Merge branch 'dev' into feature/tensorflow

# Conflicts:
#	kmath-tensors/src/commonMain/kotlin/space/kscience/kmath/tensors/core/DoubleTensorAlgebra.kt
This commit is contained in:
Alexander Nozik 2021-11-10 11:52:11 +03:00
commit c583320051
38 changed files with 572 additions and 393 deletions

View File

@ -17,6 +17,7 @@
- `BigInt` operation performance improvement and fixes by @zhelenskiy (#328) - `BigInt` operation performance improvement and fixes by @zhelenskiy (#328)
- Integration between `MST` and Symja `IExpr` - Integration between `MST` and Symja `IExpr`
- Complex power - Complex power
- Separate methods for UInt, Int and Number powers. NaN safety.
### Changed ### Changed
- Exponential operations merged with hyperbolic functions - Exponential operations merged with hyperbolic functions

View File

@ -13,6 +13,7 @@ import space.kscience.kmath.commons.linear.CMLinearSpace
import space.kscience.kmath.ejml.EjmlLinearSpaceDDRM import space.kscience.kmath.ejml.EjmlLinearSpaceDDRM
import space.kscience.kmath.linear.invoke import space.kscience.kmath.linear.invoke
import space.kscience.kmath.linear.linearSpace import space.kscience.kmath.linear.linearSpace
import space.kscience.kmath.multik.multikAlgebra
import space.kscience.kmath.operations.DoubleField import space.kscience.kmath.operations.DoubleField
import space.kscience.kmath.structures.Buffer import space.kscience.kmath.structures.Buffer
import kotlin.random.Random import kotlin.random.Random
@ -58,6 +59,16 @@ internal class DotBenchmark {
blackhole.consume(matrix1 dot matrix2) blackhole.consume(matrix1 dot matrix2)
} }
// @Benchmark
// fun tensorDot(blackhole: Blackhole) = with(Double.tensorAlgebra) {
// blackhole.consume(matrix1 dot matrix2)
// }
@Benchmark
fun multikDot(blackhole: Blackhole) = with(Double.multikAlgebra) {
blackhole.consume(matrix1 dot matrix2)
}
@Benchmark @Benchmark
fun bufferedDot(blackhole: Blackhole) = with(DoubleField.linearSpace(Buffer.Companion::auto)) { fun bufferedDot(blackhole: Blackhole) = with(DoubleField.linearSpace(Buffer.Companion::auto)) {
blackhole.consume(matrix1 dot matrix2) blackhole.consume(matrix1 dot matrix2)

View File

@ -163,7 +163,7 @@ class NeuralNetwork(private val layers: List<Layer>) {
for ((xBatch, yBatch) in iterBatch(xTrain, yTrain)) { for ((xBatch, yBatch) in iterBatch(xTrain, yTrain)) {
train(xBatch, yBatch) train(xBatch, yBatch)
} }
println("Accuracy:${accuracy(yTrain, predict(xTrain).argMax(1, true))}") println("Accuracy:${accuracy(yTrain, predict(xTrain).argMax(1, true).asDouble())}")
} }
} }
@ -230,7 +230,7 @@ fun main() = BroadcastDoubleTensorAlgebra {
val prediction = model.predict(xTest) val prediction = model.predict(xTest)
// process raw prediction via argMax // process raw prediction via argMax
val predictionLabels = prediction.argMax(1, true) val predictionLabels = prediction.argMax(1, true).asDouble()
// find out accuracy // find out accuracy
val acc = accuracy(yTest, predictionLabels) val acc = accuracy(yTest, predictionLabels)

View File

@ -18,7 +18,7 @@ import kotlin.contracts.contract
*/ */
@OptIn(UnstableKMathAPI::class) @OptIn(UnstableKMathAPI::class)
public sealed class ComplexFieldOpsND : BufferedFieldOpsND<Complex, ComplexField>(ComplexField.bufferAlgebra), public sealed class ComplexFieldOpsND : BufferedFieldOpsND<Complex, ComplexField>(ComplexField.bufferAlgebra),
ScaleOperations<StructureND<Complex>>, ExtendedFieldOps<StructureND<Complex>> { ScaleOperations<StructureND<Complex>>, ExtendedFieldOps<StructureND<Complex>>, PowerOperations<StructureND<Complex>> {
override fun StructureND<Complex>.toBufferND(): BufferND<Complex> = when (this) { override fun StructureND<Complex>.toBufferND(): BufferND<Complex> = when (this) {
is BufferND -> this is BufferND -> this
@ -33,9 +33,6 @@ public sealed class ComplexFieldOpsND : BufferedFieldOpsND<Complex, ComplexField
override fun scale(a: StructureND<Complex>, value: Double): BufferND<Complex> = override fun scale(a: StructureND<Complex>, value: Double): BufferND<Complex> =
mapInline(a.toBufferND()) { it * value } mapInline(a.toBufferND()) { it * value }
override fun power(arg: StructureND<Complex>, pow: Number): BufferND<Complex> =
mapInline(arg.toBufferND()) { power(it, pow) }
override fun exp(arg: StructureND<Complex>): BufferND<Complex> = mapInline(arg.toBufferND()) { exp(it) } override fun exp(arg: StructureND<Complex>): BufferND<Complex> = mapInline(arg.toBufferND()) { exp(it) }
override fun ln(arg: StructureND<Complex>): BufferND<Complex> = mapInline(arg.toBufferND()) { ln(it) } override fun ln(arg: StructureND<Complex>): BufferND<Complex> = mapInline(arg.toBufferND()) { ln(it) }
@ -53,6 +50,9 @@ public sealed class ComplexFieldOpsND : BufferedFieldOpsND<Complex, ComplexField
override fun acosh(arg: StructureND<Complex>): BufferND<Complex> = mapInline(arg.toBufferND()) { acosh(it) } override fun acosh(arg: StructureND<Complex>): BufferND<Complex> = mapInline(arg.toBufferND()) { acosh(it) }
override fun atanh(arg: StructureND<Complex>): BufferND<Complex> = mapInline(arg.toBufferND()) { atanh(it) } override fun atanh(arg: StructureND<Complex>): BufferND<Complex> = mapInline(arg.toBufferND()) { atanh(it) }
override fun power(arg: StructureND<Complex>, pow: Number): StructureND<Complex> =
mapInline(arg.toBufferND()) { power(it,pow) }
public companion object : ComplexFieldOpsND() public companion object : ComplexFieldOpsND()
} }
@ -63,7 +63,8 @@ public val ComplexField.bufferAlgebra: BufferFieldOps<Complex, ComplexField>
@OptIn(UnstableKMathAPI::class) @OptIn(UnstableKMathAPI::class)
public class ComplexFieldND(override val shape: Shape) : public class ComplexFieldND(override val shape: Shape) :
ComplexFieldOpsND(), FieldND<Complex, ComplexField>, NumbersAddOps<StructureND<Complex>> { ComplexFieldOpsND(), FieldND<Complex, ComplexField>,
NumbersAddOps<StructureND<Complex>> {
override fun number(value: Number): BufferND<Complex> { override fun number(value: Number): BufferND<Complex> {
val d = value.toDouble() // minimize conversions val d = value.toDouble() // minimize conversions

View File

@ -252,7 +252,7 @@ public class SimpleAutoDiffExpression<T : Any, F : Field<T>>(
* Generate [AutoDiffProcessor] for [SimpleAutoDiffExpression] * Generate [AutoDiffProcessor] for [SimpleAutoDiffExpression]
*/ */
public fun <T : Any, F : Field<T>> simpleAutoDiff( public fun <T : Any, F : Field<T>> simpleAutoDiff(
field: F field: F,
): AutoDiffProcessor<T, AutoDiffValue<T>, SimpleAutoDiffField<T, F>> = ): AutoDiffProcessor<T, AutoDiffValue<T>, SimpleAutoDiffField<T, F>> =
AutoDiffProcessor { function -> AutoDiffProcessor { function ->
SimpleAutoDiffExpression(field, function) SimpleAutoDiffExpression(field, function)
@ -272,8 +272,8 @@ public fun <T : Any, F : ExtendedField<T>> SimpleAutoDiffField<T, F>.sqrt(x: Aut
public fun <T : Any, F : ExtendedField<T>> SimpleAutoDiffField<T, F>.pow( public fun <T : Any, F : ExtendedField<T>> SimpleAutoDiffField<T, F>.pow(
x: AutoDiffValue<T>, x: AutoDiffValue<T>,
y: Double, y: Double,
): AutoDiffValue<T> = derive(const { power(x.value, y) }) { z -> ): AutoDiffValue<T> = derive(const { x.value.pow(y)}) { z ->
x.d += z.d * y * power(x.value, y - 1) x.d += z.d * y * x.value.pow(y - 1)
} }
public fun <T : Any, F : ExtendedField<T>> SimpleAutoDiffField<T, F>.pow( public fun <T : Any, F : ExtendedField<T>> SimpleAutoDiffField<T, F>.pow(

View File

@ -35,7 +35,7 @@ public interface WithShape {
* @param T the type of ND-structure element. * @param T the type of ND-structure element.
* @param C the type of the element context. * @param C the type of the element context.
*/ */
public interface AlgebraND<T, out C : Algebra<T>> { public interface AlgebraND<T, out C : Algebra<T>>: Algebra<StructureND<T>> {
/** /**
* The algebra over elements of ND structure. * The algebra over elements of ND structure.
*/ */

View File

@ -53,21 +53,28 @@ public interface BufferAlgebraND<T, out A : Algebra<T>> : AlgebraND<T, A> {
public inline fun <T, A : Algebra<T>> BufferAlgebraND<T, A>.mapInline( public inline fun <T, A : Algebra<T>> BufferAlgebraND<T, A>.mapInline(
arg: BufferND<T>, arg: BufferND<T>,
crossinline transform: A.(T) -> T crossinline transform: A.(T) -> T,
): BufferND<T> { ): BufferND<T> {
val indexes = arg.indices val indexes = arg.indices
return BufferND(indexes, bufferAlgebra.mapInline(arg.buffer, transform)) val buffer = arg.buffer
return BufferND(
indexes,
bufferAlgebra.run {
bufferFactory(buffer.size) { elementAlgebra.transform(buffer[it]) }
}
)
} }
internal inline fun <T, A : Algebra<T>> BufferAlgebraND<T, A>.mapIndexedInline( internal inline fun <T, A : Algebra<T>> BufferAlgebraND<T, A>.mapIndexedInline(
arg: BufferND<T>, arg: BufferND<T>,
crossinline transform: A.(index: IntArray, arg: T) -> T crossinline transform: A.(index: IntArray, arg: T) -> T,
): BufferND<T> { ): BufferND<T> {
val indexes = arg.indices val indexes = arg.indices
val buffer = arg.buffer
return BufferND( return BufferND(
indexes, indexes,
bufferAlgebra.mapIndexedInline(arg.buffer) { offset, value -> bufferAlgebra.run {
transform(indexes.index(offset), value) bufferFactory(buffer.size) { elementAlgebra.transform(indexes.index(it), buffer[it]) }
} }
) )
} }
@ -75,35 +82,42 @@ internal inline fun <T, A : Algebra<T>> BufferAlgebraND<T, A>.mapIndexedInline(
internal inline fun <T, A : Algebra<T>> BufferAlgebraND<T, A>.zipInline( internal inline fun <T, A : Algebra<T>> BufferAlgebraND<T, A>.zipInline(
l: BufferND<T>, l: BufferND<T>,
r: BufferND<T>, r: BufferND<T>,
crossinline block: A.(l: T, r: T) -> T crossinline block: A.(l: T, r: T) -> T,
): BufferND<T> { ): BufferND<T> {
require(l.indices == r.indices) { "Zip requires the same shapes, but found ${l.shape} on the left and ${r.shape} on the right" } require(l.indices == r.indices) { "Zip requires the same shapes, but found ${l.shape} on the left and ${r.shape} on the right" }
val indexes = l.indices val indexes = l.indices
return BufferND(indexes, bufferAlgebra.zipInline(l.buffer, r.buffer, block)) val lbuffer = l.buffer
val rbuffer = r.buffer
return BufferND(
indexes,
bufferAlgebra.run {
bufferFactory(lbuffer.size) { elementAlgebra.block(lbuffer[it], rbuffer[it]) }
}
)
} }
@OptIn(PerformancePitfall::class) @OptIn(PerformancePitfall::class)
public open class BufferedGroupNDOps<T, out A : Group<T>>( public open class BufferedGroupNDOps<T, out A : Group<T>>(
override val bufferAlgebra: BufferAlgebra<T, A>, override val bufferAlgebra: BufferAlgebra<T, A>,
override val indexerBuilder: (IntArray) -> ShapeIndexer = BufferAlgebraND.defaultIndexerBuilder override val indexerBuilder: (IntArray) -> ShapeIndexer = BufferAlgebraND.defaultIndexerBuilder,
) : GroupOpsND<T, A>, BufferAlgebraND<T, A> { ) : GroupOpsND<T, A>, BufferAlgebraND<T, A> {
override fun StructureND<T>.unaryMinus(): StructureND<T> = map { -it } override fun StructureND<T>.unaryMinus(): StructureND<T> = map { -it }
} }
public open class BufferedRingOpsND<T, out A : Ring<T>>( public open class BufferedRingOpsND<T, out A : Ring<T>>(
bufferAlgebra: BufferAlgebra<T, A>, bufferAlgebra: BufferAlgebra<T, A>,
indexerBuilder: (IntArray) -> ShapeIndexer = BufferAlgebraND.defaultIndexerBuilder indexerBuilder: (IntArray) -> ShapeIndexer = BufferAlgebraND.defaultIndexerBuilder,
) : BufferedGroupNDOps<T, A>(bufferAlgebra, indexerBuilder), RingOpsND<T, A> ) : BufferedGroupNDOps<T, A>(bufferAlgebra, indexerBuilder), RingOpsND<T, A>
public open class BufferedFieldOpsND<T, out A : Field<T>>( public open class BufferedFieldOpsND<T, out A : Field<T>>(
bufferAlgebra: BufferAlgebra<T, A>, bufferAlgebra: BufferAlgebra<T, A>,
indexerBuilder: (IntArray) -> ShapeIndexer = BufferAlgebraND.defaultIndexerBuilder indexerBuilder: (IntArray) -> ShapeIndexer = BufferAlgebraND.defaultIndexerBuilder,
) : BufferedRingOpsND<T, A>(bufferAlgebra, indexerBuilder), FieldOpsND<T, A> { ) : BufferedRingOpsND<T, A>(bufferAlgebra, indexerBuilder), FieldOpsND<T, A> {
public constructor( public constructor(
elementAlgebra: A, elementAlgebra: A,
bufferFactory: BufferFactory<T>, bufferFactory: BufferFactory<T>,
indexerBuilder: (IntArray) -> ShapeIndexer = BufferAlgebraND.defaultIndexerBuilder indexerBuilder: (IntArray) -> ShapeIndexer = BufferAlgebraND.defaultIndexerBuilder,
) : this(BufferFieldOps(elementAlgebra, bufferFactory), indexerBuilder) ) : this(BufferFieldOps(elementAlgebra, bufferFactory), indexerBuilder)
@OptIn(PerformancePitfall::class) @OptIn(PerformancePitfall::class)
@ -117,11 +131,11 @@ public val <T, A : Field<T>> BufferAlgebra<T, A>.nd: BufferedFieldOpsND<T, A> ge
public fun <T, A : Algebra<T>> BufferAlgebraND<T, A>.structureND( public fun <T, A : Algebra<T>> BufferAlgebraND<T, A>.structureND(
vararg shape: Int, vararg shape: Int,
initializer: A.(IntArray) -> T initializer: A.(IntArray) -> T,
): BufferND<T> = structureND(shape, initializer) ): BufferND<T> = structureND(shape, initializer)
public fun <T, EA : Algebra<T>, A> A.structureND( public fun <T, EA : Algebra<T>, A> A.structureND(
initializer: EA.(IntArray) -> T initializer: EA.(IntArray) -> T,
): BufferND<T> where A : BufferAlgebraND<T, EA>, A : WithShape = structureND(shape, initializer) ): BufferND<T> where A : BufferAlgebraND<T, EA>, A : WithShape = structureND(shape, initializer)
//// group factories //// group factories

View File

@ -5,7 +5,6 @@
package space.kscience.kmath.nd package space.kscience.kmath.nd
import space.kscience.kmath.misc.PerformancePitfall
import space.kscience.kmath.structures.Buffer import space.kscience.kmath.structures.Buffer
import space.kscience.kmath.structures.BufferFactory import space.kscience.kmath.structures.BufferFactory
import space.kscience.kmath.structures.MutableBuffer import space.kscience.kmath.structures.MutableBuffer
@ -27,11 +26,6 @@ public open class BufferND<out T>(
override val shape: IntArray get() = indices.shape override val shape: IntArray get() = indices.shape
@PerformancePitfall
override fun elements(): Sequence<Pair<IntArray, T>> = indices.asSequence().map {
it to this[it]
}
override fun toString(): String = StructureND.toString(this) override fun toString(): String = StructureND.toString(this)
} }

View File

@ -11,7 +11,7 @@ import space.kscience.kmath.operations.*
import space.kscience.kmath.structures.DoubleBuffer import space.kscience.kmath.structures.DoubleBuffer
import kotlin.contracts.InvocationKind import kotlin.contracts.InvocationKind
import kotlin.contracts.contract import kotlin.contracts.contract
import kotlin.math.pow import kotlin.math.pow as kpow
public class DoubleBufferND( public class DoubleBufferND(
indexes: ShapeIndexer, indexes: ShapeIndexer,
@ -30,9 +30,9 @@ public sealed class DoubleFieldOpsND : BufferedFieldOpsND<Double, DoubleField>(D
} }
} }
private inline fun mapInline( protected inline fun mapInline(
arg: DoubleBufferND, arg: DoubleBufferND,
transform: (Double) -> Double transform: (Double) -> Double,
): DoubleBufferND { ): DoubleBufferND {
val indexes = arg.indices val indexes = arg.indices
val array = arg.buffer.array val array = arg.buffer.array
@ -42,7 +42,7 @@ public sealed class DoubleFieldOpsND : BufferedFieldOpsND<Double, DoubleField>(D
private inline fun zipInline( private inline fun zipInline(
l: DoubleBufferND, l: DoubleBufferND,
r: DoubleBufferND, r: DoubleBufferND,
block: (l: Double, r: Double) -> Double block: (l: Double, r: Double) -> Double,
): DoubleBufferND { ): DoubleBufferND {
require(l.indices == r.indices) { "Zip requires the same shapes, but found ${l.shape} on the left and ${r.shape} on the right" } require(l.indices == r.indices) { "Zip requires the same shapes, but found ${l.shape} on the left and ${r.shape} on the right" }
val indexes = l.indices val indexes = l.indices
@ -60,7 +60,7 @@ public sealed class DoubleFieldOpsND : BufferedFieldOpsND<Double, DoubleField>(D
override fun zip( override fun zip(
left: StructureND<Double>, left: StructureND<Double>,
right: StructureND<Double>, right: StructureND<Double>,
transform: DoubleField.(Double, Double) -> Double transform: DoubleField.(Double, Double) -> Double,
): BufferND<Double> = zipInline(left.toBufferND(), right.toBufferND()) { l, r -> DoubleField.transform(l, r) } ): BufferND<Double> = zipInline(left.toBufferND(), right.toBufferND()) { l, r -> DoubleField.transform(l, r) }
override fun structureND(shape: Shape, initializer: DoubleField.(IntArray) -> Double): DoubleBufferND { override fun structureND(shape: Shape, initializer: DoubleField.(IntArray) -> Double): DoubleBufferND {
@ -81,8 +81,8 @@ public sealed class DoubleFieldOpsND : BufferedFieldOpsND<Double, DoubleField>(D
override fun StructureND<Double>.unaryMinus(): DoubleBufferND = mapInline(toBufferND()) { -it } override fun StructureND<Double>.unaryMinus(): DoubleBufferND = mapInline(toBufferND()) { -it }
override fun StructureND<Double>.div(other: StructureND<Double>): DoubleBufferND = override fun StructureND<Double>.div(arg: StructureND<Double>): DoubleBufferND =
zipInline(toBufferND(), other.toBufferND()) { l, r -> l / r } zipInline(toBufferND(), arg.toBufferND()) { l, r -> l / r }
override fun divide(left: StructureND<Double>, right: StructureND<Double>): DoubleBufferND = override fun divide(left: StructureND<Double>, right: StructureND<Double>): DoubleBufferND =
zipInline(left.toBufferND(), right.toBufferND()) { l: Double, r: Double -> l / r } zipInline(left.toBufferND(), right.toBufferND()) { l: Double, r: Double -> l / r }
@ -101,8 +101,8 @@ public sealed class DoubleFieldOpsND : BufferedFieldOpsND<Double, DoubleField>(D
override fun StructureND<Double>.minus(arg: StructureND<Double>): DoubleBufferND = override fun StructureND<Double>.minus(arg: StructureND<Double>): DoubleBufferND =
zipInline(toBufferND(), arg.toBufferND()) { l: Double, r: Double -> l - r } zipInline(toBufferND(), arg.toBufferND()) { l: Double, r: Double -> l - r }
override fun StructureND<Double>.times(other: StructureND<Double>): DoubleBufferND = override fun StructureND<Double>.times(arg: StructureND<Double>): DoubleBufferND =
zipInline(toBufferND(), other.toBufferND()) { l: Double, r: Double -> l * r } zipInline(toBufferND(), arg.toBufferND()) { l: Double, r: Double -> l * r }
override fun StructureND<Double>.times(k: Number): DoubleBufferND = override fun StructureND<Double>.times(k: Number): DoubleBufferND =
mapInline(toBufferND()) { it * k.toDouble() } mapInline(toBufferND()) { it * k.toDouble() }
@ -123,9 +123,6 @@ public sealed class DoubleFieldOpsND : BufferedFieldOpsND<Double, DoubleField>(D
override fun scale(a: StructureND<Double>, value: Double): DoubleBufferND = override fun scale(a: StructureND<Double>, value: Double): DoubleBufferND =
mapInline(a.toBufferND()) { it * value } mapInline(a.toBufferND()) { it * value }
override fun power(arg: StructureND<Double>, pow: Number): DoubleBufferND =
mapInline(arg.toBufferND()) { it.pow(pow.toDouble()) }
override fun exp(arg: StructureND<Double>): DoubleBufferND = override fun exp(arg: StructureND<Double>): DoubleBufferND =
mapInline(arg.toBufferND()) { kotlin.math.exp(it) } mapInline(arg.toBufferND()) { kotlin.math.exp(it) }
@ -173,7 +170,38 @@ public sealed class DoubleFieldOpsND : BufferedFieldOpsND<Double, DoubleField>(D
@OptIn(UnstableKMathAPI::class) @OptIn(UnstableKMathAPI::class)
public class DoubleFieldND(override val shape: Shape) : public class DoubleFieldND(override val shape: Shape) :
DoubleFieldOpsND(), FieldND<Double, DoubleField>, NumbersAddOps<StructureND<Double>> { DoubleFieldOpsND(), FieldND<Double, DoubleField>, NumbersAddOps<StructureND<Double>>,
ExtendedField<StructureND<Double>> {
override fun power(arg: StructureND<Double>, pow: UInt): DoubleBufferND = mapInline(arg.toBufferND()) {
it.kpow(pow.toInt())
}
override fun power(arg: StructureND<Double>, pow: Int): DoubleBufferND = mapInline(arg.toBufferND()) {
it.kpow(pow)
}
override fun power(arg: StructureND<Double>, pow: Number): DoubleBufferND = if(pow.isInteger()){
power(arg, pow.toInt())
} else {
val dpow = pow.toDouble()
mapInline(arg.toBufferND()) {
if (it < 0) throw IllegalArgumentException("Can't raise negative $it to a fractional power")
else it.kpow(dpow)
}
}
override fun sinh(arg: StructureND<Double>): DoubleBufferND = super<DoubleFieldOpsND>.sinh(arg)
override fun cosh(arg: StructureND<Double>): DoubleBufferND = super<DoubleFieldOpsND>.cosh(arg)
override fun tanh(arg: StructureND<Double>): DoubleBufferND = super<DoubleFieldOpsND>.tan(arg)
override fun asinh(arg: StructureND<Double>): DoubleBufferND = super<DoubleFieldOpsND>.asinh(arg)
override fun acosh(arg: StructureND<Double>): DoubleBufferND = super<DoubleFieldOpsND>.acosh(arg)
override fun atanh(arg: StructureND<Double>): DoubleBufferND = super<DoubleFieldOpsND>.atanh(arg)
override fun number(value: Number): DoubleBufferND { override fun number(value: Number): DoubleBufferND {
val d = value.toDouble() // minimize conversions val d = value.toDouble() // minimize conversions

View File

@ -6,6 +6,8 @@
package space.kscience.kmath.operations package space.kscience.kmath.operations
import space.kscience.kmath.expressions.Symbol import space.kscience.kmath.expressions.Symbol
import space.kscience.kmath.misc.UnstableKMathAPI
import space.kscience.kmath.operations.Ring.Companion.optimizedPower
/** /**
* Stub for DSL the [Algebra] is. * Stub for DSL the [Algebra] is.
@ -99,6 +101,14 @@ public interface Algebra<T> {
*/ */
public fun binaryOperation(operation: String, left: T, right: T): T = public fun binaryOperation(operation: String, left: T, right: T): T =
binaryOperationFunction(operation)(left, right) binaryOperationFunction(operation)(left, right)
/**
* Export an algebra element, so it could be accessed even after algebra scope is closed.
* This method must be used on algebras where data is stored externally or any local algebra state is used.
* By default (if not overridden), exports the object itself.
*/
@UnstableKMathAPI
public fun export(arg: T): T = arg
} }
public fun <T> Algebra<T>.bindSymbolOrNull(symbol: Symbol): T? = bindSymbolOrNull(symbol.identity) public fun <T> Algebra<T>.bindSymbolOrNull(symbol: Symbol): T? = bindSymbolOrNull(symbol.identity)
@ -162,6 +172,7 @@ public interface GroupOps<T> : Algebra<T> {
* @return the difference. * @return the difference.
*/ */
public operator fun T.minus(arg: T): T = add(this, -arg) public operator fun T.minus(arg: T): T = add(this, -arg)
// Dynamic dispatch of operations // Dynamic dispatch of operations
override fun unaryOperationFunction(operation: String): (arg: T) -> T = when (operation) { override fun unaryOperationFunction(operation: String): (arg: T) -> T = when (operation) {
PLUS_OPERATION -> { arg -> +arg } PLUS_OPERATION -> { arg -> +arg }
@ -247,6 +258,40 @@ public interface Ring<T> : Group<T>, RingOps<T> {
* The neutral element of multiplication * The neutral element of multiplication
*/ */
public val one: T public val one: T
/**
* Raises [arg] to the integer power [pow].
*/
public fun power(arg: T, pow: UInt): T = optimizedPower(arg, pow)
public companion object{
/**
* Raises [arg] to the non-negative integer power [exponent].
*
* Special case: 0 ^ 0 is 1.
*
* @receiver the algebra to provide multiplication.
* @param arg the base.
* @param exponent the exponent.
* @return the base raised to the power.
* @author Evgeniy Zhelenskiy
*/
internal fun <T> Ring<T>.optimizedPower(arg: T, exponent: UInt): T = when {
arg == zero && exponent > 0U -> zero
arg == one -> arg
arg == -one -> powWithoutOptimization(arg, exponent % 2U)
else -> powWithoutOptimization(arg, exponent)
}
private fun <T> Ring<T>.powWithoutOptimization(base: T, exponent: UInt): T = when (exponent) {
0U -> one
1U -> base
else -> {
val pre = powWithoutOptimization(base, exponent shr 1).let { it * it }
if (exponent and 1U == 0U) pre else pre * base
}
}
}
} }
/** /**
@ -270,10 +315,10 @@ public interface FieldOps<T> : RingOps<T> {
* Division of two elements. * Division of two elements.
* *
* @receiver the dividend. * @receiver the dividend.
* @param other the divisor. * @param arg the divisor.
* @return the quotient. * @return the quotient.
*/ */
public operator fun T.div(other: T): T = divide(this, other) public operator fun T.div(arg: T): T = divide(this, arg)
override fun binaryOperationFunction(operation: String): (left: T, right: T) -> T = when (operation) { override fun binaryOperationFunction(operation: String): (left: T, right: T) -> T = when (operation) {
DIV_OPERATION -> ::divide DIV_OPERATION -> ::divide
@ -297,4 +342,24 @@ public interface FieldOps<T> : RingOps<T> {
*/ */
public interface Field<T> : Ring<T>, FieldOps<T>, ScaleOperations<T>, NumericAlgebra<T> { public interface Field<T> : Ring<T>, FieldOps<T>, ScaleOperations<T>, NumericAlgebra<T> {
override fun number(value: Number): T = scale(one, value.toDouble()) override fun number(value: Number): T = scale(one, value.toDouble())
public fun power(arg: T, pow: Int): T = optimizedPower(arg, pow)
public companion object{
/**
* Raises [arg] to the integer power [exponent].
*
* Special case: 0 ^ 0 is 1.
*
* @receiver the algebra to provide multiplication and division.
* @param arg the base.
* @param exponent the exponent.
* @return the base raised to the power.
* @author Iaroslav Postovalov, Evgeniy Zhelenskiy
*/
private fun <T> Field<T>.optimizedPower(arg: T, exponent: Int): T = when {
exponent < 0 -> one / (this as Ring<T>).optimizedPower(arg, if (exponent == Int.MIN_VALUE) Int.MAX_VALUE.toUInt().inc() else (-exponent).toUInt())
else -> (this as Ring<T>).optimizedPower(arg, exponent.toUInt())
}
}
} }

View File

@ -5,6 +5,7 @@
package space.kscience.kmath.operations package space.kscience.kmath.operations
import space.kscience.kmath.misc.UnstableKMathAPI
import space.kscience.kmath.structures.Buffer import space.kscience.kmath.structures.Buffer
import space.kscience.kmath.structures.BufferFactory import space.kscience.kmath.structures.BufferFactory
import space.kscience.kmath.structures.DoubleBuffer import space.kscience.kmath.structures.DoubleBuffer
@ -34,11 +35,13 @@ public interface BufferAlgebra<T, out A : Algebra<T>> : Algebra<Buffer<T>> {
public fun Buffer<T>.zip(other: Buffer<T>, block: A.(left: T, right: T) -> T): Buffer<T> = public fun Buffer<T>.zip(other: Buffer<T>, block: A.(left: T, right: T) -> T): Buffer<T> =
zipInline(this, other, block) zipInline(this, other, block)
@UnstableKMathAPI
override fun unaryOperationFunction(operation: String): (arg: Buffer<T>) -> Buffer<T> { override fun unaryOperationFunction(operation: String): (arg: Buffer<T>) -> Buffer<T> {
val operationFunction = elementAlgebra.unaryOperationFunction(operation) val operationFunction = elementAlgebra.unaryOperationFunction(operation)
return { arg -> bufferFactory(arg.size) { operationFunction(arg[it]) } } return { arg -> bufferFactory(arg.size) { operationFunction(arg[it]) } }
} }
@UnstableKMathAPI
override fun binaryOperationFunction(operation: String): (left: Buffer<T>, right: Buffer<T>) -> Buffer<T> { override fun binaryOperationFunction(operation: String): (left: Buffer<T>, right: Buffer<T>) -> Buffer<T> {
val operationFunction = elementAlgebra.binaryOperationFunction(operation) val operationFunction = elementAlgebra.binaryOperationFunction(operation)
return { left, right -> return { left, right ->
@ -50,7 +53,7 @@ public interface BufferAlgebra<T, out A : Algebra<T>> : Algebra<Buffer<T>> {
/** /**
* Inline map * Inline map
*/ */
public inline fun <T, A : Algebra<T>> BufferAlgebra<T, A>.mapInline( private inline fun <T, A : Algebra<T>> BufferAlgebra<T, A>.mapInline(
buffer: Buffer<T>, buffer: Buffer<T>,
crossinline block: A.(T) -> T crossinline block: A.(T) -> T
): Buffer<T> = bufferFactory(buffer.size) { elementAlgebra.block(buffer[it]) } ): Buffer<T> = bufferFactory(buffer.size) { elementAlgebra.block(buffer[it]) }
@ -58,7 +61,7 @@ public inline fun <T, A : Algebra<T>> BufferAlgebra<T, A>.mapInline(
/** /**
* Inline map * Inline map
*/ */
public inline fun <T, A : Algebra<T>> BufferAlgebra<T, A>.mapIndexedInline( private inline fun <T, A : Algebra<T>> BufferAlgebra<T, A>.mapIndexedInline(
buffer: Buffer<T>, buffer: Buffer<T>,
crossinline block: A.(index: Int, arg: T) -> T crossinline block: A.(index: Int, arg: T) -> T
): Buffer<T> = bufferFactory(buffer.size) { elementAlgebra.block(it, buffer[it]) } ): Buffer<T> = bufferFactory(buffer.size) { elementAlgebra.block(it, buffer[it]) }
@ -66,7 +69,7 @@ public inline fun <T, A : Algebra<T>> BufferAlgebra<T, A>.mapIndexedInline(
/** /**
* Inline zip * Inline zip
*/ */
public inline fun <T, A : Algebra<T>> BufferAlgebra<T, A>.zipInline( private inline fun <T, A : Algebra<T>> BufferAlgebra<T, A>.zipInline(
l: Buffer<T>, l: Buffer<T>,
r: Buffer<T>, r: Buffer<T>,
crossinline block: A.(l: T, r: T) -> T crossinline block: A.(l: T, r: T) -> T
@ -126,7 +129,7 @@ public fun <T, A : ExponentialOperations<T>> BufferAlgebra<T, A>.atanh(arg: Buff
mapInline(arg) { atanh(it) } mapInline(arg) { atanh(it) }
public fun <T, A : PowerOperations<T>> BufferAlgebra<T, A>.pow(arg: Buffer<T>, pow: Number): Buffer<T> = public fun <T, A : PowerOperations<T>> BufferAlgebra<T, A>.pow(arg: Buffer<T>, pow: Number): Buffer<T> =
mapInline(arg) { power(it, pow) } mapInline(arg) {it.pow(pow) }
public open class BufferRingOps<T, A: Ring<T>>( public open class BufferRingOps<T, A: Ring<T>>(
@ -138,9 +141,11 @@ public open class BufferRingOps<T, A: Ring<T>>(
override fun multiply(left: Buffer<T>, right: Buffer<T>): Buffer<T> = zipInline(left, right) { l, r -> l * r } override fun multiply(left: Buffer<T>, right: Buffer<T>): Buffer<T> = zipInline(left, right) { l, r -> l * r }
override fun Buffer<T>.unaryMinus(): Buffer<T> = map { -it } override fun Buffer<T>.unaryMinus(): Buffer<T> = map { -it }
@UnstableKMathAPI
override fun unaryOperationFunction(operation: String): (arg: Buffer<T>) -> Buffer<T> = override fun unaryOperationFunction(operation: String): (arg: Buffer<T>) -> Buffer<T> =
super<BufferAlgebra>.unaryOperationFunction(operation) super<BufferAlgebra>.unaryOperationFunction(operation)
@UnstableKMathAPI
override fun binaryOperationFunction(operation: String): (left: Buffer<T>, right: Buffer<T>) -> Buffer<T> = override fun binaryOperationFunction(operation: String): (left: Buffer<T>, right: Buffer<T>) -> Buffer<T> =
super<BufferAlgebra>.binaryOperationFunction(operation) super<BufferAlgebra>.binaryOperationFunction(operation)
} }
@ -160,6 +165,7 @@ public open class BufferFieldOps<T, A : Field<T>>(
override fun scale(a: Buffer<T>, value: Double): Buffer<T> = a.map { scale(it, value) } override fun scale(a: Buffer<T>, value: Double): Buffer<T> = a.map { scale(it, value) }
override fun Buffer<T>.unaryMinus(): Buffer<T> = map { -it } override fun Buffer<T>.unaryMinus(): Buffer<T> = map { -it }
@UnstableKMathAPI
override fun binaryOperationFunction(operation: String): (left: Buffer<T>, right: Buffer<T>) -> Buffer<T> = override fun binaryOperationFunction(operation: String): (left: Buffer<T>, right: Buffer<T>) -> Buffer<T> =
super<BufferRingOps>.binaryOperationFunction(operation) super<BufferRingOps>.binaryOperationFunction(operation)
} }

View File

@ -5,6 +5,8 @@
package space.kscience.kmath.operations package space.kscience.kmath.operations
import space.kscience.kmath.misc.UnstableKMathAPI
import space.kscience.kmath.operations.DoubleField.pow
import space.kscience.kmath.structures.Buffer import space.kscience.kmath.structures.Buffer
import space.kscience.kmath.structures.DoubleBuffer import space.kscience.kmath.structures.DoubleBuffer
@ -27,7 +29,20 @@ public class DoubleBufferField(public val size: Int) : ExtendedField<Buffer<Doub
override fun acosh(arg: Buffer<Double>): DoubleBuffer = super<DoubleBufferOps>.acosh(arg) override fun acosh(arg: Buffer<Double>): DoubleBuffer = super<DoubleBufferOps>.acosh(arg)
override fun atanh(arg: Buffer<Double>): DoubleBuffer= super<DoubleBufferOps>.atanh(arg) override fun atanh(arg: Buffer<Double>): DoubleBuffer = super<DoubleBufferOps>.atanh(arg)
override fun power(arg: Buffer<Double>, pow: Number): DoubleBuffer = if (pow.isInteger()) {
arg.mapInline { it.pow(pow.toInt()) }
} else {
arg.mapInline {
if(it<0) throw IllegalArgumentException("Negative argument $it could not be raised to the fractional power")
it.pow(pow.toDouble())
}
}
@UnstableKMathAPI
override fun unaryOperationFunction(operation: String): (arg: Buffer<Double>) -> Buffer<Double> =
super<ExtendedField>.unaryOperationFunction(operation)
// override fun number(value: Number): Buffer<Double> = DoubleBuffer(size) { value.toDouble() } // override fun number(value: Number): Buffer<Double> = DoubleBuffer(size) { value.toDouble() }
// //

View File

@ -6,21 +6,35 @@
package space.kscience.kmath.operations package space.kscience.kmath.operations
import space.kscience.kmath.linear.Point import space.kscience.kmath.linear.Point
import space.kscience.kmath.misc.UnstableKMathAPI
import space.kscience.kmath.structures.Buffer import space.kscience.kmath.structures.Buffer
import space.kscience.kmath.structures.BufferFactory
import space.kscience.kmath.structures.DoubleBuffer import space.kscience.kmath.structures.DoubleBuffer
import space.kscience.kmath.structures.asBuffer
import kotlin.math.* import kotlin.math.*
/** /**
* [ExtendedFieldOps] over [DoubleBuffer]. * [ExtendedFieldOps] over [DoubleBuffer].
*/ */
public abstract class DoubleBufferOps : ExtendedFieldOps<Buffer<Double>>, Norm<Buffer<Double>, Double> { public abstract class DoubleBufferOps : BufferAlgebra<Double, DoubleField>, ExtendedFieldOps<Buffer<Double>>,
Norm<Buffer<Double>, Double> {
override fun Buffer<Double>.unaryMinus(): DoubleBuffer = if (this is DoubleBuffer) { override val elementAlgebra: DoubleField get() = DoubleField
DoubleBuffer(size) { -array[it] } override val bufferFactory: BufferFactory<Double> get() = ::DoubleBuffer
} else {
DoubleBuffer(size) { -get(it) } override fun Buffer<Double>.map(block: DoubleField.(Double) -> Double): DoubleBuffer =
} mapInline { DoubleField.block(it) }
@UnstableKMathAPI
override fun unaryOperationFunction(operation: String): (arg: Buffer<Double>) -> Buffer<Double> =
super<ExtendedFieldOps>.unaryOperationFunction(operation)
@UnstableKMathAPI
override fun binaryOperationFunction(operation: String): (left: Buffer<Double>, right: Buffer<Double>) -> Buffer<Double> =
super<ExtendedFieldOps>.binaryOperationFunction(operation)
override fun Buffer<Double>.unaryMinus(): DoubleBuffer = mapInline { -it }
override fun add(left: Buffer<Double>, right: Buffer<Double>): DoubleBuffer { override fun add(left: Buffer<Double>, right: Buffer<Double>): DoubleBuffer {
require(right.size == left.size) { require(right.size == left.size) {
@ -34,18 +48,18 @@ public abstract class DoubleBufferOps : ExtendedFieldOps<Buffer<Double>>, Norm<B
} else DoubleBuffer(DoubleArray(left.size) { left[it] + right[it] }) } else DoubleBuffer(DoubleArray(left.size) { left[it] + right[it] })
} }
override fun Buffer<Double>.plus(other: Buffer<Double>): DoubleBuffer = add(this, other) override fun Buffer<Double>.plus(arg: Buffer<Double>): DoubleBuffer = add(this, arg)
override fun Buffer<Double>.minus(other: Buffer<Double>): DoubleBuffer { override fun Buffer<Double>.minus(arg: Buffer<Double>): DoubleBuffer {
require(other.size == this.size) { require(arg.size == this.size) {
"The size of the first buffer ${this.size} should be the same as for second one: ${other.size} " "The size of the first buffer ${this.size} should be the same as for second one: ${arg.size} "
} }
return if (this is DoubleBuffer && other is DoubleBuffer) { return if (this is DoubleBuffer && arg is DoubleBuffer) {
val aArray = this.array val aArray = this.array
val bArray = other.array val bArray = arg.array
DoubleBuffer(DoubleArray(this.size) { aArray[it] - bArray[it] }) DoubleBuffer(DoubleArray(this.size) { aArray[it] - bArray[it] })
} else DoubleBuffer(DoubleArray(this.size) { this[it] - other[it] }) } else DoubleBuffer(DoubleArray(this.size) { this[it] - arg[it] })
} }
// //
@ -76,8 +90,7 @@ public abstract class DoubleBufferOps : ExtendedFieldOps<Buffer<Double>>, Norm<B
val aArray = left.array val aArray = left.array
val bArray = right.array val bArray = right.array
DoubleBuffer(DoubleArray(left.size) { aArray[it] * bArray[it] }) DoubleBuffer(DoubleArray(left.size) { aArray[it] * bArray[it] })
} else } else DoubleBuffer(DoubleArray(left.size) { left[it] * right[it] })
DoubleBuffer(DoubleArray(left.size) { left[it] * right[it] })
} }
override fun divide(left: Buffer<Double>, right: Buffer<Double>): DoubleBuffer { override fun divide(left: Buffer<Double>, right: Buffer<Double>): DoubleBuffer {
@ -92,101 +105,46 @@ public abstract class DoubleBufferOps : ExtendedFieldOps<Buffer<Double>>, Norm<B
} else DoubleBuffer(DoubleArray(left.size) { left[it] / right[it] }) } else DoubleBuffer(DoubleArray(left.size) { left[it] / right[it] })
} }
override fun sin(arg: Buffer<Double>): DoubleBuffer = if (arg is DoubleBuffer) { override fun sin(arg: Buffer<Double>): DoubleBuffer = arg.mapInline(::sin)
val array = arg.array
DoubleBuffer(DoubleArray(arg.size) { sin(array[it]) })
} else DoubleBuffer(DoubleArray(arg.size) { sin(arg[it]) })
override fun cos(arg: Buffer<Double>): DoubleBuffer = if (arg is DoubleBuffer) { override fun cos(arg: Buffer<Double>): DoubleBuffer = arg.mapInline(::cos)
val array = arg.array
DoubleBuffer(DoubleArray(arg.size) { cos(array[it]) })
} else DoubleBuffer(DoubleArray(arg.size) { cos(arg[it]) })
override fun tan(arg: Buffer<Double>): DoubleBuffer = if (arg is DoubleBuffer) { override fun tan(arg: Buffer<Double>): DoubleBuffer = arg.mapInline(::tan)
val array = arg.array
DoubleBuffer(DoubleArray(arg.size) { tan(array[it]) })
} else DoubleBuffer(DoubleArray(arg.size) { tan(arg[it]) })
override fun asin(arg: Buffer<Double>): DoubleBuffer = if (arg is DoubleBuffer) { override fun asin(arg: Buffer<Double>): DoubleBuffer = arg.mapInline(::asin)
val array = arg.array
DoubleBuffer(DoubleArray(arg.size) { asin(array[it]) })
} else
DoubleBuffer(DoubleArray(arg.size) { asin(arg[it]) })
override fun acos(arg: Buffer<Double>): DoubleBuffer = if (arg is DoubleBuffer) { override fun acos(arg: Buffer<Double>): DoubleBuffer = arg.mapInline(::acos)
val array = arg.array
DoubleBuffer(DoubleArray(arg.size) { acos(array[it]) })
} else
DoubleBuffer(DoubleArray(arg.size) { acos(arg[it]) })
override fun atan(arg: Buffer<Double>): DoubleBuffer = if (arg is DoubleBuffer) { override fun atan(arg: Buffer<Double>): DoubleBuffer = arg.mapInline(::atan)
val array = arg.array
DoubleBuffer(DoubleArray(arg.size) { atan(array[it]) })
} else
DoubleBuffer(DoubleArray(arg.size) { atan(arg[it]) })
override fun sinh(arg: Buffer<Double>): DoubleBuffer = if (arg is DoubleBuffer) { override fun sinh(arg: Buffer<Double>): DoubleBuffer = arg.mapInline(::sinh)
val array = arg.array
DoubleBuffer(DoubleArray(arg.size) { sinh(array[it]) })
} else
DoubleBuffer(DoubleArray(arg.size) { sinh(arg[it]) })
override fun cosh(arg: Buffer<Double>): DoubleBuffer = if (arg is DoubleBuffer) { override fun cosh(arg: Buffer<Double>): DoubleBuffer = arg.mapInline(::cosh)
val array = arg.array
DoubleBuffer(DoubleArray(arg.size) { cosh(array[it]) })
} else
DoubleBuffer(DoubleArray(arg.size) { cosh(arg[it]) })
override fun tanh(arg: Buffer<Double>): DoubleBuffer = if (arg is DoubleBuffer) { override fun tanh(arg: Buffer<Double>): DoubleBuffer = arg.mapInline(::tanh)
val array = arg.array
DoubleBuffer(DoubleArray(arg.size) { tanh(array[it]) })
} else
DoubleBuffer(DoubleArray(arg.size) { tanh(arg[it]) })
override fun asinh(arg: Buffer<Double>): DoubleBuffer = if (arg is DoubleBuffer) { override fun asinh(arg: Buffer<Double>): DoubleBuffer = arg.mapInline(::asinh)
val array = arg.array
DoubleBuffer(DoubleArray(arg.size) { asinh(array[it]) })
} else
DoubleBuffer(DoubleArray(arg.size) { asinh(arg[it]) })
override fun acosh(arg: Buffer<Double>): DoubleBuffer = if (arg is DoubleBuffer) { override fun acosh(arg: Buffer<Double>): DoubleBuffer = arg.mapInline(::acosh)
val array = arg.array
DoubleBuffer(DoubleArray(arg.size) { acosh(array[it]) })
} else
DoubleBuffer(DoubleArray(arg.size) { acosh(arg[it]) })
override fun atanh(arg: Buffer<Double>): DoubleBuffer = if (arg is DoubleBuffer) { override fun atanh(arg: Buffer<Double>): DoubleBuffer = arg.mapInline(::atanh)
val array = arg.array
DoubleBuffer(DoubleArray(arg.size) { atanh(array[it]) })
} else
DoubleBuffer(DoubleArray(arg.size) { atanh(arg[it]) })
override fun power(arg: Buffer<Double>, pow: Number): DoubleBuffer = if (arg is DoubleBuffer) { override fun exp(arg: Buffer<Double>): DoubleBuffer = arg.mapInline(::exp)
val array = arg.array
DoubleBuffer(DoubleArray(arg.size) { array[it].pow(pow.toDouble()) })
} else
DoubleBuffer(DoubleArray(arg.size) { arg[it].pow(pow.toDouble()) })
override fun exp(arg: Buffer<Double>): DoubleBuffer = if (arg is DoubleBuffer) { override fun ln(arg: Buffer<Double>): DoubleBuffer = arg.mapInline(::ln)
val array = arg.array
DoubleBuffer(DoubleArray(arg.size) { exp(array[it]) })
} else DoubleBuffer(DoubleArray(arg.size) { exp(arg[it]) })
override fun ln(arg: Buffer<Double>): DoubleBuffer = if (arg is DoubleBuffer) {
val array = arg.array
DoubleBuffer(DoubleArray(arg.size) { ln(array[it]) })
} else {
DoubleBuffer(DoubleArray(arg.size) { ln(arg[it]) })
}
override fun norm(arg: Buffer<Double>): Double = DoubleL2Norm.norm(arg) override fun norm(arg: Buffer<Double>): Double = DoubleL2Norm.norm(arg)
override fun scale(a: Buffer<Double>, value: Double): DoubleBuffer = if (a is DoubleBuffer) { override fun scale(a: Buffer<Double>, value: Double): DoubleBuffer = a.mapInline { it * value }
val aArray = a.array
DoubleBuffer(DoubleArray(a.size) { aArray[it] * value })
} else DoubleBuffer(DoubleArray(a.size) { a[it] * value })
public companion object : DoubleBufferOps() public companion object : DoubleBufferOps() {
public inline fun Buffer<Double>.mapInline(block: (Double) -> Double): DoubleBuffer =
if (this is DoubleBuffer) {
DoubleArray(size) { block(array[it]) }.asBuffer()
} else {
DoubleArray(size) { block(get(it)) }.asBuffer()
}
}
} }
public object DoubleL2Norm : Norm<Point<Double>, Double> { public object DoubleL2Norm : Norm<Point<Double>, Double> {

View File

@ -74,14 +74,21 @@ public interface TrigonometricOperations<T> : Algebra<T> {
} }
} }
/**
* Check if number is an integer from platform point of view
*/
public expect fun Number.isInteger(): Boolean
/** /**
* A context extension to include power operations based on exponentiation. * A context extension to include power operations based on exponentiation.
* *
* @param T the type of element of this structure. * @param T the type of element of this structure.
*/ */
public interface PowerOperations<T> : Algebra<T> { public interface PowerOperations<T> : FieldOps<T> {
/** /**
* Raises [arg] to the power [pow]. * Raises [arg] to a power if possible (negative number could not be raised to a fractional power).
* Throws [IllegalArgumentException] if not possible.
*/ */
public fun power(arg: T, pow: Number): T public fun power(arg: T, pow: Number): T
@ -108,6 +115,7 @@ public interface PowerOperations<T> : Algebra<T> {
} }
} }
/** /**
* A container for operations related to `exp` and `ln` functions. * A container for operations related to `exp` and `ln` functions.
* *

View File

@ -96,46 +96,3 @@ public fun <T, S> Iterable<T>.averageWith(space: S): T where S : Ring<T>, S : Sc
public fun <T, S> Sequence<T>.averageWith(space: S): T where S : Ring<T>, S : ScaleOperations<T> = public fun <T, S> Sequence<T>.averageWith(space: S): T where S : Ring<T>, S : ScaleOperations<T> =
space.average(this) space.average(this)
/**
* Raises [arg] to the non-negative integer power [exponent].
*
* Special case: 0 ^ 0 is 1.
*
* @receiver the algebra to provide multiplication.
* @param arg the base.
* @param exponent the exponent.
* @return the base raised to the power.
* @author Evgeniy Zhelenskiy
*/
public fun <T> Ring<T>.power(arg: T, exponent: UInt): T = when {
arg == zero && exponent > 0U -> zero
arg == one -> arg
arg == -one -> powWithoutOptimization(arg, exponent % 2U)
else -> powWithoutOptimization(arg, exponent)
}
private fun <T> Ring<T>.powWithoutOptimization(base: T, exponent: UInt): T = when (exponent) {
0U -> one
1U -> base
else -> {
val pre = powWithoutOptimization(base, exponent shr 1).let { it * it }
if (exponent and 1U == 0U) pre else pre * base
}
}
/**
* Raises [arg] to the integer power [exponent].
*
* Special case: 0 ^ 0 is 1.
*
* @receiver the algebra to provide multiplication and division.
* @param arg the base.
* @param exponent the exponent.
* @return the base raised to the power.
* @author Iaroslav Postovalov, Evgeniy Zhelenskiy
*/
public fun <T> Field<T>.power(arg: T, exponent: Int): T = when {
exponent < 0 -> one / (this as Ring<T>).power(arg, if (exponent == Int.MIN_VALUE) Int.MAX_VALUE.toUInt().inc() else (-exponent).toUInt())
else -> (this as Ring<T>).power(arg, exponent.toUInt())
}

View File

@ -13,9 +13,8 @@ import kotlin.math.pow as kpow
public interface ExtendedFieldOps<T> : public interface ExtendedFieldOps<T> :
FieldOps<T>, FieldOps<T>,
TrigonometricOperations<T>, TrigonometricOperations<T>,
PowerOperations<T>,
ExponentialOperations<T>, ExponentialOperations<T>,
ScaleOperations<T> { ScaleOperations<T> {
override fun tan(arg: T): T = sin(arg) / cos(arg) override fun tan(arg: T): T = sin(arg) / cos(arg)
override fun tanh(arg: T): T = sinh(arg) / cosh(arg) override fun tanh(arg: T): T = sinh(arg) / cosh(arg)
@ -26,7 +25,6 @@ public interface ExtendedFieldOps<T> :
TrigonometricOperations.ACOS_OPERATION -> ::acos TrigonometricOperations.ACOS_OPERATION -> ::acos
TrigonometricOperations.ASIN_OPERATION -> ::asin TrigonometricOperations.ASIN_OPERATION -> ::asin
TrigonometricOperations.ATAN_OPERATION -> ::atan TrigonometricOperations.ATAN_OPERATION -> ::atan
PowerOperations.SQRT_OPERATION -> ::sqrt
ExponentialOperations.EXP_OPERATION -> ::exp ExponentialOperations.EXP_OPERATION -> ::exp
ExponentialOperations.LN_OPERATION -> ::ln ExponentialOperations.LN_OPERATION -> ::ln
ExponentialOperations.COSH_OPERATION -> ::cosh ExponentialOperations.COSH_OPERATION -> ::cosh
@ -42,7 +40,7 @@ public interface ExtendedFieldOps<T> :
/** /**
* Advanced Number-like field that implements basic operations. * Advanced Number-like field that implements basic operations.
*/ */
public interface ExtendedField<T> : ExtendedFieldOps<T>, Field<T>, NumericAlgebra<T>{ public interface ExtendedField<T> : ExtendedFieldOps<T>, Field<T>, PowerOperations<T>, NumericAlgebra<T> {
override fun sinh(arg: T): T = (exp(arg) - exp(-arg)) / 2.0 override fun sinh(arg: T): T = (exp(arg) - exp(-arg)) / 2.0
override fun cosh(arg: T): T = (exp(arg) + exp(-arg)) / 2.0 override fun cosh(arg: T): T = (exp(arg) + exp(-arg)) / 2.0
override fun tanh(arg: T): T = (exp(arg) - exp(-arg)) / (exp(-arg) + exp(arg)) override fun tanh(arg: T): T = (exp(arg) - exp(-arg)) / (exp(-arg) + exp(arg))
@ -50,6 +48,11 @@ public interface ExtendedField<T> : ExtendedFieldOps<T>, Field<T>, NumericAlgebr
override fun acosh(arg: T): T = ln(arg + sqrt((arg - one) * (arg + one))) override fun acosh(arg: T): T = ln(arg + sqrt((arg - one) * (arg + one)))
override fun atanh(arg: T): T = (ln(arg + one) - ln(one - arg)) / 2.0 override fun atanh(arg: T): T = (ln(arg + one) - ln(one - arg)) / 2.0
override fun unaryOperationFunction(operation: String): (arg: T) -> T {
return if (operation == PowerOperations.SQRT_OPERATION) ::sqrt
else super<ExtendedFieldOps>.unaryOperationFunction(operation)
}
override fun rightSideNumberOperationFunction(operation: String): (left: T, right: Number) -> T = override fun rightSideNumberOperationFunction(operation: String): (left: T, right: Number) -> T =
when (operation) { when (operation) {
PowerOperations.POW_OPERATION -> ::power PowerOperations.POW_OPERATION -> ::power
@ -69,7 +72,7 @@ public object DoubleField : ExtendedField<Double>, Norm<Double, Double>, ScaleOp
override fun binaryOperationFunction(operation: String): (left: Double, right: Double) -> Double = override fun binaryOperationFunction(operation: String): (left: Double, right: Double) -> Double =
when (operation) { when (operation) {
PowerOperations.POW_OPERATION -> ::power PowerOperations.POW_OPERATION -> { l, r -> l.kpow(r) }
else -> super<ExtendedField>.binaryOperationFunction(operation) else -> super<ExtendedField>.binaryOperationFunction(operation)
} }
@ -94,18 +97,23 @@ public object DoubleField : ExtendedField<Double>, Norm<Double, Double>, ScaleOp
override inline fun acosh(arg: Double): Double = kotlin.math.acosh(arg) override inline fun acosh(arg: Double): Double = kotlin.math.acosh(arg)
override inline fun atanh(arg: Double): Double = kotlin.math.atanh(arg) override inline fun atanh(arg: Double): Double = kotlin.math.atanh(arg)
override inline fun sqrt(arg: Double): Double = kotlin.math.sqrt(arg) override fun sqrt(arg: Double): Double = kotlin.math.sqrt(arg)
override inline fun power(arg: Double, pow: Number): Double = arg.kpow(pow.toDouble()) override fun power(arg: Double, pow: Number): Double = when {
pow.isInteger() -> arg.kpow(pow.toInt())
arg < 0 -> throw IllegalArgumentException("Can't raise negative $arg to a fractional power $pow")
else -> arg.kpow(pow.toDouble())
}
override inline fun exp(arg: Double): Double = kotlin.math.exp(arg) override inline fun exp(arg: Double): Double = kotlin.math.exp(arg)
override inline fun ln(arg: Double): Double = kotlin.math.ln(arg) override inline fun ln(arg: Double): Double = kotlin.math.ln(arg)
override inline fun norm(arg: Double): Double = abs(arg) override inline fun norm(arg: Double): Double = abs(arg)
override inline fun Double.unaryMinus(): Double = -this override inline fun Double.unaryMinus(): Double = -this
override inline fun Double.plus(other: Double): Double = this + other override inline fun Double.plus(arg: Double): Double = this + arg
override inline fun Double.minus(other: Double): Double = this - other override inline fun Double.minus(arg: Double): Double = this - arg
override inline fun Double.times(other: Double): Double = this * other override inline fun Double.times(arg: Double): Double = this * arg
override inline fun Double.div(other: Double): Double = this / other override inline fun Double.div(arg: Double): Double = this / arg
} }
public val Double.Companion.algebra: DoubleField get() = DoubleField public val Double.Companion.algebra: DoubleField get() = DoubleField
@ -122,7 +130,7 @@ public object FloatField : ExtendedField<Float>, Norm<Float, Float> {
override fun binaryOperationFunction(operation: String): (left: Float, right: Float) -> Float = override fun binaryOperationFunction(operation: String): (left: Float, right: Float) -> Float =
when (operation) { when (operation) {
PowerOperations.POW_OPERATION -> ::power PowerOperations.POW_OPERATION -> { l, r -> l.kpow(r) }
else -> super.binaryOperationFunction(operation) else -> super.binaryOperationFunction(operation)
} }
@ -149,16 +157,17 @@ public object FloatField : ExtendedField<Float>, Norm<Float, Float> {
override inline fun sqrt(arg: Float): Float = kotlin.math.sqrt(arg) override inline fun sqrt(arg: Float): Float = kotlin.math.sqrt(arg)
override inline fun power(arg: Float, pow: Number): Float = arg.kpow(pow.toFloat()) override inline fun power(arg: Float, pow: Number): Float = arg.kpow(pow.toFloat())
override inline fun exp(arg: Float): Float = kotlin.math.exp(arg) override inline fun exp(arg: Float): Float = kotlin.math.exp(arg)
override inline fun ln(arg: Float): Float = kotlin.math.ln(arg) override inline fun ln(arg: Float): Float = kotlin.math.ln(arg)
override inline fun norm(arg: Float): Float = abs(arg) override inline fun norm(arg: Float): Float = abs(arg)
override inline fun Float.unaryMinus(): Float = -this override inline fun Float.unaryMinus(): Float = -this
override inline fun Float.plus(other: Float): Float = this + other override inline fun Float.plus(arg: Float): Float = this + arg
override inline fun Float.minus(other: Float): Float = this - other override inline fun Float.minus(arg: Float): Float = this - arg
override inline fun Float.times(other: Float): Float = this * other override inline fun Float.times(arg: Float): Float = this * arg
override inline fun Float.div(other: Float): Float = this / other override inline fun Float.div(arg: Float): Float = this / arg
} }
public val Float.Companion.algebra: FloatField get() = FloatField public val Float.Companion.algebra: FloatField get() = FloatField
@ -180,9 +189,9 @@ public object IntRing : Ring<Int>, Norm<Int, Int>, NumericAlgebra<Int> {
override inline fun norm(arg: Int): Int = abs(arg) override inline fun norm(arg: Int): Int = abs(arg)
override inline fun Int.unaryMinus(): Int = -this override inline fun Int.unaryMinus(): Int = -this
override inline fun Int.plus(other: Int): Int = this + other override inline fun Int.plus(arg: Int): Int = this + arg
override inline fun Int.minus(other: Int): Int = this - other override inline fun Int.minus(arg: Int): Int = this - arg
override inline fun Int.times(other: Int): Int = this * other override inline fun Int.times(arg: Int): Int = this * arg
} }
public val Int.Companion.algebra: IntRing get() = IntRing public val Int.Companion.algebra: IntRing get() = IntRing
@ -204,9 +213,9 @@ public object ShortRing : Ring<Short>, Norm<Short, Short>, NumericAlgebra<Short>
override fun norm(arg: Short): Short = if (arg > 0) arg else (-arg).toShort() override fun norm(arg: Short): Short = if (arg > 0) arg else (-arg).toShort()
override inline fun Short.unaryMinus(): Short = (-this).toShort() override inline fun Short.unaryMinus(): Short = (-this).toShort()
override inline fun Short.plus(other: Short): Short = (this + other).toShort() override inline fun Short.plus(arg: Short): Short = (this + arg).toShort()
override inline fun Short.minus(other: Short): Short = (this - other).toShort() override inline fun Short.minus(arg: Short): Short = (this - arg).toShort()
override inline fun Short.times(other: Short): Short = (this * other).toShort() override inline fun Short.times(arg: Short): Short = (this * arg).toShort()
} }
public val Short.Companion.algebra: ShortRing get() = ShortRing public val Short.Companion.algebra: ShortRing get() = ShortRing
@ -230,7 +239,7 @@ public object ByteRing : Ring<Byte>, Norm<Byte, Byte>, NumericAlgebra<Byte> {
override inline fun Byte.unaryMinus(): Byte = (-this).toByte() override inline fun Byte.unaryMinus(): Byte = (-this).toByte()
override inline fun Byte.plus(arg: Byte): Byte = (this + arg).toByte() override inline fun Byte.plus(arg: Byte): Byte = (this + arg).toByte()
override inline fun Byte.minus(arg: Byte): Byte = (this - arg).toByte() override inline fun Byte.minus(arg: Byte): Byte = (this - arg).toByte()
override inline fun Byte.times(other: Byte): Byte = (this * other).toByte() override inline fun Byte.times(arg: Byte): Byte = (this * arg).toByte()
} }
public val Byte.Companion.algebra: ByteRing get() = ByteRing public val Byte.Companion.algebra: ByteRing get() = ByteRing
@ -252,9 +261,9 @@ public object LongRing : Ring<Long>, Norm<Long, Long>, NumericAlgebra<Long> {
override fun norm(arg: Long): Long = abs(arg) override fun norm(arg: Long): Long = abs(arg)
override inline fun Long.unaryMinus(): Long = (-this) override inline fun Long.unaryMinus(): Long = (-this)
override inline fun Long.plus(other: Long): Long = (this + other) override inline fun Long.plus(arg: Long): Long = (this + arg)
override inline fun Long.minus(other: Long): Long = (this - other) override inline fun Long.minus(arg: Long): Long = (this - arg)
override inline fun Long.times(other: Long): Long = (this * other) override inline fun Long.times(arg: Long): Long = (this * arg)
} }
public val Long.Companion.algebra: LongRing get() = LongRing public val Long.Companion.algebra: LongRing get() = LongRing

View File

@ -0,0 +1,6 @@
package space.kscience.kmath.operations
/**
* Check if number is an integer
*/
public actual fun Number.isInteger(): Boolean = js("Number").isInteger(this) as Boolean

View File

@ -0,0 +1,6 @@
package space.kscience.kmath.operations
/**
* Check if number is an integer
*/
public actual fun Number.isInteger(): Boolean = (this is Int) || (this is Long) || (this is Short) || (this.toDouble() % 1 == 0.0)

View File

@ -0,0 +1,6 @@
package space.kscience.kmath.operations
/**
* Check if number is an integer
*/
public actual fun Number.isInteger(): Boolean = (this is Int) || (this is Long) || (this is Short) || (this.toDouble() % 1 == 0.0)

View File

@ -59,8 +59,8 @@ public object JafamaDoubleField : ExtendedField<Double>, Norm<Double, Double>, S
override inline fun Double.unaryMinus(): Double = -this override inline fun Double.unaryMinus(): Double = -this
override inline fun Double.plus(arg: Double): Double = this + arg override inline fun Double.plus(arg: Double): Double = this + arg
override inline fun Double.minus(arg: Double): Double = this - arg override inline fun Double.minus(arg: Double): Double = this - arg
override inline fun Double.times(other: Double): Double = this * other override inline fun Double.times(arg: Double): Double = this * arg
override inline fun Double.div(other: Double): Double = this / other override inline fun Double.div(arg: Double): Double = this / arg
} }
/** /**
@ -108,8 +108,8 @@ public object StrictJafamaDoubleField : ExtendedField<Double>, Norm<Double, Doub
override inline fun norm(arg: Double): Double = StrictFastMath.abs(arg) override inline fun norm(arg: Double): Double = StrictFastMath.abs(arg)
override inline fun Double.unaryMinus(): Double = -this override inline fun Double.unaryMinus(): Double = -this
override inline fun Double.plus(other: Double): Double = this + other override inline fun Double.plus(arg: Double): Double = this + arg
override inline fun Double.minus(other: Double): Double = this - other override inline fun Double.minus(arg: Double): Double = this - arg
override inline fun Double.times(other: Double): Double = this * other override inline fun Double.times(arg: Double): Double = this * arg
override inline fun Double.div(other: Double): Double = this / other override inline fun Double.div(arg: Double): Double = this / arg
} }

View File

@ -62,6 +62,6 @@ internal class AdaptingTests {
.parseMath() .parseMath()
.compileToExpression(DoubleField) .compileToExpression(DoubleField)
assertEquals(actualDerivative(x to 0.1), expectedDerivative(x to 0.1)) assertEquals(actualDerivative(x to -0.1), expectedDerivative(x to -0.1))
} }
} }

View File

@ -0,0 +1,49 @@
package space.kscience.kmath.multik
import org.jetbrains.kotlinx.multik.ndarray.data.DataType
import space.kscience.kmath.nd.StructureND
import space.kscience.kmath.operations.DoubleField
import space.kscience.kmath.operations.ExponentialOperations
import space.kscience.kmath.operations.TrigonometricOperations
public object MultikDoubleAlgebra : MultikDivisionTensorAlgebra<Double, DoubleField>(),
TrigonometricOperations<StructureND<Double>>, ExponentialOperations<StructureND<Double>> {
override val elementAlgebra: DoubleField get() = DoubleField
override val type: DataType get() = DataType.DoubleDataType
override fun sin(arg: StructureND<Double>): MultikTensor<Double> = multikMath.mathEx.sin(arg.asMultik().array).wrap()
override fun cos(arg: StructureND<Double>): MultikTensor<Double> = multikMath.mathEx.cos(arg.asMultik().array).wrap()
override fun tan(arg: StructureND<Double>): MultikTensor<Double> = sin(arg) / cos(arg)
override fun asin(arg: StructureND<Double>): MultikTensor<Double> = arg.map { asin(it) }
override fun acos(arg: StructureND<Double>): MultikTensor<Double> = arg.map { acos(it) }
override fun atan(arg: StructureND<Double>): MultikTensor<Double> = arg.map { atan(it) }
override fun exp(arg: StructureND<Double>): MultikTensor<Double> = multikMath.mathEx.exp(arg.asMultik().array).wrap()
override fun ln(arg: StructureND<Double>): MultikTensor<Double> = multikMath.mathEx.log(arg.asMultik().array).wrap()
override fun sinh(arg: StructureND<Double>): MultikTensor<Double> = (exp(arg) - exp(-arg)) / 2.0
override fun cosh(arg: StructureND<Double>): MultikTensor<Double> = (exp(arg) + exp(-arg)) / 2.0
override fun tanh(arg: StructureND<Double>): MultikTensor<Double> {
val expPlus = exp(arg)
val expMinus = exp(-arg)
return (expPlus - expMinus) / (expPlus + expMinus)
}
override fun asinh(arg: StructureND<Double>): MultikTensor<Double> = arg.map { asinh(it) }
override fun acosh(arg: StructureND<Double>): MultikTensor<Double> = arg.map { acosh(it) }
override fun atanh(arg: StructureND<Double>): MultikTensor<Double> = arg.map { atanh(it) }
}
public val Double.Companion.multikAlgebra: MultikTensorAlgebra<Double, DoubleField> get() = MultikDoubleAlgebra
public val DoubleField.multikAlgebra: MultikTensorAlgebra<Double, DoubleField> get() = MultikDoubleAlgebra

View File

@ -7,11 +7,9 @@
package space.kscience.kmath.multik package space.kscience.kmath.multik
import org.jetbrains.kotlinx.multik.api.Multik import org.jetbrains.kotlinx.multik.api.*
import org.jetbrains.kotlinx.multik.api.linalg.dot import org.jetbrains.kotlinx.multik.api.linalg.LinAlg
import org.jetbrains.kotlinx.multik.api.mk import org.jetbrains.kotlinx.multik.api.math.Math
import org.jetbrains.kotlinx.multik.api.ndarrayOf
import org.jetbrains.kotlinx.multik.api.zeros
import org.jetbrains.kotlinx.multik.ndarray.data.* import org.jetbrains.kotlinx.multik.ndarray.data.*
import org.jetbrains.kotlinx.multik.ndarray.operations.* import org.jetbrains.kotlinx.multik.ndarray.operations.*
import space.kscience.kmath.misc.PerformancePitfall import space.kscience.kmath.misc.PerformancePitfall
@ -52,10 +50,16 @@ private fun <T, D : Dimension> MultiArray<T, D>.asD2Array(): D2Array<T> {
else throw ClassCastException("Cannot cast MultiArray to NDArray.") else throw ClassCastException("Cannot cast MultiArray to NDArray.")
} }
public abstract class MultikTensorAlgebra<T, A : Ring<T>> : TensorAlgebra<T, A> where T : Number, T : Comparable<T> { public abstract class MultikTensorAlgebra<T, A : Ring<T>> : TensorAlgebra<T, A>
where T : Number, T : Comparable<T> {
public abstract val type: DataType public abstract val type: DataType
protected val multikMath: Math = mk.math
protected val multikLinAl: LinAlg = mk.linalg
protected val multikStat: Statistics = mk.stat
override fun structureND(shape: Shape, initializer: A.(IntArray) -> T): MultikTensor<T> { override fun structureND(shape: Shape, initializer: A.(IntArray) -> T): MultikTensor<T> {
val strides = DefaultStrides(shape) val strides = DefaultStrides(shape)
val memoryView = initMemoryView<T>(strides.linearSize, type) val memoryView = initMemoryView<T>(strides.linearSize, type)
@ -65,6 +69,7 @@ public abstract class MultikTensorAlgebra<T, A : Ring<T>> : TensorAlgebra<T, A>
return MultikTensor(NDArray(memoryView, shape = shape, dim = DN(shape.size))) return MultikTensor(NDArray(memoryView, shape = shape, dim = DN(shape.size)))
} }
@OptIn(PerformancePitfall::class)
override fun StructureND<T>.map(transform: A.(T) -> T): MultikTensor<T> = if (this is MultikTensor) { override fun StructureND<T>.map(transform: A.(T) -> T): MultikTensor<T> = if (this is MultikTensor) {
val data = initMemoryView<T>(array.size, type) val data = initMemoryView<T>(array.size, type)
var count = 0 var count = 0
@ -76,6 +81,7 @@ public abstract class MultikTensorAlgebra<T, A : Ring<T>> : TensorAlgebra<T, A>
} }
} }
@OptIn(PerformancePitfall::class)
override fun StructureND<T>.mapIndexed(transform: A.(index: IntArray, T) -> T): MultikTensor<T> = override fun StructureND<T>.mapIndexed(transform: A.(index: IntArray, T) -> T): MultikTensor<T> =
if (this is MultikTensor) { if (this is MultikTensor) {
val array = asMultik().array val array = asMultik().array
@ -96,6 +102,7 @@ public abstract class MultikTensorAlgebra<T, A : Ring<T>> : TensorAlgebra<T, A>
} }
} }
@OptIn(PerformancePitfall::class)
override fun zip(left: StructureND<T>, right: StructureND<T>, transform: A.(T, T) -> T): MultikTensor<T> { override fun zip(left: StructureND<T>, right: StructureND<T>, transform: A.(T, T) -> T): MultikTensor<T> {
require(left.shape.contentEquals(right.shape)) { "ND array shape mismatch" } //TODO replace by ShapeMismatchException require(left.shape.contentEquals(right.shape)) { "ND array shape mismatch" } //TODO replace by ShapeMismatchException
val leftArray = left.asMultik().array val leftArray = left.asMultik().array
@ -208,9 +215,9 @@ public abstract class MultikTensorAlgebra<T, A : Ring<T>> : TensorAlgebra<T, A>
override fun StructureND<T>.unaryMinus(): MultikTensor<T> = override fun StructureND<T>.unaryMinus(): MultikTensor<T> =
asMultik().array.unaryMinus().wrap() asMultik().array.unaryMinus().wrap()
override fun StructureND<T>.get(i: Int): MultikTensor<T> = asMultik().array.mutableView(i).wrap() override fun Tensor<T>.get(i: Int): MultikTensor<T> = asMultik().array.mutableView(i).wrap()
override fun StructureND<T>.transpose(i: Int, j: Int): MultikTensor<T> = asMultik().array.transpose(i, j).wrap() override fun Tensor<T>.transpose(i: Int, j: Int): MultikTensor<T> = asMultik().array.transpose(i, j).wrap()
override fun Tensor<T>.view(shape: IntArray): MultikTensor<T> { override fun Tensor<T>.view(shape: IntArray): MultikTensor<T> {
require(shape.all { it > 0 }) require(shape.all { it > 0 })
@ -236,12 +243,12 @@ public abstract class MultikTensorAlgebra<T, A : Ring<T>> : TensorAlgebra<T, A>
override fun StructureND<T>.dot(other: StructureND<T>): MultikTensor<T> = override fun StructureND<T>.dot(other: StructureND<T>): MultikTensor<T> =
if (this.shape.size == 1 && other.shape.size == 1) { if (this.shape.size == 1 && other.shape.size == 1) {
Multik.ndarrayOf( Multik.ndarrayOf(
asMultik().array.asD1Array() dot other.asMultik().array.asD1Array() multikLinAl.linAlgEx.dotVV(asMultik().array.asD1Array(), other.asMultik().array.asD1Array())
).asDNArray().wrap() ).wrap()
} else if (this.shape.size == 2 && other.shape.size == 2) { } else if (this.shape.size == 2 && other.shape.size == 2) {
(asMultik().array.asD2Array() dot other.asMultik().array.asD2Array()).asDNArray().wrap() multikLinAl.linAlgEx.dotMM(asMultik().array.asD2Array(), other.asMultik().array.asD2Array()).wrap()
} else if (this.shape.size == 2 && other.shape.size == 1) { } else if (this.shape.size == 2 && other.shape.size == 1) {
(asMultik().array.asD2Array() dot other.asMultik().array.asD1Array()).asDNArray().wrap() multikLinAl.linAlgEx.dotMV(asMultik().array.asD2Array(), other.asMultik().array.asD1Array()).wrap()
} else { } else {
TODO("Not implemented for broadcasting") TODO("Not implemented for broadcasting")
} }
@ -270,7 +277,7 @@ public abstract class MultikTensorAlgebra<T, A : Ring<T>> : TensorAlgebra<T, A>
TODO("Not yet implemented") TODO("Not yet implemented")
} }
override fun StructureND<T>.argMax(dim: Int, keepDim: Boolean): Tensor<T> { override fun StructureND<T>.argMax(dim: Int, keepDim: Boolean): Tensor<Int> {
TODO("Not yet implemented") TODO("Not yet implemented")
} }
} }
@ -294,23 +301,15 @@ public abstract class MultikDivisionTensorAlgebra<T, A : Field<T>>
} }
} }
override fun Tensor<T>.divAssign(other: StructureND<T>) { override fun Tensor<T>.divAssign(arg: StructureND<T>) {
if (this is MultikTensor) { if (this is MultikTensor) {
array.divAssign(other.asMultik().array) array.divAssign(arg.asMultik().array)
} else { } else {
mapInPlace { index, t -> elementAlgebra.divide(t, other[index]) } mapInPlace { index, t -> elementAlgebra.divide(t, arg[index]) }
} }
} }
} }
public object MultikDoubleAlgebra : MultikDivisionTensorAlgebra<Double, DoubleField>() {
override val elementAlgebra: DoubleField get() = DoubleField
override val type: DataType get() = DataType.DoubleDataType
}
public val Double.Companion.multikAlgebra: MultikTensorAlgebra<Double, DoubleField> get() = MultikDoubleAlgebra
public val DoubleField.multikAlgebra: MultikTensorAlgebra<Double, DoubleField> get() = MultikDoubleAlgebra
public object MultikFloatAlgebra : MultikDivisionTensorAlgebra<Float, FloatField>() { public object MultikFloatAlgebra : MultikDivisionTensorAlgebra<Float, FloatField>() {
override val elementAlgebra: FloatField get() = FloatField override val elementAlgebra: FloatField get() = FloatField
override val type: DataType get() = DataType.FloatDataType override val type: DataType get() = DataType.FloatDataType

View File

@ -155,7 +155,7 @@ public sealed interface Nd4jArrayField<T, out F : Field<T>> : FieldOpsND<T, F>,
* Represents intersection of [ExtendedField] and [Field] over [Nd4jArrayStructure]. * Represents intersection of [ExtendedField] and [Field] over [Nd4jArrayStructure].
*/ */
public sealed interface Nd4jArrayExtendedFieldOps<T, out F : ExtendedField<T>> : public sealed interface Nd4jArrayExtendedFieldOps<T, out F : ExtendedField<T>> :
ExtendedFieldOps<StructureND<T>>, Nd4jArrayField<T, F> { ExtendedFieldOps<StructureND<T>>, Nd4jArrayField<T, F>, PowerOperations<StructureND<T>> {
override fun sin(arg: StructureND<T>): StructureND<T> = Transforms.sin(arg.ndArray).wrap() override fun sin(arg: StructureND<T>): StructureND<T> = Transforms.sin(arg.ndArray).wrap()
override fun cos(arg: StructureND<T>): StructureND<T> = Transforms.cos(arg.ndArray).wrap() override fun cos(arg: StructureND<T>): StructureND<T> = Transforms.cos(arg.ndArray).wrap()

View File

@ -92,8 +92,8 @@ public sealed interface Nd4jTensorAlgebra<T : Number, A : Field<T>> : AnalyticTe
} }
override fun StructureND<T>.unaryMinus(): Nd4jArrayStructure<T> = ndArray.neg().wrap() override fun StructureND<T>.unaryMinus(): Nd4jArrayStructure<T> = ndArray.neg().wrap()
override fun StructureND<T>.get(i: Int): Nd4jArrayStructure<T> = ndArray.slice(i.toLong()).wrap() override fun Tensor<T>.get(i: Int): Nd4jArrayStructure<T> = ndArray.slice(i.toLong()).wrap()
override fun StructureND<T>.transpose(i: Int, j: Int): Nd4jArrayStructure<T> = ndArray.swapAxes(i, j).wrap() override fun Tensor<T>.transpose(i: Int, j: Int): Nd4jArrayStructure<T> = ndArray.swapAxes(i, j).wrap()
override fun StructureND<T>.dot(other: StructureND<T>): Nd4jArrayStructure<T> = ndArray.mmul(other.ndArray).wrap() override fun StructureND<T>.dot(other: StructureND<T>): Nd4jArrayStructure<T> = ndArray.mmul(other.ndArray).wrap()
override fun StructureND<T>.min(dim: Int, keepDim: Boolean): Nd4jArrayStructure<T> = override fun StructureND<T>.min(dim: Int, keepDim: Boolean): Nd4jArrayStructure<T> =
@ -108,8 +108,8 @@ public sealed interface Nd4jTensorAlgebra<T : Number, A : Field<T>> : AnalyticTe
override fun Tensor<T>.view(shape: IntArray): Nd4jArrayStructure<T> = ndArray.reshape(shape).wrap() override fun Tensor<T>.view(shape: IntArray): Nd4jArrayStructure<T> = ndArray.reshape(shape).wrap()
override fun Tensor<T>.viewAs(other: StructureND<T>): Nd4jArrayStructure<T> = view(other.shape) override fun Tensor<T>.viewAs(other: StructureND<T>): Nd4jArrayStructure<T> = view(other.shape)
override fun StructureND<T>.argMax(dim: Int, keepDim: Boolean): Nd4jArrayStructure<T> = override fun StructureND<T>.argMax(dim: Int, keepDim: Boolean): Tensor<Int> =
ndBase.get().argmax(ndArray, keepDim, dim).wrap() ndBase.get().argmax(ndArray, keepDim, dim).asIntStructure()
override fun StructureND<T>.mean(dim: Int, keepDim: Boolean): Nd4jArrayStructure<T> = override fun StructureND<T>.mean(dim: Int, keepDim: Boolean): Nd4jArrayStructure<T> =
ndArray.mean(keepDim, dim).wrap() ndArray.mean(keepDim, dim).wrap()
@ -148,8 +148,8 @@ public sealed interface Nd4jTensorAlgebra<T : Number, A : Field<T>> : AnalyticTe
ndArray.divi(value) ndArray.divi(value)
} }
override fun Tensor<T>.divAssign(other: StructureND<T>) { override fun Tensor<T>.divAssign(arg: StructureND<T>) {
ndArray.divi(other.ndArray) ndArray.divi(arg.ndArray)
} }
override fun StructureND<T>.variance(dim: Int, keepDim: Boolean): Nd4jArrayStructure<T> = override fun StructureND<T>.variance(dim: Int, keepDim: Boolean): Nd4jArrayStructure<T> =

View File

@ -6,6 +6,7 @@
package space.kscience.kmath.tensors.api package space.kscience.kmath.tensors.api
import space.kscience.kmath.nd.StructureND import space.kscience.kmath.nd.StructureND
import space.kscience.kmath.operations.ExtendedFieldOps
import space.kscience.kmath.operations.Field import space.kscience.kmath.operations.Field
@ -14,7 +15,8 @@ import space.kscience.kmath.operations.Field
* *
* @param T the type of items closed under analytic functions in the tensors. * @param T the type of items closed under analytic functions in the tensors.
*/ */
public interface AnalyticTensorAlgebra<T, A : Field<T>> : TensorPartialDivisionAlgebra<T, A> { public interface AnalyticTensorAlgebra<T, A : Field<T>> :
TensorPartialDivisionAlgebra<T, A>, ExtendedFieldOps<StructureND<T>> {
/** /**
* @return the mean of all elements in the input tensor. * @return the mean of all elements in the input tensor.
@ -121,4 +123,27 @@ public interface AnalyticTensorAlgebra<T, A : Field<T>> : TensorPartialDivisionA
//For information: https://pytorch.org/docs/stable/generated/torch.floor.html#torch.floor //For information: https://pytorch.org/docs/stable/generated/torch.floor.html#torch.floor
public fun StructureND<T>.floor(): Tensor<T> public fun StructureND<T>.floor(): Tensor<T>
override fun sin(arg: StructureND<T>): StructureND<T> = arg.sin()
override fun cos(arg: StructureND<T>): StructureND<T> = arg.cos()
override fun asin(arg: StructureND<T>): StructureND<T> = arg.asin()
override fun acos(arg: StructureND<T>): StructureND<T> = arg.acos()
override fun atan(arg: StructureND<T>): StructureND<T> = arg.atan()
override fun exp(arg: StructureND<T>): StructureND<T> = arg.exp()
override fun ln(arg: StructureND<T>): StructureND<T> = arg.ln()
override fun sinh(arg: StructureND<T>): StructureND<T> = arg.sinh()
override fun cosh(arg: StructureND<T>): StructureND<T> = arg.cosh()
override fun asinh(arg: StructureND<T>): StructureND<T> = arg.asinh()
override fun acosh(arg: StructureND<T>): StructureND<T> = arg.acosh()
override fun atanh(arg: StructureND<T>): StructureND<T> = arg.atanh()
} }

View File

@ -166,7 +166,7 @@ public interface TensorAlgebra<T, A : Ring<T>> : RingOpsND<T, A> {
* @param i index of the extractable tensor * @param i index of the extractable tensor
* @return subtensor of the original tensor with index [i] * @return subtensor of the original tensor with index [i]
*/ */
public operator fun StructureND<T>.get(i: Int): Tensor<T> public operator fun Tensor<T>.get(i: Int): Tensor<T>
/** /**
* Returns a tensor that is a transposed version of this tensor. The given dimensions [i] and [j] are swapped. * Returns a tensor that is a transposed version of this tensor. The given dimensions [i] and [j] are swapped.
@ -176,7 +176,7 @@ public interface TensorAlgebra<T, A : Ring<T>> : RingOpsND<T, A> {
* @param j the second dimension to be transposed * @param j the second dimension to be transposed
* @return transposed tensor * @return transposed tensor
*/ */
public fun StructureND<T>.transpose(i: Int = -2, j: Int = -1): Tensor<T> public fun Tensor<T>.transpose(i: Int = -2, j: Int = -1): Tensor<T>
/** /**
* Returns a new tensor with the same data as the self tensor but of a different shape. * Returns a new tensor with the same data as the self tensor but of a different shape.
@ -324,7 +324,7 @@ public interface TensorAlgebra<T, A : Ring<T>> : RingOpsND<T, A> {
* @param keepDim whether the output tensor has [dim] retained or not. * @param keepDim whether the output tensor has [dim] retained or not.
* @return the index of maximum value of each row of the input tensor in the given dimension [dim]. * @return the index of maximum value of each row of the input tensor in the given dimension [dim].
*/ */
public fun StructureND<T>.argMax(dim: Int, keepDim: Boolean): Tensor<T> public fun StructureND<T>.argMax(dim: Int, keepDim: Boolean): Tensor<Int>
override fun add(left: StructureND<T>, right: StructureND<T>): Tensor<T> = left + right override fun add(left: StructureND<T>, right: StructureND<T>): Tensor<T> = left + right

View File

@ -53,9 +53,9 @@ public interface TensorPartialDivisionAlgebra<T, A : Field<T>> : TensorAlgebra<T
public operator fun Tensor<T>.divAssign(value: T) public operator fun Tensor<T>.divAssign(value: T)
/** /**
* Each element of this tensor is divided by each element of the [other] tensor. * Each element of this tensor is divided by each element of the [arg] tensor.
* *
* @param other tensor to be divided by. * @param arg tensor to be divided by.
*/ */
public operator fun Tensor<T>.divAssign(other: StructureND<T>) public operator fun Tensor<T>.divAssign(arg: StructureND<T>)
} }

View File

@ -5,6 +5,7 @@
package space.kscience.kmath.tensors.core package space.kscience.kmath.tensors.core
import space.kscience.kmath.misc.PerformancePitfall
import space.kscience.kmath.misc.UnstableKMathAPI import space.kscience.kmath.misc.UnstableKMathAPI
import space.kscience.kmath.nd.StructureND import space.kscience.kmath.nd.StructureND
import space.kscience.kmath.tensors.api.Tensor import space.kscience.kmath.tensors.api.Tensor
@ -17,6 +18,8 @@ import space.kscience.kmath.tensors.core.internal.tensor
* Basic linear algebra operations implemented with broadcasting. * Basic linear algebra operations implemented with broadcasting.
* For more information: https://pytorch.org/docs/stable/notes/broadcasting.html * For more information: https://pytorch.org/docs/stable/notes/broadcasting.html
*/ */
@PerformancePitfall
public object BroadcastDoubleTensorAlgebra : DoubleTensorAlgebra() { public object BroadcastDoubleTensorAlgebra : DoubleTensorAlgebra() {
override fun StructureND<Double>.plus(arg: StructureND<Double>): DoubleTensor { override fun StructureND<Double>.plus(arg: StructureND<Double>): DoubleTensor {
@ -74,8 +77,8 @@ public object BroadcastDoubleTensorAlgebra : DoubleTensorAlgebra() {
} }
} }
override fun StructureND<Double>.div(other: StructureND<Double>): DoubleTensor { override fun StructureND<Double>.div(arg: StructureND<Double>): DoubleTensor {
val broadcast = broadcastTensors(tensor, other.tensor) val broadcast = broadcastTensors(tensor, arg.tensor)
val newThis = broadcast[0] val newThis = broadcast[0]
val newOther = broadcast[1] val newOther = broadcast[1]
val resBuffer = DoubleArray(newThis.indices.linearSize) { i -> val resBuffer = DoubleArray(newThis.indices.linearSize) { i ->
@ -85,8 +88,8 @@ public object BroadcastDoubleTensorAlgebra : DoubleTensorAlgebra() {
return DoubleTensor(newThis.shape, resBuffer) return DoubleTensor(newThis.shape, resBuffer)
} }
override fun Tensor<Double>.divAssign(other: StructureND<Double>) { override fun Tensor<Double>.divAssign(arg: StructureND<Double>) {
val newOther = broadcastTo(other.tensor, tensor.shape) val newOther = broadcastTo(arg.tensor, tensor.shape)
for (i in 0 until tensor.indices.linearSize) { for (i in 0 until tensor.indices.linearSize) {
tensor.mutableBuffer.array()[tensor.bufferStart + i] /= tensor.mutableBuffer.array()[tensor.bufferStart + i] /=
newOther.mutableBuffer.array()[tensor.bufferStart + i] newOther.mutableBuffer.array()[tensor.bufferStart + i]
@ -99,5 +102,6 @@ public object BroadcastDoubleTensorAlgebra : DoubleTensorAlgebra() {
* Compute a value using broadcast double tensor algebra * Compute a value using broadcast double tensor algebra
*/ */
@UnstableKMathAPI @UnstableKMathAPI
@PerformancePitfall
public fun <R> DoubleTensorAlgebra.withBroadcast(block: BroadcastDoubleTensorAlgebra.() -> R): R = public fun <R> DoubleTensorAlgebra.withBroadcast(block: BroadcastDoubleTensorAlgebra.() -> R): R =
BroadcastDoubleTensorAlgebra.block() BroadcastDoubleTensorAlgebra.block()

View File

@ -9,7 +9,6 @@ import space.kscience.kmath.misc.PerformancePitfall
import space.kscience.kmath.nd.Strides import space.kscience.kmath.nd.Strides
import space.kscience.kmath.structures.MutableBuffer import space.kscience.kmath.structures.MutableBuffer
import space.kscience.kmath.tensors.api.Tensor import space.kscience.kmath.tensors.api.Tensor
import space.kscience.kmath.tensors.core.internal.TensorLinearStructure
/** /**
* Represents [Tensor] over a [MutableBuffer] intended to be used through [DoubleTensor] and [IntTensor] * Represents [Tensor] over a [MutableBuffer] intended to be used through [DoubleTensor] and [IntTensor]

View File

@ -3,13 +3,18 @@
* Use of this source code is governed by the Apache 2.0 license that can be found in the LICENSE file. * Use of this source code is governed by the Apache 2.0 license that can be found in the LICENSE file.
*/ */
@file:OptIn(PerformancePitfall::class)
package space.kscience.kmath.tensors.core package space.kscience.kmath.tensors.core
import space.kscience.kmath.misc.PerformancePitfall
import space.kscience.kmath.nd.MutableStructure2D import space.kscience.kmath.nd.MutableStructure2D
import space.kscience.kmath.nd.StructureND import space.kscience.kmath.nd.StructureND
import space.kscience.kmath.nd.as1D import space.kscience.kmath.nd.as1D
import space.kscience.kmath.nd.as2D import space.kscience.kmath.nd.as2D
import space.kscience.kmath.operations.DoubleField import space.kscience.kmath.operations.DoubleField
import space.kscience.kmath.structures.MutableBuffer
import space.kscience.kmath.structures.indices import space.kscience.kmath.structures.indices
import space.kscience.kmath.tensors.api.AnalyticTensorAlgebra import space.kscience.kmath.tensors.api.AnalyticTensorAlgebra
import space.kscience.kmath.tensors.api.LinearOpsTensorAlgebra import space.kscience.kmath.tensors.api.LinearOpsTensorAlgebra
@ -38,6 +43,7 @@ public open class DoubleTensorAlgebra :
* @param transform the function to be applied to each element of the tensor. * @param transform the function to be applied to each element of the tensor.
* @return the resulting tensor after applying the function. * @return the resulting tensor after applying the function.
*/ */
@PerformancePitfall
@Suppress("OVERRIDE_BY_INLINE") @Suppress("OVERRIDE_BY_INLINE")
final override inline fun StructureND<Double>.map(transform: DoubleField.(Double) -> Double): DoubleTensor { final override inline fun StructureND<Double>.map(transform: DoubleField.(Double) -> Double): DoubleTensor {
val tensor = this.tensor val tensor = this.tensor
@ -51,6 +57,7 @@ public open class DoubleTensorAlgebra :
) )
} }
@PerformancePitfall
@Suppress("OVERRIDE_BY_INLINE") @Suppress("OVERRIDE_BY_INLINE")
final override inline fun StructureND<Double>.mapIndexed(transform: DoubleField.(index: IntArray, Double) -> Double): DoubleTensor { final override inline fun StructureND<Double>.mapIndexed(transform: DoubleField.(index: IntArray, Double) -> Double): DoubleTensor {
val tensor = this.tensor val tensor = this.tensor
@ -64,12 +71,13 @@ public open class DoubleTensorAlgebra :
) )
} }
@PerformancePitfall
override fun zip( override fun zip(
left: StructureND<Double>, left: StructureND<Double>,
right: StructureND<Double>, right: StructureND<Double>,
transform: DoubleField.(Double, Double) -> Double transform: DoubleField.(Double, Double) -> Double,
): DoubleTensor { ): DoubleTensor {
require(left.shape.contentEquals(right.shape)){ require(left.shape.contentEquals(right.shape)) {
"The shapes in zip are not equal: left - ${left.shape}, right - ${right.shape}" "The shapes in zip are not equal: left - ${left.shape}, right - ${right.shape}"
} }
val leftTensor = left.tensor val leftTensor = left.tensor
@ -115,7 +123,7 @@ public open class DoubleTensorAlgebra :
TensorLinearStructure(shape).asSequence().map { DoubleField.initializer(it) }.toMutableList().toDoubleArray() TensorLinearStructure(shape).asSequence().map { DoubleField.initializer(it) }.toMutableList().toDoubleArray()
) )
override operator fun StructureND<Double>.get(i: Int): DoubleTensor { override operator fun Tensor<Double>.get(i: Int): DoubleTensor {
val lastShape = tensor.shape.drop(1).toIntArray() val lastShape = tensor.shape.drop(1).toIntArray()
val newShape = if (lastShape.isNotEmpty()) lastShape else intArrayOf(1) val newShape = if (lastShape.isNotEmpty()) lastShape else intArrayOf(1)
val newStart = newShape.reduce(Int::times) * i + tensor.bufferStart val newStart = newShape.reduce(Int::times) * i + tensor.bufferStart
@ -314,11 +322,11 @@ public open class DoubleTensorAlgebra :
return DoubleTensor(shape, resBuffer) return DoubleTensor(shape, resBuffer)
} }
override fun StructureND<Double>.div(other: StructureND<Double>): DoubleTensor { override fun StructureND<Double>.div(arg: StructureND<Double>): DoubleTensor {
checkShapesCompatible(tensor, other) checkShapesCompatible(tensor, arg)
val resBuffer = DoubleArray(tensor.numElements) { i -> val resBuffer = DoubleArray(tensor.numElements) { i ->
tensor.mutableBuffer.array()[other.tensor.bufferStart + i] / tensor.mutableBuffer.array()[arg.tensor.bufferStart + i] /
other.tensor.mutableBuffer.array()[other.tensor.bufferStart + i] arg.tensor.mutableBuffer.array()[arg.tensor.bufferStart + i]
} }
return DoubleTensor(tensor.shape, resBuffer) return DoubleTensor(tensor.shape, resBuffer)
} }
@ -329,11 +337,11 @@ public open class DoubleTensorAlgebra :
} }
} }
override fun Tensor<Double>.divAssign(other: StructureND<Double>) { override fun Tensor<Double>.divAssign(arg: StructureND<Double>) {
checkShapesCompatible(tensor, other) checkShapesCompatible(tensor, arg)
for (i in 0 until tensor.numElements) { for (i in 0 until tensor.numElements) {
tensor.mutableBuffer.array()[tensor.bufferStart + i] /= tensor.mutableBuffer.array()[tensor.bufferStart + i] /=
other.tensor.mutableBuffer.array()[tensor.bufferStart + i] arg.tensor.mutableBuffer.array()[tensor.bufferStart + i]
} }
} }
@ -344,7 +352,7 @@ public open class DoubleTensorAlgebra :
return DoubleTensor(tensor.shape, resBuffer) return DoubleTensor(tensor.shape, resBuffer)
} }
override fun StructureND<Double>.transpose(i: Int, j: Int): DoubleTensor { override fun Tensor<Double>.transpose(i: Int, j: Int): DoubleTensor {
val ii = tensor.minusIndex(i) val ii = tensor.minusIndex(i)
val jj = tensor.minusIndex(j) val jj = tensor.minusIndex(j)
checkTranspose(tensor.dimension, ii, jj) checkTranspose(tensor.dimension, ii, jj)
@ -376,6 +384,7 @@ public open class DoubleTensorAlgebra :
override fun Tensor<Double>.viewAs(other: StructureND<Double>): DoubleTensor = override fun Tensor<Double>.viewAs(other: StructureND<Double>): DoubleTensor =
tensor.view(other.shape) tensor.view(other.shape)
@PerformancePitfall
override infix fun StructureND<Double>.dot(other: StructureND<Double>): DoubleTensor { override infix fun StructureND<Double>.dot(other: StructureND<Double>): DoubleTensor {
if (tensor.shape.size == 1 && other.shape.size == 1) { if (tensor.shape.size == 1 && other.shape.size == 1) {
return DoubleTensor(intArrayOf(1), doubleArrayOf(tensor.times(other).tensor.mutableBuffer.array().sum())) return DoubleTensor(intArrayOf(1), doubleArrayOf(tensor.times(other).tensor.mutableBuffer.array().sum()))
@ -413,14 +422,11 @@ public open class DoubleTensorAlgebra :
for ((res, ab) in resTensor.matrixSequence().zip(newThis.matrixSequence().zip(newOther.matrixSequence()))) { for ((res, ab) in resTensor.matrixSequence().zip(newThis.matrixSequence().zip(newOther.matrixSequence()))) {
val (a, b) = ab val (a, b) = ab
dotHelper(a.as2D(), b.as2D(), res.as2D(), l, m1, n) dotTo(a.as2D(), b.as2D(), res.as2D(), l, m1, n)
} }
return if (penultimateDim) { return if (penultimateDim) {
resTensor.view( resTensor.view(resTensor.shape.dropLast(2).toIntArray() + intArrayOf(resTensor.shape.last()))
resTensor.shape.dropLast(2).toIntArray() +
intArrayOf(resTensor.shape.last())
)
} else if (lastDim) { } else if (lastDim) {
resTensor.view(resTensor.shape.dropLast(1).toIntArray()) resTensor.view(resTensor.shape.dropLast(1).toIntArray())
} else { } else {
@ -432,7 +438,7 @@ public open class DoubleTensorAlgebra :
diagonalEntries: Tensor<Double>, diagonalEntries: Tensor<Double>,
offset: Int, offset: Int,
dim1: Int, dim1: Int,
dim2: Int dim2: Int,
): DoubleTensor { ): DoubleTensor {
val n = diagonalEntries.shape.size val n = diagonalEntries.shape.size
val d1 = minusIndexFrom(n + 1, dim1) val d1 = minusIndexFrom(n + 1, dim1)
@ -568,14 +574,14 @@ public open class DoubleTensorAlgebra :
*/ */
public fun Tensor<Double>.rowsByIndices(indices: IntArray): DoubleTensor = stack(indices.map { this[it] }) public fun Tensor<Double>.rowsByIndices(indices: IntArray): DoubleTensor = stack(indices.map { this[it] })
internal inline fun StructureND<Double>.fold(foldFunction: (DoubleArray) -> Double): Double = private inline fun StructureND<Double>.fold(foldFunction: (DoubleArray) -> Double): Double =
foldFunction(tensor.copyArray()) foldFunction(tensor.copyArray())
internal inline fun StructureND<Double>.foldDim( private inline fun <reified R : Any> StructureND<Double>.foldDim(
foldFunction: (DoubleArray) -> Double,
dim: Int, dim: Int,
keepDim: Boolean, keepDim: Boolean,
): DoubleTensor { foldFunction: (DoubleArray) -> R,
): BufferedTensor<R> {
check(dim < dimension) { "Dimension $dim out of range $dimension" } check(dim < dimension) { "Dimension $dim out of range $dimension" }
val resShape = if (keepDim) { val resShape = if (keepDim) {
shape.take(dim).toIntArray() + intArrayOf(1) + shape.takeLast(dimension - dim - 1).toIntArray() shape.take(dim).toIntArray() + intArrayOf(1) + shape.takeLast(dimension - dim - 1).toIntArray()
@ -583,80 +589,75 @@ public open class DoubleTensorAlgebra :
shape.take(dim).toIntArray() + shape.takeLast(dimension - dim - 1).toIntArray() shape.take(dim).toIntArray() + shape.takeLast(dimension - dim - 1).toIntArray()
} }
val resNumElements = resShape.reduce(Int::times) val resNumElements = resShape.reduce(Int::times)
val resTensor = DoubleTensor(resShape, DoubleArray(resNumElements) { 0.0 }, 0) val init = foldFunction(DoubleArray(1) { 0.0 })
for (index in resTensor.indices.asSequence()) { val resTensor = BufferedTensor(resShape,
MutableBuffer.auto(resNumElements) { init }, 0)
for (index in resTensor.indices) {
val prefix = index.take(dim).toIntArray() val prefix = index.take(dim).toIntArray()
val suffix = index.takeLast(dimension - dim - 1).toIntArray() val suffix = index.takeLast(dimension - dim - 1).toIntArray()
resTensor[index] = foldFunction(DoubleArray(shape[dim]) { i -> resTensor[index] = foldFunction(DoubleArray(shape[dim]) { i ->
tensor[prefix + intArrayOf(i) + suffix] tensor[prefix + intArrayOf(i) + suffix]
}) })
} }
return resTensor return resTensor
} }
override fun StructureND<Double>.sum(): Double = tensor.fold { it.sum() } override fun StructureND<Double>.sum(): Double = tensor.fold { it.sum() }
override fun StructureND<Double>.sum(dim: Int, keepDim: Boolean): DoubleTensor = override fun StructureND<Double>.sum(dim: Int, keepDim: Boolean): DoubleTensor =
foldDim({ x -> x.sum() }, dim, keepDim) foldDim(dim, keepDim) { x -> x.sum() }.toDoubleTensor()
override fun StructureND<Double>.min(): Double = this.fold { it.minOrNull()!! } override fun StructureND<Double>.min(): Double = this.fold { it.minOrNull()!! }
override fun StructureND<Double>.min(dim: Int, keepDim: Boolean): DoubleTensor = override fun StructureND<Double>.min(dim: Int, keepDim: Boolean): DoubleTensor =
foldDim({ x -> x.minOrNull()!! }, dim, keepDim) foldDim(dim, keepDim) { x -> x.minOrNull()!! }.toDoubleTensor()
override fun StructureND<Double>.max(): Double = this.fold { it.maxOrNull()!! } override fun StructureND<Double>.max(): Double = this.fold { it.maxOrNull()!! }
override fun StructureND<Double>.max(dim: Int, keepDim: Boolean): DoubleTensor = override fun StructureND<Double>.max(dim: Int, keepDim: Boolean): DoubleTensor =
foldDim({ x -> x.maxOrNull()!! }, dim, keepDim) foldDim(dim, keepDim) { x -> x.maxOrNull()!! }.toDoubleTensor()
override fun StructureND<Double>.argMax(dim: Int, keepDim: Boolean): DoubleTensor =
foldDim({ x -> override fun StructureND<Double>.argMax(dim: Int, keepDim: Boolean): IntTensor =
x.withIndex().maxByOrNull { it.value }?.index!!.toDouble() foldDim(dim, keepDim) { x ->
}, dim, keepDim) x.withIndex().maxByOrNull { it.value }?.index!!
}.toIntTensor()
override fun StructureND<Double>.mean(): Double = this.fold { it.sum() / tensor.numElements } override fun StructureND<Double>.mean(): Double = this.fold { it.sum() / tensor.numElements }
override fun StructureND<Double>.mean(dim: Int, keepDim: Boolean): DoubleTensor = override fun StructureND<Double>.mean(dim: Int, keepDim: Boolean): DoubleTensor = foldDim(dim, keepDim) { arr ->
foldDim( check(dim < dimension) { "Dimension $dim out of range $dimension" }
{ arr -> arr.sum() / shape[dim]
check(dim < dimension) { "Dimension $dim out of range $dimension" } }.toDoubleTensor()
arr.sum() / shape[dim]
},
dim,
keepDim
)
override fun StructureND<Double>.std(): Double = this.fold { arr -> override fun StructureND<Double>.std(): Double = fold { arr ->
val mean = arr.sum() / tensor.numElements val mean = arr.sum() / tensor.numElements
sqrt(arr.sumOf { (it - mean) * (it - mean) } / (tensor.numElements - 1)) sqrt(arr.sumOf { (it - mean) * (it - mean) } / (tensor.numElements - 1))
} }
override fun StructureND<Double>.std(dim: Int, keepDim: Boolean): DoubleTensor = foldDim( override fun StructureND<Double>.std(dim: Int, keepDim: Boolean): DoubleTensor = foldDim(
{ arr ->
check(dim < dimension) { "Dimension $dim out of range $dimension" }
val mean = arr.sum() / shape[dim]
sqrt(arr.sumOf { (it - mean) * (it - mean) } / (shape[dim] - 1))
},
dim, dim,
keepDim keepDim
) ) { arr ->
check(dim < dimension) { "Dimension $dim out of range $dimension" }
val mean = arr.sum() / shape[dim]
sqrt(arr.sumOf { (it - mean) * (it - mean) } / (shape[dim] - 1))
}.toDoubleTensor()
override fun StructureND<Double>.variance(): Double = this.fold { arr -> override fun StructureND<Double>.variance(): Double = fold { arr ->
val mean = arr.sum() / tensor.numElements val mean = arr.sum() / tensor.numElements
arr.sumOf { (it - mean) * (it - mean) } / (tensor.numElements - 1) arr.sumOf { (it - mean) * (it - mean) } / (tensor.numElements - 1)
} }
override fun StructureND<Double>.variance(dim: Int, keepDim: Boolean): DoubleTensor = foldDim( override fun StructureND<Double>.variance(dim: Int, keepDim: Boolean): DoubleTensor = foldDim(
{ arr ->
check(dim < dimension) { "Dimension $dim out of range $dimension" }
val mean = arr.sum() / shape[dim]
arr.sumOf { (it - mean) * (it - mean) } / (shape[dim] - 1)
},
dim, dim,
keepDim keepDim
) ) { arr ->
check(dim < dimension) { "Dimension $dim out of range $dimension" }
val mean = arr.sum() / shape[dim]
arr.sumOf { (it - mean) * (it - mean) } / (shape[dim] - 1)
}.toDoubleTensor()
private fun cov(x: DoubleTensor, y: DoubleTensor): Double { private fun cov(x: DoubleTensor, y: DoubleTensor): Double {
val n = x.shape[0] val n = x.shape[0]

View File

@ -6,6 +6,7 @@
package space.kscience.kmath.tensors.core package space.kscience.kmath.tensors.core
import space.kscience.kmath.structures.IntBuffer import space.kscience.kmath.structures.IntBuffer
import space.kscience.kmath.tensors.core.internal.array
/** /**
* Default [BufferedTensor] implementation for [Int] values * Default [BufferedTensor] implementation for [Int] values
@ -14,4 +15,7 @@ public class IntTensor internal constructor(
shape: IntArray, shape: IntArray,
buffer: IntArray, buffer: IntArray,
offset: Int = 0 offset: Int = 0
) : BufferedTensor<Int>(shape, IntBuffer(buffer), offset) ) : BufferedTensor<Int>(shape, IntBuffer(buffer), offset){
public fun asDouble() : DoubleTensor =
DoubleTensor(shape, mutableBuffer.array().map{ it.toDouble()}.toDoubleArray(), bufferStart)
}

View File

@ -0,0 +1,74 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.tensors.core
import space.kscience.kmath.nd.Strides
import kotlin.math.max
/**
* This [Strides] implementation follows the last dimension first convention
* For more information: https://numpy.org/doc/stable/reference/generated/numpy.ndarray.strides.html
*
* @param shape the shape of the tensor.
*/
public class TensorLinearStructure(override val shape: IntArray) : Strides() {
override val strides: IntArray
get() = stridesFromShape(shape)
override fun index(offset: Int): IntArray =
indexFromOffset(offset, strides, shape.size)
override val linearSize: Int
get() = shape.reduce(Int::times)
override fun equals(other: Any?): Boolean {
if (this === other) return true
if (other == null || this::class != other::class) return false
other as TensorLinearStructure
if (!shape.contentEquals(other.shape)) return false
return true
}
override fun hashCode(): Int {
return shape.contentHashCode()
}
public companion object {
public fun stridesFromShape(shape: IntArray): IntArray {
val nDim = shape.size
val res = IntArray(nDim)
if (nDim == 0)
return res
var current = nDim - 1
res[current] = 1
while (current > 0) {
res[current - 1] = max(1, shape[current]) * res[current]
current--
}
return res
}
public fun indexFromOffset(offset: Int, strides: IntArray, nDim: Int): IntArray {
val res = IntArray(nDim)
var current = offset
var strideIndex = 0
while (strideIndex < nDim) {
res[strideIndex] = (current / strides[strideIndex])
current %= strides[strideIndex]
strideIndex++
}
return res
}
}
}

View File

@ -1,71 +0,0 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the LICENSE file.
*/
package space.kscience.kmath.tensors.core.internal
import space.kscience.kmath.nd.Strides
import kotlin.math.max
internal fun stridesFromShape(shape: IntArray): IntArray {
val nDim = shape.size
val res = IntArray(nDim)
if (nDim == 0)
return res
var current = nDim - 1
res[current] = 1
while (current > 0) {
res[current - 1] = max(1, shape[current]) * res[current]
current--
}
return res
}
internal fun indexFromOffset(offset: Int, strides: IntArray, nDim: Int): IntArray {
val res = IntArray(nDim)
var current = offset
var strideIndex = 0
while (strideIndex < nDim) {
res[strideIndex] = (current / strides[strideIndex])
current %= strides[strideIndex]
strideIndex++
}
return res
}
/**
* This [Strides] implementation follows the last dimension first convention
* For more information: https://numpy.org/doc/stable/reference/generated/numpy.ndarray.strides.html
*
* @param shape the shape of the tensor.
*/
internal class TensorLinearStructure(override val shape: IntArray) : Strides() {
override val strides: IntArray
get() = stridesFromShape(shape)
override fun index(offset: Int): IntArray =
indexFromOffset(offset, strides, shape.size)
override val linearSize: Int
get() = shape.reduce(Int::times)
override fun equals(other: Any?): Boolean {
if (this === other) return true
if (other == null || this::class != other::class) return false
other as TensorLinearStructure
if (!shape.contentEquals(other.shape)) return false
return true
}
override fun hashCode(): Int {
return shape.contentHashCode()
}
}

View File

@ -53,7 +53,7 @@ internal val <T> BufferedTensor<T>.matrices: VirtualBuffer<BufferedTensor<T>>
internal fun <T> BufferedTensor<T>.matrixSequence(): Sequence<BufferedTensor<T>> = matrices.asSequence() internal fun <T> BufferedTensor<T>.matrixSequence(): Sequence<BufferedTensor<T>> = matrices.asSequence()
internal fun dotHelper( internal fun dotTo(
a: MutableStructure2D<Double>, a: MutableStructure2D<Double>,
b: MutableStructure2D<Double>, b: MutableStructure2D<Double>,
res: MutableStructure2D<Double>, res: MutableStructure2D<Double>,

View File

@ -12,6 +12,7 @@ import space.kscience.kmath.tensors.api.Tensor
import space.kscience.kmath.tensors.core.BufferedTensor import space.kscience.kmath.tensors.core.BufferedTensor
import space.kscience.kmath.tensors.core.DoubleTensor import space.kscience.kmath.tensors.core.DoubleTensor
import space.kscience.kmath.tensors.core.IntTensor import space.kscience.kmath.tensors.core.IntTensor
import space.kscience.kmath.tensors.core.TensorLinearStructure
internal fun BufferedTensor<Int>.asTensor(): IntTensor = internal fun BufferedTensor<Int>.asTensor(): IntTensor =
IntTensor(this.shape, this.mutableBuffer.array(), this.bufferStart) IntTensor(this.shape, this.mutableBuffer.array(), this.bufferStart)

View File

@ -3,8 +3,11 @@
* Use of this source code is governed by the Apache 2.0 license that can be found in the LICENSE file. * Use of this source code is governed by the Apache 2.0 license that can be found in the LICENSE file.
*/ */
@file:OptIn(PerformancePitfall::class)
package space.kscience.kmath.tensors.core package space.kscience.kmath.tensors.core
import space.kscience.kmath.misc.PerformancePitfall
import space.kscience.kmath.nd.Shape import space.kscience.kmath.nd.Shape
import kotlin.jvm.JvmName import kotlin.jvm.JvmName

View File

@ -6,17 +6,20 @@
package space.kscience.kmath.viktor package space.kscience.kmath.viktor
import org.jetbrains.bio.viktor.F64Array import org.jetbrains.bio.viktor.F64Array
import space.kscience.kmath.misc.PerformancePitfall
import space.kscience.kmath.misc.UnstableKMathAPI import space.kscience.kmath.misc.UnstableKMathAPI
import space.kscience.kmath.nd.* import space.kscience.kmath.nd.*
import space.kscience.kmath.operations.DoubleField import space.kscience.kmath.operations.DoubleField
import space.kscience.kmath.operations.ExtendedFieldOps import space.kscience.kmath.operations.ExtendedFieldOps
import space.kscience.kmath.operations.NumbersAddOps import space.kscience.kmath.operations.NumbersAddOps
import space.kscience.kmath.operations.PowerOperations
@OptIn(UnstableKMathAPI::class) @OptIn(UnstableKMathAPI::class)
@Suppress("OVERRIDE_BY_INLINE", "NOTHING_TO_INLINE") @Suppress("OVERRIDE_BY_INLINE", "NOTHING_TO_INLINE")
public open class ViktorFieldOpsND : public open class ViktorFieldOpsND :
FieldOpsND<Double, DoubleField>, FieldOpsND<Double, DoubleField>,
ExtendedFieldOps<StructureND<Double>> { ExtendedFieldOps<StructureND<Double>>,
PowerOperations<StructureND<Double>> {
public val StructureND<Double>.f64Buffer: F64Array public val StructureND<Double>.f64Buffer: F64Array
get() = when (this) { get() = when (this) {
@ -35,6 +38,7 @@ public open class ViktorFieldOpsND :
override fun StructureND<Double>.unaryMinus(): StructureND<Double> = -1 * this override fun StructureND<Double>.unaryMinus(): StructureND<Double> = -1 * this
@PerformancePitfall
override fun StructureND<Double>.map(transform: DoubleField.(Double) -> Double): ViktorStructureND = override fun StructureND<Double>.map(transform: DoubleField.(Double) -> Double): ViktorStructureND =
F64Array(*shape).apply { F64Array(*shape).apply {
DefaultStrides(shape).asSequence().forEach { index -> DefaultStrides(shape).asSequence().forEach { index ->
@ -42,6 +46,7 @@ public open class ViktorFieldOpsND :
} }
}.asStructure() }.asStructure()
@PerformancePitfall
override fun StructureND<Double>.mapIndexed( override fun StructureND<Double>.mapIndexed(
transform: DoubleField.(index: IntArray, Double) -> Double, transform: DoubleField.(index: IntArray, Double) -> Double,
): ViktorStructureND = F64Array(*shape).apply { ): ViktorStructureND = F64Array(*shape).apply {
@ -50,6 +55,7 @@ public open class ViktorFieldOpsND :
} }
}.asStructure() }.asStructure()
@PerformancePitfall
override fun zip( override fun zip(
left: StructureND<Double>, left: StructureND<Double>,
right: StructureND<Double>, right: StructureND<Double>,
@ -110,7 +116,7 @@ public open class ViktorFieldOpsND :
public val DoubleField.viktorAlgebra: ViktorFieldOpsND get() = ViktorFieldOpsND public val DoubleField.viktorAlgebra: ViktorFieldOpsND get() = ViktorFieldOpsND
public open class ViktorFieldND( public open class ViktorFieldND(
override val shape: Shape override val shape: Shape,
) : ViktorFieldOpsND(), FieldND<Double, DoubleField>, NumbersAddOps<StructureND<Double>> { ) : ViktorFieldOpsND(), FieldND<Double, DoubleField>, NumbersAddOps<StructureND<Double>> {
override val zero: ViktorStructureND by lazy { F64Array.full(init = 0.0, shape = shape).asStructure() } override val zero: ViktorStructureND by lazy { F64Array.full(init = 0.0, shape = shape).asStructure() }
override val one: ViktorStructureND by lazy { F64Array.full(init = 1.0, shape = shape).asStructure() } override val one: ViktorStructureND by lazy { F64Array.full(init = 1.0, shape = shape).asStructure() }