Minor change to histogram API. Project build to kts.

This commit is contained in:
Alexander Nozik 2018-11-20 22:09:07 +03:00
parent be18014d54
commit 62c7099f8a
9 changed files with 123 additions and 50 deletions

View File

@ -1,24 +0,0 @@
buildscript {
ext.kotlin_version = '1.3.0'
repositories {
jcenter()
}
dependencies {
classpath "org.jetbrains.kotlin:kotlin-gradle-plugin:$kotlin_version"
classpath "org.jfrog.buildinfo:build-info-extractor-gradle:4+"
}
}
allprojects {
apply plugin: 'maven-publish'
apply plugin: "com.jfrog.artifactory"
group = 'scientifik'
version = '0.0.1-SNAPSHOT'
}
if(file('artifactory.gradle').exists()){
apply from: 'artifactory.gradle'
}

28
build.gradle.kts Normal file
View File

@ -0,0 +1,28 @@
buildscript {
val kotlin_version = "1.3.10"
repositories {
jcenter()
}
dependencies {
classpath("org.jetbrains.kotlin:kotlin-gradle-plugin:$kotlin_version")
classpath("org.jfrog.buildinfo:build-info-extractor-gradle:4+")
}
}
plugins {
id("com.jfrog.artifactory") version "4.8.1" apply false
}
allprojects {
apply(plugin = "maven-publish")
apply(plugin = "com.jfrog.artifactory")
group = "scientifik"
version = "0.0.1-SNAPSHOT"
}
if(file("artifactory.gradle").exists()){
apply(from = "artifactory.gradle")
}

View File

@ -24,13 +24,14 @@ class MultivariateBin(override val center: RealVector, val sizes: RealVector, va
} }
/** /**
* Uniform multivariate histogram with fixed borders. Based on NDStructure implementation with complexity of m for bin search, where m is the number of dimensions * Uniform multivariate histogram with fixed borders. Based on NDStructure implementation with complexity of m for bin search, where m is the number of dimensions.
* The histogram is optimized for speed, but have large size in memory
*/ */
class FastHistogram( class FastHistogram(
private val lower: RealVector, private val lower: RealVector,
private val upper: RealVector, private val upper: RealVector,
private val binNums: IntArray = IntArray(lower.size) { 20 } private val binNums: IntArray = IntArray(lower.size) { 20 }
) : Histogram<Double, MultivariateBin> { ) : MutableHistogram<Double, MultivariateBin> {
init { init {
// argument checks // argument checks
@ -76,7 +77,8 @@ class FastHistogram(
return bins[index] return bins[index]
} }
override fun put(point: Buffer<out Double>) { override fun put(point: Buffer<out Double>, weight: Double) {
if (weight != 1.0) TODO("Implement weighting")
this[point]?.inc() ?: error("Could not find appropriate bin (should not be possible)") this[point]?.inc() ?: error("Could not find appropriate bin (should not be possible)")
} }

View File

@ -4,12 +4,14 @@ import scientifik.kmath.operations.Space
import scientifik.kmath.structures.ArrayBuffer import scientifik.kmath.structures.ArrayBuffer
import scientifik.kmath.structures.Buffer import scientifik.kmath.structures.Buffer
typealias Point<T> = Buffer<T>
/** /**
* A simple geometric domain * A simple geometric domain
* TODO move to geometry module * TODO move to geometry module
*/ */
interface Domain<T: Any> { interface Domain<T: Any> {
operator fun contains(vector: Buffer<out T>): Boolean operator fun contains(vector: Point<out T>): Boolean
val dimension: Int val dimension: Int
} }
@ -21,7 +23,7 @@ interface Bin<T: Any> : Domain<T> {
* The value of this bin * The value of this bin
*/ */
val value: Number val value: Number
val center: Buffer<T> val center: Point<T>
} }
interface Histogram<T: Any, out B : Bin<T>> : Iterable<B> { interface Histogram<T: Any, out B : Bin<T>> : Iterable<B> {
@ -29,27 +31,31 @@ interface Histogram<T: Any, out B : Bin<T>> : Iterable<B> {
/** /**
* Find existing bin, corresponding to given coordinates * Find existing bin, corresponding to given coordinates
*/ */
operator fun get(point: Buffer<out T>): B? operator fun get(point: Point<out T>): B?
/** /**
* Dimension of the histogram * Dimension of the histogram
*/ */
val dimension: Int val dimension: Int
}
interface MutableHistogram<T: Any, out B : Bin<T>>: Histogram<T,B>{
/** /**
* Increment appropriate bin * Increment appropriate bin
*/ */
fun put(point: Buffer<out T>) fun put(point: Point<out T>, weight: Double = 1.0)
} }
fun <T: Any> Histogram<T,*>.put(vararg point: T) = put(ArrayBuffer(point)) fun <T: Any> MutableHistogram<T,*>.put(vararg point: T) = put(ArrayBuffer(point))
fun <T: Any> Histogram<T,*>.fill(sequence: Iterable<Buffer<T>>) = sequence.forEach { put(it) } fun <T: Any> MutableHistogram<T,*>.fill(sequence: Iterable<Point<T>>) = sequence.forEach { put(it) }
/** /**
* Pass a sequence builder into histogram * Pass a sequence builder into histogram
*/ */
fun <T: Any> Histogram<T, *>.fill(buider: suspend SequenceScope<Buffer<T>>.() -> Unit) = fill(sequence(buider).asIterable()) fun <T: Any> MutableHistogram<T, *>.fill(buider: suspend SequenceScope<Point<T>>.() -> Unit) = fill(sequence(buider).asIterable())
/** /**
* A space to perform arithmetic operations on histograms * A space to perform arithmetic operations on histograms

View File

@ -0,0 +1,42 @@
package scientifik.kmath.histogram
import scientifik.kmath.linear.RealVector
import scientifik.kmath.structures.NDStructure
class BinTemplate(val center: RealVector, val sizes: RealVector) {
fun contains(vector: Point<out Double>): Boolean {
if (vector.size != center.size) error("Dimension mismatch for input vector. Expected ${center.size}, but found ${vector.size}")
return vector.asSequence().mapIndexed { i, value -> value in (center[i] - sizes[i] / 2)..(center[i] + sizes[i] / 2) }.all { it }
}
}
class PhantomBin(val template: BinTemplate, override val value: Number) : Bin<Double> {
override fun contains(vector: Point<out Double>): Boolean = template.contains(vector)
override val dimension: Int
get() = template.center.size
override val center: Point<Double>
get() = template.center
}
class PhantomHistogram(
val bins: Map<BinTemplate, IntArray>,
val data: NDStructure<Double>
) : Histogram<Double, PhantomBin> {
override val dimension: Int
get() = data.dimension
override fun iterator(): Iterator<PhantomBin> {
return bins.asSequence().map {entry-> PhantomBin(entry.key,data[entry.value]) }.iterator()
}
override fun get(point: Point<out Double>): PhantomBin? {
val template = bins.keys.find { it.contains(point) }
return template?.let { PhantomBin(it, data[bins[it]!!]) }
}
}

View File

@ -56,7 +56,7 @@ class ArrayBuffer<T>(private val array: Array<T>) : MutableBuffer<T> {
override fun copy(): MutableBuffer<T> = ArrayBuffer(array.copyOf()) override fun copy(): MutableBuffer<T> = ArrayBuffer(array.copyOf())
} }
class DoubleBuffer(private val array: DoubleArray) : MutableBuffer<Double> { inline class DoubleBuffer(private val array: DoubleArray) : MutableBuffer<Double> {
override val size: Int override val size: Int
get() = array.size get() = array.size
@ -71,6 +71,21 @@ class DoubleBuffer(private val array: DoubleArray) : MutableBuffer<Double> {
override fun copy(): MutableBuffer<Double> = DoubleBuffer(array.copyOf()) override fun copy(): MutableBuffer<Double> = DoubleBuffer(array.copyOf())
} }
inline class IntBuffer(private val array: IntArray): MutableBuffer<Int>{
override val size: Int
get() = array.size
override fun get(index: Int): Int = array[index]
override fun set(index: Int, value: Int) {
array[index] = value
}
override fun iterator(): Iterator<Int> = array.iterator()
override fun copy(): MutableBuffer<Int> = IntBuffer(array.copyOf())
}
inline fun <reified T : Any> buffer(size: Int, noinline initializer: (Int) -> T): Buffer<T> { inline fun <reified T : Any> buffer(size: Int, noinline initializer: (Int) -> T): Buffer<T> {
return ArrayBuffer(Array(size, initializer)) return ArrayBuffer(Array(size, initializer))
} }

View File

@ -26,7 +26,7 @@ class UnivariateBin(val position: Double, val size: Double, val counter: LongCou
/** /**
* Univariate histogram with log(n) bin search speed * Univariate histogram with log(n) bin search speed
*/ */
class UnivariateHistogram private constructor(private val factory: (Double) -> UnivariateBin) : Histogram<Double,UnivariateBin> { class UnivariateHistogram private constructor(private val factory: (Double) -> UnivariateBin) : MutableHistogram<Double,UnivariateBin> {
private val bins: TreeMap<Double, UnivariateBin> = TreeMap() private val bins: TreeMap<Double, UnivariateBin> = TreeMap()
@ -58,7 +58,10 @@ class UnivariateHistogram private constructor(private val factory: (Double) -> U
(get(value) ?: createBin(value)).inc() (get(value) ?: createBin(value)).inc()
} }
override fun put(point: Buffer<out Double>) = put(point[0]) override fun put(point: Buffer<out Double>, weight: Double) {
if (weight != 1.0) TODO("Implement weighting")
put(point[0])
}
companion object { companion object {
fun uniform(binSize: Double, start: Double = 0.0): UnivariateHistogram { fun uniform(binSize: Double, start: Double = 0.0): UnivariateHistogram {

View File

@ -1,13 +0,0 @@
pluginManagement {
repositories {
mavenCentral()
maven { url = 'https://plugins.gradle.org/m2/' }
}
}
enableFeaturePreview('GRADLE_METADATA')
rootProject.name = 'kmath'
include ':kmath-core'
include ':kmath-jmh'

14
settings.gradle.kts Normal file
View File

@ -0,0 +1,14 @@
pluginManagement {
repositories {
mavenCentral()
maven("https://plugins.gradle.org/m2/")
}
}
enableFeaturePreview("GRADLE_METADATA")
rootProject.name = "kmath"
include(
":kmath-core",
":kmath-jmh"
)