Merge branch 'feature/polynomials-sift' into feature/polynomials

This commit is contained in:
Gleb Minaev 2022-06-18 01:26:33 +03:00
commit 6c8fa29304
31 changed files with 5509 additions and 2310 deletions

View File

@ -91,6 +91,15 @@ public inline fun <T : Any, R> Buffer<T>.fold(initial: R, operation: (acc: R, T)
return accumulator return accumulator
} }
/**
* Fold given buffer according to indexed [operation]
*/
public inline fun <T : Any, R> Buffer<T>.foldIndexed(initial: R, operation: (index: Int, acc: R, T) -> R): R {
var accumulator = initial
for (index in this.indices) accumulator = operation(index, accumulator, get(index))
return accumulator
}
/** /**
* Zip two buffers using given [transform]. * Zip two buffers using given [transform].
*/ */

View File

@ -7,26 +7,25 @@ package space.kscience.kmath.functions
import space.kscience.kmath.expressions.Symbol import space.kscience.kmath.expressions.Symbol
import space.kscience.kmath.operations.Ring import space.kscience.kmath.operations.Ring
import space.kscience.kmath.operations.ScaleOperations import kotlin.jvm.JvmName
import kotlin.math.max import kotlin.math.max
/** /**
* Represents multivariate polynomials with labeled variables. * Represents multivariate polynomial that stores its coefficients in a [Map] and terms' signatures in a [Map] that
* associates variables (of type [Symbol]) with their degree.
* *
* @param C Ring in which the polynomial is considered. * @param C the type of constants.
*/ */
public data class LabeledPolynomial<C> public data class LabeledPolynomial<C>
@PublishedApi
internal constructor( internal constructor(
/** /**
* Map that collects coefficients of the polynomial. Every non-zero monomial * Map that contains coefficients of the polynomial.
* `a x_1^{d_1} ... x_n^{d_n}` is represented as pair "key-value" in the map, where value is coefficients `a` and *
* key is map that associates variables in the monomial with multiplicity of them occurring in the monomial. * Every monomial `a x_1^{d_1} ... x_n^{d_n}` is stored as a pair "key-value" in the map, where the value is the
* For example polynomial * coefficient `a` and the key is a map that associates variables in the monomial with their degree in the monomial.
* ``` * For example, coefficients of a polynomial `5 a^2 c^3 - 6 b` can be represented as
* 5 a^2 c^3 - 6 b + 0 b c
* ```
* has coefficients represented as
* ``` * ```
* mapOf( * mapOf(
* mapOf( * mapOf(
@ -38,6 +37,22 @@ internal constructor(
* ) to (-6) * ) to (-6)
* ) * )
* ``` * ```
* and also as
* ```
* mapOf(
* mapOf(
* a to 2,
* c to 3
* ) to 5,
* mapOf(
* b to 1
* ) to (-6),
* mapOf(
* b to 1,
* c to 1
* ) to 0
* )
* ```
* where `a`, `b` and `c` are corresponding [Symbol] objects. * where `a`, `b` and `c` are corresponding [Symbol] objects.
*/ */
public val coefficients: Map<Map<Symbol, UInt>, C> public val coefficients: Map<Map<Symbol, UInt>, C>
@ -46,69 +61,88 @@ internal constructor(
} }
/** /**
* Space of polynomials. * Arithmetic context for multivariate polynomials with coefficients stored as a [Map] and terms' signatures stored as a
* [Map] constructed with the provided [ring] of constants.
* *
* @param C the type of operated polynomials. * @param C the type of constants. Polynomials have them a coefficients in their terms.
* @param A the intersection of [Ring] of [C] and [ScaleOperations] of [C]. * @param A type of provided underlying ring of constants. It's [Ring] of [C].
* @param ring the [A] instance. * @param ring underlying ring of constants of type [A].
*/ */
public class LabeledPolynomialSpace<C, A : Ring<C>>( public class LabeledPolynomialSpace<C, A : Ring<C>>(
public override val ring: A, public override val ring: A,
) : MultivariatePolynomialSpace<C, Symbol, LabeledPolynomial<C>>, PolynomialSpaceOverRing<C, LabeledPolynomial<C>, A> { ) : MultivariatePolynomialSpace<C, Symbol, LabeledPolynomial<C>>, PolynomialSpaceOverRing<C, LabeledPolynomial<C>, A> {
/**
* Returns sum of the variable represented as a monic monomial and the integer represented as a constant polynomial.
*/
public override operator fun Symbol.plus(other: Int): LabeledPolynomial<C> = public override operator fun Symbol.plus(other: Int): LabeledPolynomial<C> =
if (other == 0) LabeledPolynomial<C>(mapOf( if (other == 0) LabeledPolynomialAsIs(mapOf(
mapOf(this@plus to 1U) to constantOne, mapOf(this@plus to 1U) to constantOne,
)) ))
else LabeledPolynomial<C>(mapOf( else LabeledPolynomialAsIs(mapOf(
mapOf(this@plus to 1U) to constantOne, mapOf(this@plus to 1U) to constantOne,
emptyMap<Symbol, UInt>() to constantOne * other, emptyMap<Symbol, UInt>() to constantOne * other,
)) ))
/**
* Returns difference between the variable represented as a monic monomial and the integer represented as a constant polynomial.
*/
public override operator fun Symbol.minus(other: Int): LabeledPolynomial<C> = public override operator fun Symbol.minus(other: Int): LabeledPolynomial<C> =
if (other == 0) LabeledPolynomial<C>(mapOf( if (other == 0) LabeledPolynomialAsIs(mapOf(
mapOf(this@minus to 1U) to -constantOne, mapOf(this@minus to 1U) to -constantOne,
)) ))
else LabeledPolynomial<C>(mapOf( else LabeledPolynomialAsIs(mapOf(
mapOf(this@minus to 1U) to -constantOne, mapOf(this@minus to 1U) to -constantOne,
emptyMap<Symbol, UInt>() to constantOne * other, emptyMap<Symbol, UInt>() to constantOne * other,
)) ))
/**
* Returns product of the variable represented as a monic monomial and the integer represented as a constant polynomial.
*/
public override operator fun Symbol.times(other: Int): LabeledPolynomial<C> = public override operator fun Symbol.times(other: Int): LabeledPolynomial<C> =
if (other == 0) zero if (other == 0) zero
else LabeledPolynomial<C>(mapOf( else LabeledPolynomialAsIs(mapOf(
mapOf(this to 1U) to constantOne * other, mapOf(this to 1U) to constantOne * other,
)) ))
/**
* Returns sum of the integer represented as a constant polynomial and the variable represented as a monic monomial.
*/
public override operator fun Int.plus(other: Symbol): LabeledPolynomial<C> = public override operator fun Int.plus(other: Symbol): LabeledPolynomial<C> =
if (this == 0) LabeledPolynomial<C>(mapOf( if (this == 0) LabeledPolynomialAsIs(mapOf(
mapOf(other to 1U) to constantOne, mapOf(other to 1U) to constantOne,
)) ))
else LabeledPolynomial<C>(mapOf( else LabeledPolynomialAsIs(mapOf(
mapOf(other to 1U) to constantOne, mapOf(other to 1U) to constantOne,
emptyMap<Symbol, UInt>() to constantOne * this@plus, emptyMap<Symbol, UInt>() to constantOne * this@plus,
)) ))
/**
* Returns difference between the integer represented as a constant polynomial and the variable represented as a monic monomial.
*/
public override operator fun Int.minus(other: Symbol): LabeledPolynomial<C> = public override operator fun Int.minus(other: Symbol): LabeledPolynomial<C> =
if (this == 0) LabeledPolynomial<C>(mapOf( if (this == 0) LabeledPolynomialAsIs(mapOf(
mapOf(other to 1U) to -constantOne, mapOf(other to 1U) to -constantOne,
)) ))
else LabeledPolynomial<C>(mapOf( else LabeledPolynomialAsIs(mapOf(
mapOf(other to 1U) to -constantOne, mapOf(other to 1U) to -constantOne,
emptyMap<Symbol, UInt>() to constantOne * this@minus, emptyMap<Symbol, UInt>() to constantOne * this@minus,
)) ))
/**
* Returns product of the integer represented as a constant polynomial and the variable represented as a monic monomial.
*/
public override operator fun Int.times(other: Symbol): LabeledPolynomial<C> = public override operator fun Int.times(other: Symbol): LabeledPolynomial<C> =
if (this == 0) zero if (this == 0) zero
else LabeledPolynomial<C>(mapOf( else LabeledPolynomialAsIs(mapOf(
mapOf(other to 1U) to constantOne * this@times, mapOf(other to 1U) to constantOne * this@times,
)) ))
/** /**
* Returns sum of the polynomial and the integer represented as polynomial. * Returns sum of the polynomial and the integer represented as a polynomial.
* *
* The operation is equivalent to adding [other] copies of unit polynomial to [this]. * The operation is equivalent to adding [other] copies of unit polynomial to [this].
*/ */
public override operator fun LabeledPolynomial<C>.plus(other: Int): LabeledPolynomial<C> = public override operator fun LabeledPolynomial<C>.plus(other: Int): LabeledPolynomial<C> =
if (other == 0) this if (other == 0) this
else with(coefficients) { else with(coefficients) {
if (isEmpty()) LabeledPolynomial<C>(mapOf(emptyMap<Symbol, UInt>() to other.asConstant())) if (isEmpty()) LabeledPolynomialAsIs(mapOf(emptyMap<Symbol, UInt>() to other.asConstant()))
else LabeledPolynomial<C>( else LabeledPolynomialAsIs(
toMutableMap() toMutableMap()
.apply { .apply {
val degs = emptyMap<Symbol, UInt>() val degs = emptyMap<Symbol, UInt>()
@ -118,15 +152,15 @@ public class LabeledPolynomialSpace<C, A : Ring<C>>(
) )
} }
/** /**
* Returns difference between the polynomial and the integer represented as polynomial. * Returns difference between the polynomial and the integer represented as a polynomial.
* *
* The operation is equivalent to subtraction [other] copies of unit polynomial from [this]. * The operation is equivalent to subtraction [other] copies of unit polynomial from [this].
*/ */
public override operator fun LabeledPolynomial<C>.minus(other: Int): LabeledPolynomial<C> = public override operator fun LabeledPolynomial<C>.minus(other: Int): LabeledPolynomial<C> =
if (other == 0) this if (other == 0) this
else with(coefficients) { else with(coefficients) {
if (isEmpty()) LabeledPolynomial<C>(mapOf(emptyMap<Symbol, UInt>() to (-other).asConstant())) if (isEmpty()) LabeledPolynomialAsIs(mapOf(emptyMap<Symbol, UInt>() to (-other).asConstant()))
else LabeledPolynomial<C>( else LabeledPolynomialAsIs(
toMutableMap() toMutableMap()
.apply { .apply {
val degs = emptyMap<Symbol, UInt>() val degs = emptyMap<Symbol, UInt>()
@ -136,7 +170,7 @@ public class LabeledPolynomialSpace<C, A : Ring<C>>(
) )
} }
/** /**
* Returns product of the polynomial and the integer represented as polynomial. * Returns product of the polynomial and the integer represented as a polynomial.
* *
* The operation is equivalent to sum of [other] copies of [this]. * The operation is equivalent to sum of [other] copies of [this].
*/ */
@ -151,15 +185,15 @@ public class LabeledPolynomialSpace<C, A : Ring<C>>(
) )
/** /**
* Returns sum of the integer represented as polynomial and the polynomial. * Returns sum of the integer represented as a polynomial and the polynomial.
* *
* The operation is equivalent to adding [this] copies of unit polynomial to [other]. * The operation is equivalent to adding [this] copies of unit polynomial to [other].
*/ */
public override operator fun Int.plus(other: LabeledPolynomial<C>): LabeledPolynomial<C> = public override operator fun Int.plus(other: LabeledPolynomial<C>): LabeledPolynomial<C> =
if (this == 0) other if (this == 0) other
else with(other.coefficients) { else with(other.coefficients) {
if (isEmpty()) LabeledPolynomial<C>(mapOf(emptyMap<Symbol, UInt>() to this@plus.asConstant())) if (isEmpty()) LabeledPolynomialAsIs(mapOf(emptyMap<Symbol, UInt>() to this@plus.asConstant()))
else LabeledPolynomial<C>( else LabeledPolynomialAsIs(
toMutableMap() toMutableMap()
.apply { .apply {
val degs = emptyMap<Symbol, UInt>() val degs = emptyMap<Symbol, UInt>()
@ -169,17 +203,19 @@ public class LabeledPolynomialSpace<C, A : Ring<C>>(
) )
} }
/** /**
* Returns difference between the integer represented as polynomial and the polynomial. * Returns difference between the integer represented as a polynomial and the polynomial.
* *
* The operation is equivalent to subtraction [this] copies of unit polynomial from [other]. * The operation is equivalent to subtraction [this] copies of unit polynomial from [other].
*/ */
public override operator fun Int.minus(other: LabeledPolynomial<C>): LabeledPolynomial<C> = public override operator fun Int.minus(other: LabeledPolynomial<C>): LabeledPolynomial<C> =
if (this == 0) other if (this == 0) other
else with(other.coefficients) { else with(other.coefficients) {
if (isEmpty()) LabeledPolynomial<C>(mapOf(emptyMap<Symbol, UInt>() to this@minus.asConstant())) if (isEmpty()) LabeledPolynomialAsIs(mapOf(emptyMap<Symbol, UInt>() to this@minus.asConstant()))
else LabeledPolynomial<C>( else LabeledPolynomialAsIs(
toMutableMap() toMutableMap()
.apply { .apply {
forEach { (key, value) -> if (key.isNotEmpty()) this[key] = -value }
val degs = emptyMap<Symbol, UInt>() val degs = emptyMap<Symbol, UInt>()
this[degs] = this@minus - getOrElse(degs) { constantZero } this[degs] = this@minus - getOrElse(degs) { constantZero }
@ -187,7 +223,7 @@ public class LabeledPolynomialSpace<C, A : Ring<C>>(
) )
} }
/** /**
* Returns product of the integer represented as polynomial and the polynomial. * Returns product of the integer represented as a polynomial and the polynomial.
* *
* The operation is equivalent to sum of [this] copies of [other]. * The operation is equivalent to sum of [this] copies of [other].
*/ */
@ -206,43 +242,61 @@ public class LabeledPolynomialSpace<C, A : Ring<C>>(
*/ */
public override fun number(value: Int): LabeledPolynomial<C> = number(constantNumber(value)) public override fun number(value: Int): LabeledPolynomial<C> = number(constantNumber(value))
public override operator fun C.plus(other: Symbol): LabeledPolynomial<C> = /**
LabeledPolynomial<C>(mapOf( * Returns sum of the variable represented as a monic monomial and the constant represented as a constant polynomial.
mapOf(other to 1U) to constantOne, */
emptyMap<Symbol, UInt>() to this@plus,
))
public override operator fun C.minus(other: Symbol): LabeledPolynomial<C> =
LabeledPolynomial<C>(mapOf(
mapOf(other to 1U) to -constantOne,
emptyMap<Symbol, UInt>() to this@minus,
))
public override operator fun C.times(other: Symbol): LabeledPolynomial<C> =
LabeledPolynomial<C>(mapOf(
mapOf(other to 1U) to this@times,
))
public override operator fun Symbol.plus(other: C): LabeledPolynomial<C> = public override operator fun Symbol.plus(other: C): LabeledPolynomial<C> =
LabeledPolynomial<C>(mapOf( LabeledPolynomialAsIs(mapOf(
mapOf(this@plus to 1U) to constantOne, mapOf(this@plus to 1U) to constantOne,
emptyMap<Symbol, UInt>() to other, emptyMap<Symbol, UInt>() to other,
)) ))
/**
* Returns difference between the variable represented as a monic monomial and the constant represented as a constant polynomial.
*/
public override operator fun Symbol.minus(other: C): LabeledPolynomial<C> = public override operator fun Symbol.minus(other: C): LabeledPolynomial<C> =
LabeledPolynomial<C>(mapOf( LabeledPolynomialAsIs(mapOf(
mapOf(this@minus to 1U) to -constantOne, mapOf(this@minus to 1U) to -constantOne,
emptyMap<Symbol, UInt>() to other, emptyMap<Symbol, UInt>() to other,
)) ))
/**
* Returns product of the variable represented as a monic monomial and the constant represented as a constant polynomial.
*/
public override operator fun Symbol.times(other: C): LabeledPolynomial<C> = public override operator fun Symbol.times(other: C): LabeledPolynomial<C> =
LabeledPolynomial<C>(mapOf( LabeledPolynomialAsIs(mapOf(
mapOf(this@times to 1U) to other, mapOf(this@times to 1U) to other,
)) ))
/** /**
* Returns sum of the constant represented as polynomial and the polynomial. * Returns sum of the constant represented as a constant polynomial and the variable represented as a monic monomial.
*/
public override operator fun C.plus(other: Symbol): LabeledPolynomial<C> =
LabeledPolynomialAsIs(mapOf(
mapOf(other to 1U) to constantOne,
emptyMap<Symbol, UInt>() to this@plus,
))
/**
* Returns difference between the constant represented as a constant polynomial and the variable represented as a monic monomial.
*/
public override operator fun C.minus(other: Symbol): LabeledPolynomial<C> =
LabeledPolynomialAsIs(mapOf(
mapOf(other to 1U) to -constantOne,
emptyMap<Symbol, UInt>() to this@minus,
))
/**
* Returns product of the constant represented as a constant polynomial and the variable represented as a monic monomial.
*/
public override operator fun C.times(other: Symbol): LabeledPolynomial<C> =
LabeledPolynomialAsIs(mapOf(
mapOf(other to 1U) to this@times,
))
/**
* Returns sum of the constant represented as a polynomial and the polynomial.
*/ */
override operator fun C.plus(other: LabeledPolynomial<C>): LabeledPolynomial<C> = override operator fun C.plus(other: LabeledPolynomial<C>): LabeledPolynomial<C> =
with(other.coefficients) { with(other.coefficients) {
if (isEmpty()) LabeledPolynomial<C>(mapOf(emptyMap<Symbol, UInt>() to this@plus)) if (isEmpty()) LabeledPolynomialAsIs(mapOf(emptyMap<Symbol, UInt>() to this@plus))
else LabeledPolynomial<C>( else LabeledPolynomialAsIs(
toMutableMap() toMutableMap()
.apply { .apply {
val degs = emptyMap<Symbol, UInt>() val degs = emptyMap<Symbol, UInt>()
@ -252,12 +306,12 @@ public class LabeledPolynomialSpace<C, A : Ring<C>>(
) )
} }
/** /**
* Returns difference between the constant represented as polynomial and the polynomial. * Returns difference between the constant represented as a polynomial and the polynomial.
*/ */
override operator fun C.minus(other: LabeledPolynomial<C>): LabeledPolynomial<C> = override operator fun C.minus(other: LabeledPolynomial<C>): LabeledPolynomial<C> =
with(other.coefficients) { with(other.coefficients) {
if (isEmpty()) LabeledPolynomial<C>(mapOf(emptyMap<Symbol, UInt>() to this@minus)) if (isEmpty()) LabeledPolynomialAsIs(mapOf(emptyMap<Symbol, UInt>() to this@minus))
else LabeledPolynomial<C>( else LabeledPolynomialAsIs(
toMutableMap() toMutableMap()
.apply { .apply {
forEach { (degs, c) -> if(degs.isNotEmpty()) this[degs] = -c } forEach { (degs, c) -> if(degs.isNotEmpty()) this[degs] = -c }
@ -269,10 +323,10 @@ public class LabeledPolynomialSpace<C, A : Ring<C>>(
) )
} }
/** /**
* Returns product of the constant represented as polynomial and the polynomial. * Returns product of the constant represented as a polynomial and the polynomial.
*/ */
override operator fun C.times(other: LabeledPolynomial<C>): LabeledPolynomial<C> = override operator fun C.times(other: LabeledPolynomial<C>): LabeledPolynomial<C> =
LabeledPolynomial<C>( LabeledPolynomialAsIs(
other.coefficients other.coefficients
.toMutableMap() .toMutableMap()
.apply { .apply {
@ -281,12 +335,12 @@ public class LabeledPolynomialSpace<C, A : Ring<C>>(
) )
/** /**
* Returns sum of the constant represented as polynomial and the polynomial. * Returns sum of the constant represented as a polynomial and the polynomial.
*/ */
override operator fun LabeledPolynomial<C>.plus(other: C): LabeledPolynomial<C> = override operator fun LabeledPolynomial<C>.plus(other: C): LabeledPolynomial<C> =
with(coefficients) { with(coefficients) {
if (isEmpty()) LabeledPolynomial<C>(mapOf(emptyMap<Symbol, UInt>() to other)) if (isEmpty()) LabeledPolynomialAsIs(mapOf(emptyMap<Symbol, UInt>() to other))
else LabeledPolynomial<C>( else LabeledPolynomialAsIs(
toMutableMap() toMutableMap()
.apply { .apply {
val degs = emptyMap<Symbol, UInt>() val degs = emptyMap<Symbol, UInt>()
@ -296,12 +350,12 @@ public class LabeledPolynomialSpace<C, A : Ring<C>>(
) )
} }
/** /**
* Returns difference between the constant represented as polynomial and the polynomial. * Returns difference between the constant represented as a polynomial and the polynomial.
*/ */
override operator fun LabeledPolynomial<C>.minus(other: C): LabeledPolynomial<C> = override operator fun LabeledPolynomial<C>.minus(other: C): LabeledPolynomial<C> =
with(coefficients) { with(coefficients) {
if (isEmpty()) LabeledPolynomial<C>(mapOf(emptyMap<Symbol, UInt>() to other)) if (isEmpty()) LabeledPolynomialAsIs(mapOf(emptyMap<Symbol, UInt>() to other))
else LabeledPolynomial<C>( else LabeledPolynomialAsIs(
toMutableMap() toMutableMap()
.apply { .apply {
forEach { (degs, c) -> if(degs.isNotEmpty()) this[degs] = -c } forEach { (degs, c) -> if(degs.isNotEmpty()) this[degs] = -c }
@ -313,10 +367,10 @@ public class LabeledPolynomialSpace<C, A : Ring<C>>(
) )
} }
/** /**
* Returns product of the constant represented as polynomial and the polynomial. * Returns product of the constant represented as a polynomial and the polynomial.
*/ */
override operator fun LabeledPolynomial<C>.times(other: C): LabeledPolynomial<C> = override operator fun LabeledPolynomial<C>.times(other: C): LabeledPolynomial<C> =
LabeledPolynomial<C>( LabeledPolynomialAsIs(
coefficients coefficients
.toMutableMap() .toMutableMap()
.apply { .apply {
@ -330,40 +384,58 @@ public class LabeledPolynomialSpace<C, A : Ring<C>>(
public override fun number(value: C): LabeledPolynomial<C> = public override fun number(value: C): LabeledPolynomial<C> =
LabeledPolynomial(mapOf(emptyMap<Symbol, UInt>() to value)) LabeledPolynomial(mapOf(emptyMap<Symbol, UInt>() to value))
/**
* Represents the variable as a monic monomial.
*/
public override operator fun Symbol.unaryPlus(): LabeledPolynomial<C> = public override operator fun Symbol.unaryPlus(): LabeledPolynomial<C> =
LabeledPolynomial<C>(mapOf( LabeledPolynomialAsIs(mapOf(
mapOf(this to 1U) to constantOne, mapOf(this to 1U) to constantOne,
)) ))
/**
* Returns negation of representation of the variable as a monic monomial.
*/
public override operator fun Symbol.unaryMinus(): LabeledPolynomial<C> = public override operator fun Symbol.unaryMinus(): LabeledPolynomial<C> =
LabeledPolynomial<C>(mapOf( LabeledPolynomialAsIs(mapOf(
mapOf(this to 1U) to -constantOne, mapOf(this to 1U) to -constantOne,
)) ))
/**
* Returns sum of the variables represented as monic monomials.
*/
public override operator fun Symbol.plus(other: Symbol): LabeledPolynomial<C> = public override operator fun Symbol.plus(other: Symbol): LabeledPolynomial<C> =
if (this == other) LabeledPolynomial<C>(mapOf( if (this == other) LabeledPolynomialAsIs(mapOf(
mapOf(this to 1U) to constantOne * 2 mapOf(this to 1U) to constantOne * 2
)) ))
else LabeledPolynomial<C>(mapOf( else LabeledPolynomialAsIs(mapOf(
mapOf(this to 1U) to constantOne, mapOf(this to 1U) to constantOne,
mapOf(other to 1U) to constantOne, mapOf(other to 1U) to constantOne,
)) ))
/**
* Returns difference between the variables represented as monic monomials.
*/
public override operator fun Symbol.minus(other: Symbol): LabeledPolynomial<C> = public override operator fun Symbol.minus(other: Symbol): LabeledPolynomial<C> =
if (this == other) zero if (this == other) zero
else LabeledPolynomial<C>(mapOf( else LabeledPolynomialAsIs(mapOf(
mapOf(this to 1U) to constantOne, mapOf(this to 1U) to constantOne,
mapOf(other to 1U) to -constantOne, mapOf(other to 1U) to -constantOne,
)) ))
/**
* Returns product of the variables represented as monic monomials.
*/
public override operator fun Symbol.times(other: Symbol): LabeledPolynomial<C> = public override operator fun Symbol.times(other: Symbol): LabeledPolynomial<C> =
if (this == other) LabeledPolynomial<C>(mapOf( if (this == other) LabeledPolynomialAsIs(mapOf(
mapOf(this to 2U) to constantOne mapOf(this to 2U) to constantOne
)) ))
else LabeledPolynomial<C>(mapOf( else LabeledPolynomialAsIs(mapOf(
mapOf(this to 1U, other to 1U) to constantOne, mapOf(this to 1U, other to 1U) to constantOne,
)) ))
/**
* Returns sum of the variable represented as a monic monomial and the polynomial.
*/
public override operator fun Symbol.plus(other: LabeledPolynomial<C>): LabeledPolynomial<C> = public override operator fun Symbol.plus(other: LabeledPolynomial<C>): LabeledPolynomial<C> =
with(other.coefficients) { with(other.coefficients) {
if (isEmpty()) LabeledPolynomial<C>(mapOf(mapOf(this@plus to 1u) to constantOne)) if (isEmpty()) LabeledPolynomialAsIs(mapOf(mapOf(this@plus to 1u) to constantOne))
else LabeledPolynomial<C>( else LabeledPolynomialAsIs(
toMutableMap() toMutableMap()
.apply { .apply {
val degs = mapOf(this@plus to 1U) val degs = mapOf(this@plus to 1U)
@ -372,30 +444,39 @@ public class LabeledPolynomialSpace<C, A : Ring<C>>(
} }
) )
} }
/**
* Returns difference between the variable represented as a monic monomial and the polynomial.
*/
public override operator fun Symbol.minus(other: LabeledPolynomial<C>): LabeledPolynomial<C> = public override operator fun Symbol.minus(other: LabeledPolynomial<C>): LabeledPolynomial<C> =
with(other.coefficients) { with(other.coefficients) {
if (isEmpty()) LabeledPolynomial<C>(mapOf(mapOf(this@minus to 1u) to constantOne)) if (isEmpty()) LabeledPolynomialAsIs(mapOf(mapOf(this@minus to 1u) to constantOne))
else LabeledPolynomial<C>( else LabeledPolynomialAsIs(
toMutableMap() toMutableMap()
.apply { .apply {
forEach { (degs, c) -> if(degs.isNotEmpty()) this[degs] = -c }
val degs = mapOf(this@minus to 1U) val degs = mapOf(this@minus to 1U)
forEach { (degs, c) -> if(degs != degs) this[degs] = -c }
this[degs] = constantOne - getOrElse(degs) { constantZero } this[degs] = constantOne - getOrElse(degs) { constantZero }
} }
) )
} }
/**
* Returns product of the variable represented as a monic monomial and the polynomial.
*/
public override operator fun Symbol.times(other: LabeledPolynomial<C>): LabeledPolynomial<C> = public override operator fun Symbol.times(other: LabeledPolynomial<C>): LabeledPolynomial<C> =
LabeledPolynomial<C>( LabeledPolynomialAsIs(
other.coefficients other.coefficients
.mapKeys { (degs, _) -> degs.toMutableMap().also{ it[this] = if (this in it) it[this]!! + 1U else 1U } } .mapKeys { (degs, _) -> degs.toMutableMap().also{ it[this] = if (this in it) it[this]!! + 1U else 1U } }
) )
/**
* Returns sum of the polynomial and the variable represented as a monic monomial.
*/
public override operator fun LabeledPolynomial<C>.plus(other: Symbol): LabeledPolynomial<C> = public override operator fun LabeledPolynomial<C>.plus(other: Symbol): LabeledPolynomial<C> =
with(coefficients) { with(coefficients) {
if (isEmpty()) LabeledPolynomial<C>(mapOf(mapOf(other to 1u) to constantOne)) if (isEmpty()) LabeledPolynomialAsIs(mapOf(mapOf(other to 1u) to constantOne))
else LabeledPolynomial<C>( else LabeledPolynomialAsIs(
toMutableMap() toMutableMap()
.apply { .apply {
val degs = mapOf(other to 1U) val degs = mapOf(other to 1U)
@ -404,10 +485,13 @@ public class LabeledPolynomialSpace<C, A : Ring<C>>(
} }
) )
} }
/**
* Returns difference between the polynomial and the variable represented as a monic monomial.
*/
public override operator fun LabeledPolynomial<C>.minus(other: Symbol): LabeledPolynomial<C> = public override operator fun LabeledPolynomial<C>.minus(other: Symbol): LabeledPolynomial<C> =
with(coefficients) { with(coefficients) {
if (isEmpty()) LabeledPolynomial<C>(mapOf(mapOf(other to 1u) to constantOne)) if (isEmpty()) LabeledPolynomialAsIs(mapOf(mapOf(other to 1u) to constantOne))
else LabeledPolynomial<C>( else LabeledPolynomialAsIs(
toMutableMap() toMutableMap()
.apply { .apply {
val degs = mapOf(other to 1U) val degs = mapOf(other to 1U)
@ -416,8 +500,11 @@ public class LabeledPolynomialSpace<C, A : Ring<C>>(
} }
) )
} }
/**
* Returns product of the polynomial and the variable represented as a monic monomial.
*/
public override operator fun LabeledPolynomial<C>.times(other: Symbol): LabeledPolynomial<C> = public override operator fun LabeledPolynomial<C>.times(other: Symbol): LabeledPolynomial<C> =
LabeledPolynomial<C>( LabeledPolynomialAsIs(
coefficients coefficients
.mapKeys { (degs, _) -> degs.toMutableMap().also{ it[other] = if (other in it) it[other]!! + 1U else 1U } } .mapKeys { (degs, _) -> degs.toMutableMap().also{ it[other] = if (other in it) it[other]!! + 1U else 1U } }
) )
@ -426,14 +513,14 @@ public class LabeledPolynomialSpace<C, A : Ring<C>>(
* Returns negation of the polynomial. * Returns negation of the polynomial.
*/ */
override fun LabeledPolynomial<C>.unaryMinus(): LabeledPolynomial<C> = override fun LabeledPolynomial<C>.unaryMinus(): LabeledPolynomial<C> =
LabeledPolynomial<C>( LabeledPolynomialAsIs(
coefficients.mapValues { -it.value } coefficients.mapValues { -it.value }
) )
/** /**
* Returns sum of the polynomials. * Returns sum of the polynomials.
*/ */
override operator fun LabeledPolynomial<C>.plus(other: LabeledPolynomial<C>): LabeledPolynomial<C> = override operator fun LabeledPolynomial<C>.plus(other: LabeledPolynomial<C>): LabeledPolynomial<C> =
LabeledPolynomial<C>( LabeledPolynomialAsIs(
buildMap(coefficients.size + other.coefficients.size) { buildMap(coefficients.size + other.coefficients.size) {
other.coefficients.mapValuesTo(this) { it.value } other.coefficients.mapValuesTo(this) { it.value }
other.coefficients.mapValuesTo(this) { (key, value) -> if (key in this) this[key]!! + value else value } other.coefficients.mapValuesTo(this) { (key, value) -> if (key in this) this[key]!! + value else value }
@ -443,7 +530,7 @@ public class LabeledPolynomialSpace<C, A : Ring<C>>(
* Returns difference of the polynomials. * Returns difference of the polynomials.
*/ */
override operator fun LabeledPolynomial<C>.minus(other: LabeledPolynomial<C>): LabeledPolynomial<C> = override operator fun LabeledPolynomial<C>.minus(other: LabeledPolynomial<C>): LabeledPolynomial<C> =
LabeledPolynomial<C>( LabeledPolynomialAsIs(
buildMap(coefficients.size + other.coefficients.size) { buildMap(coefficients.size + other.coefficients.size) {
other.coefficients.mapValuesTo(this) { it.value } other.coefficients.mapValuesTo(this) { it.value }
other.coefficients.mapValuesTo(this) { (key, value) -> if (key in this) this[key]!! - value else -value } other.coefficients.mapValuesTo(this) { (key, value) -> if (key in this) this[key]!! - value else -value }
@ -453,7 +540,7 @@ public class LabeledPolynomialSpace<C, A : Ring<C>>(
* Returns product of the polynomials. * Returns product of the polynomials.
*/ */
override operator fun LabeledPolynomial<C>.times(other: LabeledPolynomial<C>): LabeledPolynomial<C> = override operator fun LabeledPolynomial<C>.times(other: LabeledPolynomial<C>): LabeledPolynomial<C> =
LabeledPolynomial<C>( LabeledPolynomialAsIs(
buildMap(coefficients.size * other.coefficients.size) { buildMap(coefficients.size * other.coefficients.size) {
for ((degs1, c1) in coefficients) for ((degs2, c2) in other.coefficients) { for ((degs1, c1) in coefficients) for ((degs2, c2) in other.coefficients) {
val degs = degs1.toMutableMap() val degs = degs1.toMutableMap()
@ -467,18 +554,18 @@ public class LabeledPolynomialSpace<C, A : Ring<C>>(
/** /**
* Instance of zero polynomial (zero of the polynomial ring). * Instance of zero polynomial (zero of the polynomial ring).
*/ */
override val zero: LabeledPolynomial<C> = LabeledPolynomial<C>(mapOf(emptyMap<Symbol, UInt>() to constantZero)) override val zero: LabeledPolynomial<C> = LabeledPolynomialAsIs(mapOf(emptyMap<Symbol, UInt>() to constantZero))
/** /**
* Instance of unit polynomial (unit of the polynomial ring). * Instance of unit polynomial (unit of the polynomial ring).
*/ */
override val one: LabeledPolynomial<C> = LabeledPolynomial<C>(mapOf(emptyMap<Symbol, UInt>() to constantOne)) override val one: LabeledPolynomial<C> = LabeledPolynomialAsIs(mapOf(emptyMap<Symbol, UInt>() to constantOne))
/** /**
* Degree of the polynomial, [see also](https://en.wikipedia.org/wiki/Degree_of_a_polynomial). If the polynomial is * Degree of the polynomial, [see also](https://en.wikipedia.org/wiki/Degree_of_a_polynomial). If the polynomial is
* zero, degree is -1. * zero, degree is -1.
*/ */
override val LabeledPolynomial<C>.degree: Int override val LabeledPolynomial<C>.degree: Int
get() = coefficients.entries.maxOfOrNull { (degs, c) -> degs.values.sum().toInt() } ?: -1 get() = coefficients.entries.maxOfOrNull { (degs, _) -> degs.values.sum().toInt() } ?: -1
/** /**
* Map that associates variables (that appear in the polynomial in positive exponents) with their most exponents * Map that associates variables (that appear in the polynomial in positive exponents) with their most exponents
* in which they are appeared in the polynomial. * in which they are appeared in the polynomial.
@ -518,22 +605,17 @@ public class LabeledPolynomialSpace<C, A : Ring<C>>(
*/ */
public override val LabeledPolynomial<C>.countOfVariables: Int get() = variables.size public override val LabeledPolynomial<C>.countOfVariables: Int get() = variables.size
// @Suppress("NOTHING_TO_INLINE") // TODO: When context receivers will be ready move all of this substitutions and invocations to utilities with
// public inline fun LabeledPolynomial<C>.substitute(argument: Map<Symbol, C>): LabeledPolynomial<C> = this.substitute(ring, argument) // [ListPolynomialSpace] as a context receiver
// @Suppress("NOTHING_TO_INLINE") /**
// @JvmName("substitutePolynomial") * Substitutes provided arguments [arguments] into [this] polynomial.
// public inline fun LabeledPolynomial<C>.substitute(argument: Map<Symbol, LabeledPolynomial<C>>): LabeledPolynomial<C> = this.substitute(ring, argument) */
// @Suppress("NOTHING_TO_INLINE")
// @Suppress("NOTHING_TO_INLINE") public inline fun LabeledPolynomial<C>.substitute(arguments: Map<Symbol, C>): LabeledPolynomial<C> = substitute(ring, arguments)
// public inline fun LabeledPolynomial<C>.asFunction(): (Map<Symbol, C>) -> LabeledPolynomial<C> = { this.substitute(ring, it) } /**
// @Suppress("NOTHING_TO_INLINE") * Substitutes provided arguments [arguments] into [this] polynomial.
// public inline fun LabeledPolynomial<C>.asFunctionOnConstants(): (Map<Symbol, C>) -> LabeledPolynomial<C> = { this.substitute(ring, it) } */
// @Suppress("NOTHING_TO_INLINE") @Suppress("NOTHING_TO_INLINE")
// public inline fun LabeledPolynomial<C>.asFunctionOnPolynomials(): (Map<Symbol, LabeledPolynomial<C>>) -> LabeledPolynomial<C> = { this.substitute(ring, it) } @JvmName("substitutePolynomial")
// public inline fun LabeledPolynomial<C>.substitute(arguments: Map<Symbol, LabeledPolynomial<C>>) : LabeledPolynomial<C> = substitute(ring, arguments)
// @Suppress("NOTHING_TO_INLINE")
// public inline operator fun LabeledPolynomial<C>.invoke(argument: Map<Symbol, C>): LabeledPolynomial<C> = this.substitute(ring, argument)
// @Suppress("NOTHING_TO_INLINE")
// @JvmName("invokePolynomial")
// public inline operator fun LabeledPolynomial<C>.invoke(argument: Map<Symbol, LabeledPolynomial<C>>): LabeledPolynomial<C> = this.substitute(ring, argument)
} }

View File

@ -7,9 +7,12 @@ package space.kscience.kmath.functions
import space.kscience.kmath.expressions.Symbol import space.kscience.kmath.expressions.Symbol
import space.kscience.kmath.operations.Ring import space.kscience.kmath.operations.Ring
import space.kscience.kmath.operations.invoke import kotlin.jvm.JvmName
/**
* Represents multivariate rational function that stores its numerator and denominator as [LabeledPolynomial]s.
*/
public class LabeledRationalFunction<C>( public class LabeledRationalFunction<C>(
public override val numerator: LabeledPolynomial<C>, public override val numerator: LabeledPolynomial<C>,
public override val denominator: LabeledPolynomial<C> public override val denominator: LabeledPolynomial<C>
@ -17,6 +20,13 @@ public class LabeledRationalFunction<C>(
override fun toString(): String = "LabeledRationalFunction${numerator.coefficients}/${denominator.coefficients}" override fun toString(): String = "LabeledRationalFunction${numerator.coefficients}/${denominator.coefficients}"
} }
/**
* Arithmetic context for univariate rational functions with numerator and denominator represented as [LabeledPolynomial]s.
*
* @param C the type of constants. Polynomials have them a coefficients in their terms.
* @param A type of provided underlying ring of constants. It's [Ring] of [C].
* @param ring underlying ring of constants of type [A].
*/
public class LabeledRationalFunctionSpace<C, A: Ring<C>>( public class LabeledRationalFunctionSpace<C, A: Ring<C>>(
public val ring: A, public val ring: A,
) : ) :
@ -34,106 +44,53 @@ public class LabeledRationalFunctionSpace<C, A: Ring<C>>(
LabeledRationalFunction<C>, LabeledRationalFunction<C>,
>() { >() {
/**
* Underlying polynomial ring. Its polynomial operations are inherited by local polynomial operations.
*/
override val polynomialRing : LabeledPolynomialSpace<C, A> = LabeledPolynomialSpace(ring) override val polynomialRing : LabeledPolynomialSpace<C, A> = LabeledPolynomialSpace(ring)
/**
* Constructor of rational functions (of type [LabeledRationalFunction]) from numerator and denominator (of type [LabeledPolynomial]).
*/
override fun constructRationalFunction( override fun constructRationalFunction(
numerator: LabeledPolynomial<C>, numerator: LabeledPolynomial<C>,
denominator: LabeledPolynomial<C> denominator: LabeledPolynomial<C>
): LabeledRationalFunction<C> = ): LabeledRationalFunction<C> =
LabeledRationalFunction<C>(numerator, denominator) LabeledRationalFunction<C>(numerator, denominator)
// TODO: When context receivers will be ready move all of this substitutions and invocations to utilities with
// [ListPolynomialSpace] as a context receiver
/** /**
* Instance of zero rational function (zero of the rational functions ring). * Substitutes provided constant [argument] into [this] polynomial.
*/ */
public override val zero: LabeledRationalFunction<C> = LabeledRationalFunction<C>(polynomialZero, polynomialOne) @Suppress("NOTHING_TO_INLINE")
public inline fun LabeledPolynomial<C>.substitute(argument: Map<Symbol, C>): LabeledPolynomial<C> = substitute(ring, argument)
/** /**
* Instance of unit polynomial (unit of the rational functions ring). * Substitutes provided polynomial [argument] into [this] polynomial.
*/ */
public override val one: LabeledRationalFunction<C> = LabeledRationalFunction<C>(polynomialOne, polynomialOne) @Suppress("NOTHING_TO_INLINE")
@JvmName("substitutePolynomial")
// TODO: Разобрать public inline fun LabeledPolynomial<C>.substitute(argument: Map<Symbol, LabeledPolynomial<C>>): LabeledPolynomial<C> = substitute(ring, argument)
/**
// operator fun invoke(arg: Map<Symbol, C>): LabeledRationalFunction<C> = * Substitutes provided rational function [argument] into [this] polynomial.
// LabeledRationalFunction( */
// numerator(arg), @Suppress("NOTHING_TO_INLINE")
// denominator(arg) @JvmName("substituteRationalFunction")
// ) public inline fun LabeledPolynomial<C>.substitute(argument: Map<Symbol, LabeledRationalFunction<C>>): LabeledRationalFunction<C> = substitute(ring, argument)
// /**
// @JvmName("invokeLabeledPolynomial") * Substitutes provided constant [argument] into [this] rational function.
// operator fun invoke(arg: Map<Symbol, LabeledPolynomial<C>>): LabeledRationalFunction<C> = */
// LabeledRationalFunction( @Suppress("NOTHING_TO_INLINE")
// numerator(arg), public inline fun LabeledRationalFunction<C>.substitute(argument: Map<Symbol, C>): LabeledRationalFunction<C> = substitute(ring, argument)
// denominator(arg) /**
// ) * Substitutes provided polynomial [argument] into [this] rational function.
// */
// @JvmName("invokeLabeledRationalFunction") @Suppress("NOTHING_TO_INLINE")
// operator fun invoke(arg: Map<Symbol, LabeledRationalFunction<C>>): LabeledRationalFunction<C> { @JvmName("substitutePolynomial")
// var num = numerator invokeRFTakeNumerator arg public inline fun LabeledRationalFunction<C>.substitute(argument: Map<Symbol, LabeledPolynomial<C>>): LabeledRationalFunction<C> = substitute(ring, argument)
// var den = denominator invokeRFTakeNumerator arg /**
// for (variable in variables) if (variable in arg) { * Substitutes provided rational function [argument] into [this] rational function.
// val degreeDif = degrees[variable]!! */
// if (degreeDif > 0) @Suppress("NOTHING_TO_INLINE")
// den = multiplyByPower(den, arg[variable]!!.denominator, degreeDif) @JvmName("substituteRationalFunction")
// else public inline fun LabeledRationalFunction<C>.substitute(argument: Map<Symbol, LabeledRationalFunction<C>>): LabeledRationalFunction<C> = substitute(ring, argument)
// num = multiplyByPower(num, arg[variable]!!.denominator, -degreeDif)
// }
// return LabeledRationalFunction(num, den)
// }
//
// override fun toString(): String = toString(emptyMap())
//
// fun toString(names: Map<Symbol, String> = emptyMap()): String =
// when (true) {
// numerator.isZero() -> "0"
// denominator.isOne() -> numerator.toString(names)
// else -> "${numerator.toStringWithBrackets(names)}/${denominator.toStringWithBrackets(names)}"
// }
//
// fun toString(namer: (Symbol) -> String): String =
// when (true) {
// numerator.isZero() -> "0"
// denominator.isOne() -> numerator.toString(namer)
// else -> "${numerator.toStringWithBrackets(namer)}/${denominator.toStringWithBrackets(namer)}"
// }
//
// fun toStringWithBrackets(names: Map<Symbol, String> = emptyMap()): String =
// when (true) {
// numerator.isZero() -> "0"
// denominator.isOne() -> numerator.toStringWithBrackets(names)
// else -> "(${numerator.toStringWithBrackets(names)}/${denominator.toStringWithBrackets(names)})"
// }
//
// fun toStringWithBrackets(namer: (Symbol) -> String): String =
// when (true) {
// numerator.isZero() -> "0"
// denominator.isOne() -> numerator.toStringWithBrackets(namer)
// else -> "(${numerator.toStringWithBrackets(namer)}/${denominator.toStringWithBrackets(namer)})"
// }
//
// fun toReversedString(names: Map<Symbol, String> = emptyMap()): String =
// when (true) {
// numerator.isZero() -> "0"
// denominator.isOne() -> numerator.toReversedString(names)
// else -> "${numerator.toReversedStringWithBrackets(names)}/${denominator.toReversedStringWithBrackets(names)}"
// }
//
// fun toReversedString(namer: (Symbol) -> String): String =
// when (true) {
// numerator.isZero() -> "0"
// denominator.isOne() -> numerator.toReversedString(namer)
// else -> "${numerator.toReversedStringWithBrackets(namer)}/${denominator.toReversedStringWithBrackets(namer)}"
// }
//
// fun toReversedStringWithBrackets(names: Map<Symbol, String> = emptyMap()): String =
// when (true) {
// numerator.isZero() -> "0"
// denominator.isOne() -> numerator.toReversedStringWithBrackets(names)
// else -> "(${numerator.toReversedStringWithBrackets(names)}/${denominator.toReversedStringWithBrackets(names)})"
// }
//
// fun toReversedStringWithBrackets(namer: (Symbol) -> String): String =
// when (true) {
// numerator.isZero() -> "0"
// denominator.isOne() -> numerator.toReversedStringWithBrackets(namer)
// else -> "(${numerator.toReversedStringWithBrackets(namer)}/${denominator.toReversedStringWithBrackets(namer)})"
// }
} }

View File

@ -8,23 +8,19 @@ package space.kscience.kmath.functions
import space.kscience.kmath.operations.Ring import space.kscience.kmath.operations.Ring
import space.kscience.kmath.operations.ScaleOperations import space.kscience.kmath.operations.ScaleOperations
import space.kscience.kmath.operations.invoke import space.kscience.kmath.operations.invoke
import kotlin.contracts.InvocationKind
import kotlin.contracts.contract
import kotlin.experimental.ExperimentalTypeInference
import kotlin.jvm.JvmName
import kotlin.math.max import kotlin.math.max
import kotlin.math.min import kotlin.math.min
/** /**
* Polynomial model without fixation on specific context they are applied to. * Represents univariate polynomial that stores its coefficients in a [List].
* *
* @param coefficients constant is the leftmost coefficient. * @param C the type of constants.
*/ */
public data class ListPolynomial<C>( public data class ListPolynomial<C>(
/** /**
* List that collects coefficients of the polynomial. Every monomial `a x^d` is represented as a coefficients * List that contains coefficients of the polynomial. Every monomial `a x^d` is stored as a coefficient `a` placed
* `a` placed into the list with index `d`. For example coefficients of polynomial `5 x^2 - 6` can be represented as * into the list at index `d`. For example, coefficients of a polynomial `5 x^2 - 6` can be represented as
* ``` * ```
* listOf( * listOf(
* -6, // -6 + * -6, // -6 +
@ -42,26 +38,28 @@ public data class ListPolynomial<C>(
* 0, // 0 x^4 * 0, // 0 x^4
* ) * )
* ``` * ```
* It is recommended not to put extra zeros at end of the list (as for `0x^3` and `0x^4` in the example), but is not * It is not prohibited to put extra zeros at end of the list (as for `0x^3` and `0x^4` in the example). But the
* prohibited. * longer the coefficients list the worse performance of arithmetical operations performed on it. Thus, it is
* recommended not to put (or even to remove) extra (or useless) coefficients at the end of the coefficients list.
*/ */
public val coefficients: List<C> public val coefficients: List<C>
) : Polynomial<C> { ) : Polynomial<C> {
override fun toString(): String = "Polynomial$coefficients" override fun toString(): String = "ListPolynomial$coefficients"
} }
/** /**
* Space of univariate polynomials constructed over ring. * Arithmetic context for univariate polynomials with coefficients stored as a [List] constructed with the provided
* [ring] of constants.
* *
* @param C the type of constants. Polynomials have them as a coefficients in their terms. * @param C the type of constants. Polynomials have them a coefficients in their terms.
* @param A type of underlying ring of constants. It's [Ring] of [C]. * @param A type of provided underlying ring of constants. It's [Ring] of [C].
* @param ring underlying ring of constants of type [A]. * @param ring underlying ring of constants of type [A].
*/ */
public open class ListPolynomialSpace<C, A : Ring<C>>( public open class ListPolynomialSpace<C, A : Ring<C>>(
public override val ring: A, public override val ring: A,
) : PolynomialSpaceOverRing<C, ListPolynomial<C>, A> { ) : PolynomialSpaceOverRing<C, ListPolynomial<C>, A> {
/** /**
* Returns sum of the polynomial and the integer represented as polynomial. * Returns sum of the polynomial and the integer represented as a polynomial.
* *
* The operation is equivalent to adding [other] copies of unit polynomial to [this]. * The operation is equivalent to adding [other] copies of unit polynomial to [this].
*/ */
@ -79,7 +77,7 @@ public open class ListPolynomialSpace<C, A : Ring<C>>(
} }
) )
/** /**
* Returns difference between the polynomial and the integer represented as polynomial. * Returns difference between the polynomial and the integer represented as a polynomial.
* *
* The operation is equivalent to subtraction [other] copies of unit polynomial from [this]. * The operation is equivalent to subtraction [other] copies of unit polynomial from [this].
*/ */
@ -97,22 +95,25 @@ public open class ListPolynomialSpace<C, A : Ring<C>>(
} }
) )
/** /**
* Returns product of the polynomial and the integer represented as polynomial. * Returns product of the polynomial and the integer represented as a polynomial.
* *
* The operation is equivalent to sum of [other] copies of [this]. * The operation is equivalent to sum of [other] copies of [this].
*/ */
public override operator fun ListPolynomial<C>.times(other: Int): ListPolynomial<C> = public override operator fun ListPolynomial<C>.times(other: Int): ListPolynomial<C> =
if (other == 0) zero when (other) {
else ListPolynomial( 0 -> zero
1 -> this
else -> ListPolynomial(
coefficients coefficients
.toMutableList() .toMutableList()
.apply { .apply {
for (deg in indices) this[deg] = this[deg] * other for (deg in indices) this[deg] = this[deg] * other
} }
) )
}
/** /**
* Returns sum of the integer represented as polynomial and the polynomial. * Returns sum of the integer represented as a polynomial and the polynomial.
* *
* The operation is equivalent to adding [this] copies of unit polynomial to [other]. * The operation is equivalent to adding [this] copies of unit polynomial to [other].
*/ */
@ -130,39 +131,44 @@ public open class ListPolynomialSpace<C, A : Ring<C>>(
} }
) )
/** /**
* Returns difference between the integer represented as polynomial and the polynomial. * Returns difference between the integer represented as a polynomial and the polynomial.
* *
* The operation is equivalent to subtraction [this] copies of unit polynomial from [other]. * The operation is equivalent to subtraction [this] copies of unit polynomial from [other].
*/ */
public override operator fun Int.minus(other: ListPolynomial<C>): ListPolynomial<C> = public override operator fun Int.minus(other: ListPolynomial<C>): ListPolynomial<C> =
if (this == 0) other
else
ListPolynomial( ListPolynomial(
other.coefficients other.coefficients
.toMutableList() .toMutableList()
.apply { .apply {
forEachIndexed { index, c -> if (index != 0) this[index] = -c } if (this@minus == 0) {
indices.forEach { this[it] = -this[it] }
} else {
(1..lastIndex).forEach { this[it] = -this[it] }
val result = this@minus - getOrElse(0) { constantZero } val result = this@minus - getOrElse(0) { constantZero }
if(size == 0) add(result) if (size == 0) add(result)
else this[0] = result else this[0] = result
} }
}
) )
/** /**
* Returns product of the integer represented as polynomial and the polynomial. * Returns product of the integer represented as a polynomial and the polynomial.
* *
* The operation is equivalent to sum of [this] copies of [other]. * The operation is equivalent to sum of [this] copies of [other].
*/ */
public override operator fun Int.times(other: ListPolynomial<C>): ListPolynomial<C> = public override operator fun Int.times(other: ListPolynomial<C>): ListPolynomial<C> =
if (this == 0) zero when (this) {
else ListPolynomial( 0 -> zero
1 -> other
else -> ListPolynomial(
other.coefficients other.coefficients
.toMutableList() .toMutableList()
.apply { .apply {
for (deg in indices) this[deg] = this@times * this[deg] for (deg in indices) this[deg] = this@times * this[deg]
} }
) )
}
/** /**
* Converts the integer [value] to polynomial. * Converts the integer [value] to polynomial.
@ -170,7 +176,7 @@ public open class ListPolynomialSpace<C, A : Ring<C>>(
public override fun number(value: Int): ListPolynomial<C> = number(constantNumber(value)) public override fun number(value: Int): ListPolynomial<C> = number(constantNumber(value))
/** /**
* Returns sum of the constant represented as polynomial and the polynomial. * Returns sum of the constant represented as a polynomial and the polynomial.
*/ */
public override operator fun C.plus(other: ListPolynomial<C>): ListPolynomial<C> = public override operator fun C.plus(other: ListPolynomial<C>): ListPolynomial<C> =
with(other.coefficients) { with(other.coefficients) {
@ -186,7 +192,7 @@ public open class ListPolynomialSpace<C, A : Ring<C>>(
) )
} }
/** /**
* Returns difference between the constant represented as polynomial and the polynomial. * Returns difference between the constant represented as a polynomial and the polynomial.
*/ */
public override operator fun C.minus(other: ListPolynomial<C>): ListPolynomial<C> = public override operator fun C.minus(other: ListPolynomial<C>): ListPolynomial<C> =
with(other.coefficients) { with(other.coefficients) {
@ -194,7 +200,7 @@ public open class ListPolynomialSpace<C, A : Ring<C>>(
else ListPolynomial( else ListPolynomial(
toMutableList() toMutableList()
.apply { .apply {
forEachIndexed { index, c -> if (index != 0) this[index] = -c } (1 .. lastIndex).forEach { this[it] = -this[it] }
val result = if (size == 0) this@minus else this@minus - get(0) val result = if (size == 0) this@minus else this@minus - get(0)
@ -204,7 +210,7 @@ public open class ListPolynomialSpace<C, A : Ring<C>>(
) )
} }
/** /**
* Returns product of the constant represented as polynomial and the polynomial. * Returns product of the constant represented as a polynomial and the polynomial.
*/ */
public override operator fun C.times(other: ListPolynomial<C>): ListPolynomial<C> = public override operator fun C.times(other: ListPolynomial<C>): ListPolynomial<C> =
ListPolynomial( ListPolynomial(
@ -216,7 +222,7 @@ public open class ListPolynomialSpace<C, A : Ring<C>>(
) )
/** /**
* Returns sum of the constant represented as polynomial and the polynomial. * Returns sum of the constant represented as a polynomial and the polynomial.
*/ */
public override operator fun ListPolynomial<C>.plus(other: C): ListPolynomial<C> = public override operator fun ListPolynomial<C>.plus(other: C): ListPolynomial<C> =
with(coefficients) { with(coefficients) {
@ -232,7 +238,7 @@ public open class ListPolynomialSpace<C, A : Ring<C>>(
) )
} }
/** /**
* Returns difference between the constant represented as polynomial and the polynomial. * Returns difference between the constant represented as a polynomial and the polynomial.
*/ */
public override operator fun ListPolynomial<C>.minus(other: C): ListPolynomial<C> = public override operator fun ListPolynomial<C>.minus(other: C): ListPolynomial<C> =
with(coefficients) { with(coefficients) {
@ -248,7 +254,7 @@ public open class ListPolynomialSpace<C, A : Ring<C>>(
) )
} }
/** /**
* Returns product of the constant represented as polynomial and the polynomial. * Returns product of the constant represented as a polynomial and the polynomial.
*/ */
public override operator fun ListPolynomial<C>.times(other: C): ListPolynomial<C> = public override operator fun ListPolynomial<C>.times(other: C): ListPolynomial<C> =
ListPolynomial( ListPolynomial(
@ -262,7 +268,7 @@ public open class ListPolynomialSpace<C, A : Ring<C>>(
/** /**
* Converts the constant [value] to polynomial. * Converts the constant [value] to polynomial.
*/ */
public override fun number(value: C): ListPolynomial<C> = ListPolynomial(value) public override fun number(value: C): ListPolynomial<C> = ListPolynomial(listOf(value))
/** /**
* Returns negation of the polynomial. * Returns negation of the polynomial.
@ -315,15 +321,19 @@ public open class ListPolynomialSpace<C, A : Ring<C>>(
} }
) )
} }
/**
* Raises [arg] to the integer power [exponent].
*/ // TODO: To optimize boxing
override fun power(arg: ListPolynomial<C>, exponent: UInt): ListPolynomial<C> = super.power(arg, exponent)
/** /**
* Instance of zero polynomial (zero of the polynomial ring). * Instance of zero polynomial (zero of the polynomial ring).
*/ */
override val zero: ListPolynomial<C> = ListPolynomial(emptyList()) override val zero: ListPolynomial<C> = ListPolynomial(emptyList())
/** /**
* Instance of unit constant (unit of the underlying ring). * Instance of unit polynomial (unit of the polynomial ring).
*/ */
override val one: ListPolynomial<C> = ListPolynomial(listOf(constantOne)) override val one: ListPolynomial<C> by lazy { ListPolynomial(listOf(constantOne)) }
/** /**
* Degree of the polynomial, [see also](https://en.wikipedia.org/wiki/Degree_of_a_polynomial). If the polynomial is * Degree of the polynomial, [see also](https://en.wikipedia.org/wiki/Degree_of_a_polynomial). If the polynomial is
@ -331,25 +341,45 @@ public open class ListPolynomialSpace<C, A : Ring<C>>(
*/ */
public override val ListPolynomial<C>.degree: Int get() = coefficients.lastIndex public override val ListPolynomial<C>.degree: Int get() = coefficients.lastIndex
@Suppress("NOTHING_TO_INLINE") // TODO: When context receivers will be ready move all of this substitutions and invocations to utilities with
public inline fun ListPolynomial<C>.substitute(argument: C): C = this.substitute(ring, argument) // [ListPolynomialSpace] as a context receiver
@Suppress("NOTHING_TO_INLINE")
public inline fun ListPolynomial<C>.substitute(argument: ListPolynomial<C>): ListPolynomial<C> = this.substitute(ring, argument)
@Suppress("NOTHING_TO_INLINE")
public inline fun ListPolynomial<C>.asFunction(): (C) -> C = { this.substitute(ring, it) }
@Suppress("NOTHING_TO_INLINE")
public inline fun ListPolynomial<C>.asFunctionOnConstants(): (C) -> C = { this.substitute(ring, it) }
@Suppress("NOTHING_TO_INLINE")
public inline fun ListPolynomial<C>.asFunctionOnPolynomials(): (ListPolynomial<C>) -> ListPolynomial<C> = { this.substitute(ring, it) }
/** /**
* Evaluates the polynomial for the given value [argument]. * Evaluates value of [this] polynomial on provided [argument].
*/ */
@Suppress("NOTHING_TO_INLINE") @Suppress("NOTHING_TO_INLINE")
public inline operator fun ListPolynomial<C>.invoke(argument: C): C = this.substitute(ring, argument) public inline fun ListPolynomial<C>.substitute(argument: C): C = substitute(ring, argument)
/**
* Substitutes provided polynomial [argument] into [this] polynomial.
*/
@Suppress("NOTHING_TO_INLINE") @Suppress("NOTHING_TO_INLINE")
public inline operator fun ListPolynomial<C>.invoke(argument: ListPolynomial<C>): ListPolynomial<C> = this.substitute(ring, argument) public inline fun ListPolynomial<C>.substitute(argument: ListPolynomial<C>): ListPolynomial<C> = substitute(ring, argument)
/**
* Represent [this] polynomial as a regular context-less function.
*/
@Suppress("NOTHING_TO_INLINE")
public inline fun ListPolynomial<C>.asFunction(): (C) -> C = asFunctionOver(ring)
/**
* Represent [this] polynomial as a regular context-less function.
*/
@Suppress("NOTHING_TO_INLINE")
public inline fun ListPolynomial<C>.asFunctionOfConstant(): (C) -> C = asFunctionOfConstantOver(ring)
/**
* Represent [this] polynomial as a regular context-less function.
*/
@Suppress("NOTHING_TO_INLINE")
public inline fun ListPolynomial<C>.asFunctionOfPolynomial(): (ListPolynomial<C>) -> ListPolynomial<C> = asFunctionOfPolynomialOver(ring)
/**
* Evaluates value of [this] polynomial on provided [argument].
*/
@Suppress("NOTHING_TO_INLINE")
public inline operator fun ListPolynomial<C>.invoke(argument: C): C = substitute(ring, argument)
/**
* Evaluates value of [this] polynomial on provided [argument].
*/
@Suppress("NOTHING_TO_INLINE")
public inline operator fun ListPolynomial<C>.invoke(argument: ListPolynomial<C>): ListPolynomial<C> = substitute(ring, argument)
} }
/** /**

View File

@ -8,13 +8,23 @@ package space.kscience.kmath.functions
import space.kscience.kmath.operations.Ring import space.kscience.kmath.operations.Ring
/**
* Represents univariate rational function that stores its numerator and denominator as [ListPolynomial]s.
*/
public data class ListRationalFunction<C>( public data class ListRationalFunction<C>(
public override val numerator: ListPolynomial<C>, public override val numerator: ListPolynomial<C>,
public override val denominator: ListPolynomial<C> public override val denominator: ListPolynomial<C>
) : RationalFunction<C, ListPolynomial<C>> { ) : RationalFunction<C, ListPolynomial<C>> {
override fun toString(): String = "RationalFunction${numerator.coefficients}/${denominator.coefficients}" override fun toString(): String = "ListRationalFunction${numerator.coefficients}/${denominator.coefficients}"
} }
/**
* Arithmetic context for univariate rational functions with numerator and denominator represented as [ListPolynomial]s.
*
* @param C the type of constants. Polynomials have them a coefficients in their terms.
* @param A type of provided underlying ring of constants. It's [Ring] of [C].
* @param ring underlying ring of constants of type [A].
*/
public class ListRationalFunctionSpace<C, A : Ring<C>> ( public class ListRationalFunctionSpace<C, A : Ring<C>> (
public val ring: A, public val ring: A,
) : ) :
@ -30,76 +40,98 @@ public class ListRationalFunctionSpace<C, A : Ring<C>> (
ListRationalFunction<C>, ListRationalFunction<C>,
>() { >() {
/**
* Underlying polynomial ring. Its polynomial operations are inherited by local polynomial operations.
*/
override val polynomialRing : ListPolynomialSpace<C, A> = ListPolynomialSpace(ring) override val polynomialRing : ListPolynomialSpace<C, A> = ListPolynomialSpace(ring)
/**
* Constructor of [ListRationalFunction] from numerator and denominator [ListPolynomial].
*/
override fun constructRationalFunction(numerator: ListPolynomial<C>, denominator: ListPolynomial<C>): ListRationalFunction<C> = override fun constructRationalFunction(numerator: ListPolynomial<C>, denominator: ListPolynomial<C>): ListRationalFunction<C> =
ListRationalFunction(numerator, denominator) ListRationalFunction(numerator, denominator)
// TODO: When context receivers will be ready move all of this substitutions and invocations to utilities with
// [ListPolynomialSpace] as a context receiver
/** /**
* Instance of zero rational function (zero of the rational functions ring). * Evaluates value of [this] polynomial on provided argument.
*/ */
public override val zero: ListRationalFunction<C> = ListRationalFunction(polynomialZero, polynomialOne) @Suppress("NOTHING_TO_INLINE")
public inline fun ListPolynomial<C>.substitute(argument: C): C = substitute(ring, argument)
/** /**
* Instance of unit polynomial (unit of the rational functions ring). * Substitutes provided polynomial [argument] into [this] polynomial.
*/ */
public override val one: ListRationalFunction<C> = ListRationalFunction(polynomialOne, polynomialOne) @Suppress("NOTHING_TO_INLINE")
public inline fun ListPolynomial<C>.substitute(argument: ListPolynomial<C>): ListPolynomial<C> = substitute(ring, argument)
/**
* Substitutes provided rational function [argument] into [this] polynomial.
*/
@Suppress("NOTHING_TO_INLINE")
public inline fun ListPolynomial<C>.substitute(argument: ListRationalFunction<C>): ListRationalFunction<C> = substitute(ring, argument)
/**
* Substitutes provided polynomial [argument] into [this] rational function.
*/
@Suppress("NOTHING_TO_INLINE")
public inline fun ListRationalFunction<C>.substitute(argument: ListPolynomial<C>): ListRationalFunction<C> = substitute(ring, argument)
/**
* Substitutes provided rational function [argument] into [this] rational function.
*/
@Suppress("NOTHING_TO_INLINE")
public inline fun ListRationalFunction<C>.substitute(argument: ListRationalFunction<C>): ListRationalFunction<C> = substitute(ring, argument)
// TODO: Разобрать /**
* Represent [this] polynomial as a regular context-less function.
*/
@Suppress("NOTHING_TO_INLINE")
public inline fun ListPolynomial<C>.asFunction(): (C) -> C = { substitute(ring, it) }
/**
* Represent [this] polynomial as a regular context-less function.
*/
@Suppress("NOTHING_TO_INLINE")
public inline fun ListPolynomial<C>.asFunctionOfConstant(): (C) -> C = { substitute(ring, it) }
/**
* Represent [this] polynomial as a regular context-less function.
*/
@Suppress("NOTHING_TO_INLINE")
public inline fun ListPolynomial<C>.asFunctionOfPolynomial(): (ListPolynomial<C>) -> ListPolynomial<C> = { substitute(ring, it) }
/**
* Represent [this] polynomial as a regular context-less function.
*/
@Suppress("NOTHING_TO_INLINE")
public inline fun ListPolynomial<C>.asFunctionOfRationalFunction(): (ListRationalFunction<C>) -> ListRationalFunction<C> = { substitute(ring, it) }
/**
* Represent [this] rational function as a regular context-less function.
*/
@Suppress("NOTHING_TO_INLINE")
public inline fun ListRationalFunction<C>.asFunctionOfPolynomial(): (ListPolynomial<C>) -> ListRationalFunction<C> = { substitute(ring, it) }
/**
* Represent [this] rational function as a regular context-less function.
*/
@Suppress("NOTHING_TO_INLINE")
public inline fun ListRationalFunction<C>.asFunctionOfRationalFunction(): (ListRationalFunction<C>) -> ListRationalFunction<C> = { substitute(ring, it) }
// operator fun invoke(arg: UnivariatePolynomial<T>): RationalFunction<T> = /**
// RationalFunction( * Evaluates value of [this] polynomial on provided argument.
// numerator(arg), */
// denominator(arg) @Suppress("NOTHING_TO_INLINE")
// ) public inline operator fun ListPolynomial<C>.invoke(argument: C): C = substitute(ring, argument)
// /**
// operator fun invoke(arg: RationalFunction<T>): RationalFunction<T> { * Evaluates value of [this] polynomial on provided argument.
// val num = numerator invokeRFTakeNumerator arg */
// val den = denominator invokeRFTakeNumerator arg @Suppress("NOTHING_TO_INLINE")
// val degreeDif = numeratorDegree - denominatorDegree public inline operator fun ListPolynomial<C>.invoke(argument: ListPolynomial<C>): ListPolynomial<C> = substitute(ring, argument)
// return if (degreeDif > 0) /**
// RationalFunction( * Evaluates value of [this] polynomial on provided argument.
// num, */
// multiplyByPower(den, arg.denominator, degreeDif) @Suppress("NOTHING_TO_INLINE")
// ) public inline operator fun ListPolynomial<C>.invoke(argument: ListRationalFunction<C>): ListRationalFunction<C> = substitute(ring, argument)
// else /**
// RationalFunction( * Evaluates value of [this] rational function on provided argument.
// multiplyByPower(num, arg.denominator, -degreeDif), */
// den @Suppress("NOTHING_TO_INLINE")
// ) public inline operator fun ListRationalFunction<C>.invoke(argument: ListPolynomial<C>): ListRationalFunction<C> = substitute(ring, argument)
// } /**
// * Evaluates value of [this] rational function on provided argument.
// override fun toString(): String = toString(UnivariatePolynomial.variableName) */
// @Suppress("NOTHING_TO_INLINE")
// fun toString(withVariableName: String = UnivariatePolynomial.variableName): String = public inline operator fun ListRationalFunction<C>.invoke(argument: ListRationalFunction<C>): ListRationalFunction<C> = substitute(ring, argument)
// when(true) {
// numerator.isZero() -> "0"
// denominator.isOne() -> numerator.toString(withVariableName)
// else -> "${numerator.toStringWithBrackets(withVariableName)}/${denominator.toStringWithBrackets(withVariableName)}"
// }
//
// fun toStringWithBrackets(withVariableName: String = UnivariatePolynomial.variableName): String =
// when(true) {
// numerator.isZero() -> "0"
// denominator.isOne() -> numerator.toStringWithBrackets(withVariableName)
// else -> "(${numerator.toStringWithBrackets(withVariableName)}/${denominator.toStringWithBrackets(withVariableName)})"
// }
//
// fun toReversedString(withVariableName: String = UnivariatePolynomial.variableName): String =
// when(true) {
// numerator.isZero() -> "0"
// denominator.isOne() -> numerator.toReversedString(withVariableName)
// else -> "${numerator.toReversedStringWithBrackets(withVariableName)}/${denominator.toReversedStringWithBrackets(withVariableName)}"
// }
//
// fun toReversedStringWithBrackets(withVariableName: String = UnivariatePolynomial.variableName): String =
// when(true) {
// numerator.isZero() -> "0"
// denominator.isOne() -> numerator.toReversedStringWithBrackets(withVariableName)
// else -> "(${numerator.toReversedStringWithBrackets(withVariableName)}/${denominator.toReversedStringWithBrackets(withVariableName)})"
// }
//
// fun removeZeros() =
// RationalFunction(
// numerator.removeZeros(),
// denominator.removeZeros()
// )
} }

View File

@ -5,44 +5,43 @@
package space.kscience.kmath.functions package space.kscience.kmath.functions
import space.kscience.kmath.operations.invoke
import space.kscience.kmath.operations.Ring import space.kscience.kmath.operations.Ring
import space.kscience.kmath.operations.ScaleOperations import space.kscience.kmath.structures.Buffer
import kotlin.contracts.InvocationKind
import kotlin.contracts.contract
import kotlin.experimental.ExperimentalTypeInference
import kotlin.jvm.JvmName import kotlin.jvm.JvmName
import kotlin.math.max import kotlin.math.max
/** /**
* Polynomial model without fixation on specific context they are applied to. * Represents multivariate polynomial that stores its coefficients in a [Map] and terms' signatures in a [List].
* *
* @param C the type of constants. * @param C the type of constants.
*/ */
public data class NumberedPolynomial<C> public data class NumberedPolynomial<C>
@PublishedApi
internal constructor( internal constructor(
/** /**
* Map that collects coefficients of the polynomial. Every monomial `a x_1^{d_1} ... x_n^{d_n}` is represented as * Map that contains coefficients of the polynomial.
* pair "key-value" in the map, where value is coefficients `a` and *
* key is list that associates index of every variable in the monomial with multiplicity of the variable occurring * Every monomial `a x_1^{d_1} ... x_n^{d_n}` is stored as a pair "key-value" in the map, where the value is the
* in the monomial. For example coefficients of polynomial `5 x_1^2 x_3^3 - 6 x_2` can be represented as * coefficient `a` and the key is a list that associates index of every variable in the monomial with their degree
* in the monomial. For example, coefficients of a polynomial `5 x_1^2 x_3^3 - 6 x_2` can be represented as
* ``` * ```
* mapOf( * mapOf(
* listOf(2, 0, 3) to 5, * listOf(2, 0, 3) to 5, // 5 x_1^2 x_3^3 +
* listOf(0, 1) to (-6), * listOf(0, 1) to (-6), // (-6) x_2^1
* ) * )
* ``` * ```
* and also as * and also as
* ``` * ```
* mapOf( * mapOf(
* listOf(2, 0, 3) to 5, * listOf(2, 0, 3) to 5, // 5 x_1^2 x_3^3 +
* listOf(0, 1) to (-6), * listOf(0, 1) to (-6), // (-6) x_2^1
* listOf(0, 1, 1) to 0, * listOf(0, 1, 1) to 0, // 0 x_2^1 x_3^1
* ) * )
* ``` * ```
* It is recommended not to put zero monomials into the map, but is not prohibited. Lists of degrees always do not * It is not prohibited to put extra zero monomials into the map (as for `0 x_2 x_3` in the example). But the
* contain any zeros on end, but can contain zeros on start or anywhere in middle. * bigger the coefficients map the worse performance of arithmetical operations performed on it. Thus, it is
* recommended not to put (or even to remove) extra (or useless) monomials in the coefficients map.
*/ */
public val coefficients: Map<List<UInt>, C> public val coefficients: Map<List<UInt>, C>
) : Polynomial<C> { ) : Polynomial<C> {
@ -50,24 +49,25 @@ internal constructor(
} }
/** /**
* Space of polynomials. * Arithmetic context for multivariate polynomials with coefficients stored as a [Map] and terms' signatures stored as a
* [List] constructed with the provided [ring] of constants.
* *
* @param C the type of operated polynomials. * @param C the type of constants. Polynomials have them a coefficients in their terms.
* @param A the intersection of [Ring] of [C] and [ScaleOperations] of [C]. * @param A type of provided underlying ring of constants. It's [Ring] of [C].
* @param ring the [A] instance. * @param ring underlying ring of constants of type [A].
*/ */
public open class NumberedPolynomialSpace<C, A : Ring<C>>( public class NumberedPolynomialSpace<C, A : Ring<C>>(
public final override val ring: A, public override val ring: A,
) : PolynomialSpaceOverRing<C, NumberedPolynomial<C>, A> { ) : PolynomialSpaceOverRing<C, NumberedPolynomial<C>, A> {
/** /**
* Returns sum of the polynomial and the integer represented as polynomial. * Returns sum of the polynomial and the integer represented as a polynomial.
* *
* The operation is equivalent to adding [other] copies of unit polynomial to [this]. * The operation is equivalent to adding [other] copies of unit polynomial to [this].
*/ */
public override operator fun NumberedPolynomial<C>.plus(other: Int): NumberedPolynomial<C> = public override operator fun NumberedPolynomial<C>.plus(other: Int): NumberedPolynomial<C> =
if (other == 0) this if (other == 0) this
else else
NumberedPolynomial( NumberedPolynomialAsIs(
coefficients coefficients
.toMutableMap() .toMutableMap()
.apply { .apply {
@ -77,14 +77,14 @@ public open class NumberedPolynomialSpace<C, A : Ring<C>>(
} }
) )
/** /**
* Returns difference between the polynomial and the integer represented as polynomial. * Returns difference between the polynomial and the integer represented as a polynomial.
* *
* The operation is equivalent to subtraction [other] copies of unit polynomial from [this]. * The operation is equivalent to subtraction [other] copies of unit polynomial from [this].
*/ */
public override operator fun NumberedPolynomial<C>.minus(other: Int): NumberedPolynomial<C> = public override operator fun NumberedPolynomial<C>.minus(other: Int): NumberedPolynomial<C> =
if (other == 0) this if (other == 0) this
else else
NumberedPolynomial( NumberedPolynomialAsIs(
coefficients coefficients
.toMutableMap() .toMutableMap()
.apply { .apply {
@ -94,29 +94,32 @@ public open class NumberedPolynomialSpace<C, A : Ring<C>>(
} }
) )
/** /**
* Returns product of the polynomial and the integer represented as polynomial. * Returns product of the polynomial and the integer represented as a polynomial.
* *
* The operation is equivalent to sum of [other] copies of [this]. * The operation is equivalent to sum of [other] copies of [this].
*/ */
public override operator fun NumberedPolynomial<C>.times(other: Int): NumberedPolynomial<C> = public override operator fun NumberedPolynomial<C>.times(other: Int): NumberedPolynomial<C> =
if (other == 0) zero when (other) {
else NumberedPolynomial<C>( 0 -> zero
1 -> this
else -> NumberedPolynomialAsIs(
coefficients coefficients
.toMutableMap() .toMutableMap()
.apply { .apply {
for (degs in keys) this[degs] = this[degs]!! * other for (degs in keys) this[degs] = this[degs]!! * other
} }
) )
}
/** /**
* Returns sum of the integer represented as polynomial and the polynomial. * Returns sum of the integer represented as a polynomial and the polynomial.
* *
* The operation is equivalent to adding [this] copies of unit polynomial to [other]. * The operation is equivalent to adding [this] copies of unit polynomial to [other].
*/ */
public override operator fun Int.plus(other: NumberedPolynomial<C>): NumberedPolynomial<C> = public override operator fun Int.plus(other: NumberedPolynomial<C>): NumberedPolynomial<C> =
if (this == 0) other if (this == 0) other
else else
NumberedPolynomial( NumberedPolynomialAsIs(
other.coefficients other.coefficients
.toMutableMap() .toMutableMap()
.apply { .apply {
@ -126,36 +129,43 @@ public open class NumberedPolynomialSpace<C, A : Ring<C>>(
} }
) )
/** /**
* Returns difference between the integer represented as polynomial and the polynomial. * Returns difference between the integer represented as a polynomial and the polynomial.
* *
* The operation is equivalent to subtraction [this] copies of unit polynomial from [other]. * The operation is equivalent to subtraction [this] copies of unit polynomial from [other].
*/ */
public override operator fun Int.minus(other: NumberedPolynomial<C>): NumberedPolynomial<C> = public override operator fun Int.minus(other: NumberedPolynomial<C>): NumberedPolynomial<C> =
if (this == 0) other NumberedPolynomialAsIs(
else
NumberedPolynomial(
other.coefficients other.coefficients
.toMutableMap() .toMutableMap()
.apply { .apply {
if (this@minus == 0) {
forEach { (key, value) -> this[key] = -value }
} else {
forEach { (key, value) -> if (key.isNotEmpty()) this[key] = -value }
val degs = emptyList<UInt>() val degs = emptyList<UInt>()
this[degs] = this@minus - getOrElse(degs) { constantZero } this[degs] = this@minus - getOrElse(degs) { constantZero }
} }
}
) )
/** /**
* Returns product of the integer represented as polynomial and the polynomial. * Returns product of the integer represented as a polynomial and the polynomial.
* *
* The operation is equivalent to sum of [this] copies of [other]. * The operation is equivalent to sum of [this] copies of [other].
*/ */
public override operator fun Int.times(other: NumberedPolynomial<C>): NumberedPolynomial<C> = public override operator fun Int.times(other: NumberedPolynomial<C>): NumberedPolynomial<C> =
if (this == 0) zero when (this) {
else NumberedPolynomial( 0 -> zero
1 -> other
else -> NumberedPolynomialAsIs(
other.coefficients other.coefficients
.toMutableMap() .toMutableMap()
.apply { .apply {
for (degs in keys) this[degs] = this@times * this[degs]!! for (degs in keys) this[degs] = this@times * this[degs]!!
} }
) )
}
/** /**
* Converts the integer [value] to polynomial. * Converts the integer [value] to polynomial.
@ -163,12 +173,12 @@ public open class NumberedPolynomialSpace<C, A : Ring<C>>(
public override fun number(value: Int): NumberedPolynomial<C> = number(constantNumber(value)) public override fun number(value: Int): NumberedPolynomial<C> = number(constantNumber(value))
/** /**
* Returns sum of the constant represented as polynomial and the polynomial. * Returns sum of the constant represented as a polynomial and the polynomial.
*/ */
override operator fun C.plus(other: NumberedPolynomial<C>): NumberedPolynomial<C> = override operator fun C.plus(other: NumberedPolynomial<C>): NumberedPolynomial<C> =
with(other.coefficients) { with(other.coefficients) {
if (isEmpty()) NumberedPolynomial<C>(mapOf(emptyList<UInt>() to this@plus)) if (isEmpty()) NumberedPolynomialAsIs(mapOf(emptyList<UInt>() to this@plus))
else NumberedPolynomial<C>( else NumberedPolynomialAsIs(
toMutableMap() toMutableMap()
.apply { .apply {
val degs = emptyList<UInt>() val degs = emptyList<UInt>()
@ -178,15 +188,15 @@ public open class NumberedPolynomialSpace<C, A : Ring<C>>(
) )
} }
/** /**
* Returns difference between the constant represented as polynomial and the polynomial. * Returns difference between the constant represented as a polynomial and the polynomial.
*/ */
override operator fun C.minus(other: NumberedPolynomial<C>): NumberedPolynomial<C> = override operator fun C.minus(other: NumberedPolynomial<C>): NumberedPolynomial<C> =
with(other.coefficients) { with(other.coefficients) {
if (isEmpty()) NumberedPolynomial<C>(mapOf(emptyList<UInt>() to this@minus)) if (isEmpty()) NumberedPolynomialAsIs(mapOf(emptyList<UInt>() to this@minus))
else NumberedPolynomial<C>( else NumberedPolynomialAsIs(
toMutableMap() toMutableMap()
.apply { .apply {
forEach { (degs, c) -> if(degs.isNotEmpty()) this[degs] = -c } forEach { (degs, c) -> if (degs.isNotEmpty()) this[degs] = -c }
val degs = emptyList<UInt>() val degs = emptyList<UInt>()
@ -195,10 +205,10 @@ public open class NumberedPolynomialSpace<C, A : Ring<C>>(
) )
} }
/** /**
* Returns product of the constant represented as polynomial and the polynomial. * Returns product of the constant represented as a polynomial and the polynomial.
*/ */
override operator fun C.times(other: NumberedPolynomial<C>): NumberedPolynomial<C> = override operator fun C.times(other: NumberedPolynomial<C>): NumberedPolynomial<C> =
NumberedPolynomial<C>( NumberedPolynomialAsIs(
other.coefficients other.coefficients
.toMutableMap() .toMutableMap()
.apply { .apply {
@ -207,12 +217,12 @@ public open class NumberedPolynomialSpace<C, A : Ring<C>>(
) )
/** /**
* Returns sum of the constant represented as polynomial and the polynomial. * Returns sum of the constant represented as a polynomial and the polynomial.
*/ */
override operator fun NumberedPolynomial<C>.plus(other: C): NumberedPolynomial<C> = override operator fun NumberedPolynomial<C>.plus(other: C): NumberedPolynomial<C> =
with(coefficients) { with(coefficients) {
if (isEmpty()) NumberedPolynomial<C>(mapOf(emptyList<UInt>() to other)) if (isEmpty()) NumberedPolynomialAsIs(mapOf(emptyList<UInt>() to other))
else NumberedPolynomial<C>( else NumberedPolynomialAsIs(
toMutableMap() toMutableMap()
.apply { .apply {
val degs = emptyList<UInt>() val degs = emptyList<UInt>()
@ -222,12 +232,12 @@ public open class NumberedPolynomialSpace<C, A : Ring<C>>(
) )
} }
/** /**
* Returns difference between the constant represented as polynomial and the polynomial. * Returns difference between the constant represented as a polynomial and the polynomial.
*/ */
override operator fun NumberedPolynomial<C>.minus(other: C): NumberedPolynomial<C> = override operator fun NumberedPolynomial<C>.minus(other: C): NumberedPolynomial<C> =
with(coefficients) { with(coefficients) {
if (isEmpty()) NumberedPolynomial<C>(mapOf(emptyList<UInt>() to other)) if (isEmpty()) NumberedPolynomialAsIs(mapOf(emptyList<UInt>() to other))
else NumberedPolynomial<C>( else NumberedPolynomialAsIs(
toMutableMap() toMutableMap()
.apply { .apply {
val degs = emptyList<UInt>() val degs = emptyList<UInt>()
@ -237,10 +247,10 @@ public open class NumberedPolynomialSpace<C, A : Ring<C>>(
) )
} }
/** /**
* Returns product of the constant represented as polynomial and the polynomial. * Returns product of the constant represented as a polynomial and the polynomial.
*/ */
override operator fun NumberedPolynomial<C>.times(other: C): NumberedPolynomial<C> = override operator fun NumberedPolynomial<C>.times(other: C): NumberedPolynomial<C> =
NumberedPolynomial<C>( NumberedPolynomialAsIs(
coefficients coefficients
.toMutableMap() .toMutableMap()
.apply { .apply {
@ -252,22 +262,22 @@ public open class NumberedPolynomialSpace<C, A : Ring<C>>(
* Converts the constant [value] to polynomial. * Converts the constant [value] to polynomial.
*/ */
public override fun number(value: C): NumberedPolynomial<C> = public override fun number(value: C): NumberedPolynomial<C> =
NumberedPolynomial(mapOf(emptyList<UInt>() to value)) NumberedPolynomialAsIs(mapOf(emptyList<UInt>() to value))
/** /**
* Returns negation of the polynomial. * Returns negation of the polynomial.
*/ */
override fun NumberedPolynomial<C>.unaryMinus(): NumberedPolynomial<C> = override fun NumberedPolynomial<C>.unaryMinus(): NumberedPolynomial<C> =
NumberedPolynomial<C>( NumberedPolynomialAsIs(
coefficients.mapValues { -it.value } coefficients.mapValues { -it.value }
) )
/** /**
* Returns sum of the polynomials. * Returns sum of the polynomials.
*/ */
override operator fun NumberedPolynomial<C>.plus(other: NumberedPolynomial<C>): NumberedPolynomial<C> = override operator fun NumberedPolynomial<C>.plus(other: NumberedPolynomial<C>): NumberedPolynomial<C> =
NumberedPolynomial<C>( NumberedPolynomialAsIs(
buildMap(coefficients.size + other.coefficients.size) { buildMap(coefficients.size + other.coefficients.size) {
other.coefficients.mapValuesTo(this) { it.value } coefficients.mapValuesTo(this) { it.value }
other.coefficients.mapValuesTo(this) { (key, value) -> if (key in this) this[key]!! + value else value } other.coefficients.mapValuesTo(this) { (key, value) -> if (key in this) this[key]!! + value else value }
} }
) )
@ -275,9 +285,9 @@ public open class NumberedPolynomialSpace<C, A : Ring<C>>(
* Returns difference of the polynomials. * Returns difference of the polynomials.
*/ */
override operator fun NumberedPolynomial<C>.minus(other: NumberedPolynomial<C>): NumberedPolynomial<C> = override operator fun NumberedPolynomial<C>.minus(other: NumberedPolynomial<C>): NumberedPolynomial<C> =
NumberedPolynomial<C>( NumberedPolynomialAsIs(
buildMap(coefficients.size + other.coefficients.size) { buildMap(coefficients.size + other.coefficients.size) {
other.coefficients.mapValuesTo(this) { it.value } coefficients.mapValuesTo(this) { it.value }
other.coefficients.mapValuesTo(this) { (key, value) -> if (key in this) this[key]!! - value else -value } other.coefficients.mapValuesTo(this) { (key, value) -> if (key in this) this[key]!! - value else -value }
} }
) )
@ -285,7 +295,7 @@ public open class NumberedPolynomialSpace<C, A : Ring<C>>(
* Returns product of the polynomials. * Returns product of the polynomials.
*/ */
override operator fun NumberedPolynomial<C>.times(other: NumberedPolynomial<C>): NumberedPolynomial<C> = override operator fun NumberedPolynomial<C>.times(other: NumberedPolynomial<C>): NumberedPolynomial<C> =
NumberedPolynomial<C>( NumberedPolynomialAsIs(
buildMap(coefficients.size * other.coefficients.size) { buildMap(coefficients.size * other.coefficients.size) {
for ((degs1, c1) in coefficients) for ((degs2, c2) in other.coefficients) { for ((degs1, c1) in coefficients) for ((degs2, c2) in other.coefficients) {
val degs = val degs =
@ -296,20 +306,25 @@ public open class NumberedPolynomialSpace<C, A : Ring<C>>(
} }
} }
) )
/**
* Raises [arg] to the integer power [exponent].
*/ // TODO: To optimize boxing
override fun power(arg: NumberedPolynomial<C>, exponent: UInt): NumberedPolynomial<C> = super.power(arg, exponent)
/** /**
* Instance of zero polynomial (zero of the polynomial ring). * Instance of zero polynomial (zero of the polynomial ring).
*/ */
override val zero: NumberedPolynomial<C> = NumberedPolynomial<C>(emptyMap()) override val zero: NumberedPolynomial<C> = NumberedPolynomialAsIs(emptyMap())
/** /**
* Instance of unit polynomial (unit of the polynomial ring). * Instance of unit polynomial (unit of the polynomial ring).
*/ */
override val one: NumberedPolynomial<C> = override val one: NumberedPolynomial<C> by lazy {
NumberedPolynomial<C>( NumberedPolynomialAsIs(
mapOf( mapOf(
emptyList<UInt>() to constantOne // 1 * x_1^0 * x_2^0 * ... emptyList<UInt>() to constantOne // 1 * x_1^0 * x_2^0 * ...
) )
) )
}
/** /**
* Maximal index (ID) of variable occurring in the polynomial with positive power. If there is no such variable, * Maximal index (ID) of variable occurring in the polynomial with positive power. If there is no such variable,
@ -365,25 +380,61 @@ public open class NumberedPolynomialSpace<C, A : Ring<C>>(
} }
}.count { it } }.count { it }
// TODO: When context receivers will be ready move all of this substitutions and invocations to utilities with
// [ListPolynomialSpace] as a context receiver
/**
* Substitutes provided arguments [arguments] into [this] polynomial.
*/
@Suppress("NOTHING_TO_INLINE") @Suppress("NOTHING_TO_INLINE")
public inline fun NumberedPolynomial<C>.substitute(argument: Map<Int, C>): NumberedPolynomial<C> = this.substitute(ring, argument) public inline fun NumberedPolynomial<C>.substitute(arguments: Map<Int, C>): NumberedPolynomial<C> = substitute(ring, arguments)
/**
* Substitutes provided arguments [arguments] into [this] polynomial.
*/
@Suppress("NOTHING_TO_INLINE") @Suppress("NOTHING_TO_INLINE")
@JvmName("substitutePolynomial") @JvmName("substitutePolynomial")
public inline fun NumberedPolynomial<C>.substitute(argument: Map<Int, NumberedPolynomial<C>>): NumberedPolynomial<C> = this.substitute(ring, argument) public inline fun NumberedPolynomial<C>.substitute(arguments: Map<Int, NumberedPolynomial<C>>) : NumberedPolynomial<C> = substitute(ring, arguments)
/**
* Substitutes provided arguments [arguments] into [this] polynomial.
*/
@Suppress("NOTHING_TO_INLINE")
public inline fun NumberedPolynomial<C>.substitute(arguments: Buffer<C>): NumberedPolynomial<C> = substitute(ring, arguments)
/**
* Substitutes provided arguments [arguments] into [this] polynomial.
*/
@Suppress("NOTHING_TO_INLINE")
@JvmName("substitutePolynomial")
public inline fun NumberedPolynomial<C>.substitute(arguments: Buffer<NumberedPolynomial<C>>) : NumberedPolynomial<C> = substitute(ring, arguments)
/**
* Substitutes provided arguments [arguments] into [this] polynomial.
*/
@Suppress("NOTHING_TO_INLINE")
public inline fun NumberedPolynomial<C>.substituteFully(arguments: Buffer<C>): C = this.substituteFully(ring, arguments)
/**
* Represent [this] polynomial as a regular context-less function.
*/
@Suppress("NOTHING_TO_INLINE") @Suppress("NOTHING_TO_INLINE")
public inline fun NumberedPolynomial<C>.asFunction(): (Map<Int, C>) -> NumberedPolynomial<C> = { this.substitute(ring, it) } public inline fun NumberedPolynomial<C>.asFunction(): (Buffer<C>) -> C = asFunctionOver(ring)
/**
* Represent [this] polynomial as a regular context-less function.
*/
@Suppress("NOTHING_TO_INLINE") @Suppress("NOTHING_TO_INLINE")
public inline fun NumberedPolynomial<C>.asFunctionOnConstants(): (Map<Int, C>) -> NumberedPolynomial<C> = { this.substitute(ring, it) } public inline fun NumberedPolynomial<C>.asFunctionOfConstant(): (Buffer<C>) -> C = asFunctionOfConstantOver(ring)
/**
* Represent [this] polynomial as a regular context-less function.
*/
@Suppress("NOTHING_TO_INLINE") @Suppress("NOTHING_TO_INLINE")
public inline fun NumberedPolynomial<C>.asFunctionOnPolynomials(): (Map<Int, NumberedPolynomial<C>>) -> NumberedPolynomial<C> = { this.substitute(ring, it) } public inline fun NumberedPolynomial<C>.asFunctionOfPolynomial(): (Buffer<NumberedPolynomial<C>>) -> NumberedPolynomial<C> = asFunctionOfPolynomialOver(ring)
/**
* Evaluates value of [this] polynomial on provided [arguments].
*/
@Suppress("NOTHING_TO_INLINE") @Suppress("NOTHING_TO_INLINE")
public inline operator fun NumberedPolynomial<C>.invoke(argument: Map<Int, C>): NumberedPolynomial<C> = this.substitute(ring, argument) public inline operator fun NumberedPolynomial<C>.invoke(arguments: Buffer<C>): C = substituteFully(ring, arguments)
/**
* Substitutes provided [arguments] into [this] polynomial.
*/
@Suppress("NOTHING_TO_INLINE") @Suppress("NOTHING_TO_INLINE")
@JvmName("invokePolynomial") @JvmName("invokePolynomial")
public inline operator fun NumberedPolynomial<C>.invoke(argument: Map<Int, NumberedPolynomial<C>>): NumberedPolynomial<C> = this.substitute(ring, argument) public inline operator fun NumberedPolynomial<C>.invoke(arguments: Buffer<NumberedPolynomial<C>>): NumberedPolynomial<C> = substitute(ring, arguments)
// FIXME: Move to other constructors with context receiver
public fun C.asNumberedPolynomial() : NumberedPolynomial<C> = NumberedPolynomial<C>(mapOf(emptyList<UInt>() to this))
} }

View File

@ -7,9 +7,14 @@ package space.kscience.kmath.functions
import space.kscience.kmath.operations.Ring import space.kscience.kmath.operations.Ring
import space.kscience.kmath.operations.invoke import space.kscience.kmath.operations.invoke
import space.kscience.kmath.structures.Buffer
import kotlin.jvm.JvmName
import kotlin.math.max import kotlin.math.max
/**
* Represents multivariate rational function that stores its numerator and denominator as [NumberedPolynomial]s.
*/
public class NumberedRationalFunction<C> internal constructor( public class NumberedRationalFunction<C> internal constructor(
public override val numerator: NumberedPolynomial<C>, public override val numerator: NumberedPolynomial<C>,
public override val denominator: NumberedPolynomial<C> public override val denominator: NumberedPolynomial<C>
@ -17,6 +22,13 @@ public class NumberedRationalFunction<C> internal constructor(
override fun toString(): String = "NumberedRationalFunction${numerator.coefficients}/${denominator.coefficients}" override fun toString(): String = "NumberedRationalFunction${numerator.coefficients}/${denominator.coefficients}"
} }
/**
* Arithmetic context for univariate rational functions with numerator and denominator represented as [NumberedPolynomial]s.
*
* @param C the type of constants. Polynomials have them a coefficients in their terms.
* @param A type of provided underlying ring of constants. It's [Ring] of [C].
* @param ring underlying ring of constants of type [A].
*/
public class NumberedRationalFunctionSpace<C, A: Ring<C>> ( public class NumberedRationalFunctionSpace<C, A: Ring<C>> (
public val ring: A, public val ring: A,
) : ) :
@ -32,22 +44,19 @@ public class NumberedRationalFunctionSpace<C, A: Ring<C>> (
NumberedRationalFunction<C>, NumberedRationalFunction<C>,
>() { >() {
override val polynomialRing : NumberedPolynomialSpace<C, A> = NumberedPolynomialSpace(ring) /**
override fun constructRationalFunction( * Underlying polynomial ring. Its polynomial operations are inherited by local polynomial operations.
*/
public override val polynomialRing : NumberedPolynomialSpace<C, A> = NumberedPolynomialSpace(ring)
/**
* Constructor of rational functions (of type [NumberedRationalFunction]) from numerator and denominator (of type [NumberedPolynomial]).
*/
protected override fun constructRationalFunction(
numerator: NumberedPolynomial<C>, numerator: NumberedPolynomial<C>,
denominator: NumberedPolynomial<C> denominator: NumberedPolynomial<C>
): NumberedRationalFunction<C> = ): NumberedRationalFunction<C> =
NumberedRationalFunction(numerator, denominator) NumberedRationalFunction(numerator, denominator)
/**
* Instance of zero rational function (zero of the rational functions ring).
*/
public override val zero: NumberedRationalFunction<C> = NumberedRationalFunction(polynomialZero, polynomialOne)
/**
* Instance of unit polynomial (unit of the rational functions ring).
*/
public override val one: NumberedRationalFunction<C> = NumberedRationalFunction(polynomialOne, polynomialOne)
/** /**
* Maximal index (ID) of variable occurring in the polynomial with positive power. If there is no such variable, * Maximal index (ID) of variable occurring in the polynomial with positive power. If there is no such variable,
* the result is `-1`. * the result is `-1`.
@ -99,90 +108,140 @@ public class NumberedRationalFunctionSpace<C, A: Ring<C>> (
} }
}.count { it } }.count { it }
// TODO: Разобрать // TODO: When context receivers will be ready move all of this substitutions and invocations to utilities with
// [ListPolynomialSpace] as a context receiver
/**
* Substitutes provided constant [argument] into [this] polynomial.
*/
@Suppress("NOTHING_TO_INLINE")
public inline fun NumberedPolynomial<C>.substitute(argument: Map<Int, C>): NumberedPolynomial<C> = substitute(ring, argument)
/**
* Substitutes provided polynomial [argument] into [this] polynomial.
*/
@Suppress("NOTHING_TO_INLINE")
@JvmName("substitutePolynomial")
public inline fun NumberedPolynomial<C>.substitute(argument: Map<Int, NumberedPolynomial<C>>): NumberedPolynomial<C> = substitute(ring, argument)
/**
* Substitutes provided rational function [argument] into [this] polynomial.
*/
@Suppress("NOTHING_TO_INLINE")
@JvmName("substituteRationalFunction")
public inline fun NumberedPolynomial<C>.substitute(argument: Map<Int, NumberedRationalFunction<C>>): NumberedRationalFunction<C> = substitute(ring, argument)
/**
* Substitutes provided constant [argument] into [this] rational function.
*/
@Suppress("NOTHING_TO_INLINE")
public inline fun NumberedRationalFunction<C>.substitute(argument: Map<Int, C>): NumberedRationalFunction<C> = substitute(ring, argument)
/**
* Substitutes provided polynomial [argument] into [this] rational function.
*/
@Suppress("NOTHING_TO_INLINE")
@JvmName("substitutePolynomial")
public inline fun NumberedRationalFunction<C>.substitute(argument: Map<Int, NumberedPolynomial<C>>): NumberedRationalFunction<C> = substitute(ring, argument)
/**
* Substitutes provided rational function [argument] into [this] rational function.
*/
@Suppress("NOTHING_TO_INLINE")
@JvmName("substituteRationalFunction")
public inline fun NumberedRationalFunction<C>.substitute(argument: Map<Int, NumberedRationalFunction<C>>): NumberedRationalFunction<C> = substitute(ring, argument)
/**
* Substitutes provided constant [argument] into [this] polynomial.
*/
@Suppress("NOTHING_TO_INLINE")
public inline fun NumberedPolynomial<C>.substitute(argument: Buffer<C>): NumberedPolynomial<C> = substitute(ring, argument)
/**
* Substitutes provided polynomial [argument] into [this] polynomial.
*/
@Suppress("NOTHING_TO_INLINE")
@JvmName("substitutePolynomial")
public inline fun NumberedPolynomial<C>.substitute(argument: Buffer<NumberedPolynomial<C>>): NumberedPolynomial<C> = substitute(ring, argument)
/**
* Substitutes provided rational function [argument] into [this] polynomial.
*/
@Suppress("NOTHING_TO_INLINE")
@JvmName("substituteRationalFunction")
public inline fun NumberedPolynomial<C>.substitute(argument: Buffer<NumberedRationalFunction<C>>): NumberedRationalFunction<C> = substitute(ring, argument)
/**
* Substitutes provided constant [argument] into [this] rational function.
*/
@Suppress("NOTHING_TO_INLINE")
public inline fun NumberedRationalFunction<C>.substitute(argument: Buffer<C>): NumberedRationalFunction<C> = substitute(ring, argument)
/**
* Substitutes provided polynomial [arguments] into [this] rational function.
*/
@Suppress("NOTHING_TO_INLINE")
@JvmName("substitutePolynomial")
public inline fun NumberedRationalFunction<C>.substitute(arguments: Buffer<NumberedPolynomial<C>>): NumberedRationalFunction<C> = substitute(ring, arguments)
/**
* Substitutes provided rational function [arguments] into [this] rational function.
*/
@Suppress("NOTHING_TO_INLINE")
@JvmName("substituteRationalFunction")
public inline fun NumberedRationalFunction<C>.substitute(arguments: Buffer<NumberedRationalFunction<C>>): NumberedRationalFunction<C> = substitute(ring, arguments)
/**
* Substitutes provided constant [arguments] into [this] polynomial.
*/
@Suppress("NOTHING_TO_INLINE")
public inline fun NumberedPolynomial<C>.substituteFully(arguments: Buffer<C>): C = substituteFully(ring, arguments)
// operator fun invoke(arg: Map<Int, C>): NumberedRationalFunction<C> = /**
// NumberedRationalFunction( * Represent [this] polynomial as a regular context-less function.
// numerator(arg), */
// denominator(arg) @Suppress("NOTHING_TO_INLINE")
// ) public inline fun NumberedPolynomial<C>.asFunction(): (Buffer<C>) -> C = asFunctionOver(ring)
// /**
// @JvmName("invokePolynomial") * Represent [this] polynomial as a regular context-less function.
// operator fun invoke(arg: Map<Int, Polynomial<C>>): NumberedRationalFunction<C> = */
// NumberedRationalFunction( @Suppress("NOTHING_TO_INLINE")
// numerator(arg), public inline fun NumberedPolynomial<C>.asFunctionOfConstant(): (Buffer<C>) -> C = asFunctionOfConstantOver(ring)
// denominator(arg) /**
// ) * Represent [this] polynomial as a regular context-less function.
// */
// @JvmName("invokeRationalFunction") @Suppress("NOTHING_TO_INLINE")
// operator fun invoke(arg: Map<Int, NumberedRationalFunction<C>>): NumberedRationalFunction<C> { public inline fun NumberedPolynomial<C>.asFunctionOfPolynomial(): (Buffer<NumberedPolynomial<C>>) -> NumberedPolynomial<C> = asFunctionOfPolynomialOver(ring)
// var num = numerator invokeRFTakeNumerator arg /**
// var den = denominator invokeRFTakeNumerator arg * Represent [this] polynomial as a regular context-less function.
// for (variable in 0 until max(numerator.countOfVariables, denominator.countOfVariables)) if (variable in arg) { */
// val degreeDif = numerator.degrees.getOrElse(variable) { 0 } - denominator.degrees.getOrElse(variable) { 0 } @Suppress("NOTHING_TO_INLINE")
// if (degreeDif > 0) public inline fun NumberedPolynomial<C>.asFunctionOfRationalFunction(): (Buffer<NumberedRationalFunction<C>>) -> NumberedRationalFunction<C> = asFunctionOfRationalFunctionOver(ring)
// den = multiplyByPower(den, arg[variable]!!.denominator, degreeDif) /**
// else * Represent [this] polynomial as a regular context-less function.
// num = multiplyByPower(num, arg[variable]!!.denominator, -degreeDif) */
// } @Suppress("NOTHING_TO_INLINE")
// return NumberedRationalFunction(num, den) public inline fun NumberedRationalFunction<C>.asFunctionOfPolynomial(): (Buffer<NumberedPolynomial<C>>) -> NumberedRationalFunction<C> = asFunctionOfPolynomialOver(ring)
// } /**
// * Represent [this] polynomial as a regular context-less function.
// override fun toString(): String = toString(Polynomial.variableName) */
// @Suppress("NOTHING_TO_INLINE")
// fun toString(withVariableName: String = Polynomial.variableName): String = public inline fun NumberedRationalFunction<C>.asFunctionOfRationalFunction(): (Buffer<NumberedRationalFunction<C>>) -> NumberedRationalFunction<C> = asFunctionOfRationalFunctionOver(ring)
// when(true) {
// numerator.isZero() -> "0" /**
// denominator.isOne() -> numerator.toString(withVariableName) * Evaluates value of [this] polynomial on provided [arguments].
// else -> "${numerator.toStringWithBrackets(withVariableName)}/${denominator.toStringWithBrackets(withVariableName)}" */
// } @Suppress("NOTHING_TO_INLINE")
// public inline operator fun NumberedPolynomial<C>.invoke(arguments: Buffer<C>): C = substituteFully(ring, arguments)
// fun toString(namer: (Int) -> String): String = /**
// when(true) { * Substitutes provided [arguments] into [this] polynomial.
// numerator.isZero() -> "0" */
// denominator.isOne() -> numerator.toString(namer) @Suppress("NOTHING_TO_INLINE")
// else -> "${numerator.toStringWithBrackets(namer)}/${denominator.toStringWithBrackets(namer)}" @JvmName("invokePolynomial")
// } public inline operator fun NumberedPolynomial<C>.invoke(arguments: Buffer<NumberedPolynomial<C>>): NumberedPolynomial<C> = substitute(ring, arguments)
// /**
// fun toStringWithBrackets(withVariableName: String = Polynomial.variableName): String = * Substitutes provided [arguments] into [this] polynomial.
// when(true) { */
// numerator.isZero() -> "0" @Suppress("NOTHING_TO_INLINE")
// denominator.isOne() -> numerator.toStringWithBrackets(withVariableName) @JvmName("invokeRationalFunction")
// else -> "(${numerator.toStringWithBrackets(withVariableName)}/${denominator.toStringWithBrackets(withVariableName)})" public inline operator fun NumberedPolynomial<C>.invoke(arguments: Buffer<NumberedRationalFunction<C>>): NumberedRationalFunction<C> = substitute(ring, arguments)
// } /**
// * Substitutes provided [arguments] into [this] rational function.
// fun toStringWithBrackets(namer: (Int) -> String): String = */
// when(true) { @Suppress("NOTHING_TO_INLINE")
// numerator.isZero() -> "0" @JvmName("invokePolynomial")
// denominator.isOne() -> numerator.toStringWithBrackets(namer) public inline operator fun NumberedRationalFunction<C>.invoke(arguments: Buffer<NumberedPolynomial<C>>): NumberedRationalFunction<C> = substitute(ring, arguments)
// else -> "(${numerator.toStringWithBrackets(namer)}/${denominator.toStringWithBrackets(namer)})" /**
// } * Substitutes provided [arguments] into [this] rational function.
// */
// fun toReversedString(withVariableName: String = Polynomial.variableName): String = @Suppress("NOTHING_TO_INLINE")
// when(true) { @JvmName("invokeRationalFunction")
// numerator.isZero() -> "0" public inline operator fun NumberedRationalFunction<C>.invoke(arguments: Buffer<NumberedRationalFunction<C>>): NumberedRationalFunction<C> = substitute(ring, arguments)
// denominator.isOne() -> numerator.toReversedString(withVariableName)
// else -> "${numerator.toReversedStringWithBrackets(withVariableName)}/${denominator.toReversedStringWithBrackets(withVariableName)}"
// }
//
// fun toReversedString(namer: (Int) -> String): String =
// when(true) {
// numerator.isZero() -> "0"
// denominator.isOne() -> numerator.toReversedString(namer)
// else -> "${numerator.toReversedStringWithBrackets(namer)}/${denominator.toReversedStringWithBrackets(namer)}"
// }
//
// fun toReversedStringWithBrackets(withVariableName: String = Polynomial.variableName): String =
// when(true) {
// numerator.isZero() -> "0"
// denominator.isOne() -> numerator.toReversedStringWithBrackets(withVariableName)
// else -> "(${numerator.toReversedStringWithBrackets(withVariableName)}/${denominator.toReversedStringWithBrackets(withVariableName)})"
// }
//
// fun toReversedStringWithBrackets(namer: (Int) -> String): String =
// when(true) {
// numerator.isZero() -> "0"
// denominator.isOne() -> numerator.toReversedStringWithBrackets(namer)
// else -> "(${numerator.toReversedStringWithBrackets(namer)}/${denominator.toReversedStringWithBrackets(namer)})"
// }
} }

View File

@ -25,38 +25,38 @@ public interface Polynomial<C>
@Suppress("INAPPLICABLE_JVM_NAME", "PARAMETER_NAME_CHANGED_ON_OVERRIDE") // FIXME: Waiting for KT-31420 @Suppress("INAPPLICABLE_JVM_NAME", "PARAMETER_NAME_CHANGED_ON_OVERRIDE") // FIXME: Waiting for KT-31420
public interface PolynomialSpace<C, P: Polynomial<C>> : Ring<P> { public interface PolynomialSpace<C, P: Polynomial<C>> : Ring<P> {
/** /**
* Returns sum of the constant and the integer represented as constant (member of underlying ring). * Returns sum of the constant and the integer represented as a constant (member of underlying ring).
* *
* The operation is equivalent to adding [other] copies of unit of underlying ring to [this]. * The operation is equivalent to adding [other] copies of unit of underlying ring to [this].
*/ */
public operator fun C.plus(other: Int): C public operator fun C.plus(other: Int): C
/** /**
* Returns difference between the constant and the integer represented as constant (member of underlying ring). * Returns difference between the constant and the integer represented as a constant (member of underlying ring).
* *
* The operation is equivalent to subtraction [other] copies of unit of underlying ring from [this]. * The operation is equivalent to subtraction [other] copies of unit of underlying ring from [this].
*/ */
public operator fun C.minus(other: Int): C public operator fun C.minus(other: Int): C
/** /**
* Returns product of the constant and the integer represented as constant (member of underlying ring). * Returns product of the constant and the integer represented as a constant (member of underlying ring).
* *
* The operation is equivalent to sum of [other] copies of [this]. * The operation is equivalent to sum of [other] copies of [this].
*/ */
public operator fun C.times(other: Int): C public operator fun C.times(other: Int): C
/** /**
* Returns sum of the integer represented as constant (member of underlying ring) and the constant. * Returns sum of the integer represented as a constant (member of underlying ring) and the constant.
* *
* The operation is equivalent to adding [this] copies of unit of underlying ring to [other]. * The operation is equivalent to adding [this] copies of unit of underlying ring to [other].
*/ */
public operator fun Int.plus(other: C): C public operator fun Int.plus(other: C): C
/** /**
* Returns difference between the integer represented as constant (member of underlying ring) and the constant. * Returns difference between the integer represented as a constant (member of underlying ring) and the constant.
* *
* The operation is equivalent to subtraction [this] copies of unit of underlying ring from [other]. * The operation is equivalent to subtraction [this] copies of unit of underlying ring from [other].
*/ */
public operator fun Int.minus(other: C): C public operator fun Int.minus(other: C): C
/** /**
* Returns product of the integer represented as constant (member of underlying ring) and the constant. * Returns product of the integer represented as a constant (member of underlying ring) and the constant.
* *
* The operation is equivalent to sum of [this] copies of [other]. * The operation is equivalent to sum of [this] copies of [other].
*/ */
@ -72,38 +72,38 @@ public interface PolynomialSpace<C, P: Polynomial<C>> : Ring<P> {
public fun Int.asConstant(): C = constantNumber(this) public fun Int.asConstant(): C = constantNumber(this)
/** /**
* Returns sum of the polynomial and the integer represented as polynomial. * Returns sum of the polynomial and the integer represented as a polynomial.
* *
* The operation is equivalent to adding [other] copies of unit polynomial to [this]. * The operation is equivalent to adding [other] copies of unit polynomial to [this].
*/ */
public operator fun P.plus(other: Int): P = addMultipliedByDoubling(this, one, other) public operator fun P.plus(other: Int): P = addMultipliedByDoubling(this, one, other)
/** /**
* Returns difference between the polynomial and the integer represented as polynomial. * Returns difference between the polynomial and the integer represented as a polynomial.
* *
* The operation is equivalent to subtraction [other] copies of unit polynomial from [this]. * The operation is equivalent to subtraction [other] copies of unit polynomial from [this].
*/ */
public operator fun P.minus(other: Int): P = addMultipliedByDoubling(this, one, -other) public operator fun P.minus(other: Int): P = addMultipliedByDoubling(this, one, -other)
/** /**
* Returns product of the polynomial and the integer represented as polynomial. * Returns product of the polynomial and the integer represented as a polynomial.
* *
* The operation is equivalent to sum of [other] copies of [this]. * The operation is equivalent to sum of [other] copies of [this].
*/ */
public operator fun P.times(other: Int): P = multiplyByDoubling(this, other) public operator fun P.times(other: Int): P = multiplyByDoubling(this, other)
/** /**
* Returns sum of the integer represented as polynomial and the polynomial. * Returns sum of the integer represented as a polynomial and the polynomial.
* *
* The operation is equivalent to adding [this] copies of unit polynomial to [other]. * The operation is equivalent to adding [this] copies of unit polynomial to [other].
*/ */
public operator fun Int.plus(other: P): P = addMultipliedByDoubling(other, one, this) public operator fun Int.plus(other: P): P = addMultipliedByDoubling(other, one, this)
/** /**
* Returns difference between the integer represented as polynomial and the polynomial. * Returns difference between the integer represented as a polynomial and the polynomial.
* *
* The operation is equivalent to subtraction [this] copies of unit polynomial from [other]. * The operation is equivalent to subtraction [this] copies of unit polynomial from [other].
*/ */
public operator fun Int.minus(other: P): P = addMultipliedByDoubling(-other, one, this) public operator fun Int.minus(other: P): P = addMultipliedByDoubling(-other, one, this)
/** /**
* Returns product of the integer represented as polynomial and the polynomial. * Returns product of the integer represented as a polynomial and the polynomial.
* *
* The operation is equivalent to sum of [this] copies of [other]. * The operation is equivalent to sum of [this] copies of [other].
*/ */
@ -165,28 +165,28 @@ public interface PolynomialSpace<C, P: Polynomial<C>> : Ring<P> {
public val constantOne: C public val constantOne: C
/** /**
* Returns sum of the constant represented as polynomial and the polynomial. * Returns sum of the constant represented as a polynomial and the polynomial.
*/ */
public operator fun C.plus(other: P): P public operator fun C.plus(other: P): P
/** /**
* Returns difference between the constant represented as polynomial and the polynomial. * Returns difference between the constant represented as a polynomial and the polynomial.
*/ */
public operator fun C.minus(other: P): P public operator fun C.minus(other: P): P
/** /**
* Returns product of the constant represented as polynomial and the polynomial. * Returns product of the constant represented as a polynomial and the polynomial.
*/ */
public operator fun C.times(other: P): P public operator fun C.times(other: P): P
/** /**
* Returns sum of the constant represented as polynomial and the polynomial. * Returns sum of the constant represented as a polynomial and the polynomial.
*/ */
public operator fun P.plus(other: C): P public operator fun P.plus(other: C): P
/** /**
* Returns difference between the constant represented as polynomial and the polynomial. * Returns difference between the constant represented as a polynomial and the polynomial.
*/ */
public operator fun P.minus(other: C): P public operator fun P.minus(other: C): P
/** /**
* Returns product of the constant represented as polynomial and the polynomial. * Returns product of the constant represented as a polynomial and the polynomial.
*/ */
public operator fun P.times(other: C): P public operator fun P.times(other: C): P
@ -254,41 +254,44 @@ public interface PolynomialSpace<C, P: Polynomial<C>> : Ring<P> {
@Suppress("INAPPLICABLE_JVM_NAME") // FIXME: Waiting for KT-31420 @Suppress("INAPPLICABLE_JVM_NAME") // FIXME: Waiting for KT-31420
public interface PolynomialSpaceOverRing<C, P: Polynomial<C>, A: Ring<C>> : PolynomialSpace<C, P> { public interface PolynomialSpaceOverRing<C, P: Polynomial<C>, A: Ring<C>> : PolynomialSpace<C, P> {
/**
* Underlying ring of constants. Its operations on constants are inherited by local operations on constants.
*/
public val ring: A public val ring: A
/** /**
* Returns sum of the constant and the integer represented as constant (member of underlying ring). * Returns sum of the constant and the integer represented as a constant (member of underlying ring).
* *
* The operation is equivalent to adding [other] copies of unit of underlying ring to [this]. * The operation is equivalent to adding [other] copies of unit of underlying ring to [this].
*/ */
public override operator fun C.plus(other: Int): C = ring { addMultipliedByDoubling(this@plus, one, other) } public override operator fun C.plus(other: Int): C = ring { addMultipliedByDoubling(this@plus, one, other) }
/** /**
* Returns difference between the constant and the integer represented as constant (member of underlying ring). * Returns difference between the constant and the integer represented as a constant (member of underlying ring).
* *
* The operation is equivalent to subtraction [other] copies of unit of underlying ring from [this]. * The operation is equivalent to subtraction [other] copies of unit of underlying ring from [this].
*/ */
public override operator fun C.minus(other: Int): C = ring { addMultipliedByDoubling(this@minus, one, -other) } public override operator fun C.minus(other: Int): C = ring { addMultipliedByDoubling(this@minus, one, -other) }
/** /**
* Returns product of the constant and the integer represented as constant (member of underlying ring). * Returns product of the constant and the integer represented as a constant (member of underlying ring).
* *
* The operation is equivalent to sum of [other] copies of [this]. * The operation is equivalent to sum of [other] copies of [this].
*/ */
public override operator fun C.times(other: Int): C = ring { multiplyByDoubling(this@times, other) } public override operator fun C.times(other: Int): C = ring { multiplyByDoubling(this@times, other) }
/** /**
* Returns sum of the integer represented as constant (member of underlying ring) and the constant. * Returns sum of the integer represented as a constant (member of underlying ring) and the constant.
* *
* The operation is equivalent to adding [this] copies of unit of underlying ring to [other]. * The operation is equivalent to adding [this] copies of unit of underlying ring to [other].
*/ */
public override operator fun Int.plus(other: C): C = ring { addMultipliedByDoubling(other, one, this@plus) } public override operator fun Int.plus(other: C): C = ring { addMultipliedByDoubling(other, one, this@plus) }
/** /**
* Returns difference between the integer represented as constant (member of underlying ring) and the constant. * Returns difference between the integer represented as a constant (member of underlying ring) and the constant.
* *
* The operation is equivalent to subtraction [this] copies of unit of underlying ring from [other]. * The operation is equivalent to subtraction [this] copies of unit of underlying ring from [other].
*/ */
public override operator fun Int.minus(other: C): C = ring { addMultipliedByDoubling(-other, one, this@minus) } public override operator fun Int.minus(other: C): C = ring { addMultipliedByDoubling(-other, one, this@minus) }
/** /**
* Returns product of the integer represented as constant (member of underlying ring) and the constant. * Returns product of the integer represented as a constant (member of underlying ring) and the constant.
* *
* The operation is equivalent to sum of [this] copies of [other]. * The operation is equivalent to sum of [this] copies of [other].
*/ */
@ -330,58 +333,145 @@ public interface PolynomialSpaceOverRing<C, P: Polynomial<C>, A: Ring<C>> : Poly
public override val constantOne: C get() = ring.one public override val constantOne: C get() = ring.one
} }
/**
* Abstraction of ring of polynomials of type [P] of variables of type [V] and over ring of constants of type [C].
*
* @param C the type of constants. Polynomials have them as coefficients in their terms.
* @param V the type of variables. Polynomials have them in representations of terms.
* @param P the type of polynomials.
*/
@Suppress("INAPPLICABLE_JVM_NAME") // FIXME: Waiting for KT-31420 @Suppress("INAPPLICABLE_JVM_NAME") // FIXME: Waiting for KT-31420
public interface MultivariatePolynomialSpace<C, V, P: Polynomial<C>>: PolynomialSpace<C, P> { public interface MultivariatePolynomialSpace<C, V, P: Polynomial<C>>: PolynomialSpace<C, P> {
/**
* Returns sum of the variable represented as a monic monomial and the integer represented as a constant polynomial.
*/
@JvmName("plusVariableInt") @JvmName("plusVariableInt")
public operator fun V.plus(other: Int): P public operator fun V.plus(other: Int): P
/**
* Returns difference between the variable represented as a monic monomial and the integer represented as a constant polynomial.
*/
@JvmName("minusVariableInt") @JvmName("minusVariableInt")
public operator fun V.minus(other: Int): P public operator fun V.minus(other: Int): P
/**
* Returns product of the variable represented as a monic monomial and the integer represented as a constant polynomial.
*/
@JvmName("timesVariableInt") @JvmName("timesVariableInt")
public operator fun V.times(other: Int): P public operator fun V.times(other: Int): P
/**
* Returns sum of the integer represented as a constant polynomial and the variable represented as a monic monomial.
*/
@JvmName("plusIntVariable") @JvmName("plusIntVariable")
public operator fun Int.plus(other: V): P public operator fun Int.plus(other: V): P
/**
* Returns difference between the integer represented as a constant polynomial and the variable represented as a monic monomial.
*/
@JvmName("minusIntVariable") @JvmName("minusIntVariable")
public operator fun Int.minus(other: V): P public operator fun Int.minus(other: V): P
/**
* Returns product of the integer represented as a constant polynomial and the variable represented as a monic monomial.
*/
@JvmName("timesIntVariable") @JvmName("timesIntVariable")
public operator fun Int.times(other: V): P public operator fun Int.times(other: V): P
@JvmName("plusConstantVariable") /**
public operator fun C.plus(other: V): P * Returns sum of the variable represented as a monic monomial and the constant represented as a constant polynomial.
@JvmName("minusConstantVariable") */
public operator fun C.minus(other: V): P
@JvmName("timesConstantVariable")
public operator fun C.times(other: V): P
@JvmName("plusVariableConstant") @JvmName("plusVariableConstant")
public operator fun V.plus(other: C): P public operator fun V.plus(other: C): P
/**
* Returns difference between the variable represented as a monic monomial and the constant represented as a constant polynomial.
*/
@JvmName("minusVariableConstant") @JvmName("minusVariableConstant")
public operator fun V.minus(other: C): P public operator fun V.minus(other: C): P
/**
* Returns product of the variable represented as a monic monomial and the constant represented as a constant polynomial.
*/
@JvmName("timesVariableConstant") @JvmName("timesVariableConstant")
public operator fun V.times(other: C): P public operator fun V.times(other: C): P
/**
* Returns sum of the constant represented as a constant polynomial and the variable represented as a monic monomial.
*/
@JvmName("plusConstantVariable")
public operator fun C.plus(other: V): P
/**
* Returns difference between the constant represented as a constant polynomial and the variable represented as a monic monomial.
*/
@JvmName("minusConstantVariable")
public operator fun C.minus(other: V): P
/**
* Returns product of the constant represented as a constant polynomial and the variable represented as a monic monomial.
*/
@JvmName("timesConstantVariable")
public operator fun C.times(other: V): P
/**
* Represents the variable as a monic monomial.
*/
@JvmName("unaryPlusVariable") @JvmName("unaryPlusVariable")
public operator fun V.unaryPlus(): P public operator fun V.unaryPlus(): P
/**
* Returns negation of representation of the variable as a monic monomial.
*/
@JvmName("unaryMinusVariable") @JvmName("unaryMinusVariable")
public operator fun V.unaryMinus(): P public operator fun V.unaryMinus(): P
/**
* Returns sum of the variables represented as monic monomials.
*/
@JvmName("plusVariableVariable") @JvmName("plusVariableVariable")
public operator fun V.plus(other: V): P public operator fun V.plus(other: V): P
/**
* Returns difference between the variables represented as monic monomials.
*/
@JvmName("minusVariableVariable") @JvmName("minusVariableVariable")
public operator fun V.minus(other: V): P public operator fun V.minus(other: V): P
/**
* Returns product of the variables represented as monic monomials.
*/
@JvmName("timesVariableVariable") @JvmName("timesVariableVariable")
public operator fun V.times(other: V): P public operator fun V.times(other: V): P
/**
* Represents the [variable] as a monic monomial.
*/
@JvmName("numberVariable")
public fun number(variable: V): P = +variable
/**
* Represents the variable as a monic monomial.
*/
@JvmName("asPolynomialVariable")
public fun V.asPolynomial(): P = number(this)
/**
* Returns sum of the variable represented as a monic monomial and the polynomial.
*/
@JvmName("plusVariablePolynomial") @JvmName("plusVariablePolynomial")
public operator fun V.plus(other: P): P public operator fun V.plus(other: P): P
/**
* Returns difference between the variable represented as a monic monomial and the polynomial.
*/
@JvmName("minusVariablePolynomial") @JvmName("minusVariablePolynomial")
public operator fun V.minus(other: P): P public operator fun V.minus(other: P): P
/**
* Returns product of the variable represented as a monic monomial and the polynomial.
*/
@JvmName("timesVariablePolynomial") @JvmName("timesVariablePolynomial")
public operator fun V.times(other: P): P public operator fun V.times(other: P): P
/**
* Returns sum of the polynomial and the variable represented as a monic monomial.
*/
@JvmName("plusPolynomialVariable") @JvmName("plusPolynomialVariable")
public operator fun P.plus(other: V): P public operator fun P.plus(other: V): P
/**
* Returns difference between the polynomial and the variable represented as a monic monomial.
*/
@JvmName("minusPolynomialVariable") @JvmName("minusPolynomialVariable")
public operator fun P.minus(other: V): P public operator fun P.minus(other: V): P
/**
* Returns product of the polynomial and the variable represented as a monic monomial.
*/
@JvmName("timesPolynomialVariable") @JvmName("timesPolynomialVariable")
public operator fun P.times(other: V): P public operator fun P.times(other: V): P

View File

@ -3,6 +3,8 @@
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file. * Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/ */
@file:Suppress("FunctionName", "NOTHING_TO_INLINE")
package space.kscience.kmath.functions package space.kscience.kmath.functions
import space.kscience.kmath.expressions.Symbol import space.kscience.kmath.expressions.Symbol
@ -15,189 +17,502 @@ import space.kscience.kmath.operations.Ring
*/ */
internal fun Map<Symbol, UInt>.cleanUp() = filterValues { it > 0U } internal fun Map<Symbol, UInt>.cleanUp() = filterValues { it > 0U }
// Waiting for context receivers :( FIXME: Replace with context receivers when they will be available /**
* Constructs [LabeledPolynomial] with provided coefficients map [coefs]. The map is used as is.
*/
@PublishedApi
internal inline fun <C> LabeledPolynomialAsIs(coefs: Map<Map<Symbol, UInt>, C>) : LabeledPolynomial<C> = LabeledPolynomial<C>(coefs)
@Suppress("FunctionName", "NOTHING_TO_INLINE") /**
internal inline fun <C, A: Ring<C>> LabeledPolynomialSpace<C, A>.LabeledPolynomial(coefs: Map<Map<Symbol, UInt>, C>, toCheckInput: Boolean = true) : LabeledPolynomial<C> = ring.LabeledPolynomial(coefs, toCheckInput) * Constructs [LabeledPolynomial] with provided collection of [pairs] of pairs "term's signature &mdash; term's coefficient".
@Suppress("FunctionName", "NOTHING_TO_INLINE") * The collections will be transformed to map with [toMap] and then will be used as is.
internal inline fun <C, A: Ring<C>> LabeledRationalFunctionSpace<C, A>.LabeledPolynomial(coefs: Map<Map<Symbol, UInt>, C>, toCheckInput: Boolean = true) : LabeledPolynomial<C> = ring.LabeledPolynomial(coefs, toCheckInput) */
@Suppress("FunctionName") @PublishedApi
internal fun <C, A: Ring<C>> A.LabeledPolynomial(coefs: Map<Map<Symbol, UInt>, C>, toCheckInput: Boolean = true) : LabeledPolynomial<C> { internal inline fun <C> LabeledPolynomialAsIs(pairs: Collection<Pair<Map<Symbol, UInt>, C>>) : LabeledPolynomial<C> = LabeledPolynomial<C>(pairs.toMap())
if (!toCheckInput) return LabeledPolynomial<C>(coefs)
val fixedCoefs = LinkedHashMap<Map<Symbol, UInt>, C>(coefs.size) /**
* Constructs [LabeledPolynomial] with provided array of [pairs] of pairs "term's signature &mdash; term's coefficient".
* The array will be transformed to map with [toMap] and then will be used as is.
*/
@PublishedApi
internal inline fun <C> LabeledPolynomialAsIs(vararg pairs: Pair<Map<Symbol, UInt>, C>) : LabeledPolynomial<C> = LabeledPolynomial<C>(pairs.toMap())
/**
* Constructs [LabeledPolynomial] with provided coefficients map [coefs]. The map is used as is.
*
* **Be sure you read description of [LabeledPolynomial.coefficients]. Otherwise, you may make a mistake that will
* cause wrong computation result or even runtime error.**
*/
@DelicatePolynomialAPI
public inline fun <C> LabeledPolynomialWithoutCheck(coefs: Map<Map<Symbol, UInt>, C>) : LabeledPolynomial<C> = LabeledPolynomial<C>(coefs)
/**
* Constructs [LabeledPolynomial] with provided collection of [pairs] of pairs "term's signature &mdash; term's coefficient".
* The collections will be transformed to map with [toMap] and then will be used as is.
*
* **Be sure you read description of [LabeledPolynomial.coefficients]. Otherwise, you may make a mistake that will
* cause wrong computation result or even runtime error.**
*/
@DelicatePolynomialAPI
public inline fun <C> LabeledPolynomialWithoutCheck(pairs: Collection<Pair<Map<Symbol, UInt>, C>>) : LabeledPolynomial<C> = LabeledPolynomial<C>(pairs.toMap())
/**
* Constructs [LabeledPolynomial] with provided array of [pairs] of pairs "term's signature &mdash; term's coefficient".
* The array will be transformed to map with [toMap] and then will be used as is.
*
* **Be sure you read description of [LabeledPolynomial.coefficients]. Otherwise, you may make a mistake that will
* cause wrong computation result or even runtime error.**
*/
@DelicatePolynomialAPI
public inline fun <C> LabeledPolynomialWithoutCheck(vararg pairs: Pair<Map<Symbol, UInt>, C>) : LabeledPolynomial<C> = LabeledPolynomial<C>(pairs.toMap())
/**
* Constructs [LabeledPolynomial] with provided coefficients map [coefs].
*
* [coefs] will be "cleaned up":
* 1. Zeros at the ends of terms' signatures (e.g. [coefs] keys) will be removed. (See [cleanUp].)
* 1. Terms that happen to have the same signature will be summed up.
* 1. New map will be formed of resulting terms.
*/
public fun <C> LabeledPolynomial(coefs: Map<Map<Symbol, UInt>, C>, add: (C, C) -> C) : LabeledPolynomial<C> {
val fixedCoefs = mutableMapOf<Map<Symbol, UInt>, C>()
for (entry in coefs) { for (entry in coefs) {
val key = entry.key.cleanUp() val key = entry.key.cleanUp()
val value = entry.value val value = entry.value
fixedCoefs[key] = if (key in fixedCoefs) fixedCoefs[key]!! + value else value fixedCoefs[key] = if (key in fixedCoefs) add(fixedCoefs[key]!!, value) else value
} }
return LabeledPolynomial<C>(fixedCoefs) return LabeledPolynomial<C>(fixedCoefs)
} }
@Suppress("FunctionName", "NOTHING_TO_INLINE") /**
internal inline fun <C, A: Ring<C>> LabeledPolynomialSpace<C, A>.LabeledPolynomial(pairs: Collection<Pair<Map<Symbol, UInt>, C>>, toCheckInput: Boolean = true) : LabeledPolynomial<C> = ring.LabeledPolynomial(pairs, toCheckInput) * Constructs [LabeledPolynomial] with provided collection of [pairs] of pairs "term's signature &mdash; term's coefficient".
@Suppress("FunctionName", "NOTHING_TO_INLINE") *
internal inline fun <C, A: Ring<C>> LabeledRationalFunctionSpace<C, A>.LabeledPolynomial(pairs: Collection<Pair<Map<Symbol, UInt>, C>>, toCheckInput: Boolean = true) : LabeledPolynomial<C> = ring.LabeledPolynomial(pairs, toCheckInput) * [pairs] will be "cleaned up":
@Suppress("FunctionName") * 1. Zeros at the ends of terms' signatures (e.g. [pairs] keys) will be removed. (See [cleanUp].)
internal fun <C, A: Ring<C>> A.LabeledPolynomial(pairs: Collection<Pair<Map<Symbol, UInt>, C>>, toCheckInput: Boolean = true) : LabeledPolynomial<C> { * 1. Terms that happen to have the same signature will be summed up.
if (!toCheckInput) return LabeledPolynomial<C>(pairs.toMap()) * 1. New map will be formed of resulting terms.
*/
val fixedCoefs = LinkedHashMap<Map<Symbol, UInt>, C>(pairs.size) public fun <C> LabeledPolynomial(pairs: Collection<Pair<Map<Symbol, UInt>, C>>, add: (C, C) -> C) : LabeledPolynomial<C> {
val fixedCoefs = mutableMapOf<Map<Symbol, UInt>, C>()
for (entry in pairs) { for (entry in pairs) {
val key = entry.first.cleanUp() val key = entry.first.cleanUp()
val value = entry.second val value = entry.second
fixedCoefs[key] = if (key in fixedCoefs) fixedCoefs[key]!! + value else value fixedCoefs[key] = if (key in fixedCoefs) add(fixedCoefs[key]!!, value) else value
} }
return LabeledPolynomial<C>(fixedCoefs) return LabeledPolynomial<C>(fixedCoefs)
} }
@Suppress("FunctionName", "NOTHING_TO_INLINE") /**
internal inline fun <C, A: Ring<C>> LabeledPolynomialSpace<C, A>.LabeledPolynomial(vararg pairs: Pair<Map<Symbol, UInt>, C>, toCheckInput: Boolean = true) : LabeledPolynomial<C> = ring.LabeledPolynomial(pairs = pairs, toCheckInput = toCheckInput) * Constructs [LabeledPolynomial] with provided array [pairs] of pairs "term's signature &mdash; term's coefficient".
@Suppress("FunctionName", "NOTHING_TO_INLINE") *
internal inline fun <C, A: Ring<C>> LabeledRationalFunctionSpace<C, A>.LabeledPolynomial(vararg pairs: Pair<Map<Symbol, UInt>, C>, toCheckInput: Boolean = true) : LabeledPolynomial<C> = ring.LabeledPolynomial(pairs = pairs, toCheckInput = toCheckInput) * [pairs] will be "cleaned up":
@Suppress("FunctionName") * 1. Zeros at the ends of terms' signatures (e.g. [pairs] keys) will be removed. (See [cleanUp].)
internal fun <C, A: Ring<C>> A.LabeledPolynomial(vararg pairs: Pair<Map<Symbol, UInt>, C>, toCheckInput: Boolean = true) : LabeledPolynomial<C> { * 1. Terms that happen to have the same signature will be summed up.
if (!toCheckInput) return LabeledPolynomial<C>(pairs.toMap()) * 1. New map will be formed of resulting terms.
*/
val fixedCoefs = LinkedHashMap<Map<Symbol, UInt>, C>(pairs.size) public fun <C> LabeledPolynomial(vararg pairs: Pair<Map<Symbol, UInt>, C>, add: (C, C) -> C) : LabeledPolynomial<C> {
val fixedCoefs = mutableMapOf<Map<Symbol, UInt>, C>()
for (entry in pairs) { for (entry in pairs) {
val key = entry.first.cleanUp() val key = entry.first.cleanUp()
val value = entry.second val value = entry.second
fixedCoefs[key] = if (key in fixedCoefs) fixedCoefs[key]!! + value else value fixedCoefs[key] = if (key in fixedCoefs) add(fixedCoefs[key]!!, value) else value
} }
return LabeledPolynomial<C>(fixedCoefs) return LabeledPolynomial<C>(fixedCoefs)
} }
@Suppress("FunctionName") // Waiting for context receivers :( FIXME: Replace with context receivers when they will be available
public fun <C, A: Ring<C>> A.LabeledPolynomial(coefs: Map<Map<Symbol, UInt>, C>) : LabeledPolynomial<C> = LabeledPolynomial(coefs, toCheckInput = true)
@Suppress("FunctionName")
public fun <C, A: Ring<C>> LabeledPolynomialSpace<C, A>.LabeledPolynomial(coefs: Map<Map<Symbol, UInt>, C>) : LabeledPolynomial<C> = LabeledPolynomial(coefs, toCheckInput = true)
@Suppress("FunctionName")
public fun <C, A: Ring<C>> LabeledRationalFunctionSpace<C, A>.LabeledPolynomial(coefs: Map<Map<Symbol, UInt>, C>) : LabeledPolynomial<C> = LabeledPolynomial(coefs, toCheckInput = true)
@Suppress("FunctionName") /**
public fun <C, A: Ring<C>> A.LabeledPolynomial(pairs: Collection<Pair<Map<Symbol, UInt>, C>>) : LabeledPolynomial<C> = LabeledPolynomial(pairs, toCheckInput = true) * Constructs [LabeledPolynomial] with provided coefficients map [coefs].
@Suppress("FunctionName") *
public fun <C, A: Ring<C>> LabeledPolynomialSpace<C, A>.LabeledPolynomial(pairs: Collection<Pair<Map<Symbol, UInt>, C>>) : LabeledPolynomial<C> = LabeledPolynomial(pairs, toCheckInput = true) * [coefs] will be "cleaned up":
@Suppress("FunctionName") * 1. Zeros at the ends of terms' signatures (e.g. [coefs] keys) will be removed. (See [cleanUp].)
public fun <C, A: Ring<C>> LabeledRationalFunctionSpace<C, A>.LabeledPolynomial(pairs: Collection<Pair<Map<Symbol, UInt>, C>>) : LabeledPolynomial<C> = LabeledPolynomial(pairs, toCheckInput = true) * 1. Terms that happen to have the same signature will be summed up.
* 1. New map will be formed of resulting terms.
*/
public inline fun <C, A: Ring<C>> A.LabeledPolynomial(coefs: Map<Map<Symbol, UInt>, C>) : LabeledPolynomial<C> = LabeledPolynomial(coefs, ::add)
/**
* Constructs [LabeledPolynomial] with provided coefficients map [coefs].
*
* [coefs] will be "cleaned up":
* 1. Zeros at the ends of terms' signatures (e.g. [coefs] keys) will be removed. (See [cleanUp].)
* 1. Terms that happen to have the same signature will be summed up.
* 1. New map will be formed of resulting terms.
*/
public inline fun <C, A: Ring<C>> LabeledPolynomialSpace<C, A>.LabeledPolynomial(coefs: Map<Map<Symbol, UInt>, C>) : LabeledPolynomial<C> = LabeledPolynomial(coefs) { left: C, right: C -> left + right }
@Suppress("FunctionName") /**
public fun <C, A: Ring<C>> A.LabeledPolynomial(vararg pairs: Pair<Map<Symbol, UInt>, C>) : LabeledPolynomial<C> = LabeledPolynomial(*pairs, toCheckInput = true) * Constructs [LabeledPolynomial] with provided coefficients map [coefs].
@Suppress("FunctionName") *
public fun <C, A: Ring<C>> LabeledPolynomialSpace<C, A>.LabeledPolynomial(vararg pairs: Pair<Map<Symbol, UInt>, C>) : LabeledPolynomial<C> = LabeledPolynomial(*pairs, toCheckInput = true) * [coefs] will be "cleaned up":
@Suppress("FunctionName") * 1. Zeros at the ends of terms' signatures (e.g. [coefs] keys) will be removed. (See [cleanUp].)
public fun <C, A: Ring<C>> LabeledRationalFunctionSpace<C, A>.LabeledPolynomial(vararg pairs: Pair<Map<Symbol, UInt>, C>) : LabeledPolynomial<C> = LabeledPolynomial(*pairs, toCheckInput = true) * 1. Terms that happen to have the same signature will be summed up.
* 1. New map will be formed of resulting terms.
*/
public inline fun <C, A: Ring<C>> LabeledRationalFunctionSpace<C, A>.LabeledPolynomial(coefs: Map<Map<Symbol, UInt>, C>) : LabeledPolynomial<C> = LabeledPolynomial(coefs) { left: C, right: C -> left + right }
/**
* Constructs [LabeledPolynomial] with provided collection of [pairs] of pairs "term's signature &mdash; term's coefficient".
*
* [pairs] will be "cleaned up":
* 1. Zeros at the ends of terms' signatures (e.g. [pairs] keys) will be removed. (See [cleanUp].)
* 1. Terms that happen to have the same signature will be summed up.
* 1. New map will be formed of resulting terms.
*/
public inline fun <C, A: Ring<C>> A.LabeledPolynomial(pairs: Collection<Pair<Map<Symbol, UInt>, C>>) : LabeledPolynomial<C> = LabeledPolynomial(pairs, ::add)
/**
* Constructs [LabeledPolynomial] with provided collection of [pairs] of pairs "term's signature &mdash; term's coefficient".
*
* [pairs] will be "cleaned up":
* 1. Zeros at the ends of terms' signatures (e.g. [pairs] keys) will be removed. (See [cleanUp].)
* 1. Terms that happen to have the same signature will be summed up.
* 1. New map will be formed of resulting terms.
*/
public inline fun <C, A: Ring<C>> LabeledPolynomialSpace<C, A>.LabeledPolynomial(pairs: Collection<Pair<Map<Symbol, UInt>, C>>) : LabeledPolynomial<C> = LabeledPolynomial(pairs) { left: C, right: C -> left + right }
/**
* Constructs [LabeledPolynomial] with provided collection of [pairs] of pairs "term's signature &mdash; term's coefficient".
*
* [pairs] will be "cleaned up":
* 1. Zeros at the ends of terms' signatures (e.g. [pairs] keys) will be removed. (See [cleanUp].)
* 1. Terms that happen to have the same signature will be summed up.
* 1. New map will be formed of resulting terms.
*/
public inline fun <C, A: Ring<C>> LabeledRationalFunctionSpace<C, A>.LabeledPolynomial(pairs: Collection<Pair<Map<Symbol, UInt>, C>>) : LabeledPolynomial<C> = LabeledPolynomial(pairs) { left: C, right: C -> left + right }
/**
* Constructs [LabeledPolynomial] with provided array [pairs] of pairs "term's signature &mdash; term's coefficient".
*
* [pairs] will be "cleaned up":
* 1. Zeros at the ends of terms' signatures (e.g. [pairs] keys) will be removed. (See [cleanUp].)
* 1. Terms that happen to have the same signature will be summed up.
* 1. New map will be formed of resulting terms.
*/
public inline fun <C, A: Ring<C>> A.LabeledPolynomial(vararg pairs: Pair<Map<Symbol, UInt>, C>) : LabeledPolynomial<C> = LabeledPolynomial(*pairs) { left: C, right: C -> left + right }
/**
* Constructs [LabeledPolynomial] with provided array [pairs] of pairs "term's signature &mdash; term's coefficient".
*
* [pairs] will be "cleaned up":
* 1. Zeros at the ends of terms' signatures (e.g. [pairs] keys) will be removed. (See [cleanUp].)
* 1. Terms that happen to have the same signature will be summed up.
* 1. New map will be formed of resulting terms.
*/
public inline fun <C, A: Ring<C>> LabeledPolynomialSpace<C, A>.LabeledPolynomial(vararg pairs: Pair<Map<Symbol, UInt>, C>) : LabeledPolynomial<C> = LabeledPolynomial(*pairs) { left: C, right: C -> left + right }
/**
* Constructs [LabeledPolynomial] with provided array [pairs] of pairs "term's signature &mdash; term's coefficient".
*
* [pairs] will be "cleaned up":
* 1. Zeros at the ends of terms' signatures (e.g. [pairs] keys) will be removed. (See [cleanUp].)
* 1. Terms that happen to have the same signature will be summed up.
* 1. New map will be formed of resulting terms.
*/
public inline fun <C, A: Ring<C>> LabeledRationalFunctionSpace<C, A>.LabeledPolynomial(vararg pairs: Pair<Map<Symbol, UInt>, C>) : LabeledPolynomial<C> = LabeledPolynomial(*pairs) { left: C, right: C -> left + right }
/**
* Converts [this] constant to [LabeledPolynomial].
*/
public inline fun <C> C.asLabeledPolynomial() : LabeledPolynomial<C> = LabeledPolynomialAsIs(mapOf(emptyMap<Symbol, UInt>() to this))
///**
//// * Converts [this] variable to [LabeledPolynomial].
//// */
//context(A) //context(A)
//public fun <C, A: Ring<C>> Symbol.asLabeledPolynomial() : LabeledPolynomial<C> = LabeledPolynomial<C>(mapOf(mapOf(this to 1u) to one)) //public inline fun <C, A: Ring<C>> Symbol.asLabeledPolynomial() : LabeledPolynomial<C> = LabeledPolynomial<C>(mapOf(mapOf(this to 1u) to one))
///**
// * Converts [this] variable to [LabeledPolynomial].
// */
//context(LabeledPolynomialSpace<C, A>) //context(LabeledPolynomialSpace<C, A>)
//public fun <C, A: Ring<C>> Symbol.asLabeledPolynomial() : LabeledPolynomial<C> = LabeledPolynomial<C>(mapOf(mapOf(this to 1u) to constantOne)) //public inline fun <C, A: Ring<C>> Symbol.asLabeledPolynomial() : LabeledPolynomial<C> = LabeledPolynomial<C>(mapOf(mapOf(this to 1u) to constantOne))
///**
// * Converts [this] variable to [LabeledPolynomial].
// */
//context(LabeledRationalFunctionSpace<C, A>) //context(LabeledRationalFunctionSpace<C, A>)
//public fun <C, A: Ring<C>> Symbol.asLabeledPolynomial() : LabeledPolynomial<C> = LabeledPolynomial<C>(mapOf(mapOf(this to 1u) to constantOne)) //public inline fun <C, A: Ring<C>> Symbol.asLabeledPolynomial() : LabeledPolynomial<C> = LabeledPolynomial<C>(mapOf(mapOf(this to 1u) to constantOne))
public fun <C> C.asLabeledPolynomial() : LabeledPolynomial<C> = LabeledPolynomial<C>(mapOf(emptyMap<Symbol, UInt>() to this))
/**
* Marks DSL that allows to more simply create [LabeledPolynomial]s with good performance.
*
* For example, polynomial `5 a^2 c^3 - 6 b` can be described as
* ```
* Int.algebra {
* val numberedPolynomial : NumberedPolynomial<Int> = NumberedPolynomial {
* 5 { a inPowerOf 2u; c inPowerOf 3u } // 5 a^2 c^3 +
* (-6) { b inPowerOf 1u } // (-6) b^1
* }
* }
* ```
*/
@DslMarker @DslMarker
@UnstableKMathAPI @UnstableKMathAPI
internal annotation class LabeledPolynomialConstructorDSL internal annotation class LabeledPolynomialConstructorDSL
/**
* Builder of [LabeledPolynomial] signature. It should be used as an implicit context for lambdas that describe term signature.
*/
@UnstableKMathAPI @UnstableKMathAPI
@LabeledPolynomialConstructorDSL @LabeledPolynomialConstructorDSL
public class LabeledPolynomialTermSignatureBuilder { public class LabeledPolynomialTermSignatureBuilder {
/**
* Signature storage. Any declaration of any variable's power updates the storage by increasing corresponding value.
* Afterward the storage will be used as a resulting signature.
*/
private val signature: MutableMap<Symbol, UInt> = LinkedHashMap() private val signature: MutableMap<Symbol, UInt> = LinkedHashMap()
public fun build(): Map<Symbol, UInt> = signature
/**
* Builds the resulting signature.
*
* In fact, it just returns [signature] as regular signature of type `List<UInt>`.
*/
@PublishedApi
internal fun build(): Map<Symbol, UInt> = signature
/**
* Declares power of [this] variable of degree [deg].
*
* Declaring another power of the same variable will increase its degree by received degree.
*/
public infix fun Symbol.inPowerOf(deg: UInt) { public infix fun Symbol.inPowerOf(deg: UInt) {
signature[this] = deg signature[this] = deg
} }
/**
* Declares power of [this] variable of degree [deg].
*
* Declaring another power of the same variable will increase its degree by received degree.
*/
@Suppress("NOTHING_TO_INLINE") @Suppress("NOTHING_TO_INLINE")
public inline infix fun Symbol.pow(deg: UInt): Unit = this inPowerOf deg public inline infix fun Symbol.pow(deg: UInt): Unit = this inPowerOf deg
/**
* Declares power of [this] variable of degree [deg].
*
* Declaring another power of the same variable will increase its degree by received degree.
*/
@Suppress("NOTHING_TO_INLINE") @Suppress("NOTHING_TO_INLINE")
public inline infix fun Symbol.`in`(deg: UInt): Unit = this inPowerOf deg public inline infix fun Symbol.`in`(deg: UInt): Unit = this inPowerOf deg
/**
* Declares power of [this] variable of degree [deg].
*
* Declaring another power of the same variable will increase its degree by received degree.
*/
@Suppress("NOTHING_TO_INLINE") @Suppress("NOTHING_TO_INLINE")
public inline infix fun Symbol.of(deg: UInt): Unit = this inPowerOf deg public inline infix fun Symbol.of(deg: UInt): Unit = this inPowerOf deg
} }
/**
* Builder of [LabeledPolynomial]. It should be used as an implicit context for lambdas that describe [LabeledPolynomial].
*/
@UnstableKMathAPI @UnstableKMathAPI
public class LabeledPolynomialBuilder<C>(private val zero: C, private val add: (C, C) -> C, capacity: Int = 0) { public class LabeledPolynomialBuilder<C>(
private val coefficients: MutableMap<Map<Symbol, UInt>, C> = LinkedHashMap(capacity) /**
public fun build(): LabeledPolynomial<C> = LabeledPolynomial<C>(coefficients) * Summation operation that will be used to sum coefficients of monomials of same signatures.
public operator fun C.invoke(block: LabeledPolynomialTermSignatureBuilder.() -> Unit) { */
val signature = LabeledPolynomialTermSignatureBuilder().apply(block).build() private val add: (C, C) -> C,
coefficients[signature] = add(coefficients.getOrElse(signature) { zero }, this@invoke) /**
* Initial capacity of coefficients map.
*/
initialCapacity: Int = 0
) {
/**
* Coefficients storage. Any declaration of any monomial updates the storage.
* Afterward the storage will be used as a resulting coefficients map.
*/
private val coefficients: MutableMap<Map<Symbol, UInt>, C> = LinkedHashMap(initialCapacity)
/**
* Builds the resulting coefficients map.
*
* In fact, it just returns [coefficients] as regular coefficients map of type `Map<List<UInt>, C>`.
*/
@PublishedApi
internal fun build(): LabeledPolynomial<C> = LabeledPolynomial<C>(coefficients)
/**
* Declares monomial with [this] coefficient and provided [signature].
*
* Declaring another monomial with the same signature will add [this] coefficient to existing one. If the sum of such
* coefficients is zero at any moment the monomial won't be removed but will be left as it is.
*/
public infix fun C.with(signature: Map<Symbol, UInt>) {
coefficients[signature] = if (signature in coefficients) add(coefficients[signature]!!, this@with) else this@with
} }
/**
* Declares monomial with [this] coefficient and signature constructed by [block].
*
* Declaring another monomial with the same signature will add [this] coefficient to existing one. If the sum of such
* coefficients is zero at any moment the monomial won't be removed but will be left as it is.
*/
@Suppress("NOTHING_TO_INLINE") @Suppress("NOTHING_TO_INLINE")
public inline infix fun C.with(noinline block: LabeledPolynomialTermSignatureBuilder.() -> Unit): Unit = this.invoke(block) public inline infix fun C.with(noinline block: LabeledPolynomialTermSignatureBuilder.() -> Unit): Unit = this.invoke(block)
@Suppress("NOTHING_TO_INLINE") /**
public inline infix fun (LabeledPolynomialTermSignatureBuilder.() -> Unit).with(coef: C): Unit = coef.invoke(this) * Declares monomial with [this] coefficient and signature constructed by [block].
@Suppress("NOTHING_TO_INLINE") *
public infix fun sig(block: LabeledPolynomialTermSignatureBuilder.() -> Unit): LabeledPolynomialTermSignatureBuilder.() -> Unit = block * Declaring another monomial with the same signature will add [this] coefficient to existing one. If the sum of such
* coefficients is zero at any moment the monomial won't be removed but will be left as it is.
*/
public inline operator fun C.invoke(block: LabeledPolynomialTermSignatureBuilder.() -> Unit): Unit =
this with LabeledPolynomialTermSignatureBuilder().apply(block).build()
} }
// Waiting for context receivers :( FIXME: Replace with context receivers when they will be available // Waiting for context receivers :( FIXME: Replace with context receivers when they will be available
///**
// * Creates [LabeledPolynomial] with lambda [block] in context of [this] ring of constants.
// *
// * For example, polynomial `5 x_1^2 x_3^3 - 6 x_2` can be described as
// * ```
// * Int.algebra {
// * val LabeledPolynomial : LabeledPolynomial<Int> = LabeledPolynomial {
// * 5 { 1 inPowerOf 2u; 3 inPowerOf 3u } // 5 x_1^2 x_3^3 +
// * (-6) { 2 inPowerOf 1u } // (-6) x_2^1
// * }
// * }
// * ```
// */
// FIXME: For now this fabric does not let next two fabrics work. (See KT-52803.) Possible feature solutions:
// 1. `LowPriorityInOverloadResolution` becomes public. Then it should be applied to this function.
// 2. Union types are implemented. Then all three functions should be rewritten
// as one with single union type as a (context) receiver.
//@UnstableKMathAPI
//public inline fun <C, A: Ring<C>> A.LabeledPolynomial(initialCapacity: Int = 0, block: LabeledPolynomialBuilder<C>.() -> Unit) : LabeledPolynomial<C> = LabeledPolynomialBuilder(::add, initialCapacity).apply(block).build()
/**
* Creates [LabeledPolynomial] with lambda [block] in context of [this] ring of [LabeledPolynomial]s.
*
* For example, polynomial `5 x_1^2 x_3^3 - 6 x_2` can be described as
* ```
* Int.algebra {
* val LabeledPolynomial : LabeledPolynomial<Int> = LabeledPolynomial {
* 5 { 1 inPowerOf 2u; 3 inPowerOf 3u } // 5 x_1^2 x_3^3 +
* (-6) { 2 inPowerOf 1u } // (-6) x_2^1
* }
* }
* ```
*/
@UnstableKMathAPI @UnstableKMathAPI
@LabeledPolynomialConstructorDSL public inline fun <C, A: Ring<C>> LabeledPolynomialSpace<C, A>.LabeledPolynomial(initialCapacity: Int = 0, block: LabeledPolynomialBuilder<C>.() -> Unit) : LabeledPolynomial<C> = LabeledPolynomialBuilder({ left: C, right: C -> left + right }, initialCapacity).apply(block).build()
@Suppress("FunctionName") /**
public inline fun <C, A: Ring<C>> A.LabeledPolynomial(block: LabeledPolynomialBuilder<C>.() -> Unit) : LabeledPolynomial<C> = LabeledPolynomialBuilder(zero, ::add).apply(block).build() * Creates [LabeledPolynomial] with lambda [block] in context of [this] field of [LabeledRationalFunction]s.
*
* For example, polynomial `5 x_1^2 x_3^3 - 6 x_2` can be described as
* ```
* Int.algebra {
* val LabeledPolynomial : LabeledPolynomial<Int> = LabeledPolynomial {
* 5 { 1 inPowerOf 2u; 3 inPowerOf 3u } // 5 x_1^2 x_3^3 +
* (-6) { 2 inPowerOf 1u } // (-6) x_2^1
* }
* }
* ```
*/
@UnstableKMathAPI @UnstableKMathAPI
@LabeledPolynomialConstructorDSL public inline fun <C, A: Ring<C>> LabeledRationalFunctionSpace<C, A>.LabeledPolynomial(initialCapacity: Int = 0, block: LabeledPolynomialBuilder<C>.() -> Unit) : LabeledPolynomial<C> = LabeledPolynomialBuilder({ left: C, right: C -> left + right }, initialCapacity).apply(block).build()
@Suppress("FunctionName")
public inline fun <C, A: Ring<C>> A.LabeledPolynomial(capacity: Int, block: LabeledPolynomialBuilder<C>.() -> Unit) : LabeledPolynomial<C> = LabeledPolynomialBuilder(zero, ::add, capacity).apply(block).build()
@UnstableKMathAPI
@LabeledPolynomialConstructorDSL
@Suppress("FunctionName")
public inline fun <C, A: Ring<C>> LabeledPolynomialSpace<C, A>.LabeledPolynomial(block: LabeledPolynomialBuilder<C>.() -> Unit) : LabeledPolynomial<C> = LabeledPolynomialBuilder(constantZero, { left: C, right: C -> left + right}).apply(block).build()
@UnstableKMathAPI
@LabeledPolynomialConstructorDSL
@Suppress("FunctionName")
public inline fun <C, A: Ring<C>> LabeledPolynomialSpace<C, A>.LabeledPolynomial(capacity: Int, block: LabeledPolynomialBuilder<C>.() -> Unit) : LabeledPolynomial<C> = LabeledPolynomialBuilder(constantZero, { left: C, right: C -> left + right}, capacity).apply(block).build()
// Waiting for context receivers :( FIXME: Replace with context receivers when they will be available // Waiting for context receivers :( FIXME: Replace with context receivers when they will be available
@Suppress("FunctionName") /**
public fun <C, A: Ring<C>> LabeledRationalFunctionSpace<C, A>.LabeledRationalFunction(numeratorCoefficients: Map<Map<Symbol, UInt>, C>, denominatorCoefficients: Map<Map<Symbol, UInt>, C>): LabeledRationalFunction<C> = * Constructs [LabeledRationalFunction] with provided coefficients maps [numeratorCoefficients] and [denominatorCoefficients].
LabeledRationalFunction<C>( *
LabeledPolynomial(numeratorCoefficients, toCheckInput = true), * The maps will be "cleaned up":
LabeledPolynomial(denominatorCoefficients, toCheckInput = true) * 1. Zeros at the ends of terms' signatures (e.g. the maps' keys) will be removed. (See [cleanUp].)
) * 1. Terms that happen to have the same signature will be summed up.
@Suppress("FunctionName") * 1. New map will be formed of resulting terms.
*/
public fun <C, A: Ring<C>> A.LabeledRationalFunction(numeratorCoefficients: Map<Map<Symbol, UInt>, C>, denominatorCoefficients: Map<Map<Symbol, UInt>, C>): LabeledRationalFunction<C> = public fun <C, A: Ring<C>> A.LabeledRationalFunction(numeratorCoefficients: Map<Map<Symbol, UInt>, C>, denominatorCoefficients: Map<Map<Symbol, UInt>, C>): LabeledRationalFunction<C> =
LabeledRationalFunction<C>( LabeledRationalFunction<C>(
LabeledPolynomial(numeratorCoefficients, toCheckInput = true), LabeledPolynomial(numeratorCoefficients),
LabeledPolynomial(denominatorCoefficients, toCheckInput = true) LabeledPolynomial(denominatorCoefficients)
) )
@Suppress("FunctionName") /**
* Constructs [LabeledRationalFunction] with provided coefficients maps [numeratorCoefficients] and [denominatorCoefficients].
*
* The maps will be "cleaned up":
* 1. Zeros at the ends of terms' signatures (e.g. the maps' keys) will be removed. (See [cleanUp].)
* 1. Terms that happen to have the same signature will be summed up.
* 1. New map will be formed of resulting terms.
*/
public fun <C, A: Ring<C>> LabeledRationalFunctionSpace<C, A>.LabeledRationalFunction(numeratorCoefficients: Map<Map<Symbol, UInt>, C>, denominatorCoefficients: Map<Map<Symbol, UInt>, C>): LabeledRationalFunction<C> =
LabeledRationalFunction<C>(
LabeledPolynomial(numeratorCoefficients),
LabeledPolynomial(denominatorCoefficients)
)
/**
* Constructs [LabeledRationalFunction] with provided [numerator] and unit denominator.
*/
public fun <C, A: Ring<C>> A.LabeledRationalFunction(numerator: LabeledPolynomial<C>): LabeledRationalFunction<C> =
LabeledRationalFunction<C>(numerator, LabeledPolynomial(mapOf(emptyMap<Symbol, UInt>() to one)))
/**
* Constructs [LabeledRationalFunction] with provided [numerator] and unit denominator.
*/
public fun <C, A: Ring<C>> LabeledRationalFunctionSpace<C, A>.LabeledRationalFunction(numerator: LabeledPolynomial<C>): LabeledRationalFunction<C> = public fun <C, A: Ring<C>> LabeledRationalFunctionSpace<C, A>.LabeledRationalFunction(numerator: LabeledPolynomial<C>): LabeledRationalFunction<C> =
LabeledRationalFunction<C>(numerator, polynomialOne) LabeledRationalFunction<C>(numerator, polynomialOne)
@Suppress("FunctionName")
public fun <C, A: Ring<C>> A.LabeledRationalFunction(numerator: LabeledPolynomial<C>): LabeledRationalFunction<C> = /**
LabeledRationalFunction<C>(numerator, LabeledPolynomial(mapOf(emptyMap<Symbol, UInt>() to one), toCheckInput = false)) * Constructs [LabeledRationalFunction] with provided coefficients map [numeratorCoefficients] for numerator and unit
@Suppress("FunctionName") * denominator.
*
* [numeratorCoefficients] will be "cleaned up":
* 1. Zeros at the ends of terms' signatures (e.g. [numeratorCoefficients]'s keys) will be removed. (See [cleanUp].)
* 1. Terms that happen to have the same signature will be summed up.
* 1. New map will be formed of resulting terms.
*/
public fun <C, A: Ring<C>> LabeledRationalFunctionSpace<C, A>.LabeledRationalFunction(numeratorCoefficients: Map<Map<Symbol, UInt>, C>): LabeledRationalFunction<C> = public fun <C, A: Ring<C>> LabeledRationalFunctionSpace<C, A>.LabeledRationalFunction(numeratorCoefficients: Map<Map<Symbol, UInt>, C>): LabeledRationalFunction<C> =
LabeledRationalFunction<C>( LabeledRationalFunction<C>(
LabeledPolynomial(numeratorCoefficients, toCheckInput = true), LabeledPolynomial(numeratorCoefficients),
polynomialOne polynomialOne
) )
@Suppress("FunctionName") /**
* Constructs [LabeledRationalFunction] with provided coefficients map [numeratorCoefficients] for numerator and unit
* denominator.
*
* [numeratorCoefficients] will be "cleaned up":
* 1. Zeros at the ends of terms' signatures (e.g. [numeratorCoefficients]'s keys) will be removed. (See [cleanUp].)
* 1. Terms that happen to have the same signature will be summed up.
* 1. New map will be formed of resulting terms.
*/
public fun <C, A: Ring<C>> A.LabeledRationalFunction(numeratorCoefficients: Map<Map<Symbol, UInt>, C>): LabeledRationalFunction<C> = public fun <C, A: Ring<C>> A.LabeledRationalFunction(numeratorCoefficients: Map<Map<Symbol, UInt>, C>): LabeledRationalFunction<C> =
LabeledRationalFunction<C>( LabeledRationalFunction<C>(
LabeledPolynomial(numeratorCoefficients, toCheckInput = true), LabeledPolynomial(numeratorCoefficients),
LabeledPolynomial(mapOf(emptyMap<Symbol, UInt>() to one), toCheckInput = false) LabeledPolynomialAsIs(mapOf(emptyMap<Symbol, UInt>() to one))
) )
///**
// * Converts [this] constant to [LabeledRationalFunction].
// */
//context(A) //context(A)
//public fun <C, A: Ring<C>> Symbol.asLabeledRationalFunction() : LabeledRationalFunction<C> = LabeledRationalFunction(asLabeledPolynomial()) //public fun <C, A: Ring<C>> C.asLabeledRationalFunction() : LabeledRationalFunction<C> =
// LabeledRationalFunction(
// LabeledPolynomialAsIs(mapOf(emptyMap<Symbol, UInt>() to this)),
// LabeledPolynomialAsIs(mapOf(emptyMap<Symbol, UInt>() to one))
// )
///**
// * Converts [this] constant to [LabeledRationalFunction].
// */
//context(LabeledRationalFunctionSpace<C, A>) //context(LabeledRationalFunctionSpace<C, A>)
//public fun <C, A: Ring<C>> Symbol.asLabeledRationalFunction() : LabeledRationalFunction<C> = LabeledRationalFunction(asLabeledPolynomial()) //public fun <C, A: Ring<C>> C.asLabeledRationalFunction() : LabeledRationalFunction<C> =
// LabeledRationalFunction(
// LabeledPolynomialAsIs(mapOf(emptyMap<Symbol, UInt>() to this)),
// LabeledPolynomialAsIs(mapOf(emptyMap<Symbol, UInt>() to constantOne))
// )
///**
// * Converts [this] variable to [LabeledRationalFunction].
// */
//context(A) //context(A)
//public fun <C, A: Ring<C>> C.asLabeledRationalFunction() : LabeledRationalFunction<C> = LabeledRationalFunction(asLabeledPolynomial()) //public fun <C, A: Ring<C>> Symbol.asLabeledRationalFunction() : LabeledRationalFunction<C> =
// LabeledRationalFunction(
// LabeledPolynomialAsIs(mapOf(mapOf(this to 1u) to one)),
// LabeledPolynomialAsIs(mapOf(emptyMap<Symbol, UInt>() to one))
// )
///**
// * Converts [this] variable to [LabeledRationalFunction].
// */
//context(LabeledRationalFunctionSpace<C, A>) //context(LabeledRationalFunctionSpace<C, A>)
//public fun <C, A: Ring<C>> C.asLabeledRationalFunction() : LabeledRationalFunction<C> = LabeledRationalFunction(asLabeledPolynomial()) //public fun <C, A: Ring<C>> Symbol.asLabeledRationalFunction() : LabeledRationalFunction<C> =
// LabeledRationalFunction(
// LabeledPolynomialAsIs(mapOf(mapOf(this to 1u) to constantOne)),
// LabeledPolynomialAsIs(mapOf(emptyMap<Symbol, UInt>() to constantOne))
// )

View File

@ -1,495 +0,0 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.functions
import space.kscience.kmath.expressions.Symbol
import space.kscience.kmath.misc.UnstableKMathAPI
import space.kscience.kmath.operations.Field
import space.kscience.kmath.operations.Ring
import space.kscience.kmath.operations.invoke
import kotlin.contracts.ExperimentalContracts
import kotlin.contracts.InvocationKind
import kotlin.contracts.contract
// TODO: Docs
/**
* Creates a [LabeledPolynomialSpace] over a received ring.
*/
public fun <C, A : Ring<C>> A.labeledPolynomial(): LabeledPolynomialSpace<C, A> =
LabeledPolynomialSpace(this)
/**
* Creates a [LabeledPolynomialSpace]'s scope over a received ring.
*/
@OptIn(ExperimentalContracts::class)
public inline fun <C, A : Ring<C>, R> A.labeledPolynomial(block: LabeledPolynomialSpace<C, A>.() -> R): R {
contract { callsInPlace(block, InvocationKind.EXACTLY_ONCE) }
return LabeledPolynomialSpace(this).block()
}
///**
// * Represents the polynomial as a [String] with names of variables substituted with names from [names].
// * Consider that monomials are sorted in lexicographic order.
// */
//context(LabeledPolynomialSpace<C, A>)
//fun <C, A: Ring<C>> LabeledPolynomial<C>.represent(names: Map<Symbol, String> = emptyMap()): String =
// coefficients.entries
// .sortedWith { o1, o2 -> LabeledPolynomial.monomialComparator.compare(o1.key, o2.key) }
// .asSequence()
// .map { (degs, t) ->
// if (degs.isEmpty()) "$t"
// else {
// when {
// t.isOne() -> ""
// t.isMinusOne() -> "-"
// else -> "$t "
// } +
// degs
// .toSortedMap()
// .filter { it.value > 0U }
// .map { (variable, deg) ->
// val variableName = names.getOrDefault(variable, variable.toString())
// when (deg) {
// 1U -> variableName
// else -> "$variableName^$deg"
// }
// }
// .joinToString(separator = " ") { it }
// }
// }
// .joinToString(separator = " + ") { it }
// .ifEmpty { "0" }
//
///**
// * Represents the polynomial as a [String] naming variables by [namer].
// * Consider that monomials are sorted in lexicographic order.
// */
//context(LabeledPolynomialSpace<C, A>)
//fun <C, A: Ring<C>> LabeledPolynomial<C>.represent(namer: (Symbol) -> String): String =
// coefficients.entries
// .sortedWith { o1, o2 -> LabeledPolynomial.monomialComparator.compare(o1.key, o2.key) }
// .asSequence()
// .map { (degs, t) ->
// if (degs.isEmpty()) "$t"
// else {
// when {
// t.isOne() -> ""
// t.isMinusOne() -> "-"
// else -> "$t "
// } +
// degs
// .toSortedMap()
// .filter { it.value > 0U }
// .map { (variable, deg) ->
// when (deg) {
// 1U -> namer(variable)
// else -> "${namer(variable)}^$deg"
// }
// }
// .joinToString(separator = " ") { it }
// }
// }
// .joinToString(separator = " + ") { it }
// .ifEmpty { "0" }
//
///**
// * Represents the polynomial as a [String] with names of variables substituted with names from [names] and with
// * brackets around the string if needed (i.e. when there are at least two addends in the representation).
// * Consider that monomials are sorted in lexicographic order.
// */
//context(LabeledPolynomialSpace<C, A>)
//fun <C, A: Ring<C>> LabeledPolynomial<C>.representWithBrackets(names: Map<Symbol, String> = emptyMap()): String =
// with(represent(names)) { if (coefficients.count() == 1) this else "($this)" }
//
///**
// * Represents the polynomial as a [String] naming variables by [namer] and with brackets around the string if needed
// * (i.e. when there are at least two addends in the representation).
// * Consider that monomials are sorted in lexicographic order.
// */
//context(LabeledPolynomialSpace<C, A>)
//fun <C, A: Ring<C>> LabeledPolynomial<C>.representWithBrackets(namer: (Symbol) -> String): String =
// with(represent(namer)) { if (coefficients.count() == 1) this else "($this)" }
//
///**
// * Represents the polynomial as a [String] with names of variables substituted with names from [names].
// * Consider that monomials are sorted in **reversed** lexicographic order.
// */
//context(LabeledPolynomialSpace<C, A>)
//fun <C, A: Ring<C>> LabeledPolynomial<C>.representReversed(names: Map<Symbol, String> = emptyMap()): String =
// coefficients.entries
// .sortedWith { o1, o2 -> -LabeledPolynomial.monomialComparator.compare(o1.key, o2.key) }
// .asSequence()
// .map { (degs, t) ->
// if (degs.isEmpty()) "$t"
// else {
// when {
// t.isOne() -> ""
// t.isMinusOne() -> "-"
// else -> "$t "
// } +
// degs
// .toSortedMap()
// .filter { it.value > 0U }
// .map { (variable, deg) ->
// val variableName = names.getOrDefault(variable, variable.toString())
// when (deg) {
// 1U -> variableName
// else -> "$variableName^$deg"
// }
// }
// .joinToString(separator = " ") { it }
// }
// }
// .joinToString(separator = " + ") { it }
// .ifEmpty { "0" }
//
///**
// * Represents the polynomial as a [String] naming variables by [namer].
// * Consider that monomials are sorted in **reversed** lexicographic order.
// */
//context(LabeledPolynomialSpace<C, A>)
//fun <C, A: Ring<C>> LabeledPolynomial<C>.representReversed(namer: (Symbol) -> String): String =
// coefficients.entries
// .sortedWith { o1, o2 -> -LabeledPolynomial.monomialComparator.compare(o1.key, o2.key) }
// .asSequence()
// .map { (degs, t) ->
// if (degs.isEmpty()) "$t"
// else {
// when {
// t.isOne() -> ""
// t.isMinusOne() -> "-"
// else -> "$t "
// } +
// degs
// .toSortedMap()
// .filter { it.value > 0U }
// .map { (variable, deg) ->
// when (deg) {
// 1U -> namer(variable)
// else -> "${namer(variable)}^$deg"
// }
// }
// .joinToString(separator = " ") { it }
// }
// }
// .joinToString(separator = " + ") { it }
// .ifEmpty { "0" }
//
///**
// * Represents the polynomial as a [String] with names of variables substituted with names from [names] and with
// * brackets around the string if needed (i.e. when there are at least two addends in the representation).
// * Consider that monomials are sorted in **reversed** lexicographic order.
// */
//context(LabeledPolynomialSpace<C, A>)
//fun <C, A: Ring<C>> LabeledPolynomial<C>.representReversedWithBrackets(names: Map<Symbol, String> = emptyMap()): String =
// with(representReversed(names)) { if (coefficients.count() == 1) this else "($this)" }
//
///**
// * Represents the polynomial as a [String] naming variables by [namer] and with brackets around the string if needed
// * (i.e. when there are at least two addends in the representation).
// * Consider that monomials are sorted in **reversed** lexicographic order.
// */
//context(LabeledPolynomialSpace<C, A>)
//fun <C, A: Ring<C>> LabeledPolynomial<C>.representReversedWithBrackets(namer: (Symbol) -> String): String =
// with(representReversed(namer)) { if (coefficients.count() == 1) this else "($this)" }
//operator fun <T: Field<T>> Polynomial<T>.div(other: T): Polynomial<T> =
// if (other.isZero()) throw ArithmeticException("/ by zero")
// else
// Polynomial(
// coefficients
// .mapValues { it.value / other },
// toCheckInput = false
// )
//public fun <C> LabeledPolynomial<C>.substitute(ring: Ring<C>, args: Map<Symbol, C>): LabeledPolynomial<C> = ring {
// if (coefficients.isEmpty()) return this@substitute
// LabeledPolynomial<C>(
// buildMap {
// coefficients.forEach { (degs, c) ->
// val newDegs = degs.filterKeys { it !in args }
// val newC = degs.entries.asSequence().filter { it.key in args }.fold(c) { acc, (variable, deg) ->
// multiplyWithPower(acc, args[variable]!!, deg)
// }
// this[newDegs] = if (newDegs in this) this[newDegs]!! + newC else newC
// }
// }
// )
//}
//
//// TODO: Replace with optimisation: the [result] may be unboxed, and all operations may be performed as soon as
//// possible on it
//@JvmName("substitutePolynomial")
//fun <C> LabeledPolynomial<C>.substitute(ring: Ring<C>, arg: Map<Symbol, LabeledPolynomial<C>>) : LabeledPolynomial<C> =
// ring.labeledPolynomial {
// if (coefficients.isEmpty()) return zero
// coefficients
// .asSequence()
// .map { (degs, c) ->
// degs.entries
// .asSequence()
// .filter { it.key in arg }
// .fold(LabeledPolynomial(mapOf(degs.filterKeys { it !in arg } to c))) { acc, (index, deg) ->
// multiplyWithPower(acc, arg[index]!!, deg)
// }
// }
// .reduce { acc, polynomial -> acc + polynomial } // TODO: Rewrite. Might be slow.
// }
//
//// TODO: Substitute rational function
//
//fun <C, A : Ring<C>> LabeledPolynomial<C>.asFunctionOver(ring: A): (Map<Symbol, C>) -> LabeledPolynomial<C> =
// { substitute(ring, it) }
//
//fun <C, A : Ring<C>> LabeledPolynomial<C>.asPolynomialFunctionOver(ring: A): (Map<Symbol, LabeledPolynomial<C>>) -> LabeledPolynomial<C> =
// { substitute(ring, it) }
/**
* Returns algebraic derivative of received polynomial.
*/
@UnstableKMathAPI
public fun <C, A : Ring<C>> LabeledPolynomial<C>.derivativeWithRespectTo(
algebra: A,
variable: Symbol,
): LabeledPolynomial<C> = algebra {
LabeledPolynomial<C>(
buildMap(coefficients.size) {
coefficients
.forEach { (degs, c) ->
if (variable !in degs) return@forEach
put(
buildMap {
degs.forEach { (vari, deg) ->
when {
vari != variable -> put(vari, deg)
deg > 1u -> put(vari, deg - 1u)
}
}
},
multiplyByDoubling(c, degs[variable]!!)
)
}
}
)
}
/**
* Returns algebraic derivative of received polynomial.
*/
@UnstableKMathAPI
public fun <C, A : Ring<C>> LabeledPolynomial<C>.derivativeWithRespectTo(
algebra: A,
variables: Collection<Symbol>,
): LabeledPolynomial<C> = algebra {
val cleanedVariables = variables.toSet()
if (cleanedVariables.isEmpty()) return this@derivativeWithRespectTo
LabeledPolynomial<C>(
buildMap(coefficients.size) {
coefficients
.forEach { (degs, c) ->
if (!degs.keys.containsAll(cleanedVariables)) return@forEach
put(
buildMap {
degs.forEach { (vari, deg) ->
when {
vari !in cleanedVariables -> put(vari, deg)
deg > 1u -> put(vari, deg - 1u)
}
}
},
cleanedVariables.fold(c) { acc, variable -> multiplyByDoubling(acc, degs[variable]!!) }
)
}
}
)
}
/**
* Returns algebraic derivative of received polynomial.
*/
@UnstableKMathAPI
public fun <C, A : Ring<C>> LabeledPolynomial<C>.nthDerivativeWithRespectTo(
algebra: A,
variable: Symbol,
order: UInt
): LabeledPolynomial<C> = algebra {
if (order == 0u) return this@nthDerivativeWithRespectTo
LabeledPolynomial<C>(
buildMap(coefficients.size) {
coefficients
.forEach { (degs, c) ->
if (degs.getOrElse(variable) { 0u } < order) return@forEach
put(
buildMap {
degs.forEach { (vari, deg) ->
when {
vari != variable -> put(vari, deg)
deg > order -> put(vari, deg - order)
}
}
},
degs[variable]!!.let { deg ->
(deg downTo deg - order + 1u)
.fold(c) { acc, ord -> multiplyByDoubling(acc, ord) }
}
)
}
}
)
}
/**
* Returns algebraic derivative of received polynomial.
*/
@UnstableKMathAPI
public fun <C, A : Ring<C>> LabeledPolynomial<C>.nthDerivativeWithRespectTo(
algebra: A,
variablesAndOrders: Map<Symbol, UInt>,
): LabeledPolynomial<C> = algebra {
val filteredVariablesAndOrders = variablesAndOrders.filterValues { it != 0u }
if (filteredVariablesAndOrders.isEmpty()) return this@nthDerivativeWithRespectTo
LabeledPolynomial<C>(
buildMap(coefficients.size) {
coefficients
.forEach { (degs, c) ->
if (filteredVariablesAndOrders.any { (variable, order) -> degs.getOrElse(variable) { 0u } < order }) return@forEach
put(
buildMap {
degs.forEach { (vari, deg) ->
if (vari !in filteredVariablesAndOrders) put(vari, deg)
else {
val order = filteredVariablesAndOrders[vari]!!
if (deg > order) put(vari, deg - order)
}
}
},
filteredVariablesAndOrders.entries.fold(c) { acc1, (index, order) ->
degs[index]!!.let { deg ->
(deg downTo deg - order + 1u)
.fold(acc1) { acc2, ord -> multiplyByDoubling(acc2, ord) }
}
}
)
}
}
)
}
/**
* Returns algebraic antiderivative of received polynomial.
*/
@UnstableKMathAPI
public fun <C, A : Field<C>> LabeledPolynomial<C>.antiderivativeWithRespectTo(
algebra: A,
variable: Symbol,
): LabeledPolynomial<C> = algebra {
LabeledPolynomial<C>(
buildMap(coefficients.size) {
coefficients
.forEach { (degs, c) ->
val newDegs = buildMap<Symbol, UInt>(degs.size + 1) {
put(variable, 1u)
for ((vari, deg) in degs) put(vari, deg + getOrElse(vari) { 0u })
}
put(
newDegs,
c / multiplyByDoubling(one, newDegs[variable]!!)
)
}
}
)
}
/**
* Returns algebraic antiderivative of received polynomial.
*/
@UnstableKMathAPI
public fun <C, A : Field<C>> LabeledPolynomial<C>.antiderivativeWithRespectTo(
algebra: A,
variables: Collection<Symbol>,
): LabeledPolynomial<C> = algebra {
val cleanedVariables = variables.toSet()
if (cleanedVariables.isEmpty()) return this@antiderivativeWithRespectTo
LabeledPolynomial<C>(
buildMap(coefficients.size) {
coefficients
.forEach { (degs, c) ->
val newDegs = buildMap<Symbol, UInt>(degs.size + 1) {
for (variable in cleanedVariables) put(variable, 1u)
for ((vari, deg) in degs) put(vari, deg + getOrElse(vari) { 0u })
}
put(
newDegs,
cleanedVariables.fold(c) { acc, variable -> acc / multiplyByDoubling(one, newDegs[variable]!!) }
)
}
}
)
}
/**
* Returns algebraic derivative of received polynomial.
*/
@UnstableKMathAPI
public fun <C, A : Field<C>> LabeledPolynomial<C>.nthAntiderivativeWithRespectTo(
algebra: A,
variable: Symbol,
order: UInt
): LabeledPolynomial<C> = algebra {
if (order == 0u) return this@nthAntiderivativeWithRespectTo
LabeledPolynomial<C>(
buildMap(coefficients.size) {
coefficients
.forEach { (degs, c) ->
val newDegs = buildMap<Symbol, UInt>(degs.size + 1) {
put(variable, order)
for ((vari, deg) in degs) put(vari, deg + getOrElse(vari) { 0u })
}
put(
newDegs,
newDegs[variable]!!.let { deg ->
(deg downTo deg - order + 1u)
.fold(c) { acc, ord -> acc / multiplyByDoubling(one, ord) }
}
)
}
}
)
}
/**
* Returns algebraic derivative of received polynomial.
*/
@UnstableKMathAPI
public fun <C, A : Field<C>> LabeledPolynomial<C>.nthAntiderivativeWithRespectTo(
algebra: A,
variablesAndOrders: Map<Symbol, UInt>,
): LabeledPolynomial<C> = algebra {
val filteredVariablesAndOrders = variablesAndOrders.filterValues { it != 0u }
if (filteredVariablesAndOrders.isEmpty()) return this@nthAntiderivativeWithRespectTo
LabeledPolynomial<C>(
buildMap(coefficients.size) {
coefficients
.forEach { (degs, c) ->
val newDegs = buildMap<Symbol, UInt>(degs.size + 1) {
for ((variable, order) in filteredVariablesAndOrders) put(variable, order)
for ((vari, deg) in degs) put(vari, deg + getOrElse(vari) { 0u })
}
put(
newDegs,
filteredVariablesAndOrders.entries.fold(c) { acc1, (index, order) ->
newDegs[index]!!.let { deg ->
(deg downTo deg - order + 1u)
.fold(acc1) { acc2, ord -> acc2 / multiplyByDoubling(one, ord) }
}
}
)
}
}
)
}

View File

@ -1,33 +0,0 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.functions
import space.kscience.kmath.operations.Ring
import kotlin.contracts.InvocationKind
import kotlin.contracts.contract
/**
* Creates a [LabeledRationalFunctionSpace] over a received ring.
*/
public fun <C, A : Ring<C>> A.labeledRationalFunction(): LabeledRationalFunctionSpace<C, A> =
LabeledRationalFunctionSpace(this)
/**
* Creates a [LabeledRationalFunctionSpace]'s scope over a received ring.
*/
public inline fun <C, A : Ring<C>, R> A.labeledRationalFunction(block: LabeledRationalFunctionSpace<C, A>.() -> R): R {
contract { callsInPlace(block, InvocationKind.EXACTLY_ONCE) }
return LabeledRationalFunctionSpace(this).block()
}
//fun <T: Field<T>> LabeledRationalFunction<T>.reduced(): LabeledRationalFunction<T> {
// val greatestCommonDivider = polynomialGCD(numerator, denominator)
// return LabeledRationalFunction(
// numerator / greatestCommonDivider,
// denominator / greatestCommonDivider
// )
//}

View File

@ -0,0 +1,327 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.functions
import space.kscience.kmath.expressions.Symbol
import space.kscience.kmath.misc.UnstableKMathAPI
import space.kscience.kmath.operations.Field
import space.kscience.kmath.operations.invoke
import space.kscience.kmath.operations.Ring
import space.kscience.kmath.operations.algebra
import kotlin.contracts.InvocationKind
import kotlin.contracts.contract
import kotlin.jvm.JvmName
/**
* Creates a [LabeledPolynomialSpace] over a received ring.
*/
public fun <C, A : Ring<C>> A.labeledPolynomialSpace(): LabeledPolynomialSpace<C, A> =
LabeledPolynomialSpace(this)
/**
* Creates a [LabeledPolynomialSpace]'s scope over a received ring.
*/
public inline fun <C, A : Ring<C>, R> A.labeledPolynomialSpace(block: LabeledPolynomialSpace<C, A>.() -> R): R {
contract { callsInPlace(block, InvocationKind.EXACTLY_ONCE) }
return LabeledPolynomialSpace(this).block()
}
/**
* Creates a [LabeledRationalFunctionSpace] over a received ring.
*/
public fun <C, A : Ring<C>> A.labeledRationalFunctionSpace(): LabeledRationalFunctionSpace<C, A> =
LabeledRationalFunctionSpace(this)
/**
* Creates a [LabeledRationalFunctionSpace]'s scope over a received ring.
*/
public inline fun <C, A : Ring<C>, R> A.labeledRationalFunctionSpace(block: LabeledRationalFunctionSpace<C, A>.() -> R): R {
contract { callsInPlace(block, InvocationKind.EXACTLY_ONCE) }
return LabeledRationalFunctionSpace(this).block()
}
/**
* Substitutes provided Double arguments [args] into [this] Double polynomial.
*/
public fun LabeledPolynomial<Double>.substitute(args: Map<Symbol, Double>): LabeledPolynomial<Double> = Double.algebra {
if (coefficients.isEmpty()) return this@substitute
LabeledPolynomial<Double>(
buildMap {
coefficients.forEach { (degs, c) ->
val newDegs = degs.filterKeys { it !in args }
val newC = args.entries.fold(c) { product, (variable, substitution) ->
val deg = degs.getOrElse(variable) { 0u }
if (deg == 0u) product else product * power(substitution, deg)
}
this[newDegs] = if (newDegs in this) this[newDegs]!! + newC else newC
}
}
)
}
/**
* Substitutes provided arguments [args] into [this] polynomial.
*/
public fun <C> LabeledPolynomial<C>.substitute(ring: Ring<C>, args: Map<Symbol, C>): LabeledPolynomial<C> = ring {
if (coefficients.isEmpty()) return this@substitute
LabeledPolynomial<C>(
buildMap {
coefficients.forEach { (degs, c) ->
val newDegs = degs.filterKeys { it !in args }
val newC = args.entries.fold(c) { product, (variable, substitution) ->
val deg = degs.getOrElse(variable) { 0u }
if (deg == 0u) product else product * power(substitution, deg)
}
this[newDegs] = if (newDegs in this) this[newDegs]!! + newC else newC
}
}
)
}
/**
* Substitutes provided arguments [args] into [this] polynomial.
*/ // TODO: To optimize boxing
@JvmName("substitutePolynomial")
public fun <C> LabeledPolynomial<C>.substitute(ring: Ring<C>, args: Map<Symbol, LabeledPolynomial<C>>) : LabeledPolynomial<C> =
ring.labeledPolynomialSpace {
coefficients.entries.fold(zero) { acc, (degs, c) ->
val newDegs = degs.filterKeys { it !in args }
acc + args.entries.fold(LabeledPolynomial<C>(mapOf(newDegs to c))) { product, (variable, substitution) ->
val deg = degs.getOrElse(variable) { 0u }
if (deg == 0u) product else product * power(substitution, deg)
}
}
}
/**
* Substitutes provided arguments [args] into [this] polynomial.
*/ // TODO: To optimize boxing
@JvmName("substituteRationalFunction")
public fun <C> LabeledPolynomial<C>.substitute(ring: Ring<C>, args: Map<Symbol, LabeledRationalFunction<C>>) : LabeledRationalFunction<C> =
ring.labeledRationalFunctionSpace {
coefficients.entries.fold(zero) { acc, (degs, c) ->
val newDegs = degs.filterKeys { it !in args }
acc + args.entries.fold(LabeledRationalFunction(LabeledPolynomial<C>(mapOf(newDegs to c)))) { product, (variable, substitution) ->
val deg = degs.getOrElse(variable) { 0u }
if (deg == 0u) product else product * power(substitution, deg)
}
}
}
/**
* Substitutes provided Double arguments [args] into [this] Double rational function.
*/
public fun LabeledRationalFunction<Double>.substitute(args: Map<Symbol, Double>): LabeledRationalFunction<Double> =
LabeledRationalFunction(numerator.substitute(args), denominator.substitute(args))
/**
* Substitutes provided arguments [args] into [this] rational function.
*/
public fun <C> LabeledRationalFunction<C>.substitute(ring: Ring<C>, args: Map<Symbol, C>): LabeledRationalFunction<C> =
LabeledRationalFunction(numerator.substitute(ring, args), denominator.substitute(ring, args))
/**
* Substitutes provided arguments [args] into [this] rational function.
*/ // TODO: To optimize calculation
@JvmName("substitutePolynomial")
public fun <C> LabeledRationalFunction<C>.substitute(ring: Ring<C>, args: Map<Symbol, LabeledPolynomial<C>>) : LabeledRationalFunction<C> =
LabeledRationalFunction(numerator.substitute(ring, args), denominator.substitute(ring, args))
/**
* Substitutes provided arguments [args] into [this] rational function.
*/ // TODO: To optimize calculation
@JvmName("substituteRationalFunction")
public fun <C> LabeledRationalFunction<C>.substitute(ring: Ring<C>, args: Map<Symbol, LabeledRationalFunction<C>>) : LabeledRationalFunction<C> =
ring.labeledRationalFunctionSpace {
numerator.substitute(ring, args) / denominator.substitute(ring, args)
}
/**
* Returns algebraic derivative of received polynomial with respect to provided variable.
*/
@UnstableKMathAPI
public fun <C, A : Ring<C>> LabeledPolynomial<C>.derivativeWithRespectTo(
algebra: A,
variable: Symbol,
): LabeledPolynomial<C> = algebra {
LabeledPolynomial<C>(
buildMap(coefficients.size) {
coefficients
.forEach { (degs, c) ->
if (variable !in degs) return@forEach
put(
buildMap {
degs.forEach { (vari, deg) ->
when {
vari != variable -> put(vari, deg)
deg > 1u -> put(vari, deg - 1u)
}
}
},
multiplyByDoubling(c, degs[variable]!!)
)
}
}
)
}
/**
* Returns algebraic derivative of received polynomial with respect to provided variable of specified order.
*/
@UnstableKMathAPI
public fun <C, A : Ring<C>> LabeledPolynomial<C>.nthDerivativeWithRespectTo(
algebra: A,
variable: Symbol,
order: UInt
): LabeledPolynomial<C> = algebra {
if (order == 0u) return this@nthDerivativeWithRespectTo
LabeledPolynomial<C>(
buildMap(coefficients.size) {
coefficients
.forEach { (degs, c) ->
if (degs.getOrElse(variable) { 0u } < order) return@forEach
put(
buildMap {
degs.forEach { (vari, deg) ->
when {
vari != variable -> put(vari, deg)
deg > order -> put(vari, deg - order)
}
}
},
degs[variable]!!.let { deg ->
(deg downTo deg - order + 1u)
.fold(c) { acc, ord -> multiplyByDoubling(acc, ord) }
}
)
}
}
)
}
/**
* Returns algebraic derivative of received polynomial with respect to provided variables of specified orders.
*/
@UnstableKMathAPI
public fun <C, A : Ring<C>> LabeledPolynomial<C>.nthDerivativeWithRespectTo(
algebra: A,
variablesAndOrders: Map<Symbol, UInt>,
): LabeledPolynomial<C> = algebra {
val filteredVariablesAndOrders = variablesAndOrders.filterValues { it != 0u }
if (filteredVariablesAndOrders.isEmpty()) return this@nthDerivativeWithRespectTo
LabeledPolynomial<C>(
buildMap(coefficients.size) {
coefficients
.forEach { (degs, c) ->
if (filteredVariablesAndOrders.any { (variable, order) -> degs.getOrElse(variable) { 0u } < order }) return@forEach
put(
buildMap {
degs.forEach { (vari, deg) ->
if (vari !in filteredVariablesAndOrders) put(vari, deg)
else {
val order = filteredVariablesAndOrders[vari]!!
if (deg > order) put(vari, deg - order)
}
}
},
filteredVariablesAndOrders.entries.fold(c) { acc1, (index, order) ->
degs[index]!!.let { deg ->
(deg downTo deg - order + 1u)
.fold(acc1) { acc2, ord -> multiplyByDoubling(acc2, ord) }
}
}
)
}
}
)
}
/**
* Returns algebraic antiderivative of received polynomial with respect to provided variable.
*/
@UnstableKMathAPI
public fun <C, A : Field<C>> LabeledPolynomial<C>.antiderivativeWithRespectTo(
algebra: A,
variable: Symbol,
): LabeledPolynomial<C> = algebra {
LabeledPolynomial<C>(
buildMap(coefficients.size) {
coefficients
.forEach { (degs, c) ->
val newDegs = buildMap<Symbol, UInt>(degs.size + 1) {
put(variable, 1u)
for ((vari, deg) in degs) put(vari, deg + getOrElse(vari) { 0u })
}
put(
newDegs,
c / multiplyByDoubling(one, newDegs[variable]!!)
)
}
}
)
}
/**
* Returns algebraic antiderivative of received polynomial with respect to provided variable of specified order.
*/
@UnstableKMathAPI
public fun <C, A : Field<C>> LabeledPolynomial<C>.nthAntiderivativeWithRespectTo(
algebra: A,
variable: Symbol,
order: UInt
): LabeledPolynomial<C> = algebra {
if (order == 0u) return this@nthAntiderivativeWithRespectTo
LabeledPolynomial<C>(
buildMap(coefficients.size) {
coefficients
.forEach { (degs, c) ->
val newDegs = buildMap<Symbol, UInt>(degs.size + 1) {
put(variable, order)
for ((vari, deg) in degs) put(vari, deg + getOrElse(vari) { 0u })
}
put(
newDegs,
newDegs[variable]!!.let { deg ->
(deg downTo deg - order + 1u)
.fold(c) { acc, ord -> acc / multiplyByDoubling(one, ord) }
}
)
}
}
)
}
/**
* Returns algebraic derivative of received polynomial with respect to provided variables of specified orders.
*/
@UnstableKMathAPI
public fun <C, A : Field<C>> LabeledPolynomial<C>.nthAntiderivativeWithRespectTo(
algebra: A,
variablesAndOrders: Map<Symbol, UInt>,
): LabeledPolynomial<C> = algebra {
val filteredVariablesAndOrders = variablesAndOrders.filterValues { it != 0u }
if (filteredVariablesAndOrders.isEmpty()) return this@nthAntiderivativeWithRespectTo
LabeledPolynomial<C>(
buildMap(coefficients.size) {
coefficients
.forEach { (degs, c) ->
val newDegs = buildMap<Symbol, UInt>(degs.size + 1) {
for ((variable, order) in filteredVariablesAndOrders) put(variable, order)
for ((vari, deg) in degs) put(vari, deg + getOrElse(vari) { 0u })
}
put(
newDegs,
filteredVariablesAndOrders.entries.fold(c) { acc1, (index, order) ->
newDegs[index]!!.let { deg ->
(deg downTo deg - order + 1u)
.fold(acc1) { acc2, ord -> acc2 / multiplyByDoubling(one, ord) }
}
}
)
}
}
)
}

View File

@ -3,58 +3,95 @@
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file. * Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/ */
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.functions package space.kscience.kmath.functions
import space.kscience.kmath.operations.Ring import space.kscience.kmath.operations.Ring
/** /**
* Returns a [ListPolynomial] instance with given [coefficients]. The collection of coefficients will be reversed if * Constructs a [ListPolynomial] instance with provided [coefficients]. The collection of coefficients will be reversed
* [reverse] parameter is true. * if [reverse] parameter is true.
*/ */
@Suppress("FunctionName") @Suppress("FunctionName")
public fun <C> ListPolynomial(coefficients: List<C>, reverse: Boolean = false): ListPolynomial<C> = public fun <C> ListPolynomial(coefficients: List<C>, reverse: Boolean = false): ListPolynomial<C> =
ListPolynomial(with(coefficients) { if (reverse) reversed() else this }) ListPolynomial(with(coefficients) { if (reverse) reversed() else this })
/** /**
* Returns a [ListPolynomial] instance with given [coefficients]. The collection of coefficients will be reversed if * Constructs a [ListPolynomial] instance with provided [coefficients]. The collection of coefficients will be reversed
* [reverse] parameter is true. * if [reverse] parameter is true.
*/ */
@Suppress("FunctionName") @Suppress("FunctionName")
public fun <C> ListPolynomial(vararg coefficients: C, reverse: Boolean = false): ListPolynomial<C> = public fun <C> ListPolynomial(vararg coefficients: C, reverse: Boolean = false): ListPolynomial<C> =
ListPolynomial(with(coefficients) { if (reverse) reversed() else toList() }) ListPolynomial(with(coefficients) { if (reverse) reversed() else toList() })
/**
* Represents [this] constant as a [ListPolynomial].
*/
public fun <C> C.asListPolynomial() : ListPolynomial<C> = ListPolynomial(listOf(this)) public fun <C> C.asListPolynomial() : ListPolynomial<C> = ListPolynomial(listOf(this))
// Waiting for context receivers :( FIXME: Replace with context receivers when they will be available // Waiting for context receivers :( FIXME: Replace with context receivers when they will be available
/**
* Constructs [ListRationalFunction] instance with numerator and denominator constructed with provided
* [numeratorCoefficients] and [denominatorCoefficients]. The both collections of coefficients will be reversed if
* [reverse] parameter is true.
*/
@Suppress("FunctionName") @Suppress("FunctionName")
public fun <C> ListRationalFunction(numeratorCoefficients: List<C>, denominatorCoefficients: List<C>, reverse: Boolean = false): ListRationalFunction<C> = public fun <C> ListRationalFunction(numeratorCoefficients: List<C>, denominatorCoefficients: List<C>, reverse: Boolean = false): ListRationalFunction<C> =
ListRationalFunction<C>( ListRationalFunction<C>(
ListPolynomial( with(numeratorCoefficients) { if (reverse) reversed() else this } ), ListPolynomial( with(numeratorCoefficients) { if (reverse) reversed() else this } ),
ListPolynomial( with(denominatorCoefficients) { if (reverse) reversed() else this } ) ListPolynomial( with(denominatorCoefficients) { if (reverse) reversed() else this } )
) )
@Suppress("FunctionName") /**
public fun <C, A: Ring<C>> ListRationalFunctionSpace<C, A>.ListRationalFunction(numerator: ListPolynomial<C>): ListRationalFunction<C> = * Constructs [ListRationalFunction] instance with provided [numerator] and unit denominator.
ListRationalFunction<C>(numerator, polynomialOne) */
@Suppress("FunctionName") @Suppress("FunctionName")
public fun <C, A: Ring<C>> A.ListRationalFunction(numerator: ListPolynomial<C>): ListRationalFunction<C> = public fun <C, A: Ring<C>> A.ListRationalFunction(numerator: ListPolynomial<C>): ListRationalFunction<C> =
ListRationalFunction<C>(numerator, ListPolynomial(listOf(one))) ListRationalFunction<C>(numerator, ListPolynomial(listOf(one)))
/**
* Constructs [ListRationalFunction] instance with provided [numerator] and unit denominator.
*/
@Suppress("FunctionName") @Suppress("FunctionName")
public fun <C, A: Ring<C>> ListRationalFunctionSpace<C, A>.ListRationalFunction(numeratorCoefficients: List<C>, reverse: Boolean = false): ListRationalFunction<C> = public fun <C, A: Ring<C>> ListRationalFunctionSpace<C, A>.ListRationalFunction(numerator: ListPolynomial<C>): ListRationalFunction<C> =
ListRationalFunction<C>( ListRationalFunction<C>(numerator, polynomialOne)
ListPolynomial( with(numeratorCoefficients) { if (reverse) reversed() else this } ), /**
polynomialOne * Constructs [ListRationalFunction] instance with numerator constructed with provided [numeratorCoefficients] and unit
) * denominator. The collection of numerator coefficients will be reversed if [reverse] parameter is true.
*/
@Suppress("FunctionName") @Suppress("FunctionName")
public fun <C, A: Ring<C>> A.ListRationalFunction(numeratorCoefficients: List<C>, reverse: Boolean = false): ListRationalFunction<C> = public fun <C, A: Ring<C>> A.ListRationalFunction(numeratorCoefficients: List<C>, reverse: Boolean = false): ListRationalFunction<C> =
ListRationalFunction<C>( ListRationalFunction<C>(
ListPolynomial( with(numeratorCoefficients) { if (reverse) reversed() else this } ), ListPolynomial( with(numeratorCoefficients) { if (reverse) reversed() else this } ),
ListPolynomial(listOf(one)) ListPolynomial(listOf(one))
) )
/**
* Constructs [ListRationalFunction] instance with numerator constructed with provided [numeratorCoefficients] and unit
* denominator. The collection of numerator coefficients will be reversed if [reverse] parameter is true.
*/
@Suppress("FunctionName")
public fun <C, A: Ring<C>> ListRationalFunctionSpace<C, A>.ListRationalFunction(numeratorCoefficients: List<C>, reverse: Boolean = false): ListRationalFunction<C> =
ListRationalFunction<C>(
ListPolynomial( with(numeratorCoefficients) { if (reverse) reversed() else this } ),
polynomialOne
)
/**
* Represents [this] constant as a rational function.
*/ // FIXME: When context receivers will be ready, delete this function and uncomment the following two
public fun <C, A: Ring<C>> C.asListRationalFunction(ring: A) : ListRationalFunction<C> = ring.ListRationalFunction(asListPolynomial())
///**
// * Represents [this] constant as a rational function.
// */
//context(A) //context(A)
//public fun <C, A: Ring<C>> C.asListRationalFunction() : ListRationalFunction<C> = ListRationalFunction(asListPolynomial()) //public fun <C, A: Ring<C>> C.asListRationalFunction() : ListRationalFunction<C> = ListRationalFunction(asListPolynomial())
///**
// * Represents [this] constant as a rational function.
// */
//context(ListRationalFunctionSpace<C, A>) //context(ListRationalFunctionSpace<C, A>)
//public fun <C, A: Ring<C>> C.asListRationalFunction() : ListRationalFunction<C> = ListRationalFunction(asListPolynomial()) //public fun <C, A: Ring<C>> C.asListRationalFunction() : ListRationalFunction<C> = ListRationalFunction(asListPolynomial())

View File

@ -1,233 +0,0 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.functions
import space.kscience.kmath.misc.UnstableKMathAPI
import space.kscience.kmath.operations.*
import kotlin.contracts.InvocationKind
import kotlin.contracts.contract
import kotlin.math.max
import kotlin.math.min
import kotlin.math.pow
/**
* Removes zeros on the end of the coefficient list of polynomial.
*/
//context(PolynomialSpace<C, A>)
//fun <C, A: Ring<C>> Polynomial<C>.removeZeros() : Polynomial<C> =
// if (degree > -1) Polynomial(coefficients.subList(0, degree + 1)) else zero
/**
* Creates a [ListPolynomialSpace] over a received ring.
*/
public fun <C, A : Ring<C>> A.listPolynomial(): ListPolynomialSpace<C, A> =
ListPolynomialSpace(this)
/**
* Creates a [ListPolynomialSpace]'s scope over a received ring.
*/
public inline fun <C, A : Ring<C>, R> A.listPolynomial(block: ListPolynomialSpace<C, A>.() -> R): R {
contract { callsInPlace(block, InvocationKind.EXACTLY_ONCE) }
return ListPolynomialSpace(this).block()
}
/**
* Creates a [ScalableListPolynomialSpace] over a received scalable ring.
*/
public fun <C, A> A.scalableListPolynomial(): ScalableListPolynomialSpace<C, A> where A : Ring<C>, A : ScaleOperations<C> =
ScalableListPolynomialSpace(this)
/**
* Creates a [ScalableListPolynomialSpace]'s scope over a received scalable ring.
*/
public inline fun <C, A, R> A.scalableListPolynomial(block: ScalableListPolynomialSpace<C, A>.() -> R): R where A : Ring<C>, A : ScaleOperations<C> {
contract { callsInPlace(block, InvocationKind.EXACTLY_ONCE) }
return ScalableListPolynomialSpace(this).block()
}
@Suppress("NOTHING_TO_INLINE")
internal inline fun <C> copyTo(
origin: List<C>,
originDegree: Int,
target: MutableList<C>,
) {
for (deg in 0 .. originDegree) target[deg] = origin[deg]
}
@Suppress("NOTHING_TO_INLINE")
internal inline fun <C> multiplyAddingToUpdater(
ring: Ring<C>,
multiplicand: MutableList<C>,
multiplicandDegree: Int,
multiplier: List<C>,
multiplierDegree: Int,
updater: MutableList<C>,
zero: C,
) {
multiplyAddingTo(
ring = ring,
multiplicand = multiplicand,
multiplicandDegree = multiplicandDegree,
multiplier = multiplier,
multiplierDegree = multiplierDegree,
target = updater
)
for (updateDeg in 0 .. multiplicandDegree + multiplierDegree) {
multiplicand[updateDeg] = updater[updateDeg]
updater[updateDeg] = zero
}
}
@Suppress("NOTHING_TO_INLINE")
internal inline fun <C> multiplyAddingTo(
ring: Ring<C>,
multiplicand: List<C>,
multiplicandDegree: Int,
multiplier: List<C>,
multiplierDegree: Int,
target: MutableList<C>
) = ring {
for (d in 0 .. multiplicandDegree + multiplierDegree)
for (k in max(0, d - multiplierDegree)..min(multiplicandDegree, d))
target[d] += multiplicand[k] * multiplier[d - k]
}
/**
* Evaluates the value of the given double polynomial for given double argument.
*/
public fun ListPolynomial<Double>.substitute(arg: Double): Double =
coefficients.reduceIndexedOrNull { index, acc, c ->
acc + c * arg.pow(index)
} ?: .0
/**
* Evaluates the value of the given polynomial for given argument.
*
* It is an implementation of [Horner's method](https://en.wikipedia.org/wiki/Horner%27s_method).
*/
public fun <C> ListPolynomial<C>.substitute(ring: Ring<C>, arg: C): C = ring {
if (coefficients.isEmpty()) return@ring zero
var result: C = coefficients.last()
for (j in coefficients.size - 2 downTo 0) {
result = (arg * result) + coefficients[j]
}
return result
}
public fun <C> ListPolynomial<C>.substitute(ring: Ring<C>, arg: ListPolynomial<C>) : ListPolynomial<C> = ring {
if (coefficients.isEmpty()) return ListPolynomial(emptyList())
val thisDegree = coefficients.lastIndex
if (thisDegree == -1) return ListPolynomial(emptyList())
val argDegree = arg.coefficients.lastIndex
if (argDegree == -1) return coefficients[0].asListPolynomial()
val constantZero = zero
val resultCoefs: MutableList<C> = MutableList(thisDegree * argDegree + 1) { constantZero }
resultCoefs[0] = coefficients[thisDegree]
val resultCoefsUpdate: MutableList<C> = MutableList(thisDegree * argDegree + 1) { constantZero }
var resultDegree = 0
for (deg in thisDegree - 1 downTo 0) {
resultCoefsUpdate[0] = coefficients[deg]
multiplyAddingToUpdater(
ring = ring,
multiplicand = resultCoefs,
multiplicandDegree = resultDegree,
multiplier = arg.coefficients,
multiplierDegree = argDegree,
updater = resultCoefsUpdate,
zero = constantZero
)
resultDegree += argDegree
}
return ListPolynomial<C>(resultCoefs)
}
/**
* Represent the polynomial as a regular context-less function.
*/
public fun <C, A : Ring<C>> ListPolynomial<C>.asFunction(ring: A): (C) -> C = { substitute(ring, it) }
/**
* Represent the polynomial as a regular context-less function.
*/
public fun <C, A : Ring<C>> ListPolynomial<C>.asPolynomialFunctionOver(ring: A): (ListPolynomial<C>) -> ListPolynomial<C> = { substitute(ring, it) }
/**
* Returns algebraic derivative of received polynomial.
*/
@UnstableKMathAPI
public fun <C, A> ListPolynomial<C>.derivative(
algebra: A,
): ListPolynomial<C> where A : Ring<C>, A : NumericAlgebra<C> = algebra {
ListPolynomial(
buildList(max(0, coefficients.size - 1)) {
for (deg in 1 .. coefficients.lastIndex) add(number(deg) * coefficients[deg])
}
)
}
/**
* Returns algebraic derivative of received polynomial.
*/
@UnstableKMathAPI
public fun <C, A> ListPolynomial<C>.nthDerivative(
algebra: A,
order: Int,
): ListPolynomial<C> where A : Ring<C>, A : NumericAlgebra<C> = algebra {
require(order >= 0) { "Order of derivative must be non-negative" }
ListPolynomial(
buildList(max(0, coefficients.size - order)) {
for (deg in order.. coefficients.lastIndex)
add((deg - order + 1 .. deg).fold(coefficients[deg]) { acc, d -> acc * number(d) })
}
)
}
/**
* Returns algebraic antiderivative of received polynomial.
*/
@UnstableKMathAPI
public fun <C, A> ListPolynomial<C>.antiderivative(
algebra: A,
): ListPolynomial<C> where A : Field<C>, A : NumericAlgebra<C> = algebra {
ListPolynomial(
buildList(coefficients.size + 1) {
add(zero)
coefficients.mapIndexedTo(this) { index, t -> t / number(index + 1) }
}
)
}
/**
* Returns algebraic antiderivative of received polynomial.
*/
@UnstableKMathAPI
public fun <C, A> ListPolynomial<C>.nthAntiderivative(
algebra: A,
order: Int,
): ListPolynomial<C> where A : Field<C>, A : NumericAlgebra<C> = algebra {
require(order >= 0) { "Order of antiderivative must be non-negative" }
ListPolynomial(
buildList(coefficients.size + order) {
repeat(order) { add(zero) }
coefficients.mapIndexedTo(this) { index, c -> (1..order).fold(c) { acc, i -> acc / number(index + i) } }
}
)
}
/**
* Compute a definite integral of a given polynomial in a [range]
*/
@UnstableKMathAPI
public fun <C : Comparable<C>> ListPolynomial<C>.integrate(
algebra: Field<C>,
range: ClosedRange<C>,
): C = algebra {
val integral = antiderivative(algebra)
integral.substitute(algebra, range.endInclusive) - integral.substitute(algebra, range.start)
}

View File

@ -0,0 +1,255 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.functions
import space.kscience.kmath.misc.UnstableKMathAPI
import space.kscience.kmath.operations.*
import kotlin.contracts.InvocationKind
import kotlin.contracts.contract
import kotlin.math.max
import kotlin.math.pow
/**
* Creates a [ListPolynomialSpace] over a received ring.
*/
public fun <C, A : Ring<C>> A.listPolynomialSpace(): ListPolynomialSpace<C, A> =
ListPolynomialSpace(this)
/**
* Creates a [ListPolynomialSpace]'s scope over a received ring.
*/ // TODO: When context will be ready move [ListPolynomialSpace] and add [A] to context receivers of [block]
public inline fun <C, A : Ring<C>, R> A.listPolynomialSpace(block: ListPolynomialSpace<C, A>.() -> R): R {
contract { callsInPlace(block, InvocationKind.EXACTLY_ONCE) }
return ListPolynomialSpace(this).block()
}
/**
* Creates a [ScalableListPolynomialSpace] over a received scalable ring.
*/
public fun <C, A> A.scalableListPolynomialSpace(): ScalableListPolynomialSpace<C, A> where A : Ring<C>, A : ScaleOperations<C> =
ScalableListPolynomialSpace(this)
/**
* Creates a [ScalableListPolynomialSpace]'s scope over a received scalable ring.
*/ // TODO: When context will be ready move [ListPolynomialSpace] and add [A] to context receivers of [block]
public inline fun <C, A, R> A.scalableListPolynomialSpace(block: ScalableListPolynomialSpace<C, A>.() -> R): R where A : Ring<C>, A : ScaleOperations<C> {
contract { callsInPlace(block, InvocationKind.EXACTLY_ONCE) }
return ScalableListPolynomialSpace(this).block()
}
/**
* Creates a [ListRationalFunctionSpace] over a received ring.
*/
public fun <C, A : Ring<C>> A.listRationalFunctionSpace(): ListRationalFunctionSpace<C, A> =
ListRationalFunctionSpace(this)
/**
* Creates a [ListRationalFunctionSpace]'s scope over a received ring.
*/ // TODO: When context will be ready move [ListRationalFunctionSpace] and add [A] to context receivers of [block]
public inline fun <C, A : Ring<C>, R> A.listRationalFunctionSpace(block: ListRationalFunctionSpace<C, A>.() -> R): R {
contract { callsInPlace(block, InvocationKind.EXACTLY_ONCE) }
return ListRationalFunctionSpace(this).block()
}
/**
* Evaluates value of [this] Double polynomial on provided Double argument.
*/
public fun ListPolynomial<Double>.substitute(arg: Double): Double =
coefficients.reduceIndexedOrNull { index, acc, c ->
acc + c * arg.pow(index)
} ?: .0
/**
* Evaluates value of [this] polynomial on provided argument.
*
* It is an implementation of [Horner's method](https://en.wikipedia.org/wiki/Horner%27s_method).
*/
public fun <C> ListPolynomial<C>.substitute(ring: Ring<C>, arg: C): C = ring {
if (coefficients.isEmpty()) return zero
var result: C = coefficients.last()
for (j in coefficients.size - 2 downTo 0) {
result = (arg * result) + coefficients[j]
}
return result
}
/**
* Substitutes provided polynomial [arg] into [this] polynomial.
*
* It is an implementation of [Horner's method](https://en.wikipedia.org/wiki/Horner%27s_method).
*/ // TODO: To optimize boxing
public fun <C> ListPolynomial<C>.substitute(ring: Ring<C>, arg: ListPolynomial<C>) : ListPolynomial<C> =
ring.listPolynomialSpace {
if (coefficients.isEmpty()) return zero
var result: ListPolynomial<C> = coefficients.last().asPolynomial()
for (j in coefficients.size - 2 downTo 0) {
result = (arg * result) + coefficients[j]
}
return result
}
/**
* Substitutes provided rational function [arg] into [this] polynomial.
*
* It is an implementation of [Horner's method](https://en.wikipedia.org/wiki/Horner%27s_method).
*/ // TODO: To optimize boxing
public fun <C> ListPolynomial<C>.substitute(ring: Ring<C>, arg: ListRationalFunction<C>) : ListRationalFunction<C> =
ring.listRationalFunctionSpace {
if (coefficients.isEmpty()) return zero
var result: ListRationalFunction<C> = coefficients.last().asRationalFunction()
for (j in coefficients.size - 2 downTo 0) {
result = (arg * result) + coefficients[j]
}
return result
}
/**
* Evaluates value of [this] Double rational function in provided Double argument.
*/
public fun ListRationalFunction<Double>.substitute(arg: Double): Double =
numerator.substitute(arg) / denominator.substitute(arg)
/**
* Evaluates value of [this] polynomial for provided argument.
*
* It is an implementation of [Horner's method](https://en.wikipedia.org/wiki/Horner%27s_method).
*/
public fun <C> ListRationalFunction<C>.substitute(ring: Field<C>, arg: C): C = ring {
numerator.substitute(ring, arg) / denominator.substitute(ring, arg)
}
/**
* Substitutes provided polynomial [arg] into [this] rational function.
*/ // TODO: To optimize boxing
public fun <C> ListRationalFunction<C>.substitute(ring: Ring<C>, arg: ListPolynomial<C>) : ListRationalFunction<C> =
ring.listRationalFunctionSpace {
numerator.substitute(ring, arg) / denominator.substitute(ring, arg)
}
/**
* Substitutes provided rational function [arg] into [this] rational function.
*/ // TODO: To optimize boxing
public fun <C> ListRationalFunction<C>.substitute(ring: Ring<C>, arg: ListRationalFunction<C>) : ListRationalFunction<C> =
ring.listRationalFunctionSpace {
numerator.substitute(ring, arg) / denominator.substitute(ring, arg)
}
/**
* Represent [this] polynomial as a regular context-less function.
*/
public fun <C, A : Ring<C>> ListPolynomial<C>.asFunctionOver(ring: A): (C) -> C = { substitute(ring, it) }
/**
* Represent [this] polynomial as a regular context-less function.
*/
public fun <C, A : Ring<C>> ListPolynomial<C>.asFunctionOfConstantOver(ring: A): (C) -> C = { substitute(ring, it) }
/**
* Represent [this] polynomial as a regular context-less function.
*/
public fun <C, A : Ring<C>> ListPolynomial<C>.asFunctionOfPolynomialOver(ring: A): (ListPolynomial<C>) -> ListPolynomial<C> = { substitute(ring, it) }
/**
* Represent [this] polynomial as a regular context-less function.
*/
public fun <C, A : Ring<C>> ListPolynomial<C>.asFunctionOfRationalFunctionOver(ring: A): (ListRationalFunction<C>) -> ListRationalFunction<C> = { substitute(ring, it) }
/**
* Represent [this] rational function as a regular context-less function.
*/
public fun <C, A : Field<C>> ListRationalFunction<C>.asFunctionOver(ring: A): (C) -> C = { substitute(ring, it) }
/**
* Represent [this] rational function as a regular context-less function.
*/
public fun <C, A : Field<C>> ListRationalFunction<C>.asFunctionOfConstantOver(ring: A): (C) -> C = { substitute(ring, it) }
/**
* Represent [this] rational function as a regular context-less function.
*/
public fun <C, A : Ring<C>> ListRationalFunction<C>.asFunctionOfPolynomialOver(ring: A): (ListPolynomial<C>) -> ListRationalFunction<C> = { substitute(ring, it) }
/**
* Represent [this] rational function as a regular context-less function.
*/
public fun <C, A : Ring<C>> ListRationalFunction<C>.asFunctionOfRationalFunctionOver(ring: A): (ListRationalFunction<C>) -> ListRationalFunction<C> = { substitute(ring, it) }
/**
* Returns algebraic derivative of received polynomial.
*/
@UnstableKMathAPI
public fun <C, A> ListPolynomial<C>.derivative(
ring: A,
): ListPolynomial<C> where A : Ring<C>, A : NumericAlgebra<C> = ring {
ListPolynomial(
buildList(max(0, coefficients.size - 1)) {
for (deg in 1 .. coefficients.lastIndex) add(number(deg) * coefficients[deg])
}
)
}
/**
* Returns algebraic derivative of received polynomial of specified [order]. The [order] should be non-negative integer.
*/
@UnstableKMathAPI
public fun <C, A> ListPolynomial<C>.nthDerivative(
ring: A,
order: Int,
): ListPolynomial<C> where A : Ring<C>, A : NumericAlgebra<C> = ring {
require(order >= 0) { "Order of derivative must be non-negative" }
ListPolynomial(
buildList(max(0, coefficients.size - order)) {
for (deg in order.. coefficients.lastIndex)
add((deg - order + 1 .. deg).fold(coefficients[deg]) { acc, d -> acc * number(d) })
}
)
}
/**
* Returns algebraic antiderivative of received polynomial.
*/
@UnstableKMathAPI
public fun <C, A> ListPolynomial<C>.antiderivative(
ring: A,
): ListPolynomial<C> where A : Field<C>, A : NumericAlgebra<C> = ring {
ListPolynomial(
buildList(coefficients.size + 1) {
add(zero)
coefficients.mapIndexedTo(this) { index, t -> t / number(index + 1) }
}
)
}
/**
* Returns algebraic antiderivative of received polynomial of specified [order]. The [order] should be non-negative integer.
*/
@UnstableKMathAPI
public fun <C, A> ListPolynomial<C>.nthAntiderivative(
ring: A,
order: Int,
): ListPolynomial<C> where A : Field<C>, A : NumericAlgebra<C> = ring {
require(order >= 0) { "Order of antiderivative must be non-negative" }
ListPolynomial(
buildList(coefficients.size + order) {
repeat(order) { add(zero) }
coefficients.mapIndexedTo(this) { index, c -> (1..order).fold(c) { acc, i -> acc / number(index + i) } }
}
)
}
/**
* Computes a definite integral of [this] polynomial in the specified [range].
*/
@UnstableKMathAPI
public fun <C : Comparable<C>> ListPolynomial<C>.integrate(
ring: Field<C>,
range: ClosedRange<C>,
): C = ring {
val antiderivative = antiderivative(ring)
antiderivative.substitute(ring, range.endInclusive) - antiderivative.substitute(ring, range.start)
}

View File

@ -5,41 +5,91 @@
package space.kscience.kmath.functions package space.kscience.kmath.functions
import space.kscience.kmath.operations.Field
import space.kscience.kmath.operations.Ring import space.kscience.kmath.operations.Ring
import space.kscience.kmath.operations.invoke import space.kscience.kmath.operations.invoke
import kotlin.contracts.InvocationKind
import kotlin.contracts.contract
import kotlin.math.max import kotlin.math.max
import kotlin.math.min
/** // TODO: Optimized copies of substitution and invocation
* Creates a [ListRationalFunctionSpace] over a received ring. @UnstablePolynomialBoxingOptimization
*/ @Suppress("NOTHING_TO_INLINE")
public fun <C, A : Ring<C>> A.listRationalFunction(): ListRationalFunctionSpace<C, A> = internal inline fun <C> copyTo(
ListRationalFunctionSpace(this) origin: List<C>,
originDegree: Int,
/** target: MutableList<C>,
* Creates a [ListRationalFunctionSpace]'s scope over a received ring. ) {
*/ for (deg in 0 .. originDegree) target[deg] = origin[deg]
public inline fun <C, A : Ring<C>, R> A.listRationalFunction(block: ListRationalFunctionSpace<C, A>.() -> R): R {
contract { callsInPlace(block, InvocationKind.EXACTLY_ONCE) }
return ListRationalFunctionSpace(this).block()
} }
/** @UnstablePolynomialBoxingOptimization
* Evaluates the value of the given double polynomial for given double argument. @Suppress("NOTHING_TO_INLINE")
*/ internal inline fun <C> multiplyAddingToUpdater(
public fun ListRationalFunction<Double>.substitute(arg: Double): Double = ring: Ring<C>,
numerator.substitute(arg) / denominator.substitute(arg) multiplicand: MutableList<C>,
multiplicandDegree: Int,
multiplier: List<C>,
multiplierDegree: Int,
updater: MutableList<C>,
zero: C,
) {
multiplyAddingTo(
ring = ring,
multiplicand = multiplicand,
multiplicandDegree = multiplicandDegree,
multiplier = multiplier,
multiplierDegree = multiplierDegree,
target = updater
)
for (updateDeg in 0 .. multiplicandDegree + multiplierDegree) {
multiplicand[updateDeg] = updater[updateDeg]
updater[updateDeg] = zero
}
}
/** @UnstablePolynomialBoxingOptimization
* Evaluates the value of the given polynomial for given argument. @Suppress("NOTHING_TO_INLINE")
* internal inline fun <C> multiplyAddingTo(
* It is an implementation of [Horner's method](https://en.wikipedia.org/wiki/Horner%27s_method). ring: Ring<C>,
*/ multiplicand: List<C>,
public fun <C> ListRationalFunction<C>.substitute(ring: Field<C>, arg: C): C = ring { multiplicandDegree: Int,
numerator.substitute(ring, arg) / denominator.substitute(ring, arg) multiplier: List<C>,
multiplierDegree: Int,
target: MutableList<C>
) = ring {
for (d in 0 .. multiplicandDegree + multiplierDegree)
for (k in max(0, d - multiplierDegree)..min(multiplicandDegree, d))
target[d] += multiplicand[k] * multiplier[d - k]
}
@UnstablePolynomialBoxingOptimization
public fun <C> ListPolynomial<C>.substitute2(ring: Ring<C>, arg: ListPolynomial<C>) : ListPolynomial<C> = ring {
if (coefficients.isEmpty()) return ListPolynomial(emptyList())
val thisDegree = coefficients.lastIndex
if (thisDegree == -1) return ListPolynomial(emptyList())
val argDegree = arg.coefficients.lastIndex
if (argDegree == -1) return coefficients[0].asListPolynomial()
val constantZero = zero
val resultCoefs: MutableList<C> = MutableList(thisDegree * argDegree + 1) { constantZero }
resultCoefs[0] = coefficients[thisDegree]
val resultCoefsUpdate: MutableList<C> = MutableList(thisDegree * argDegree + 1) { constantZero }
var resultDegree = 0
for (deg in thisDegree - 1 downTo 0) {
resultCoefsUpdate[0] = coefficients[deg]
multiplyAddingToUpdater(
ring = ring,
multiplicand = resultCoefs,
multiplicandDegree = resultDegree,
multiplier = arg.coefficients,
multiplierDegree = argDegree,
updater = resultCoefsUpdate,
zero = constantZero
)
resultDegree += argDegree
}
return ListPolynomial<C>(resultCoefs)
} }
/** /**
@ -52,6 +102,7 @@ public fun <C> ListRationalFunction<C>.substitute(ring: Field<C>, arg: C): C = r
* *
* Used in [ListPolynomial.substitute] and [ListRationalFunction.substitute] for performance optimisation. * Used in [ListPolynomial.substitute] and [ListRationalFunction.substitute] for performance optimisation.
*/ // TODO: Дописать */ // TODO: Дописать
@UnstablePolynomialBoxingOptimization
internal fun <C> ListPolynomial<C>.substituteRationalFunctionTakeNumerator(ring: Ring<C>, arg: ListRationalFunction<C>): ListPolynomial<C> = ring { internal fun <C> ListPolynomial<C>.substituteRationalFunctionTakeNumerator(ring: Ring<C>, arg: ListRationalFunction<C>): ListPolynomial<C> = ring {
if (coefficients.isEmpty()) return ListPolynomial(emptyList()) if (coefficients.isEmpty()) return ListPolynomial(emptyList())
@ -197,25 +248,3 @@ internal fun <C> ListPolynomial<C>.substituteRationalFunctionTakeNumerator(ring:
) )
) )
} }
//operator fun <T: Field<T>> RationalFunction<T>.invoke(arg: T): T = numerator(arg) / denominator(arg)
//
//fun <T: Field<T>> RationalFunction<T>.reduced(): RationalFunction<T> =
// polynomialGCD(numerator, denominator).let {
// RationalFunction(
// numerator / it,
// denominator / it
// )
// }
///**
// * Returns result of applying formal derivative to the polynomial.
// *
// * @param T Field where we are working now.
// * @return Result of the operator.
// */
//fun <T: Ring<T>> RationalFunction<T>.derivative() =
// RationalFunction(
// numerator.derivative() * denominator - denominator.derivative() * numerator,
// denominator * denominator
// )

View File

@ -0,0 +1,32 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.functions
/**
* Marks operations that are going to be optimized reimplementations by reducing number of boxings but currently is
* under development and is not stable (or even ready to use).
*/
@RequiresOptIn(
message = "It's copy of operation with optimized boxing. It's currently unstable.",
level = RequiresOptIn.Level.ERROR
)
internal annotation class UnstablePolynomialBoxingOptimization
/**
* Marks declarations that give access to internal entities of polynomials delicate structure. Thus, it allows to
* optimize performance a bit by skipping standard steps, but such skips may cause critical errors if something is
* implemented badly. Make sure you fully read and understand documentation and don't break internal contracts.
*/
@RequiresOptIn(
message = "This declaration gives access to delicate internal structure of polynomials. " +
"It allows to optimize performance by skipping unnecessary arguments check. " +
"But at the same time makes it easy to make a mistake " +
"that will cause wrong computation result or even runtime error. " +
"Make sure you fully read and understand documentation.",
level = RequiresOptIn.Level.WARNING
)
internal annotation class DelicatePolynomialAPI

View File

@ -3,6 +3,8 @@
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file. * Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/ */
@file:Suppress("FunctionName", "NOTHING_TO_INLINE")
package space.kscience.kmath.functions package space.kscience.kmath.functions
import space.kscience.kmath.misc.UnstableKMathAPI import space.kscience.kmath.misc.UnstableKMathAPI
@ -14,182 +16,474 @@ import space.kscience.kmath.operations.Ring
*/ */
internal fun List<UInt>.cleanUp() = subList(0, indexOfLast { it != 0U } + 1) internal fun List<UInt>.cleanUp() = subList(0, indexOfLast { it != 0U } + 1)
// Waiting for context receivers :( FIXME: Replace with context receivers when they will be available /**
* Constructs [NumberedPolynomial] with provided coefficients map [coefs]. The map is used as is.
*/
@PublishedApi
internal inline fun <C> NumberedPolynomialAsIs(coefs: Map<List<UInt>, C>) : NumberedPolynomial<C> = NumberedPolynomial<C>(coefs)
@Suppress("FunctionName", "NOTHING_TO_INLINE") /**
internal inline fun <C, A: Ring<C>> NumberedPolynomialSpace<C, A>.NumberedPolynomial(coefs: Map<List<UInt>, C>, toCheckInput: Boolean = true) : NumberedPolynomial<C> = ring.NumberedPolynomial(coefs, toCheckInput) * Constructs [NumberedPolynomial] with provided collection of [pairs] of pairs "term's signature &mdash; term's coefficient".
@Suppress("FunctionName", "NOTHING_TO_INLINE") * The collections will be transformed to map with [toMap] and then will be used as is.
internal inline fun <C, A: Ring<C>> NumberedRationalFunctionSpace<C, A>.NumberedPolynomial(coefs: Map<List<UInt>, C>, toCheckInput: Boolean = true) : NumberedPolynomial<C> = ring.NumberedPolynomial(coefs, toCheckInput) */
@Suppress("FunctionName") @PublishedApi
internal fun <C, A: Ring<C>> A.NumberedPolynomial(coefs: Map<List<UInt>, C>, toCheckInput: Boolean = true) : NumberedPolynomial<C> { internal inline fun <C> NumberedPolynomialAsIs(pairs: Collection<Pair<List<UInt>, C>>) : NumberedPolynomial<C> = NumberedPolynomial<C>(pairs.toMap())
if (!toCheckInput) return NumberedPolynomial<C>(coefs)
/**
* Constructs [NumberedPolynomial] with provided array of [pairs] of pairs "term's signature &mdash; term's coefficient".
* The array will be transformed to map with [toMap] and then will be used as is.
*/
@PublishedApi
internal inline fun <C> NumberedPolynomialAsIs(vararg pairs: Pair<List<UInt>, C>) : NumberedPolynomial<C> = NumberedPolynomial<C>(pairs.toMap())
/**
* Constructs [NumberedPolynomial] with provided coefficients map [coefs]. The map is used as is.
*
* **Be sure you read description of [NumberedPolynomial.coefficients]. Otherwise, you may make a mistake that will
* cause wrong computation result or even runtime error.**
*/
@DelicatePolynomialAPI
public inline fun <C> NumberedPolynomialWithoutCheck(coefs: Map<List<UInt>, C>) : NumberedPolynomial<C> = NumberedPolynomial<C>(coefs)
/**
* Constructs [NumberedPolynomial] with provided collection of [pairs] of pairs "term's signature &mdash; term's coefficient".
* The collections will be transformed to map with [toMap] and then will be used as is.
*
* **Be sure you read description of [NumberedPolynomial.coefficients]. Otherwise, you may make a mistake that will
* cause wrong computation result or even runtime error.**
*/
@DelicatePolynomialAPI
public inline fun <C> NumberedPolynomialWithoutCheck(pairs: Collection<Pair<List<UInt>, C>>) : NumberedPolynomial<C> = NumberedPolynomial<C>(pairs.toMap())
/**
* Constructs [NumberedPolynomial] with provided array of [pairs] of pairs "term's signature &mdash; term's coefficient".
* The array will be transformed to map with [toMap] and then will be used as is.
*
* **Be sure you read description of [NumberedPolynomial.coefficients]. Otherwise, you may make a mistake that will
* cause wrong computation result or even runtime error.**
*/
@DelicatePolynomialAPI
public inline fun <C> NumberedPolynomialWithoutCheck(vararg pairs: Pair<List<UInt>, C>) : NumberedPolynomial<C> = NumberedPolynomial<C>(pairs.toMap())
/**
* Constructs [NumberedPolynomial] with provided coefficients map [coefs].
*
* [coefs] will be "cleaned up":
* 1. Zeros at the ends of terms' signatures (e.g. [coefs] keys) will be removed. (See [cleanUp].)
* 1. Terms that happen to have the same signature will be summed up.
* 1. New map will be formed of resulting terms.
*/
public fun <C> NumberedPolynomial(coefs: Map<List<UInt>, C>, add: (C, C) -> C) : NumberedPolynomial<C> {
val fixedCoefs = mutableMapOf<List<UInt>, C>() val fixedCoefs = mutableMapOf<List<UInt>, C>()
for (entry in coefs) { for (entry in coefs) {
val key = entry.key.cleanUp() val key = entry.key.cleanUp()
val value = entry.value val value = entry.value
fixedCoefs[key] = if (key in fixedCoefs) fixedCoefs[key]!! + value else value fixedCoefs[key] = if (key in fixedCoefs) add(fixedCoefs[key]!!, value) else value
} }
return NumberedPolynomial<C>(fixedCoefs) return NumberedPolynomial<C>(fixedCoefs)
} }
@Suppress("FunctionName", "NOTHING_TO_INLINE") /**
internal inline fun <C, A: Ring<C>> NumberedPolynomialSpace<C, A>.NumberedPolynomial(pairs: Collection<Pair<List<UInt>, C>>, toCheckInput: Boolean = true) : NumberedPolynomial<C> = ring.NumberedPolynomial(pairs, toCheckInput) * Constructs [NumberedPolynomial] with provided collection of [pairs] of pairs "term's signature &mdash; term's coefficient".
@Suppress("FunctionName", "NOTHING_TO_INLINE") *
internal inline fun <C, A: Ring<C>> NumberedRationalFunctionSpace<C, A>.NumberedPolynomial(pairs: Collection<Pair<List<UInt>, C>>, toCheckInput: Boolean = true) : NumberedPolynomial<C> = ring.NumberedPolynomial(pairs, toCheckInput) * [pairs] will be "cleaned up":
@Suppress("FunctionName") * 1. Zeros at the ends of terms' signatures (e.g. [pairs] keys) will be removed. (See [cleanUp].)
internal fun <C, A: Ring<C>> A.NumberedPolynomial(pairs: Collection<Pair<List<UInt>, C>>, toCheckInput: Boolean = true) : NumberedPolynomial<C> { * 1. Terms that happen to have the same signature will be summed up.
if (!toCheckInput) return NumberedPolynomial<C>(pairs.toMap()) * 1. New map will be formed of resulting terms.
*/
public fun <C> NumberedPolynomial(pairs: Collection<Pair<List<UInt>, C>>, add: (C, C) -> C) : NumberedPolynomial<C> {
val fixedCoefs = mutableMapOf<List<UInt>, C>() val fixedCoefs = mutableMapOf<List<UInt>, C>()
for (entry in pairs) { for (entry in pairs) {
val key = entry.first.cleanUp() val key = entry.first.cleanUp()
val value = entry.second val value = entry.second
fixedCoefs[key] = if (key in fixedCoefs) fixedCoefs[key]!! + value else value fixedCoefs[key] = if (key in fixedCoefs) add(fixedCoefs[key]!!, value) else value
} }
return NumberedPolynomial<C>(fixedCoefs) return NumberedPolynomial<C>(fixedCoefs)
} }
@Suppress("FunctionName", "NOTHING_TO_INLINE") /**
internal inline fun <C, A: Ring<C>> NumberedPolynomialSpace<C, A>.NumberedPolynomial(vararg pairs: Pair<List<UInt>, C>, toCheckInput: Boolean = true) : NumberedPolynomial<C> = ring.NumberedPolynomial(pairs = pairs, toCheckInput = toCheckInput) * Constructs [NumberedPolynomial] with provided array [pairs] of pairs "term's signature &mdash; term's coefficient".
@Suppress("FunctionName", "NOTHING_TO_INLINE") *
internal inline fun <C, A: Ring<C>> NumberedRationalFunctionSpace<C, A>.NumberedPolynomial(vararg pairs: Pair<List<UInt>, C>, toCheckInput: Boolean = true) : NumberedPolynomial<C> = ring.NumberedPolynomial(pairs = pairs, toCheckInput = toCheckInput) * [pairs] will be "cleaned up":
@Suppress("FunctionName") * 1. Zeros at the ends of terms' signatures (e.g. [pairs] keys) will be removed. (See [cleanUp].)
internal fun <C, A: Ring<C>> A.NumberedPolynomial(vararg pairs: Pair<List<UInt>, C>, toCheckInput: Boolean = true) : NumberedPolynomial<C> { * 1. Terms that happen to have the same signature will be summed up.
if (!toCheckInput) return NumberedPolynomial<C>(pairs.toMap()) * 1. New map will be formed of resulting terms.
*/
public fun <C> NumberedPolynomial(vararg pairs: Pair<List<UInt>, C>, add: (C, C) -> C) : NumberedPolynomial<C> {
val fixedCoefs = mutableMapOf<List<UInt>, C>() val fixedCoefs = mutableMapOf<List<UInt>, C>()
for (entry in pairs) { for (entry in pairs) {
val key = entry.first.cleanUp() val key = entry.first.cleanUp()
val value = entry.second val value = entry.second
fixedCoefs[key] = if (key in fixedCoefs) fixedCoefs[key]!! + value else value fixedCoefs[key] = if (key in fixedCoefs) add(fixedCoefs[key]!!, value) else value
} }
return NumberedPolynomial<C>(fixedCoefs) return NumberedPolynomial<C>(fixedCoefs)
} }
@Suppress("FunctionName") // Waiting for context receivers :( FIXME: Replace with context receivers when they will be available
public fun <C, A: Ring<C>> A.NumberedPolynomial(coefs: Map<List<UInt>, C>) : NumberedPolynomial<C> = NumberedPolynomial(coefs, toCheckInput = true)
@Suppress("FunctionName")
public fun <C, A: Ring<C>> NumberedPolynomialSpace<C, A>.NumberedPolynomial(coefs: Map<List<UInt>, C>) : NumberedPolynomial<C> = NumberedPolynomial(coefs, toCheckInput = true)
@Suppress("FunctionName")
public fun <C, A: Ring<C>> NumberedRationalFunctionSpace<C, A>.NumberedPolynomial(coefs: Map<List<UInt>, C>) : NumberedPolynomial<C> = NumberedPolynomial(coefs, toCheckInput = true)
@Suppress("FunctionName") /**
public fun <C, A: Ring<C>> A.NumberedPolynomial(pairs: Collection<Pair<List<UInt>, C>>) : NumberedPolynomial<C> = NumberedPolynomial(pairs, toCheckInput = true) * Constructs [NumberedPolynomial] with provided coefficients map [coefs].
@Suppress("FunctionName") *
public fun <C, A: Ring<C>> NumberedPolynomialSpace<C, A>.NumberedPolynomial(pairs: Collection<Pair<List<UInt>, C>>) : NumberedPolynomial<C> = NumberedPolynomial(pairs, toCheckInput = true) * [coefs] will be "cleaned up":
@Suppress("FunctionName") * 1. Zeros at the ends of terms' signatures (e.g. [coefs] keys) will be removed. (See [cleanUp].)
public fun <C, A: Ring<C>> NumberedRationalFunctionSpace<C, A>.NumberedPolynomial(pairs: Collection<Pair<List<UInt>, C>>) : NumberedPolynomial<C> = NumberedPolynomial(pairs, toCheckInput = true) * 1. Terms that happen to have the same signature will be summed up.
* 1. New map will be formed of resulting terms.
*/
public inline fun <C, A: Ring<C>> A.NumberedPolynomial(coefs: Map<List<UInt>, C>) : NumberedPolynomial<C> = NumberedPolynomial(coefs, ::add)
/**
* Constructs [NumberedPolynomial] with provided coefficients map [coefs].
*
* [coefs] will be "cleaned up":
* 1. Zeros at the ends of terms' signatures (e.g. [coefs] keys) will be removed. (See [cleanUp].)
* 1. Terms that happen to have the same signature will be summed up.
* 1. New map will be formed of resulting terms.
*/
public inline fun <C, A: Ring<C>> NumberedPolynomialSpace<C, A>.NumberedPolynomial(coefs: Map<List<UInt>, C>) : NumberedPolynomial<C> = NumberedPolynomial(coefs) { left: C, right: C -> left + right }
@Suppress("FunctionName") /**
public fun <C, A: Ring<C>> A.NumberedPolynomial(vararg pairs: Pair<List<UInt>, C>) : NumberedPolynomial<C> = NumberedPolynomial(*pairs, toCheckInput = true) * Constructs [NumberedPolynomial] with provided coefficients map [coefs].
@Suppress("FunctionName") *
public fun <C, A: Ring<C>> NumberedPolynomialSpace<C, A>.NumberedPolynomial(vararg pairs: Pair<List<UInt>, C>) : NumberedPolynomial<C> = NumberedPolynomial(*pairs, toCheckInput = true) * [coefs] will be "cleaned up":
@Suppress("FunctionName") * 1. Zeros at the ends of terms' signatures (e.g. [coefs] keys) will be removed. (See [cleanUp].)
public fun <C, A: Ring<C>> NumberedRationalFunctionSpace<C, A>.NumberedPolynomial(vararg pairs: Pair<List<UInt>, C>) : NumberedPolynomial<C> = NumberedPolynomial(*pairs, toCheckInput = true) * 1. Terms that happen to have the same signature will be summed up.
* 1. New map will be formed of resulting terms.
*/
public inline fun <C, A: Ring<C>> NumberedRationalFunctionSpace<C, A>.NumberedPolynomial(coefs: Map<List<UInt>, C>) : NumberedPolynomial<C> = NumberedPolynomial(coefs) { left: C, right: C -> left + right }
public fun <C> C.asNumberedPolynomial() : NumberedPolynomial<C> = NumberedPolynomial<C>(mapOf(emptyList<UInt>() to this)) /**
* Constructs [NumberedPolynomial] with provided collection of [pairs] of pairs "term's signature &mdash; term's coefficient".
*
* [pairs] will be "cleaned up":
* 1. Zeros at the ends of terms' signatures (e.g. [pairs] keys) will be removed. (See [cleanUp].)
* 1. Terms that happen to have the same signature will be summed up.
* 1. New map will be formed of resulting terms.
*/
public inline fun <C, A: Ring<C>> A.NumberedPolynomial(pairs: Collection<Pair<List<UInt>, C>>) : NumberedPolynomial<C> = NumberedPolynomial(pairs, ::add)
/**
* Constructs [NumberedPolynomial] with provided collection of [pairs] of pairs "term's signature &mdash; term's coefficient".
*
* [pairs] will be "cleaned up":
* 1. Zeros at the ends of terms' signatures (e.g. [pairs] keys) will be removed. (See [cleanUp].)
* 1. Terms that happen to have the same signature will be summed up.
* 1. New map will be formed of resulting terms.
*/
public inline fun <C, A: Ring<C>> NumberedPolynomialSpace<C, A>.NumberedPolynomial(pairs: Collection<Pair<List<UInt>, C>>) : NumberedPolynomial<C> = NumberedPolynomial(pairs) { left: C, right: C -> left + right }
/**
* Constructs [NumberedPolynomial] with provided collection of [pairs] of pairs "term's signature &mdash; term's coefficient".
*
* [pairs] will be "cleaned up":
* 1. Zeros at the ends of terms' signatures (e.g. [pairs] keys) will be removed. (See [cleanUp].)
* 1. Terms that happen to have the same signature will be summed up.
* 1. New map will be formed of resulting terms.
*/
public inline fun <C, A: Ring<C>> NumberedRationalFunctionSpace<C, A>.NumberedPolynomial(pairs: Collection<Pair<List<UInt>, C>>) : NumberedPolynomial<C> = NumberedPolynomial(pairs) { left: C, right: C -> left + right }
/**
* Constructs [NumberedPolynomial] with provided array [pairs] of pairs "term's signature &mdash; term's coefficient".
*
* [pairs] will be "cleaned up":
* 1. Zeros at the ends of terms' signatures (e.g. [pairs] keys) will be removed. (See [cleanUp].)
* 1. Terms that happen to have the same signature will be summed up.
* 1. New map will be formed of resulting terms.
*/
public inline fun <C, A: Ring<C>> A.NumberedPolynomial(vararg pairs: Pair<List<UInt>, C>) : NumberedPolynomial<C> = NumberedPolynomial(*pairs) { left: C, right: C -> left + right }
/**
* Constructs [NumberedPolynomial] with provided array [pairs] of pairs "term's signature &mdash; term's coefficient".
*
* [pairs] will be "cleaned up":
* 1. Zeros at the ends of terms' signatures (e.g. [pairs] keys) will be removed. (See [cleanUp].)
* 1. Terms that happen to have the same signature will be summed up.
* 1. New map will be formed of resulting terms.
*/
public inline fun <C, A: Ring<C>> NumberedPolynomialSpace<C, A>.NumberedPolynomial(vararg pairs: Pair<List<UInt>, C>) : NumberedPolynomial<C> = NumberedPolynomial(*pairs) { left: C, right: C -> left + right }
/**
* Constructs [NumberedPolynomial] with provided array [pairs] of pairs "term's signature &mdash; term's coefficient".
*
* [pairs] will be "cleaned up":
* 1. Zeros at the ends of terms' signatures (e.g. [pairs] keys) will be removed. (See [cleanUp].)
* 1. Terms that happen to have the same signature will be summed up.
* 1. New map will be formed of resulting terms.
*/
public inline fun <C, A: Ring<C>> NumberedRationalFunctionSpace<C, A>.NumberedPolynomial(vararg pairs: Pair<List<UInt>, C>) : NumberedPolynomial<C> = NumberedPolynomial(*pairs) { left: C, right: C -> left + right }
/**
* Converts [this] constant to [NumberedPolynomial].
*/
public inline fun <C> C.asNumberedPolynomial() : NumberedPolynomial<C> = NumberedPolynomialAsIs(mapOf(emptyList<UInt>() to this))
/**
* Marks DSL that allows to more simply create [NumberedPolynomial]s with good performance.
*
* For example, polynomial `5 x_1^2 x_3^3 - 6 x_2` can be described as
* ```
* Int.algebra {
* val numberedPolynomial : NumberedPolynomial<Int> = NumberedPolynomial {
* 5 { 1 inPowerOf 2u; 3 inPowerOf 3u } // 5 x_1^2 x_3^3 +
* (-6) { 2 inPowerOf 1u } // (-6) x_2^1
* }
* }
* ```
*/
@DslMarker @DslMarker
@UnstableKMathAPI @UnstableKMathAPI
internal annotation class NumberedPolynomialConstructorDSL internal annotation class NumberedPolynomialConstructorDSL
/**
* Builder of [NumberedPolynomial] signature. It should be used as an implicit context for lambdas that describe term signature.
*/
@UnstableKMathAPI @UnstableKMathAPI
@NumberedPolynomialConstructorDSL @NumberedPolynomialConstructorDSL
public class NumberedPolynomialTermSignatureBuilder { public class NumberedPolynomialTermSignatureBuilder {
/**
* Signature storage. Any declaration of any variable's power updates the storage by increasing corresponding value.
* Afterward the storage will be used as a resulting signature.
*/
private val signature: MutableList<UInt> = ArrayList() private val signature: MutableList<UInt> = ArrayList()
public fun build(): List<UInt> = signature
/**
* Builds the resulting signature.
*
* In fact, it just returns [signature] as regular signature of type `List<UInt>`.
*/
@PublishedApi
internal fun build(): List<UInt> = signature
/**
* Declares power of variable #[this] of degree [deg].
*
* Declaring another power of the same variable will increase its degree by received degree.
*/
public infix fun Int.inPowerOf(deg: UInt) { public infix fun Int.inPowerOf(deg: UInt) {
if (this > signature.lastIndex) { val index = this - 1
signature.addAll(List(this - signature.lastIndex - 1) { 0u }) if (index > signature.lastIndex) {
signature.addAll(List(index - signature.lastIndex - 1) { 0u })
signature.add(deg) signature.add(deg)
} else { } else {
signature[this] = deg signature[index] += deg
} }
} }
/**
* Declares power of variable #[this] of degree [deg].
*
* Declaring another power of the same variable will increase its degree by received degree.
*/
@Suppress("NOTHING_TO_INLINE") @Suppress("NOTHING_TO_INLINE")
public inline infix fun Int.pow(deg: UInt): Unit = this inPowerOf deg public inline infix fun Int.pow(deg: UInt): Unit = this inPowerOf deg
/**
* Declares power of variable #[this] of degree [deg].
*
* Declaring another power of the same variable will increase its degree by received degree.
*/
@Suppress("NOTHING_TO_INLINE") @Suppress("NOTHING_TO_INLINE")
public inline infix fun Int.`in`(deg: UInt): Unit = this inPowerOf deg public inline infix fun Int.`in`(deg: UInt): Unit = this inPowerOf deg
/**
* Declares power of variable #[this] of degree [deg].
*
* Declaring another power of the same variable will increase its degree by received degree.
*/
@Suppress("NOTHING_TO_INLINE") @Suppress("NOTHING_TO_INLINE")
public inline infix fun Int.of(deg: UInt): Unit = this inPowerOf deg public inline infix fun Int.of(deg: UInt): Unit = this inPowerOf deg
} }
/**
* Builder of [NumberedPolynomial]. It should be used as an implicit context for lambdas that describe [NumberedPolynomial].
*/
@UnstableKMathAPI @UnstableKMathAPI
public class NumberedPolynomialBuilder<C>(private val zero: C, private val add: (C, C) -> C, capacity: Int = 0) { @NumberedPolynomialConstructorDSL
private val coefficients: MutableMap<List<UInt>, C> = LinkedHashMap(capacity) public class NumberedPolynomialBuilder<C>(
public fun build(): NumberedPolynomial<C> = NumberedPolynomial<C>(coefficients) /**
public operator fun C.invoke(block: NumberedPolynomialTermSignatureBuilder.() -> Unit) { * Summation operation that will be used to sum coefficients of monomials of same signatures.
val signature = NumberedPolynomialTermSignatureBuilder().apply(block).build() */
coefficients[signature] = add(coefficients.getOrElse(signature) { zero }, this@invoke) private val add: (C, C) -> C,
/**
* Initial capacity of coefficients map.
*/
initialCapacity: Int = 0
) {
/**
* Coefficients storage. Any declaration of any monomial updates the storage.
* Afterward the storage will be used as a resulting coefficients map.
*/
private val coefficients: MutableMap<List<UInt>, C> = LinkedHashMap(initialCapacity)
/**
* Builds the resulting coefficients map.
*
* In fact, it just returns [coefficients] as regular coefficients map of type `Map<List<UInt>, C>`.
*/
@PublishedApi
internal fun build(): NumberedPolynomial<C> = NumberedPolynomial<C>(coefficients)
/**
* Declares monomial with [this] coefficient and provided [signature].
*
* Declaring another monomial with the same signature will add [this] coefficient to existing one. If the sum of such
* coefficients is zero at any moment the monomial won't be removed but will be left as it is.
*/
public infix fun C.with(signature: List<UInt>) {
coefficients[signature] = if (signature in coefficients) add(coefficients[signature]!!, this@with) else this@with
} }
/**
* Declares monomial with [this] coefficient and signature constructed by [block].
*
* Declaring another monomial with the same signature will add [this] coefficient to existing one. If the sum of such
* coefficients is zero at any moment the monomial won't be removed but will be left as it is.
*/
@Suppress("NOTHING_TO_INLINE") @Suppress("NOTHING_TO_INLINE")
public inline infix fun C.with(noinline block: NumberedPolynomialTermSignatureBuilder.() -> Unit): Unit = this.invoke(block) public inline infix fun C.with(noinline block: NumberedPolynomialTermSignatureBuilder.() -> Unit): Unit = this.invoke(block)
@Suppress("NOTHING_TO_INLINE") /**
public inline infix fun (NumberedPolynomialTermSignatureBuilder.() -> Unit).with(coef: C): Unit = coef.invoke(this) * Declares monomial with [this] coefficient and signature constructed by [block].
@Suppress("NOTHING_TO_INLINE") *
public infix fun sig(block: NumberedPolynomialTermSignatureBuilder.() -> Unit): NumberedPolynomialTermSignatureBuilder.() -> Unit = block * Declaring another monomial with the same signature will add [this] coefficient to existing one. If the sum of such
* coefficients is zero at any moment the monomial won't be removed but will be left as it is.
*/
public inline operator fun C.invoke(block: NumberedPolynomialTermSignatureBuilder.() -> Unit): Unit =
this with NumberedPolynomialTermSignatureBuilder().apply(block).build()
} }
// Waiting for context receivers :( FIXME: Replace with context receivers when they will be available // Waiting for context receivers :( FIXME: Replace with context receivers when they will be available
///**
// * Creates [NumberedPolynomial] with lambda [block] in context of [this] ring of constants.
// *
// * For example, polynomial `5 x_1^2 x_3^3 - 6 x_2` can be described as
// * ```
// * Int.algebra {
// * val numberedPolynomial : NumberedPolynomial<Int> = NumberedPolynomial {
// * 5 { 1 inPowerOf 2u; 3 inPowerOf 3u } // 5 x_1^2 x_3^3 +
// * (-6) { 2 inPowerOf 1u } // (-6) x_2^1
// * }
// * }
// * ```
// */
// FIXME: For now this fabric does not let next two fabrics work. (See KT-52803.) Possible feature solutions:
// 1. `LowPriorityInOverloadResolution` becomes public. Then it should be applied to this function.
// 2. Union types are implemented. Then all three functions should be rewritten
// as one with single union type as a (context) receiver.
//@UnstableKMathAPI
//public inline fun <C, A: Ring<C>> A.NumberedPolynomial(initialCapacity: Int = 0, block: NumberedPolynomialBuilder<C>.() -> Unit) : NumberedPolynomial<C> = NumberedPolynomialBuilder(::add, initialCapacity).apply(block).build()
/**
* Creates [NumberedPolynomial] with lambda [block] in context of [this] ring of [NumberedPolynomial]s.
*
* For example, polynomial `5 x_1^2 x_3^3 - 6 x_2` can be described as
* ```
* Int.algebra {
* val numberedPolynomial : NumberedPolynomial<Int> = NumberedPolynomial {
* 5 { 1 inPowerOf 2u; 3 inPowerOf 3u } // 5 x_1^2 x_3^3 +
* (-6) { 2 inPowerOf 1u } // (-6) x_2^1
* }
* }
* ```
*/
@UnstableKMathAPI @UnstableKMathAPI
@NumberedPolynomialConstructorDSL public inline fun <C, A: Ring<C>> NumberedPolynomialSpace<C, A>.NumberedPolynomial(initialCapacity: Int = 0, block: NumberedPolynomialBuilder<C>.() -> Unit) : NumberedPolynomial<C> = NumberedPolynomialBuilder({ left: C, right: C -> left + right }, initialCapacity).apply(block).build()
@Suppress("FunctionName") /**
public inline fun <C, A: Ring<C>> A.NumberedPolynomial(block: NumberedPolynomialBuilder<C>.() -> Unit) : NumberedPolynomial<C> = NumberedPolynomialBuilder(zero, ::add).apply(block).build() * Creates [NumberedPolynomial] with lambda [block] in context of [this] field of [NumberedRationalFunction]s.
*
* For example, polynomial `5 x_1^2 x_3^3 - 6 x_2` can be described as
* ```
* Int.algebra {
* val numberedPolynomial : NumberedPolynomial<Int> = NumberedPolynomial {
* 5 { 1 inPowerOf 2u; 3 inPowerOf 3u } // 5 x_1^2 x_3^3 +
* (-6) { 2 inPowerOf 1u } // (-6) x_2^1
* }
* }
* ```
*/
@UnstableKMathAPI @UnstableKMathAPI
@NumberedPolynomialConstructorDSL public inline fun <C, A: Ring<C>> NumberedRationalFunctionSpace<C, A>.NumberedPolynomial(initialCapacity: Int = 0, block: NumberedPolynomialBuilder<C>.() -> Unit) : NumberedPolynomial<C> = NumberedPolynomialBuilder({ left: C, right: C -> left + right }, initialCapacity).apply(block).build()
@Suppress("FunctionName")
public inline fun <C, A: Ring<C>> A.NumberedPolynomial(capacity: Int, block: NumberedPolynomialBuilder<C>.() -> Unit) : NumberedPolynomial<C> = NumberedPolynomialBuilder(zero, ::add, capacity).apply(block).build()
@UnstableKMathAPI
@NumberedPolynomialConstructorDSL
@Suppress("FunctionName")
public inline fun <C, A: Ring<C>> NumberedPolynomialSpace<C, A>.NumberedPolynomial(block: NumberedPolynomialBuilder<C>.() -> Unit) : NumberedPolynomial<C> = NumberedPolynomialBuilder(constantZero, { left: C, right: C -> left + right}).apply(block).build()
@UnstableKMathAPI
@NumberedPolynomialConstructorDSL
@Suppress("FunctionName")
public inline fun <C, A: Ring<C>> NumberedPolynomialSpace<C, A>.NumberedPolynomial(capacity: Int, block: NumberedPolynomialBuilder<C>.() -> Unit) : NumberedPolynomial<C> = NumberedPolynomialBuilder(constantZero, { left: C, right: C -> left + right}, capacity).apply(block).build()
// Waiting for context receivers :( FIXME: Replace with context receivers when they will be available // Waiting for context receivers :( FIXME: Replace with context receivers when they will be available
@Suppress("FunctionName") /**
public fun <C, A: Ring<C>> NumberedRationalFunctionSpace<C, A>.NumberedRationalFunction(numeratorCoefficients: Map<List<UInt>, C>, denominatorCoefficients: Map<List<UInt>, C>): NumberedRationalFunction<C> = * Constructs [NumberedRationalFunction] with provided coefficients maps [numeratorCoefficients] and [denominatorCoefficients].
NumberedRationalFunction<C>( *
NumberedPolynomial(numeratorCoefficients, toCheckInput = true), * The maps will be "cleaned up":
NumberedPolynomial(denominatorCoefficients, toCheckInput = true) * 1. Zeros at the ends of terms' signatures (e.g. the maps' keys) will be removed. (See [cleanUp].)
) * 1. Terms that happen to have the same signature will be summed up.
@Suppress("FunctionName") * 1. New map will be formed of resulting terms.
*/
public fun <C, A: Ring<C>> A.NumberedRationalFunction(numeratorCoefficients: Map<List<UInt>, C>, denominatorCoefficients: Map<List<UInt>, C>): NumberedRationalFunction<C> = public fun <C, A: Ring<C>> A.NumberedRationalFunction(numeratorCoefficients: Map<List<UInt>, C>, denominatorCoefficients: Map<List<UInt>, C>): NumberedRationalFunction<C> =
NumberedRationalFunction<C>( NumberedRationalFunction<C>(
NumberedPolynomial(numeratorCoefficients, toCheckInput = true), NumberedPolynomial(numeratorCoefficients),
NumberedPolynomial(denominatorCoefficients, toCheckInput = true) NumberedPolynomial(denominatorCoefficients)
) )
@Suppress("FunctionName") /**
public fun <C, A: Ring<C>> NumberedRationalFunctionSpace<C, A>.NumberedRationalFunction(numerator: NumberedPolynomial<C>): NumberedRationalFunction<C> = * Constructs [NumberedRationalFunction] with provided coefficients maps [numeratorCoefficients] and [denominatorCoefficients].
NumberedRationalFunction<C>(numerator, polynomialOne) *
@Suppress("FunctionName") * The maps will be "cleaned up":
public fun <C, A: Ring<C>> A.NumberedRationalFunction(numerator: NumberedPolynomial<C>): NumberedRationalFunction<C> = * 1. Zeros at the ends of terms' signatures (e.g. the maps' keys) will be removed. (See [cleanUp].)
NumberedRationalFunction<C>(numerator, NumberedPolynomial(mapOf(emptyList<UInt>() to one), toCheckInput = false)) * 1. Terms that happen to have the same signature will be summed up.
@Suppress("FunctionName") * 1. New map will be formed of resulting terms.
public fun <C, A: Ring<C>> NumberedRationalFunctionSpace<C, A>.NumberedRationalFunction(numeratorCoefficients: Map<List<UInt>, C>): NumberedRationalFunction<C> = */
public fun <C, A: Ring<C>> NumberedRationalFunctionSpace<C, A>.NumberedRationalFunction(numeratorCoefficients: Map<List<UInt>, C>, denominatorCoefficients: Map<List<UInt>, C>): NumberedRationalFunction<C> =
NumberedRationalFunction<C>( NumberedRationalFunction<C>(
NumberedPolynomial(numeratorCoefficients, toCheckInput = true), NumberedPolynomial(numeratorCoefficients),
polynomialOne NumberedPolynomial(denominatorCoefficients)
)
@Suppress("FunctionName")
public fun <C, A: Ring<C>> A.NumberedRationalFunction(numeratorCoefficients: Map<List<UInt>, C>): NumberedRationalFunction<C> =
NumberedRationalFunction<C>(
NumberedPolynomial(numeratorCoefficients, toCheckInput = true),
NumberedPolynomial(mapOf(emptyList<UInt>() to one), toCheckInput = false)
) )
/**
* Constructs [NumberedRationalFunction] with provided [numerator] and unit denominator.
*/
public fun <C, A: Ring<C>> A.NumberedRationalFunction(numerator: NumberedPolynomial<C>): NumberedRationalFunction<C> =
NumberedRationalFunction<C>(numerator, NumberedPolynomial(mapOf(emptyList<UInt>() to one)))
/**
* Constructs [NumberedRationalFunction] with provided [numerator] and unit denominator.
*/
public fun <C, A: Ring<C>> NumberedRationalFunctionSpace<C, A>.NumberedRationalFunction(numerator: NumberedPolynomial<C>): NumberedRationalFunction<C> =
NumberedRationalFunction<C>(numerator, polynomialOne)
/**
* Constructs [NumberedRationalFunction] with provided coefficients map [numeratorCoefficients] for numerator and unit
* denominator.
*
* [numeratorCoefficients] will be "cleaned up":
* 1. Zeros at the ends of terms' signatures (e.g. [numeratorCoefficients]'s keys) will be removed. (See [cleanUp].)
* 1. Terms that happen to have the same signature will be summed up.
* 1. New map will be formed of resulting terms.
*/
public fun <C, A: Ring<C>> NumberedRationalFunctionSpace<C, A>.NumberedRationalFunction(numeratorCoefficients: Map<List<UInt>, C>): NumberedRationalFunction<C> =
NumberedRationalFunction<C>(
NumberedPolynomial(numeratorCoefficients),
polynomialOne
)
/**
* Constructs [NumberedRationalFunction] with provided coefficients map [numeratorCoefficients] for numerator and unit
* denominator.
*
* [numeratorCoefficients] will be "cleaned up":
* 1. Zeros at the ends of terms' signatures (e.g. [numeratorCoefficients]'s keys) will be removed. (See [cleanUp].)
* 1. Terms that happen to have the same signature will be summed up.
* 1. New map will be formed of resulting terms.
*/
public fun <C, A: Ring<C>> A.NumberedRationalFunction(numeratorCoefficients: Map<List<UInt>, C>): NumberedRationalFunction<C> =
NumberedRationalFunction<C>(
NumberedPolynomial(numeratorCoefficients),
NumberedPolynomialAsIs(mapOf(emptyList<UInt>() to one))
)
///**
// * Converts [this] constant to [NumberedRationalFunction].
// */
//context(A) //context(A)
//public fun <C, A: Ring<C>> C.asNumberedRationalFunction() : NumberedRationalFunction<C> = NumberedRationalFunction(asLabeledPolynomial()) //public fun <C, A: Ring<C>> C.asNumberedRationalFunction() : NumberedRationalFunction<C> =
// NumberedRationalFunction(
// NumberedPolynomialAsIs(mapOf(emptyList<UInt>() to this)),
// NumberedPolynomialAsIs(mapOf(emptyList<UInt>() to one))
// )
///**
// * Converts [this] constant to [NumberedRationalFunction].
// */
//context(NumberedRationalFunctionSpace<C, A>) //context(NumberedRationalFunctionSpace<C, A>)
//public fun <C, A: Ring<C>> C.asNumberedRationalFunction() : NumberedRationalFunction<C> = NumberedRationalFunction(asLabeledPolynomial()) //public fun <C, A: Ring<C>> C.asNumberedRationalFunction() : NumberedRationalFunction<C> =
// NumberedRationalFunction(
// NumberedPolynomialAsIs(mapOf(emptyList<UInt>() to this)),
// NumberedPolynomialAsIs(mapOf(emptyList<UInt>() to constantOne))
// )

View File

@ -1,528 +0,0 @@
package space.kscience.kmath.functions
import space.kscience.kmath.misc.UnstableKMathAPI
import space.kscience.kmath.operations.*
import kotlin.contracts.*
import kotlin.jvm.JvmName
import kotlin.math.max
// TODO: Docs
/**
* Creates a [NumberedPolynomialSpace] over a received ring.
*/
public fun <C, A : Ring<C>> A.numberedPolynomial(): NumberedPolynomialSpace<C, A> =
NumberedPolynomialSpace(this)
/**
* Creates a [NumberedPolynomialSpace]'s scope over a received ring.
*/
@OptIn(ExperimentalContracts::class)
public inline fun <C, A : Ring<C>, R> A.numberedPolynomial(block: NumberedPolynomialSpace<C, A>.() -> R): R {
contract { callsInPlace(block, InvocationKind.EXACTLY_ONCE) }
return NumberedPolynomialSpace(this).block()
}
///**
// * Represents the polynomial as a [String] where name of variable with index `i` is [withVariableName] + `"_${i+1}"`.
// * Consider that monomials are sorted in lexicographic order.
// */
//context(NumberedPolynomialSpace<C, A>)
//public fun <C, A: Ring<C>> NumberedPolynomial<C>.represent(withVariableName: String = NumberedPolynomial.defaultVariableName): String =
// coefficients.entries
// .sortedWith { o1, o2 -> NumberedPolynomial.monomialComparator.compare(o1.key, o2.key) }
// .asSequence()
// .map { (degs, t) ->
// if (degs.isEmpty()) "$t"
// else {
// when {
// t.isOne() -> ""
// t.isMinusOne() -> "-"
// else -> "$t "
// } +
// degs
// .mapIndexed { index, deg ->
// when (deg) {
// 0U -> ""
// 1U -> "${withVariableName}_${index+1}"
// else -> "${withVariableName}_${index+1}^$deg"
// }
// }
// .filter { it.isNotEmpty() }
// .joinToString(separator = " ") { it }
// }
// }
// .joinToString(separator = " + ") { it }
// .ifEmpty { "0" }
//
///**
// * Represents the polynomial as a [String] naming variables by [namer].
// * Consider that monomials are sorted in lexicographic order.
// */
//context(NumberedPolynomialSpace<C, A>)
//public fun <C, A: Ring<C>> NumberedPolynomial<C>.represent(namer: (Int) -> String): String =
// coefficients.entries
// .sortedWith { o1, o2 -> NumberedPolynomial.monomialComparator.compare(o1.key, o2.key) }
// .asSequence()
// .map { (degs, t) ->
// if (degs.isEmpty()) "$t"
// else {
// when {
// t.isOne() -> ""
// t.isMinusOne() -> "-"
// else -> "$t "
// } +
// degs
// .mapIndexed { index, deg ->
// when (deg) {
// 0U -> ""
// 1U -> namer(index)
// else -> "${namer(index)}^$deg"
// }
// }
// .filter { it.isNotEmpty() }
// .joinToString(separator = " ") { it }
// }
// }
// .joinToString(separator = " + ") { it }
// .ifEmpty { "0" }
//
///**
// * Represents the polynomial as a [String] where name of variable with index `i` is [withVariableName] + `"_${i+1}"`
// * and with brackets around the string if needed (i.e. when there are at least two addends in the representation).
// * Consider that monomials are sorted in lexicographic order.
// */
//context(NumberedPolynomialSpace<C, A>)
//public fun <C, A: Ring<C>> NumberedPolynomial<C>.representWithBrackets(withVariableName: String = NumberedPolynomial.defaultVariableName): String =
// with(represent(withVariableName)) { if (coefficients.count() == 1) this else "($this)" }
//
///**
// * Represents the polynomial as a [String] naming variables by [namer] and with brackets around the string if needed
// * (i.e. when there are at least two addends in the representation).
// * Consider that monomials are sorted in lexicographic order.
// */
//context(NumberedPolynomialSpace<C, A>)
//public fun <C, A: Ring<C>> NumberedPolynomial<C>.representWithBrackets(namer: (Int) -> String): String =
// with(represent(namer)) { if (coefficients.count() == 1) this else "($this)" }
//
///**
// * Represents the polynomial as a [String] where name of variable with index `i` is [withVariableName] + `"_${i+1}"`.
// * Consider that monomials are sorted in **reversed** lexicographic order.
// */
//context(NumberedPolynomialSpace<C, A>)
//public fun <C, A: Ring<C>> NumberedPolynomial<C>.representReversed(withVariableName: String = NumberedPolynomial.defaultVariableName): String =
// coefficients.entries
// .sortedWith { o1, o2 -> -NumberedPolynomial.monomialComparator.compare(o1.key, o2.key) }
// .asSequence()
// .map { (degs, t) ->
// if (degs.isEmpty()) "$t"
// else {
// when {
// t.isOne() -> ""
// t.isMinusOne() -> "-"
// else -> "$t "
// } +
// degs
// .mapIndexed { index, deg ->
// when (deg) {
// 0U -> ""
// 1U -> "${withVariableName}_${index+1}"
// else -> "${withVariableName}_${index+1}^$deg"
// }
// }
// .filter { it.isNotEmpty() }
// .joinToString(separator = " ") { it }
// }
// }
// .joinToString(separator = " + ") { it }
// .ifEmpty { "0" }
//
///**
// * Represents the polynomial as a [String] naming variables by [namer].
// * Consider that monomials are sorted in **reversed** lexicographic order.
// */
//context(NumberedPolynomialSpace<C, A>)
//public fun <C, A: Ring<C>> NumberedPolynomial<C>.representReversed(namer: (Int) -> String): String =
// coefficients.entries
// .sortedWith { o1, o2 -> -NumberedPolynomial.monomialComparator.compare(o1.key, o2.key) }
// .asSequence()
// .map { (degs, t) ->
// if (degs.isEmpty()) "$t"
// else {
// when {
// t.isOne() -> ""
// t.isMinusOne() -> "-"
// else -> "$t "
// } +
// degs
// .mapIndexed { index, deg ->
// when (deg) {
// 0U -> ""
// 1U -> namer(index)
// else -> "${namer(index)}^$deg"
// }
// }
// .filter { it.isNotEmpty() }
// .joinToString(separator = " ") { it }
// }
// }
// .joinToString(separator = " + ") { it }
// .ifEmpty { "0" }
//
///**
// * Represents the polynomial as a [String] where name of variable with index `i` is [withVariableName] + `"_${i+1}"`
// * and with brackets around the string if needed (i.e. when there are at least two addends in the representation).
// * Consider that monomials are sorted in **reversed** lexicographic order.
// */
//context(NumberedPolynomialSpace<C, A>)
//public fun <C, A: Ring<C>> NumberedPolynomial<C>.representReversedWithBrackets(withVariableName: String = NumberedPolynomial.defaultVariableName): String =
// with(representReversed(withVariableName)) { if (coefficients.count() == 1) this else "($this)" }
//
///**
// * Represents the polynomial as a [String] naming variables by [namer] and with brackets around the string if needed
// * (i.e. when there are at least two addends in the representation).
// * Consider that monomials are sorted in **reversed** lexicographic order.
// */
//context(NumberedPolynomialSpace<C, A>)
//public fun <C, A: Ring<C>> NumberedPolynomial<C>.representReversedWithBrackets(namer: (Int) -> String): String =
// with(representReversed(namer)) { if (coefficients.count() == 1) this else "($this)" }
//public fun <C> NumberedPolynomial<C>.substitute(ring: Ring<C>, args: Map<Int, C>): NumberedPolynomial<C> = ring {
// if (coefficients.isEmpty()) return this@substitute
// NumberedPolynomial<C>(
// buildMap {
// coefficients.forEach { (degs, c) ->
// val newDegs = degs.mapIndexed { index, deg -> if (index in args) 0U else deg }.cleanUp()
// val newC = degs.foldIndexed(c) { index, acc, deg ->
// if (index in args) multiplyWithPower(acc, args[index]!!, deg)
// else acc
// }
// this[newDegs] = if (newDegs in this) this[newDegs]!! + newC else newC
// }
// }
// )
//}
//
//// TODO: Replace with optimisation: the [result] may be unboxed, and all operations may be performed as soon as
//// possible on it
//@JvmName("substitutePolynomial")
//public fun <C> NumberedPolynomial<C>.substitute(ring: Ring<C>, arg: Map<Int, NumberedPolynomial<C>>) : NumberedPolynomial<C> =
// ring.numberedPolynomialSpace {
// if (coefficients.isEmpty()) return zero
// coefficients
// .asSequence()
// .map { (degs, c) ->
// degs.foldIndexed(
// NumberedPolynomial(
// degs.mapIndexed { index, deg -> if (index in arg) 0U else deg } to c
// )
// ) { index, acc, deg -> if (index in arg) multiplyWithPower(acc, arg[index]!!, deg) else acc }
// }
// .reduce { acc, polynomial -> acc + polynomial } // TODO: Rewrite. Might be slow.
// }
//
//// TODO: Substitute rational function
//
//public fun <C, A : Ring<C>> NumberedPolynomial<C>.asFunctionOver(ring: A): (Map<Int, C>) -> NumberedPolynomial<C> =
// { substitute(ring, it) }
//
//public fun <C, A : Ring<C>> NumberedPolynomial<C>.asPolynomialFunctionOver(ring: A): (Map<Int, NumberedPolynomial<C>>) -> NumberedPolynomial<C> =
// { substitute(ring, it) }
//operator fun <T: Field<T>> Polynomial<T>.div(other: T): Polynomial<T> =
// if (other.isZero()) throw ArithmeticException("/ by zero")
// else
// Polynomial(
// coefficients
// .mapValues { it.value / other },
// toCheckInput = false
// )
/**
* Evaluates the value of the given double polynomial for given double argument.
*/
public fun NumberedPolynomial<Double>.substitute(args: Map<Int, Double>): NumberedPolynomial<Double> = Double.algebra {
val acc = LinkedHashMap<List<UInt>, Double>(coefficients.size)
for ((degs, c) in coefficients) {
val newDegs = degs.mapIndexed { index, deg -> if (index !in args) deg else 0u }.cleanUp()
val newC = args.entries.fold(c) { product, (variable, substitution) ->
val deg = degs.getOrElse(variable) { 0u }
if (deg == 0u) product else product * substitution.pow(deg.toInt())
}
if (newDegs !in acc) acc[newDegs] = newC
else acc[newDegs] = acc[newDegs]!! + newC
}
return NumberedPolynomial<Double>(acc)
}
/**
* Evaluates the value of the given polynomial for given argument.
*
* It is an implementation of [Horner's method](https://en.wikipedia.org/wiki/Horner%27s_method).
*/
public fun <C> NumberedPolynomial<C>.substitute(ring: Ring<C>, args: Map<Int, C>): NumberedPolynomial<C> = ring {
val acc = LinkedHashMap<List<UInt>, C>(coefficients.size)
for ((degs, c) in coefficients) {
val newDegs = degs.mapIndexed { index, deg -> if (index !in args) deg else 0u }.cleanUp()
val newC = args.entries.fold(c) { product, (variable, substitution) ->
val deg = degs.getOrElse(variable) { 0u }
if (deg == 0u) product else product * power(substitution, deg)
}
if (newDegs !in acc) acc[newDegs] = newC
else acc[newDegs] = acc[newDegs]!! + newC
}
return NumberedPolynomial<C>(acc)
}
// TODO: (Waiting for hero) Replace with optimisation: the [result] may be unboxed, and all operations may be performed
// as soon as possible on it
@JvmName("substitutePolynomial")
public fun <C> NumberedPolynomial<C>.substitute(ring: Ring<C>, args: Map<Int, NumberedPolynomial<C>>) : NumberedPolynomial<C> = TODO() /*ring.numberedPolynomial {
val acc = LinkedHashMap<List<UInt>, NumberedPolynomial<C>>(coefficients.size)
for ((degs, c) in coefficients) {
val newDegs = degs.mapIndexed { index, deg -> if (index !in args) deg else 0u }.cleanUp()
val newC = args.entries.fold(c.asNumberedPolynomial()) { product, (variable, substitution) ->
val deg = degs.getOrElse(variable) { 0u }
if (deg == 0u) product else product * power(substitution, deg)
}
if (newDegs !in acc) acc[newDegs] = c.asNumberedPolynomial()
else acc[newDegs] = acc[newDegs]!! + c
}
}*/
/**
* Represent the polynomial as a regular context-less function.
*/
public fun <C, A : Ring<C>> NumberedPolynomial<C>.asFunction(ring: A): (Map<Int, C>) -> NumberedPolynomial<C> = { substitute(ring, it) }
/**
* Represent the polynomial as a regular context-less function.
*/
public fun <C, A : Ring<C>> NumberedPolynomial<C>.asPolynomialFunctionOver(ring: A): (Map<Int, NumberedPolynomial<C>>) -> NumberedPolynomial<C> = { substitute(ring, it) }
/**
* Returns algebraic derivative of received polynomial.
*/
@UnstableKMathAPI
public fun <C, A : Ring<C>> NumberedPolynomial<C>.derivativeWithRespectTo(
algebra: A,
variable: Int,
): NumberedPolynomial<C> = algebra {
NumberedPolynomial<C>(
buildMap(coefficients.size) {
coefficients
.forEach { (degs, c) ->
if (degs.size > variable) return@forEach
put(
degs.mapIndexed { index, deg ->
when {
index != variable -> deg
deg > 0u -> deg - 1u
else -> return@forEach
}
}.cleanUp(),
multiplyByDoubling(c, degs[variable])
)
}
}
)
}
/**
* Returns algebraic derivative of received polynomial.
*/
@UnstableKMathAPI
public fun <C, A : Ring<C>> NumberedPolynomial<C>.derivativeWithRespectTo(
algebra: A,
variables: Collection<Int>,
): NumberedPolynomial<C> = algebra {
val cleanedVariables = variables.toSet()
if (cleanedVariables.isEmpty()) return this@derivativeWithRespectTo
val maxRespectedVariable = cleanedVariables.maxOrNull()!!
NumberedPolynomial<C>(
buildMap(coefficients.size) {
coefficients
.forEach { (degs, c) ->
if (degs.size > maxRespectedVariable) return@forEach
put(
degs.mapIndexed { index, deg ->
when {
index !in cleanedVariables -> deg
deg > 0u -> deg - 1u
else -> return@forEach
}
}.cleanUp(),
cleanedVariables.fold(c) { acc, variable -> multiplyByDoubling(acc, degs[variable]) }
)
}
}
)
}
/**
* Returns algebraic derivative of received polynomial.
*/
@UnstableKMathAPI
public fun <C, A : Ring<C>> NumberedPolynomial<C>.nthDerivativeWithRespectTo(
algebra: A,
variable: Int,
order: UInt
): NumberedPolynomial<C> = algebra {
if (order == 0u) return this@nthDerivativeWithRespectTo
NumberedPolynomial<C>(
buildMap(coefficients.size) {
coefficients
.forEach { (degs, c) ->
if (degs.size > variable) return@forEach
put(
degs.mapIndexed { index, deg ->
when {
index != variable -> deg
deg >= order -> deg - order
else -> return@forEach
}
}.cleanUp(),
degs[variable].let { deg ->
(deg downTo deg - order + 1u)
.fold(c) { acc, ord -> multiplyByDoubling(acc, ord) }
}
)
}
}
)
}
/**
* Returns algebraic derivative of received polynomial.
*/
@UnstableKMathAPI
public fun <C, A : Ring<C>> NumberedPolynomial<C>.nthDerivativeWithRespectTo(
algebra: A,
variablesAndOrders: Map<Int, UInt>,
): NumberedPolynomial<C> = algebra {
val filteredVariablesAndOrders = variablesAndOrders.filterValues { it != 0u }
if (filteredVariablesAndOrders.isEmpty()) return this@nthDerivativeWithRespectTo
val maxRespectedVariable = filteredVariablesAndOrders.keys.maxOrNull()!!
NumberedPolynomial<C>(
buildMap(coefficients.size) {
coefficients
.forEach { (degs, c) ->
if (degs.size > maxRespectedVariable) return@forEach
put(
degs.mapIndexed { index, deg ->
if (index !in filteredVariablesAndOrders) return@mapIndexed deg
val order = filteredVariablesAndOrders[index]!!
if (deg >= order) deg - order else return@forEach
}.cleanUp(),
filteredVariablesAndOrders.entries.fold(c) { acc1, (index, order) ->
degs[index].let { deg ->
(deg downTo deg - order + 1u)
.fold(acc1) { acc2, ord -> multiplyByDoubling(acc2, ord) }
}
}
)
}
}
)
}
/**
* Returns algebraic antiderivative of received polynomial.
*/
@UnstableKMathAPI
public fun <C, A : Field<C>> NumberedPolynomial<C>.antiderivativeWithRespectTo(
algebra: A,
variable: Int,
): NumberedPolynomial<C> = algebra {
NumberedPolynomial<C>(
buildMap(coefficients.size) {
coefficients
.forEach { (degs, c) ->
put(
List(max(variable + 1, degs.size)) { if (it != variable) degs[it] else degs[it] + 1u },
c / multiplyByDoubling(one, degs[variable])
)
}
}
)
}
/**
* Returns algebraic antiderivative of received polynomial.
*/
@UnstableKMathAPI
public fun <C, A : Field<C>> NumberedPolynomial<C>.antiderivativeWithRespectTo(
algebra: A,
variables: Collection<Int>,
): NumberedPolynomial<C> = algebra {
val cleanedVariables = variables.toSet()
if (cleanedVariables.isEmpty()) return this@antiderivativeWithRespectTo
val maxRespectedVariable = cleanedVariables.maxOrNull()!!
NumberedPolynomial<C>(
buildMap(coefficients.size) {
coefficients
.forEach { (degs, c) ->
put(
List(max(maxRespectedVariable + 1, degs.size)) { if (it !in variables) degs[it] else degs[it] + 1u },
cleanedVariables.fold(c) { acc, variable -> acc / multiplyByDoubling(one, degs[variable]) }
)
}
}
)
}
/**
* Returns algebraic derivative of received polynomial.
*/
@UnstableKMathAPI
public fun <C, A : Field<C>> NumberedPolynomial<C>.nthAntiderivativeWithRespectTo(
algebra: A,
variable: Int,
order: UInt
): NumberedPolynomial<C> = algebra {
if (order == 0u) return this@nthAntiderivativeWithRespectTo
NumberedPolynomial<C>(
buildMap(coefficients.size) {
coefficients
.forEach { (degs, c) ->
put(
List(max(variable + 1, degs.size)) { if (it != variable) degs[it] else degs[it] + order },
degs[variable].let { deg ->
(deg downTo deg - order + 1u)
.fold(c) { acc, ord -> acc / multiplyByDoubling(one, ord) }
}
)
}
}
)
}
/**
* Returns algebraic derivative of received polynomial.
*/
@UnstableKMathAPI
public fun <C, A : Field<C>> NumberedPolynomial<C>.nthAntiderivativeWithRespectTo(
algebra: A,
variablesAndOrders: Map<Int, UInt>,
): NumberedPolynomial<C> = algebra {
val filteredVariablesAndOrders = variablesAndOrders.filterValues { it != 0u }
if (filteredVariablesAndOrders.isEmpty()) return this@nthAntiderivativeWithRespectTo
val maxRespectedVariable = filteredVariablesAndOrders.keys.maxOrNull()!!
NumberedPolynomial<C>(
buildMap(coefficients.size) {
coefficients
.forEach { (degs, c) ->
put(
List(max(maxRespectedVariable + 1, degs.size)) { degs[it] + filteredVariablesAndOrders.getOrElse(it) { 0u } },
filteredVariablesAndOrders.entries.fold(c) { acc1, (index, order) ->
degs[index].let { deg ->
(deg downTo deg - order + 1u)
.fold(acc1) { acc2, ord -> acc2 / multiplyByDoubling(one, ord) }
}
}
)
}
}
)
}

View File

@ -1,33 +0,0 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.functions
import space.kscience.kmath.operations.Ring
import kotlin.contracts.InvocationKind
import kotlin.contracts.contract
/**
* Creates a [NumberedRationalFunctionSpace] over a received ring.
*/
public fun <C, A : Ring<C>> A.numberedRationalFunction(): NumberedRationalFunctionSpace<C, A> =
NumberedRationalFunctionSpace(this)
/**
* Creates a [NumberedRationalFunctionSpace]'s scope over a received ring.
*/
public inline fun <C, A : Ring<C>, R> A.numberedRationalFunction(block: NumberedRationalFunctionSpace<C, A>.() -> R): R {
contract { callsInPlace(block, InvocationKind.EXACTLY_ONCE) }
return NumberedRationalFunctionSpace(this).block()
}
//fun <T: Field<T>> NumberedRationalFunction<T>.reduced(): NumberedRationalFunction<T> {
// val greatestCommonDivider = polynomialGCD(numerator, denominator)
// return NumberedRationalFunction(
// numerator / greatestCommonDivider,
// denominator / greatestCommonDivider
// )
//}

View File

@ -0,0 +1,513 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.functions
import space.kscience.kmath.misc.UnstableKMathAPI
import space.kscience.kmath.operations.Field
import space.kscience.kmath.operations.Ring
import space.kscience.kmath.operations.algebra
import space.kscience.kmath.operations.invoke
import space.kscience.kmath.structures.Buffer
import kotlin.contracts.InvocationKind
import kotlin.contracts.contract
import kotlin.jvm.JvmName
import kotlin.math.max
import kotlin.math.min
/**
* Creates a [NumberedPolynomialSpace] over a received ring.
*/
public fun <C, A : Ring<C>> A.numberedPolynomialSpace(): NumberedPolynomialSpace<C, A> =
NumberedPolynomialSpace(this)
/**
* Creates a [NumberedPolynomialSpace]'s scope over a received ring.
*/
public inline fun <C, A : Ring<C>, R> A.numberedPolynomialSpace(block: NumberedPolynomialSpace<C, A>.() -> R): R {
contract { callsInPlace(block, InvocationKind.EXACTLY_ONCE) }
return NumberedPolynomialSpace(this).block()
}
/**
* Creates a [NumberedRationalFunctionSpace] over a received ring.
*/
public fun <C, A : Ring<C>> A.numberedRationalFunctionSpace(): NumberedRationalFunctionSpace<C, A> =
NumberedRationalFunctionSpace(this)
/**
* Creates a [NumberedRationalFunctionSpace]'s scope over a received ring.
*/
public inline fun <C, A : Ring<C>, R> A.numberedRationalFunctionSpace(block: NumberedRationalFunctionSpace<C, A>.() -> R): R {
contract { callsInPlace(block, InvocationKind.EXACTLY_ONCE) }
return NumberedRationalFunctionSpace(this).block()
}
/**
* Substitutes provided Double arguments [args] into [this] Double polynomial.
*/
public fun NumberedPolynomial<Double>.substitute(args: Map<Int, Double>): NumberedPolynomial<Double> = Double.algebra {
NumberedPolynomial<Double>(
buildMap(coefficients.size) {
for ((degs, c) in coefficients) {
val newDegs = degs.mapIndexed { index, deg -> if (index !in args) deg else 0u }.cleanUp()
val newC = args.entries.fold(c) { product, (variable, substitution) ->
val deg = degs.getOrElse(variable) { 0u }
if (deg == 0u) product else product * substitution.pow(deg.toInt())
}
this[newDegs] = if (newDegs !in this) newC else this[newDegs]!! + newC
}
}
)
}
/**
* Substitutes provided arguments [args] into [this] polynomial.
*/
public fun <C> NumberedPolynomial<C>.substitute(ring: Ring<C>, args: Map<Int, C>): NumberedPolynomial<C> = ring {
NumberedPolynomial<C>(
buildMap(coefficients.size) {
for ((degs, c) in coefficients) {
val newDegs = degs.mapIndexed { index, deg -> if (index !in args) deg else 0u }.cleanUp()
val newC = args.entries.fold(c) { product, (variable, substitution) ->
val deg = degs.getOrElse(variable) { 0u }
if (deg == 0u) product else product * power(substitution, deg)
}
this[newDegs] = if (newDegs !in this) newC else this[newDegs]!! + newC
}
}
)
}
/**
* Substitutes provided arguments [args] into [this] polynomial.
*/ // TODO: To optimize boxing
@JvmName("substitutePolynomial")
public fun <C> NumberedPolynomial<C>.substitute(ring: Ring<C>, args: Map<Int, NumberedPolynomial<C>>) : NumberedPolynomial<C> =
ring.numberedPolynomialSpace {
coefficients.entries.fold(zero) { acc, (degs, c) ->
val newDegs = degs.mapIndexed { index, deg -> if (index !in args) deg else 0u }.cleanUp()
acc + args.entries.fold(NumberedPolynomial<C>(mapOf(newDegs to c))) { product, (variable, substitution) ->
val deg = degs.getOrElse(variable) { 0u }
if (deg == 0u) product else product * power(substitution, deg)
}
}
}
/**
* Substitutes provided arguments [args] into [this] polynomial.
*/ // TODO: To optimize boxing
@JvmName("substituteRationalFunction")
public fun <C> NumberedPolynomial<C>.substitute(ring: Ring<C>, args: Map<Int, NumberedRationalFunction<C>>) : NumberedRationalFunction<C> =
ring.numberedRationalFunctionSpace {
coefficients.entries.fold(zero) { acc, (degs, c) ->
val newDegs = degs.mapIndexed { index, deg -> if (index !in args) deg else 0u }.cleanUp()
acc + args.entries.fold(NumberedRationalFunction(NumberedPolynomial<C>(mapOf(newDegs to c)))) { product, (variable, substitution) ->
val deg = degs.getOrElse(variable) { 0u }
if (deg == 0u) product else product * power(substitution, deg)
}
}
}
/**
* Substitutes provided Double arguments [args] into [this] Double rational function.
*/
public fun NumberedRationalFunction<Double>.substitute(args: Map<Int, Double>): NumberedRationalFunction<Double> =
NumberedRationalFunction(numerator.substitute(args), denominator.substitute(args))
/**
* Substitutes provided arguments [args] into [this] rational function.
*/
public fun <C> NumberedRationalFunction<C>.substitute(ring: Ring<C>, args: Map<Int, C>): NumberedRationalFunction<C> =
NumberedRationalFunction(numerator.substitute(ring, args), denominator.substitute(ring, args))
/**
* Substitutes provided arguments [args] into [this] rational function.
*/ // TODO: To optimize calculation
@JvmName("substitutePolynomial")
public fun <C> NumberedRationalFunction<C>.substitute(ring: Ring<C>, args: Map<Int, NumberedPolynomial<C>>) : NumberedRationalFunction<C> =
NumberedRationalFunction(numerator.substitute(ring, args), denominator.substitute(ring, args))
/**
* Substitutes provided arguments [args] into [this] rational function.
*/ // TODO: To optimize calculation
@JvmName("substituteRationalFunction")
public fun <C> NumberedRationalFunction<C>.substitute(ring: Ring<C>, args: Map<Int, NumberedRationalFunction<C>>) : NumberedRationalFunction<C> =
ring.numberedRationalFunctionSpace {
numerator.substitute(ring, args) / denominator.substitute(ring, args)
}
/**
* Substitutes provided Double arguments [args] into [this] Double polynomial.
*/
public fun NumberedPolynomial<Double>.substitute(args: Buffer<Double>): NumberedPolynomial<Double> = Double.algebra {
val lastSubstitutionVariable = args.size - 1
NumberedPolynomial<Double>(
buildMap(coefficients.size) {
for ((degs, c) in coefficients) {
val lastDegsIndex = degs.lastIndex
val newDegs =
if (lastDegsIndex <= lastSubstitutionVariable) emptyList()
else degs.toMutableList().apply {
for (i in 0..lastSubstitutionVariable) this[i] = 0u
}
val newC = (0..min(lastDegsIndex, lastSubstitutionVariable)).fold(c) { product, variable ->
val deg = degs[variable]
if (deg == 0u) product else product * args[variable].pow(deg.toInt())
}
if (newDegs !in this) this[newDegs] = newC
else this[newDegs] = this[newDegs]!! + newC
}
}
)
}
/**
* Substitutes provided arguments [args] into [this] polynomial.
*/
public fun <C> NumberedPolynomial<C>.substitute(ring: Ring<C>, args: Buffer<C>): NumberedPolynomial<C> = ring {
val lastSubstitutionVariable = args.size - 1
NumberedPolynomial<C>(
buildMap<List<UInt>, C>(coefficients.size) {
for ((degs, c) in coefficients) {
val lastDegsIndex = degs.lastIndex
val newDegs =
if (lastDegsIndex <= lastSubstitutionVariable) emptyList()
else degs.toMutableList().apply {
for (i in 0..lastSubstitutionVariable) this[i] = 0u
}
val newC = (0..min(lastDegsIndex, lastSubstitutionVariable)).fold(c) { product, variable ->
val deg = degs[variable]
if (deg == 0u) product else product * power(args[variable], deg)
}
if (newDegs !in this) this[newDegs] = newC
else this[newDegs] = this[newDegs]!! + newC
}
}
)
}
/**
* Substitutes provided arguments [args] into [this] polynomial.
*/ // TODO: To optimize boxing
@JvmName("substitutePolynomial")
public fun <C> NumberedPolynomial<C>.substitute(ring: Ring<C>, args: Buffer<NumberedPolynomial<C>>) : NumberedPolynomial<C> =
ring.numberedPolynomialSpace {
val lastSubstitutionVariable = args.size - 1
coefficients.entries.fold(zero) { acc, (degs, c) ->
val lastDegsIndex = degs.lastIndex
val newDegs =
if (lastDegsIndex <= lastSubstitutionVariable) emptyList()
else degs.toMutableList().apply {
for (i in 0..lastSubstitutionVariable) this[i] = 0u
}
acc + (0..min(lastDegsIndex, lastSubstitutionVariable))
.fold(NumberedPolynomial<C>(mapOf(newDegs to c))) { product, variable ->
val deg = degs[variable]
if (deg == 0u) product else product * power(args[variable], deg)
}
}
}
/**
* Substitutes provided arguments [args] into [this] polynomial.
*/ // TODO: To optimize boxing
@JvmName("substituteRationalFunction")
public fun <C> NumberedPolynomial<C>.substitute(ring: Ring<C>, args: Buffer<NumberedRationalFunction<C>>) : NumberedRationalFunction<C> =
ring.numberedRationalFunctionSpace {
val lastSubstitutionVariable = args.size - 1
coefficients.entries.fold(zero) { acc, (degs, c) ->
val lastDegsIndex = degs.lastIndex
val newDegs =
if (lastDegsIndex <= lastSubstitutionVariable) emptyList()
else degs.toMutableList().apply {
for (i in 0..lastSubstitutionVariable) this[i] = 0u
}
acc + (0..min(lastDegsIndex, lastSubstitutionVariable))
.fold(NumberedRationalFunction(NumberedPolynomial<C>(mapOf(newDegs to c)))) { product, variable ->
val deg = degs[variable]
if (deg == 0u) product else product * power(args[variable], deg)
}
}
}
/**
* Substitutes provided Double arguments [args] into [this] Double rational function.
*/
public fun NumberedRationalFunction<Double>.substitute(args: Buffer<Double>): NumberedRationalFunction<Double> =
NumberedRationalFunction(numerator.substitute(args), denominator.substitute(args))
/**
* Substitutes provided arguments [args] into [this] rational function.
*/
public fun <C> NumberedRationalFunction<C>.substitute(ring: Ring<C>, args: Buffer<C>): NumberedRationalFunction<C> =
NumberedRationalFunction(numerator.substitute(ring, args), denominator.substitute(ring, args))
/**
* Substitutes provided arguments [args] into [this] rational function.
*/ // TODO: To optimize calculation
@JvmName("substitutePolynomial")
public fun <C> NumberedRationalFunction<C>.substitute(ring: Ring<C>, args: Buffer<NumberedPolynomial<C>>) : NumberedRationalFunction<C> =
NumberedRationalFunction(numerator.substitute(ring, args), denominator.substitute(ring, args))
/**
* Substitutes provided arguments [args] into [this] rational function.
*/ // TODO: To optimize calculation
@JvmName("substituteRationalFunction")
public fun <C> NumberedRationalFunction<C>.substitute(ring: Ring<C>, args: Buffer<NumberedRationalFunction<C>>) : NumberedRationalFunction<C> =
ring.numberedRationalFunctionSpace {
numerator.substitute(ring, args) / denominator.substitute(ring, args)
}
/**
* Substitutes provided Double arguments [args] into [this] Double polynomial.
*/
public fun NumberedPolynomial<Double>.substituteFully(args: Buffer<Double>): Double = Double.algebra {
val lastSubstitutionVariable = args.size - 1
require(coefficients.keys.all { it.lastIndex <= lastSubstitutionVariable }) { "Fully substituting buffer should cover all variables of the polynomial." }
coefficients.entries.fold(.0) { acc, (degs, c) ->
acc + degs.foldIndexed(c) { variable, product, deg ->
if (deg == 0u) product else product * args[variable].pow(deg.toInt())
}
}
}
/**
* Substitutes provided arguments [args] into [this] polynomial.
*/
public fun <C> NumberedPolynomial<C>.substituteFully(ring: Ring<C>, args: Buffer<C>): C = ring {
val lastSubstitutionVariable = args.size - 1
require(coefficients.keys.all { it.lastIndex <= lastSubstitutionVariable }) { "Fully substituting buffer should cover all variables of the polynomial." }
coefficients.entries.fold(zero) { acc, (degs, c) ->
acc + degs.foldIndexed(c) { variable, product, deg ->
if (deg == 0u) product else product * power(args[variable], deg)
}
}
}
/**
* Substitutes provided Double arguments [args] into [this] Double rational function.
*/
public fun NumberedRationalFunction<Double>.substituteFully(args: Buffer<Double>): Double =
numerator.substituteFully(args) / denominator.substituteFully(args)
/**
* Substitutes provided arguments [args] into [this] rational function.
*/
public fun <C> NumberedRationalFunction<C>.substituteFully(ring: Field<C>, args: Buffer<C>): C = ring {
numerator.substituteFully(ring, args) / denominator.substituteFully(ring, args)
}
/**
* Represent [this] polynomial as a regular context-less function.
*/
public fun <C, A : Ring<C>> NumberedPolynomial<C>.asFunctionOver(ring: A): (Buffer<C>) -> C = { substituteFully(ring, it) }
/**
* Represent [this] polynomial as a regular context-less function.
*/
public fun <C, A : Ring<C>> NumberedPolynomial<C>.asFunctionOfConstantOver(ring: A): (Buffer<C>) -> C = { substituteFully(ring, it) }
/**
* Represent [this] polynomial as a regular context-less function.
*/
public fun <C, A : Ring<C>> NumberedPolynomial<C>.asFunctionOfPolynomialOver(ring: A): (Buffer<NumberedPolynomial<C>>) -> NumberedPolynomial<C> = { substitute(ring, it) }
/**
* Represent [this] polynomial as a regular context-less function.
*/
public fun <C, A : Ring<C>> NumberedPolynomial<C>.asFunctionOfRationalFunctionOver(ring: A): (Buffer<NumberedRationalFunction<C>>) -> NumberedRationalFunction<C> = { substitute(ring, it) }
/**
* Represent [this] rational function as a regular context-less function.
*/
public fun <C, A : Field<C>> NumberedRationalFunction<C>.asFunctionOver(ring: A): (Buffer<C>) -> C = { substituteFully(ring, it) }
/**
* Represent [this] rational function as a regular context-less function.
*/
public fun <C, A : Field<C>> NumberedRationalFunction<C>.asFunctionOfConstantOver(ring: A): (Buffer<C>) -> C = { substituteFully(ring, it) }
/**
* Represent [this] rational function as a regular context-less function.
*/
public fun <C, A : Ring<C>> NumberedRationalFunction<C>.asFunctionOfPolynomialOver(ring: A): (Buffer<NumberedPolynomial<C>>) -> NumberedRationalFunction<C> = { substitute(ring, it) }
/**
* Represent [this] rational function as a regular context-less function.
*/
public fun <C, A : Ring<C>> NumberedRationalFunction<C>.asFunctionOfRationalFunctionOver(ring: A): (Buffer<NumberedRationalFunction<C>>) -> NumberedRationalFunction<C> = { substitute(ring, it) }
/**
* Returns algebraic derivative of received polynomial with respect to provided variable.
*/
@UnstableKMathAPI
public fun <C, A : Ring<C>> NumberedPolynomial<C>.derivativeWithRespectTo(
ring: A,
variable: Int,
): NumberedPolynomial<C> = ring {
NumberedPolynomial<C>(
buildMap(coefficients.size) {
coefficients
.forEach { (degs, c) ->
if (degs.size > variable) return@forEach
put(
degs.mapIndexed { index, deg ->
when {
index != variable -> deg
deg > 0u -> deg - 1u
else -> return@forEach
}
}.cleanUp(),
multiplyByDoubling(c, degs[variable])
)
}
}
)
}
/**
* Returns algebraic derivative of received polynomial with respect to provided variable of specified order.
*/
@UnstableKMathAPI
public fun <C, A : Ring<C>> NumberedPolynomial<C>.nthDerivativeWithRespectTo(
ring: A,
variable: Int,
order: UInt
): NumberedPolynomial<C> = ring {
if (order == 0u) return this@nthDerivativeWithRespectTo
NumberedPolynomial<C>(
buildMap(coefficients.size) {
coefficients
.forEach { (degs, c) ->
if (degs.size > variable) return@forEach
put(
degs.mapIndexed { index, deg ->
when {
index != variable -> deg
deg >= order -> deg - order
else -> return@forEach
}
}.cleanUp(),
degs[variable].let { deg ->
(deg downTo deg - order + 1u)
.fold(c) { acc, ord -> multiplyByDoubling(acc, ord) }
}
)
}
}
)
}
/**
* Returns algebraic derivative of received polynomial with respect to provided variables of specified orders.
*/
@UnstableKMathAPI
public fun <C, A : Ring<C>> NumberedPolynomial<C>.nthDerivativeWithRespectTo(
ring: A,
variablesAndOrders: Map<Int, UInt>,
): NumberedPolynomial<C> = ring {
val filteredVariablesAndOrders = variablesAndOrders.filterValues { it != 0u }
if (filteredVariablesAndOrders.isEmpty()) return this@nthDerivativeWithRespectTo
val maxRespectedVariable = filteredVariablesAndOrders.keys.maxOrNull()!!
NumberedPolynomial<C>(
buildMap(coefficients.size) {
coefficients
.forEach { (degs, c) ->
if (degs.size > maxRespectedVariable) return@forEach
put(
degs.mapIndexed { index, deg ->
if (index !in filteredVariablesAndOrders) return@mapIndexed deg
val order = filteredVariablesAndOrders[index]!!
if (deg >= order) deg - order else return@forEach
}.cleanUp(),
filteredVariablesAndOrders.entries.fold(c) { acc1, (index, order) ->
degs[index].let { deg ->
(deg downTo deg - order + 1u)
.fold(acc1) { acc2, ord -> multiplyByDoubling(acc2, ord) }
}
}
)
}
}
)
}
/**
* Returns algebraic antiderivative of received polynomial with respect to provided variable.
*/
@UnstableKMathAPI
public fun <C, A : Field<C>> NumberedPolynomial<C>.antiderivativeWithRespectTo(
ring: A,
variable: Int,
): NumberedPolynomial<C> = ring {
NumberedPolynomial<C>(
buildMap(coefficients.size) {
coefficients
.forEach { (degs, c) ->
put(
List(max(variable + 1, degs.size)) { if (it != variable) degs[it] else degs[it] + 1u },
c / multiplyByDoubling(one, degs[variable])
)
}
}
)
}
/**
* Returns algebraic antiderivative of received polynomial with respect to provided variable of specified order.
*/
@UnstableKMathAPI
public fun <C, A : Field<C>> NumberedPolynomial<C>.nthAntiderivativeWithRespectTo(
ring: A,
variable: Int,
order: UInt
): NumberedPolynomial<C> = ring {
if (order == 0u) return this@nthAntiderivativeWithRespectTo
NumberedPolynomial<C>(
buildMap(coefficients.size) {
coefficients
.forEach { (degs, c) ->
put(
List(max(variable + 1, degs.size)) { if (it != variable) degs[it] else degs[it] + order },
degs[variable].let { deg ->
(deg downTo deg - order + 1u)
.fold(c) { acc, ord -> acc / multiplyByDoubling(one, ord) }
}
)
}
}
)
}
/**
* Returns algebraic derivative of received polynomial with respect to provided variables of specified orders.
*/
@UnstableKMathAPI
public fun <C, A : Field<C>> NumberedPolynomial<C>.nthAntiderivativeWithRespectTo(
ring: A,
variablesAndOrders: Map<Int, UInt>,
): NumberedPolynomial<C> = ring {
val filteredVariablesAndOrders = variablesAndOrders.filterValues { it != 0u }
if (filteredVariablesAndOrders.isEmpty()) return this@nthAntiderivativeWithRespectTo
val maxRespectedVariable = filteredVariablesAndOrders.keys.maxOrNull()!!
NumberedPolynomial<C>(
buildMap(coefficients.size) {
coefficients
.forEach { (degs, c) ->
put(
List(max(maxRespectedVariable + 1, degs.size)) { degs[it] + filteredVariablesAndOrders.getOrElse(it) { 0u } },
filteredVariablesAndOrders.entries.fold(c) { acc1, (index, order) ->
degs[index].let { deg ->
(deg downTo deg - order + 1u)
.fold(acc1) { acc2, ord -> acc2 / multiplyByDoubling(one, ord) }
}
}
)
}
}
)
}

View File

@ -3,6 +3,8 @@
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file. * Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/ */
@file:Suppress("LocalVariableName")
package space.kscience.kmath.functions package space.kscience.kmath.functions
import space.kscience.kmath.test.misc.* import space.kscience.kmath.test.misc.*
@ -12,7 +14,7 @@ import kotlin.test.*
class ListPolynomialTest { class ListPolynomialTest {
@Test @Test
fun test_Polynomial_Int_plus() { fun test_Polynomial_Int_plus() {
RationalField.listPolynomial { RationalField.listPolynomialSpace {
assertEquals( assertEquals(
ListPolynomial(Rational(-22, 9), Rational(-8, 9), Rational(-8, 7)), ListPolynomial(Rational(-22, 9), Rational(-8, 9), Rational(-8, 7)),
ListPolynomial(Rational(5, 9), Rational(-8, 9), Rational(-8, 7)) + -3, ListPolynomial(Rational(5, 9), Rational(-8, 9), Rational(-8, 7)) + -3,
@ -28,31 +30,38 @@ class ListPolynomialTest {
ListPolynomial(Rational(-2)) + 2, ListPolynomial(Rational(-2)) + 2,
"test 3" "test 3"
) )
assertEquals( val polynomial_4 = ListPolynomial<Rational>()
ListPolynomial(), assertSame(
ListPolynomial<Rational>() + 0, polynomial_4,
polynomial_4 + 0,
"test 4" "test 4"
) )
val polynomial_5 = ListPolynomial(Rational(-22, 9), Rational(-8, 9), Rational(-8, 7))
assertSame(
polynomial_5,
polynomial_5 + 0,
"test 5"
)
assertEquals( assertEquals(
ListPolynomial(Rational(-1), Rational(0), Rational(0), Rational(0)), ListPolynomial(Rational(-1), Rational(0), Rational(0), Rational(0)),
ListPolynomial(Rational(-2), Rational(0), Rational(0), Rational(0)) + 1, ListPolynomial(Rational(-2), Rational(0), Rational(0), Rational(0)) + 1,
"test 5" "test 6"
) )
assertEquals( assertEquals(
ListPolynomial(Rational(-1)), ListPolynomial(Rational(-1)),
ListPolynomial(Rational(-2)) + 1, ListPolynomial(Rational(-2)) + 1,
"test 6" "test 7"
) )
assertEquals( assertEquals(
ListPolynomial(Rational(2)), ListPolynomial(Rational(2)),
ListPolynomial<Rational>() + 2, ListPolynomial<Rational>() + 2,
"test 7" "test 8"
) )
} }
} }
@Test @Test
fun test_Polynomial_Int_minus() { fun test_Polynomial_Int_minus() {
RationalField.listPolynomial { RationalField.listPolynomialSpace {
assertEquals( assertEquals(
ListPolynomial(Rational(32, 9), Rational(-8, 9), Rational(-8, 7)), ListPolynomial(Rational(32, 9), Rational(-8, 9), Rational(-8, 7)),
ListPolynomial(Rational(5, 9), Rational(-8, 9), Rational(-8, 7)) - -3, ListPolynomial(Rational(5, 9), Rational(-8, 9), Rational(-8, 7)) - -3,
@ -68,31 +77,38 @@ class ListPolynomialTest {
ListPolynomial(Rational(2)) - 2, ListPolynomial(Rational(2)) - 2,
"test 3" "test 3"
) )
assertEquals( val polynomial_4 = ListPolynomial<Rational>()
ListPolynomial(), assertSame(
ListPolynomial<Rational>() - 0, polynomial_4,
polynomial_4 - 0,
"test 4" "test 4"
) )
val polynomial_5 = ListPolynomial(Rational(-22, 9), Rational(-8, 9), Rational(-8, 7))
assertEquals(
polynomial_5,
polynomial_5 - 0,
"test 5"
)
assertEquals( assertEquals(
ListPolynomial(Rational(1), Rational(0), Rational(0), Rational(0)), ListPolynomial(Rational(1), Rational(0), Rational(0), Rational(0)),
ListPolynomial(Rational(2), Rational(0), Rational(0), Rational(0)) - 1, ListPolynomial(Rational(2), Rational(0), Rational(0), Rational(0)) - 1,
"test 5" "test 6"
) )
assertEquals( assertEquals(
ListPolynomial(Rational(1)), ListPolynomial(Rational(1)),
ListPolynomial(Rational(2)) - 1, ListPolynomial(Rational(2)) - 1,
"test 6" "test 7"
) )
assertEquals( assertEquals(
ListPolynomial(Rational(-2)), ListPolynomial(Rational(-2)),
ListPolynomial<Rational>() - 2, ListPolynomial<Rational>() - 2,
"test 7" "test 8"
) )
} }
} }
@Test @Test
fun test_Polynomial_Int_times() { fun test_Polynomial_Int_times() {
IntModuloRing(35).listPolynomial { IntModuloRing(35).listPolynomialSpace {
assertEquals( assertEquals(
ListPolynomial(34, 2, 1, 20, 2), ListPolynomial(34, 2, 1, 20, 2),
ListPolynomial(22, 26, 13, 15, 26) * 27, ListPolynomial(22, 26, 13, 15, 26) * 27,
@ -103,11 +119,22 @@ class ListPolynomialTest {
ListPolynomial(7, 0, 49, 21, 14) * 15, ListPolynomial(7, 0, 49, 21, 14) * 15,
"test 2" "test 2"
) )
val polynomial = ListPolynomial(22, 26, 13, 15, 26)
assertSame(
zero,
polynomial * 0,
"test 3"
)
assertSame(
polynomial,
polynomial * 1,
"test 4"
)
} }
} }
@Test @Test
fun test_Int_Polynomial_plus() { fun test_Int_Polynomial_plus() {
RationalField.listPolynomial { RationalField.listPolynomialSpace {
assertEquals( assertEquals(
ListPolynomial(Rational(-22, 9), Rational(-8, 9), Rational(-8, 7)), ListPolynomial(Rational(-22, 9), Rational(-8, 9), Rational(-8, 7)),
-3 + ListPolynomial(Rational(5, 9), Rational(-8, 9), Rational(-8, 7)), -3 + ListPolynomial(Rational(5, 9), Rational(-8, 9), Rational(-8, 7)),
@ -123,31 +150,38 @@ class ListPolynomialTest {
2 + ListPolynomial(Rational(-2)), 2 + ListPolynomial(Rational(-2)),
"test 3" "test 3"
) )
assertEquals( val polynomial_4 = ListPolynomial<Rational>()
ListPolynomial(), assertSame(
0 + ListPolynomial(), polynomial_4,
0 + polynomial_4,
"test 4" "test 4"
) )
val polynomial_5 = ListPolynomial<Rational>(Rational(-22, 9), Rational(-8, 9), Rational(-8, 7))
assertSame(
polynomial_5,
0 + polynomial_5,
"test 5"
)
assertEquals( assertEquals(
ListPolynomial(Rational(-1), Rational(0), Rational(0), Rational(0)), ListPolynomial(Rational(-1), Rational(0), Rational(0), Rational(0)),
1 + ListPolynomial(Rational(-2), Rational(0), Rational(0), Rational(0)), 1 + ListPolynomial(Rational(-2), Rational(0), Rational(0), Rational(0)),
"test 5" "test 6"
) )
assertEquals( assertEquals(
ListPolynomial(Rational(-1)), ListPolynomial(Rational(-1)),
1 + ListPolynomial(Rational(-2)), 1 + ListPolynomial(Rational(-2)),
"test 6" "test 7"
) )
assertEquals( assertEquals(
ListPolynomial(Rational(2)), ListPolynomial(Rational(2)),
2 + ListPolynomial(), 2 + ListPolynomial(),
"test 7" "test 8"
) )
} }
} }
@Test @Test
fun test_Int_Polynomial_minus() { fun test_Int_Polynomial_minus() {
RationalField.listPolynomial { RationalField.listPolynomialSpace {
assertEquals( assertEquals(
ListPolynomial(Rational(32, 9), Rational(-8, 9), Rational(-8, 7)), ListPolynomial(Rational(32, 9), Rational(-8, 9), Rational(-8, 7)),
3 - ListPolynomial(Rational(-5, 9), Rational(8, 9), Rational(8, 7)), 3 - ListPolynomial(Rational(-5, 9), Rational(8, 9), Rational(8, 7)),
@ -163,31 +197,36 @@ class ListPolynomialTest {
-2 - ListPolynomial(Rational(-2)), -2 - ListPolynomial(Rational(-2)),
"test 3" "test 3"
) )
assertEquals(
ListPolynomial(Rational(-32, 9), Rational(-8, -9), Rational(8, 7)),
0 - ListPolynomial(Rational(32, 9), Rational(-8, 9), Rational(-8, 7)),
"test 4"
)
assertEquals( assertEquals(
ListPolynomial(), ListPolynomial(),
0 - ListPolynomial(), 0 - ListPolynomial(),
"test 4" "test 5"
) )
assertEquals( assertEquals(
ListPolynomial(Rational(1), Rational(0), Rational(0), Rational(0)), ListPolynomial(Rational(1), Rational(0), Rational(0), Rational(0)),
-1 - ListPolynomial(Rational(-2), Rational(0), Rational(0), Rational(0)), -1 - ListPolynomial(Rational(-2), Rational(0), Rational(0), Rational(0)),
"test 5" "test 6"
) )
assertEquals( assertEquals(
ListPolynomial(Rational(1)), ListPolynomial(Rational(1)),
-1 - ListPolynomial(Rational(-2)), -1 - ListPolynomial(Rational(-2)),
"test 6" "test 7"
) )
assertEquals( assertEquals(
ListPolynomial(Rational(-2)), ListPolynomial(Rational(-2)),
-2 - ListPolynomial(), -2 - ListPolynomial(),
"test 7" "test 8"
) )
} }
} }
@Test @Test
fun test_Int_Polynomial_times() { fun test_Int_Polynomial_times() {
IntModuloRing(35).listPolynomial { IntModuloRing(35).listPolynomialSpace {
assertEquals( assertEquals(
ListPolynomial(34, 2, 1, 20, 2), ListPolynomial(34, 2, 1, 20, 2),
27 * ListPolynomial(22, 26, 13, 15, 26), 27 * ListPolynomial(22, 26, 13, 15, 26),
@ -198,11 +237,22 @@ class ListPolynomialTest {
15 * ListPolynomial(7, 0, 49, 21, 14), 15 * ListPolynomial(7, 0, 49, 21, 14),
"test 2" "test 2"
) )
val polynomial = ListPolynomial(22, 26, 13, 15, 26)
assertSame(
zero,
0 * polynomial,
"test 3"
)
assertSame(
polynomial,
1 * polynomial,
"test 4"
)
} }
} }
@Test @Test
fun test_Polynomial_Constant_plus() { fun test_Polynomial_Constant_plus() {
RationalField.listPolynomial { RationalField.listPolynomialSpace {
assertEquals( assertEquals(
ListPolynomial(Rational(-22, 9), Rational(-8, 9), Rational(-8, 7)), ListPolynomial(Rational(-22, 9), Rational(-8, 9), Rational(-8, 7)),
ListPolynomial(Rational(5, 9), Rational(-8, 9), Rational(-8, 7)) + Rational(-3), ListPolynomial(Rational(5, 9), Rational(-8, 9), Rational(-8, 7)) + Rational(-3),
@ -242,7 +292,7 @@ class ListPolynomialTest {
} }
@Test @Test
fun test_Polynomial_Constant_minus() { fun test_Polynomial_Constant_minus() {
RationalField.listPolynomial { RationalField.listPolynomialSpace {
assertEquals( assertEquals(
ListPolynomial(Rational(32, 9), Rational(-8, 9), Rational(-8, 7)), ListPolynomial(Rational(32, 9), Rational(-8, 9), Rational(-8, 7)),
ListPolynomial(Rational(5, 9), Rational(-8, 9), Rational(-8, 7)) - Rational(-3), ListPolynomial(Rational(5, 9), Rational(-8, 9), Rational(-8, 7)) - Rational(-3),
@ -282,7 +332,7 @@ class ListPolynomialTest {
} }
@Test @Test
fun test_Polynomial_Constant_times() { fun test_Polynomial_Constant_times() {
IntModuloRing(35).listPolynomial { IntModuloRing(35).listPolynomialSpace {
assertEquals( assertEquals(
ListPolynomial(34, 2, 1, 20, 2), ListPolynomial(34, 2, 1, 20, 2),
ListPolynomial(22, 26, 13, 15, 26) * 27.asConstant(), ListPolynomial(22, 26, 13, 15, 26) * 27.asConstant(),
@ -297,7 +347,7 @@ class ListPolynomialTest {
} }
@Test @Test
fun test_Constant_Polynomial_plus() { fun test_Constant_Polynomial_plus() {
RationalField.listPolynomial { RationalField.listPolynomialSpace {
assertEquals( assertEquals(
ListPolynomial(Rational(-22, 9), Rational(-8, 9), Rational(-8, 7)), ListPolynomial(Rational(-22, 9), Rational(-8, 9), Rational(-8, 7)),
Rational(-3) + ListPolynomial(Rational(5, 9), Rational(-8, 9), Rational(-8, 7)), Rational(-3) + ListPolynomial(Rational(5, 9), Rational(-8, 9), Rational(-8, 7)),
@ -337,7 +387,7 @@ class ListPolynomialTest {
} }
@Test @Test
fun test_Constant_Polynomial_minus() { fun test_Constant_Polynomial_minus() {
RationalField.listPolynomial { RationalField.listPolynomialSpace {
assertEquals( assertEquals(
ListPolynomial(Rational(32, 9), Rational(-8, 9), Rational(-8, 7)), ListPolynomial(Rational(32, 9), Rational(-8, 9), Rational(-8, 7)),
Rational(3) - ListPolynomial(Rational(-5, 9), Rational(8, 9), Rational(8, 7)), Rational(3) - ListPolynomial(Rational(-5, 9), Rational(8, 9), Rational(8, 7)),
@ -377,7 +427,7 @@ class ListPolynomialTest {
} }
@Test @Test
fun test_Constant_Polynomial_times() { fun test_Constant_Polynomial_times() {
IntModuloRing(35).listPolynomial { IntModuloRing(35).listPolynomialSpace {
assertEquals( assertEquals(
ListPolynomial(34, 2, 1, 20, 2), ListPolynomial(34, 2, 1, 20, 2),
27 * ListPolynomial(22, 26, 13, 15, 26), 27 * ListPolynomial(22, 26, 13, 15, 26),
@ -392,7 +442,7 @@ class ListPolynomialTest {
} }
@Test @Test
fun test_Polynomial_unaryMinus() { fun test_Polynomial_unaryMinus() {
RationalField.listPolynomial { RationalField.listPolynomialSpace {
assertEquals( assertEquals(
ListPolynomial(Rational(-5, 9), Rational(8, 9), Rational(8, 7)), ListPolynomial(Rational(-5, 9), Rational(8, 9), Rational(8, 7)),
-ListPolynomial(Rational(5, 9), Rational(-8, 9), Rational(-8, 7)), -ListPolynomial(Rational(5, 9), Rational(-8, 9), Rational(-8, 7)),
@ -407,7 +457,7 @@ class ListPolynomialTest {
} }
@Test @Test
fun test_Polynomial_Polynomial_plus() { fun test_Polynomial_Polynomial_plus() {
RationalField.listPolynomial { RationalField.listPolynomialSpace {
// (5/9 - 8/9 x - 8/7 x^2) + (-5/7 + 5/1 x + 5/8 x^2) ?= -10/63 + 37/9 x - 29/56 x^2 // (5/9 - 8/9 x - 8/7 x^2) + (-5/7 + 5/1 x + 5/8 x^2) ?= -10/63 + 37/9 x - 29/56 x^2
assertEquals( assertEquals(
ListPolynomial(Rational(-10, 63), Rational(37, 9), Rational(-29, 56)), ListPolynomial(Rational(-10, 63), Rational(37, 9), Rational(-29, 56)),
@ -440,7 +490,7 @@ class ListPolynomialTest {
} }
@Test @Test
fun test_Polynomial_Polynomial_minus() { fun test_Polynomial_Polynomial_minus() {
RationalField.listPolynomial { RationalField.listPolynomialSpace {
// (5/9 - 8/9 x - 8/7 x^2) - (-5/7 + 5/1 x + 5/8 x^2) ?= 80/63 - 53/9 x - 99/56 x^2 // (5/9 - 8/9 x - 8/7 x^2) - (-5/7 + 5/1 x + 5/8 x^2) ?= 80/63 - 53/9 x - 99/56 x^2
assertEquals( assertEquals(
ListPolynomial(Rational(80, 63), Rational(-53, 9), Rational(-99, 56)), ListPolynomial(Rational(80, 63), Rational(-53, 9), Rational(-99, 56)),
@ -473,7 +523,7 @@ class ListPolynomialTest {
} }
@Test @Test
fun test_Polynomial_Polynomial_times() { fun test_Polynomial_Polynomial_times() {
IntModuloRing(35).listPolynomial { IntModuloRing(35).listPolynomialSpace {
// (1 + x + x^2) * (1 - x + x^2) ?= 1 + x^2 + x^4 // (1 + x + x^2) * (1 - x + x^2) ?= 1 + x^2 + x^4
assertEquals( assertEquals(
ListPolynomial(1, 0, 1, 0, 1), ListPolynomial(1, 0, 1, 0, 1),

View File

@ -5,6 +5,7 @@
package space.kscience.kmath.functions package space.kscience.kmath.functions
import space.kscience.kmath.misc.UnstableKMathAPI
import space.kscience.kmath.test.misc.Rational import space.kscience.kmath.test.misc.Rational
import space.kscience.kmath.test.misc.RationalField import space.kscience.kmath.test.misc.RationalField
import kotlin.test.Test import kotlin.test.Test
@ -12,6 +13,7 @@ import kotlin.test.assertEquals
import kotlin.test.assertFailsWith import kotlin.test.assertFailsWith
@OptIn(UnstableKMathAPI::class)
class ListPolynomialUtilTest { class ListPolynomialUtilTest {
@Test @Test
fun test_substitute_Double() { fun test_substitute_Double() {

View File

@ -0,0 +1,111 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.functions
import space.kscience.kmath.misc.UnstableKMathAPI
import space.kscience.kmath.operations.algebra
import space.kscience.kmath.operations.invoke
import kotlin.test.Test
import kotlin.test.assertEquals
class NumberedConstructorsTest {
@Test
@UnstableKMathAPI
fun testBuilder() {
assertEquals(
NumberedPolynomialAsIs(
listOf(2u, 0u, 3u) to 5,
listOf(0u, 1u) to -6,
),
Int.algebra.numberedPolynomialSpace {
NumberedPolynomial {
5 { 1 inPowerOf 2u; 3 inPowerOf 3u }
(-6) { 2 inPowerOf 1u }
}
},
"test 1"
)
assertEquals(
NumberedPolynomialAsIs(
listOf<UInt>() to -1,
),
Int.algebra.numberedPolynomialSpace {
NumberedPolynomial {
5 { }
(-6) { }
}
},
"test 2"
)
assertEquals(
NumberedPolynomialAsIs(
listOf(2u) to -1,
),
Int.algebra.numberedPolynomialSpace {
NumberedPolynomial {
5 { 1 inPowerOf 1u; 1 inPowerOf 1u }
(-6) { 1 inPowerOf 2u }
}
},
"test 3"
)
}
@Test
@UnstableKMathAPI
fun testFabric() {
assertEquals(
NumberedPolynomialAsIs(
listOf(2u, 0u, 3u) to 5,
listOf(0u, 1u) to -6,
),
Int.algebra {
NumberedPolynomial(
listOf(2u, 0u, 3u) to 5,
listOf(0u, 1u) to -6,
)
},
"test 1"
)
assertEquals(
NumberedPolynomialAsIs(
listOf(2u, 0u, 3u) to 5,
listOf(0u, 1u) to -6,
),
Int.algebra {
NumberedPolynomial(
listOf(2u, 0u, 3u, 0u) to 5,
listOf(0u, 1u, 0u, 0u) to -6,
)
},
"test 2"
)
assertEquals(
NumberedPolynomialAsIs(
listOf<UInt>() to -1,
),
Int.algebra {
NumberedPolynomial(
listOf(0u) to 5,
listOf(0u, 0u) to -6,
)
},
"test 3"
)
assertEquals(
NumberedPolynomialAsIs(
listOf<UInt>() to 0,
),
Int.algebra {
NumberedPolynomial(
listOf(0u) to 5,
listOf(0u, 0u) to -5,
)
},
"test 4"
)
}
}

View File

@ -0,0 +1,293 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.functions
import space.kscience.kmath.test.misc.Rational
import space.kscience.kmath.test.misc.RationalField
import space.kscience.kmath.test.misc.assertContentEquals
import kotlin.test.Test
import kotlin.test.assertEquals
class NumberedPolynomialUtilTest {
@Test
fun test_substitute_Double_Map() {
assertContentEquals(
mapOf(emptyList<UInt>() to 0.0),
NumberedPolynomialAsIs(
listOf<UInt>() to 1.0,
listOf(1u) to -2.0,
listOf(2u) to 1.0,
).substitute(mapOf(
0 to 1.0
)).coefficients,
0.001,
"test 1"
)
assertContentEquals(
mapOf(
listOf<UInt>() to 0.8597048543814783,
listOf(1u) to 0.22997637465889875,
listOf(2u) to 0.32675302591924016,
listOf(0u, 1u) to 0.4561746111587508,
listOf(1u, 1u) to 0.5304946210170756,
listOf(2u, 1u) to 0.6244313712888998,
listOf(0u, 2u) to 0.2700930201481795,
listOf(1u, 2u) to -0.06962351375204712,
listOf(2u, 2u) to -0.015206988092131501,
),
NumberedPolynomialAsIs(
listOf<UInt>() to 0.8597048543814783,
listOf(1u) to 0.22997637465889875,
listOf(2u) to 0.32675302591924016,
listOf(0u, 1u) to 0.4561746111587508,
listOf(1u, 1u) to 0.5304946210170756,
listOf(2u, 1u) to 0.6244313712888998,
listOf(0u, 2u) to 0.2700930201481795,
listOf(1u, 2u) to -0.06962351375204712,
listOf(2u, 2u) to -0.015206988092131501,
).substitute(mapOf()).coefficients,
0.001,
"test 2"
)
assertContentEquals(
mapOf(
listOf<UInt>() to 0.8597048543814783,
listOf(0u, 1u) to 0.4561746111587508,
listOf(0u, 2u) to 0.2700930201481795,
),
NumberedPolynomialAsIs(
listOf<UInt>() to 0.8597048543814783,
listOf(1u) to 0.22997637465889875,
listOf(2u) to 0.32675302591924016,
listOf(0u, 1u) to 0.4561746111587508,
listOf(1u, 1u) to 0.5304946210170756,
listOf(2u, 1u) to 0.6244313712888998,
listOf(0u, 2u) to 0.2700930201481795,
listOf(1u, 2u) to -0.06962351375204712,
listOf(2u, 2u) to -0.015206988092131501,
).substitute(mapOf(
0 to 0.0
)).coefficients,
0.001,
"test 3"
)
assertContentEquals(
mapOf(
listOf<UInt>() to 1.433510890645169,
listOf(1u) to 0.6264844682514724,
listOf(2u) to 0.8405727903771333,
),
NumberedPolynomialAsIs(
listOf<UInt>() to 0.8597048543814783,
listOf(1u) to 0.22997637465889875,
listOf(2u) to 0.32675302591924016,
listOf(0u, 1u) to 0.4561746111587508,
listOf(1u, 1u) to 0.5304946210170756,
listOf(2u, 1u) to 0.6244313712888998,
listOf(0u, 2u) to 0.2700930201481795,
listOf(1u, 2u) to -0.06962351375204712,
listOf(2u, 2u) to -0.015206988092131501,
).substitute(mapOf(
1 to 0.8400458576651112
)).coefficients,
0.001,
"test 4"
)
assertContentEquals(
mapOf(
listOf<UInt>() to 1.934530767358133,
),
NumberedPolynomialAsIs(
listOf<UInt>() to 0.8597048543814783,
listOf(1u) to 0.22997637465889875,
listOf(2u) to 0.32675302591924016,
listOf(0u, 1u) to 0.4561746111587508,
listOf(1u, 1u) to 0.5304946210170756,
listOf(2u, 1u) to 0.6244313712888998,
listOf(0u, 2u) to 0.2700930201481795,
listOf(1u, 2u) to -0.06962351375204712,
listOf(2u, 2u) to -0.015206988092131501,
).substitute(mapOf(
0 to 0.4846192734143442,
1 to 0.8400458576651112,
)).coefficients,
0.001,
"test 5"
)
assertContentEquals(
mapOf(
listOf<UInt>() to 0.8597048543814783,
listOf(1u) to 0.22997637465889875,
listOf(2u) to 0.32675302591924016,
listOf(0u, 1u) to 0.4561746111587508,
listOf(1u, 1u) to 0.5304946210170756,
listOf(2u, 1u) to 0.6244313712888998,
listOf(0u, 2u) to 0.2700930201481795,
listOf(1u, 2u) to -0.06962351375204712,
listOf(2u, 2u) to -0.015206988092131501,
),
NumberedPolynomialAsIs(
listOf<UInt>() to 0.8597048543814783,
listOf(1u) to 0.22997637465889875,
listOf(2u) to 0.32675302591924016,
listOf(0u, 1u) to 0.4561746111587508,
listOf(1u, 1u) to 0.5304946210170756,
listOf(2u, 1u) to 0.6244313712888998,
listOf(0u, 2u) to 0.2700930201481795,
listOf(1u, 2u) to -0.06962351375204712,
listOf(2u, 2u) to -0.015206988092131501,
).substitute(mapOf(
5 to 0.9211194782050933
)).coefficients,
0.001,
"test 6"
)
}
@Test
fun test_substitute_Constant() {
assertEquals(
NumberedPolynomialAsIs(
listOf<UInt>() to Rational(0)
),
NumberedPolynomialAsIs(
listOf<UInt>() to Rational(1),
listOf(1u) to Rational(-2),
listOf(2u) to Rational(1)
).substitute(RationalField, mapOf(
0 to Rational(1)
)),
"test 1"
)
// https://www.wolframalpha.com/input?i=%28-3%2F2+%2B+8%2F6+x+%2B+14%2F6+x%5E2%29+%2B+%28-3%2F1+%2B+-19%2F2+x+%2B+9%2F4+x%5E2%29+y+%2B+%285%2F5+%2B+18%2F9+x+%2B+5%2F2+x%5E2%29+y%5E2+where+x+%3D+-2%2F5%2C+y+%3D+12%2F9
assertEquals(
NumberedPolynomialAsIs(
listOf<UInt>() to Rational(143, 150)
),
NumberedPolynomialAsIs(
listOf<UInt>() to Rational(-3, 2),
listOf(1u) to Rational(8, 6),
listOf(2u) to Rational(14, 6),
listOf(0u, 1u) to Rational(-3, 1),
listOf(1u, 1u) to Rational(-19, 2),
listOf(2u, 1u) to Rational(9, 4),
listOf(0u, 2u) to Rational(5, 5),
listOf(1u, 2u) to Rational(18, 9),
listOf(2u, 2u) to Rational(5, 2),
).substitute(RationalField, mapOf(
0 to Rational(-2, 5),
1 to Rational(12, 9),
)),
"test 2"
)
// https://www.wolframalpha.com/input?i=%28%28-3%2F2+%2B+8%2F6+x+%2B+14%2F6+x%5E2%29+%2B+%28-3%2F1+%2B+-19%2F2+x+%2B+9%2F4+x%5E2%29+y+%2B+%285%2F5+%2B+18%2F9+x+%2B+5%2F2+x%5E2%29+y%5E2%29+p%5E8+where+x+%3D+q%2Fp%2C+y+%3D+x%5E3%2C+p+%3D+-2%2F5%2C+q+%3D+12%2F9
assertEquals(
NumberedPolynomialAsIs(
listOf<UInt>() to Rational(47639065216, 2562890625)
),
NumberedPolynomialAsIs(
listOf(8u) to Rational(-3, 2),
listOf(7u, 1u) to Rational(8, 6),
listOf(6u, 2u) to Rational(14, 6),
listOf(5u, 3u) to Rational(-3, 1),
listOf(4u, 4u) to Rational(-19, 2),
listOf(3u, 5u) to Rational(9, 4),
listOf(2u, 6u) to Rational(5, 5),
listOf(1u, 7u) to Rational(18, 9),
listOf(0u, 8u) to Rational(5, 2),
).substitute(RationalField, mapOf(
0 to Rational(-2, 5),
1 to Rational(12, 9),
)),
"test 3"
)
// https://www.wolframalpha.com/input?i=%28%28-3%2F2+%2B+8%2F6+x+%2B+14%2F6+x%5E2%29+%2B+%28-3%2F1+%2B+-19%2F2+x+%2B+9%2F4+x%5E2%29+y+%2B+%285%2F5+%2B+18%2F9+x+%2B+5%2F2+x%5E2%29+y%5E2%29+p%5E8+where+x+%3D+q%2Fp%2C+y+%3D+x%5E3%2C+p+%3D+-2%2F5%2C+q+%3D+12%2F9
assertEquals(
NumberedPolynomialAsIs(
listOf(8u) to Rational(-3, 2),
listOf(7u, 1u) to Rational(8, 6),
listOf(6u, 2u) to Rational(14, 6),
listOf(5u, 3u) to Rational(-3, 1),
listOf(4u, 4u) to Rational(-19, 2),
listOf(3u, 5u) to Rational(9, 4),
listOf(2u, 6u) to Rational(5, 5),
listOf(1u, 7u) to Rational(18, 9),
listOf(0u, 8u) to Rational(5, 2),
),
NumberedPolynomialAsIs(
listOf(8u) to Rational(-3, 2),
listOf(7u, 1u) to Rational(8, 6),
listOf(6u, 2u) to Rational(14, 6),
listOf(5u, 3u) to Rational(-3, 1),
listOf(4u, 4u) to Rational(-19, 2),
listOf(3u, 5u) to Rational(9, 4),
listOf(2u, 6u) to Rational(5, 5),
listOf(1u, 7u) to Rational(18, 9),
listOf(0u, 8u) to Rational(5, 2),
).substitute(RationalField, mapOf<Int, Rational>()),
"test 4"
)
}
@Test
fun test_substitute_Polynomial() {
assertEquals(
NumberedPolynomialAsIs(
listOf<UInt>() to Rational(0)
),
NumberedPolynomialAsIs(
listOf<UInt>() to Rational(1),
listOf(1u) to Rational(-2),
listOf(2u) to Rational(1)
).substitute(RationalField, mapOf(
0 to NumberedPolynomialAsIs(
listOf<UInt>() to Rational(1)
)
)),
"test 1"
)
// https://www.wolframalpha.com/input?i=%28-3%2F2+%2B+8%2F6+x+%2B+14%2F6+x%5E2%29+%2B+%28-3%2F1+%2B+-19%2F2+x+%2B+9%2F4+x%5E2%29+y+%2B+%285%2F5+%2B+18%2F9+x+%2B+5%2F2+x%5E2%29+y%5E2+where+x+%3D+-2%2F5%2C+y+%3D+12%2F9
assertEquals(
NumberedPolynomialAsIs(
listOf<UInt>() to Rational(-3, 2),
listOf(0u, 1u) to Rational(-92, 21),
listOf(0u, 2u) to Rational(-2627, 2352),
listOf(0u, 3u) to Rational(4565, 3136),
listOf(0u, 4u) to Rational(605, 1568),
listOf(1u) to Rational(-20, 3),
listOf(1u, 1u) to Rational(1445, 21),
listOf(1u, 2u) to Rational(-13145, 392),
listOf(1u, 3u) to Rational(-3025, 196),
listOf(2u) to Rational(175, 3),
listOf(2u, 1u) to Rational(2475, 28),
listOf(2u, 2u) to Rational(15125, 98),
listOf(3u) to Rational(0),
listOf(3u, 1u) to Rational(0),
listOf(4u) to Rational(0),
),
NumberedPolynomialAsIs(
listOf<UInt>() to Rational(-3, 2),
listOf(1u) to Rational(8, 6),
listOf(2u) to Rational(14, 6),
listOf(0u, 1u) to Rational(-3, 1),
listOf(1u, 1u) to Rational(-19, 2),
listOf(2u, 1u) to Rational(9, 4),
listOf(0u, 2u) to Rational(5, 5),
listOf(1u, 2u) to Rational(18, 9),
listOf(2u, 2u) to Rational(5, 2),
).substitute(RationalField, mapOf(
0 to NumberedPolynomialAsIs(
listOf(1u) to Rational(-5, 1),
listOf(0u, 1u) to Rational(2, 8),
),
1 to NumberedPolynomialAsIs(
listOf(1u) to Rational(0, 5),
listOf(0u, 1u) to Rational(11, 7),
),
)),
"test 2"
)
}
}

View File

@ -0,0 +1,142 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.test.misc
import space.kscience.kmath.functions.ListPolynomial
import space.kscience.kmath.functions.ListPolynomialSpace
import space.kscience.kmath.functions.PolynomialSpaceOverRing
import space.kscience.kmath.operations.Ring
class IntModulo {
val residue: Int
val modulus: Int
@PublishedApi
internal constructor(residue: Int, modulus: Int, toCheckInput: Boolean = true) {
if (toCheckInput) {
require(modulus != 0) { "modulus can not be zero" }
this.modulus = if (modulus < 0) -modulus else modulus
this.residue = residue.mod(modulus)
} else {
this.residue = residue
this.modulus = modulus
}
}
constructor(residue: Int, modulus: Int) : this(residue, modulus, true)
operator fun unaryPlus(): IntModulo = this
operator fun unaryMinus(): IntModulo =
IntModulo(
if (residue == 0) 0 else modulus - residue,
modulus,
toCheckInput = false
)
operator fun plus(other: IntModulo): IntModulo {
require(modulus == other.modulus) { "can not add two residue different modulo" }
return IntModulo(
(residue + other.residue) % modulus,
modulus,
toCheckInput = false
)
}
operator fun plus(other: Int): IntModulo =
IntModulo(
(residue + other) % modulus,
modulus,
toCheckInput = false
)
operator fun minus(other: IntModulo): IntModulo {
require(modulus == other.modulus) { "can not subtract two residue different modulo" }
return IntModulo(
(residue - other.residue) % modulus,
modulus,
toCheckInput = false
)
}
operator fun minus(other: Int): IntModulo =
IntModulo(
(residue - other) % modulus,
modulus,
toCheckInput = false
)
operator fun times(other: IntModulo): IntModulo {
require(modulus == other.modulus) { "can not multiply two residue different modulo" }
return IntModulo(
(residue * other.residue) % modulus,
modulus,
toCheckInput = false
)
}
operator fun times(other: Int): IntModulo =
IntModulo(
(residue * other) % modulus,
modulus,
toCheckInput = false
)
operator fun div(other: IntModulo): IntModulo {
require(modulus == other.modulus) { "can not divide two residue different modulo" }
val (reciprocalCandidate, gcdOfOtherResidueAndModulus) = bezoutIdentityWithGCD(other.residue, modulus)
require(gcdOfOtherResidueAndModulus == 1) { "can not divide to residue that has non-trivial GCD with modulo" }
return IntModulo(
(residue * reciprocalCandidate) % modulus,
modulus,
toCheckInput = false
)
}
operator fun div(other: Int): IntModulo {
val (reciprocalCandidate, gcdOfOtherResidueAndModulus) = bezoutIdentityWithGCD(other, modulus)
require(gcdOfOtherResidueAndModulus == 1) { "can not divide to residue that has non-trivial GCD with modulo" }
return IntModulo(
(residue * reciprocalCandidate) % modulus,
modulus,
toCheckInput = false
)
}
override fun equals(other: Any?): Boolean =
when (other) {
is IntModulo -> residue == other.residue && modulus == other.modulus
else -> false
}
override fun hashCode(): Int = residue.hashCode()
override fun toString(): String = "$residue mod $modulus"
}
@Suppress("EXTENSION_SHADOWED_BY_MEMBER", "OVERRIDE_BY_INLINE", "NOTHING_TO_INLINE")
class IntModuloRing : Ring<IntModulo> {
val modulus: Int
constructor(modulus: Int) {
require(modulus != 0) { "modulus can not be zero" }
this.modulus = if (modulus < 0) -modulus else modulus
}
override inline val zero: IntModulo get() = IntModulo(0, modulus, toCheckInput = false)
override inline val one: IntModulo get() = IntModulo(1, modulus, toCheckInput = false)
fun number(arg: Int) = IntModulo(arg, modulus, toCheckInput = false)
override inline fun add(left: IntModulo, right: IntModulo): IntModulo = left + right
override inline fun multiply(left: IntModulo, right: IntModulo): IntModulo = left * right
override inline fun IntModulo.unaryMinus(): IntModulo = -this
override inline fun IntModulo.plus(arg: IntModulo): IntModulo = this + arg
override inline fun IntModulo.minus(arg: IntModulo): IntModulo = this - arg
override inline fun IntModulo.times(arg: IntModulo): IntModulo = this * arg
inline fun IntModulo.div(arg: IntModulo): IntModulo = this / arg
}
fun ListPolynomialSpace<IntModulo, IntModuloRing>.ListPolynomial(vararg coefs: Int): ListPolynomial<IntModulo> =
ListPolynomial(coefs.map { IntModulo(it, ring.modulus) })
fun IntModuloRing.ListPolynomial(vararg coefs: Int): ListPolynomial<IntModulo> =
ListPolynomial(coefs.map { IntModulo(it, modulus) })
fun IntModuloRing.m(arg: Int) = IntModulo(arg, modulus)
fun PolynomialSpaceOverRing<IntModulo, *, IntModuloRing>.m(arg: Int) = IntModulo(arg, ring.modulus)

View File

@ -0,0 +1,135 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.test.misc
import space.kscience.kmath.misc.UnstableKMathAPI
import space.kscience.kmath.operations.Field
import space.kscience.kmath.operations.NumbersAddOps
class Rational {
companion object {
val ZERO: Rational = Rational(0L)
val ONE: Rational = Rational(1L)
}
val numerator: Long
val denominator: Long
internal constructor(numerator: Long, denominator: Long, toCheckInput: Boolean = true) {
if (toCheckInput) {
if (denominator == 0L) throw ArithmeticException("/ by zero")
val greatestCommonDivider = gcd(numerator, denominator).let { if (denominator < 0L) -it else it }
this.numerator = numerator / greatestCommonDivider
this.denominator = denominator / greatestCommonDivider
} else {
this.numerator = numerator
this.denominator = denominator
}
}
constructor(numerator: Int, denominator: Int) : this(numerator.toLong(), denominator.toLong(), true)
constructor(numerator: Int, denominator: Long) : this(numerator.toLong(), denominator, true)
constructor(numerator: Long, denominator: Int) : this(numerator, denominator.toLong(), true)
constructor(numerator: Long, denominator: Long) : this(numerator, denominator, true)
constructor(numerator: Int) : this(numerator.toLong(), 1L, false)
constructor(numerator: Long) : this(numerator, 1L, false)
operator fun unaryPlus(): Rational = this
operator fun unaryMinus(): Rational = Rational(-this.numerator, this.denominator)
operator fun plus(other: Rational): Rational =
Rational(
numerator * other.denominator + denominator * other.numerator,
denominator * other.denominator
)
operator fun plus(other: Int): Rational =
Rational(
numerator + denominator * other.toLong(),
denominator
)
operator fun plus(other: Long): Rational =
Rational(
numerator + denominator * other,
denominator
)
operator fun minus(other: Rational): Rational =
Rational(
numerator * other.denominator - denominator * other.numerator,
denominator * other.denominator
)
operator fun minus(other: Int): Rational =
Rational(
numerator - denominator * other.toLong(),
denominator
)
operator fun minus(other: Long): Rational =
Rational(
numerator - denominator * other,
denominator
)
operator fun times(other: Rational): Rational =
Rational(
numerator * other.numerator,
denominator * other.denominator
)
operator fun times(other: Int): Rational =
Rational(
numerator * other.toLong(),
denominator
)
operator fun times(other: Long): Rational =
Rational(
numerator * other,
denominator
)
operator fun div(other: Rational): Rational =
Rational(
numerator * other.denominator,
denominator * other.numerator
)
operator fun div(other: Int): Rational =
Rational(
numerator,
denominator * other.toLong()
)
operator fun div(other: Long): Rational =
Rational(
numerator,
denominator * other
)
override fun equals(other: Any?): Boolean =
when (other) {
is Rational -> numerator == other.numerator && denominator == other.denominator
is Int -> numerator == other && denominator == 1L
is Long -> numerator == other && denominator == 1L
else -> false
}
override fun hashCode(): Int = 31 * numerator.hashCode() + denominator.hashCode()
override fun toString(): String = if (denominator == 1L) "$numerator" else "$numerator/$denominator"
}
@Suppress("EXTENSION_SHADOWED_BY_MEMBER", "OVERRIDE_BY_INLINE", "NOTHING_TO_INLINE")
@OptIn(UnstableKMathAPI::class)
object RationalField : Field<Rational>, NumbersAddOps<Rational> {
override inline val zero: Rational get() = Rational.ZERO
override inline val one: Rational get() = Rational.ONE
override inline fun number(value: Number): Rational = Rational(value.toLong())
override inline fun add(left: Rational, right: Rational): Rational = left + right
override inline fun multiply(left: Rational, right: Rational): Rational = left * right
override inline fun divide(left: Rational, right: Rational): Rational = left / right
override inline fun scale(a: Rational, value: Double): Rational = a * number(value)
override inline fun Rational.unaryMinus(): Rational = -this
override inline fun Rational.plus(arg: Rational): Rational = this + arg
override inline fun Rational.minus(arg: Rational): Rational = this - arg
override inline fun Rational.times(arg: Rational): Rational = this * arg
override inline fun Rational.div(arg: Rational): Rational = this / arg
}

View File

@ -0,0 +1,14 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.test.misc
import kotlin.test.assertEquals
fun <T> assertContentEquals(expected: Map<T, Double>, actual: Map<T, Double>, absoluteTolerance: Double, message: String? = null) {
assertEquals(expected.keys, actual.keys, message)
for ((key, expectedValue) in expected) assertEquals(expectedValue, actual[key]!!, absoluteTolerance, message)
}

View File

@ -0,0 +1,29 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.test.misc
import kotlin.math.abs
data class BezoutIdentityWithGCD<T>(val first: T, val second: T, val gcd: T)
tailrec fun gcd(a: Long, b: Long): Long = if (a == 0L) abs(b) else gcd(b % a, a)
fun bezoutIdentityWithGCD(a: Int, b: Int): BezoutIdentityWithGCD<Int> =
when {
a < 0 && b < 0 -> with(bezoutIdentityWithGCDInternalLogic(-a, -b, 1, 0, 0, 1)) { BezoutIdentityWithGCD(-first, -second, gcd) }
a < 0 -> with(bezoutIdentityWithGCDInternalLogic(-a, b, 1, 0, 0, 1)) { BezoutIdentityWithGCD(-first, second, gcd) }
b < 0 -> with(bezoutIdentityWithGCDInternalLogic(a, -b, 1, 0, 0, 1)) { BezoutIdentityWithGCD(first, -second, gcd) }
else -> bezoutIdentityWithGCDInternalLogic(a, b, 1, 0, 0, 1)
}
internal tailrec fun bezoutIdentityWithGCDInternalLogic(a: Int, b: Int, m1: Int, m2: Int, m3: Int, m4: Int): BezoutIdentityWithGCD<Int> =
if (b == 0) BezoutIdentityWithGCD(m1, m3, a)
else {
val quotient = a / b
val reminder = a % b
bezoutIdentityWithGCDInternalLogic(b, reminder, m2, m1 - quotient * m2, m4, m3 - quotient * m4)
}