Added polynomial spaces and scopes fabrics
This commit is contained in:
parent
1f9d8d34f5
commit
bb5e638b31
@ -54,7 +54,7 @@ import kotlin.contracts.*
|
||||
// else -> multiplyWithPowerInternalLogic(base, arg, pow)
|
||||
// }
|
||||
//
|
||||
//// Trivial but slow as duck
|
||||
//// Trivial but very slow
|
||||
//context(LabeledPolynomialSpace<C, A>)
|
||||
//internal tailrec fun <C, A: Ring<C>> multiplyWithPowerInternalLogic(base: LabeledPolynomial<C>, arg: LabeledPolynomial<C>, exponent: UInt): LabeledPolynomial<C> =
|
||||
// when {
|
||||
@ -71,7 +71,15 @@ import kotlin.contracts.*
|
||||
|
||||
// region Utilities
|
||||
|
||||
// TODO: Docs
|
||||
/**
|
||||
* Crates a [LabeledPolynomialSpace] over received ring.
|
||||
*/
|
||||
public fun <C, A : Ring<C>> A.labeledPolynomial(): LabeledPolynomialSpace<C, A> =
|
||||
LabeledPolynomialSpace(this)
|
||||
|
||||
/**
|
||||
* Crates a [LabeledPolynomialSpace]'s scope over received ring.
|
||||
*/
|
||||
@OptIn(ExperimentalContracts::class)
|
||||
public inline fun <C, A : Ring<C>, R> A.labeledPolynomial(block: LabeledPolynomialSpace<C, A>.() -> R): R {
|
||||
contract { callsInPlace(block, InvocationKind.EXACTLY_ONCE) }
|
||||
@ -254,64 +262,6 @@ public inline fun <C, A : Ring<C>, R> A.labeledPolynomial(block: LabeledPolynomi
|
||||
|
||||
//// region Field case
|
||||
//
|
||||
//operator fun <T: Field<T>> Polynomial<T>.div(other: Polynomial<T>): Polynomial<T> {
|
||||
// if (other.isZero()) throw ArithmeticException("/ by zero")
|
||||
// if (isZero()) return this
|
||||
//
|
||||
// fun Map<List<Int>, T>.leadingTerm() =
|
||||
// this
|
||||
// .asSequence()
|
||||
// .map { Pair(it.key, it.value) }
|
||||
// .reduce { (accDegs, accC), (listDegs, listC) ->
|
||||
// for (i in 0..accDegs.lastIndex) {
|
||||
// if (accDegs[i] > listDegs.getOrElse(i) { 0 }) return@reduce accDegs to accC
|
||||
// if (accDegs[i] < listDegs.getOrElse(i) { 0 }) return@reduce listDegs to listC
|
||||
// }
|
||||
// if (accDegs.size < listDegs.size) listDegs to listC else accDegs to accC
|
||||
// }
|
||||
//
|
||||
// var thisCoefficients = coefficients.toMutableMap()
|
||||
// val otherCoefficients = other.coefficients
|
||||
// val quotientCoefficients = HashMap<List<Int>, T>()
|
||||
//
|
||||
// var (thisLeadingTermDegs, thisLeadingTermC) = thisCoefficients.leadingTerm()
|
||||
// val (otherLeadingTermDegs, otherLeadingTermC) = otherCoefficients.leadingTerm()
|
||||
//
|
||||
// while (
|
||||
// thisLeadingTermDegs.size >= otherLeadingTermDegs.size &&
|
||||
// (0..otherLeadingTermDegs.lastIndex).all { thisLeadingTermDegs[it] >= otherLeadingTermDegs[it] }
|
||||
// ) {
|
||||
// val multiplierDegs =
|
||||
// thisLeadingTermDegs
|
||||
// .mapIndexed { index, deg -> deg - otherLeadingTermDegs.getOrElse(index) { 0 } }
|
||||
// .cleanUp()
|
||||
// val multiplierC = thisLeadingTermC / otherLeadingTermC
|
||||
//
|
||||
// quotientCoefficients[multiplierDegs] = multiplierC
|
||||
//
|
||||
// for ((degs, t) in otherCoefficients) {
|
||||
// val productDegs =
|
||||
// (0..max(degs.lastIndex, multiplierDegs.lastIndex))
|
||||
// .map { degs.getOrElse(it) { 0 } + multiplierDegs.getOrElse(it) { 0 } }
|
||||
// .cleanUp()
|
||||
// val productC = t * multiplierC
|
||||
// thisCoefficients[productDegs] =
|
||||
// if (productDegs in thisCoefficients) thisCoefficients[productDegs]!! - productC else -productC
|
||||
// }
|
||||
//
|
||||
// thisCoefficients = thisCoefficients.filterValues { it.isNotZero() }.toMutableMap()
|
||||
//
|
||||
// if (thisCoefficients.isEmpty())
|
||||
// return Polynomial(quotientCoefficients, toCheckInput = false)
|
||||
//
|
||||
// val t = thisCoefficients.leadingTerm()
|
||||
// thisLeadingTermDegs = t.first
|
||||
// thisLeadingTermC = t.second
|
||||
// }
|
||||
//
|
||||
// return Polynomial(quotientCoefficients, toCheckInput = false)
|
||||
//}
|
||||
//
|
||||
//operator fun <T: Field<T>> Polynomial<T>.div(other: T): Polynomial<T> =
|
||||
// if (other.isZero()) throw ArithmeticException("/ by zero")
|
||||
// else
|
||||
@ -321,125 +271,6 @@ public inline fun <C, A : Ring<C>, R> A.labeledPolynomial(block: LabeledPolynomi
|
||||
// toCheckInput = false
|
||||
// )
|
||||
//
|
||||
//operator fun <T: Field<T>> Polynomial<T>.rem(other: Polynomial<T>): Polynomial<T> {
|
||||
// if (other.isZero()) throw ArithmeticException("/ by zero")
|
||||
// if (isZero()) return this
|
||||
//
|
||||
// fun Map<List<Int>, T>.leadingTerm() =
|
||||
// this
|
||||
// .asSequence()
|
||||
// .map { Pair(it.key, it.value) }
|
||||
// .reduce { (accDegs, accC), (listDegs, listC) ->
|
||||
// for (i in 0..accDegs.lastIndex) {
|
||||
// if (accDegs[i] > listDegs.getOrElse(i) { 0 }) return@reduce accDegs to accC
|
||||
// if (accDegs[i] < listDegs.getOrElse(i) { 0 }) return@reduce listDegs to listC
|
||||
// }
|
||||
// if (accDegs.size < listDegs.size) listDegs to listC else accDegs to accC
|
||||
// }
|
||||
//
|
||||
// var thisCoefficients = coefficients.toMutableMap()
|
||||
// val otherCoefficients = other.coefficients
|
||||
//
|
||||
// var (thisLeadingTermDegs, thisLeadingTermC) = thisCoefficients.leadingTerm()
|
||||
// val (otherLeadingTermDegs, otherLeadingTermC) = otherCoefficients.leadingTerm()
|
||||
//
|
||||
// while (
|
||||
// thisLeadingTermDegs.size >= otherLeadingTermDegs.size &&
|
||||
// (0..otherLeadingTermDegs.lastIndex).all { thisLeadingTermDegs[it] >= otherLeadingTermDegs[it] }
|
||||
// ) {
|
||||
// val multiplierDegs =
|
||||
// thisLeadingTermDegs
|
||||
// .mapIndexed { index, deg -> deg - otherLeadingTermDegs.getOrElse(index) { 0 } }
|
||||
// .cleanUp()
|
||||
// val multiplierC = thisLeadingTermC / otherLeadingTermC
|
||||
//
|
||||
// for ((degs, t) in otherCoefficients) {
|
||||
// val productDegs =
|
||||
// (0..max(degs.lastIndex, multiplierDegs.lastIndex))
|
||||
// .map { degs.getOrElse(it) { 0 } + multiplierDegs.getOrElse(it) { 0 } }
|
||||
// .cleanUp()
|
||||
// val productC = t * multiplierC
|
||||
// thisCoefficients[productDegs] =
|
||||
// if (productDegs in thisCoefficients) thisCoefficients[productDegs]!! - productC else -productC
|
||||
// }
|
||||
//
|
||||
// thisCoefficients = thisCoefficients.filterValues { it.isNotZero() }.toMutableMap()
|
||||
//
|
||||
// if (thisCoefficients.isEmpty())
|
||||
// return Polynomial(thisCoefficients, toCheckInput = false)
|
||||
//
|
||||
// val t = thisCoefficients.leadingTerm()
|
||||
// thisLeadingTermDegs = t.first
|
||||
// thisLeadingTermC = t.second
|
||||
// }
|
||||
//
|
||||
// return Polynomial(thisCoefficients, toCheckInput = false)
|
||||
//}
|
||||
//
|
||||
//infix fun <T: Field<T>> Polynomial<T>.divrem(other: Polynomial<T>): Polynomial.Companion.DividingResult<T> {
|
||||
// if (other.isZero()) throw ArithmeticException("/ by zero")
|
||||
// if (isZero()) return Polynomial.Companion.DividingResult(this, this)
|
||||
//
|
||||
// fun Map<List<Int>, T>.leadingTerm() =
|
||||
// this
|
||||
// .asSequence()
|
||||
// .map { Pair(it.key, it.value) }
|
||||
// .reduce { (accDegs, accC), (listDegs, listC) ->
|
||||
// for (i in 0..accDegs.lastIndex) {
|
||||
// if (accDegs[i] > listDegs.getOrElse(i) { 0 }) return@reduce accDegs to accC
|
||||
// if (accDegs[i] < listDegs.getOrElse(i) { 0 }) return@reduce listDegs to listC
|
||||
// }
|
||||
// if (accDegs.size < listDegs.size) listDegs to listC else accDegs to accC
|
||||
// }
|
||||
//
|
||||
// var thisCoefficients = coefficients.toMutableMap()
|
||||
// val otherCoefficients = other.coefficients
|
||||
// val quotientCoefficients = HashMap<List<Int>, T>()
|
||||
//
|
||||
// var (thisLeadingTermDegs, thisLeadingTermC) = thisCoefficients.leadingTerm()
|
||||
// val (otherLeadingTermDegs, otherLeadingTermC) = otherCoefficients.leadingTerm()
|
||||
//
|
||||
// while (
|
||||
// thisLeadingTermDegs.size >= otherLeadingTermDegs.size &&
|
||||
// (0..otherLeadingTermDegs.lastIndex).all { thisLeadingTermDegs[it] >= otherLeadingTermDegs[it] }
|
||||
// ) {
|
||||
// val multiplierDegs =
|
||||
// thisLeadingTermDegs
|
||||
// .mapIndexed { index, deg -> deg - otherLeadingTermDegs.getOrElse(index) { 0 } }
|
||||
// .cleanUp()
|
||||
// val multiplierC = thisLeadingTermC / otherLeadingTermC
|
||||
//
|
||||
// quotientCoefficients[multiplierDegs] = multiplierC
|
||||
//
|
||||
// for ((degs, t) in otherCoefficients) {
|
||||
// val productDegs =
|
||||
// (0..max(degs.lastIndex, multiplierDegs.lastIndex))
|
||||
// .map { degs.getOrElse(it) { 0 } + multiplierDegs.getOrElse(it) { 0 } }
|
||||
// .cleanUp()
|
||||
// val productC = t * multiplierC
|
||||
// thisCoefficients[productDegs] =
|
||||
// if (productDegs in thisCoefficients) thisCoefficients[productDegs]!! - productC else -productC
|
||||
// }
|
||||
//
|
||||
// thisCoefficients = thisCoefficients.filterValues { it.isNotZero() }.toMutableMap()
|
||||
//
|
||||
// if (thisCoefficients.isEmpty())
|
||||
// return Polynomial.Companion.DividingResult(
|
||||
// Polynomial(quotientCoefficients, toCheckInput = false),
|
||||
// Polynomial(thisCoefficients, toCheckInput = false)
|
||||
// )
|
||||
//
|
||||
// val t = thisCoefficients.leadingTerm()
|
||||
// thisLeadingTermDegs = t.first
|
||||
// thisLeadingTermC = t.second
|
||||
// }
|
||||
//
|
||||
// return Polynomial.Companion.DividingResult(
|
||||
// Polynomial(quotientCoefficients, toCheckInput = false),
|
||||
// Polynomial(thisCoefficients, toCheckInput = false)
|
||||
// )
|
||||
//}
|
||||
//
|
||||
//// endregion
|
||||
|
||||
// endregion
|
||||
|
@ -38,7 +38,7 @@ import kotlin.jvm.JvmName
|
||||
// else -> multiplyWithPowerInternalLogic(base, arg, pow)
|
||||
// }
|
||||
//
|
||||
//// Trivial but slow as duck
|
||||
//// Trivial but very slow
|
||||
//context(NumberedPolynomialSpace<C, A>)
|
||||
//internal tailrec fun <C, A: Ring<C>> multiplyWithPowerInternalLogic(base: NumberedPolynomial<C>, arg: NumberedPolynomial<C>, exponent: UInt): NumberedPolynomial<C> =
|
||||
// when {
|
||||
@ -55,7 +55,15 @@ import kotlin.jvm.JvmName
|
||||
|
||||
// region Utilities
|
||||
|
||||
// TODO: Docs
|
||||
/**
|
||||
* Crates a [NumberedPolynomialSpace] over received ring.
|
||||
*/
|
||||
public fun <C, A : Ring<C>> A.numberedPolynomial(): NumberedPolynomialSpace<C, A> =
|
||||
NumberedPolynomialSpace(this)
|
||||
|
||||
/**
|
||||
* Crates a [NumberedPolynomialSpace]'s scope over received ring.
|
||||
*/
|
||||
@OptIn(ExperimentalContracts::class)
|
||||
public inline fun <C, A : Ring<C>, R> A.numberedPolynomial(block: NumberedPolynomialSpace<C, A>.() -> R): R {
|
||||
contract { callsInPlace(block, InvocationKind.EXACTLY_ONCE) }
|
||||
@ -282,64 +290,6 @@ public inline fun <C, A : Ring<C>, R> A.numberedPolynomial(block: NumberedPolyno
|
||||
|
||||
//// region Field case
|
||||
//
|
||||
//operator fun <T: Field<T>> Polynomial<T>.div(other: Polynomial<T>): Polynomial<T> {
|
||||
// if (other.isZero()) throw ArithmeticException("/ by zero")
|
||||
// if (isZero()) return this
|
||||
//
|
||||
// fun Map<List<Int>, T>.leadingTerm() =
|
||||
// this
|
||||
// .asSequence()
|
||||
// .map { Pair(it.key, it.value) }
|
||||
// .reduce { (accDegs, accC), (listDegs, listC) ->
|
||||
// for (i in 0..accDegs.lastIndex) {
|
||||
// if (accDegs[i] > listDegs.getOrElse(i) { 0 }) return@reduce accDegs to accC
|
||||
// if (accDegs[i] < listDegs.getOrElse(i) { 0 }) return@reduce listDegs to listC
|
||||
// }
|
||||
// if (accDegs.size < listDegs.size) listDegs to listC else accDegs to accC
|
||||
// }
|
||||
//
|
||||
// var thisCoefficients = coefficients.toMutableMap()
|
||||
// val otherCoefficients = other.coefficients
|
||||
// val quotientCoefficients = HashMap<List<Int>, T>()
|
||||
//
|
||||
// var (thisLeadingTermDegs, thisLeadingTermC) = thisCoefficients.leadingTerm()
|
||||
// val (otherLeadingTermDegs, otherLeadingTermC) = otherCoefficients.leadingTerm()
|
||||
//
|
||||
// while (
|
||||
// thisLeadingTermDegs.size >= otherLeadingTermDegs.size &&
|
||||
// (0..otherLeadingTermDegs.lastIndex).all { thisLeadingTermDegs[it] >= otherLeadingTermDegs[it] }
|
||||
// ) {
|
||||
// val multiplierDegs =
|
||||
// thisLeadingTermDegs
|
||||
// .mapIndexed { index, deg -> deg - otherLeadingTermDegs.getOrElse(index) { 0 } }
|
||||
// .cleanUp()
|
||||
// val multiplierC = thisLeadingTermC / otherLeadingTermC
|
||||
//
|
||||
// quotientCoefficients[multiplierDegs] = multiplierC
|
||||
//
|
||||
// for ((degs, t) in otherCoefficients) {
|
||||
// val productDegs =
|
||||
// (0..max(degs.lastIndex, multiplierDegs.lastIndex))
|
||||
// .map { degs.getOrElse(it) { 0 } + multiplierDegs.getOrElse(it) { 0 } }
|
||||
// .cleanUp()
|
||||
// val productC = t * multiplierC
|
||||
// thisCoefficients[productDegs] =
|
||||
// if (productDegs in thisCoefficients) thisCoefficients[productDegs]!! - productC else -productC
|
||||
// }
|
||||
//
|
||||
// thisCoefficients = thisCoefficients.filterValues { it.isNotZero() }.toMutableMap()
|
||||
//
|
||||
// if (thisCoefficients.isEmpty())
|
||||
// return Polynomial(quotientCoefficients, toCheckInput = false)
|
||||
//
|
||||
// val t = thisCoefficients.leadingTerm()
|
||||
// thisLeadingTermDegs = t.first
|
||||
// thisLeadingTermC = t.second
|
||||
// }
|
||||
//
|
||||
// return Polynomial(quotientCoefficients, toCheckInput = false)
|
||||
//}
|
||||
//
|
||||
//operator fun <T: Field<T>> Polynomial<T>.div(other: T): Polynomial<T> =
|
||||
// if (other.isZero()) throw ArithmeticException("/ by zero")
|
||||
// else
|
||||
@ -349,125 +299,6 @@ public inline fun <C, A : Ring<C>, R> A.numberedPolynomial(block: NumberedPolyno
|
||||
// toCheckInput = false
|
||||
// )
|
||||
//
|
||||
//operator fun <T: Field<T>> Polynomial<T>.rem(other: Polynomial<T>): Polynomial<T> {
|
||||
// if (other.isZero()) throw ArithmeticException("/ by zero")
|
||||
// if (isZero()) return this
|
||||
//
|
||||
// fun Map<List<Int>, T>.leadingTerm() =
|
||||
// this
|
||||
// .asSequence()
|
||||
// .map { Pair(it.key, it.value) }
|
||||
// .reduce { (accDegs, accC), (listDegs, listC) ->
|
||||
// for (i in 0..accDegs.lastIndex) {
|
||||
// if (accDegs[i] > listDegs.getOrElse(i) { 0 }) return@reduce accDegs to accC
|
||||
// if (accDegs[i] < listDegs.getOrElse(i) { 0 }) return@reduce listDegs to listC
|
||||
// }
|
||||
// if (accDegs.size < listDegs.size) listDegs to listC else accDegs to accC
|
||||
// }
|
||||
//
|
||||
// var thisCoefficients = coefficients.toMutableMap()
|
||||
// val otherCoefficients = other.coefficients
|
||||
//
|
||||
// var (thisLeadingTermDegs, thisLeadingTermC) = thisCoefficients.leadingTerm()
|
||||
// val (otherLeadingTermDegs, otherLeadingTermC) = otherCoefficients.leadingTerm()
|
||||
//
|
||||
// while (
|
||||
// thisLeadingTermDegs.size >= otherLeadingTermDegs.size &&
|
||||
// (0..otherLeadingTermDegs.lastIndex).all { thisLeadingTermDegs[it] >= otherLeadingTermDegs[it] }
|
||||
// ) {
|
||||
// val multiplierDegs =
|
||||
// thisLeadingTermDegs
|
||||
// .mapIndexed { index, deg -> deg - otherLeadingTermDegs.getOrElse(index) { 0 } }
|
||||
// .cleanUp()
|
||||
// val multiplierC = thisLeadingTermC / otherLeadingTermC
|
||||
//
|
||||
// for ((degs, t) in otherCoefficients) {
|
||||
// val productDegs =
|
||||
// (0..max(degs.lastIndex, multiplierDegs.lastIndex))
|
||||
// .map { degs.getOrElse(it) { 0 } + multiplierDegs.getOrElse(it) { 0 } }
|
||||
// .cleanUp()
|
||||
// val productC = t * multiplierC
|
||||
// thisCoefficients[productDegs] =
|
||||
// if (productDegs in thisCoefficients) thisCoefficients[productDegs]!! - productC else -productC
|
||||
// }
|
||||
//
|
||||
// thisCoefficients = thisCoefficients.filterValues { it.isNotZero() }.toMutableMap()
|
||||
//
|
||||
// if (thisCoefficients.isEmpty())
|
||||
// return Polynomial(thisCoefficients, toCheckInput = false)
|
||||
//
|
||||
// val t = thisCoefficients.leadingTerm()
|
||||
// thisLeadingTermDegs = t.first
|
||||
// thisLeadingTermC = t.second
|
||||
// }
|
||||
//
|
||||
// return Polynomial(thisCoefficients, toCheckInput = false)
|
||||
//}
|
||||
//
|
||||
//infix fun <T: Field<T>> Polynomial<T>.divrem(other: Polynomial<T>): Polynomial.Companion.DividingResult<T> {
|
||||
// if (other.isZero()) throw ArithmeticException("/ by zero")
|
||||
// if (isZero()) return Polynomial.Companion.DividingResult(this, this)
|
||||
//
|
||||
// fun Map<List<Int>, T>.leadingTerm() =
|
||||
// this
|
||||
// .asSequence()
|
||||
// .map { Pair(it.key, it.value) }
|
||||
// .reduce { (accDegs, accC), (listDegs, listC) ->
|
||||
// for (i in 0..accDegs.lastIndex) {
|
||||
// if (accDegs[i] > listDegs.getOrElse(i) { 0 }) return@reduce accDegs to accC
|
||||
// if (accDegs[i] < listDegs.getOrElse(i) { 0 }) return@reduce listDegs to listC
|
||||
// }
|
||||
// if (accDegs.size < listDegs.size) listDegs to listC else accDegs to accC
|
||||
// }
|
||||
//
|
||||
// var thisCoefficients = coefficients.toMutableMap()
|
||||
// val otherCoefficients = other.coefficients
|
||||
// val quotientCoefficients = HashMap<List<Int>, T>()
|
||||
//
|
||||
// var (thisLeadingTermDegs, thisLeadingTermC) = thisCoefficients.leadingTerm()
|
||||
// val (otherLeadingTermDegs, otherLeadingTermC) = otherCoefficients.leadingTerm()
|
||||
//
|
||||
// while (
|
||||
// thisLeadingTermDegs.size >= otherLeadingTermDegs.size &&
|
||||
// (0..otherLeadingTermDegs.lastIndex).all { thisLeadingTermDegs[it] >= otherLeadingTermDegs[it] }
|
||||
// ) {
|
||||
// val multiplierDegs =
|
||||
// thisLeadingTermDegs
|
||||
// .mapIndexed { index, deg -> deg - otherLeadingTermDegs.getOrElse(index) { 0 } }
|
||||
// .cleanUp()
|
||||
// val multiplierC = thisLeadingTermC / otherLeadingTermC
|
||||
//
|
||||
// quotientCoefficients[multiplierDegs] = multiplierC
|
||||
//
|
||||
// for ((degs, t) in otherCoefficients) {
|
||||
// val productDegs =
|
||||
// (0..max(degs.lastIndex, multiplierDegs.lastIndex))
|
||||
// .map { degs.getOrElse(it) { 0 } + multiplierDegs.getOrElse(it) { 0 } }
|
||||
// .cleanUp()
|
||||
// val productC = t * multiplierC
|
||||
// thisCoefficients[productDegs] =
|
||||
// if (productDegs in thisCoefficients) thisCoefficients[productDegs]!! - productC else -productC
|
||||
// }
|
||||
//
|
||||
// thisCoefficients = thisCoefficients.filterValues { it.isNotZero() }.toMutableMap()
|
||||
//
|
||||
// if (thisCoefficients.isEmpty())
|
||||
// return Polynomial.Companion.DividingResult(
|
||||
// Polynomial(quotientCoefficients, toCheckInput = false),
|
||||
// Polynomial(thisCoefficients, toCheckInput = false)
|
||||
// )
|
||||
//
|
||||
// val t = thisCoefficients.leadingTerm()
|
||||
// thisLeadingTermDegs = t.first
|
||||
// thisLeadingTermC = t.second
|
||||
// }
|
||||
//
|
||||
// return Polynomial.Companion.DividingResult(
|
||||
// Polynomial(quotientCoefficients, toCheckInput = false),
|
||||
// Polynomial(thisCoefficients, toCheckInput = false)
|
||||
// )
|
||||
//}
|
||||
//
|
||||
//// endregion
|
||||
|
||||
// endregion
|
||||
|
Loading…
Reference in New Issue
Block a user