Revise benchmarks code
Revise benchmarks code by using kotlinx.benchmark type aliases (it will simplify creating multiplatform benchmarks), using Blackhole class to consume results, moving all the constant state to private companion objects
This commit is contained in:
parent
fe9334d570
commit
940718098d
@ -1,34 +1,38 @@
|
||||
package space.kscience.kmath.benchmarks
|
||||
|
||||
import org.openjdk.jmh.annotations.Benchmark
|
||||
import org.openjdk.jmh.annotations.Scope
|
||||
import org.openjdk.jmh.annotations.State
|
||||
import kotlinx.benchmark.Benchmark
|
||||
import kotlinx.benchmark.Blackhole
|
||||
import kotlinx.benchmark.Scope
|
||||
import kotlinx.benchmark.State
|
||||
import java.nio.IntBuffer
|
||||
|
||||
@State(Scope.Benchmark)
|
||||
internal class ArrayBenchmark {
|
||||
@Benchmark
|
||||
fun benchmarkArrayRead() {
|
||||
fun benchmarkArrayRead(blackhole: Blackhole) {
|
||||
var res = 0
|
||||
for (i in 1..space.kscience.kmath.benchmarks.ArrayBenchmark.Companion.size) res += space.kscience.kmath.benchmarks.ArrayBenchmark.Companion.array[space.kscience.kmath.benchmarks.ArrayBenchmark.Companion.size - i]
|
||||
for (i in 1..size) res += array[size - i]
|
||||
blackhole.consume(res)
|
||||
}
|
||||
|
||||
@Benchmark
|
||||
fun benchmarkBufferRead() {
|
||||
fun benchmarkBufferRead(blackhole: Blackhole) {
|
||||
var res = 0
|
||||
for (i in 1..space.kscience.kmath.benchmarks.ArrayBenchmark.Companion.size) res += space.kscience.kmath.benchmarks.ArrayBenchmark.Companion.arrayBuffer[space.kscience.kmath.benchmarks.ArrayBenchmark.Companion.size - i]
|
||||
for (i in 1..size) res += arrayBuffer[size - i]
|
||||
blackhole.consume(res)
|
||||
}
|
||||
|
||||
@Benchmark
|
||||
fun nativeBufferRead() {
|
||||
fun nativeBufferRead(blackhole: Blackhole) {
|
||||
var res = 0
|
||||
for (i in 1..space.kscience.kmath.benchmarks.ArrayBenchmark.Companion.size) res += space.kscience.kmath.benchmarks.ArrayBenchmark.Companion.nativeBuffer[space.kscience.kmath.benchmarks.ArrayBenchmark.Companion.size - i]
|
||||
for (i in 1..size) res += nativeBuffer[size - i]
|
||||
blackhole.consume(res)
|
||||
}
|
||||
|
||||
companion object {
|
||||
const val size: Int = 1000
|
||||
val array: IntArray = IntArray(space.kscience.kmath.benchmarks.ArrayBenchmark.Companion.size) { it }
|
||||
val arrayBuffer: IntBuffer = IntBuffer.wrap(space.kscience.kmath.benchmarks.ArrayBenchmark.Companion.array)
|
||||
val nativeBuffer: IntBuffer = IntBuffer.allocate(space.kscience.kmath.benchmarks.ArrayBenchmark.Companion.size).also { for (i in 0 until space.kscience.kmath.benchmarks.ArrayBenchmark.Companion.size) it.put(i, i) }
|
||||
private companion object {
|
||||
private const val size = 1000
|
||||
private val array = IntArray(size) { it }
|
||||
private val arrayBuffer = IntBuffer.wrap(array)
|
||||
private val nativeBuffer = IntBuffer.allocate(size).also { for (i in 0 until size) it.put(i, i) }
|
||||
}
|
||||
}
|
||||
|
@ -1,8 +1,8 @@
|
||||
package space.kscience.kmath.benchmarks
|
||||
|
||||
import org.openjdk.jmh.annotations.Benchmark
|
||||
import org.openjdk.jmh.annotations.Scope
|
||||
import org.openjdk.jmh.annotations.State
|
||||
import kotlinx.benchmark.Benchmark
|
||||
import kotlinx.benchmark.Scope
|
||||
import kotlinx.benchmark.State
|
||||
import space.kscience.kmath.complex.Complex
|
||||
import space.kscience.kmath.complex.complex
|
||||
import space.kscience.kmath.structures.MutableBuffer
|
||||
@ -28,7 +28,7 @@ internal class BufferBenchmark {
|
||||
}
|
||||
}
|
||||
|
||||
companion object {
|
||||
const val size: Int = 100
|
||||
private companion object {
|
||||
private const val size = 100
|
||||
}
|
||||
}
|
||||
|
@ -1,8 +1,9 @@
|
||||
package space.kscience.kmath.benchmarks
|
||||
|
||||
import kotlinx.benchmark.Benchmark
|
||||
import org.openjdk.jmh.annotations.Scope
|
||||
import org.openjdk.jmh.annotations.State
|
||||
import kotlinx.benchmark.Blackhole
|
||||
import kotlinx.benchmark.Scope
|
||||
import kotlinx.benchmark.State
|
||||
import space.kscience.kmath.commons.linear.CMMatrixContext
|
||||
import space.kscience.kmath.ejml.EjmlMatrixContext
|
||||
import space.kscience.kmath.linear.BufferMatrixContext
|
||||
@ -17,7 +18,7 @@ import kotlin.random.Random
|
||||
internal class DotBenchmark {
|
||||
companion object {
|
||||
val random = Random(12224)
|
||||
val dim = 1000
|
||||
const val dim = 1000
|
||||
|
||||
//creating invertible matrix
|
||||
val matrix1 = Matrix.real(dim, dim) { i, j -> if (i <= j) random.nextDouble() else 0.0 }
|
||||
@ -31,37 +32,37 @@ internal class DotBenchmark {
|
||||
}
|
||||
|
||||
@Benchmark
|
||||
fun cmDot() {
|
||||
fun cmDot(blackhole: Blackhole) {
|
||||
CMMatrixContext {
|
||||
cmMatrix1 dot cmMatrix2
|
||||
blackhole.consume(cmMatrix1 dot cmMatrix2)
|
||||
}
|
||||
}
|
||||
|
||||
@Benchmark
|
||||
fun ejmlDot() {
|
||||
fun ejmlDot(blackhole: Blackhole) {
|
||||
EjmlMatrixContext {
|
||||
ejmlMatrix1 dot ejmlMatrix2
|
||||
blackhole.consume(ejmlMatrix1 dot ejmlMatrix2)
|
||||
}
|
||||
}
|
||||
|
||||
@Benchmark
|
||||
fun ejmlDotWithConversion() {
|
||||
fun ejmlDotWithConversion(blackhole: Blackhole) {
|
||||
EjmlMatrixContext {
|
||||
matrix1 dot matrix2
|
||||
blackhole.consume(matrix1 dot matrix2)
|
||||
}
|
||||
}
|
||||
|
||||
@Benchmark
|
||||
fun bufferedDot() {
|
||||
fun bufferedDot(blackhole: Blackhole) {
|
||||
BufferMatrixContext(RealField, Buffer.Companion::real).invoke {
|
||||
matrix1 dot matrix2
|
||||
blackhole.consume(matrix1 dot matrix2)
|
||||
}
|
||||
}
|
||||
|
||||
@Benchmark
|
||||
fun realDot() {
|
||||
fun realDot(blackhole: Blackhole) {
|
||||
RealMatrixContext {
|
||||
matrix1 dot matrix2
|
||||
blackhole.consume(matrix1 dot matrix2)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -1,64 +1,62 @@
|
||||
package space.kscience.kmath.benchmarks
|
||||
|
||||
import org.openjdk.jmh.annotations.Benchmark
|
||||
import org.openjdk.jmh.annotations.Scope
|
||||
import org.openjdk.jmh.annotations.State
|
||||
import kotlinx.benchmark.Benchmark
|
||||
import kotlinx.benchmark.Blackhole
|
||||
import kotlinx.benchmark.Scope
|
||||
import kotlinx.benchmark.State
|
||||
import space.kscience.kmath.asm.compile
|
||||
import space.kscience.kmath.ast.mstInField
|
||||
import space.kscience.kmath.expressions.Expression
|
||||
import space.kscience.kmath.expressions.expressionInField
|
||||
import space.kscience.kmath.expressions.invoke
|
||||
import space.kscience.kmath.expressions.symbol
|
||||
import space.kscience.kmath.operations.Field
|
||||
import space.kscience.kmath.operations.RealField
|
||||
import space.kscience.kmath.operations.bindSymbol
|
||||
import kotlin.random.Random
|
||||
|
||||
@State(Scope.Benchmark)
|
||||
internal class ExpressionsInterpretersBenchmark {
|
||||
private val algebra: Field<Double> = RealField
|
||||
val x by symbol
|
||||
|
||||
@Benchmark
|
||||
fun functionalExpression() {
|
||||
fun functionalExpression(blackhole: Blackhole) {
|
||||
val expr = algebra.expressionInField {
|
||||
val x = bindSymbol(x)
|
||||
x * const(2.0) + const(2.0) / x - const(16.0)
|
||||
}
|
||||
|
||||
invokeAndSum(expr)
|
||||
invokeAndSum(expr, blackhole)
|
||||
}
|
||||
|
||||
@Benchmark
|
||||
fun mstExpression() {
|
||||
fun mstExpression(blackhole: Blackhole) {
|
||||
val expr = algebra.mstInField {
|
||||
val x = bindSymbol(x)
|
||||
x * 2.0 + 2.0 / x - 16.0
|
||||
}
|
||||
|
||||
invokeAndSum(expr)
|
||||
invokeAndSum(expr, blackhole)
|
||||
}
|
||||
|
||||
@Benchmark
|
||||
fun asmExpression() {
|
||||
fun asmExpression(blackhole: Blackhole) {
|
||||
val expr = algebra.mstInField {
|
||||
val x = bindSymbol(x)
|
||||
x * 2.0 + 2.0 / x - 16.0
|
||||
}.compile()
|
||||
|
||||
invokeAndSum(expr)
|
||||
invokeAndSum(expr, blackhole)
|
||||
}
|
||||
|
||||
@Benchmark
|
||||
fun rawExpression() {
|
||||
fun rawExpression(blackhole: Blackhole) {
|
||||
val expr = Expression<Double> { args ->
|
||||
val x = args.getValue(x)
|
||||
x * 2.0 + 2.0 / x - 16.0
|
||||
}
|
||||
invokeAndSum(expr)
|
||||
|
||||
invokeAndSum(expr, blackhole)
|
||||
}
|
||||
|
||||
private fun invokeAndSum(expr: Expression<Double>) {
|
||||
private fun invokeAndSum(expr: Expression<Double>, blackhole: Blackhole) {
|
||||
val random = Random(0)
|
||||
var sum = 0.0
|
||||
|
||||
@ -66,6 +64,11 @@ internal class ExpressionsInterpretersBenchmark {
|
||||
sum += expr(x to random.nextDouble())
|
||||
}
|
||||
|
||||
println(sum)
|
||||
blackhole.consume(sum)
|
||||
}
|
||||
|
||||
private companion object {
|
||||
private val algebra = RealField
|
||||
private val x by symbol
|
||||
}
|
||||
}
|
||||
|
@ -1,8 +1,9 @@
|
||||
package space.kscience.kmath.benchmarks
|
||||
|
||||
import kotlinx.benchmark.Benchmark
|
||||
import org.openjdk.jmh.annotations.Scope
|
||||
import org.openjdk.jmh.annotations.State
|
||||
import kotlinx.benchmark.Blackhole
|
||||
import kotlinx.benchmark.Scope
|
||||
import kotlinx.benchmark.State
|
||||
import space.kscience.kmath.commons.linear.CMMatrixContext
|
||||
import space.kscience.kmath.commons.linear.CMMatrixContext.dot
|
||||
import space.kscience.kmath.commons.linear.inverse
|
||||
@ -18,7 +19,7 @@ import kotlin.random.Random
|
||||
internal class LinearAlgebraBenchmark {
|
||||
companion object {
|
||||
val random = Random(1224)
|
||||
val dim = 100
|
||||
const val dim = 100
|
||||
|
||||
//creating invertible matrix
|
||||
val u = Matrix.real(dim, dim) { i, j -> if (i <= j) random.nextDouble() else 0.0 }
|
||||
@ -27,21 +28,21 @@ internal class LinearAlgebraBenchmark {
|
||||
}
|
||||
|
||||
@Benchmark
|
||||
fun kmathLupInversion() {
|
||||
MatrixContext.real.inverseWithLup(matrix)
|
||||
fun kmathLupInversion(blackhole: Blackhole) {
|
||||
blackhole.consume(MatrixContext.real.inverseWithLup(matrix))
|
||||
}
|
||||
|
||||
@Benchmark
|
||||
fun cmLUPInversion() {
|
||||
fun cmLUPInversion(blackhole: Blackhole) {
|
||||
with(CMMatrixContext) {
|
||||
inverse(matrix)
|
||||
blackhole.consume(inverse(matrix))
|
||||
}
|
||||
}
|
||||
|
||||
@Benchmark
|
||||
fun ejmlInverse() {
|
||||
fun ejmlInverse(blackhole: Blackhole) {
|
||||
with(EjmlMatrixContext) {
|
||||
inverse(matrix)
|
||||
blackhole.consume(inverse(matrix))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -1,8 +1,9 @@
|
||||
package space.kscience.kmath.benchmarks
|
||||
|
||||
import org.openjdk.jmh.annotations.Benchmark
|
||||
import org.openjdk.jmh.annotations.Scope
|
||||
import org.openjdk.jmh.annotations.State
|
||||
import kotlinx.benchmark.Benchmark
|
||||
import kotlinx.benchmark.Blackhole
|
||||
import kotlinx.benchmark.Scope
|
||||
import kotlinx.benchmark.State
|
||||
import space.kscience.kmath.nd.*
|
||||
import space.kscience.kmath.operations.RealField
|
||||
import space.kscience.kmath.structures.Buffer
|
||||
@ -10,35 +11,38 @@ import space.kscience.kmath.structures.Buffer
|
||||
@State(Scope.Benchmark)
|
||||
internal class NDFieldBenchmark {
|
||||
@Benchmark
|
||||
fun autoFieldAdd() {
|
||||
fun autoFieldAdd(blackhole: Blackhole) {
|
||||
with(autoField) {
|
||||
var res: NDStructure<Double> = one
|
||||
repeat(n) { res += one }
|
||||
blackhole.consume(res)
|
||||
}
|
||||
}
|
||||
|
||||
@Benchmark
|
||||
fun specializedFieldAdd() {
|
||||
fun specializedFieldAdd(blackhole: Blackhole) {
|
||||
with(specializedField) {
|
||||
var res: NDStructure<Double> = one
|
||||
repeat(n) { res += 1.0 }
|
||||
blackhole.consume(res)
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@Benchmark
|
||||
fun boxingFieldAdd() {
|
||||
fun boxingFieldAdd(blackhole: Blackhole) {
|
||||
with(genericField) {
|
||||
var res: NDStructure<Double> = one
|
||||
repeat(n) { res += 1.0 }
|
||||
blackhole.consume(res)
|
||||
}
|
||||
}
|
||||
|
||||
companion object {
|
||||
const val dim: Int = 1000
|
||||
const val n: Int = 100
|
||||
val autoField = NDAlgebra.auto(RealField, dim, dim)
|
||||
val specializedField: RealNDField = NDAlgebra.real(dim, dim)
|
||||
val genericField = NDAlgebra.field(RealField, Buffer.Companion::boxing, dim, dim)
|
||||
private companion object {
|
||||
private const val dim = 1000
|
||||
private const val n = 100
|
||||
private val autoField = NDAlgebra.auto(RealField, dim, dim)
|
||||
private val specializedField = NDAlgebra.real(dim, dim)
|
||||
private val genericField = NDAlgebra.field(RealField, Buffer.Companion::boxing, dim, dim)
|
||||
}
|
||||
}
|
||||
|
@ -1,51 +1,61 @@
|
||||
package space.kscience.kmath.benchmarks
|
||||
|
||||
import kotlinx.benchmark.Benchmark
|
||||
import kotlinx.benchmark.Blackhole
|
||||
import kotlinx.benchmark.Scope
|
||||
import kotlinx.benchmark.State
|
||||
import org.jetbrains.bio.viktor.F64Array
|
||||
import org.openjdk.jmh.annotations.Benchmark
|
||||
import org.openjdk.jmh.annotations.Scope
|
||||
import org.openjdk.jmh.annotations.State
|
||||
import space.kscience.kmath.nd.*
|
||||
import space.kscience.kmath.nd.NDAlgebra
|
||||
import space.kscience.kmath.nd.NDStructure
|
||||
import space.kscience.kmath.nd.auto
|
||||
import space.kscience.kmath.nd.real
|
||||
import space.kscience.kmath.operations.RealField
|
||||
import space.kscience.kmath.viktor.ViktorNDField
|
||||
|
||||
@State(Scope.Benchmark)
|
||||
internal class ViktorBenchmark {
|
||||
final val dim: Int = 1000
|
||||
final val n: Int = 100
|
||||
|
||||
// automatically build context most suited for given type.
|
||||
final val autoField: NDField<Double, RealField> = NDAlgebra.auto(RealField, dim, dim)
|
||||
final val realField: RealNDField = NDAlgebra.real(dim, dim)
|
||||
final val viktorField: ViktorNDField = ViktorNDField(dim, dim)
|
||||
|
||||
@Benchmark
|
||||
fun automaticFieldAddition() {
|
||||
fun automaticFieldAddition(blackhole: Blackhole) {
|
||||
with(autoField) {
|
||||
var res: NDStructure<Double> = one
|
||||
repeat(n) { res += 1.0 }
|
||||
blackhole.consume(res)
|
||||
}
|
||||
}
|
||||
|
||||
@Benchmark
|
||||
fun realFieldAddition() {
|
||||
fun realFieldAddition(blackhole: Blackhole) {
|
||||
with(realField) {
|
||||
var res: NDStructure<Double> = one
|
||||
repeat(n) { res += 1.0 }
|
||||
blackhole.consume(res)
|
||||
}
|
||||
}
|
||||
|
||||
@Benchmark
|
||||
fun viktorFieldAddition() {
|
||||
fun viktorFieldAddition(blackhole: Blackhole) {
|
||||
with(viktorField) {
|
||||
var res = one
|
||||
repeat(n) { res += 1.0 }
|
||||
blackhole.consume(res)
|
||||
}
|
||||
}
|
||||
|
||||
@Benchmark
|
||||
fun rawViktor() {
|
||||
fun rawViktor(blackhole: Blackhole) {
|
||||
val one = F64Array.full(init = 1.0, shape = intArrayOf(dim, dim))
|
||||
var res = one
|
||||
repeat(n) { res = res + one }
|
||||
blackhole.consume(res)
|
||||
}
|
||||
|
||||
private companion object {
|
||||
private const val dim = 1000
|
||||
private const val n = 100
|
||||
|
||||
// automatically build context most suited for given type.
|
||||
private val autoField = NDAlgebra.auto(RealField, dim, dim)
|
||||
private val realField = NDAlgebra.real(dim, dim)
|
||||
private val viktorField = ViktorNDField(dim, dim)
|
||||
}
|
||||
}
|
||||
|
@ -1,48 +1,53 @@
|
||||
package space.kscience.kmath.benchmarks
|
||||
|
||||
import kotlinx.benchmark.Benchmark
|
||||
import kotlinx.benchmark.Blackhole
|
||||
import kotlinx.benchmark.Scope
|
||||
import kotlinx.benchmark.State
|
||||
import org.jetbrains.bio.viktor.F64Array
|
||||
import org.openjdk.jmh.annotations.Benchmark
|
||||
import org.openjdk.jmh.annotations.Scope
|
||||
import org.openjdk.jmh.annotations.State
|
||||
import space.kscience.kmath.nd.*
|
||||
import space.kscience.kmath.nd.NDAlgebra
|
||||
import space.kscience.kmath.nd.auto
|
||||
import space.kscience.kmath.nd.real
|
||||
import space.kscience.kmath.operations.RealField
|
||||
import space.kscience.kmath.viktor.ViktorNDField
|
||||
|
||||
@State(Scope.Benchmark)
|
||||
internal class ViktorLogBenchmark {
|
||||
final val dim: Int = 1000
|
||||
final val n: Int = 100
|
||||
|
||||
// automatically build context most suited for given type.
|
||||
final val autoField: NDField<Double, RealField> = NDAlgebra.auto(RealField, dim, dim)
|
||||
final val realField: RealNDField = NDAlgebra.real(dim, dim)
|
||||
final val viktorField: ViktorNDField = ViktorNDField(intArrayOf(dim, dim))
|
||||
|
||||
|
||||
@Benchmark
|
||||
fun realFieldLog() {
|
||||
fun realFieldLog(blackhole: Blackhole) {
|
||||
with(realField) {
|
||||
val fortyTwo = produce { 42.0 }
|
||||
var res = one
|
||||
repeat(n) { res = ln(fortyTwo) }
|
||||
blackhole.consume(res)
|
||||
}
|
||||
}
|
||||
|
||||
@Benchmark
|
||||
fun viktorFieldLog() {
|
||||
fun viktorFieldLog(blackhole: Blackhole) {
|
||||
with(viktorField) {
|
||||
val fortyTwo = produce { 42.0 }
|
||||
var res = one
|
||||
repeat(n) { res = ln(fortyTwo) }
|
||||
blackhole.consume(res)
|
||||
}
|
||||
}
|
||||
|
||||
@Benchmark
|
||||
fun rawViktorLog() {
|
||||
fun rawViktorLog(blackhole: Blackhole) {
|
||||
val fortyTwo = F64Array.full(dim, dim, init = 42.0)
|
||||
var res: F64Array
|
||||
repeat(n) {
|
||||
res = fortyTwo.log()
|
||||
}
|
||||
lateinit var res: F64Array
|
||||
repeat(n) { res = fortyTwo.log() }
|
||||
blackhole.consume(res)
|
||||
}
|
||||
|
||||
private companion object {
|
||||
private const val dim = 1000
|
||||
private const val n = 100
|
||||
|
||||
// automatically build context most suited for given type.
|
||||
private val autoField = NDAlgebra.auto(RealField, dim, dim)
|
||||
private val realField = NDAlgebra.real(dim, dim)
|
||||
private val viktorField = ViktorNDField(intArrayOf(dim, dim))
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user