Syncing with tensor-algebra

This commit is contained in:
Roland Grinis 2021-03-01 22:23:54 +00:00
commit 6594ffc965
12 changed files with 424 additions and 115 deletions

View File

@ -162,7 +162,7 @@ public interface Strides {
/** /**
* Array strides * Array strides
*/ */
public val strides: List<Int> public val strides: IntArray
/** /**
* Get linear index from multidimensional index * Get linear index from multidimensional index
@ -189,6 +189,11 @@ public interface Strides {
} }
} }
internal inline fun offsetFromIndex(index: IntArray, shape: IntArray, strides: IntArray): Int = index.mapIndexed { i, value ->
if (value < 0 || value >= shape[i]) throw IndexOutOfBoundsException("Index $value out of shape bounds: (0,${shape[i]})")
value * strides[i]
}.sum()
/** /**
* Simple implementation of [Strides]. * Simple implementation of [Strides].
*/ */
@ -199,7 +204,7 @@ public class DefaultStrides private constructor(override val shape: IntArray) :
/** /**
* Strides for memory access * Strides for memory access
*/ */
override val strides: List<Int> by lazy { override val strides: IntArray by lazy {
sequence { sequence {
var current = 1 var current = 1
yield(1) yield(1)
@ -208,13 +213,10 @@ public class DefaultStrides private constructor(override val shape: IntArray) :
current *= it current *= it
yield(current) yield(current)
} }
}.toList() }.toList().toIntArray()
} }
override fun offset(index: IntArray): Int = index.mapIndexed { i, value -> override fun offset(index: IntArray): Int = offsetFromIndex(index, shape, strides)
if (value < 0 || value >= shape[i]) throw IndexOutOfBoundsException("Index $value out of shape bounds: (0,${this.shape[i]})")
value * strides[i]
}.sum()
override fun index(offset: Int): IntArray { override fun index(offset: Int): IntArray {
val res = IntArray(shape.size) val res = IntArray(shape.size)
@ -323,8 +325,7 @@ public inline fun <T, reified R : Any> NDStructure<T>.mapToBuffer(
/** /**
* Mutable ND buffer based on linear [MutableBuffer]. * Mutable ND buffer based on linear [MutableBuffer].
*/ */
public open class MutableNDBuffer<T>(
public class MutableNDBuffer<T>(
strides: Strides, strides: Strides,
buffer: MutableBuffer<T>, buffer: MutableBuffer<T>,
) : NDBuffer<T>(strides, buffer), MutableNDStructure<T> { ) : NDBuffer<T>(strides, buffer), MutableNDStructure<T> {

View File

@ -0,0 +1,173 @@
package space.kscience.kmath.tensors
import space.kscience.kmath.nd.MutableNDBuffer
import space.kscience.kmath.structures.RealBuffer
import space.kscience.kmath.structures.array
public class RealTensor(
override val shape: IntArray,
buffer: DoubleArray
) :
TensorStructure<Double>,
MutableNDBuffer<Double>(
TensorStrides(shape),
RealBuffer(buffer)
) {
override fun item(): Double = buffer[0]
}
public class RealTensorAlgebra : TensorPartialDivisionAlgebra<Double, RealTensor> {
override fun add(a: RealTensor, b: RealTensor): RealTensor {
TODO("Not yet implemented")
}
override fun multiply(a: RealTensor, k: Number): RealTensor {
TODO("Not yet implemented")
}
override val zero: RealTensor
get() = TODO("Not yet implemented")
override fun multiply(a: RealTensor, b: RealTensor): RealTensor {
TODO("Not yet implemented")
}
override val one: RealTensor
get() = TODO("Not yet implemented")
override fun Double.plus(other: RealTensor): RealTensor {
val n = other.buffer.size
val arr = other.buffer.array
val res = DoubleArray(n)
for (i in 1..n)
res[i - 1] = arr[i - 1] + this
return RealTensor(other.shape, res)
}
override fun RealTensor.plus(value: Double): RealTensor {
TODO("Not yet implemented")
}
override fun RealTensor.plusAssign(value: Double) {
TODO("Not yet implemented")
}
override fun RealTensor.plusAssign(other: RealTensor) {
TODO("Not yet implemented")
}
override fun Double.minus(other: RealTensor): RealTensor {
TODO("Not yet implemented")
}
override fun RealTensor.minus(value: Double): RealTensor {
TODO("Not yet implemented")
}
override fun RealTensor.minusAssign(value: Double) {
TODO("Not yet implemented")
}
override fun RealTensor.minusAssign(other: RealTensor) {
TODO("Not yet implemented")
}
override fun Double.times(other: RealTensor): RealTensor {
TODO("Not yet implemented")
}
override fun RealTensor.times(value: Double): RealTensor {
TODO("Not yet implemented")
}
override fun RealTensor.timesAssign(value: Double) {
TODO("Not yet implemented")
}
override fun RealTensor.timesAssign(other: RealTensor) {
TODO("Not yet implemented")
}
override fun RealTensor.dot(other: RealTensor): RealTensor {
TODO("Not yet implemented")
}
override fun RealTensor.dotAssign(other: RealTensor) {
TODO("Not yet implemented")
}
override fun RealTensor.dotRightAssign(other: RealTensor) {
TODO("Not yet implemented")
}
override fun diagonalEmbedding(diagonalEntries: RealTensor, offset: Int, dim1: Int, dim2: Int): RealTensor {
TODO("Not yet implemented")
}
override fun RealTensor.transpose(i: Int, j: Int): RealTensor {
TODO("Not yet implemented")
}
override fun RealTensor.transposeAssign(i: Int, j: Int) {
TODO("Not yet implemented")
}
override fun RealTensor.view(shape: IntArray): RealTensor {
TODO("Not yet implemented")
}
override fun RealTensor.abs(): RealTensor {
TODO("Not yet implemented")
}
override fun RealTensor.absAssign() {
TODO("Not yet implemented")
}
override fun RealTensor.sum(): RealTensor {
TODO("Not yet implemented")
}
override fun RealTensor.sumAssign() {
TODO("Not yet implemented")
}
override fun RealTensor.div(other: RealTensor): RealTensor {
TODO("Not yet implemented")
}
override fun RealTensor.divAssign(other: RealTensor) {
TODO("Not yet implemented")
}
override fun RealTensor.exp(): RealTensor {
TODO("Not yet implemented")
}
override fun RealTensor.expAssign() {
TODO("Not yet implemented")
}
override fun RealTensor.log(): RealTensor {
TODO("Not yet implemented")
}
override fun RealTensor.logAssign() {
TODO("Not yet implemented")
}
override fun RealTensor.svd(): Triple<RealTensor, RealTensor, RealTensor> {
TODO("Not yet implemented")
}
override fun RealTensor.symEig(eigenvectors: Boolean): Pair<RealTensor, RealTensor> {
TODO("Not yet implemented")
}
}
public inline fun <R> RealTensorAlgebra(block: RealTensorAlgebra.() -> R): R =
RealTensorAlgebra().block()

View File

@ -1,70 +1,114 @@
package space.kscience.kmath.tensors package space.kscience.kmath.tensors
import space.kscience.kmath.nd.MutableNDStructure import space.kscience.kmath.operations.Ring
import space.kscience.kmath.operations.RingWithNumbers
public interface TensorStructure<T> : MutableNDStructure<T> {
// A tensor can have empty shape, in which case it represents just a value
public fun value(): T
}
// https://proofwiki.org/wiki/Definition:Algebra_over_Ring // https://proofwiki.org/wiki/Definition:Algebra_over_Ring
public interface TensorAlgebra<T, TensorType : TensorStructure<T>>: RingWithNumbers<TensorType> {
public interface TensorAlgebra<T, TensorType : TensorStructure<T>> {
public operator fun T.plus(other: TensorType): TensorType public operator fun T.plus(other: TensorType): TensorType
public operator fun TensorType.plus(value: T): TensorType public operator fun TensorType.plus(value: T): TensorType
public operator fun TensorType.plus(other: TensorType): TensorType
public operator fun TensorType.plusAssign(value: T): Unit public operator fun TensorType.plusAssign(value: T): Unit
public operator fun TensorType.plusAssign(other: TensorType): Unit public operator fun TensorType.plusAssign(other: TensorType): Unit
public operator fun T.minus(other: TensorType): TensorType public operator fun T.minus(other: TensorType): TensorType
public operator fun TensorType.minus(value: T): TensorType public operator fun TensorType.minus(value: T): TensorType
public operator fun TensorType.minus(other: TensorType): TensorType
public operator fun TensorType.minusAssign(value: T): Unit public operator fun TensorType.minusAssign(value: T): Unit
public operator fun TensorType.minusAssign(other: TensorType): Unit public operator fun TensorType.minusAssign(other: TensorType): Unit
public operator fun T.times(other: TensorType): TensorType public operator fun T.times(other: TensorType): TensorType
public operator fun TensorType.times(value: T): TensorType public operator fun TensorType.times(value: T): TensorType
public operator fun TensorType.times(other: TensorType): TensorType
public operator fun TensorType.timesAssign(value: T): Unit public operator fun TensorType.timesAssign(value: T): Unit
public operator fun TensorType.timesAssign(other: TensorType): Unit public operator fun TensorType.timesAssign(other: TensorType): Unit
public operator fun TensorType.unaryMinus(): TensorType
//https://pytorch.org/docs/stable/generated/torch.matmul.html
public infix fun TensorType.dot(other: TensorType): TensorType public infix fun TensorType.dot(other: TensorType): TensorType
public infix fun TensorType.dotAssign(other: TensorType): Unit public infix fun TensorType.dotAssign(other: TensorType): Unit
public infix fun TensorType.dotRightAssign(other: TensorType): Unit public infix fun TensorType.dotRightAssign(other: TensorType): Unit
//https://pytorch.org/docs/stable/generated/torch.diag_embed.html
public fun diagonalEmbedding( public fun diagonalEmbedding(
diagonalEntries: TensorType, diagonalEntries: TensorType,
offset: Int = 0, dim1: Int = -2, dim2: Int = -1 offset: Int = 0, dim1: Int = -2, dim2: Int = -1
): TensorType ): TensorType
//https://pytorch.org/docs/stable/generated/torch.transpose.html
public fun TensorType.transpose(i: Int, j: Int): TensorType public fun TensorType.transpose(i: Int, j: Int): TensorType
public fun TensorType.transposeAssign(i: Int, j: Int): Unit public fun TensorType.transposeAssign(i: Int, j: Int): Unit
//https://pytorch.org/docs/stable/tensor_view.html
public fun TensorType.view(shape: IntArray): TensorType public fun TensorType.view(shape: IntArray): TensorType
//https://pytorch.org/docs/stable/generated/torch.abs.html
public fun TensorType.abs(): TensorType public fun TensorType.abs(): TensorType
public fun TensorType.absAssign(): Unit public fun TensorType.absAssign(): Unit
//https://pytorch.org/docs/stable/generated/torch.sum.html
public fun TensorType.sum(): TensorType public fun TensorType.sum(): TensorType
public fun TensorType.sumAssign(): Unit public fun TensorType.sumAssign(): Unit
} }
// https://proofwiki.org/wiki/Definition:Division_Algebra // https://proofwiki.org/wiki/Definition:Division_Algebra
public interface TensorPartialDivisionAlgebra<T, TensorType : TensorStructure<T>> : public interface TensorPartialDivisionAlgebra<T, TensorType : TensorStructure<T>> :
TensorAlgebra<T, TensorType> { TensorAlgebra<T, TensorType> {
public operator fun TensorType.div(other: TensorType): TensorType public operator fun TensorType.div(other: TensorType): TensorType
public operator fun TensorType.divAssign(other: TensorType) public operator fun TensorType.divAssign(other: TensorType)
//https://pytorch.org/docs/stable/generated/torch.exp.html
public fun TensorType.exp(): TensorType public fun TensorType.exp(): TensorType
public fun TensorType.expAssign(): Unit public fun TensorType.expAssign(): Unit
//https://pytorch.org/docs/stable/generated/torch.log.html
public fun TensorType.log(): TensorType public fun TensorType.log(): TensorType
public fun TensorType.logAssign(): Unit public fun TensorType.logAssign(): Unit
//https://pytorch.org/docs/stable/generated/torch.svd.html
public fun TensorType.svd(): Triple<TensorType, TensorType, TensorType> public fun TensorType.svd(): Triple<TensorType, TensorType, TensorType>
//https://pytorch.org/docs/stable/generated/torch.symeig.html
public fun TensorType.symEig(eigenvectors: Boolean = true): Pair<TensorType, TensorType> public fun TensorType.symEig(eigenvectors: Boolean = true): Pair<TensorType, TensorType>
} }
public inline fun <T, TensorType : TensorStructure<T>,
TorchTensorAlgebraType : TensorAlgebra<T, TensorType>>
TorchTensorAlgebraType.checkShapeCompatible(
a: TensorType, b: TensorType
): Unit =
check(a.shape contentEquals b.shape) {
"Tensors must be of identical shape"
}
public inline fun <T, TensorType : TensorStructure<T>,
TorchTensorAlgebraType : TensorAlgebra<T, TensorType>>
TorchTensorAlgebraType.checkDot(a: TensorType, b: TensorType): Unit {
val sa = a.shape
val sb = b.shape
val na = sa.size
val nb = sb.size
var status: Boolean
if (nb == 1) {
status = sa.last() == sb[0]
} else {
status = sa.last() == sb[nb - 2]
if ((na > 2) and (nb > 2)) {
status = status and
(sa.take(nb - 2).toIntArray() contentEquals sb.take(nb - 2).toIntArray())
}
}
check(status) { "Incompatible shapes $sa and $sb for dot product" }
}
public inline fun <T, TensorType : TensorStructure<T>,
TorchTensorAlgebraType : TensorAlgebra<T, TensorType>>
TorchTensorAlgebraType.checkTranspose(dim: Int, i: Int, j: Int): Unit =
check((i < dim) and (j < dim)) {
"Cannot transpose $i to $j for a tensor of dim $dim"
}
public inline fun <T, TensorType : TensorStructure<T>,
TorchTensorAlgebraType : TensorAlgebra<T, TensorType>>
TorchTensorAlgebraType.checkView(a: TensorType, shape: IntArray): Unit =
check(a.shape.reduce(Int::times) == shape.reduce(Int::times))

View File

@ -0,0 +1,50 @@
package space.kscience.kmath.tensors
import space.kscience.kmath.nd.Strides
import space.kscience.kmath.nd.offsetFromIndex
import kotlin.math.max
inline public fun stridesFromShape(shape: IntArray): IntArray {
val nDim = shape.size
val res = IntArray(nDim)
if (nDim == 0)
return res
var current = nDim - 1
res[current] = 1
while (current > 0) {
res[current - 1] = max(1, shape[current]) * res[current]
current--
}
return res
}
inline public fun indexFromOffset(offset: Int, strides: IntArray, nDim: Int): IntArray {
val res = IntArray(nDim)
var current = offset
var strideIndex = 0
while (strideIndex < nDim) {
res[strideIndex] = (current / strides[strideIndex])
current %= strides[strideIndex]
strideIndex++
}
return res
}
public class TensorStrides(override val shape: IntArray) : Strides {
override val strides: IntArray
get() = stridesFromShape(shape)
override fun offset(index: IntArray): Int = offsetFromIndex(index, shape, strides)
override fun index(offset: Int): IntArray =
indexFromOffset(offset, strides, shape.size)
override val linearSize: Int
get() = shape.fold(1) { acc, i -> acc * i }
}

View File

@ -0,0 +1,23 @@
package space.kscience.kmath.tensors
import space.kscience.kmath.nd.MutableNDStructure
public interface TensorStructure<T> : MutableNDStructure<T> {
public fun item(): T
// A tensor can have empty shape, in which case it represents just a value
public fun value(): T {
checkIsValue()
return item()
}
}
public inline fun <T> TensorStructure<T>.isValue(): Boolean {
return (dimension == 0)
}
public inline fun <T> TensorStructure<T>.isNotValue(): Boolean = !this.isValue()
public inline fun <T> TensorStructure<T>.checkIsValue(): Unit = check(this.isValue()) {
"This tensor has shape ${shape.toList()}"
}

View File

@ -0,0 +1,24 @@
package space.kscience.kmath.tensors
import space.kscience.kmath.structures.array
import kotlin.test.Test
import kotlin.test.assertEquals
import kotlin.test.assertTrue
class TestRealTensor {
@Test
fun valueTest(){
val value = 12.5
val tensor = RealTensor(IntArray(0), doubleArrayOf(value))
assertEquals(tensor.value(), value)
}
@Test
fun stridesTest(){
val tensor = RealTensor(intArrayOf(2,2), doubleArrayOf(3.5,5.8,58.4,2.4))
assertEquals(tensor[intArrayOf(0,1)], 5.8)
assertTrue(tensor.elements().map{ it.second }.toList().toDoubleArray() contentEquals tensor.buffer.array)
}
}

View File

@ -0,0 +1,16 @@
package space.kscience.kmath.tensors
import space.kscience.kmath.structures.array
import kotlin.test.Test
import kotlin.test.assertTrue
class TestRealTensorAlgebra {
@Test
fun doublePlus() = RealTensorAlgebra {
val tensor = RealTensor(intArrayOf(2), doubleArrayOf(1.0, 2.0))
val res = 10.0 + tensor
assertTrue(res.buffer.array contentEquals doubleArrayOf(11.0,12.0))
}
}

View File

@ -10,13 +10,13 @@ public sealed class Device {
public data class CUDA(val index: Int): Device() public data class CUDA(val index: Int): Device()
public fun toInt(): Int { public fun toInt(): Int {
when(this) { when(this) {
is Device.CPU -> return 0 is CPU -> return 0
is Device.CUDA -> return this.index + 1 is CUDA -> return this.index + 1
} }
} }
public companion object { public companion object {
public fun fromInt(deviceInt: Int): Device { public fun fromInt(deviceInt: Int): Device {
return if (deviceInt == 0) Device.CPU else Device.CUDA( return if (deviceInt == 0) CPU else CUDA(
deviceInt - 1 deviceInt - 1
) )
} }

View File

@ -2,17 +2,14 @@
package space.kscience.kmath.torch package space.kscience.kmath.torch
import space.kscience.kmath.tensors.TensorStructure import space.kscience.kmath.tensors.*
public interface TorchTensor<T> : TensorStructure<T> { public interface TorchTensor<T> : TensorStructure<T> {
public fun item(): T
public val strides: IntArray public val strides: IntArray
public val size: Int public val size: Int
public val device: Device public val device: Device
override fun value(): T {
checkIsValue()
return item()
}
override fun elements(): Sequence<Pair<IntArray, T>> { override fun elements(): Sequence<Pair<IntArray, T>> {
if (dimension == 0) { if (dimension == 0) {
return emptySequence() return emptySequence()
@ -22,31 +19,8 @@ public interface TorchTensor<T> : TensorStructure<T> {
} }
} }
public inline fun <T> TorchTensor<T>.isValue(): Boolean {
return (dimension == 0)
}
public inline fun <T> TorchTensor<T>.isNotValue(): Boolean = !this.isValue()
public inline fun <T> TorchTensor<T>.checkIsValue(): Unit = check(this.isValue()) {
"This tensor has shape ${shape.toList()}"
}
public interface TorchTensorOverField<T>: TorchTensor<T> public interface TorchTensorOverField<T>: TorchTensor<T>
{ {
public var requiresGrad: Boolean public var requiresGrad: Boolean
} }
private inline fun indexFromOffset(offset: Int, strides: IntArray, nDim: Int): IntArray {
val res = IntArray(nDim)
var current = offset
var strideIndex = 0
while (strideIndex < nDim) {
res[strideIndex] = (current / strides[strideIndex])
current %= strides[strideIndex]
strideIndex++
}
return res
}

View File

@ -2,8 +2,7 @@
package space.kscience.kmath.torch package space.kscience.kmath.torch
import space.kscience.kmath.tensors.TensorAlgebra import space.kscience.kmath.tensors.*
import space.kscience.kmath.tensors.TensorPartialDivisionAlgebra
public interface TorchTensorAlgebra<T, PrimitiveArrayType, TorchTensorType : TorchTensor<T>> : public interface TorchTensorAlgebra<T, PrimitiveArrayType, TorchTensorType : TorchTensor<T>> :
TensorAlgebra<T, TorchTensorType> { TensorAlgebra<T, TorchTensorType> {
@ -75,15 +74,6 @@ public inline fun <T, PrimitiveArrayType, TorchTensorType : TorchTensor<T>,
"Tensors must be on the same device" "Tensors must be on the same device"
} }
public inline fun <T, PrimitiveArrayType, TorchTensorType : TorchTensor<T>,
TorchTensorAlgebraType : TorchTensorAlgebra<T, PrimitiveArrayType, TorchTensorType>>
TorchTensorAlgebraType.checkShapeCompatible(
a: TorchTensorType,
b: TorchTensorType
): Unit =
check(a.shape contentEquals b.shape) {
"Tensors must be of identical shape"
}
public inline fun <T, PrimitiveArrayType, TorchTensorType : TorchTensor<T>, public inline fun <T, PrimitiveArrayType, TorchTensorType : TorchTensor<T>,
TorchTensorAlgebraType : TorchTensorAlgebra<T, PrimitiveArrayType, TorchTensorType>> TorchTensorAlgebraType : TorchTensorAlgebra<T, PrimitiveArrayType, TorchTensorType>>
@ -92,8 +82,8 @@ public inline fun <T, PrimitiveArrayType, TorchTensorType : TorchTensor<T>,
b: TorchTensorType b: TorchTensorType
) { ) {
if (a.isNotValue() and b.isNotValue()) { if (a.isNotValue() and b.isNotValue()) {
this.checkDeviceCompatible(a, b) checkDeviceCompatible(a, b)
this.checkShapeCompatible(a, b) checkShapeCompatible(a, b)
} }
} }
@ -101,35 +91,8 @@ public inline fun <T, PrimitiveArrayType, TorchTensorType : TorchTensor<T>,
TorchTensorAlgebraType : TorchTensorAlgebra<T, PrimitiveArrayType, TorchTensorType>> TorchTensorAlgebraType : TorchTensorAlgebra<T, PrimitiveArrayType, TorchTensorType>>
TorchTensorAlgebraType.checkDotOperation(a: TorchTensorType, b: TorchTensorType): Unit { TorchTensorAlgebraType.checkDotOperation(a: TorchTensorType, b: TorchTensorType): Unit {
checkDeviceCompatible(a, b) checkDeviceCompatible(a, b)
val sa = a.shape checkDot(a,b)
val sb = b.shape
val na = sa.size
val nb = sb.size
var status: Boolean
if (nb == 1) {
status = sa.last() == sb[0]
} else {
status = sa.last() == sb[nb - 2]
if ((na > 2) and (nb > 2)) {
status = status and
(sa.take(nb - 2).toIntArray() contentEquals sb.take(nb - 2).toIntArray())
} }
}
check(status) { "Incompatible shapes $sa and $sb for dot product" }
}
public inline fun <T, PrimitiveArrayType, TorchTensorType : TorchTensor<T>,
TorchTensorAlgebraType : TorchTensorAlgebra<T, PrimitiveArrayType, TorchTensorType>>
TorchTensorAlgebraType.checkTranspose(dim: Int, i: Int, j: Int): Unit =
check((i < dim) and (j < dim)) {
"Cannot transpose $i to $j for a tensor of dim $dim"
}
public inline fun <T, PrimitiveArrayType, TorchTensorType : TorchTensor<T>,
TorchTensorAlgebraType : TorchTensorAlgebra<T, PrimitiveArrayType, TorchTensorType>>
TorchTensorAlgebraType.checkView(a: TorchTensorType, shape: IntArray): Unit =
check(a.shape.reduce(Int::times) == shape.reduce(Int::times))
public inline fun <T, PrimitiveArrayType, TorchTensorType : TorchTensorOverField<T>, public inline fun <T, PrimitiveArrayType, TorchTensorType : TorchTensorOverField<T>,
TorchTensorDivisionAlgebraType : TorchTensorPartialDivisionAlgebra<T, PrimitiveArrayType, TorchTensorType>> TorchTensorDivisionAlgebraType : TorchTensorPartialDivisionAlgebra<T, PrimitiveArrayType, TorchTensorType>>

View File

@ -29,9 +29,9 @@ public sealed class TorchTensorAlgebraJVM<
internal abstract fun wrap(tensorHandle: Long): TorchTensorType internal abstract fun wrap(tensorHandle: Long): TorchTensorType
override operator fun TorchTensorType.times(other: TorchTensorType): TorchTensorType { override operator fun TorchTensorType.times(b: TorchTensorType): TorchTensorType {
if (checks) checkLinearOperation(this, other) if (checks) checkLinearOperation(this, b)
return wrap(JTorch.timesTensor(this.tensorHandle, other.tensorHandle)) return wrap(JTorch.timesTensor(this.tensorHandle, b.tensorHandle))
} }
override operator fun TorchTensorType.timesAssign(other: TorchTensorType): Unit { override operator fun TorchTensorType.timesAssign(other: TorchTensorType): Unit {
@ -39,9 +39,9 @@ public sealed class TorchTensorAlgebraJVM<
JTorch.timesTensorAssign(this.tensorHandle, other.tensorHandle) JTorch.timesTensorAssign(this.tensorHandle, other.tensorHandle)
} }
override operator fun TorchTensorType.plus(other: TorchTensorType): TorchTensorType { override operator fun TorchTensorType.plus(b: TorchTensorType): TorchTensorType {
if (checks) checkLinearOperation(this, other) if (checks) checkLinearOperation(this, b)
return wrap(JTorch.plusTensor(this.tensorHandle, other.tensorHandle)) return wrap(JTorch.plusTensor(this.tensorHandle, b.tensorHandle))
} }
override operator fun TorchTensorType.plusAssign(other: TorchTensorType): Unit { override operator fun TorchTensorType.plusAssign(other: TorchTensorType): Unit {
@ -49,9 +49,9 @@ public sealed class TorchTensorAlgebraJVM<
JTorch.plusTensorAssign(this.tensorHandle, other.tensorHandle) JTorch.plusTensorAssign(this.tensorHandle, other.tensorHandle)
} }
override operator fun TorchTensorType.minus(other: TorchTensorType): TorchTensorType { override operator fun TorchTensorType.minus(b: TorchTensorType): TorchTensorType {
if (checks) checkLinearOperation(this, other) if (checks) checkLinearOperation(this, b)
return wrap(JTorch.minusTensor(this.tensorHandle, other.tensorHandle)) return wrap(JTorch.minusTensor(this.tensorHandle, b.tensorHandle))
} }
override operator fun TorchTensorType.minusAssign(other: TorchTensorType): Unit { override operator fun TorchTensorType.minusAssign(other: TorchTensorType): Unit {

View File

@ -1,10 +1,10 @@
package space.kscience.kmath.torch package space.kscience.kmath.torch
import space.kscience.kmath.memory.DeferScope import space.kscience.kmath.memory.DeferScope
import space.kscience.kmath.memory.withDeferScope import space.kscience.kmath.memory.withDeferScope
import kotlinx.cinterop.* import kotlinx.cinterop.*
import space.kscience.kmath.tensors.*
import space.kscience.kmath.torch.ctorch.* import space.kscience.kmath.torch.ctorch.*
public sealed class TorchTensorAlgebraNative< public sealed class TorchTensorAlgebraNative<
@ -38,9 +38,9 @@ public sealed class TorchTensorAlgebraNative<
public abstract fun fromBlob(arrayBlob: CPointer<TVar>, shape: IntArray): TorchTensorType public abstract fun fromBlob(arrayBlob: CPointer<TVar>, shape: IntArray): TorchTensorType
public abstract fun TorchTensorType.getData(): CPointer<TVar> public abstract fun TorchTensorType.getData(): CPointer<TVar>
override operator fun TorchTensorType.times(other: TorchTensorType): TorchTensorType { override operator fun TorchTensorType.times(b: TorchTensorType): TorchTensorType {
if (checks) checkLinearOperation(this, other) if (checks) checkLinearOperation(this, b)
return wrap(times_tensor(this.tensorHandle, other.tensorHandle)!!) return wrap(times_tensor(this.tensorHandle, b.tensorHandle)!!)
} }
override operator fun TorchTensorType.timesAssign(other: TorchTensorType): Unit { override operator fun TorchTensorType.timesAssign(other: TorchTensorType): Unit {
@ -48,9 +48,9 @@ public sealed class TorchTensorAlgebraNative<
times_tensor_assign(this.tensorHandle, other.tensorHandle) times_tensor_assign(this.tensorHandle, other.tensorHandle)
} }
override operator fun TorchTensorType.plus(other: TorchTensorType): TorchTensorType { override operator fun TorchTensorType.plus(b: TorchTensorType): TorchTensorType {
if (checks) checkLinearOperation(this, other) if (checks) checkLinearOperation(this, b)
return wrap(plus_tensor(this.tensorHandle, other.tensorHandle)!!) return wrap(plus_tensor(this.tensorHandle, b.tensorHandle)!!)
} }
override operator fun TorchTensorType.plusAssign(other: TorchTensorType): Unit { override operator fun TorchTensorType.plusAssign(other: TorchTensorType): Unit {
@ -58,9 +58,9 @@ public sealed class TorchTensorAlgebraNative<
plus_tensor_assign(this.tensorHandle, other.tensorHandle) plus_tensor_assign(this.tensorHandle, other.tensorHandle)
} }
override operator fun TorchTensorType.minus(other: TorchTensorType): TorchTensorType { override operator fun TorchTensorType.minus(b: TorchTensorType): TorchTensorType {
if (checks) checkLinearOperation(this, other) if (checks) checkLinearOperation(this, b)
return wrap(minus_tensor(this.tensorHandle, other.tensorHandle)!!) return wrap(minus_tensor(this.tensorHandle, b.tensorHandle)!!)
} }
override operator fun TorchTensorType.minusAssign(other: TorchTensorType): Unit { override operator fun TorchTensorType.minusAssign(other: TorchTensorType): Unit {
@ -68,6 +68,10 @@ public sealed class TorchTensorAlgebraNative<
minus_tensor_assign(this.tensorHandle, other.tensorHandle) minus_tensor_assign(this.tensorHandle, other.tensorHandle)
} }
override fun add(a: TorchTensorType, b: TorchTensorType): TorchTensorType = a + b
override fun multiply(a: TorchTensorType, b: TorchTensorType): TorchTensorType = a * b
override operator fun TorchTensorType.unaryMinus(): TorchTensorType = override operator fun TorchTensorType.unaryMinus(): TorchTensorType =
wrap(unary_minus(this.tensorHandle)!!) wrap(unary_minus(this.tensorHandle)!!)
@ -254,6 +258,15 @@ public class TorchTensorRealAlgebra(scope: DeferScope) :
override fun full(value: Double, shape: IntArray, device: Device): TorchTensorReal = override fun full(value: Double, shape: IntArray, device: Device): TorchTensorReal =
wrap(full_double(value, shape.toCValues(), shape.size, device.toInt())!!) wrap(full_double(value, shape.toCValues(), shape.size, device.toInt())!!)
override fun multiply(a: TorchTensorReal, k: Number): TorchTensorReal = a * k.toDouble()
override val zero: TorchTensorReal
get() = full(0.0, IntArray(0), Device.CPU)
override val one: TorchTensorReal
get() = full(1.0, IntArray(0), Device.CPU)
} }
@ -317,6 +330,15 @@ public class TorchTensorFloatAlgebra(scope: DeferScope) :
override fun full(value: Float, shape: IntArray, device: Device): TorchTensorFloat = override fun full(value: Float, shape: IntArray, device: Device): TorchTensorFloat =
wrap(full_float(value, shape.toCValues(), shape.size, device.toInt())!!) wrap(full_float(value, shape.toCValues(), shape.size, device.toInt())!!)
override fun multiply(a: TorchTensorFloat, k: Number): TorchTensorFloat = a * k.toFloat()
override val zero: TorchTensorFloat
get() = full(0f, IntArray(0), Device.CPU)
override val one: TorchTensorFloat
get() = full(1f, IntArray(0), Device.CPU)
} }
public class TorchTensorLongAlgebra(scope: DeferScope) : public class TorchTensorLongAlgebra(scope: DeferScope) :
@ -372,6 +394,15 @@ public class TorchTensorLongAlgebra(scope: DeferScope) :
override fun full(value: Long, shape: IntArray, device: Device): TorchTensorLong = override fun full(value: Long, shape: IntArray, device: Device): TorchTensorLong =
wrap(full_long(value, shape.toCValues(), shape.size, device.toInt())!!) wrap(full_long(value, shape.toCValues(), shape.size, device.toInt())!!)
override fun multiply(a: TorchTensorLong, k: Number): TorchTensorLong = a * k.toLong()
override val zero: TorchTensorLong
get() = full(0, IntArray(0), Device.CPU)
override val one: TorchTensorLong
get() = full(1, IntArray(0), Device.CPU)
} }
public class TorchTensorIntAlgebra(scope: DeferScope) : public class TorchTensorIntAlgebra(scope: DeferScope) :
@ -427,6 +458,16 @@ public class TorchTensorIntAlgebra(scope: DeferScope) :
override fun full(value: Int, shape: IntArray, device: Device): TorchTensorInt = override fun full(value: Int, shape: IntArray, device: Device): TorchTensorInt =
wrap(full_int(value, shape.toCValues(), shape.size, device.toInt())!!) wrap(full_int(value, shape.toCValues(), shape.size, device.toInt())!!)
override fun multiply(a: TorchTensorInt, k: Number): TorchTensorInt = a * k.toInt()
override val zero: TorchTensorInt
get() = full(0, IntArray(0), Device.CPU)
override val one: TorchTensorInt
get() = full(1, IntArray(0), Device.CPU)
} }