diff --git a/examples/src/main/kotlin/space/kscience/kmath/tensors/OLSWithSVD.kt b/examples/src/main/kotlin/space/kscience/kmath/tensors/OLSWithSVD.kt index 063a1d1c4..a9b154017 100644 --- a/examples/src/main/kotlin/space/kscience/kmath/tensors/OLSWithSVD.kt +++ b/examples/src/main/kotlin/space/kscience/kmath/tensors/OLSWithSVD.kt @@ -9,6 +9,8 @@ import space.kscience.kmath.tensors.core.DoubleTensor import space.kscience.kmath.tensors.core.algebras.DoubleAnalyticTensorAlgebra import space.kscience.kmath.tensors.core.algebras.DoubleLinearOpsTensorAlgebra +import kotlin.math.abs + // OLS estimator using SVD fun main() { @@ -26,8 +28,7 @@ fun main() { doubleArrayOf(1.0, 2.5, 3.4, 5.0, 10.1) ) - println("Real alpha:\n" + - "$alpha") + println("Real alpha:\n$alpha") // also take sample of size 20 from normal distribution for x TODO rename val x = randNormal( @@ -35,20 +36,22 @@ fun main() { randSeed ) - // calculate y and add gaussian noise (N(0, 0.05)) TODO rename + // calculate y and add gaussian noise (N(0, 0.05)) + // TODO: please add an intercept: Y = beta * X + alpha + N(0,0.5) val y = x dot alpha y += y.randNormalLike(randSeed) * 0.05 // now restore the coefficient vector with OSL estimator with SVD + // TODO: you need to change accordingly [X 1] [alpha beta] = Y + // TODO: inverting [X 1] via SVD val (u, singValues, v) = x.svd() // we have to make sure the singular values of the matrix are not close to zero - println("Singular values:\n" + - "$singValues") - // TODO something with Boolean tensors + println("Singular values:\n$singValues") + // inverse Sigma matrix can be restored from singular values with diagonalEmbedding function - val sigma = diagonalEmbedding(1.0/singValues) + val sigma = diagonalEmbedding(singValues.map{ x -> if (abs(x) < 1e-3) 0.0 else 1.0/x }) val alphaOLS = v dot sigma dot u.transpose() dot y println("Estimated alpha:\n" +