StringSymbol("x"),
|
||||
): Expression<Double> {
|
||||
require(x.size == y.size) { "X and y buffers should be of the same size" }
|
||||
require(y.size == yErr.size) { "Y and yErr buffer should of the same size" }
|
||||
|
||||
return Expression { arguments ->
|
||||
x.indices.sumByDouble {
|
||||
val xValue = x[it]
|
||||
val yValue = y[it]
|
||||
val yErrValue = yErr[it]
|
||||
val modifiedArgs = arguments + (xSymbol to xValue)
|
||||
val modelValue = model(modifiedArgs)
|
||||
((yValue - modelValue) / yErrValue).pow(2)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Optimize expression without derivatives using specific [OptimizationProblemFactory]
|
||||
* Define a chi-squared-based objective function
|
||||
*/
|
||||
public fun <T : Any, F : FunctionOptimization<T>> Expression<T>.optimizeWith(
|
||||
factory: OptimizationProblemFactory<T, F>,
|
||||
vararg symbols: Symbol,
|
||||
configuration: F.() -> Unit,
|
||||
): OptimizationResult<T> {
|
||||
require(symbols.isNotEmpty()) { "Must provide a list of symbols for optimization" }
|
||||
val problem = factory(symbols.toList(), configuration)
|
||||
problem.expression(this)
|
||||
return problem.optimize()
|
||||
public fun <T: Any, I : Any, A> FunctionOptimization<T>.chiSquared(
|
||||
autoDiff: AutoDiffProcessor<T, I, A, Expression<T>>,
|
||||
x: Buffer<T>,
|
||||
y: Buffer<T>,
|
||||
yErr: Buffer<T>,
|
||||
model: A.(I) -> I,
|
||||
) where A : ExtendedField<I>, A : ExpressionAlgebra<T, I> {
|
||||
val chiSquared = FunctionOptimization.chiSquared(autoDiff, x, y, yErr, model)
|
||||
diffFunction(chiSquared)
|
||||
maximize = false
|
||||
}
|
||||
|
||||
/**
|
||||
@ -122,6 +84,6 @@ public fun <T : Any, F : FunctionOptimization<T>> DifferentiableExpression<T, Ex
|
||||
): OptimizationResult<T> {
|
||||
require(symbols.isNotEmpty()) { "Must provide a list of symbols for optimization" }
|
||||
val problem = factory(symbols.toList(), configuration)
|
||||
problem.diffExpression(this)
|
||||
problem.diffFunction(this)
|
||||
return problem.optimize()
|
||||
}
|
||||
|
@ -0,0 +1,69 @@
|
||||
package space.kscience.kmath.optimization
|
||||
|
||||
import space.kscience.kmath.expressions.Expression
|
||||
import space.kscience.kmath.misc.Symbol
|
||||
import space.kscience.kmath.structures.Buffer
|
||||
import space.kscience.kmath.structures.indices
|
||||
import kotlin.math.pow
|
||||
|
||||
/**
|
||||
* A likelihood function optimization problem
|
||||
*/
|
||||
public interface NoDerivFunctionOptimization<T : Any> : Optimization<T> {
|
||||
/**
|
||||
* The optimization direction. If true search for function maximum, if false, search for the minimum
|
||||
*/
|
||||
public var maximize: Boolean
|
||||
|
||||
/**
|
||||
* Define the initial guess for the optimization problem
|
||||
*/
|
||||
public fun initialGuess(map: Map<Symbol, T>)
|
||||
|
||||
/**
|
||||
* Set an objective function expression
|
||||
*/
|
||||
public fun function(expression: Expression<T>)
|
||||
|
||||
public companion object {
|
||||
/**
|
||||
* Generate a chi squared expression from given x-y-sigma model represented by an expression. Does not provide derivatives
|
||||
*/
|
||||
public fun chiSquared(
|
||||
x: Buffer<Double>,
|
||||
y: Buffer<Double>,
|
||||
yErr: Buffer<Double>,
|
||||
model: Expression<Double>,
|
||||
xSymbol: Symbol = Symbol.x,
|
||||
): Expression<Double> {
|
||||
require(x.size == y.size) { "X and y buffers should be of the same size" }
|
||||
require(y.size == yErr.size) { "Y and yErr buffer should of the same size" }
|
||||
|
||||
return Expression { arguments ->
|
||||
x.indices.sumByDouble {
|
||||
val xValue = x[it]
|
||||
val yValue = y[it]
|
||||
val yErrValue = yErr[it]
|
||||
val modifiedArgs = arguments + (xSymbol to xValue)
|
||||
val modelValue = model(modifiedArgs)
|
||||
((yValue - modelValue) / yErrValue).pow(2)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Optimize expression without derivatives using specific [OptimizationProblemFactory]
|
||||
*/
|
||||
public fun <T : Any, F : NoDerivFunctionOptimization<T>> Expression<T>.noDerivOptimizeWith(
|
||||
factory: OptimizationProblemFactory<T, F>,
|
||||
vararg symbols: Symbol,
|
||||
configuration: F.() -> Unit,
|
||||
): OptimizationResult<T> {
|
||||
require(symbols.isNotEmpty()) { "Must provide a list of symbols for optimization" }
|
||||
val problem = factory(symbols.toList(), configuration)
|
||||
problem.function(this)
|
||||
return problem.optimize()
|
||||
}
|
@ -0,0 +1,40 @@
|
||||
package space.kscience.kmath.optimization
|
||||
|
||||
import space.kscience.kmath.data.ColumnarData
|
||||
import space.kscience.kmath.expressions.AutoDiffProcessor
|
||||
import space.kscience.kmath.expressions.DifferentiableExpression
|
||||
import space.kscience.kmath.expressions.Expression
|
||||
import space.kscience.kmath.expressions.ExpressionAlgebra
|
||||
import space.kscience.kmath.misc.Symbol
|
||||
import space.kscience.kmath.misc.UnstableKMathAPI
|
||||
import space.kscience.kmath.operations.ExtendedField
|
||||
import space.kscience.kmath.operations.Field
|
||||
|
||||
@UnstableKMathAPI
|
||||
public interface XYFit<T : Any> : Optimization<T> {
|
||||
|
||||
public val algebra: Field<T>
|
||||
|
||||
/**
|
||||
* Set X-Y data for this fit optionally including x and y errors
|
||||
*/
|
||||
public fun data(
|
||||
dataSet: ColumnarData<T>,
|
||||
xSymbol: Symbol,
|
||||
ySymbol: Symbol,
|
||||
xErrSymbol: Symbol? = null,
|
||||
yErrSymbol: Symbol? = null,
|
||||
)
|
||||
|
||||
public fun model(model: (T) -> DifferentiableExpression<T, *>)
|
||||
|
||||
/**
|
||||
* Set the differentiable model for this fit
|
||||
*/
|
||||
public fun <I : Any, A> model(
|
||||
autoDiff: AutoDiffProcessor<T, I, A, Expression<T>>,
|
||||
modelFunction: A.(I) -> I,
|
||||
): Unit where A : ExtendedField<I>, A : ExpressionAlgebra<T, I> = model { arg ->
|
||||
autoDiff.process { modelFunction(const(arg)) }
|
||||
}
|
||||
}
|
@ -4,12 +4,11 @@ pluginManagement {
|
||||
mavenLocal()
|
||||
gradlePluginPortal()
|
||||
jcenter()
|
||||
maven("https://dl.bintray.com/kotlin/kotlin-eap")
|
||||
maven("https://dl.bintray.com/kotlin/kotlinx")
|
||||
}
|
||||
|
||||
val toolsVersion = "0.9.1"
|
||||
val kotlinVersion = "1.4.31"
|
||||
val toolsVersion = "0.9.3"
|
||||
val kotlinVersion = "1.4.32"
|
||||
|
||||
plugins {
|
||||
id("kotlinx.benchmark") version "0.2.0-dev-20"
|
||||
|
Loading…
Reference in New Issue
Block a user