WIP vector space refactor
This commit is contained in:
parent
f449bdd58f
commit
9bc8e8fbf9
@ -4,11 +4,11 @@ import kotlinx.benchmark.Benchmark
|
||||
import kotlinx.benchmark.Blackhole
|
||||
import kotlinx.benchmark.Scope
|
||||
import kotlinx.benchmark.State
|
||||
import space.kscience.kmath.commons.linear.CMMatrixContext
|
||||
import space.kscience.kmath.ejml.EjmlMatrixContext
|
||||
import space.kscience.kmath.linear.BufferMatrixContext
|
||||
import space.kscience.kmath.commons.linear.CMLinearSpace
|
||||
import space.kscience.kmath.ejml.EjmlLinearSpace
|
||||
import space.kscience.kmath.linear.BufferLinearSpace
|
||||
import space.kscience.kmath.linear.Matrix
|
||||
import space.kscience.kmath.linear.RealMatrixContext
|
||||
import space.kscience.kmath.linear.RealLinearSpace
|
||||
import space.kscience.kmath.operations.RealField
|
||||
import space.kscience.kmath.operations.invoke
|
||||
import space.kscience.kmath.structures.Buffer
|
||||
@ -24,44 +24,44 @@ internal class DotBenchmark {
|
||||
val matrix1 = Matrix.real(dim, dim) { i, j -> if (i <= j) random.nextDouble() else 0.0 }
|
||||
val matrix2 = Matrix.real(dim, dim) { i, j -> if (i <= j) random.nextDouble() else 0.0 }
|
||||
|
||||
val cmMatrix1 = CMMatrixContext { matrix1.toCM() }
|
||||
val cmMatrix2 = CMMatrixContext { matrix2.toCM() }
|
||||
val cmMatrix1 = CMLinearSpace { matrix1.toCM() }
|
||||
val cmMatrix2 = CMLinearSpace { matrix2.toCM() }
|
||||
|
||||
val ejmlMatrix1 = EjmlMatrixContext { matrix1.toEjml() }
|
||||
val ejmlMatrix2 = EjmlMatrixContext { matrix2.toEjml() }
|
||||
val ejmlMatrix1 = EjmlLinearSpace { matrix1.toEjml() }
|
||||
val ejmlMatrix2 = EjmlLinearSpace { matrix2.toEjml() }
|
||||
}
|
||||
|
||||
@Benchmark
|
||||
fun cmDot(blackhole: Blackhole) {
|
||||
CMMatrixContext {
|
||||
CMLinearSpace {
|
||||
blackhole.consume(cmMatrix1 dot cmMatrix2)
|
||||
}
|
||||
}
|
||||
|
||||
@Benchmark
|
||||
fun ejmlDot(blackhole: Blackhole) {
|
||||
EjmlMatrixContext {
|
||||
EjmlLinearSpace {
|
||||
blackhole.consume(ejmlMatrix1 dot ejmlMatrix2)
|
||||
}
|
||||
}
|
||||
|
||||
@Benchmark
|
||||
fun ejmlDotWithConversion(blackhole: Blackhole) {
|
||||
EjmlMatrixContext {
|
||||
EjmlLinearSpace {
|
||||
blackhole.consume(matrix1 dot matrix2)
|
||||
}
|
||||
}
|
||||
|
||||
@Benchmark
|
||||
fun bufferedDot(blackhole: Blackhole) {
|
||||
BufferMatrixContext(RealField, Buffer.Companion::real).invoke {
|
||||
BufferLinearSpace(RealField, Buffer.Companion::real).invoke {
|
||||
blackhole.consume(matrix1 dot matrix2)
|
||||
}
|
||||
}
|
||||
|
||||
@Benchmark
|
||||
fun realDot(blackhole: Blackhole) {
|
||||
RealMatrixContext {
|
||||
RealLinearSpace {
|
||||
blackhole.consume(matrix1 dot matrix2)
|
||||
}
|
||||
}
|
||||
|
@ -4,13 +4,12 @@ import kotlinx.benchmark.Benchmark
|
||||
import kotlinx.benchmark.Blackhole
|
||||
import kotlinx.benchmark.Scope
|
||||
import kotlinx.benchmark.State
|
||||
import space.kscience.kmath.commons.linear.CMMatrixContext
|
||||
import space.kscience.kmath.commons.linear.CMMatrixContext.dot
|
||||
import space.kscience.kmath.commons.linear.CMLinearSpace
|
||||
import space.kscience.kmath.commons.linear.inverse
|
||||
import space.kscience.kmath.ejml.EjmlMatrixContext
|
||||
import space.kscience.kmath.ejml.EjmlLinearSpace
|
||||
import space.kscience.kmath.ejml.inverse
|
||||
import space.kscience.kmath.linear.LinearSpace
|
||||
import space.kscience.kmath.linear.Matrix
|
||||
import space.kscience.kmath.linear.MatrixContext
|
||||
import space.kscience.kmath.linear.inverseWithLup
|
||||
import space.kscience.kmath.linear.real
|
||||
import kotlin.random.Random
|
||||
@ -29,19 +28,19 @@ internal class LinearAlgebraBenchmark {
|
||||
|
||||
@Benchmark
|
||||
fun kmathLupInversion(blackhole: Blackhole) {
|
||||
blackhole.consume(MatrixContext.real.inverseWithLup(matrix))
|
||||
blackhole.consume(LinearSpace.real.inverseWithLup(matrix))
|
||||
}
|
||||
|
||||
@Benchmark
|
||||
fun cmLUPInversion(blackhole: Blackhole) {
|
||||
with(CMMatrixContext) {
|
||||
with(CMLinearSpace) {
|
||||
blackhole.consume(inverse(matrix))
|
||||
}
|
||||
}
|
||||
|
||||
@Benchmark
|
||||
fun ejmlInverse(blackhole: Blackhole) {
|
||||
with(EjmlMatrixContext) {
|
||||
with(EjmlLinearSpace) {
|
||||
blackhole.consume(inverse(matrix))
|
||||
}
|
||||
}
|
||||
|
@ -7,7 +7,7 @@ import kotlin.system.measureTimeMillis
|
||||
@Suppress("UNUSED_VARIABLE")
|
||||
fun main() {
|
||||
val n = 6000
|
||||
val structure = NDStructure.build(intArrayOf(n, n), Buffer.Companion::auto) { 1.0 }
|
||||
val structure = NDStructure.buffered(intArrayOf(n, n), Buffer.Companion::auto) { 1.0 }
|
||||
structure.mapToBuffer { it + 1 } // warm-up
|
||||
val time1 = measureTimeMillis { val res = structure.mapToBuffer { it + 1 } }
|
||||
println("Structure mapping finished in $time1 millis")
|
||||
|
@ -3,6 +3,7 @@ package space.kscience.kmath.commons.linear
|
||||
import org.apache.commons.math3.linear.*
|
||||
import space.kscience.kmath.linear.*
|
||||
import space.kscience.kmath.misc.UnstableKMathAPI
|
||||
import space.kscience.kmath.operations.RealField
|
||||
import space.kscience.kmath.structures.RealBuffer
|
||||
import kotlin.reflect.KClass
|
||||
import kotlin.reflect.cast
|
||||
@ -55,7 +56,7 @@ public inline class CMMatrix(public val origin: RealMatrix) : Matrix<Double> {
|
||||
|
||||
public fun RealMatrix.asMatrix(): CMMatrix = CMMatrix(this)
|
||||
|
||||
public class CMVector(public val origin: RealVector) : Point<Double> {
|
||||
public class CMVector(public val origin: RealVector) : Vector<Double> {
|
||||
public override val size: Int get() = origin.dimension
|
||||
|
||||
public override operator fun get(index: Int): Double = origin.getEntry(index)
|
||||
@ -70,8 +71,8 @@ public fun Point<Double>.toCM(): CMVector = if (this is CMVector) this else {
|
||||
|
||||
public fun RealVector.toPoint(): CMVector = CMVector(this)
|
||||
|
||||
public object CMMatrixContext : MatrixContext<Double, CMMatrix> {
|
||||
public override fun produce(rows: Int, columns: Int, initializer: (i: Int, j: Int) -> Double): CMMatrix {
|
||||
public object CMLinearSpace : LinearSpace<Double, RealField> {
|
||||
public override fun buildMatrix(rows: Int, columns: Int, initializer: (i: Int, j: Int) -> Double): CMMatrix {
|
||||
val array = Array(rows) { i -> DoubleArray(columns) { j -> initializer(i, j) } }
|
||||
return CMMatrix(Array2DRowRealMatrix(array))
|
||||
}
|
||||
@ -86,17 +87,15 @@ public object CMMatrixContext : MatrixContext<Double, CMMatrix> {
|
||||
}
|
||||
}
|
||||
|
||||
override fun scale(a: Matrix<Double>, value: Double): Matrix<Double> = a.toCM().times(value)
|
||||
|
||||
|
||||
public override fun Matrix<Double>.dot(other: Matrix<Double>): CMMatrix =
|
||||
CMMatrix(toCM().origin.multiply(other.toCM().origin))
|
||||
|
||||
public override fun Matrix<Double>.dot(vector: Point<Double>): CMVector =
|
||||
public override fun Matrix<Double>.dot(vector: Vector<Double>): CMVector =
|
||||
CMVector(toCM().origin.preMultiply(vector.toCM().origin))
|
||||
|
||||
public override operator fun Matrix<Double>.unaryMinus(): CMMatrix =
|
||||
produce(rowNum, colNum) { i, j -> -get(i, j) }
|
||||
buildMatrix(rowNum, colNum) { i, j -> -get(i, j) }
|
||||
|
||||
public override fun add(a: Matrix<Double>, b: Matrix<Double>): CMMatrix =
|
||||
CMMatrix(a.toCM().origin.multiply(b.toCM().origin))
|
||||
@ -108,7 +107,7 @@ public object CMMatrixContext : MatrixContext<Double, CMMatrix> {
|
||||
// CMMatrix(a.toCM().origin.scalarMultiply(k.toDouble()))
|
||||
|
||||
public override operator fun Matrix<Double>.times(value: Double): CMMatrix =
|
||||
produce(rowNum, colNum) { i, j -> get(i, j) * value }
|
||||
buildMatrix(rowNum, colNum) { i, j -> get(i, j) * value }
|
||||
}
|
||||
|
||||
public operator fun CMMatrix.plus(other: CMMatrix): CMMatrix =
|
||||
|
@ -12,7 +12,7 @@ public enum class CMDecomposition {
|
||||
CHOLESKY
|
||||
}
|
||||
|
||||
public fun CMMatrixContext.solver(
|
||||
public fun CMLinearSpace.solver(
|
||||
a: Matrix<Double>,
|
||||
decomposition: CMDecomposition = CMDecomposition.LUP
|
||||
): DecompositionSolver = when (decomposition) {
|
||||
@ -23,19 +23,19 @@ public fun CMMatrixContext.solver(
|
||||
CMDecomposition.CHOLESKY -> CholeskyDecomposition(a.toCM().origin).solver
|
||||
}
|
||||
|
||||
public fun CMMatrixContext.solve(
|
||||
public fun CMLinearSpace.solve(
|
||||
a: Matrix<Double>,
|
||||
b: Matrix<Double>,
|
||||
decomposition: CMDecomposition = CMDecomposition.LUP
|
||||
): CMMatrix = solver(a, decomposition).solve(b.toCM().origin).asMatrix()
|
||||
|
||||
public fun CMMatrixContext.solve(
|
||||
public fun CMLinearSpace.solve(
|
||||
a: Matrix<Double>,
|
||||
b: Point<Double>,
|
||||
decomposition: CMDecomposition = CMDecomposition.LUP
|
||||
): CMVector = solver(a, decomposition).solve(b.toCM().origin).toPoint()
|
||||
|
||||
public fun CMMatrixContext.inverse(
|
||||
public fun CMLinearSpace.inverse(
|
||||
a: Matrix<Double>,
|
||||
decomposition: CMDecomposition = CMDecomposition.LUP
|
||||
): CMMatrix = solver(a, decomposition).inverse.asMatrix()
|
||||
|
@ -1,144 +0,0 @@
|
||||
package space.kscience.kmath.linear
|
||||
|
||||
import space.kscience.kmath.nd.NDStructure
|
||||
import space.kscience.kmath.nd.Structure2D
|
||||
import space.kscience.kmath.operations.Ring
|
||||
import space.kscience.kmath.operations.ScaleOperations
|
||||
import space.kscience.kmath.operations.invoke
|
||||
import space.kscience.kmath.structures.Buffer
|
||||
import space.kscience.kmath.structures.BufferFactory
|
||||
import space.kscience.kmath.structures.asSequence
|
||||
|
||||
/**
|
||||
* Alias for [Structure2D] with more familiar name.
|
||||
*
|
||||
* @param T the type of items.
|
||||
*/
|
||||
public typealias Matrix<T> = Structure2D<T>
|
||||
|
||||
/**
|
||||
* Basic implementation of Matrix space based on [NDStructure]
|
||||
*/
|
||||
public class BufferMatrixContext<T : Any, A>(
|
||||
public override val elementContext: A,
|
||||
private val bufferFactory: BufferFactory<T>,
|
||||
) : GenericMatrixContext<T, A, BufferMatrix<T>> where A : Ring<T>, A : ScaleOperations<T> {
|
||||
|
||||
public override fun produce(rows: Int, columns: Int, initializer: (i: Int, j: Int) -> T): BufferMatrix<T> {
|
||||
val buffer = bufferFactory(rows * columns) { offset -> initializer(offset / columns, offset % columns) }
|
||||
return BufferMatrix(rows, columns, buffer)
|
||||
}
|
||||
|
||||
override fun scale(a: Matrix<T>, value: Double): Matrix<T> = elementContext {
|
||||
produce(a.rowNum, a.colNum) { i, j ->
|
||||
a[i, j] * value
|
||||
}
|
||||
}
|
||||
|
||||
public override fun point(size: Int, initializer: (Int) -> T): Point<T> = bufferFactory(size, initializer)
|
||||
|
||||
private fun Matrix<T>.toBufferMatrix(): BufferMatrix<T> = if (this is BufferMatrix) this else {
|
||||
produce(rowNum, colNum) { i, j -> get(i, j) }
|
||||
}
|
||||
|
||||
public fun one(rows: Int, columns: Int): Matrix<Double> = VirtualMatrix(rows, columns) { i, j ->
|
||||
if (i == j) 1.0 else 0.0
|
||||
} + DiagonalFeature
|
||||
|
||||
public override infix fun Matrix<T>.dot(other: Matrix<T>): BufferMatrix<T> {
|
||||
require(colNum == other.rowNum) { "Matrix dot operation dimension mismatch: ($rowNum, $colNum) x (${other.rowNum}, ${other.colNum})" }
|
||||
val bufferMatrix = toBufferMatrix()
|
||||
val otherBufferMatrix = other.toBufferMatrix()
|
||||
return elementContext {
|
||||
produce(rowNum, other.colNum) { i, j ->
|
||||
var res = one
|
||||
for (l in 0 until colNum) {
|
||||
res += bufferMatrix[i, l] * otherBufferMatrix[l, j]
|
||||
}
|
||||
res
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
public override infix fun Matrix<T>.dot(vector: Point<T>): Point<T> {
|
||||
require(colNum == vector.size) { "Matrix dot vector operation dimension mismatch: ($rowNum, $colNum) x (${vector.size})" }
|
||||
val bufferMatrix = toBufferMatrix()
|
||||
return elementContext {
|
||||
bufferFactory(rowNum) { i ->
|
||||
var res = one
|
||||
for (j in 0 until colNum) {
|
||||
res += bufferMatrix[i, j] * vector[j]
|
||||
}
|
||||
res
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
override fun add(a: Matrix<T>, b: Matrix<T>): BufferMatrix<T> {
|
||||
require(a.rowNum == b.rowNum) { "Row number mismatch in matrix addition. Left side: ${a.rowNum}, right side: ${b.rowNum}" }
|
||||
require(a.colNum == b.colNum) { "Column number mismatch in matrix addition. Left side: ${a.colNum}, right side: ${b.colNum}" }
|
||||
val aBufferMatrix = a.toBufferMatrix()
|
||||
val bBufferMatrix = b.toBufferMatrix()
|
||||
return elementContext {
|
||||
produce(a.rowNum, a.colNum) { i, j ->
|
||||
aBufferMatrix[i, j] + bBufferMatrix[i, j]
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// override fun multiply(a: Matrix<T>, k: Number): BufferMatrix<T> {
|
||||
// val aBufferMatrix = a.toBufferMatrix()
|
||||
// return elementContext {
|
||||
// produce(a.rowNum, a.colNum) { i, j -> aBufferMatrix[i, j] * k.toDouble() }
|
||||
// }
|
||||
// }
|
||||
|
||||
public companion object
|
||||
}
|
||||
|
||||
public class BufferMatrix<T : Any>(
|
||||
public override val rowNum: Int,
|
||||
public override val colNum: Int,
|
||||
public val buffer: Buffer<T>,
|
||||
) : Matrix<T> {
|
||||
|
||||
init {
|
||||
require(buffer.size == rowNum * colNum) { "Dimension mismatch for matrix structure" }
|
||||
}
|
||||
|
||||
override val shape: IntArray get() = intArrayOf(rowNum, colNum)
|
||||
|
||||
public override operator fun get(index: IntArray): T = get(index[0], index[1])
|
||||
public override operator fun get(i: Int, j: Int): T = buffer[i * colNum + j]
|
||||
|
||||
public override fun elements(): Sequence<Pair<IntArray, T>> = sequence {
|
||||
for (i in 0 until rowNum) for (j in 0 until colNum) yield(intArrayOf(i, j) to get(i, j))
|
||||
}
|
||||
|
||||
public override fun equals(other: Any?): Boolean {
|
||||
if (this === other) return true
|
||||
|
||||
return when (other) {
|
||||
is NDStructure<*> -> NDStructure.contentEquals(this, other)
|
||||
else -> false
|
||||
}
|
||||
}
|
||||
|
||||
override fun hashCode(): Int {
|
||||
var result = rowNum
|
||||
result = 31 * result + colNum
|
||||
result = 31 * result + buffer.hashCode()
|
||||
return result
|
||||
}
|
||||
|
||||
public override fun toString(): String {
|
||||
return if (rowNum <= 5 && colNum <= 5)
|
||||
"Matrix(rowsNum = $rowNum, colNum = $colNum)\n" +
|
||||
rows.asSequence().joinToString(prefix = "(", postfix = ")", separator = "\n ") { buffer ->
|
||||
buffer.asSequence().joinToString(separator = "\t") { it.toString() }
|
||||
}
|
||||
else "Matrix(rowsNum = $rowNum, colNum = $colNum)"
|
||||
}
|
||||
|
||||
|
||||
}
|
@ -1,7 +1,7 @@
|
||||
package space.kscience.kmath.linear
|
||||
|
||||
import space.kscience.kmath.nd.as1D
|
||||
import space.kscience.kmath.structures.Buffer
|
||||
import space.kscience.kmath.structures.VirtualBuffer
|
||||
|
||||
public typealias Point<T> = Buffer<T>
|
||||
|
||||
@ -10,16 +10,16 @@ public typealias Point<T> = Buffer<T>
|
||||
*/
|
||||
public interface LinearSolver<T : Any> {
|
||||
public fun solve(a: Matrix<T>, b: Matrix<T>): Matrix<T>
|
||||
public fun solve(a: Matrix<T>, b: Point<T>): Point<T> = solve(a, b.asMatrix()).asPoint()
|
||||
public fun solve(a: Matrix<T>, b: Point<T>): Point<T> = solve(a, b.asMatrix()).asVector()
|
||||
public fun inverse(a: Matrix<T>): Matrix<T>
|
||||
}
|
||||
|
||||
/**
|
||||
* Convert matrix to vector if it is possible
|
||||
*/
|
||||
public fun <T : Any> Matrix<T>.asPoint(): Point<T> =
|
||||
public fun <T : Any> Matrix<T>.asVector(): Vector<T> =
|
||||
if (this.colNum == 1)
|
||||
VirtualBuffer(rowNum) { get(it, 0) }
|
||||
as1D()
|
||||
else
|
||||
error("Can't convert matrix with more than one column to vector")
|
||||
|
||||
|
@ -0,0 +1,213 @@
|
||||
package space.kscience.kmath.linear
|
||||
|
||||
import space.kscience.kmath.misc.UnstableKMathAPI
|
||||
import space.kscience.kmath.nd.*
|
||||
import space.kscience.kmath.operations.*
|
||||
import space.kscience.kmath.structures.Buffer
|
||||
import space.kscience.kmath.structures.BufferFactory
|
||||
import kotlin.reflect.KClass
|
||||
|
||||
/**
|
||||
* Alias for [Structure2D] with more familiar name.
|
||||
*
|
||||
* @param T the type of items.
|
||||
*/
|
||||
public typealias Matrix<T> = Structure2D<T>
|
||||
|
||||
/**
|
||||
* Alias for [Structure1D] with more familiar name.
|
||||
*
|
||||
* @param T the type of items.
|
||||
*/
|
||||
public typealias Vector<T> = Structure1D<T>
|
||||
|
||||
/**
|
||||
* Basic operations on matrices and vectors. Operates on [Matrix].
|
||||
*
|
||||
* @param T the type of items in the matrices.
|
||||
* @param M the type of operated matrices.
|
||||
*/
|
||||
public interface LinearSpace<T : Any, A : Ring<T>> {
|
||||
public val elementAlgebra: A
|
||||
|
||||
/**
|
||||
* Produces a matrix with this context and given dimensions.
|
||||
*/
|
||||
public fun buildMatrix(rows: Int, columns: Int, initializer: A.(i: Int, j: Int) -> T): Matrix<T>
|
||||
|
||||
/**
|
||||
* Produces a point compatible with matrix space (and possibly optimized for it).
|
||||
*/
|
||||
public fun buildVector(size: Int, initializer: A.(Int) -> T): Vector<T> =
|
||||
buildMatrix(1, size) { _, j -> initializer(j) }.as1D()
|
||||
|
||||
public operator fun Matrix<T>.unaryMinus(): Matrix<T> = buildMatrix(rowNum, colNum) { i, j ->
|
||||
-get(i, j)
|
||||
}
|
||||
|
||||
public operator fun Vector<T>.unaryMinus(): Vector<T> = buildVector(size) {
|
||||
-get(it)
|
||||
}
|
||||
|
||||
/**
|
||||
* Matrix sum
|
||||
*/
|
||||
public operator fun Matrix<T>.plus(other: Matrix<T>): Matrix<T> = buildMatrix(rowNum, colNum) { i, j ->
|
||||
get(i, j) + other[i, j]
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Vector sum
|
||||
*/
|
||||
public operator fun Vector<T>.plus(other: Vector<T>): Vector<T> = buildVector(size) {
|
||||
get(it) + other[it]
|
||||
}
|
||||
|
||||
/**
|
||||
* Matrix subtraction
|
||||
*/
|
||||
public operator fun Matrix<T>.minus(other: Matrix<T>): Matrix<T> = buildMatrix(rowNum, colNum) { i, j ->
|
||||
get(i, j) - other[i, j]
|
||||
}
|
||||
|
||||
/**
|
||||
* Vector subtraction
|
||||
*/
|
||||
public operator fun Vector<T>.minus(other: Vector<T>): Vector<T> = buildVector(size) {
|
||||
get(it) - other[it]
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Computes the dot product of this matrix and another one.
|
||||
*
|
||||
* @receiver the multiplicand.
|
||||
* @param other the multiplier.
|
||||
* @return the dot product.
|
||||
*/
|
||||
public infix fun Matrix<T>.dot(other: Matrix<T>): Matrix<T> {
|
||||
require(colNum == other.rowNum) { "Matrix dot operation dimension mismatch: ($rowNum, $colNum) x (${other.rowNum}, ${other.colNum})" }
|
||||
return elementAlgebra {
|
||||
buildMatrix(rowNum, other.colNum) { i, j ->
|
||||
var res = zero
|
||||
for (l in 0 until colNum) {
|
||||
res += this@dot[i, l] * other[l, j]
|
||||
}
|
||||
res
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Computes the dot product of this matrix and a vector.
|
||||
*
|
||||
* @receiver the multiplicand.
|
||||
* @param vector the multiplier.
|
||||
* @return the dot product.
|
||||
*/
|
||||
public infix fun Matrix<T>.dot(vector: Vector<T>): Vector<T> {
|
||||
require(colNum == vector.size) { "Matrix dot vector operation dimension mismatch: ($rowNum, $colNum) x (${vector.size})" }
|
||||
return elementAlgebra {
|
||||
buildVector(rowNum) { i ->
|
||||
var res = one
|
||||
for (j in 0 until colNum) {
|
||||
res += this@dot[i, j] * vector[j]
|
||||
}
|
||||
res
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Multiplies a matrix by its element.
|
||||
*
|
||||
* @receiver the multiplicand.
|
||||
* @param value the multiplier.
|
||||
* @receiver the product.
|
||||
*/
|
||||
public operator fun Matrix<T>.times(value: T): Matrix<T> =
|
||||
buildMatrix(rowNum, colNum) { i, j -> get(i, j) * value }
|
||||
|
||||
/**
|
||||
* Multiplies an element by a matrix of it.
|
||||
*
|
||||
* @receiver the multiplicand.
|
||||
* @param m the multiplier.
|
||||
* @receiver the product.
|
||||
*/
|
||||
public operator fun T.times(m: Matrix<T>): Matrix<T> = m * this
|
||||
|
||||
/**
|
||||
* Multiplies a vector by its element.
|
||||
*
|
||||
* @receiver the multiplicand.
|
||||
* @param value the multiplier.
|
||||
* @receiver the product.
|
||||
*/
|
||||
public operator fun Vector<T>.times(value: T): Vector<T> =
|
||||
buildVector(size) { i -> get(i) * value }
|
||||
|
||||
/**
|
||||
* Multiplies an element by a vector of it.
|
||||
*
|
||||
* @receiver the multiplicand.
|
||||
* @param v the multiplier.
|
||||
* @receiver the product.
|
||||
*/
|
||||
public operator fun T.times(v: Vector<T>): Vector<T> = v * this
|
||||
|
||||
/**
|
||||
* Gets a feature from the matrix. This function may return some additional features to
|
||||
* [space.kscience.kmath.nd.NDStructure.getFeature].
|
||||
*
|
||||
* @param F the type of feature.
|
||||
* @param m the matrix.
|
||||
* @param type the [KClass] instance of [F].
|
||||
* @return a feature object or `null` if it isn't present.
|
||||
*/
|
||||
@UnstableKMathAPI
|
||||
public fun <F : Any> getFeature(m: Matrix<T>, type: KClass<F>): F? = m.getFeature(type)
|
||||
|
||||
public companion object {
|
||||
|
||||
/**
|
||||
* A structured matrix with custom buffer
|
||||
*/
|
||||
public fun <T : Any, A : Ring<T>> buffered(
|
||||
algebra: A,
|
||||
bufferFactory: BufferFactory<T> = Buffer.Companion::boxing,
|
||||
): LinearSpace<T, A> = object : LinearSpace<T, A> {
|
||||
override val elementAlgebra: A = algebra
|
||||
|
||||
override fun buildMatrix(
|
||||
rows: Int, columns: Int,
|
||||
initializer: A.(i: Int, j: Int) -> T,
|
||||
): Matrix<T> = NDStructure.buffered(intArrayOf(rows, columns)) { (i, j) ->
|
||||
algebra.initializer(i, j)
|
||||
}.as2D()
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* Automatic buffered matrix, unboxed if it is possible
|
||||
*/
|
||||
public inline fun <reified T : Any, A : Ring<T>> auto(ring: A): LinearSpace<T, A> =
|
||||
buffered(ring, Buffer.Companion::auto)
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets a feature from the matrix. This function may return some additional features to
|
||||
* [space.kscience.kmath.nd.NDStructure.getFeature].
|
||||
*
|
||||
* @param T the type of items in the matrices.
|
||||
* @param M the type of operated matrices.
|
||||
* @param F the type of feature.
|
||||
* @receiver the [LinearSpace] of [T].
|
||||
* @param m the matrix.
|
||||
* @return a feature object or `null` if it isn't present.
|
||||
*/
|
||||
@UnstableKMathAPI
|
||||
public inline fun <T : Any, reified F : Any> LinearSpace<T, *>.getFeature(m: Matrix<T>): F? = getFeature(m, F::class)
|
||||
|
@ -12,7 +12,7 @@ import space.kscience.kmath.structures.MutableBufferFactory
|
||||
* Common implementation of [LupDecompositionFeature].
|
||||
*/
|
||||
public class LupDecomposition<T : Any>(
|
||||
public val context: MatrixContext<T, Matrix<T>>,
|
||||
public val context: LinearSpace<T, *>,
|
||||
public val elementContext: Field<T>,
|
||||
public val lu: Matrix<T>,
|
||||
public val pivot: IntArray,
|
||||
@ -62,15 +62,14 @@ public class LupDecomposition<T : Any>(
|
||||
}
|
||||
|
||||
@PublishedApi
|
||||
internal fun <T : Comparable<T>, F : Field<T>> GenericMatrixContext<T, F, *>.abs(value: T): T =
|
||||
if (value > elementContext.zero) value else elementContext { -value }
|
||||
internal fun <T : Comparable<T>> LinearSpace<T, Ring<T>>.abs(value: T): T =
|
||||
if (value > elementAlgebra.zero) value else elementAlgebra { -value }
|
||||
|
||||
/**
|
||||
* Create a lup decomposition of generic matrix.
|
||||
*/
|
||||
public fun <T : Comparable<T>> MatrixContext<T, Matrix<T>>.lup(
|
||||
public fun <T : Comparable<T>> LinearSpace<T, Field<T>>.lup(
|
||||
factory: MutableBufferFactory<T>,
|
||||
elementContext: Field<T>,
|
||||
matrix: Matrix<T>,
|
||||
checkSingular: (T) -> Boolean,
|
||||
): LupDecomposition<T> {
|
||||
@ -80,7 +79,7 @@ public fun <T : Comparable<T>> MatrixContext<T, Matrix<T>>.lup(
|
||||
|
||||
//TODO just waits for KEEP-176
|
||||
BufferAccessor2D(matrix.rowNum, matrix.colNum, factory).run {
|
||||
elementContext {
|
||||
elementAlgebra {
|
||||
val lu = create(matrix)
|
||||
|
||||
// Initialize permutation array and parity
|
||||
@ -142,18 +141,18 @@ public fun <T : Comparable<T>> MatrixContext<T, Matrix<T>>.lup(
|
||||
for (row in col + 1 until m) lu[row, col] /= luDiag
|
||||
}
|
||||
|
||||
return LupDecomposition(this@lup, elementContext, lu.collect(), pivot, even)
|
||||
return LupDecomposition(this@lup, elementAlgebra, lu.collect(), pivot, even)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
public inline fun <reified T : Comparable<T>, F : Field<T>> GenericMatrixContext<T, F, Matrix<T>>.lup(
|
||||
public inline fun <reified T : Comparable<T>> LinearSpace<T, Field<T>>.lup(
|
||||
matrix: Matrix<T>,
|
||||
noinline checkSingular: (T) -> Boolean,
|
||||
): LupDecomposition<T> = lup(MutableBuffer.Companion::auto, elementContext, matrix, checkSingular)
|
||||
): LupDecomposition<T> = lup(MutableBuffer.Companion::auto, matrix, checkSingular)
|
||||
|
||||
public fun MatrixContext<Double, Matrix<Double>>.lup(matrix: Matrix<Double>): LupDecomposition<Double> =
|
||||
lup(Buffer.Companion::real, RealField, matrix) { it < 1e-11 }
|
||||
public fun LinearSpace<Double, RealField>.lup(matrix: Matrix<Double>): LupDecomposition<Double> =
|
||||
lup(Buffer.Companion::real, matrix) { it < 1e-11 }
|
||||
|
||||
public fun <T : Any> LupDecomposition<T>.solveWithLup(
|
||||
factory: MutableBufferFactory<T>,
|
||||
@ -198,7 +197,7 @@ public fun <T : Any> LupDecomposition<T>.solveWithLup(
|
||||
}
|
||||
}
|
||||
|
||||
return context.produce(pivot.size, matrix.colNum) { i, j -> bp[i, j] }
|
||||
return context.buildMatrix(pivot.size, matrix.colNum) { i, j -> bp[i, j] }
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -210,18 +209,18 @@ public inline fun <reified T : Any> LupDecomposition<T>.solveWithLup(matrix: Mat
|
||||
* Solves a system of linear equations *ax = b** using LUP decomposition.
|
||||
*/
|
||||
@OptIn(UnstableKMathAPI::class)
|
||||
public inline fun <reified T : Comparable<T>, F : Field<T>> GenericMatrixContext<T, F, Matrix<T>>.solveWithLup(
|
||||
public inline fun <reified T : Comparable<T>> LinearSpace<T, Field<T>>.solveWithLup(
|
||||
a: Matrix<T>,
|
||||
b: Matrix<T>,
|
||||
noinline bufferFactory: MutableBufferFactory<T> = MutableBuffer.Companion::auto,
|
||||
noinline checkSingular: (T) -> Boolean,
|
||||
): Matrix<T> {
|
||||
// Use existing decomposition if it is provided by matrix
|
||||
val decomposition = a.getFeature() ?: lup(bufferFactory, elementContext, a, checkSingular)
|
||||
val decomposition = a.getFeature() ?: lup(bufferFactory, a, checkSingular)
|
||||
return decomposition.solveWithLup(bufferFactory, b)
|
||||
}
|
||||
|
||||
public inline fun <reified T : Comparable<T>, F : Field<T>> GenericMatrixContext<T, F, Matrix<T>>.inverseWithLup(
|
||||
public inline fun <reified T : Comparable<T>> LinearSpace<T, Field<T>>.inverseWithLup(
|
||||
matrix: Matrix<T>,
|
||||
noinline bufferFactory: MutableBufferFactory<T> = MutableBuffer.Companion::auto,
|
||||
noinline checkSingular: (T) -> Boolean,
|
||||
@ -229,15 +228,15 @@ public inline fun <reified T : Comparable<T>, F : Field<T>> GenericMatrixContext
|
||||
|
||||
|
||||
@OptIn(UnstableKMathAPI::class)
|
||||
public fun RealMatrixContext.solveWithLup(a: Matrix<Double>, b: Matrix<Double>): Matrix<Double> {
|
||||
public fun RealLinearSpace.solveWithLup(a: Matrix<Double>, b: Matrix<Double>): Matrix<Double> {
|
||||
// Use existing decomposition if it is provided by matrix
|
||||
val bufferFactory: MutableBufferFactory<Double> = MutableBuffer.Companion::real
|
||||
val decomposition: LupDecomposition<Double> = a.getFeature() ?: lup(bufferFactory, RealField, a) { it < 1e-11 }
|
||||
val decomposition: LupDecomposition<Double> = a.getFeature() ?: lup(bufferFactory, a) { it < 1e-11 }
|
||||
return decomposition.solveWithLup(bufferFactory, b)
|
||||
}
|
||||
|
||||
/**
|
||||
* Inverses a square matrix using LUP decomposition. Non square matrix will throw a error.
|
||||
*/
|
||||
public fun RealMatrixContext.inverseWithLup(matrix: Matrix<Double>): Matrix<Double> =
|
||||
public fun RealLinearSpace.inverseWithLup(matrix: Matrix<Double>): Matrix<Double> =
|
||||
solveWithLup(matrix, one(matrix.rowNum, matrix.colNum))
|
@ -1,46 +1,30 @@
|
||||
package space.kscience.kmath.linear
|
||||
|
||||
import space.kscience.kmath.nd.Structure2D
|
||||
import space.kscience.kmath.structures.Buffer
|
||||
import space.kscience.kmath.structures.BufferFactory
|
||||
import space.kscience.kmath.structures.asBuffer
|
||||
import space.kscience.kmath.misc.UnstableKMathAPI
|
||||
import space.kscience.kmath.operations.Ring
|
||||
|
||||
public class MatrixBuilder(public val rows: Int, public val columns: Int) {
|
||||
public operator fun <T : Any> invoke(vararg elements: T): Matrix<T> {
|
||||
|
||||
@UnstableKMathAPI
|
||||
public fun <T : Any> LinearSpace<T, Ring<T>>.matrix(rows: Int, columns: Int, vararg elements: T): Matrix<T> {
|
||||
require(rows * columns == elements.size) { "The number of elements ${elements.size} is not equal $rows * $columns" }
|
||||
val buffer = elements.asBuffer()
|
||||
return BufferMatrix(rows, columns, buffer)
|
||||
}
|
||||
|
||||
//TODO add specific matrix builder functions like diagonal, etc
|
||||
return buildMatrix(rows, columns) { i, j -> elements[i * columns + j] }
|
||||
}
|
||||
|
||||
public fun Structure2D.Companion.build(rows: Int, columns: Int): MatrixBuilder = MatrixBuilder(rows, columns)
|
||||
|
||||
public fun <T : Any> Structure2D.Companion.row(vararg values: T): Matrix<T> {
|
||||
val buffer = values.asBuffer()
|
||||
return BufferMatrix(1, values.size, buffer)
|
||||
@UnstableKMathAPI
|
||||
public fun <T : Any> LinearSpace<T, Ring<T>>.vector(vararg elements: T): Vector<T> {
|
||||
return buildVector(elements.size, elements::get)
|
||||
}
|
||||
|
||||
public inline fun <reified T : Any> Structure2D.Companion.row(
|
||||
public inline fun <T : Any> LinearSpace<T, Ring<T>>.row(
|
||||
size: Int,
|
||||
factory: BufferFactory<T> = Buffer.Companion::auto,
|
||||
noinline builder: (Int) -> T,
|
||||
): Matrix<T> {
|
||||
val buffer = factory(size, builder)
|
||||
return BufferMatrix(1, size, buffer)
|
||||
}
|
||||
crossinline builder: (Int) -> T,
|
||||
): Matrix<T> = buildMatrix(1, size) { _, j -> builder(j) }
|
||||
|
||||
public fun <T : Any> Structure2D.Companion.column(vararg values: T): Matrix<T> {
|
||||
val buffer = values.asBuffer()
|
||||
return BufferMatrix(values.size, 1, buffer)
|
||||
}
|
||||
public fun <T : Any> LinearSpace<T, Ring<T>>.row(vararg values: T): Matrix<T> = row(values.size, values::get)
|
||||
|
||||
public inline fun <reified T : Any> Structure2D.Companion.column(
|
||||
public inline fun <T : Any> LinearSpace<T, Ring<T>>.column(
|
||||
size: Int,
|
||||
factory: BufferFactory<T> = Buffer.Companion::auto,
|
||||
noinline builder: (Int) -> T,
|
||||
): Matrix<T> {
|
||||
val buffer = factory(size, builder)
|
||||
return BufferMatrix(size, 1, buffer)
|
||||
}
|
||||
crossinline builder: (Int) -> T,
|
||||
): Matrix<T> = buildMatrix(size, 1) { i, _ -> builder(i) }
|
||||
|
||||
public fun <T : Any> LinearSpace<T, Ring<T>>.column(vararg values: T): Matrix<T> = column(values.size, values::get)
|
@ -1,173 +0,0 @@
|
||||
package space.kscience.kmath.linear
|
||||
|
||||
import space.kscience.kmath.misc.UnstableKMathAPI
|
||||
import space.kscience.kmath.operations.*
|
||||
import space.kscience.kmath.structures.Buffer
|
||||
import space.kscience.kmath.structures.BufferFactory
|
||||
import space.kscience.kmath.structures.asSequence
|
||||
import kotlin.reflect.KClass
|
||||
|
||||
/**
|
||||
* Basic operations on matrices. Operates on [Matrix].
|
||||
*
|
||||
* @param T the type of items in the matrices.
|
||||
* @param M the type of operated matrices.
|
||||
*/
|
||||
public interface MatrixContext<T : Any, out M : Matrix<T>> : GroupOperations<Matrix<T>>, ScaleOperations<Matrix<T>> {
|
||||
/**
|
||||
* Produces a matrix with this context and given dimensions.
|
||||
*/
|
||||
public fun produce(rows: Int, columns: Int, initializer: (i: Int, j: Int) -> T): M
|
||||
|
||||
/**
|
||||
* Produces a point compatible with matrix space (and possibly optimized for it).
|
||||
*/
|
||||
public fun point(size: Int, initializer: (Int) -> T): Point<T> = Buffer.boxing(size, initializer)
|
||||
|
||||
@Suppress("UNCHECKED_CAST")
|
||||
public override fun binaryOperationFunction(operation: String): (left: Matrix<T>, right: Matrix<T>) -> M =
|
||||
when (operation) {
|
||||
"dot" -> { left, right -> left dot right }
|
||||
else -> super<GroupOperations>.binaryOperationFunction(operation) as (Matrix<T>, Matrix<T>) -> M
|
||||
}
|
||||
|
||||
/**
|
||||
* Computes the dot product of this matrix and another one.
|
||||
*
|
||||
* @receiver the multiplicand.
|
||||
* @param other the multiplier.
|
||||
* @return the dot product.
|
||||
*/
|
||||
public infix fun Matrix<T>.dot(other: Matrix<T>): M
|
||||
|
||||
/**
|
||||
* Computes the dot product of this matrix and a vector.
|
||||
*
|
||||
* @receiver the multiplicand.
|
||||
* @param vector the multiplier.
|
||||
* @return the dot product.
|
||||
*/
|
||||
public infix fun Matrix<T>.dot(vector: Point<T>): Point<T>
|
||||
|
||||
/**
|
||||
* Multiplies a matrix by its element.
|
||||
*
|
||||
* @receiver the multiplicand.
|
||||
* @param value the multiplier.
|
||||
* @receiver the product.
|
||||
*/
|
||||
public operator fun Matrix<T>.times(value: T): M
|
||||
|
||||
/**
|
||||
* Multiplies an element by a matrix of it.
|
||||
*
|
||||
* @receiver the multiplicand.
|
||||
* @param m the multiplier.
|
||||
* @receiver the product.
|
||||
*/
|
||||
public operator fun T.times(m: Matrix<T>): M = m * this
|
||||
|
||||
/**
|
||||
* Gets a feature from the matrix. This function may return some additional features to
|
||||
* [kscience.kmath.nd.NDStructure.getFeature].
|
||||
*
|
||||
* @param F the type of feature.
|
||||
* @param m the matrix.
|
||||
* @param type the [KClass] instance of [F].
|
||||
* @return a feature object or `null` if it isn't present.
|
||||
*/
|
||||
@UnstableKMathAPI
|
||||
public fun <F : Any> getFeature(m: Matrix<T>, type: KClass<F>): F? = m.getFeature(type)
|
||||
|
||||
public companion object {
|
||||
|
||||
/**
|
||||
* A structured matrix with custom buffer
|
||||
*/
|
||||
public fun <T : Any, A> buffered(
|
||||
ring: A,
|
||||
bufferFactory: BufferFactory<T> = Buffer.Companion::boxing,
|
||||
): GenericMatrixContext<T, A, BufferMatrix<T>> where A : Ring<T>, A: ScaleOperations<T> = BufferMatrixContext(ring, bufferFactory)
|
||||
|
||||
/**
|
||||
* Automatic buffered matrix, unboxed if it is possible
|
||||
*/
|
||||
public inline fun <reified T : Any, A> auto(ring: A): GenericMatrixContext<T, A, BufferMatrix<T>> where A : Ring<T>, A: ScaleOperations<T> =
|
||||
buffered(ring, Buffer.Companion::auto)
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets a feature from the matrix. This function may return some additional features to
|
||||
* [kscience.kmath.nd.NDStructure.getFeature].
|
||||
*
|
||||
* @param T the type of items in the matrices.
|
||||
* @param M the type of operated matrices.
|
||||
* @param F the type of feature.
|
||||
* @receiver the [MatrixContext] of [T].
|
||||
* @param m the matrix.
|
||||
* @return a feature object or `null` if it isn't present.
|
||||
*/
|
||||
@UnstableKMathAPI
|
||||
public inline fun <T : Any, reified F : Any> MatrixContext<T, *>.getFeature(m: Matrix<T>): F? =
|
||||
getFeature(m, F::class)
|
||||
|
||||
/**
|
||||
* Partial implementation of [MatrixContext] for matrices of [Ring].
|
||||
*
|
||||
* @param T the type of items in the matrices.
|
||||
* @param A the type of ring of matrix elements.
|
||||
* @param M the type of operated matrices.
|
||||
*/
|
||||
public interface GenericMatrixContext<T : Any, A, out M : Matrix<T>> : MatrixContext<T, M> where A : Ring<T>, A : ScaleOperations<T>{
|
||||
/**
|
||||
* The ring over matrix elements.
|
||||
*/
|
||||
public val elementContext: A
|
||||
|
||||
public override infix fun Matrix<T>.dot(other: Matrix<T>): M {
|
||||
//TODO add typed error
|
||||
require(colNum == other.rowNum) { "Matrix dot operation dimension mismatch: ($rowNum, $colNum) x (${other.rowNum}, ${other.colNum})" }
|
||||
|
||||
return produce(rowNum, other.colNum) { i, j ->
|
||||
val row = rows[i]
|
||||
val column = other.columns[j]
|
||||
elementContext { sum(row.asSequence().zip(column.asSequence(), ::multiply)) }
|
||||
}
|
||||
}
|
||||
|
||||
public override infix fun Matrix<T>.dot(vector: Point<T>): Point<T> {
|
||||
//TODO add typed error
|
||||
require(colNum == vector.size) { "Matrix dot vector operation dimension mismatch: ($rowNum, $colNum) x (${vector.size})" }
|
||||
|
||||
return point(rowNum) { i ->
|
||||
val row = rows[i]
|
||||
elementContext { sum(row.asSequence().zip(vector.asSequence(), ::multiply)) }
|
||||
}
|
||||
}
|
||||
|
||||
public override operator fun Matrix<T>.unaryMinus(): M =
|
||||
produce(rowNum, colNum) { i, j -> elementContext { -get(i, j) } }
|
||||
|
||||
public override fun add(a: Matrix<T>, b: Matrix<T>): M {
|
||||
require(a.rowNum == b.rowNum && a.colNum == b.colNum) {
|
||||
"Matrix operation dimension mismatch. [${a.rowNum},${a.colNum}] + [${b.rowNum},${b.colNum}]"
|
||||
}
|
||||
|
||||
return produce(a.rowNum, a.colNum) { i, j -> elementContext { a[i, j] + b[i, j] } }
|
||||
}
|
||||
|
||||
public override operator fun Matrix<T>.minus(b: Matrix<T>): M {
|
||||
require(rowNum == b.rowNum && colNum == b.colNum) {
|
||||
"Matrix operation dimension mismatch. [$rowNum,$colNum] - [${b.rowNum},${b.colNum}]"
|
||||
}
|
||||
|
||||
return produce(rowNum, colNum) { i, j -> elementContext { get(i, j) + b[i, j] } }
|
||||
}
|
||||
//
|
||||
// public override fun multiply(a: Matrix<T>, k: Number): M =
|
||||
// produce(a.rowNum, a.colNum) { i, j -> elementContext { a[i, j] * k } }
|
||||
|
||||
public override operator fun Matrix<T>.times(value: T): M =
|
||||
produce(rowNum, colNum) { i, j -> elementContext { get(i, j) * value } }
|
||||
}
|
@ -1,14 +1,9 @@
|
||||
package space.kscience.kmath.linear
|
||||
|
||||
import space.kscience.kmath.misc.UnstableKMathAPI
|
||||
import space.kscience.kmath.nd.Structure2D
|
||||
import space.kscience.kmath.nd.getFeature
|
||||
import space.kscience.kmath.operations.Ring
|
||||
import space.kscience.kmath.operations.ScaleOperations
|
||||
import space.kscience.kmath.structures.asBuffer
|
||||
import kotlin.math.sqrt
|
||||
import kotlin.reflect.KClass
|
||||
import kotlin.reflect.safeCast
|
||||
|
||||
/**
|
||||
* A [Matrix] that holds [MatrixFeature] objects.
|
||||
@ -24,7 +19,8 @@ public class MatrixWrapper<T : Any> internal constructor(
|
||||
* Get the first feature matching given class. Does not guarantee that matrix has only one feature matching the criteria
|
||||
*/
|
||||
@UnstableKMathAPI
|
||||
override fun <T : Any> getFeature(type: KClass<T>): T? = type.safeCast(features.find { type.isInstance(it) })
|
||||
@Suppress("UNCHECKED_CAST")
|
||||
override fun <T : Any> getFeature(type: KClass<T>): T? = features.singleOrNull { type.isInstance(it) } as? T
|
||||
?: origin.getFeature(type)
|
||||
|
||||
override fun equals(other: Any?): Boolean = origin == other
|
||||
@ -61,35 +57,25 @@ public operator fun <T : Any> Matrix<T>.plus(newFeatures: Collection<MatrixFeatu
|
||||
MatrixWrapper(this, newFeatures.toSet())
|
||||
}
|
||||
|
||||
/**
|
||||
* Build a square matrix from given elements.
|
||||
*/
|
||||
public fun <T : Any> Structure2D.Companion.square(vararg elements: T): Matrix<T> {
|
||||
val size: Int = sqrt(elements.size.toDouble()).toInt()
|
||||
require(size * size == elements.size) { "The number of elements ${elements.size} is not a full square" }
|
||||
val buffer = elements.asBuffer()
|
||||
return BufferMatrix(size, size, buffer)
|
||||
}
|
||||
|
||||
/**
|
||||
* Diagonal matrix of ones. The matrix is virtual no actual matrix is created
|
||||
*/
|
||||
public fun <T : Any, A> GenericMatrixContext<T, A, *>.one(
|
||||
public fun <T : Any> LinearSpace<T, Ring<T>>.one(
|
||||
rows: Int,
|
||||
columns: Int,
|
||||
): Matrix<T> where A : Ring<T>, A : ScaleOperations<T> = VirtualMatrix(rows, columns) { i, j ->
|
||||
if (i == j) elementContext.one else elementContext.zero
|
||||
): Matrix<T> = VirtualMatrix(rows, columns) { i, j ->
|
||||
if (i == j) elementAlgebra.one else elementAlgebra.zero
|
||||
} + UnitFeature
|
||||
|
||||
|
||||
/**
|
||||
* A virtual matrix of zeroes
|
||||
*/
|
||||
public fun <T : Any, A> GenericMatrixContext<T, A, *>.zero(
|
||||
public fun <T : Any> LinearSpace<T, Ring<T>>.zero(
|
||||
rows: Int,
|
||||
columns: Int,
|
||||
): Matrix<T> where A : Ring<T>, A : ScaleOperations<T> = VirtualMatrix(rows, columns) { _, _ ->
|
||||
elementContext.zero
|
||||
): Matrix<T> = VirtualMatrix(rows, columns) { _, _ ->
|
||||
elementAlgebra.zero
|
||||
} + ZeroFeature
|
||||
|
||||
public class TransposedFeature<T : Any>(public val original: Matrix<T>) : MatrixFeature
|
||||
|
@ -1,34 +1,37 @@
|
||||
package space.kscience.kmath.linear
|
||||
|
||||
import space.kscience.kmath.operations.RealField
|
||||
import space.kscience.kmath.operations.ScaleOperations
|
||||
import space.kscience.kmath.structures.RealBuffer
|
||||
|
||||
public object RealMatrixContext : MatrixContext<Double, BufferMatrix<Double>>, ScaleOperations<Matrix<Double>> {
|
||||
public object RealLinearSpace : LinearSpace<Double, RealField>, ScaleOperations<Matrix<Double>> {
|
||||
|
||||
public override fun produce(
|
||||
override val elementAlgebra: RealField get() = RealField
|
||||
|
||||
public override fun buildMatrix(
|
||||
rows: Int,
|
||||
columns: Int,
|
||||
initializer: (i: Int, j: Int) -> Double,
|
||||
): BufferMatrix<Double> {
|
||||
): Matrix<Double> {
|
||||
val buffer = RealBuffer(rows * columns) { offset -> initializer(offset / columns, offset % columns) }
|
||||
return BufferMatrix(rows, columns, buffer)
|
||||
}
|
||||
|
||||
public fun Matrix<Double>.toBufferMatrix(): BufferMatrix<Double> = if (this is BufferMatrix) this else {
|
||||
produce(rowNum, colNum) { i, j -> get(i, j) }
|
||||
buildMatrix(rowNum, colNum) { i, j -> get(i, j) }
|
||||
}
|
||||
|
||||
public fun one(rows: Int, columns: Int): Matrix<Double> = VirtualMatrix(rows, columns) { i, j ->
|
||||
if (i == j) 1.0 else 0.0
|
||||
} + DiagonalFeature
|
||||
|
||||
override fun Matrix<Double>.unaryMinus(): Matrix<Double> = produce(rowNum, colNum) { i, j -> -get(i, j) }
|
||||
override fun Matrix<Double>.unaryMinus(): Matrix<Double> = buildMatrix(rowNum, colNum) { i, j -> -get(i, j) }
|
||||
|
||||
public override infix fun Matrix<Double>.dot(other: Matrix<Double>): BufferMatrix<Double> {
|
||||
require(colNum == other.rowNum) { "Matrix dot operation dimension mismatch: ($rowNum, $colNum) x (${other.rowNum}, ${other.colNum})" }
|
||||
val bufferMatrix = toBufferMatrix()
|
||||
val otherBufferMatrix = other.toBufferMatrix()
|
||||
return produce(rowNum, other.colNum) { i, j ->
|
||||
return buildMatrix(rowNum, other.colNum) { i, j ->
|
||||
var res = 0.0
|
||||
for (l in 0 until colNum) {
|
||||
res += bufferMatrix[i, l] * otherBufferMatrix[l, j]
|
||||
@ -54,14 +57,14 @@ public object RealMatrixContext : MatrixContext<Double, BufferMatrix<Double>>, S
|
||||
require(a.colNum == b.colNum) { "Column number mismatch in matrix addition. Left side: ${a.colNum}, right side: ${b.colNum}" }
|
||||
val aBufferMatrix = a.toBufferMatrix()
|
||||
val bBufferMatrix = b.toBufferMatrix()
|
||||
return produce(a.rowNum, a.colNum) { i, j ->
|
||||
return buildMatrix(a.rowNum, a.colNum) { i, j ->
|
||||
aBufferMatrix[i, j] + bBufferMatrix[i, j]
|
||||
}
|
||||
}
|
||||
|
||||
override fun scale(a: Matrix<Double>, value: Double): BufferMatrix<Double> {
|
||||
val bufferMatrix = a.toBufferMatrix()
|
||||
return produce(a.rowNum, a.colNum) { i, j -> bufferMatrix[i, j] * value }
|
||||
return buildMatrix(a.rowNum, a.colNum) { i, j -> bufferMatrix[i, j] * value }
|
||||
}
|
||||
|
||||
override fun Matrix<Double>.times(value: Double): BufferMatrix<Double> = scale(this, value)
|
||||
@ -82,4 +85,4 @@ public object RealMatrixContext : MatrixContext<Double, BufferMatrix<Double>>, S
|
||||
/**
|
||||
* Partially optimized real-valued matrix
|
||||
*/
|
||||
public val MatrixContext.Companion.real: RealMatrixContext get() = RealMatrixContext
|
||||
public val LinearSpace.Companion.real: RealLinearSpace get() = RealLinearSpace
|
@ -1,72 +0,0 @@
|
||||
package space.kscience.kmath.linear
|
||||
|
||||
import space.kscience.kmath.operations.Group
|
||||
import space.kscience.kmath.operations.RealField
|
||||
import space.kscience.kmath.operations.ScaleOperations
|
||||
import space.kscience.kmath.operations.invoke
|
||||
import space.kscience.kmath.structures.Buffer
|
||||
import space.kscience.kmath.structures.BufferFactory
|
||||
|
||||
/**
|
||||
* A linear space for vectors.
|
||||
* Could be used on any point-like structure
|
||||
*/
|
||||
public interface VectorSpace<T : Any, A> : Group<Point<T>>, ScaleOperations<Point<T>>
|
||||
where A : Group<T>, A : ScaleOperations<T> {
|
||||
public val size: Int
|
||||
public val algebra: A
|
||||
override val zero: Point<T> get() = produce { algebra.zero }
|
||||
|
||||
public fun produce(initializer: A.(Int) -> T): Point<T>
|
||||
|
||||
override fun add(a: Point<T>, b: Point<T>): Point<T> = produce { algebra { a[it] + b[it] } }
|
||||
|
||||
override fun scale(a: Point<T>, value: Double): Point<T> = produce { algebra.scale(a[it], value) }
|
||||
|
||||
override fun Point<T>.unaryMinus(): Point<T> = produce { -get(it) }
|
||||
|
||||
//TODO add basis
|
||||
|
||||
public companion object {
|
||||
private val realSpaceCache: MutableMap<Int, BufferVectorSpace<Double, RealField>> = hashMapOf()
|
||||
|
||||
/**
|
||||
* Non-boxing double vector space
|
||||
*/
|
||||
public fun real(size: Int): BufferVectorSpace<Double, RealField> = realSpaceCache.getOrPut(size) {
|
||||
BufferVectorSpace(
|
||||
size,
|
||||
RealField,
|
||||
Buffer.Companion::auto
|
||||
)
|
||||
}
|
||||
|
||||
/**
|
||||
* A structured vector space with custom buffer
|
||||
*/
|
||||
public fun <T : Any, A> buffered(
|
||||
size: Int,
|
||||
space: A,
|
||||
bufferFactory: BufferFactory<T> = Buffer.Companion::boxing,
|
||||
): BufferVectorSpace<T, A> where A : Group<T>, A : ScaleOperations<T> =
|
||||
BufferVectorSpace(size, space, bufferFactory)
|
||||
|
||||
/**
|
||||
* Automatic buffered vector, unboxed if it is possible
|
||||
*/
|
||||
public inline fun <reified T : Any, A> auto(
|
||||
size: Int,
|
||||
space: A,
|
||||
): VectorSpace<T, A> where A : Group<T>, A : ScaleOperations<T> =
|
||||
buffered(size, space, Buffer.Companion::auto)
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
public class BufferVectorSpace<T : Any, A>(
|
||||
override val size: Int,
|
||||
override val algebra: A,
|
||||
public val bufferFactory: BufferFactory<T>,
|
||||
) : VectorSpace<T, A> where A : Group<T>, A : ScaleOperations<T> {
|
||||
override fun produce(initializer: A.(Int) -> T): Buffer<T> = bufferFactory(size) { algebra.initializer(it) }
|
||||
}
|
@ -31,6 +31,4 @@ public class VirtualMatrix<T : Any>(
|
||||
result = 31 * result + generator.hashCode()
|
||||
return result
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
@ -74,7 +74,7 @@ public interface NDStructure<T> {
|
||||
*
|
||||
* Strides should be reused if possible.
|
||||
*/
|
||||
public fun <T> build(
|
||||
public fun <T> buffered(
|
||||
strides: Strides,
|
||||
bufferFactory: BufferFactory<T> = Buffer.Companion::boxing,
|
||||
initializer: (IntArray) -> T,
|
||||
@ -94,11 +94,11 @@ public interface NDStructure<T> {
|
||||
crossinline initializer: (IntArray) -> T,
|
||||
): NDBuffer<T> = NDBuffer(strides, Buffer.auto(type, strides.linearSize) { i -> initializer(strides.index(i)) })
|
||||
|
||||
public fun <T> build(
|
||||
public fun <T> buffered(
|
||||
shape: IntArray,
|
||||
bufferFactory: BufferFactory<T> = Buffer.Companion::boxing,
|
||||
initializer: (IntArray) -> T,
|
||||
): NDBuffer<T> = build(DefaultStrides(shape), bufferFactory, initializer)
|
||||
): NDBuffer<T> = buffered(DefaultStrides(shape), bufferFactory, initializer)
|
||||
|
||||
public inline fun <reified T : Any> auto(
|
||||
shape: IntArray,
|
||||
|
@ -46,7 +46,11 @@ private inline class Buffer1DWrapper<T>(val buffer: Buffer<T>) : Structure1D<T>
|
||||
* Represent a [NDStructure] as [Structure1D]. Throw error in case of dimension mismatch
|
||||
*/
|
||||
public fun <T> NDStructure<T>.as1D(): Structure1D<T> = if (shape.size == 1) {
|
||||
if (this is NDBuffer) Buffer1DWrapper(this.buffer) else Structure1DWrapper(this)
|
||||
when (this) {
|
||||
is Structure1DWrapper -> this
|
||||
is NDBuffer -> Buffer1DWrapper(this.buffer)
|
||||
else -> Structure1DWrapper(this)
|
||||
}
|
||||
} else
|
||||
error("Can't create 1d-structure from ${shape.size}d-structure")
|
||||
|
||||
|
@ -1,7 +1,5 @@
|
||||
package space.kscience.kmath.nd
|
||||
|
||||
import space.kscience.kmath.linear.BufferMatrix
|
||||
import space.kscience.kmath.linear.RealMatrixContext
|
||||
import space.kscience.kmath.structures.Buffer
|
||||
import space.kscience.kmath.structures.VirtualBuffer
|
||||
|
||||
@ -54,15 +52,7 @@ public interface Structure2D<T> : NDStructure<T> {
|
||||
for (j in 0 until colNum) yield(intArrayOf(i, j) to get(i, j))
|
||||
}
|
||||
|
||||
public companion object {
|
||||
public inline fun real(
|
||||
rows: Int,
|
||||
columns: Int,
|
||||
crossinline init: (i: Int, j: Int) -> Double,
|
||||
): BufferMatrix<Double> = RealMatrixContext.produce(rows,columns) { i, j ->
|
||||
init(i, j)
|
||||
}
|
||||
}
|
||||
public companion object
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -25,7 +25,7 @@ internal class BufferAccessor2D<T : Any>(
|
||||
public fun create(mat: Structure2D<T>): MutableBuffer<T> = create { i, j -> mat[i, j] }
|
||||
|
||||
//TODO optimize wrapper
|
||||
public fun MutableBuffer<T>.collect(): Structure2D<T> = NDStructure.build(
|
||||
public fun MutableBuffer<T>.collect(): Structure2D<T> = NDStructure.buffered(
|
||||
DefaultStrides(intArrayOf(rowNum, colNum)),
|
||||
factory
|
||||
) { (i, j) ->
|
||||
|
@ -10,7 +10,7 @@ import kotlin.test.assertEquals
|
||||
class MatrixTest {
|
||||
@Test
|
||||
fun testTranspose() {
|
||||
val matrix = MatrixContext.real.one(3, 3)
|
||||
val matrix = LinearSpace.real.one(3, 3)
|
||||
val transposed = matrix.transpose()
|
||||
assertEquals(matrix, transposed)
|
||||
}
|
||||
@ -39,7 +39,7 @@ class MatrixTest {
|
||||
infix fun Matrix<Double>.pow(power: Int): Matrix<Double> {
|
||||
var res = this
|
||||
repeat(power - 1) {
|
||||
res = RealMatrixContext.invoke { res dot this@pow }
|
||||
res = RealLinearSpace.invoke { res dot this@pow }
|
||||
}
|
||||
return res
|
||||
}
|
||||
@ -52,7 +52,7 @@ class MatrixTest {
|
||||
val firstMatrix = NDStructure.auto(2, 3) { (i, j) -> (i + j).toDouble() }.as2D()
|
||||
val secondMatrix = NDStructure.auto(3, 2) { (i, j) -> (i + j).toDouble() }.as2D()
|
||||
|
||||
MatrixContext.real.run {
|
||||
LinearSpace.real.run {
|
||||
// val firstMatrix = produce(2, 3) { i, j -> (i + j).toDouble() }
|
||||
// val secondMatrix = produce(3, 2) { i, j -> (i + j).toDouble() }
|
||||
val result = firstMatrix dot secondMatrix
|
||||
|
@ -7,8 +7,8 @@ class RealLUSolverTest {
|
||||
|
||||
@Test
|
||||
fun testInvertOne() {
|
||||
val matrix = MatrixContext.real.one(2, 2)
|
||||
val inverted = MatrixContext.real.inverseWithLup(matrix)
|
||||
val matrix = LinearSpace.real.one(2, 2)
|
||||
val inverted = LinearSpace.real.inverseWithLup(matrix)
|
||||
assertEquals(matrix, inverted)
|
||||
}
|
||||
|
||||
@ -19,7 +19,7 @@ class RealLUSolverTest {
|
||||
1.0, 3.0
|
||||
)
|
||||
|
||||
MatrixContext.real.run {
|
||||
LinearSpace.real.run {
|
||||
val lup = lup(matrix)
|
||||
|
||||
//Check determinant
|
||||
@ -36,7 +36,7 @@ class RealLUSolverTest {
|
||||
1.0, 3.0
|
||||
)
|
||||
|
||||
val inverted = MatrixContext.real.inverseWithLup(matrix)
|
||||
val inverted = LinearSpace.real.inverseWithLup(matrix)
|
||||
|
||||
val expected = Matrix.square(
|
||||
0.375, -0.125,
|
||||
|
@ -77,7 +77,7 @@ public inline class DPointWrapper<T, D : Dimension>(public val point: Point<T>)
|
||||
/**
|
||||
* Basic operations on dimension-safe matrices. Operates on [Matrix]
|
||||
*/
|
||||
public inline class DMatrixContext<T : Any>(public val context: MatrixContext<T, Matrix<T>>) {
|
||||
public inline class DMatrixContext<T : Any>(public val context: LinearSpace<T, Matrix<T>>) {
|
||||
public inline fun <reified R : Dimension, reified C : Dimension> Matrix<T>.coerce(): DMatrix<T, R, C> {
|
||||
require(rowNum == Dimension.dim<R>().toInt()) {
|
||||
"Row number mismatch: expected ${Dimension.dim<R>()} but found $rowNum"
|
||||
@ -96,14 +96,14 @@ public inline class DMatrixContext<T : Any>(public val context: MatrixContext<T,
|
||||
public inline fun <reified R : Dimension, reified C : Dimension> produce(noinline initializer: (i: Int, j: Int) -> T): DMatrix<T, R, C> {
|
||||
val rows = Dimension.dim<R>()
|
||||
val cols = Dimension.dim<C>()
|
||||
return context.produce(rows.toInt(), cols.toInt(), initializer).coerce<R, C>()
|
||||
return context.buildMatrix(rows.toInt(), cols.toInt(), initializer).coerce<R, C>()
|
||||
}
|
||||
|
||||
public inline fun <reified D : Dimension> point(noinline initializer: (Int) -> T): DPoint<T, D> {
|
||||
val size = Dimension.dim<D>()
|
||||
|
||||
return DPoint.coerceUnsafe(
|
||||
context.point(
|
||||
context.buildVector(
|
||||
size.toInt(),
|
||||
initializer
|
||||
)
|
||||
@ -136,7 +136,7 @@ public inline class DMatrixContext<T : Any>(public val context: MatrixContext<T,
|
||||
context { (this@transpose as Matrix<T>).transpose() }.coerce()
|
||||
|
||||
public companion object {
|
||||
public val real: DMatrixContext<Double> = DMatrixContext(MatrixContext.real)
|
||||
public val real: DMatrixContext<Double> = DMatrixContext(LinearSpace.real)
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -11,7 +11,7 @@ import space.kscience.kmath.operations.ScaleOperations
|
||||
*
|
||||
* @author Iaroslav Postovalov
|
||||
*/
|
||||
public object EjmlMatrixContext : MatrixContext<Double, EjmlMatrix>, ScaleOperations<Matrix<Double>> {
|
||||
public object EjmlLinearSpace : LinearSpace<Double, EjmlMatrix>, ScaleOperations<Matrix<Double>> {
|
||||
|
||||
/**
|
||||
* Converts this matrix to EJML one.
|
||||
@ -19,7 +19,7 @@ public object EjmlMatrixContext : MatrixContext<Double, EjmlMatrix>, ScaleOperat
|
||||
@OptIn(UnstableKMathAPI::class)
|
||||
public fun Matrix<Double>.toEjml(): EjmlMatrix = when (val matrix = origin) {
|
||||
is EjmlMatrix -> matrix
|
||||
else -> produce(rowNum, colNum) { i, j -> get(i, j) }
|
||||
else -> buildMatrix(rowNum, colNum) { i, j -> get(i, j) }
|
||||
}
|
||||
|
||||
/**
|
||||
@ -30,14 +30,14 @@ public object EjmlMatrixContext : MatrixContext<Double, EjmlMatrix>, ScaleOperat
|
||||
(0 until it.numRows()).forEach { row -> it[row, 0] = get(row) }
|
||||
})
|
||||
|
||||
override fun produce(rows: Int, columns: Int, initializer: (i: Int, j: Int) -> Double): EjmlMatrix =
|
||||
override fun buildMatrix(rows: Int, columns: Int, initializer: (i: Int, j: Int) -> Double): EjmlMatrix =
|
||||
EjmlMatrix(SimpleMatrix(rows, columns).also {
|
||||
(0 until rows).forEach { row ->
|
||||
(0 until columns).forEach { col -> it[row, col] = initializer(row, col) }
|
||||
}
|
||||
})
|
||||
|
||||
override fun point(size: Int, initializer: (Int) -> Double): Point<Double> =
|
||||
override fun buildVector(size: Int, initializer: (Int) -> Double): Point<Double> =
|
||||
EjmlVector(SimpleMatrix(size, 1).also {
|
||||
(0 until it.numRows()).forEach { row -> it[row, 0] = initializer(row) }
|
||||
})
|
||||
@ -58,7 +58,7 @@ public object EjmlMatrixContext : MatrixContext<Double, EjmlMatrix>, ScaleOperat
|
||||
EjmlMatrix(toEjml().origin - b.toEjml().origin)
|
||||
|
||||
public override fun scale(a: Matrix<Double>, value: Double): EjmlMatrix =
|
||||
produce(a.rowNum, a.colNum) { i, j -> a[i, j] * value }
|
||||
buildMatrix(a.rowNum, a.colNum) { i, j -> a[i, j] * value }
|
||||
|
||||
public override operator fun Matrix<Double>.times(value: Double): EjmlMatrix =
|
||||
EjmlMatrix(toEjml().origin.scale(value))
|
||||
@ -72,7 +72,7 @@ public object EjmlMatrixContext : MatrixContext<Double, EjmlMatrix>, ScaleOperat
|
||||
* @return the solution for 'x' that is n by p.
|
||||
* @author Iaroslav Postovalov
|
||||
*/
|
||||
public fun EjmlMatrixContext.solve(a: Matrix<Double>, b: Matrix<Double>): EjmlMatrix =
|
||||
public fun EjmlLinearSpace.solve(a: Matrix<Double>, b: Matrix<Double>): EjmlMatrix =
|
||||
EjmlMatrix(a.toEjml().origin.solve(b.toEjml().origin))
|
||||
|
||||
/**
|
||||
@ -83,10 +83,10 @@ public fun EjmlMatrixContext.solve(a: Matrix<Double>, b: Matrix<Double>): EjmlMa
|
||||
* @return the solution for 'x' that is n by p.
|
||||
* @author Iaroslav Postovalov
|
||||
*/
|
||||
public fun EjmlMatrixContext.solve(a: Matrix<Double>, b: Point<Double>): EjmlVector =
|
||||
public fun EjmlLinearSpace.solve(a: Matrix<Double>, b: Point<Double>): EjmlVector =
|
||||
EjmlVector(a.toEjml().origin.solve(b.toEjml().origin))
|
||||
|
||||
@OptIn(UnstableKMathAPI::class)
|
||||
public fun EjmlMatrix.inverted(): EjmlMatrix = getFeature<InverseMatrixFeature<Double>>()!!.inverse as EjmlMatrix
|
||||
|
||||
public fun EjmlMatrixContext.inverse(matrix: Matrix<Double>): Matrix<Double> = matrix.toEjml().inverted()
|
||||
public fun EjmlLinearSpace.inverse(matrix: Matrix<Double>): Matrix<Double> = matrix.toEjml().inverted()
|
@ -22,14 +22,14 @@ import kotlin.math.pow
|
||||
public typealias RealMatrix = Matrix<Double>
|
||||
|
||||
public fun realMatrix(rowNum: Int, colNum: Int, initializer: (i: Int, j: Int) -> Double): RealMatrix =
|
||||
MatrixContext.real.produce(rowNum, colNum, initializer)
|
||||
LinearSpace.real.buildMatrix(rowNum, colNum, initializer)
|
||||
|
||||
public fun Array<DoubleArray>.toMatrix(): RealMatrix {
|
||||
return MatrixContext.real.produce(size, this[0].size) { row, col -> this[row][col] }
|
||||
return LinearSpace.real.buildMatrix(size, this[0].size) { row, col -> this[row][col] }
|
||||
}
|
||||
|
||||
public fun Sequence<DoubleArray>.toMatrix(): RealMatrix = toList().let {
|
||||
MatrixContext.real.produce(it.size, it[0].size) { row, col -> it[row][col] }
|
||||
LinearSpace.real.buildMatrix(it.size, it[0].size) { row, col -> it[row][col] }
|
||||
}
|
||||
|
||||
public fun RealMatrix.repeatStackVertical(n: Int): RealMatrix =
|
||||
@ -42,37 +42,37 @@ public fun RealMatrix.repeatStackVertical(n: Int): RealMatrix =
|
||||
*/
|
||||
|
||||
public operator fun RealMatrix.times(double: Double): RealMatrix =
|
||||
MatrixContext.real.produce(rowNum, colNum) { row, col ->
|
||||
LinearSpace.real.buildMatrix(rowNum, colNum) { row, col ->
|
||||
this[row, col] * double
|
||||
}
|
||||
|
||||
public operator fun RealMatrix.plus(double: Double): RealMatrix =
|
||||
MatrixContext.real.produce(rowNum, colNum) { row, col ->
|
||||
LinearSpace.real.buildMatrix(rowNum, colNum) { row, col ->
|
||||
this[row, col] + double
|
||||
}
|
||||
|
||||
public operator fun RealMatrix.minus(double: Double): RealMatrix =
|
||||
MatrixContext.real.produce(rowNum, colNum) { row, col ->
|
||||
LinearSpace.real.buildMatrix(rowNum, colNum) { row, col ->
|
||||
this[row, col] - double
|
||||
}
|
||||
|
||||
public operator fun RealMatrix.div(double: Double): RealMatrix =
|
||||
MatrixContext.real.produce(rowNum, colNum) { row, col ->
|
||||
LinearSpace.real.buildMatrix(rowNum, colNum) { row, col ->
|
||||
this[row, col] / double
|
||||
}
|
||||
|
||||
public operator fun Double.times(matrix: RealMatrix): RealMatrix =
|
||||
MatrixContext.real.produce(matrix.rowNum, matrix.colNum) { row, col ->
|
||||
LinearSpace.real.buildMatrix(matrix.rowNum, matrix.colNum) { row, col ->
|
||||
this * matrix[row, col]
|
||||
}
|
||||
|
||||
public operator fun Double.plus(matrix: RealMatrix): RealMatrix =
|
||||
MatrixContext.real.produce(matrix.rowNum, matrix.colNum) { row, col ->
|
||||
LinearSpace.real.buildMatrix(matrix.rowNum, matrix.colNum) { row, col ->
|
||||
this + matrix[row, col]
|
||||
}
|
||||
|
||||
public operator fun Double.minus(matrix: RealMatrix): RealMatrix =
|
||||
MatrixContext.real.produce(matrix.rowNum, matrix.colNum) { row, col ->
|
||||
LinearSpace.real.buildMatrix(matrix.rowNum, matrix.colNum) { row, col ->
|
||||
this - matrix[row, col]
|
||||
}
|
||||
|
||||
@ -87,20 +87,20 @@ public operator fun Double.minus(matrix: RealMatrix): RealMatrix =
|
||||
|
||||
@UnstableKMathAPI
|
||||
public operator fun RealMatrix.times(other: RealMatrix): RealMatrix =
|
||||
MatrixContext.real.produce(rowNum, colNum) { row, col -> this[row, col] * other[row, col] }
|
||||
LinearSpace.real.buildMatrix(rowNum, colNum) { row, col -> this[row, col] * other[row, col] }
|
||||
|
||||
public operator fun RealMatrix.plus(other: RealMatrix): RealMatrix =
|
||||
MatrixContext.real.add(this, other)
|
||||
LinearSpace.real.add(this, other)
|
||||
|
||||
public operator fun RealMatrix.minus(other: RealMatrix): RealMatrix =
|
||||
MatrixContext.real.produce(rowNum, colNum) { row, col -> this[row, col] - other[row, col] }
|
||||
LinearSpace.real.buildMatrix(rowNum, colNum) { row, col -> this[row, col] - other[row, col] }
|
||||
|
||||
/*
|
||||
* Operations on columns
|
||||
*/
|
||||
|
||||
public inline fun RealMatrix.appendColumn(crossinline mapper: (Buffer<Double>) -> Double): RealMatrix =
|
||||
MatrixContext.real.produce(rowNum, colNum + 1) { row, col ->
|
||||
LinearSpace.real.buildMatrix(rowNum, colNum + 1) { row, col ->
|
||||
if (col < colNum)
|
||||
this[row, col]
|
||||
else
|
||||
@ -108,7 +108,7 @@ public inline fun RealMatrix.appendColumn(crossinline mapper: (Buffer<Double>) -
|
||||
}
|
||||
|
||||
public fun RealMatrix.extractColumns(columnRange: IntRange): RealMatrix =
|
||||
MatrixContext.real.produce(rowNum, columnRange.count()) { row, col ->
|
||||
LinearSpace.real.buildMatrix(rowNum, columnRange.count()) { row, col ->
|
||||
this[row, columnRange.first + col]
|
||||
}
|
||||
|
||||
@ -141,14 +141,14 @@ public fun RealMatrix.max(): Double? = elements().map { (_, value) -> value }.ma
|
||||
public fun RealMatrix.average(): Double = elements().map { (_, value) -> value }.average()
|
||||
|
||||
public inline fun RealMatrix.map(crossinline transform: (Double) -> Double): RealMatrix =
|
||||
MatrixContext.real.produce(rowNum, colNum) { i, j ->
|
||||
LinearSpace.real.buildMatrix(rowNum, colNum) { i, j ->
|
||||
transform(get(i, j))
|
||||
}
|
||||
|
||||
/**
|
||||
* Inverse a square real matrix using LUP decomposition
|
||||
*/
|
||||
public fun RealMatrix.inverseWithLup(): RealMatrix = MatrixContext.real.inverseWithLup(this)
|
||||
public fun RealMatrix.inverseWithLup(): RealMatrix = LinearSpace.real.inverseWithLup(this)
|
||||
|
||||
//extended operations
|
||||
|
||||
|
@ -1,6 +1,6 @@
|
||||
package kaceince.kmath.real
|
||||
|
||||
import space.kscience.kmath.linear.MatrixContext
|
||||
import space.kscience.kmath.linear.LinearSpace
|
||||
import space.kscience.kmath.linear.asMatrix
|
||||
import space.kscience.kmath.linear.real
|
||||
import space.kscience.kmath.linear.transpose
|
||||
@ -32,7 +32,7 @@ internal class RealVectorTest {
|
||||
val vector2 = Buffer.real(5) { 5 - it.toDouble() }
|
||||
val matrix1 = vector1.asMatrix()
|
||||
val matrix2 = vector2.asMatrix().transpose()
|
||||
val product = MatrixContext.real { matrix1 dot matrix2 }
|
||||
val product = LinearSpace.real { matrix1 dot matrix2 }
|
||||
assertEquals(5.0, product[1, 0])
|
||||
assertEquals(6.0, product[2, 2])
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user