Adjust benchmarks.
This commit is contained in:
parent
89eebbecb7
commit
974d73e25c
@ -11,7 +11,10 @@ import org.openjdk.jmh.annotations.Benchmark
|
||||
import org.openjdk.jmh.annotations.Scope
|
||||
import org.openjdk.jmh.annotations.State
|
||||
import space.kscience.kmath.misc.UnstableKMathAPI
|
||||
import space.kscience.kmath.operations.*
|
||||
import space.kscience.kmath.operations.BigIntField
|
||||
import space.kscience.kmath.operations.JBigIntegerField
|
||||
import space.kscience.kmath.operations.invoke
|
||||
import space.kscience.kmath.operations.parseBigInteger
|
||||
import java.math.BigInteger
|
||||
|
||||
|
||||
@ -19,12 +22,24 @@ import java.math.BigInteger
|
||||
@State(Scope.Benchmark)
|
||||
internal class BigIntBenchmark {
|
||||
|
||||
val kmSmallNumber = BigIntField.number(100)
|
||||
val jvmSmallNumber = JBigIntegerField.number(100)
|
||||
val kmNumber = BigIntField.number(Int.MAX_VALUE)
|
||||
val jvmNumber = JBigIntegerField.number(Int.MAX_VALUE)
|
||||
val largeKmNumber = BigIntField { number(11).pow(100_000U) }
|
||||
val largeJvmNumber: BigInteger = JBigIntegerField { number(11).pow(100_000) }
|
||||
val kmLargeNumber = BigIntField { number(11).pow(100_000U) }
|
||||
val jvmLargeNumber: BigInteger = JBigIntegerField { number(11).pow(100_000) }
|
||||
val bigExponent = 50_000
|
||||
|
||||
@Benchmark
|
||||
fun kmSmallAdd(blackhole: Blackhole) = BigIntField {
|
||||
blackhole.consume(kmSmallNumber + kmSmallNumber + kmSmallNumber)
|
||||
}
|
||||
|
||||
@Benchmark
|
||||
fun jvmSmallAdd(blackhole: Blackhole) = JBigIntegerField {
|
||||
blackhole.consume(jvmSmallNumber + jvmSmallNumber + jvmSmallNumber)
|
||||
}
|
||||
|
||||
@Benchmark
|
||||
fun kmAdd(blackhole: Blackhole) = BigIntField {
|
||||
blackhole.consume(kmNumber + kmNumber + kmNumber)
|
||||
@ -37,12 +52,12 @@ internal class BigIntBenchmark {
|
||||
|
||||
@Benchmark
|
||||
fun kmAddLarge(blackhole: Blackhole) = BigIntField {
|
||||
blackhole.consume(largeKmNumber + largeKmNumber + largeKmNumber)
|
||||
blackhole.consume(kmLargeNumber + kmLargeNumber + kmLargeNumber)
|
||||
}
|
||||
|
||||
@Benchmark
|
||||
fun jvmAddLarge(blackhole: Blackhole) = JBigIntegerField {
|
||||
blackhole.consume(largeJvmNumber + largeJvmNumber + largeJvmNumber)
|
||||
blackhole.consume(jvmLargeNumber + jvmLargeNumber + jvmLargeNumber)
|
||||
}
|
||||
|
||||
@Benchmark
|
||||
@ -52,7 +67,7 @@ internal class BigIntBenchmark {
|
||||
|
||||
@Benchmark
|
||||
fun kmMultiplyLarge(blackhole: Blackhole) = BigIntField {
|
||||
blackhole.consume(largeKmNumber*largeKmNumber)
|
||||
blackhole.consume(kmLargeNumber*kmLargeNumber)
|
||||
}
|
||||
|
||||
@Benchmark
|
||||
@ -62,7 +77,7 @@ internal class BigIntBenchmark {
|
||||
|
||||
@Benchmark
|
||||
fun jvmMultiplyLarge(blackhole: Blackhole) = JBigIntegerField {
|
||||
blackhole.consume(largeJvmNumber*largeJvmNumber)
|
||||
blackhole.consume(jvmLargeNumber*jvmLargeNumber)
|
||||
}
|
||||
|
||||
@Benchmark
|
||||
|
@ -11,7 +11,6 @@ import kotlinx.benchmark.Scope
|
||||
import kotlinx.benchmark.State
|
||||
import space.kscience.kmath.commons.linear.CMLinearSpace
|
||||
import space.kscience.kmath.ejml.EjmlLinearSpaceDDRM
|
||||
import space.kscience.kmath.linear.LinearSpace
|
||||
import space.kscience.kmath.linear.invoke
|
||||
import space.kscience.kmath.linear.linearSpace
|
||||
import space.kscience.kmath.operations.DoubleField
|
||||
@ -26,8 +25,12 @@ internal class DotBenchmark {
|
||||
const val dim = 1000
|
||||
|
||||
//creating invertible matrix
|
||||
val matrix1 = LinearSpace.double.buildMatrix(dim, dim) { i, j -> if (i <= j) random.nextDouble() else 0.0 }
|
||||
val matrix2 = LinearSpace.double.buildMatrix(dim, dim) { i, j -> if (i <= j) random.nextDouble() else 0.0 }
|
||||
val matrix1 = Double.algebra.linearSpace.buildMatrix(dim, dim) { i, j ->
|
||||
if (i <= j) random.nextDouble() else 0.0
|
||||
}
|
||||
val matrix2 = Double.algebra.linearSpace.buildMatrix(dim, dim) { i, j ->
|
||||
if (i <= j) random.nextDouble() else 0.0
|
||||
}
|
||||
|
||||
val cmMatrix1 = CMLinearSpace { matrix1.toCM() }
|
||||
val cmMatrix2 = CMLinearSpace { matrix2.toCM() }
|
||||
@ -37,37 +40,32 @@ internal class DotBenchmark {
|
||||
}
|
||||
|
||||
@Benchmark
|
||||
fun cmDot(blackhole: Blackhole) {
|
||||
CMLinearSpace {
|
||||
blackhole.consume(cmMatrix1 dot cmMatrix2)
|
||||
}
|
||||
fun cmDotWithConversion(blackhole: Blackhole) = CMLinearSpace {
|
||||
blackhole.consume(matrix1 dot matrix2)
|
||||
}
|
||||
|
||||
@Benchmark
|
||||
fun ejmlDot(blackhole: Blackhole) {
|
||||
EjmlLinearSpaceDDRM {
|
||||
blackhole.consume(ejmlMatrix1 dot ejmlMatrix2)
|
||||
}
|
||||
fun cmDot(blackhole: Blackhole) = CMLinearSpace {
|
||||
blackhole.consume(cmMatrix1 dot cmMatrix2)
|
||||
}
|
||||
|
||||
@Benchmark
|
||||
fun ejmlDotWithConversion(blackhole: Blackhole) {
|
||||
EjmlLinearSpaceDDRM {
|
||||
blackhole.consume(matrix1 dot matrix2)
|
||||
}
|
||||
fun ejmlDot(blackhole: Blackhole) = EjmlLinearSpaceDDRM {
|
||||
blackhole.consume(ejmlMatrix1 dot ejmlMatrix2)
|
||||
}
|
||||
|
||||
@Benchmark
|
||||
fun bufferedDot(blackhole: Blackhole) {
|
||||
with(DoubleField.linearSpace(Buffer.Companion::auto)) {
|
||||
blackhole.consume(matrix1 dot matrix2)
|
||||
}
|
||||
fun ejmlDotWithConversion(blackhole: Blackhole) = EjmlLinearSpaceDDRM {
|
||||
blackhole.consume(matrix1 dot matrix2)
|
||||
}
|
||||
|
||||
@Benchmark
|
||||
fun doubleDot(blackhole: Blackhole) {
|
||||
with(Double.algebra.linearSpace) {
|
||||
blackhole.consume(matrix1 dot matrix2)
|
||||
}
|
||||
fun bufferedDot(blackhole: Blackhole) = with(DoubleField.linearSpace(Buffer.Companion::auto)) {
|
||||
blackhole.consume(matrix1 dot matrix2)
|
||||
}
|
||||
|
||||
@Benchmark
|
||||
fun doubleDot(blackhole: Blackhole) = with(Double.algebra.linearSpace) {
|
||||
blackhole.consume(matrix1 dot matrix2)
|
||||
}
|
||||
}
|
||||
|
@ -0,0 +1,34 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the LICENSE file.
|
||||
*/
|
||||
|
||||
package space.kscience.kmath.linear
|
||||
|
||||
import space.kscience.kmath.operations.algebra
|
||||
import kotlin.random.Random
|
||||
import kotlin.system.measureTimeMillis
|
||||
|
||||
fun main() {
|
||||
val random = Random(12224)
|
||||
val dim = 1000
|
||||
|
||||
//creating invertible matrix
|
||||
val matrix1 = Double.algebra.linearSpace.buildMatrix(dim, dim) { i, j ->
|
||||
if (i <= j) random.nextDouble() else 0.0
|
||||
}
|
||||
val matrix2 = Double.algebra.linearSpace.buildMatrix(dim, dim) { i, j ->
|
||||
if (i <= j) random.nextDouble() else 0.0
|
||||
}
|
||||
|
||||
val time = measureTimeMillis {
|
||||
with(Double.algebra.linearSpace) {
|
||||
repeat(10) {
|
||||
val res = matrix1 dot matrix2
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
println(time)
|
||||
|
||||
}
|
Loading…
Reference in New Issue
Block a user