Delete margarita.kt
deleted tmp file for testing during work
This commit is contained in:
parent
e7968f28f4
commit
b99d2e8486
@ -1,65 +0,0 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
package space.kscience.kmath.tensors
|
||||
|
||||
import space.kscience.kmath.linear.transpose
|
||||
import space.kscience.kmath.misc.PerformancePitfall
|
||||
import space.kscience.kmath.nd.MutableStructure2D
|
||||
import space.kscience.kmath.nd.Structure2D
|
||||
import space.kscience.kmath.nd.as2D
|
||||
import space.kscience.kmath.tensors.core.*
|
||||
import space.kscience.kmath.tensors.core.tensorAlgebra
|
||||
import kotlin.math.*
|
||||
|
||||
fun MutableStructure2D<Double>.print() {
|
||||
val n = this.shape.component1()
|
||||
val m = this.shape.component2()
|
||||
for (i in 0 until n) {
|
||||
for (j in 0 until m) {
|
||||
val x = (this[i, j] * 100).roundToInt() / 100.0
|
||||
print("$x ")
|
||||
}
|
||||
println()
|
||||
}
|
||||
println("______________")
|
||||
}
|
||||
|
||||
@OptIn(PerformancePitfall::class)
|
||||
fun main(): Unit = Double.tensorAlgebra.withBroadcast {
|
||||
val shape = intArrayOf(5, 3)
|
||||
val buffer = doubleArrayOf(
|
||||
1.000000, 2.000000, 3.000000,
|
||||
2.000000, 3.000000, 4.000000,
|
||||
3.000000, 4.000000, 5.000000,
|
||||
4.000000, 5.000000, 6.000000,
|
||||
5.000000, 6.000000, 7.000000
|
||||
)
|
||||
val buffer2 = doubleArrayOf(
|
||||
0.000000, 0.000000, 0.000000,
|
||||
0.000000, 0.000000, 0.000000,
|
||||
0.000000, 0.000000, 0.000000
|
||||
)
|
||||
val tensor = fromArray(shape, buffer).as2D()
|
||||
val v = fromArray(intArrayOf(3, 3), buffer2).as2D()
|
||||
val w_shape = intArrayOf(3, 1)
|
||||
var w_buffer = doubleArrayOf(0.000000)
|
||||
for (i in 0 until 3 - 1) {
|
||||
w_buffer += doubleArrayOf(0.000000)
|
||||
}
|
||||
val w = BroadcastDoubleTensorAlgebra.fromArray(w_shape, w_buffer).as2D()
|
||||
tensor.print()
|
||||
var ans = Pair(w, v)
|
||||
tensor.svdGolabKahan(v, w)
|
||||
|
||||
println("u")
|
||||
tensor.print()
|
||||
println("w")
|
||||
w.print()
|
||||
println("v")
|
||||
v.print()
|
||||
|
||||
|
||||
}
|
Loading…
Reference in New Issue
Block a user