Variance test post-merge cleanup
This commit is contained in:
parent
4dbcaca87c
commit
8eb25596a0
@ -1,3 +1,3 @@
|
||||
job("Build") {
|
||||
gradlew("openjdk:11", "build")
|
||||
job("Build and run tests") {
|
||||
gradlew("amazoncorretto:17-alpine", "build")
|
||||
}
|
@ -15,7 +15,7 @@ allprojects {
|
||||
}
|
||||
|
||||
group = "space.kscience"
|
||||
version = "0.3.1-dev-RC"
|
||||
version = "0.3.1"
|
||||
}
|
||||
|
||||
subprojects {
|
||||
|
@ -19,9 +19,9 @@ import org.ejml.sparse.csc.factory.DecompositionFactory_DSCC
|
||||
import org.ejml.sparse.csc.factory.DecompositionFactory_FSCC
|
||||
import org.ejml.sparse.csc.factory.LinearSolverFactory_DSCC
|
||||
import org.ejml.sparse.csc.factory.LinearSolverFactory_FSCC
|
||||
import space.kscience.kmath.UnstableKMathAPI
|
||||
import space.kscience.kmath.linear.*
|
||||
import space.kscience.kmath.linear.Matrix
|
||||
import space.kscience.kmath.UnstableKMathAPI
|
||||
import space.kscience.kmath.nd.StructureFeature
|
||||
import space.kscience.kmath.operations.DoubleField
|
||||
import space.kscience.kmath.operations.FloatField
|
||||
|
@ -6,6 +6,7 @@
|
||||
package space.kscience.kmath.distributions
|
||||
|
||||
import space.kscience.kmath.chains.Chain
|
||||
import space.kscience.kmath.operations.DoubleField.pow
|
||||
import space.kscience.kmath.random.RandomGenerator
|
||||
import space.kscience.kmath.samplers.GaussianSampler
|
||||
import space.kscience.kmath.samplers.InternalErf
|
||||
@ -34,8 +35,23 @@ public class NormalDistribution(public val sampler: GaussianSampler) : Distribut
|
||||
}
|
||||
}
|
||||
|
||||
private companion object {
|
||||
public companion object {
|
||||
private val SQRT2 = sqrt(2.0)
|
||||
|
||||
/**
|
||||
* Zelen & Severo approximation for the standard normal CDF.
|
||||
* The error upper boundary by 7.5 * 10e-8.
|
||||
*/
|
||||
public fun zSNormalCDF(x: Double): Double {
|
||||
val t = 1 / (1 + 0.2316419 * abs(x))
|
||||
val sum = 0.319381530 * t -
|
||||
0.356563782 * t.pow(2) +
|
||||
1.781477937 * t.pow(3) -
|
||||
1.821255978 * t.pow(4) +
|
||||
1.330274429 * t.pow(5)
|
||||
val temp = sum * exp(-abs(x).pow(2) / 2) / (2 * PI).pow(0.5)
|
||||
return if (x >= 0) 1 - temp else temp
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1,24 +0,0 @@
|
||||
/*
|
||||
* Copyright 2018-2023 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
package space.kscience.kmath.distributions
|
||||
|
||||
import space.kscience.kmath.operations.DoubleField.pow
|
||||
import kotlin.math.PI
|
||||
import kotlin.math.absoluteValue
|
||||
import kotlin.math.exp
|
||||
|
||||
|
||||
/**
|
||||
* Zelen & Severo approximation for the standard normal CDF.
|
||||
* The error is bounded by 7.5 * 10e-8.
|
||||
* */
|
||||
public fun zSNormalCDF(x: Double): Double {
|
||||
|
||||
val t = 1 / (1 + 0.2316419 * x.absoluteValue)
|
||||
val summ = 0.319381530*t - 0.356563782*t.pow(2) + 1.781477937*t.pow(3) - 1.821255978*t.pow(4) + 1.330274429*t.pow(5)
|
||||
val temp = summ * exp(-x.absoluteValue.pow(2) / 2) / (2 * PI).pow(0.5)
|
||||
return if (x >= 0) 1 - temp else temp
|
||||
}
|
@ -5,7 +5,7 @@
|
||||
|
||||
package space.kscience.kmath.series
|
||||
|
||||
import space.kscience.kmath.distributions.zSNormalCDF
|
||||
import space.kscience.kmath.distributions.NormalDistribution
|
||||
import space.kscience.kmath.operations.DoubleField.pow
|
||||
import space.kscience.kmath.operations.fold
|
||||
import kotlin.math.absoluteValue
|
||||
@ -14,8 +14,12 @@ import kotlin.math.absoluteValue
|
||||
/**
|
||||
* Container class for Variance Ratio Test result:
|
||||
* ratio itself, corresponding Z-score, also it's p-value
|
||||
* **/
|
||||
public data class VarianceRatioTestResult(val varianceRatio: Double=1.0, val zScore: Double=0.0, val pValue: Double=0.5)
|
||||
*/
|
||||
public data class VarianceRatioTestResult(
|
||||
val varianceRatio: Double = 1.0,
|
||||
val zScore: Double = 0.0,
|
||||
val pValue: Double = 0.5,
|
||||
)
|
||||
|
||||
|
||||
/**
|
||||
@ -23,8 +27,14 @@ public data class VarianceRatioTestResult(val varianceRatio: Double=1.0, val zSc
|
||||
* under Homoscedastic or Heteroscedstic assumptions
|
||||
* with two-sided p-value test
|
||||
* https://ssrn.com/abstract=346975
|
||||
* **/
|
||||
public fun SeriesAlgebra<Double, *, *, *>.varianceRatioTest(series: Series<Double>, shift: Int, homoscedastic: Boolean=true): VarianceRatioTestResult {
|
||||
*
|
||||
* @author https://github.com/mrFendel
|
||||
*/
|
||||
public fun SeriesAlgebra<Double, *, *, *>.varianceRatioTest(
|
||||
series: Series<Double>,
|
||||
shift: Int,
|
||||
homoscedastic: Boolean = true,
|
||||
): VarianceRatioTestResult {
|
||||
|
||||
require(shift > 1) { "Shift must be greater than one" }
|
||||
require(shift < series.size) { "Shift must be smaller than sample size" }
|
||||
@ -63,7 +73,7 @@ public fun SeriesAlgebra<Double, *, *, *>.varianceRatioTest(series: Series<Doubl
|
||||
}
|
||||
|
||||
val zScore = (varianceRatio - 1) / phi.pow(0.5)
|
||||
val pValue = 2*(1 - zSNormalCDF(zScore.absoluteValue))
|
||||
val pValue = 2 * (1 - NormalDistribution.zSNormalCDF(zScore.absoluteValue))
|
||||
return VarianceRatioTestResult(varianceRatio, zScore, pValue)
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user