Random generator forks
This commit is contained in:
parent
fe05fc5a14
commit
88ee3e5ab7
@ -1,6 +1,7 @@
|
||||
Bintray: [ ![Download](https://api.bintray.com/packages/mipt-npm/scientifik/kmath-core/images/download.svg) ](https://bintray.com/mipt-npm/scientifik/kmath-core/_latestVersion)
|
||||
|
||||
# KMath
|
||||
Could be pronounced as `key-math`.
|
||||
The Kotlin MATHematics library is intended as a Kotlin-based analog to Python's `numpy` library. In contrast to `numpy` and `scipy` it is modular and has a lightweight core.
|
||||
|
||||
## Features
|
||||
|
@ -83,13 +83,12 @@ class DerivativeStructureField(
|
||||
/**
|
||||
* A constructs that creates a derivative structure with required order on-demand
|
||||
*/
|
||||
class DiffExpression(val function: DerivativeStructureField.() -> DerivativeStructure) :
|
||||
Expression<Double> {
|
||||
class DiffExpression(val function: DerivativeStructureField.() -> DerivativeStructure) : Expression<Double> {
|
||||
|
||||
override fun invoke(arguments: Map<String, Double>): Double = DerivativeStructureField(
|
||||
0,
|
||||
arguments
|
||||
)
|
||||
.run(function).value
|
||||
).run(function).value
|
||||
|
||||
/**
|
||||
* Get the derivative expression with given orders
|
||||
|
@ -12,6 +12,10 @@ inline class CMRandomGeneratorWrapper(val generator: CMRandom) : RandomGenerator
|
||||
override fun nextLong(): Long = generator.nextLong()
|
||||
|
||||
override fun nextBlock(size: Int): ByteArray = ByteArray(size).apply { generator.nextBytes(this) }
|
||||
|
||||
override fun fork(): RandomGenerator {
|
||||
TODO("not implemented") //To change body of created functions use File | Settings | File Templates.
|
||||
}
|
||||
}
|
||||
|
||||
fun CMRandom.asKmathGenerator(): RandomGenerator = CMRandomGeneratorWrapper(this)
|
||||
|
@ -1,9 +1,7 @@
|
||||
package scientifik.kmath.commons.expressions
|
||||
|
||||
import org.junit.Test
|
||||
import scientifik.kmath.commons.expressions.DerivativeStructureField
|
||||
import scientifik.kmath.commons.expressions.DiffExpression
|
||||
import scientifik.kmath.commons.expressions.derivative
|
||||
import scientifik.kmath.expressions.invoke
|
||||
import kotlin.test.assertEquals
|
||||
|
||||
inline fun <R> diff(order: Int, vararg parameters: Pair<String, Double>, block: DerivativeStructureField.() -> R) =
|
||||
|
@ -24,6 +24,7 @@ class BufferMatrixContext<T : Any, R : Ring<T>>(
|
||||
}
|
||||
}
|
||||
|
||||
@Suppress("OVERRIDE_BY_INLINE")
|
||||
object RealMatrixContext : GenericMatrixContext<Double, RealField> {
|
||||
|
||||
override val elementContext = RealField
|
||||
|
@ -1,11 +1,17 @@
|
||||
package scientifik.kmath.prob
|
||||
|
||||
import scientifik.kmath.chains.Chain
|
||||
import scientifik.kmath.chains.map
|
||||
import kotlin.jvm.JvmName
|
||||
|
||||
interface Sampler<T : Any> {
|
||||
fun sample(generator: RandomGenerator): RandomChain<T>
|
||||
}
|
||||
|
||||
/**
|
||||
* A distribution of typed objects
|
||||
*/
|
||||
interface Distribution<T : Any> {
|
||||
interface Distribution<T : Any> : Sampler<T> {
|
||||
/**
|
||||
* A probability value for given argument [arg].
|
||||
* For continuous distributions returns PDF
|
||||
@ -16,8 +22,7 @@ interface Distribution<T : Any> {
|
||||
* Create a chain of samples from this distribution.
|
||||
* The chain is not guaranteed to be stateless.
|
||||
*/
|
||||
fun sample(generator: RandomGenerator): RandomChain<T>
|
||||
//TODO add sample bunch generator
|
||||
override fun sample(generator: RandomGenerator): RandomChain<T>
|
||||
|
||||
/**
|
||||
* An empty companion. Distribution factories should be written as its extensions
|
||||
@ -31,3 +36,33 @@ interface UnivariateDistribution<T : Comparable<T>> : Distribution<T> {
|
||||
*/
|
||||
fun cumulative(arg: T): Double
|
||||
}
|
||||
|
||||
/**
|
||||
* Compute probability integral in an interval
|
||||
*/
|
||||
fun <T : Comparable<T>> UnivariateDistribution<T>.integral(from: T, to: T): Double {
|
||||
require(to > from)
|
||||
return cumulative(to) - cumulative(from)
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Sample a bunch of values
|
||||
*/
|
||||
fun <T : Any> Sampler<T>.sampleBunch(generator: RandomGenerator, size: Int): Chain<List<T>> {
|
||||
require(size > 1)
|
||||
return sample(generator).map{chain ->
|
||||
List(size){chain.next()}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Generate a bunch of samples from real distributions
|
||||
*/
|
||||
@JvmName("realSampleBunch")
|
||||
fun Sampler<Double>.sampleBunch(generator: RandomGenerator, size: Int): Chain<DoubleArray> {
|
||||
require(size > 1)
|
||||
return sample(generator).map{chain ->
|
||||
DoubleArray(size){chain.next()}
|
||||
}
|
||||
}
|
@ -9,9 +9,8 @@ import scientifik.kmath.chains.Chain
|
||||
*/
|
||||
class RandomChain<out R>(val generator: RandomGenerator, private val gen: suspend RandomGenerator.() -> R) : Chain<R> {
|
||||
private val atomicValue = atomic<R?>(null)
|
||||
override fun peek(): R? = atomicValue.value
|
||||
|
||||
override suspend fun next(): R = generator.gen().also { atomicValue.lazySet(it) }
|
||||
|
||||
override fun fork(): Chain<R> = RandomChain(generator, gen)
|
||||
override fun fork(): Chain<R> = RandomChain(generator.fork(), gen)
|
||||
}
|
@ -9,5 +9,10 @@ interface RandomGenerator {
|
||||
fun nextLong(): Long
|
||||
fun nextBlock(size: Int): ByteArray
|
||||
|
||||
/**
|
||||
* Fork the current state of generator
|
||||
*/
|
||||
fun fork(): RandomGenerator
|
||||
|
||||
companion object
|
||||
}
|
Loading…
Reference in New Issue
Block a user