added new svd algorithm (Golub Kahan) and used by default for svd

This commit is contained in:
Margarita Lashina 2023-05-04 00:44:18 +03:00
parent 19c1af1874
commit 89a5522144
4 changed files with 329 additions and 6 deletions

View File

@ -19,9 +19,9 @@ import org.ejml.sparse.csc.factory.DecompositionFactory_DSCC
import org.ejml.sparse.csc.factory.DecompositionFactory_FSCC
import org.ejml.sparse.csc.factory.LinearSolverFactory_DSCC
import org.ejml.sparse.csc.factory.LinearSolverFactory_FSCC
import space.kscience.kmath.UnstableKMathAPI
import space.kscience.kmath.linear.*
import space.kscience.kmath.linear.Matrix
import space.kscience.kmath.UnstableKMathAPI
import space.kscience.kmath.nd.StructureFeature
import space.kscience.kmath.operations.DoubleField
import space.kscience.kmath.operations.FloatField

View File

@ -706,7 +706,7 @@ public open class DoubleTensorAlgebra :
override fun svd(
structureND: StructureND<Double>,
): Triple<StructureND<Double>, StructureND<Double>, StructureND<Double>> =
svd(structureND = structureND, epsilon = 1e-10)
svdGolubKahan(structureND = structureND, epsilon = 1e-10)
override fun symEig(structureND: StructureND<Double>): Pair<DoubleTensor, DoubleTensor> =
symEigJacobi(structureND = structureND, maxIteration = 50, epsilon = 1e-15)

View File

@ -7,10 +7,7 @@ package space.kscience.kmath.tensors.core.internal
import space.kscience.kmath.nd.*
import space.kscience.kmath.operations.invoke
import space.kscience.kmath.structures.DoubleBuffer
import space.kscience.kmath.structures.IntBuffer
import space.kscience.kmath.structures.asBuffer
import space.kscience.kmath.structures.indices
import space.kscience.kmath.structures.*
import space.kscience.kmath.tensors.core.*
import space.kscience.kmath.tensors.core.BroadcastDoubleTensorAlgebra.div
import space.kscience.kmath.tensors.core.BroadcastDoubleTensorAlgebra.dot
@ -316,6 +313,302 @@ internal fun DoubleTensorAlgebra.svdHelper(
}
}
private fun pythag(a: Double, b: Double): Double {
val at: Double = abs(a)
val bt: Double = abs(b)
val ct: Double
val result: Double
if (at > bt) {
ct = bt / at
result = at * sqrt(1.0 + ct * ct)
} else if (bt > 0.0) {
ct = at / bt
result = bt * sqrt(1.0 + ct * ct)
} else result = 0.0
return result
}
private fun SIGN(a: Double, b: Double): Double {
if (b >= 0.0)
return abs(a)
else
return -abs(a)
}
internal fun MutableStructure2D<Double>.svdGolubKahanHelper(u: MutableStructure2D<Double>, w: BufferedTensor<Double>,
v: MutableStructure2D<Double>, iterations: Int, epsilon: Double) {
val shape = this.shape
val m = shape.component1()
val n = shape.component2()
var f = 0.0
val rv1 = DoubleArray(n)
var s = 0.0
var scale = 0.0
var anorm = 0.0
var g = 0.0
var l = 0
val wStart = 0
val wBuffer = w.source
for (i in 0 until n) {
/* left-hand reduction */
l = i + 1
rv1[i] = scale * g
g = 0.0
s = 0.0
scale = 0.0
if (i < m) {
for (k in i until m) {
scale += abs(this[k, i]);
}
if (abs(scale) > epsilon) {
for (k in i until m) {
this[k, i] = (this[k, i] / scale)
s += this[k, i] * this[k, i]
}
f = this[i, i]
if (f >= 0) {
g = (-1) * abs(sqrt(s))
} else {
g = abs(sqrt(s))
}
val h = f * g - s
this[i, i] = f - g
if (i != n - 1) {
for (j in l until n) {
s = 0.0
for (k in i until m) {
s += this[k, i] * this[k, j]
}
f = s / h
for (k in i until m) {
this[k, j] += f * this[k, i]
}
}
}
for (k in i until m) {
this[k, i] = this[k, i] * scale
}
}
}
wBuffer[wStart + i] = scale * g
/* right-hand reduction */
g = 0.0
s = 0.0
scale = 0.0
if (i < m && i != n - 1) {
for (k in l until n) {
scale += abs(this[i, k])
}
if (abs(scale) > epsilon) {
for (k in l until n) {
this[i, k] = this[i, k] / scale
s += this[i, k] * this[i, k]
}
f = this[i, l]
if (f >= 0) {
g = (-1) * abs(sqrt(s))
} else {
g = abs(sqrt(s))
}
val h = f * g - s
this[i, l] = f - g
for (k in l until n) {
rv1[k] = this[i, k] / h
}
if (i != m - 1) {
for (j in l until m) {
s = 0.0
for (k in l until n) {
s += this[j, k] * this[i, k]
}
for (k in l until n) {
this[j, k] += s * rv1[k]
}
}
}
for (k in l until n) {
this[i, k] = this[i, k] * scale
}
}
}
anorm = max(anorm, (abs(wBuffer[wStart + i]) + abs(rv1[i])));
}
for (i in n - 1 downTo 0) {
if (i < n - 1) {
if (abs(g) > epsilon) {
for (j in l until n) {
v[j, i] = (this[i, j] / this[i, l]) / g
}
for (j in l until n) {
s = 0.0
for (k in l until n)
s += this[i, k] * v[k, j]
for (k in l until n)
v[k, j] += s * v[k, i]
}
}
for (j in l until n) {
v[i, j] = 0.0
v[j, i] = 0.0
}
}
v[i, i] = 1.0
g = rv1[i]
l = i
}
for (i in min(n, m) - 1 downTo 0) {
l = i + 1
g = wBuffer[wStart + i]
for (j in l until n) {
this[i, j] = 0.0
}
if (abs(g) > epsilon) {
g = 1.0 / g
for (j in l until n) {
s = 0.0
for (k in l until m) {
s += this[k, i] * this[k, j]
}
f = (s / this[i, i]) * g
for (k in i until m) {
this[k, j] += f * this[k, i]
}
}
for (j in i until m) {
this[j, i] *= g
}
} else {
for (j in i until m) {
this[j, i] = 0.0
}
}
this[i, i] += 1.0
}
var flag = 0
var nm = 0
var c = 0.0
var h = 0.0
var y = 0.0
var z = 0.0
var x = 0.0
for (k in n - 1 downTo 0) {
for (its in 1 until iterations) {
flag = 1
for (newl in k downTo 0) {
nm = newl - 1
if (abs(rv1[newl]) + anorm == anorm) {
flag = 0
l = newl
break
}
if (abs(wBuffer[wStart + nm]) + anorm == anorm) {
l = newl
break
}
}
if (flag != 0) {
c = 0.0
s = 1.0
for (i in l until k + 1) {
f = s * rv1[i]
rv1[i] = c * rv1[i]
if (abs(f) + anorm == anorm) {
break
}
g = wBuffer[wStart + i]
h = pythag(f, g)
wBuffer[wStart + i] = h
h = 1.0 / h
c = g * h
s = (-f) * h
for (j in 0 until m) {
y = this[j, nm]
z = this[j, i]
this[j, nm] = y * c + z * s
this[j, i] = z * c - y * s
}
}
}
z = wBuffer[wStart + k]
if (l == k) {
if (z < 0.0) {
wBuffer[wStart + k] = -z
for (j in 0 until n)
v[j, k] = -v[j, k]
}
break
}
x = wBuffer[wStart + l]
nm = k - 1
y = wBuffer[wStart + nm]
g = rv1[nm]
h = rv1[k]
f = ((y - z) * (y + z) + (g - h) * (g + h)) / (2.0 * h * y)
g = pythag(f, 1.0)
f = ((x - z) * (x + z) + h * ((y / (f + SIGN(g, f))) - h)) / x
c = 1.0
s = 1.0
var i = 0
for (j in l until nm + 1) {
i = j + 1
g = rv1[i]
y = wBuffer[wStart + i]
h = s * g
g = c * g
z = pythag(f, h)
rv1[j] = z
c = f / z
s = h / z
f = x * c + g * s
g = g * c - x * s
h = y * s
y *= c
for (jj in 0 until n) {
x = v[jj, j];
z = v[jj, i];
v[jj, j] = x * c + z * s;
v[jj, i] = z * c - x * s;
}
z = pythag(f, h)
wBuffer[wStart + j] = z
if (abs(z) > epsilon) {
z = 1.0 / z
c = f * z
s = h * z
}
f = c * g + s * y
x = c * y - s * g
for (jj in 0 until m) {
y = this[jj, j]
z = this[jj, i]
this[jj, j] = y * c + z * s
this[jj, i] = z * c - y * s
}
}
rv1[l] = 0.0
rv1[k] = f
wBuffer[wStart + k] = x
}
}
for (i in 0 until n) {
for (j in 0 until m) {
u[j, i] = this[j, i]
}
}
}
data class LMSettings (
var iteration:Int,
var func_calls: Int,

View File

@ -212,6 +212,36 @@ public fun DoubleTensorAlgebra.svd(
return Triple(uTensor.transposed(), sTensor, vTensor.transposed())
}
public fun DoubleTensorAlgebra.svdGolubKahan(
structureND: StructureND<Double>,
iterations: Int = 30, epsilon: Double = 1e-10
): Triple<DoubleTensor, DoubleTensor, DoubleTensor> {
val size = structureND.dimension
val commonShape = structureND.shape.slice(0 until size - 2)
val (n, m) = structureND.shape.slice(size - 2 until size)
val uTensor = zeros(commonShape + intArrayOf(n, m))
val sTensor = zeros(commonShape + intArrayOf(m))
val vTensor = zeros(commonShape + intArrayOf(m, m))
val matrices = structureND.asDoubleTensor().matrices
val uTensors = uTensor.matrices
val sTensorVectors = sTensor.vectors
val vTensors = vTensor.matrices
for (index in matrices.indices) {
val matrix = matrices[index]
val matrixSize = matrix.shape.linearSize
val curMatrix = DoubleTensor(
matrix.shape,
matrix.source.view(0, matrixSize).copy()
)
curMatrix.as2D().svdGolubKahanHelper(uTensors[index].as2D(), sTensorVectors[index], vTensors[index].as2D(),
iterations, epsilon)
}
return Triple(uTensor, sTensor, vTensor)
}
/**
* Returns eigenvalues and eigenvectors of a real symmetric matrix input or a batch of real symmetric matrices,
* represented by a pair `eigenvalues to eigenvectors`.