From 3da47573f4732f2fa1f9e48b4d11e9ea283e4fd4 Mon Sep 17 00:00:00 2001 From: Margarita <44027333+margarita0303@users.noreply.github.com> Date: Tue, 12 Jul 2022 20:43:35 +0300 Subject: [PATCH] Delete margarita.kt deleted tmp file for testing during work --- .../space/kscience/kmath/tensors/margarita.kt | 65 ------------------- 1 file changed, 65 deletions(-) delete mode 100644 examples/src/main/kotlin/space/kscience/kmath/tensors/margarita.kt diff --git a/examples/src/main/kotlin/space/kscience/kmath/tensors/margarita.kt b/examples/src/main/kotlin/space/kscience/kmath/tensors/margarita.kt deleted file mode 100644 index c376d6d0f..000000000 --- a/examples/src/main/kotlin/space/kscience/kmath/tensors/margarita.kt +++ /dev/null @@ -1,65 +0,0 @@ -/* - * Copyright 2018-2021 KMath contributors. - * Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file. - */ - -package space.kscience.kmath.tensors - -import space.kscience.kmath.linear.transpose -import space.kscience.kmath.misc.PerformancePitfall -import space.kscience.kmath.nd.MutableStructure2D -import space.kscience.kmath.nd.Structure2D -import space.kscience.kmath.nd.as2D -import space.kscience.kmath.tensors.core.* -import space.kscience.kmath.tensors.core.tensorAlgebra -import kotlin.math.* - -fun MutableStructure2D.print() { - val n = this.shape.component1() - val m = this.shape.component2() - for (i in 0 until n) { - for (j in 0 until m) { - val x = (this[i, j] * 100).roundToInt() / 100.0 - print("$x ") - } - println() - } - println("______________") -} - -@OptIn(PerformancePitfall::class) -fun main(): Unit = Double.tensorAlgebra.withBroadcast { - val shape = intArrayOf(5, 3) - val buffer = doubleArrayOf( - 1.000000, 2.000000, 3.000000, - 2.000000, 3.000000, 4.000000, - 3.000000, 4.000000, 5.000000, - 4.000000, 5.000000, 6.000000, - 5.000000, 6.000000, 7.000000 - ) - val buffer2 = doubleArrayOf( - 0.000000, 0.000000, 0.000000, - 0.000000, 0.000000, 0.000000, - 0.000000, 0.000000, 0.000000 - ) - val tensor = fromArray(shape, buffer).as2D() - val v = fromArray(intArrayOf(3, 3), buffer2).as2D() - val w_shape = intArrayOf(3, 1) - var w_buffer = doubleArrayOf(0.000000) - for (i in 0 until 3 - 1) { - w_buffer += doubleArrayOf(0.000000) - } - val w = BroadcastDoubleTensorAlgebra.fromArray(w_shape, w_buffer).as2D() - tensor.print() - var ans = Pair(w, v) - tensor.svdGolabKahan(v, w) - - println("u") - tensor.print() - println("w") - w.print() - println("v") - v.print() - - -}