Merge pull request #94 from CommanderTvis/adv-expr

Optimization of expressions via ASM Bytecode Generation
This commit is contained in:
Alexander Nozik 2020-06-13 21:07:14 +03:00 committed by GitHub
commit 878d1379e1
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
16 changed files with 1010 additions and 129 deletions

View File

@ -14,11 +14,16 @@ kotlin.sourceSets {
implementation("com.github.h0tk3y.betterParse:better-parse-multiplatform-metadata:0.4.0-alpha-3")
}
}
jvmMain {
dependencies {
implementation("com.github.h0tk3y.betterParse:better-parse-jvm:0.4.0-alpha-3")
implementation("org.ow2.asm:asm:8.0.1")
implementation("org.ow2.asm:asm-commons:8.0.1")
implementation(kotlin("reflect"))
}
}
jsMain {
dependencies {
implementation("com.github.h0tk3y.betterParse:better-parse-js:0.4.0-alpha-3")

View File

@ -0,0 +1,56 @@
package scientifik.kmath.asm
import scientifik.kmath.asm.internal.AsmGenerationContext
import scientifik.kmath.ast.MST
import scientifik.kmath.ast.evaluate
import scientifik.kmath.expressions.Expression
import scientifik.kmath.operations.*
@PublishedApi
internal fun buildName(expression: AsmNode<*>, collision: Int = 0): String {
val name = "scientifik.kmath.expressions.generated.AsmCompiledExpression_${expression.hashCode()}_$collision"
try {
Class.forName(name)
} catch (ignored: ClassNotFoundException) {
return name
}
return buildName(expression, collision + 1)
}
@PublishedApi
internal inline fun <reified T> AsmNode<T>.compile(algebra: Algebra<T>): Expression<T> {
val ctx =
AsmGenerationContext(T::class.java, algebra, buildName(this))
compile(ctx)
return ctx.generate()
}
inline fun <reified T, A : NumericAlgebra<T>, E : AsmExpressionAlgebra<T, A>> A.asm(
expressionAlgebra: E,
block: E.() -> AsmNode<T>
): Expression<T> = expressionAlgebra.block().compile(expressionAlgebra.algebra)
inline fun <reified T, A : NumericAlgebra<T>, E : AsmExpressionAlgebra<T, A>> A.asm(
expressionAlgebra: E,
ast: MST
): Expression<T> = asm(expressionAlgebra) { evaluate(ast) }
inline fun <reified T, A> A.asmSpace(block: AsmExpressionSpace<T, A>.() -> AsmNode<T>): Expression<T> where A : NumericAlgebra<T>, A : Space<T> =
AsmExpressionSpace(this).let { it.block().compile(it.algebra) }
inline fun <reified T, A> A.asmSpace(ast: MST): Expression<T> where A : NumericAlgebra<T>, A : Space<T> =
asmSpace { evaluate(ast) }
inline fun <reified T, A> A.asmRing(block: AsmExpressionRing<T, A>.() -> AsmNode<T>): Expression<T> where A : NumericAlgebra<T>, A : Ring<T> =
AsmExpressionRing(this).let { it.block().compile(it.algebra) }
inline fun <reified T, A> A.asmRing(ast: MST): Expression<T> where A : NumericAlgebra<T>, A : Ring<T> =
asmRing { evaluate(ast) }
inline fun <reified T, A> A.asmField(block: AsmExpressionField<T, A>.() -> AsmNode<T>): Expression<T> where A : NumericAlgebra<T>, A : Field<T> =
AsmExpressionField(this).let { it.block().compile(it.algebra) }
inline fun <reified T, A> A.asmField(ast: MST): Expression<T> where A : NumericAlgebra<T>, A : Field<T> =
asmRing { evaluate(ast) }

View File

@ -0,0 +1,265 @@
package scientifik.kmath.asm
import scientifik.kmath.asm.internal.AsmGenerationContext
import scientifik.kmath.asm.internal.hasSpecific
import scientifik.kmath.asm.internal.optimize
import scientifik.kmath.asm.internal.tryInvokeSpecific
import scientifik.kmath.expressions.Expression
import scientifik.kmath.expressions.ExpressionAlgebra
import scientifik.kmath.operations.*
/**
* A function declaration that could be compiled to [AsmGenerationContext].
*
* @param T the type the stored function returns.
*/
abstract class AsmNode<T> internal constructor() {
/**
* Tries to evaluate this function without its variables. This method is intended for optimization.
*
* @return `null` if the function depends on its variables, the value if the function is a constant.
*/
internal open fun tryEvaluate(): T? = null
/**
* Compiles this declaration.
*
* @param gen the target [AsmGenerationContext].
*/
@PublishedApi
internal abstract fun compile(gen: AsmGenerationContext<T>)
}
internal class AsmUnaryOperation<T>(private val context: Algebra<T>, private val name: String, expr: AsmNode<T>) :
AsmNode<T>() {
private val expr: AsmNode<T> = expr.optimize()
override fun tryEvaluate(): T? = context { unaryOperation(name, expr.tryEvaluate() ?: return@context null) }
override fun compile(gen: AsmGenerationContext<T>) {
gen.visitLoadAlgebra()
if (!hasSpecific(context, name, 1))
gen.visitStringConstant(name)
expr.compile(gen)
if (gen.tryInvokeSpecific(context, name, 1))
return
gen.visitAlgebraOperation(
owner = AsmGenerationContext.ALGEBRA_CLASS,
method = "unaryOperation",
descriptor = "(L${AsmGenerationContext.STRING_CLASS};" +
"L${AsmGenerationContext.OBJECT_CLASS};)" +
"L${AsmGenerationContext.OBJECT_CLASS};"
)
}
}
internal class AsmBinaryOperation<T>(
private val context: Algebra<T>,
private val name: String,
first: AsmNode<T>,
second: AsmNode<T>
) : AsmNode<T>() {
private val first: AsmNode<T> = first.optimize()
private val second: AsmNode<T> = second.optimize()
override fun tryEvaluate(): T? = context {
binaryOperation(
name,
first.tryEvaluate() ?: return@context null,
second.tryEvaluate() ?: return@context null
)
}
override fun compile(gen: AsmGenerationContext<T>) {
gen.visitLoadAlgebra()
if (!hasSpecific(context, name, 2))
gen.visitStringConstant(name)
first.compile(gen)
second.compile(gen)
if (gen.tryInvokeSpecific(context, name, 2))
return
gen.visitAlgebraOperation(
owner = AsmGenerationContext.ALGEBRA_CLASS,
method = "binaryOperation",
descriptor = "(L${AsmGenerationContext.STRING_CLASS};" +
"L${AsmGenerationContext.OBJECT_CLASS};" +
"L${AsmGenerationContext.OBJECT_CLASS};)" +
"L${AsmGenerationContext.OBJECT_CLASS};"
)
}
}
internal class AsmVariableExpression<T>(private val name: String, private val default: T? = null) :
AsmNode<T>() {
override fun compile(gen: AsmGenerationContext<T>): Unit = gen.visitLoadFromVariables(name, default)
}
internal class AsmConstantExpression<T>(private val value: T) :
AsmNode<T>() {
override fun tryEvaluate(): T = value
override fun compile(gen: AsmGenerationContext<T>): Unit = gen.visitLoadFromConstants(value)
}
internal class AsmConstProductExpression<T>(
private val context: Space<T>,
expr: AsmNode<T>,
private val const: Number
) : AsmNode<T>() {
private val expr: AsmNode<T> = expr.optimize()
override fun tryEvaluate(): T? = context { (expr.tryEvaluate() ?: return@context null) * const }
override fun compile(gen: AsmGenerationContext<T>) {
gen.visitLoadAlgebra()
gen.visitNumberConstant(const)
expr.compile(gen)
gen.visitAlgebraOperation(
owner = AsmGenerationContext.SPACE_OPERATIONS_CLASS,
method = "multiply",
descriptor = "(L${AsmGenerationContext.OBJECT_CLASS};" +
"L${AsmGenerationContext.NUMBER_CLASS};)" +
"L${AsmGenerationContext.OBJECT_CLASS};"
)
}
}
internal class AsmNumberExpression<T>(private val context: NumericAlgebra<T>, private val value: Number) :
AsmNode<T>() {
override fun tryEvaluate(): T? = context.number(value)
override fun compile(gen: AsmGenerationContext<T>): Unit = gen.visitNumberConstant(value)
}
internal abstract class FunctionalCompiledExpression<T> internal constructor(
@JvmField protected val algebra: Algebra<T>,
@JvmField protected val constants: Array<Any>
) : Expression<T> {
abstract override fun invoke(arguments: Map<String, T>): T
}
/**
* A context class for [AsmNode] construction.
*/
interface AsmExpressionAlgebra<T, A : NumericAlgebra<T>> : NumericAlgebra<AsmNode<T>>,
ExpressionAlgebra<T, AsmNode<T>> {
/**
* The algebra to provide for AsmExpressions built.
*/
val algebra: A
/**
* Builds an AsmExpression to wrap a number.
*/
override fun number(value: Number): AsmNode<T> = AsmNumberExpression(algebra, value)
/**
* Builds an AsmExpression of constant expression which does not depend on arguments.
*/
override fun const(value: T): AsmNode<T> = AsmConstantExpression(value)
/**
* Builds an AsmExpression to access a variable.
*/
override fun variable(name: String, default: T?): AsmNode<T> = AsmVariableExpression(name, default)
/**
* Builds an AsmExpression of dynamic call of binary operation [operation] on [left] and [right].
*/
override fun binaryOperation(operation: String, left: AsmNode<T>, right: AsmNode<T>): AsmNode<T> =
AsmBinaryOperation(algebra, operation, left, right)
/**
* Builds an AsmExpression of dynamic call of unary operation with name [operation] on [arg].
*/
override fun unaryOperation(operation: String, arg: AsmNode<T>): AsmNode<T> =
AsmUnaryOperation(algebra, operation, arg)
}
/**
* A context class for [AsmNode] construction for [Space] algebras.
*/
open class AsmExpressionSpace<T, A>(override val algebra: A) : AsmExpressionAlgebra<T, A>,
Space<AsmNode<T>> where A : Space<T>, A : NumericAlgebra<T> {
override val zero: AsmNode<T>
get() = const(algebra.zero)
/**
* Builds an AsmExpression of addition of two another expressions.
*/
override fun add(a: AsmNode<T>, b: AsmNode<T>): AsmNode<T> =
AsmBinaryOperation(algebra, SpaceOperations.PLUS_OPERATION, a, b)
/**
* Builds an AsmExpression of multiplication of expression by number.
*/
override fun multiply(a: AsmNode<T>, k: Number): AsmNode<T> = AsmConstProductExpression(algebra, a, k)
operator fun AsmNode<T>.plus(arg: T): AsmNode<T> = this + const(arg)
operator fun AsmNode<T>.minus(arg: T): AsmNode<T> = this - const(arg)
operator fun T.plus(arg: AsmNode<T>): AsmNode<T> = arg + this
operator fun T.minus(arg: AsmNode<T>): AsmNode<T> = arg - this
override fun unaryOperation(operation: String, arg: AsmNode<T>): AsmNode<T> =
super<AsmExpressionAlgebra>.unaryOperation(operation, arg)
override fun binaryOperation(operation: String, left: AsmNode<T>, right: AsmNode<T>): AsmNode<T> =
super<AsmExpressionAlgebra>.binaryOperation(operation, left, right)
}
/**
* A context class for [AsmNode] construction for [Ring] algebras.
*/
open class AsmExpressionRing<T, A>(override val algebra: A) : AsmExpressionSpace<T, A>(algebra),
Ring<AsmNode<T>> where A : Ring<T>, A : NumericAlgebra<T> {
override val one: AsmNode<T>
get() = const(algebra.one)
/**
* Builds an AsmExpression of multiplication of two expressions.
*/
override fun multiply(a: AsmNode<T>, b: AsmNode<T>): AsmNode<T> =
AsmBinaryOperation(algebra, RingOperations.TIMES_OPERATION, a, b)
operator fun AsmNode<T>.times(arg: T): AsmNode<T> = this * const(arg)
operator fun T.times(arg: AsmNode<T>): AsmNode<T> = arg * this
override fun unaryOperation(operation: String, arg: AsmNode<T>): AsmNode<T> =
super<AsmExpressionSpace>.unaryOperation(operation, arg)
override fun binaryOperation(operation: String, left: AsmNode<T>, right: AsmNode<T>): AsmNode<T> =
super<AsmExpressionSpace>.binaryOperation(operation, left, right)
override fun number(value: Number): AsmNode<T> = super<AsmExpressionSpace>.number(value)
}
/**
* A context class for [AsmNode] construction for [Field] algebras.
*/
open class AsmExpressionField<T, A>(override val algebra: A) :
AsmExpressionRing<T, A>(algebra),
Field<AsmNode<T>> where A : Field<T>, A : NumericAlgebra<T> {
/**
* Builds an AsmExpression of division an expression by another one.
*/
override fun divide(a: AsmNode<T>, b: AsmNode<T>): AsmNode<T> =
AsmBinaryOperation(algebra, FieldOperations.DIV_OPERATION, a, b)
operator fun AsmNode<T>.div(arg: T): AsmNode<T> = this / const(arg)
operator fun T.div(arg: AsmNode<T>): AsmNode<T> = arg / this
override fun unaryOperation(operation: String, arg: AsmNode<T>): AsmNode<T> =
super<AsmExpressionRing>.unaryOperation(operation, arg)
override fun binaryOperation(operation: String, left: AsmNode<T>, right: AsmNode<T>): AsmNode<T> =
super<AsmExpressionRing>.binaryOperation(operation, left, right)
override fun number(value: Number): AsmNode<T> = super<AsmExpressionRing>.number(value)
}

View File

@ -0,0 +1,319 @@
package scientifik.kmath.asm.internal
import org.objectweb.asm.ClassWriter
import org.objectweb.asm.Label
import org.objectweb.asm.MethodVisitor
import org.objectweb.asm.Opcodes
import scientifik.kmath.asm.FunctionalCompiledExpression
import scientifik.kmath.asm.internal.AsmGenerationContext.ClassLoader
import scientifik.kmath.operations.Algebra
/**
* AsmGenerationContext is a structure that abstracts building a class that unwraps [AsmNode] to plain Java
* expression. This class uses [ClassLoader] for loading the generated class, then it is able to instantiate the new
* class.
*
* @param T the type of AsmExpression to unwrap.
* @param algebra the algebra the applied AsmExpressions use.
* @param className the unique class name of new loaded class.
*/
@PublishedApi
internal class AsmGenerationContext<T> @PublishedApi internal constructor(
private val classOfT: Class<*>,
private val algebra: Algebra<T>,
private val className: String
) {
private class ClassLoader(parent: java.lang.ClassLoader) : java.lang.ClassLoader(parent) {
internal fun defineClass(name: String?, b: ByteArray): Class<*> = defineClass(name, b, 0, b.size)
}
private val classLoader: ClassLoader =
ClassLoader(javaClass.classLoader)
@Suppress("PrivatePropertyName")
private val T_ALGEBRA_CLASS: String = algebra.javaClass.name.replace(oldChar = '.', newChar = '/')
@Suppress("PrivatePropertyName")
private val T_CLASS: String = classOfT.name.replace('.', '/')
private val slashesClassName: String = className.replace(oldChar = '.', newChar = '/')
private val invokeThisVar: Int = 0
private val invokeArgumentsVar: Int = 1
private var maxStack: Int = 0
private val constants: MutableList<Any> = mutableListOf()
private val asmCompiledClassWriter: ClassWriter = ClassWriter(0)
private val invokeMethodVisitor: MethodVisitor
private val invokeL0: Label
private lateinit var invokeL1: Label
private var generatedInstance: FunctionalCompiledExpression<T>? = null
init {
asmCompiledClassWriter.visit(
Opcodes.V1_8,
Opcodes.ACC_PUBLIC or Opcodes.ACC_FINAL or Opcodes.ACC_SUPER,
slashesClassName,
"L$FUNCTIONAL_COMPILED_EXPRESSION_CLASS<L$T_CLASS;>;",
FUNCTIONAL_COMPILED_EXPRESSION_CLASS,
arrayOf()
)
asmCompiledClassWriter.run {
visitMethod(Opcodes.ACC_PUBLIC, "<init>", "(L$ALGEBRA_CLASS;[L$OBJECT_CLASS;)V", null, null).run {
val thisVar = 0
val algebraVar = 1
val constantsVar = 2
val l0 = Label()
visitLabel(l0)
visitVarInsn(Opcodes.ALOAD, thisVar)
visitVarInsn(Opcodes.ALOAD, algebraVar)
visitVarInsn(Opcodes.ALOAD, constantsVar)
visitMethodInsn(
Opcodes.INVOKESPECIAL,
FUNCTIONAL_COMPILED_EXPRESSION_CLASS,
"<init>",
"(L$ALGEBRA_CLASS;[L$OBJECT_CLASS;)V",
false
)
val l1 = Label()
visitLabel(l1)
visitInsn(Opcodes.RETURN)
val l2 = Label()
visitLabel(l2)
visitLocalVariable("this", "L$slashesClassName;", null, l0, l2, thisVar)
visitLocalVariable(
"algebra",
"L$ALGEBRA_CLASS;",
"L$ALGEBRA_CLASS<L$T_CLASS;>;",
l0,
l2,
algebraVar
)
visitLocalVariable("constants", "[L$OBJECT_CLASS;", null, l0, l2, constantsVar)
visitMaxs(3, 3)
visitEnd()
}
invokeMethodVisitor = visitMethod(
Opcodes.ACC_PUBLIC or Opcodes.ACC_FINAL,
"invoke",
"(L$MAP_CLASS;)L$T_CLASS;",
"(L$MAP_CLASS<L$STRING_CLASS;+L$T_CLASS;>;)L$T_CLASS;",
null
)
invokeMethodVisitor.run {
visitCode()
invokeL0 = Label()
visitLabel(invokeL0)
}
}
}
@PublishedApi
@Suppress("UNCHECKED_CAST")
internal fun generate(): FunctionalCompiledExpression<T> {
generatedInstance?.let { return it }
invokeMethodVisitor.run {
visitInsn(Opcodes.ARETURN)
invokeL1 = Label()
visitLabel(invokeL1)
visitLocalVariable(
"this",
"L$slashesClassName;",
T_CLASS,
invokeL0,
invokeL1,
invokeThisVar
)
visitLocalVariable(
"arguments",
"L$MAP_CLASS;",
"L$MAP_CLASS<L$STRING_CLASS;+L$T_CLASS;>;",
invokeL0,
invokeL1,
invokeArgumentsVar
)
visitMaxs(maxStack + 1, 2)
visitEnd()
}
asmCompiledClassWriter.visitMethod(
Opcodes.ACC_PUBLIC or Opcodes.ACC_FINAL or Opcodes.ACC_BRIDGE or Opcodes.ACC_SYNTHETIC,
"invoke",
"(L$MAP_CLASS;)L$OBJECT_CLASS;",
null,
null
).run {
val thisVar = 0
visitCode()
val l0 = Label()
visitLabel(l0)
visitVarInsn(Opcodes.ALOAD, 0)
visitVarInsn(Opcodes.ALOAD, 1)
visitMethodInsn(Opcodes.INVOKEVIRTUAL, slashesClassName, "invoke", "(L$MAP_CLASS;)L$T_CLASS;", false)
visitInsn(Opcodes.ARETURN)
val l1 = Label()
visitLabel(l1)
visitLocalVariable(
"this",
"L$slashesClassName;",
T_CLASS,
l0,
l1,
thisVar
)
visitMaxs(2, 2)
visitEnd()
}
asmCompiledClassWriter.visitEnd()
val new = classLoader
.defineClass(className, asmCompiledClassWriter.toByteArray())
.constructors
.first()
.newInstance(algebra, constants.toTypedArray()) as FunctionalCompiledExpression<T>
generatedInstance = new
return new
}
internal fun visitLoadFromConstants(value: T) {
if (classOfT in INLINABLE_NUMBERS) {
visitNumberConstant(value as Number)
visitCastToT()
return
}
visitLoadAnyFromConstants(value as Any, T_CLASS)
}
private fun visitLoadAnyFromConstants(value: Any, type: String) {
val idx = if (value in constants) constants.indexOf(value) else constants.apply { add(value) }.lastIndex
maxStack++
invokeMethodVisitor.run {
visitLoadThis()
visitFieldInsn(Opcodes.GETFIELD, slashesClassName, "constants", "[L$OBJECT_CLASS;")
visitLdcOrIConstInsn(idx)
visitInsn(Opcodes.AALOAD)
invokeMethodVisitor.visitTypeInsn(Opcodes.CHECKCAST, type)
}
}
private fun visitLoadThis(): Unit = invokeMethodVisitor.visitVarInsn(Opcodes.ALOAD, invokeThisVar)
internal fun visitNumberConstant(value: Number) {
maxStack++
val clazz = value.javaClass
val c = clazz.name.replace('.', '/')
val sigLetter = SIGNATURE_LETTERS[clazz]
if (sigLetter != null) {
when (value) {
is Int -> invokeMethodVisitor.visitLdcOrIConstInsn(value)
is Double -> invokeMethodVisitor.visitLdcOrDConstInsn(value)
is Float -> invokeMethodVisitor.visitLdcOrFConstInsn(value)
else -> invokeMethodVisitor.visitLdcInsn(value)
}
invokeMethodVisitor.visitMethodInsn(Opcodes.INVOKESTATIC, c, "valueOf", "($sigLetter)L${c};", false)
return
}
visitLoadAnyFromConstants(value, c)
}
internal fun visitLoadFromVariables(name: String, defaultValue: T? = null): Unit = invokeMethodVisitor.run {
maxStack += 2
visitVarInsn(Opcodes.ALOAD, invokeArgumentsVar)
if (defaultValue != null) {
visitLdcInsn(name)
visitLoadFromConstants(defaultValue)
visitMethodInsn(
Opcodes.INVOKEINTERFACE,
MAP_CLASS,
"getOrDefault",
"(L$OBJECT_CLASS;L$OBJECT_CLASS;)L$OBJECT_CLASS;",
true
)
visitCastToT()
return
}
visitLdcInsn(name)
visitMethodInsn(
Opcodes.INVOKEINTERFACE,
MAP_CLASS, "get", "(L$OBJECT_CLASS;)L$OBJECT_CLASS;", true
)
visitCastToT()
}
internal fun visitLoadAlgebra() {
maxStack++
invokeMethodVisitor.visitVarInsn(Opcodes.ALOAD, invokeThisVar)
invokeMethodVisitor.visitFieldInsn(
Opcodes.GETFIELD,
FUNCTIONAL_COMPILED_EXPRESSION_CLASS, "algebra", "L$ALGEBRA_CLASS;"
)
invokeMethodVisitor.visitTypeInsn(Opcodes.CHECKCAST, T_ALGEBRA_CLASS)
}
internal fun visitAlgebraOperation(
owner: String,
method: String,
descriptor: String,
opcode: Int = Opcodes.INVOKEINTERFACE,
isInterface: Boolean = true
) {
maxStack++
invokeMethodVisitor.visitMethodInsn(opcode, owner, method, descriptor, isInterface)
visitCastToT()
}
private fun visitCastToT(): Unit = invokeMethodVisitor.visitTypeInsn(Opcodes.CHECKCAST, T_CLASS)
internal fun visitStringConstant(string: String) {
invokeMethodVisitor.visitLdcInsn(string)
}
internal companion object {
private val SIGNATURE_LETTERS by lazy {
mapOf(
java.lang.Byte::class.java to "B",
java.lang.Short::class.java to "S",
java.lang.Integer::class.java to "I",
java.lang.Long::class.java to "J",
java.lang.Float::class.java to "F",
java.lang.Double::class.java to "D"
)
}
private val INLINABLE_NUMBERS by lazy { SIGNATURE_LETTERS.keys }
internal const val FUNCTIONAL_COMPILED_EXPRESSION_CLASS =
"scientifik/kmath/asm/FunctionalCompiledExpression"
internal const val MAP_CLASS = "java/util/Map"
internal const val OBJECT_CLASS = "java/lang/Object"
internal const val ALGEBRA_CLASS = "scientifik/kmath/operations/Algebra"
internal const val SPACE_OPERATIONS_CLASS = "scientifik/kmath/operations/SpaceOperations"
internal const val STRING_CLASS = "java/lang/String"
internal const val NUMBER_CLASS = "java/lang/Number"
}
}

View File

@ -0,0 +1,28 @@
package scientifik.kmath.asm.internal
import org.objectweb.asm.MethodVisitor
import org.objectweb.asm.Opcodes.*
internal fun MethodVisitor.visitLdcOrIConstInsn(value: Int) = when (value) {
-1 -> visitInsn(ICONST_M1)
0 -> visitInsn(ICONST_0)
1 -> visitInsn(ICONST_1)
2 -> visitInsn(ICONST_2)
3 -> visitInsn(ICONST_3)
4 -> visitInsn(ICONST_4)
5 -> visitInsn(ICONST_5)
else -> visitLdcInsn(value)
}
internal fun MethodVisitor.visitLdcOrDConstInsn(value: Double) = when (value) {
0.0 -> visitInsn(DCONST_0)
1.0 -> visitInsn(DCONST_1)
else -> visitLdcInsn(value)
}
internal fun MethodVisitor.visitLdcOrFConstInsn(value: Float) = when (value) {
0f -> visitInsn(FCONST_0)
1f -> visitInsn(FCONST_1)
2f -> visitInsn(FCONST_2)
else -> visitLdcInsn(value)
}

View File

@ -0,0 +1,49 @@
package scientifik.kmath.asm.internal
import org.objectweb.asm.Opcodes
import scientifik.kmath.asm.AsmConstantExpression
import scientifik.kmath.asm.AsmNode
import scientifik.kmath.operations.Algebra
private val methodNameAdapters: Map<String, String> = mapOf("+" to "add", "*" to "multiply", "/" to "divide")
internal fun <T> hasSpecific(context: Algebra<T>, name: String, arity: Int): Boolean {
val aName = methodNameAdapters[name] ?: name
context::class.java.methods.find { it.name == aName && it.parameters.size == arity }
?: return false
return true
}
internal fun <T> AsmGenerationContext<T>.tryInvokeSpecific(context: Algebra<T>, name: String, arity: Int): Boolean {
val aName = methodNameAdapters[name] ?: name
context::class.java.methods.find { it.name == aName && it.parameters.size == arity }
?: return false
val owner = context::class.java.name.replace('.', '/')
val sig = buildString {
append('(')
repeat(arity) { append("L${AsmGenerationContext.OBJECT_CLASS};") }
append(')')
append("L${AsmGenerationContext.OBJECT_CLASS};")
}
visitAlgebraOperation(
owner = owner,
method = aName,
descriptor = sig,
opcode = Opcodes.INVOKEVIRTUAL,
isInterface = false
)
return true
}
@PublishedApi
internal fun <T> AsmNode<T>.optimize(): AsmNode<T> {
val a = tryEvaluate()
return if (a == null) this else AsmConstantExpression(a)
}

View File

@ -1,23 +0,0 @@
package scientifik.kmath.ast
import scientifik.kmath.expressions.Expression
import scientifik.kmath.operations.Algebra
import scientifik.kmath.operations.NumericAlgebra
//TODO stubs for asm generation
interface AsmExpression<T>
interface AsmExpressionAlgebra<T, A : Algebra<T>> : NumericAlgebra<AsmExpression<T>> {
val algebra: A
}
fun <T> AsmExpression<T>.compile(): Expression<T> = TODO()
//TODO add converter for functional expressions
inline fun <reified T : Any, A : Algebra<T>> A.asm(
block: AsmExpressionAlgebra<T, A>.() -> AsmExpression<T>
): Expression<T> = TODO()
inline fun <reified T : Any, A : Algebra<T>> A.asm(ast: MST): Expression<T> = asm { evaluate(ast) }

View File

@ -0,0 +1,18 @@
package scietifik.kmath.ast
import scientifik.kmath.asm.asmField
import scientifik.kmath.ast.parseMath
import scientifik.kmath.expressions.invoke
import scientifik.kmath.operations.Complex
import scientifik.kmath.operations.ComplexField
import kotlin.test.assertEquals
import kotlin.test.Test
class AsmTest {
@Test
fun parsedExpression() {
val mst = "2+2*(2+2)".parseMath()
val res = ComplexField.asmField(mst)()
assertEquals(Complex(10.0, 0.0), res)
}
}

View File

@ -1,11 +1,11 @@
package scietifik.kmath.ast
import org.junit.jupiter.api.Assertions.assertEquals
import org.junit.jupiter.api.Test
import scientifik.kmath.ast.evaluate
import scientifik.kmath.ast.parseMath
import scientifik.kmath.operations.Complex
import scientifik.kmath.operations.ComplexField
import kotlin.test.assertEquals
import kotlin.test.Test
internal class ParserTest {
@Test

View File

@ -0,0 +1,75 @@
package scietifik.kmath.ast.asm
import scientifik.kmath.asm.asmField
import scientifik.kmath.asm.asmRing
import scientifik.kmath.asm.asmSpace
import scientifik.kmath.expressions.invoke
import scientifik.kmath.operations.ByteRing
import scientifik.kmath.operations.RealField
import kotlin.test.Test
import kotlin.test.assertEquals
class TestAsmAlgebras {
@Test
fun space() {
val res = ByteRing.asmSpace {
binaryOperation(
"+",
unaryOperation(
"+",
3.toByte() - (2.toByte() + (multiply(
add(const(1), const(1)),
2
) + 1.toByte()) * 3.toByte() - 1.toByte())
),
number(1)
) + variable("x") + zero
}("x" to 2.toByte())
assertEquals(16, res)
}
@Test
fun ring() {
val res = ByteRing.asmRing {
binaryOperation(
"+",
unaryOperation(
"+",
(3.toByte() - (2.toByte() + (multiply(
add(const(1), const(1)),
2
) + 1.toByte()))) * 3.0 - 1.toByte()
),
number(1)
) * const(2)
}()
assertEquals(24, res)
}
@Test
fun field() {
val res = RealField.asmField {
divide(binaryOperation(
"+",
unaryOperation(
"+",
(3.0 - (2.0 + (multiply(
add(const(1.0), const(1.0)),
2
) + 1.0))) * 3 - 1.0
),
number(1)
) / 2, const(2.0)) * one
}()
assertEquals(3.0, res)
}
}

View File

@ -0,0 +1,21 @@
package scietifik.kmath.ast.asm
import scientifik.kmath.asm.asmField
import scientifik.kmath.expressions.invoke
import scientifik.kmath.operations.RealField
import kotlin.test.Test
import kotlin.test.assertEquals
class TestAsmExpressions {
@Test
fun testUnaryOperationInvocation() {
val res = RealField.asmField { unaryOperation("+", variable("x")) }("x" to 2.0)
assertEquals(2.0, res)
}
@Test
fun testConstProductInvocation() {
val res = RealField.asmField { variable("x") * 2 }("x" to 2.0)
assertEquals(4.0, res)
}
}

View File

@ -0,0 +1,23 @@
package scientifik.kmath.expressions
import scientifik.kmath.operations.Field
import scientifik.kmath.operations.Ring
import scientifik.kmath.operations.Space
/**
* Create a functional expression on this [Space]
*/
fun <T> Space<T>.buildExpression(block: FunctionalExpressionSpace<T, Space<T>>.() -> Expression<T>): Expression<T> =
FunctionalExpressionSpace(this).run(block)
/**
* Create a functional expression on this [Ring]
*/
fun <T> Ring<T>.buildExpression(block: FunctionalExpressionRing<T, Ring<T>>.() -> Expression<T>): Expression<T> =
FunctionalExpressionRing(this).run(block)
/**
* Create a functional expression on this [Field]
*/
fun <T> Field<T>.buildExpression(block: FunctionalExpressionField<T, Field<T>>.() -> Expression<T>): Expression<T> =
FunctionalExpressionField(this).run(block)

View File

@ -0,0 +1,139 @@
package scientifik.kmath.expressions
import scientifik.kmath.operations.*
internal class FunctionalUnaryOperation<T>(val context: Algebra<T>, val name: String, private val expr: Expression<T>) :
Expression<T> {
override fun invoke(arguments: Map<String, T>): T = context.unaryOperation(name, expr.invoke(arguments))
}
internal class FunctionalBinaryOperation<T>(
val context: Algebra<T>,
val name: String,
val first: Expression<T>,
val second: Expression<T>
) : Expression<T> {
override fun invoke(arguments: Map<String, T>): T =
context.binaryOperation(name, first.invoke(arguments), second.invoke(arguments))
}
internal class FunctionalVariableExpression<T>(val name: String, val default: T? = null) : Expression<T> {
override fun invoke(arguments: Map<String, T>): T =
arguments[name] ?: default ?: error("Parameter not found: $name")
}
internal class FunctionalConstantExpression<T>(val value: T) : Expression<T> {
override fun invoke(arguments: Map<String, T>): T = value
}
internal class FunctionalConstProductExpression<T>(
val context: Space<T>,
private val expr: Expression<T>,
val const: Number
) : Expression<T> {
override fun invoke(arguments: Map<String, T>): T = context.multiply(expr.invoke(arguments), const)
}
/**
* A context class for [Expression] construction.
*/
interface FunctionalExpressionAlgebra<T, A : Algebra<T>> : ExpressionAlgebra<T, Expression<T>> {
/**
* The algebra to provide for Expressions built.
*/
val algebra: A
/**
* Builds an Expression of constant expression which does not depend on arguments.
*/
override fun const(value: T): Expression<T> = FunctionalConstantExpression(value)
/**
* Builds an Expression to access a variable.
*/
override fun variable(name: String, default: T?): Expression<T> = FunctionalVariableExpression(name, default)
/**
* Builds an Expression of dynamic call of binary operation [operation] on [left] and [right].
*/
override fun binaryOperation(operation: String, left: Expression<T>, right: Expression<T>): Expression<T> =
FunctionalBinaryOperation(algebra, operation, left, right)
/**
* Builds an Expression of dynamic call of unary operation with name [operation] on [arg].
*/
override fun unaryOperation(operation: String, arg: Expression<T>): Expression<T> =
FunctionalUnaryOperation(algebra, operation, arg)
}
/**
* A context class for [Expression] construction for [Space] algebras.
*/
open class FunctionalExpressionSpace<T, A>(override val algebra: A) : FunctionalExpressionAlgebra<T, A>,
Space<Expression<T>> where A : Space<T> {
override val zero: Expression<T>
get() = const(algebra.zero)
/**
* Builds an Expression of addition of two another expressions.
*/
override fun add(a: Expression<T>, b: Expression<T>): Expression<T> =
FunctionalBinaryOperation(algebra, SpaceOperations.PLUS_OPERATION, a, b)
/**
* Builds an Expression of multiplication of expression by number.
*/
override fun multiply(a: Expression<T>, k: Number): Expression<T> =
FunctionalConstProductExpression(algebra, a, k)
operator fun Expression<T>.plus(arg: T): Expression<T> = this + const(arg)
operator fun Expression<T>.minus(arg: T): Expression<T> = this - const(arg)
operator fun T.plus(arg: Expression<T>): Expression<T> = arg + this
operator fun T.minus(arg: Expression<T>): Expression<T> = arg - this
override fun unaryOperation(operation: String, arg: Expression<T>): Expression<T> =
super<FunctionalExpressionAlgebra>.unaryOperation(operation, arg)
override fun binaryOperation(operation: String, left: Expression<T>, right: Expression<T>): Expression<T> =
super<FunctionalExpressionAlgebra>.binaryOperation(operation, left, right)
}
open class FunctionalExpressionRing<T, A>(override val algebra: A) : FunctionalExpressionSpace<T, A>(algebra),
Ring<Expression<T>> where A : Ring<T>, A : NumericAlgebra<T> {
override val one: Expression<T>
get() = const(algebra.one)
/**
* Builds an Expression of multiplication of two expressions.
*/
override fun multiply(a: Expression<T>, b: Expression<T>): Expression<T> =
FunctionalBinaryOperation(algebra, RingOperations.TIMES_OPERATION, a, b)
operator fun Expression<T>.times(arg: T): Expression<T> = this * const(arg)
operator fun T.times(arg: Expression<T>): Expression<T> = arg * this
override fun unaryOperation(operation: String, arg: Expression<T>): Expression<T> =
super<FunctionalExpressionSpace>.unaryOperation(operation, arg)
override fun binaryOperation(operation: String, left: Expression<T>, right: Expression<T>): Expression<T> =
super<FunctionalExpressionSpace>.binaryOperation(operation, left, right)
}
open class FunctionalExpressionField<T, A>(override val algebra: A) :
FunctionalExpressionRing<T, A>(algebra),
Field<Expression<T>> where A : Field<T>, A : NumericAlgebra<T> {
/**
* Builds an Expression of division an expression by another one.
*/
override fun divide(a: Expression<T>, b: Expression<T>): Expression<T> =
FunctionalBinaryOperation(algebra, FieldOperations.DIV_OPERATION, a, b)
operator fun Expression<T>.div(arg: T): Expression<T> = this / const(arg)
operator fun T.div(arg: Expression<T>): Expression<T> = arg / this
override fun unaryOperation(operation: String, arg: Expression<T>): Expression<T> =
super<FunctionalExpressionRing>.unaryOperation(operation, arg)
override fun binaryOperation(operation: String, left: Expression<T>, right: Expression<T>): Expression<T> =
super<FunctionalExpressionRing>.binaryOperation(operation, left, right)
}

View File

@ -1,94 +0,0 @@
package scientifik.kmath.expressions
import scientifik.kmath.operations.Field
import scientifik.kmath.operations.Ring
import scientifik.kmath.operations.Space
internal class VariableExpression<T>(val name: String, val default: T? = null) : Expression<T> {
override fun invoke(arguments: Map<String, T>): T =
arguments[name] ?: default ?: error("Parameter not found: $name")
}
internal class ConstantExpression<T>(val value: T) : Expression<T> {
override fun invoke(arguments: Map<String, T>): T = value
}
internal class SumExpression<T>(
val context: Space<T>,
val first: Expression<T>,
val second: Expression<T>
) : Expression<T> {
override fun invoke(arguments: Map<String, T>): T = context.add(first.invoke(arguments), second.invoke(arguments))
}
internal class ProductExpression<T>(
val context: Ring<T>,
val first: Expression<T>,
val second: Expression<T>
) : Expression<T> {
override fun invoke(arguments: Map<String, T>): T =
context.multiply(first.invoke(arguments), second.invoke(arguments))
}
internal class ConstProductExpession<T>(val context: Space<T>, val expr: Expression<T>, val const: Number) :
Expression<T> {
override fun invoke(arguments: Map<String, T>): T = context.multiply(expr.invoke(arguments), const)
}
internal class DivExpession<T>(val context: Field<T>, val expr: Expression<T>, val second: Expression<T>) :
Expression<T> {
override fun invoke(arguments: Map<String, T>): T = context.divide(expr.invoke(arguments), second.invoke(arguments))
}
open class FunctionalExpressionSpace<T>(
val space: Space<T>
) : Space<Expression<T>>, ExpressionAlgebra<T, Expression<T>> {
override val zero: Expression<T> = ConstantExpression(space.zero)
override fun const(value: T): Expression<T> = ConstantExpression(value)
override fun variable(name: String, default: T?): Expression<T> = VariableExpression(name, default)
override fun add(a: Expression<T>, b: Expression<T>): Expression<T> = SumExpression(space, a, b)
override fun multiply(a: Expression<T>, k: Number): Expression<T> = ConstProductExpession(space, a, k)
operator fun Expression<T>.plus(arg: T) = this + const(arg)
operator fun Expression<T>.minus(arg: T) = this - const(arg)
operator fun T.plus(arg: Expression<T>) = arg + this
operator fun T.minus(arg: Expression<T>) = arg - this
}
open class FunctionalExpressionField<T>(
val field: Field<T>
) : Field<Expression<T>>, ExpressionAlgebra<T, Expression<T>>, FunctionalExpressionSpace<T>(field) {
override val one: Expression<T> = ConstantExpression(this.field.one)
fun const(value: Double): Expression<T> = const(field.run { one * value })
override fun multiply(a: Expression<T>, b: Expression<T>): Expression<T> = ProductExpression(field, a, b)
override fun divide(a: Expression<T>, b: Expression<T>): Expression<T> = DivExpession(field, a, b)
operator fun Expression<T>.times(arg: T) = this * const(arg)
operator fun Expression<T>.div(arg: T) = this / const(arg)
operator fun T.times(arg: Expression<T>) = arg * this
operator fun T.div(arg: Expression<T>) = arg / this
}
/**
* Create a functional expression on this [Space]
*/
fun <T> Space<T>.buildExpression(block: FunctionalExpressionSpace<T>.() -> Expression<T>): Expression<T> =
FunctionalExpressionSpace(this).run(block)
/**
* Create a functional expression on this [Field]
*/
fun <T> Field<T>.buildExpression(block: FunctionalExpressionField<T>.() -> Expression<T>): Expression<T> =
FunctionalExpressionField(this).run(block)