From 963e14b00a273c55049f66dcb96a93e1c158d7c4 Mon Sep 17 00:00:00 2001 From: Margarita Lashina Date: Tue, 6 Jun 2023 20:07:42 +0300 Subject: [PATCH] move enums --- kmath-symja/build.gradle.kts | 2 +- .../tensors/api/LinearOpsTensorAlgebra.kt | 18 ----------- .../core/LevenbergMarquardtAlgorithm.kt | 32 +++++++++++++++---- 3 files changed, 26 insertions(+), 26 deletions(-) diff --git a/kmath-symja/build.gradle.kts b/kmath-symja/build.gradle.kts index 8741de2ae..a996f3bec 100644 --- a/kmath-symja/build.gradle.kts +++ b/kmath-symja/build.gradle.kts @@ -10,7 +10,7 @@ plugins { description = "Symja integration module" dependencies { - api("org.matheclipse:matheclipse-core:2.0.0-SNAPSHOT") { + api("org.matheclipse:matheclipse-core:2.0.0") { // Incorrect transitive dependencies exclude("org.apfloat", "apfloat") exclude("org.hipparchus", "hipparchus-clustering") diff --git a/kmath-tensors/src/commonMain/kotlin/space/kscience/kmath/tensors/api/LinearOpsTensorAlgebra.kt b/kmath-tensors/src/commonMain/kotlin/space/kscience/kmath/tensors/api/LinearOpsTensorAlgebra.kt index 6b3859316..f2c7f1821 100644 --- a/kmath-tensors/src/commonMain/kotlin/space/kscience/kmath/tensors/api/LinearOpsTensorAlgebra.kt +++ b/kmath-tensors/src/commonMain/kotlin/space/kscience/kmath/tensors/api/LinearOpsTensorAlgebra.kt @@ -111,22 +111,4 @@ public interface LinearOpsTensorAlgebra> : TensorPartialDivision * @return the square matrix x which is the solution of the equation. */ public fun solve(a: MutableStructure2D, b: MutableStructure2D): MutableStructure2D - - public enum class TypeOfConvergence{ - inRHS_JtWdy, - inParameters, - inReducedChi_square, - noConvergence - } - - public data class LMResultInfo ( - var iterations:Int, - var func_calls: Int, - var example_number: Int, - var result_chi_sq: Double, - var result_lambda: Double, - var result_parameters: MutableStructure2D, - var typeOfConvergence: TypeOfConvergence, - var epsilon: Double - ) } diff --git a/kmath-tensors/src/commonMain/kotlin/space/kscience/kmath/tensors/core/LevenbergMarquardtAlgorithm.kt b/kmath-tensors/src/commonMain/kotlin/space/kscience/kmath/tensors/core/LevenbergMarquardtAlgorithm.kt index f4b50626a..4323a86a3 100644 --- a/kmath-tensors/src/commonMain/kotlin/space/kscience/kmath/tensors/core/LevenbergMarquardtAlgorithm.kt +++ b/kmath-tensors/src/commonMain/kotlin/space/kscience/kmath/tensors/core/LevenbergMarquardtAlgorithm.kt @@ -19,14 +19,32 @@ import kotlin.math.min import kotlin.math.pow import kotlin.reflect.KFunction3 +public enum class TypeOfConvergence{ + inRHS_JtWdy, + inParameters, + inReducedChi_square, + noConvergence +} + +public data class LMResultInfo ( + var iterations:Int, + var func_calls: Int, + var example_number: Int, + var result_chi_sq: Double, + var result_lambda: Double, + var result_parameters: MutableStructure2D, + var typeOfConvergence: TypeOfConvergence, + var epsilon: Double +) + public fun DoubleTensorAlgebra.lm( func: KFunction3, MutableStructure2D, LMSettings, MutableStructure2D>, p_input: MutableStructure2D, t_input: MutableStructure2D, y_dat_input: MutableStructure2D, weight_input: MutableStructure2D, dp_input: MutableStructure2D, p_min_input: MutableStructure2D, p_max_input: MutableStructure2D, - c_input: MutableStructure2D, opts_input: DoubleArray, nargin: Int, example_number: Int): LinearOpsTensorAlgebra.LMResultInfo { + c_input: MutableStructure2D, opts_input: DoubleArray, nargin: Int, example_number: Int): LMResultInfo { - val resultInfo = LinearOpsTensorAlgebra.LMResultInfo(0, 0, example_number, 0.0, - 0.0, p_input, LinearOpsTensorAlgebra.TypeOfConvergence.noConvergence, 0.0) + val resultInfo = LMResultInfo(0, 0, example_number, 0.0, + 0.0, p_input, TypeOfConvergence.noConvergence, 0.0) val eps:Double = 2.2204e-16 @@ -303,27 +321,27 @@ public fun DoubleTensorAlgebra.lm( if (abs(JtWdy).max()!! < epsilon_1 && settings.iteration > 2) { // println(" **** Convergence in r.h.s. (\"JtWdy\") ****") // println(" **** epsilon_1 = $epsilon_1") - resultInfo.typeOfConvergence = LinearOpsTensorAlgebra.TypeOfConvergence.inRHS_JtWdy + resultInfo.typeOfConvergence = TypeOfConvergence.inRHS_JtWdy resultInfo.epsilon = epsilon_1 stop = true } if ((abs(h.as2D()).div(abs(p) + 1e-12)).max() < epsilon_2 && settings.iteration > 2) { // println(" **** Convergence in Parameters ****") // println(" **** epsilon_2 = $epsilon_2") - resultInfo.typeOfConvergence = LinearOpsTensorAlgebra.TypeOfConvergence.inParameters + resultInfo.typeOfConvergence = TypeOfConvergence.inParameters resultInfo.epsilon = epsilon_2 stop = true } if (X2 / DoF < epsilon_3 && settings.iteration > 2) { // println(" **** Convergence in reduced Chi-square **** ") // println(" **** epsilon_3 = $epsilon_3") - resultInfo.typeOfConvergence = LinearOpsTensorAlgebra.TypeOfConvergence.inReducedChi_square + resultInfo.typeOfConvergence = TypeOfConvergence.inReducedChi_square resultInfo.epsilon = epsilon_3 stop = true } if (settings.iteration == MaxIter) { // println(" !! Maximum Number of Iterations Reached Without Convergence !!") - resultInfo.typeOfConvergence = LinearOpsTensorAlgebra.TypeOfConvergence.noConvergence + resultInfo.typeOfConvergence = TypeOfConvergence.noConvergence resultInfo.epsilon = 0.0 stop = true }