Merger kmath-prob and kmath-commons-rng-part
This commit is contained in:
parent
2de9548c23
commit
bc59f8b287
@ -1,2 +0,0 @@
|
||||
plugins { id("scientifik.mpp") }
|
||||
kotlin.sourceSets { commonMain.get().dependencies { api(project(":kmath-coroutines")) } }
|
@ -1,7 +0,0 @@
|
||||
package scientifik.commons.rng.sampling
|
||||
|
||||
import scientifik.commons.rng.UniformRandomProvider
|
||||
|
||||
interface SharedStateSampler<R> {
|
||||
fun withUniformRandomProvider(rng: UniformRandomProvider): R
|
||||
}
|
@ -1,5 +0,0 @@
|
||||
package scientifik.commons.rng.sampling.distribution
|
||||
|
||||
interface ContinuousSampler {
|
||||
fun sample(): Double
|
||||
}
|
@ -1,5 +0,0 @@
|
||||
package scientifik.commons.rng.sampling.distribution
|
||||
|
||||
interface DiscreteSampler {
|
||||
fun sample(): Int
|
||||
}
|
@ -1,3 +0,0 @@
|
||||
package scientifik.commons.rng.sampling.distribution
|
||||
|
||||
interface NormalizedGaussianSampler : ContinuousSampler
|
@ -1,7 +0,0 @@
|
||||
package scientifik.commons.rng.sampling.distribution
|
||||
|
||||
import scientifik.commons.rng.sampling.SharedStateSampler
|
||||
|
||||
interface SharedStateContinuousSampler : ContinuousSampler,
|
||||
SharedStateSampler<SharedStateContinuousSampler?> {
|
||||
}
|
@ -3,17 +3,10 @@ plugins {
|
||||
}
|
||||
|
||||
kotlin.sourceSets {
|
||||
commonMain {
|
||||
dependencies {
|
||||
api(project(":kmath-coroutines"))
|
||||
api(project(":kmath-commons-rng-part"))
|
||||
}
|
||||
}
|
||||
commonMain.get().dependencies { api(project(":kmath-coroutines")) }
|
||||
|
||||
jvmMain {
|
||||
dependencies {
|
||||
jvmMain.get().dependencies {
|
||||
api("org.apache.commons:commons-rng-sampling:1.3")
|
||||
api("org.apache.commons:commons-rng-simple:1.3")
|
||||
}
|
||||
}
|
||||
}
|
@ -1,4 +1,4 @@
|
||||
package scientifik.commons.rng
|
||||
package scientifik.kmath.commons.rng
|
||||
|
||||
interface UniformRandomProvider {
|
||||
fun nextBytes(bytes: ByteArray)
|
@ -0,0 +1,7 @@
|
||||
package scientifik.kmath.commons.rng.sampling
|
||||
|
||||
import scientifik.kmath.commons.rng.UniformRandomProvider
|
||||
|
||||
interface SharedStateSampler<R> {
|
||||
fun withUniformRandomProvider(rng: UniformRandomProvider): R
|
||||
}
|
@ -1,6 +1,6 @@
|
||||
package scientifik.commons.rng.sampling.distribution
|
||||
package scientifik.kmath.commons.rng.sampling.distribution
|
||||
|
||||
import scientifik.commons.rng.UniformRandomProvider
|
||||
import scientifik.kmath.commons.rng.UniformRandomProvider
|
||||
import kotlin.math.ln
|
||||
import kotlin.math.pow
|
||||
|
||||
@ -76,7 +76,11 @@ class AhrensDieterExponentialSampler : SamplerBase,
|
||||
fun of(
|
||||
rng: UniformRandomProvider,
|
||||
mean: Double
|
||||
): SharedStateContinuousSampler = AhrensDieterExponentialSampler(rng, mean)
|
||||
): SharedStateContinuousSampler =
|
||||
AhrensDieterExponentialSampler(
|
||||
rng,
|
||||
mean
|
||||
)
|
||||
|
||||
init {
|
||||
/**
|
||||
@ -87,7 +91,9 @@ class AhrensDieterExponentialSampler : SamplerBase,
|
||||
var qi = 0.0
|
||||
|
||||
EXPONENTIAL_SA_QI.indices.forEach { i ->
|
||||
qi += ln2.pow(i + 1.0) / InternalUtils.factorial(i + 1)
|
||||
qi += ln2.pow(i + 1.0) / InternalUtils.factorial(
|
||||
i + 1
|
||||
)
|
||||
EXPONENTIAL_SA_QI[i] = qi
|
||||
}
|
||||
}
|
@ -1,6 +1,6 @@
|
||||
package scientifik.commons.rng.sampling.distribution
|
||||
package scientifik.kmath.commons.rng.sampling.distribution
|
||||
|
||||
import scientifik.commons.rng.UniformRandomProvider
|
||||
import scientifik.kmath.commons.rng.UniformRandomProvider
|
||||
import kotlin.math.*
|
||||
|
||||
class BoxMullerNormalizedGaussianSampler(
|
@ -0,0 +1,5 @@
|
||||
package scientifik.kmath.commons.rng.sampling.distribution
|
||||
|
||||
interface ContinuousSampler {
|
||||
fun sample(): Double
|
||||
}
|
@ -0,0 +1,5 @@
|
||||
package scientifik.kmath.commons.rng.sampling.distribution
|
||||
|
||||
interface DiscreteSampler {
|
||||
fun sample(): Int
|
||||
}
|
@ -1,8 +1,9 @@
|
||||
package scientifik.commons.rng.sampling.distribution
|
||||
package scientifik.kmath.commons.rng.sampling.distribution
|
||||
|
||||
import scientifik.commons.rng.UniformRandomProvider
|
||||
import scientifik.kmath.commons.rng.UniformRandomProvider
|
||||
|
||||
class GaussianSampler : SharedStateContinuousSampler {
|
||||
class GaussianSampler :
|
||||
SharedStateContinuousSampler {
|
||||
private val mean: Double
|
||||
private val standardDeviation: Double
|
||||
private val normalized: NormalizedGaussianSampler
|
||||
@ -24,7 +25,11 @@ class GaussianSampler : SharedStateContinuousSampler {
|
||||
) {
|
||||
mean = source.mean
|
||||
standardDeviation = source.standardDeviation
|
||||
normalized = InternalUtils.newNormalizedGaussianSampler(source.normalized, rng)
|
||||
normalized =
|
||||
InternalUtils.newNormalizedGaussianSampler(
|
||||
source.normalized,
|
||||
rng
|
||||
)
|
||||
}
|
||||
|
||||
override fun sample(): Double = standardDeviation * normalized.sample() + mean
|
||||
@ -40,6 +45,11 @@ class GaussianSampler : SharedStateContinuousSampler {
|
||||
normalized: NormalizedGaussianSampler,
|
||||
mean: Double,
|
||||
standardDeviation: Double
|
||||
): SharedStateContinuousSampler = GaussianSampler(normalized, mean, standardDeviation)
|
||||
): SharedStateContinuousSampler =
|
||||
GaussianSampler(
|
||||
normalized,
|
||||
mean,
|
||||
standardDeviation
|
||||
)
|
||||
}
|
||||
}
|
@ -1,4 +1,4 @@
|
||||
package scientifik.commons.rng.sampling.distribution
|
||||
package scientifik.kmath.commons.rng.sampling.distribution
|
||||
|
||||
import kotlin.math.PI
|
||||
import kotlin.math.ln
|
@ -1,7 +1,7 @@
|
||||
package scientifik.commons.rng.sampling.distribution
|
||||
package scientifik.kmath.commons.rng.sampling.distribution
|
||||
|
||||
import scientifik.commons.rng.UniformRandomProvider
|
||||
import scientifik.commons.rng.sampling.SharedStateSampler
|
||||
import scientifik.kmath.commons.rng.UniformRandomProvider
|
||||
import scientifik.kmath.commons.rng.sampling.SharedStateSampler
|
||||
import kotlin.math.ln
|
||||
import kotlin.math.min
|
||||
|
||||
@ -63,30 +63,45 @@ internal object InternalUtils {
|
||||
if (cache != null && cache.size > BEGIN_LOG_FACTORIALS) {
|
||||
// Copy available values.
|
||||
endCopy = min(cache.size, numValues)
|
||||
cache.copyInto(logFactorials, BEGIN_LOG_FACTORIALS, BEGIN_LOG_FACTORIALS, endCopy)
|
||||
cache.copyInto(logFactorials,
|
||||
BEGIN_LOG_FACTORIALS,
|
||||
BEGIN_LOG_FACTORIALS, endCopy)
|
||||
}
|
||||
// All values to be computed
|
||||
else
|
||||
endCopy = BEGIN_LOG_FACTORIALS
|
||||
endCopy =
|
||||
BEGIN_LOG_FACTORIALS
|
||||
|
||||
// Compute remaining values.
|
||||
(endCopy until numValues).forEach { i ->
|
||||
if (i < FACTORIALS.size) logFactorials[i] = ln(FACTORIALS[i].toDouble()) else logFactorials[i] =
|
||||
if (i < FACTORIALS.size) logFactorials[i] = ln(
|
||||
FACTORIALS[i].toDouble()) else logFactorials[i] =
|
||||
logFactorials[i - 1] + ln(i.toDouble())
|
||||
}
|
||||
}
|
||||
|
||||
fun withCache(cacheSize: Int): FactorialLog = FactorialLog(cacheSize, logFactorials)
|
||||
fun withCache(cacheSize: Int): FactorialLog =
|
||||
FactorialLog(
|
||||
cacheSize,
|
||||
logFactorials
|
||||
)
|
||||
|
||||
fun value(n: Int): Double {
|
||||
if (n < logFactorials.size)
|
||||
return logFactorials[n]
|
||||
|
||||
return if (n < FACTORIALS.size) ln(FACTORIALS[n].toDouble()) else InternalGamma.logGamma(n + 1.0)
|
||||
return if (n < FACTORIALS.size) ln(
|
||||
FACTORIALS[n].toDouble()) else InternalGamma.logGamma(
|
||||
n + 1.0
|
||||
)
|
||||
}
|
||||
|
||||
companion object {
|
||||
fun create(): FactorialLog = FactorialLog(0, null)
|
||||
fun create(): FactorialLog =
|
||||
FactorialLog(
|
||||
0,
|
||||
null
|
||||
)
|
||||
}
|
||||
}
|
||||
}
|
@ -1,6 +1,6 @@
|
||||
package scientifik.commons.rng.sampling.distribution
|
||||
package scientifik.kmath.commons.rng.sampling.distribution
|
||||
|
||||
import scientifik.commons.rng.UniformRandomProvider
|
||||
import scientifik.kmath.commons.rng.UniformRandomProvider
|
||||
import kotlin.math.exp
|
||||
|
||||
class KempSmallMeanPoissonSampler private constructor(
|
||||
@ -48,7 +48,11 @@ class KempSmallMeanPoissonSampler private constructor(
|
||||
val p0: Double = exp(-mean)
|
||||
|
||||
// Probability must be positive. As mean increases then p(0) decreases.
|
||||
if (p0 > 0) return KempSmallMeanPoissonSampler(rng, p0, mean)
|
||||
if (p0 > 0) return KempSmallMeanPoissonSampler(
|
||||
rng,
|
||||
p0,
|
||||
mean
|
||||
)
|
||||
throw IllegalArgumentException("No probability for mean: $mean")
|
||||
}
|
||||
}
|
@ -1,9 +1,10 @@
|
||||
package scientifik.commons.rng.sampling.distribution
|
||||
package scientifik.kmath.commons.rng.sampling.distribution
|
||||
|
||||
import scientifik.commons.rng.UniformRandomProvider
|
||||
import scientifik.kmath.commons.rng.UniformRandomProvider
|
||||
import kotlin.math.*
|
||||
|
||||
class LargeMeanPoissonSampler : SharedStateDiscreteSampler {
|
||||
class LargeMeanPoissonSampler :
|
||||
SharedStateDiscreteSampler {
|
||||
private val rng: UniformRandomProvider
|
||||
private val exponential: SharedStateContinuousSampler
|
||||
private val gaussian: SharedStateContinuousSampler
|
||||
@ -27,8 +28,13 @@ class LargeMeanPoissonSampler : SharedStateDiscreteSampler {
|
||||
// The algorithm is not valid if Math.floor(mean) is not an integer.
|
||||
require(mean <= MAX_MEAN) { "mean $mean > $MAX_MEAN" }
|
||||
this.rng = rng
|
||||
gaussian = ZigguratNormalizedGaussianSampler(rng)
|
||||
exponential = AhrensDieterExponentialSampler.of(rng, 1.0)
|
||||
gaussian =
|
||||
ZigguratNormalizedGaussianSampler(rng)
|
||||
exponential =
|
||||
AhrensDieterExponentialSampler.of(
|
||||
rng,
|
||||
1.0
|
||||
)
|
||||
// Plain constructor uses the uncached function.
|
||||
factorialLog = NO_CACHE_FACTORIAL_LOG!!
|
||||
// Cache values used in the algorithm
|
||||
@ -49,7 +55,10 @@ class LargeMeanPoissonSampler : SharedStateDiscreteSampler {
|
||||
val lambdaFractional = mean - lambda
|
||||
smallMeanPoissonSampler =
|
||||
if (lambdaFractional < Double.MIN_VALUE) NO_SMALL_MEAN_POISSON_SAMPLER else // Not used.
|
||||
KempSmallMeanPoissonSampler.of(rng, lambdaFractional)
|
||||
KempSmallMeanPoissonSampler.of(
|
||||
rng,
|
||||
lambdaFractional
|
||||
)
|
||||
}
|
||||
|
||||
internal constructor(
|
||||
@ -59,8 +68,13 @@ class LargeMeanPoissonSampler : SharedStateDiscreteSampler {
|
||||
) {
|
||||
require(!(lambdaFractional < 0 || lambdaFractional >= 1)) { "lambdaFractional must be in the range 0 (inclusive) to 1 (exclusive): $lambdaFractional" }
|
||||
this.rng = rng
|
||||
gaussian = ZigguratNormalizedGaussianSampler(rng)
|
||||
exponential = AhrensDieterExponentialSampler.of(rng, 1.0)
|
||||
gaussian =
|
||||
ZigguratNormalizedGaussianSampler(rng)
|
||||
exponential =
|
||||
AhrensDieterExponentialSampler.of(
|
||||
rng,
|
||||
1.0
|
||||
)
|
||||
// Plain constructor uses the uncached function.
|
||||
factorialLog = NO_CACHE_FACTORIAL_LOG!!
|
||||
// Use the state to initialise the algorithm
|
||||
@ -79,7 +93,10 @@ class LargeMeanPoissonSampler : SharedStateDiscreteSampler {
|
||||
if (lambdaFractional < Double.MIN_VALUE)
|
||||
NO_SMALL_MEAN_POISSON_SAMPLER
|
||||
else // Not used.
|
||||
KempSmallMeanPoissonSampler.of(rng, lambdaFractional)
|
||||
KempSmallMeanPoissonSampler.of(
|
||||
rng,
|
||||
lambdaFractional
|
||||
)
|
||||
}
|
||||
|
||||
/**
|
||||
@ -222,7 +239,8 @@ class LargeMeanPoissonSampler : SharedStateDiscreteSampler {
|
||||
fun of(
|
||||
rng: UniformRandomProvider,
|
||||
mean: Double
|
||||
): SharedStateDiscreteSampler = LargeMeanPoissonSampler(rng, mean)
|
||||
): SharedStateDiscreteSampler =
|
||||
LargeMeanPoissonSampler(rng, mean)
|
||||
|
||||
init {
|
||||
// Create without a cache.
|
@ -1,6 +1,6 @@
|
||||
package scientifik.commons.rng.sampling.distribution
|
||||
package scientifik.kmath.commons.rng.sampling.distribution
|
||||
|
||||
import scientifik.commons.rng.UniformRandomProvider
|
||||
import scientifik.kmath.commons.rng.UniformRandomProvider
|
||||
import kotlin.math.ln
|
||||
import kotlin.math.sqrt
|
||||
|
@ -0,0 +1,4 @@
|
||||
package scientifik.kmath.commons.rng.sampling.distribution
|
||||
|
||||
interface NormalizedGaussianSampler :
|
||||
ContinuousSampler
|
@ -1,11 +1,12 @@
|
||||
package scientifik.commons.rng.sampling.distribution
|
||||
package scientifik.kmath.commons.rng.sampling.distribution
|
||||
|
||||
import scientifik.commons.rng.UniformRandomProvider
|
||||
import scientifik.kmath.commons.rng.UniformRandomProvider
|
||||
|
||||
class PoissonSampler(
|
||||
rng: UniformRandomProvider,
|
||||
mean: Double
|
||||
) : SamplerBase(null), SharedStateDiscreteSampler {
|
||||
) : SamplerBase(null),
|
||||
SharedStateDiscreteSampler {
|
||||
private val poissonSamplerDelegate: SharedStateDiscreteSampler
|
||||
|
||||
override fun sample(): Int = poissonSamplerDelegate.sample()
|
||||
@ -22,11 +23,18 @@ class PoissonSampler(
|
||||
rng: UniformRandomProvider,
|
||||
mean: Double
|
||||
): SharedStateDiscreteSampler =// Each sampler should check the input arguments.
|
||||
if (mean < PIVOT) SmallMeanPoissonSampler.of(rng, mean) else LargeMeanPoissonSampler.of(rng, mean)
|
||||
if (mean < PIVOT) SmallMeanPoissonSampler.of(
|
||||
rng,
|
||||
mean
|
||||
) else LargeMeanPoissonSampler.of(
|
||||
rng,
|
||||
mean
|
||||
)
|
||||
}
|
||||
|
||||
init {
|
||||
// Delegate all work to specialised samplers.
|
||||
poissonSamplerDelegate = of(rng, mean)
|
||||
poissonSamplerDelegate =
|
||||
of(rng, mean)
|
||||
}
|
||||
}
|
@ -1,6 +1,6 @@
|
||||
package scientifik.commons.rng.sampling.distribution
|
||||
package scientifik.kmath.commons.rng.sampling.distribution
|
||||
|
||||
import scientifik.commons.rng.UniformRandomProvider
|
||||
import scientifik.kmath.commons.rng.UniformRandomProvider
|
||||
|
||||
@Deprecated("Since version 1.1. Class intended for internal use only.")
|
||||
open class SamplerBase protected constructor(private val rng: UniformRandomProvider?) {
|
@ -0,0 +1,7 @@
|
||||
package scientifik.kmath.commons.rng.sampling.distribution
|
||||
|
||||
import scientifik.kmath.commons.rng.sampling.SharedStateSampler
|
||||
|
||||
interface SharedStateContinuousSampler : ContinuousSampler,
|
||||
SharedStateSampler<SharedStateContinuousSampler?> {
|
||||
}
|
@ -1,6 +1,6 @@
|
||||
package scientifik.commons.rng.sampling.distribution
|
||||
package scientifik.kmath.commons.rng.sampling.distribution
|
||||
|
||||
import scientifik.commons.rng.sampling.SharedStateSampler
|
||||
import scientifik.kmath.commons.rng.sampling.SharedStateSampler
|
||||
|
||||
interface SharedStateDiscreteSampler : DiscreteSampler,
|
||||
SharedStateSampler<SharedStateDiscreteSampler?> { // Composite interface
|
@ -1,10 +1,11 @@
|
||||
package scientifik.commons.rng.sampling.distribution
|
||||
package scientifik.kmath.commons.rng.sampling.distribution
|
||||
|
||||
import scientifik.commons.rng.UniformRandomProvider
|
||||
import scientifik.kmath.commons.rng.UniformRandomProvider
|
||||
import kotlin.math.ceil
|
||||
import kotlin.math.exp
|
||||
|
||||
class SmallMeanPoissonSampler : SharedStateDiscreteSampler {
|
||||
class SmallMeanPoissonSampler :
|
||||
SharedStateDiscreteSampler {
|
||||
private val p0: Double
|
||||
private val limit: Int
|
||||
private val rng: UniformRandomProvider
|
||||
@ -53,6 +54,7 @@ class SmallMeanPoissonSampler : SharedStateDiscreteSampler {
|
||||
fun of(
|
||||
rng: UniformRandomProvider,
|
||||
mean: Double
|
||||
): SharedStateDiscreteSampler = SmallMeanPoissonSampler(rng, mean)
|
||||
): SharedStateDiscreteSampler =
|
||||
SmallMeanPoissonSampler(rng, mean)
|
||||
}
|
||||
}
|
@ -1,6 +1,6 @@
|
||||
package scientifik.commons.rng.sampling.distribution
|
||||
package scientifik.kmath.commons.rng.sampling.distribution
|
||||
|
||||
import scientifik.commons.rng.UniformRandomProvider
|
||||
import scientifik.kmath.commons.rng.UniformRandomProvider
|
||||
import kotlin.math.*
|
||||
|
||||
class ZigguratNormalizedGaussianSampler(private val rng: UniformRandomProvider) :
|
||||
@ -26,9 +26,13 @@ class ZigguratNormalizedGaussianSampler(private val rng: UniformRandomProvider)
|
||||
|
||||
init {
|
||||
// Filling the tables.
|
||||
var d = R
|
||||
var d =
|
||||
R
|
||||
var t = d
|
||||
var fd = gauss(d)
|
||||
var fd =
|
||||
gauss(
|
||||
d
|
||||
)
|
||||
val q = V / fd
|
||||
K[0] = (d / q * MAX).toLong()
|
||||
K[1] = 0
|
||||
@ -39,7 +43,10 @@ class ZigguratNormalizedGaussianSampler(private val rng: UniformRandomProvider)
|
||||
|
||||
(LAST - 1 downTo 1).forEach { i ->
|
||||
d = sqrt(-2 * ln(V / d + fd))
|
||||
fd = gauss(d)
|
||||
fd =
|
||||
gauss(
|
||||
d
|
||||
)
|
||||
K[i + 1] = (d / t * MAX).toLong()
|
||||
t = d
|
||||
F[i] = fd
|
||||
@ -80,7 +87,10 @@ class ZigguratNormalizedGaussianSampler(private val rng: UniformRandomProvider)
|
||||
// else
|
||||
// Try again.
|
||||
// This branch is called about 0.012362 times per sample.
|
||||
if (F[iz] + rng.nextDouble() * (F[iz - 1] - F[iz]) < gauss(x)) x else sample()
|
||||
if (F[iz] + rng.nextDouble() * (F[iz - 1] - F[iz]) < gauss(
|
||||
x
|
||||
)
|
||||
) x else sample()
|
||||
}
|
||||
}
|
||||
|
@ -1,53 +0,0 @@
|
||||
package scientifik.kmath.prob
|
||||
|
||||
import scientifik.commons.rng.UniformRandomProvider
|
||||
import scientifik.commons.rng.sampling.distribution.*
|
||||
import scientifik.kmath.chains.BlockingIntChain
|
||||
import scientifik.kmath.chains.BlockingRealChain
|
||||
import scientifik.kmath.chains.Chain
|
||||
|
||||
abstract class ContinuousSamplerDistribution : Distribution<Double> {
|
||||
|
||||
private inner class ContinuousSamplerChain(val generator: RandomGenerator) : BlockingRealChain() {
|
||||
private val sampler = buildCMSampler(generator)
|
||||
|
||||
override fun nextDouble(): Double = sampler.sample()
|
||||
|
||||
override fun fork(): Chain<Double> = ContinuousSamplerChain(generator.fork())
|
||||
}
|
||||
|
||||
protected abstract fun buildCMSampler(generator: RandomGenerator): ContinuousSampler
|
||||
|
||||
override fun sample(generator: RandomGenerator): BlockingRealChain = ContinuousSamplerChain(generator)
|
||||
}
|
||||
|
||||
abstract class DiscreteSamplerDistribution : Distribution<Int> {
|
||||
|
||||
private inner class ContinuousSamplerChain(val generator: RandomGenerator) : BlockingIntChain() {
|
||||
private val sampler = buildSampler(generator)
|
||||
|
||||
override fun nextInt(): Int = sampler.sample()
|
||||
|
||||
override fun fork(): Chain<Int> = ContinuousSamplerChain(generator.fork())
|
||||
}
|
||||
|
||||
protected abstract fun buildSampler(generator: RandomGenerator): DiscreteSampler
|
||||
|
||||
override fun sample(generator: RandomGenerator): BlockingIntChain = ContinuousSamplerChain(generator)
|
||||
}
|
||||
|
||||
enum class NormalSamplerMethod {
|
||||
BoxMuller,
|
||||
Marsaglia,
|
||||
Ziggurat
|
||||
}
|
||||
|
||||
fun normalSampler(method: NormalSamplerMethod, provider: UniformRandomProvider): NormalizedGaussianSampler =
|
||||
when (method) {
|
||||
NormalSamplerMethod.BoxMuller -> BoxMullerNormalizedGaussianSampler(
|
||||
provider
|
||||
)
|
||||
NormalSamplerMethod.Marsaglia -> MarsagliaNormalizedGaussianSampler(provider)
|
||||
NormalSamplerMethod.Ziggurat -> ZigguratNormalizedGaussianSampler(provider)
|
||||
}
|
||||
|
@ -1,9 +1,10 @@
|
||||
package scientifik.kmath.prob
|
||||
|
||||
import scientifik.commons.rng.UniformRandomProvider
|
||||
import scientifik.kmath.commons.rng.UniformRandomProvider
|
||||
|
||||
|
||||
inline class RandomGeneratorProvider(val generator: RandomGenerator) : UniformRandomProvider {
|
||||
inline class RandomGeneratorProvider(val generator: RandomGenerator) :
|
||||
UniformRandomProvider {
|
||||
override fun nextBoolean(): Boolean = generator.nextBoolean()
|
||||
|
||||
override fun nextFloat(): Float = generator.nextDouble().toFloat()
|
||||
|
@ -1,9 +1,9 @@
|
||||
package scientifik.kmath.prob
|
||||
|
||||
import scientifik.commons.rng.sampling.distribution.ContinuousSampler
|
||||
import scientifik.commons.rng.sampling.distribution.DiscreteSampler
|
||||
import scientifik.commons.rng.sampling.distribution.GaussianSampler
|
||||
import scientifik.commons.rng.sampling.distribution.PoissonSampler
|
||||
import scientifik.kmath.commons.rng.sampling.distribution.ContinuousSampler
|
||||
import scientifik.kmath.commons.rng.sampling.distribution.DiscreteSampler
|
||||
import scientifik.kmath.commons.rng.sampling.distribution.GaussianSampler
|
||||
import scientifik.kmath.commons.rng.sampling.distribution.PoissonSampler
|
||||
import kotlin.math.PI
|
||||
import kotlin.math.exp
|
||||
import kotlin.math.pow
|
||||
@ -33,7 +33,11 @@ fun Distribution.Companion.normal(
|
||||
override fun buildCMSampler(generator: RandomGenerator): ContinuousSampler {
|
||||
val provider = generator.asUniformRandomProvider()
|
||||
val normalizedSampler = normalSampler(method, provider)
|
||||
return GaussianSampler(normalizedSampler, mean, sigma)
|
||||
return GaussianSampler(
|
||||
normalizedSampler,
|
||||
mean,
|
||||
sigma
|
||||
)
|
||||
}
|
||||
|
||||
override fun probability(arg: Double): Double {
|
@ -1,7 +1,7 @@
|
||||
package scientifik.kmath.prob
|
||||
|
||||
import org.apache.commons.rng.simple.RandomSource
|
||||
import scientifik.commons.rng.UniformRandomProvider
|
||||
import scientifik.kmath.commons.rng.UniformRandomProvider
|
||||
|
||||
class RandomSourceGenerator(val source: RandomSource, seed: Long?) :
|
||||
RandomGenerator {
|
||||
|
@ -29,13 +29,13 @@ pluginManagement {
|
||||
}
|
||||
|
||||
rootProject.name = "kmath"
|
||||
|
||||
include(
|
||||
":kmath-memory",
|
||||
":kmath-core",
|
||||
":kmath-functions",
|
||||
// ":kmath-io",
|
||||
":kmath-coroutines",
|
||||
"kmath-commons-rng-part",
|
||||
":kmath-histograms",
|
||||
":kmath-commons",
|
||||
":kmath-viktor",
|
||||
|
Loading…
Reference in New Issue
Block a user