Merge pull request #72 from mipt-npm/dev

Dev
This commit is contained in:
Alexander Nozik 2019-06-26 18:54:11 +03:00 committed by GitHub
commit 618dd07bcb
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
45 changed files with 694 additions and 193 deletions

View File

@ -1,6 +1,7 @@
Bintray: [ ![Download](https://api.bintray.com/packages/mipt-npm/scientifik/kmath-core/images/download.svg) ](https://bintray.com/mipt-npm/scientifik/kmath-core/_latestVersion)
# KMath
Could be pronounced as `key-math`.
The Kotlin MATHematics library is intended as a Kotlin-based analog to Python's `numpy` library. In contrast to `numpy` and `scipy` it is modular and has a lightweight core.
## Features
@ -13,7 +14,7 @@ Actual feature list is [here](doc/features.md)
* Complex numbers backed by the `Field` API (meaning that they will be usable in any structure like vectors and N-dimensional arrays).
* Advanced linear algebra operations like matrix inversion and LU decomposition.
* **Array-like structures** Full support of many-dimenstional array-like structures
* **Array-like structures** Full support of many-dimensional array-like structures
including mixed arithmetic operations and function operations over arrays and numbers (with the added benefit of static type checking).
* **Expressions** By writing a single mathematical expression
@ -22,13 +23,13 @@ can be used for a wide variety of purposes from high performance calculations to
* **Histograms** Fast multi-dimensional histograms.
* **Streaming** Streaming operations on mathematica objects and objects buffers.
* **Streaming** Streaming operations on mathematical objects and objects buffers.
* **Commons-math wrapper** It is planned to gradually wrap most parts of [Apache commons-math](http://commons.apache.org/proper/commons-math/)
library in Kotlin code and maybe rewrite some parts to better suit the Kotlin programming paradigm, however there is no fixed roadmap for that. Feel free
to submit a feature request if you want something to be done first.
* **Koma wrapper** [Koma](https://github.com/kyonifer/koma) is a well established numerics library in kotlin, specifically linear algebra.
* **Koma wrapper** [Koma](https://github.com/kyonifer/koma) is a well established numerics library in Kotlin, specifically linear algebra.
The plan is to have wrappers for koma implementations for compatibility with kmath API.
## Planned features
@ -110,4 +111,4 @@ dependencies{
## Contributing
The project requires a lot of additional work. Please fill free to contribute in any way and propose new features.
The project requires a lot of additional work. Please feel free to contribute in any way and propose new features.

View File

@ -1,39 +0,0 @@
plugins {
id "java"
id "me.champeau.gradle.jmh" version "0.4.8"
id 'org.jetbrains.kotlin.jvm'
}
repositories {
maven { url 'https://dl.bintray.com/kotlin/kotlin-eap' }
maven{ url "http://dl.bintray.com/kyonifer/maven"}
mavenCentral()
}
dependencies {
implementation project(":kmath-core")
implementation project(":kmath-coroutines")
implementation project(":kmath-commons")
implementation project(":kmath-koma")
implementation group: "com.kyonifer", name:"koma-core-ejml", version: "0.12"
implementation "org.jetbrains.kotlinx:kotlinx-io-jvm:0.1.5"
//compile "org.jetbrains.kotlin:kotlin-stdlib-jdk8"
//jmh project(':kmath-core')
}
jmh {
warmupIterations = 1
}
jmhClasses.dependsOn(compileKotlin)
compileKotlin {
kotlinOptions {
jvmTarget = "1.8"
}
}
compileTestKotlin {
kotlinOptions {
jvmTarget = "1.8"
}
}

View File

@ -1,4 +1,4 @@
val kmathVersion by extra("0.1.2")
val kmathVersion by extra("0.1.3")
allprojects {
repositories {

View File

@ -32,12 +32,12 @@ Typical case of `Field` is the `RealField` which works on doubles. And typical c
In some cases algebra context could hold additional operation like `exp` or `sin`, in this case it inherits appropriate
interface. Also a context could have an operation which produces an element outside of its context. For example
`Matrix` `dot` operation produces a matrix with new dimensions which could not be compatible with initial matrix in
`Matrix` `dot` operation produces a matrix with new dimensions which can be incompatible with initial matrix in
terms of linear operations.
## Algebra element
In order to achieve more familiar behavior (where you apply operations directly to mathematica objects), without involving contexts
In order to achieve more familiar behavior (where you apply operations directly to mathematical objects), without involving contexts
`kmath` introduces special type objects called `MathElement`. A `MathElement` is basically some object coupled to
a mathematical context. For example `Complex` is the pair of real numbers representing real and imaginary parts,
but it also holds reference to the `ComplexField` singleton which allows to perform direct operations on `Complex`

View File

@ -9,17 +9,12 @@ structures. In `kmath` performance depends on which particular context was used
Let us consider following contexts:
```kotlin
// specialized nd-field for Double. It works as generic Double field as well
val specializedField = NDField.real(intArrayOf(dim, dim))
// automatically build context most suited for given type.
val autoField = NDField.auto(intArrayOf(dim, dim), RealField)
//A field implementing lazy computations. All elements are computed on-demand
val lazyField = NDField.lazy(intArrayOf(dim, dim), RealField)
val autoField = NDField.auto(RealField, dim, dim)
// specialized nd-field for Double. It works as generic Double field as well
val specializedField = NDField.real(dim, dim)
//A generic boxing field. It should be used for objects, not primitives.
val genericField = NDField.buffered(intArrayOf(dim, dim), RealField)
val genericField = NDField.buffered(RealField, dim, dim)
```
Now let us perform several tests and see which implementation is best suited for each case:
@ -32,7 +27,7 @@ to it `n = 1000` times.
The code to run this looks like:
```kotlin
specializedField.run {
var res = one
var res: NDBuffer<Double> = one
repeat(n) {
res += 1.0
}
@ -93,7 +88,7 @@ In this case it completes in about `4x-5x` time due to boxing.
The boxing field produced by
```kotlin
genericField.run {
var res = one
var res: NDBuffer<Double> = one
repeat(n) {
res += 1.0
}

67
examples/build.gradle.kts Normal file
View File

@ -0,0 +1,67 @@
import org.jetbrains.gradle.benchmarks.JvmBenchmarkTarget
import org.jetbrains.kotlin.allopen.gradle.AllOpenExtension
import org.jetbrains.kotlin.gradle.tasks.KotlinCompile
plugins {
java
kotlin("jvm")
kotlin("plugin.allopen") version "1.3.31"
id("org.jetbrains.gradle.benchmarks.plugin") version "0.1.7-dev-24"
}
configure<AllOpenExtension> {
annotation("org.openjdk.jmh.annotations.State")
}
repositories {
maven("https://dl.bintray.com/kotlin/kotlin-eap")
maven("http://dl.bintray.com/kyonifer/maven")
maven("https://dl.bintray.com/orangy/maven")
mavenCentral()
}
sourceSets {
register("benchmarks")
}
dependencies {
implementation(project(":kmath-core"))
implementation(project(":kmath-coroutines"))
implementation(project(":kmath-commons"))
implementation(project(":kmath-koma"))
implementation("com.kyonifer:koma-core-ejml:0.12")
implementation("org.jetbrains.kotlinx:kotlinx-io-jvm:0.1.5")
implementation("org.jetbrains.gradle.benchmarks:runtime:0.1.7-dev-24")
"benchmarksCompile"(sourceSets.main.get().compileClasspath)
}
// Configure benchmark
benchmark {
// Setup configurations
targets {
// This one matches sourceSet name above
register("benchmarks") {
this as JvmBenchmarkTarget
jmhVersion = "1.21"
}
}
configurations {
register("fast") {
warmups = 5 // number of warmup iterations
iterations = 3 // number of iterations
iterationTime = 500 // time in seconds per iteration
iterationTimeUnit = "ms" // time unity for iterationTime, default is seconds
}
}
}
tasks.withType<KotlinCompile> {
kotlinOptions {
jvmTarget = "1.8"
}
}

View File

@ -7,7 +7,7 @@ import java.nio.IntBuffer
@State(Scope.Benchmark)
open class ArrayBenchmark {
class ArrayBenchmark {
@Benchmark
fun benchmarkArrayRead() {

View File

@ -7,7 +7,7 @@ import scientifik.kmath.operations.Complex
import scientifik.kmath.operations.complex
@State(Scope.Benchmark)
open class BufferBenchmark {
class BufferBenchmark {
@Benchmark
fun genericDoubleBufferReadWrite() {

View File

@ -1,9 +1,12 @@
package scientifik.kmath.structures
import org.openjdk.jmh.annotations.Benchmark
import org.openjdk.jmh.annotations.Scope
import org.openjdk.jmh.annotations.State
import scientifik.kmath.operations.RealField
open class NDFieldBenchmark {
@State(Scope.Benchmark)
class NDFieldBenchmark {
@Benchmark
fun autoFieldAdd() {
@ -50,6 +53,6 @@ open class NDFieldBenchmark {
val bufferedField = NDField.auto(RealField, dim, dim)
val specializedField = NDField.real(dim, dim)
val genericField = NDField.buffered(intArrayOf(dim, dim), RealField)
val genericField = NDField.boxing(RealField, dim, dim)
}
}

View File

@ -0,0 +1,31 @@
package scientifik.kmath.commons.prob
import kotlinx.coroutines.runBlocking
import scientifik.kmath.chains.Chain
import scientifik.kmath.chains.mapWithState
import scientifik.kmath.prob.Distribution
import scientifik.kmath.prob.RandomGenerator
data class AveragingChainState(var num: Int = 0, var value: Double = 0.0)
fun Chain<Double>.mean(): Chain<Double> = mapWithState(AveragingChainState(),{it.copy()}){chain->
val next = chain.next()
num++
value += next
return@mapWithState value / num
}
fun main() {
val normal = Distribution.normal()
val chain = normal.sample(RandomGenerator.default).mean()
runBlocking {
repeat(10001) { counter ->
val mean = chain.next()
if (counter % 1000 == 0) {
println("[$counter] Average value is $mean")
}
}
}
}

View File

@ -1,6 +1,9 @@
package scientifik.kmath.linear
import koma.matrix.ejml.EJMLMatrixFactory
import scientifik.kmath.commons.linear.CMMatrixContext
import scientifik.kmath.commons.linear.inverse
import scientifik.kmath.commons.linear.toCM
import scientifik.kmath.operations.RealField
import scientifik.kmath.structures.Matrix
import kotlin.contracts.ExperimentalContracts

View File

@ -1,6 +1,8 @@
package scientifik.kmath.linear
import koma.matrix.ejml.EJMLMatrixFactory
import scientifik.kmath.commons.linear.CMMatrixContext
import scientifik.kmath.commons.linear.toCM
import scientifik.kmath.operations.RealField
import scientifik.kmath.structures.Matrix
import kotlin.random.Random

View File

@ -0,0 +1,10 @@
package scientifik.kmath.operations
import scientifik.kmath.structures.NDElement
import scientifik.kmath.structures.complex
fun main() {
val element = NDElement.complex(2, 2) { index: IntArray ->
Complex(index[0].toDouble() - index[1].toDouble(), index[0].toDouble() + index[1].toDouble())
}
}

View File

@ -1,5 +1,8 @@
package scientifik.kmath.structures
import scientifik.kmath.linear.transpose
import scientifik.kmath.operations.Complex
import scientifik.kmath.operations.toComplex
import kotlin.system.measureTimeMillis
fun main() {
@ -32,3 +35,23 @@ fun main() {
println("Complex addition completed in $complexTime millis")
}
fun complexExample() {
//Create a context for 2-d structure with complex values
NDField.complex(4, 8).run {
//a constant real-valued structure
val x = one * 2.5
operator fun Number.plus(other: Complex) = Complex(this.toDouble() + other.re, other.im)
//a structure generator specific to this context
val matrix = produce { (k, l) ->
k + l*i
}
//Perform sum
val sum = matrix + x + 1.0
//Represent the sum as 2d-structure and transpose
sum.as2D().transpose()
}
}

View File

@ -13,7 +13,7 @@ fun main(args: Array<String>) {
// specialized nd-field for Double. It works as generic Double field as well
val specializedField = NDField.real(dim, dim)
//A generic boxing field. It should be used for objects, not primitives.
val genericField = NDField.buffered(intArrayOf(dim, dim), RealField)
val genericField = NDField.boxing(RealField, dim, dim)
val autoTime = measureTimeMillis {

View File

@ -8,6 +8,7 @@ description = "Commons math binding for kmath"
dependencies {
api(project(":kmath-core"))
api(project(":kmath-coroutines"))
api(project(":kmath-prob"))
api("org.apache.commons:commons-math3:3.6.1")
testImplementation("org.jetbrains.kotlin:kotlin-test")
testImplementation("org.jetbrains.kotlin:kotlin-test-junit")

View File

@ -1,6 +1,8 @@
package scientifik.kmath.expressions
package scientifik.kmath.commons.expressions
import org.apache.commons.math3.analysis.differentiation.DerivativeStructure
import scientifik.kmath.expressions.Expression
import scientifik.kmath.expressions.ExpressionContext
import scientifik.kmath.operations.ExtendedField
import scientifik.kmath.operations.Field
import kotlin.properties.ReadOnlyProperty
@ -82,8 +84,11 @@ class DerivativeStructureField(
* A constructs that creates a derivative structure with required order on-demand
*/
class DiffExpression(val function: DerivativeStructureField.() -> DerivativeStructure) : Expression<Double> {
override fun invoke(arguments: Map<String, Double>): Double = DerivativeStructureField(0, arguments)
.run(function).value
override fun invoke(arguments: Map<String, Double>): Double = DerivativeStructureField(
0,
arguments
).run(function).value
/**
* Get the derivative expression with given orders
@ -109,21 +114,27 @@ fun DiffExpression.derivative(name: String) = derivative(name to 1)
* A context for [DiffExpression] (not to be confused with [DerivativeStructure])
*/
object DiffExpressionContext : ExpressionContext<Double>, Field<DiffExpression> {
override fun variable(name: String, default: Double?) = DiffExpression { variable(name, default?.const()) }
override fun variable(name: String, default: Double?) =
DiffExpression { variable(name, default?.const()) }
override fun const(value: Double): DiffExpression = DiffExpression { value.const() }
override fun const(value: Double): DiffExpression =
DiffExpression { value.const() }
override fun add(a: DiffExpression, b: DiffExpression) = DiffExpression { a.function(this) + b.function(this) }
override fun add(a: DiffExpression, b: DiffExpression) =
DiffExpression { a.function(this) + b.function(this) }
override val zero = DiffExpression { 0.0.const() }
override fun multiply(a: DiffExpression, k: Number) = DiffExpression { a.function(this) * k }
override fun multiply(a: DiffExpression, k: Number) =
DiffExpression { a.function(this) * k }
override val one = DiffExpression { 1.0.const() }
override fun multiply(a: DiffExpression, b: DiffExpression) = DiffExpression { a.function(this) * b.function(this) }
override fun multiply(a: DiffExpression, b: DiffExpression) =
DiffExpression { a.function(this) * b.function(this) }
override fun divide(a: DiffExpression, b: DiffExpression) = DiffExpression { a.function(this) / b.function(this) }
override fun divide(a: DiffExpression, b: DiffExpression) =
DiffExpression { a.function(this) / b.function(this) }
}

View File

@ -1,11 +1,13 @@
package scientifik.kmath.linear
package scientifik.kmath.commons.linear
import org.apache.commons.math3.linear.*
import org.apache.commons.math3.linear.RealMatrix
import org.apache.commons.math3.linear.RealVector
import scientifik.kmath.linear.*
import scientifik.kmath.structures.Matrix
class CMMatrix(val origin: RealMatrix, features: Set<MatrixFeature>? = null) : FeaturedMatrix<Double> {
class CMMatrix(val origin: RealMatrix, features: Set<MatrixFeature>? = null) :
FeaturedMatrix<Double> {
override val rowNum: Int get() = origin.rowDimension
override val colNum: Int get() = origin.columnDimension
@ -70,10 +72,14 @@ object CMMatrixContext : MatrixContext<Double> {
override fun multiply(a: Matrix<Double>, k: Number) =
CMMatrix(a.toCM().origin.scalarMultiply(k.toDouble()))
override fun Matrix<Double>.times(value: Double): Matrix<Double> = produce(rowNum,colNum){i,j-> get(i,j)*value}
override fun Matrix<Double>.times(value: Double): Matrix<Double> =
produce(rowNum, colNum) { i, j -> get(i, j) * value }
}
operator fun CMMatrix.plus(other: CMMatrix): CMMatrix = CMMatrix(this.origin.add(other.origin))
operator fun CMMatrix.minus(other: CMMatrix): CMMatrix = CMMatrix(this.origin.subtract(other.origin))
operator fun CMMatrix.plus(other: CMMatrix): CMMatrix =
CMMatrix(this.origin.add(other.origin))
operator fun CMMatrix.minus(other: CMMatrix): CMMatrix =
CMMatrix(this.origin.subtract(other.origin))
infix fun CMMatrix.dot(other: CMMatrix): CMMatrix = CMMatrix(this.origin.multiply(other.origin))
infix fun CMMatrix.dot(other: CMMatrix): CMMatrix =
CMMatrix(this.origin.multiply(other.origin))

View File

@ -1,6 +1,7 @@
package scientifik.kmath.linear
package scientifik.kmath.commons.linear
import org.apache.commons.math3.linear.*
import scientifik.kmath.linear.Point
import scientifik.kmath.structures.Matrix
enum class CMDecomposition {

View File

@ -0,0 +1,32 @@
package scientifik.kmath.commons.prob
import org.apache.commons.math3.random.JDKRandomGenerator
import scientifik.kmath.prob.RandomGenerator
import org.apache.commons.math3.random.RandomGenerator as CMRandom
inline class CMRandomGeneratorWrapper(val generator: CMRandom) : RandomGenerator {
override fun nextDouble(): Double = generator.nextDouble()
override fun nextInt(): Int = generator.nextInt()
override fun nextLong(): Long = generator.nextLong()
override fun nextBlock(size: Int): ByteArray = ByteArray(size).apply { generator.nextBytes(this) }
override fun fork(): RandomGenerator {
TODO("not implemented") //To change body of created functions use File | Settings | File Templates.
}
}
fun CMRandom.asKmathGenerator(): RandomGenerator = CMRandomGeneratorWrapper(this)
fun RandomGenerator.asCMGenerator(): CMRandom =
(this as? CMRandomGeneratorWrapper)?.generator ?: TODO("Implement reverse CM wrapper")
val RandomGenerator.Companion.default: RandomGenerator by lazy { JDKRandomGenerator().asKmathGenerator() }
fun RandomGenerator.Companion.jdk(seed: Int? = null): RandomGenerator = if (seed == null) {
JDKRandomGenerator()
} else {
JDKRandomGenerator(seed)
}.asKmathGenerator()

View File

@ -0,0 +1,82 @@
package scientifik.kmath.commons.prob
import org.apache.commons.math3.distribution.*
import scientifik.kmath.prob.Distribution
import scientifik.kmath.prob.RandomChain
import scientifik.kmath.prob.RandomGenerator
import scientifik.kmath.prob.UnivariateDistribution
import org.apache.commons.math3.random.RandomGenerator as CMRandom
class CMRealDistributionWrapper(val builder: (CMRandom?) -> RealDistribution) : UnivariateDistribution<Double> {
private val defaultDistribution by lazy { builder(null) }
override fun probability(arg: Double): Double = defaultDistribution.probability(arg)
override fun cumulative(arg: Double): Double = defaultDistribution.cumulativeProbability(arg)
override fun sample(generator: RandomGenerator): RandomChain<Double> {
val distribution = builder(generator.asCMGenerator())
return RandomChain(generator) { distribution.sample() }
}
}
class CMIntDistributionWrapper(val builder: (CMRandom?) -> IntegerDistribution) : UnivariateDistribution<Int> {
private val defaultDistribution by lazy { builder(null) }
override fun probability(arg: Int): Double = defaultDistribution.probability(arg)
override fun cumulative(arg: Int): Double = defaultDistribution.cumulativeProbability(arg)
override fun sample(generator: RandomGenerator): RandomChain<Int> {
val distribution = builder(generator.asCMGenerator())
return RandomChain(generator) { distribution.sample() }
}
}
fun Distribution.Companion.normal(mean: Double = 0.0, sigma: Double = 1.0): UnivariateDistribution<Double> =
CMRealDistributionWrapper { generator -> NormalDistribution(generator, mean, sigma) }
fun Distribution.Companion.poisson(mean: Double): UnivariateDistribution<Int> = CMIntDistributionWrapper { generator ->
PoissonDistribution(
generator,
mean,
PoissonDistribution.DEFAULT_EPSILON,
PoissonDistribution.DEFAULT_MAX_ITERATIONS
)
}
fun Distribution.Companion.binomial(trials: Int, p: Double): UnivariateDistribution<Int> =
CMIntDistributionWrapper { generator ->
BinomialDistribution(generator, trials, p)
}
fun Distribution.Companion.student(degreesOfFreedom: Double): UnivariateDistribution<Double> =
CMRealDistributionWrapper { generator ->
TDistribution(generator, degreesOfFreedom, TDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY)
}
fun Distribution.Companion.chi2(degreesOfFreedom: Double): UnivariateDistribution<Double> =
CMRealDistributionWrapper { generator ->
ChiSquaredDistribution(generator, degreesOfFreedom)
}
fun Distribution.Companion.fisher(
numeratorDegreesOfFreedom: Double,
denominatorDegreesOfFreedom: Double
): UnivariateDistribution<Double> =
CMRealDistributionWrapper { generator ->
FDistribution(generator, numeratorDegreesOfFreedom, denominatorDegreesOfFreedom)
}
fun Distribution.Companion.exponential(mean: Double): UnivariateDistribution<Double> =
CMRealDistributionWrapper { generator ->
ExponentialDistribution(generator, mean)
}
fun Distribution.Companion.uniform(a: Double, b: Double): UnivariateDistribution<Double> =
CMRealDistributionWrapper { generator ->
UniformRealDistribution(generator, a, b)
}

View File

@ -1,4 +1,4 @@
package scientifik.kmath.transform
package scientifik.kmath.commons.transform
import kotlinx.coroutines.FlowPreview
import kotlinx.coroutines.flow.Flow

View File

@ -1,6 +1,7 @@
package scientifik.kmath.expressions
package scientifik.kmath.commons.expressions
import org.junit.Test
import scientifik.kmath.expressions.invoke
import kotlin.test.assertEquals
inline fun <R> diff(order: Int, vararg parameters: Pair<String, Double>, block: DerivativeStructureField.() -> R) =

View File

@ -58,32 +58,35 @@ internal class DivExpession<T>(val context: Field<T>, val expr: Expression<T>, v
override fun invoke(arguments: Map<String, T>): T = context.divide(expr.invoke(arguments), second.invoke(arguments))
}
class ExpressionField<T>(val field: Field<T>) : Field<Expression<T>>, ExpressionContext<T> {
override val zero: Expression<T> = ConstantExpression(field.zero)
override val one: Expression<T> = ConstantExpression(field.one)
open class ExpressionSpace<T>(val space: Space<T>) : Space<Expression<T>>, ExpressionContext<T> {
override val zero: Expression<T> = ConstantExpression(space.zero)
override fun const(value: T): Expression<T> = ConstantExpression(value)
override fun variable(name: String, default: T?): Expression<T> = VariableExpression(name, default)
override fun add(a: Expression<T>, b: Expression<T>): Expression<T> = SumExpression(field, a, b)
override fun add(a: Expression<T>, b: Expression<T>): Expression<T> = SumExpression(space, a, b)
override fun multiply(a: Expression<T>, k: Number): Expression<T> = ConstProductExpession(field, a, k)
override fun multiply(a: Expression<T>, b: Expression<T>): Expression<T> = ProductExpression(field, a, b)
override fun divide(a: Expression<T>, b: Expression<T>): Expression<T> = DivExpession(field, a, b)
override fun multiply(a: Expression<T>, k: Number): Expression<T> = ConstProductExpession(space, a, k)
operator fun Expression<T>.plus(arg: T) = this + const(arg)
operator fun Expression<T>.minus(arg: T) = this - const(arg)
operator fun Expression<T>.times(arg: T) = this * const(arg)
operator fun Expression<T>.div(arg: T) = this / const(arg)
operator fun T.plus(arg: Expression<T>) = arg + this
operator fun T.minus(arg: Expression<T>) = arg - this
}
class ExpressionField<T>(val field: Field<T>) : Field<Expression<T>>, ExpressionSpace<T>(field) {
override val one: Expression<T> = ConstantExpression(field.one)
override fun multiply(a: Expression<T>, b: Expression<T>): Expression<T> = ProductExpression(field, a, b)
override fun divide(a: Expression<T>, b: Expression<T>): Expression<T> = DivExpession(field, a, b)
operator fun Expression<T>.times(arg: T) = this * const(arg)
operator fun Expression<T>.div(arg: T) = this / const(arg)
operator fun T.times(arg: Expression<T>) = arg * this
operator fun T.div(arg: Expression<T>) = arg / this
}

View File

@ -24,6 +24,7 @@ class BufferMatrixContext<T : Any, R : Ring<T>>(
}
}
@Suppress("OVERRIDE_BY_INLINE")
object RealMatrixContext : GenericMatrixContext<Double, RealField> {
override val elementContext = RealField

View File

@ -0,0 +1,72 @@
package scientifik.kmath.structures
import scientifik.kmath.operations.Ring
import scientifik.kmath.operations.RingElement
class BoxingNDRing<T, R : Ring<T>>(
override val shape: IntArray,
override val elementContext: R,
val bufferFactory: BufferFactory<T>
) : BufferedNDRing<T, R> {
override val strides: Strides = DefaultStrides(shape)
fun buildBuffer(size: Int, initializer: (Int) -> T): Buffer<T> =
bufferFactory(size, initializer)
override fun check(vararg elements: NDBuffer<T>) {
if (!elements.all { it.strides == this.strides }) error("Element strides are not the same as context strides")
}
override val zero by lazy { produce { zero } }
override val one by lazy { produce { one } }
override fun produce(initializer: R.(IntArray) -> T) =
BufferedNDRingElement(
this,
buildBuffer(strides.linearSize) { offset -> elementContext.initializer(strides.index(offset)) })
override fun map(arg: NDBuffer<T>, transform: R.(T) -> T): BufferedNDRingElement<T, R> {
check(arg)
return BufferedNDRingElement(
this,
buildBuffer(arg.strides.linearSize) { offset -> elementContext.transform(arg.buffer[offset]) })
// val buffer = arg.buffer.transform { _, value -> elementContext.transform(value) }
// return BufferedNDFieldElement(this, buffer)
}
override fun mapIndexed(
arg: NDBuffer<T>,
transform: R.(index: IntArray, T) -> T
): BufferedNDRingElement<T, R> {
check(arg)
return BufferedNDRingElement(
this,
buildBuffer(arg.strides.linearSize) { offset ->
elementContext.transform(
arg.strides.index(offset),
arg.buffer[offset]
)
})
// val buffer =
// arg.buffer.transform { offset, value -> elementContext.transform(arg.strides.index(offset), value) }
// return BufferedNDFieldElement(this, buffer)
}
override fun combine(
a: NDBuffer<T>,
b: NDBuffer<T>,
transform: R.(T, T) -> T
): BufferedNDRingElement<T, R> {
check(a, b)
return BufferedNDRingElement(
this,
buildBuffer(strides.linearSize) { offset -> elementContext.transform(a.buffer[offset], b.buffer[offset]) })
}
override fun NDBuffer<T>.toElement(): RingElement<NDBuffer<T>, *, out BufferedNDRing<T, R>> =
BufferedNDRingElement(this@BoxingNDRing, buffer)
}

View File

@ -131,4 +131,7 @@ operator fun ComplexNDElement.plus(arg: Double) =
operator fun ComplexNDElement.minus(arg: Double) =
map { it - arg }
fun NDField.Companion.complex(vararg shape: Int) = ComplexNDField(shape)
fun NDField.Companion.complex(vararg shape: Int): ComplexNDField = ComplexNDField(shape)
fun NDElement.Companion.complex(vararg shape: Int, initializer: ComplexField.(IntArray) -> Complex): ComplexNDElement =
NDField.complex(*shape).produce(initializer)

View File

@ -1,9 +1,9 @@
package scientifik.kmath.structures
import scientifik.kmath.operations.Complex
import scientifik.kmath.operations.Field
import scientifik.kmath.operations.Ring
import scientifik.kmath.operations.Space
import kotlin.jvm.JvmName
/**
@ -57,6 +57,8 @@ interface NDAlgebra<T, C, N : NDStructure<T>> {
* element-by-element invoke a function working on [T] on a [NDStructure]
*/
operator fun Function1<T, T>.invoke(structure: N) = map(structure) { value -> this@invoke(value) }
companion object
}
/**
@ -75,10 +77,13 @@ interface NDSpace<T, S : Space<T>, N : NDStructure<T>> : Space<N>, NDAlgebra<T,
//TODO move to extensions after KEEP-176
operator fun N.plus(arg: T) = map(this) { value -> add(arg, value) }
operator fun N.minus(arg: T) = map(this) { value -> add(arg, -value) }
operator fun T.plus(arg: N) = map(arg) { value -> add(this@plus, value) }
operator fun T.minus(arg: N) = map(arg) { value -> add(-this@minus, value) }
companion object
}
/**
@ -93,7 +98,10 @@ interface NDRing<T, R : Ring<T>, N : NDStructure<T>> : Ring<N>, NDSpace<T, R, N>
//TODO move to extensions after KEEP-176
operator fun N.times(arg: T) = map(this) { value -> multiply(arg, value) }
operator fun T.times(arg: N) = map(arg) { value -> multiply(this@times, value) }
companion object
}
/**
@ -113,6 +121,7 @@ interface NDField<T, F : Field<T>, N : NDStructure<T>> : Field<N>, NDRing<T, F,
//TODO move to extensions after KEEP-176
operator fun N.div(arg: T) = map(this) { value -> divide(arg, value) }
operator fun T.div(arg: N) = map(arg) { divide(it, this@div) }
companion object {
@ -127,12 +136,11 @@ interface NDField<T, F : Field<T>, N : NDStructure<T>> : Field<N>, NDRing<T, F,
/**
* Create a nd-field with boxing generic buffer
*/
fun <T : Any, F : Field<T>> buffered(
shape: IntArray,
fun <T : Any, F : Field<T>> boxing(
field: F,
vararg shape: Int,
bufferFactory: BufferFactory<T> = Buffer.Companion::boxing
) =
BoxingNDField(shape, field, bufferFactory)
) = BoxingNDField(shape, field, bufferFactory)
/**
* Create a most suitable implementation for nd-field using reified class.
@ -141,6 +149,7 @@ interface NDField<T, F : Field<T>, N : NDStructure<T>> : Field<N>, NDRing<T, F,
inline fun <reified T : Any, F : Field<T>> auto(field: F, vararg shape: Int): BufferedNDField<T, F> =
when {
T::class == Double::class -> real(*shape) as BufferedNDField<T, F>
T::class == Complex::class -> complex(*shape) as BufferedNDField<T, F>
else -> BoxingNDField(shape, field, Buffer.Companion::auto)
}
}

View File

@ -41,7 +41,7 @@ interface NDElement<T, C, N : NDStructure<T>> : NDStructure<T> {
/**
* Simple boxing NDArray
*/
fun <T : Any, F : Field<T>> buffered(
fun <T : Any, F : Field<T>> boxing(
shape: IntArray,
field: F,
initializer: F.(IntArray) -> T

View File

@ -0,0 +1,45 @@
package scientifik.kmath.operations
import scientifik.kmath.structures.*
import java.math.BigDecimal
import java.math.BigInteger
import java.math.MathContext
object BigIntegerRing : Ring<BigInteger> {
override val zero: BigInteger = BigInteger.ZERO
override val one: BigInteger = BigInteger.ONE
override fun add(a: BigInteger, b: BigInteger): BigInteger = a.add(b)
override fun multiply(a: BigInteger, k: Number): BigInteger = a.multiply(k.toInt().toBigInteger())
override fun multiply(a: BigInteger, b: BigInteger): BigInteger = a.multiply(b)
}
class BigDecimalField(val mathContext: MathContext = MathContext.DECIMAL64) : Field<BigDecimal> {
override val zero: BigDecimal = BigDecimal.ZERO
override val one: BigDecimal = BigDecimal.ONE
override fun add(a: BigDecimal, b: BigDecimal): BigDecimal = a.add(b)
override fun multiply(a: BigDecimal, k: Number): BigDecimal =
a.multiply(k.toDouble().toBigDecimal(mathContext), mathContext)
override fun multiply(a: BigDecimal, b: BigDecimal): BigDecimal = a.multiply(b, mathContext)
override fun divide(a: BigDecimal, b: BigDecimal): BigDecimal = a.divide(b, mathContext)
}
inline fun Buffer.Companion.bigInt(size: Int, initializer: (Int) -> BigInteger): Buffer<BigInteger> =
boxing(size, initializer)
inline fun MutableBuffer.Companion.bigInt(size: Int, initializer: (Int) -> BigInteger): MutableBuffer<BigInteger> =
boxing(size, initializer)
fun NDAlgebra.Companion.bigInt(vararg shape: Int): BoxingNDRing<BigInteger, BigIntegerRing> =
BoxingNDRing(shape, BigIntegerRing, Buffer.Companion::bigInt)
fun NDElement.Companion.bigInt(
vararg shape: Int,
initializer: BigIntegerRing.(IntArray) -> BigInteger
): BufferedNDRingElement<BigInteger, BigIntegerRing> =
NDAlgebra.bigInt(*shape).produce(initializer)

View File

@ -17,7 +17,9 @@
package scientifik.kmath.chains
import kotlinx.atomicfu.atomic
import kotlinx.atomicfu.updateAndGet
import kotlinx.coroutines.FlowPreview
import kotlinx.coroutines.flow.Flow
/**
@ -25,11 +27,6 @@ import kotlinx.coroutines.FlowPreview
* @param R - the chain element type
*/
interface Chain<out R> {
/**
* Last cached value of the chain. Returns null if [next] was not called
*/
val value: R?
/**
* Generate next value, changing state if needed
*/
@ -40,109 +37,115 @@ interface Chain<out R> {
*/
fun fork(): Chain<R>
companion object
}
/**
* Chain as a coroutine flow. The flow emit affects chain state and vice versa
*/
@FlowPreview
val <R> Chain<R>.flow
val <R> Chain<R>.flow: Flow<R>
get() = kotlinx.coroutines.flow.flow { while (true) emit(next()) }
fun <T> Iterator<T>.asChain(): Chain<T> = SimpleChain { next() }
fun <T> Sequence<T>.asChain(): Chain<T> = iterator().asChain()
/**
* Map the chain result using suspended transformation. Initial chain result can no longer be safely consumed
* since mapped chain consumes tokens. Accepts regular transformation function
*/
fun <T, R> Chain<T>.map(func: (T) -> R): Chain<R> {
val parent = this;
return object : Chain<R> {
override val value: R? get() = parent.value?.let(func)
override suspend fun next(): R {
return func(parent.next())
}
override fun fork(): Chain<R> {
return parent.fork().map(func)
}
}
}
/**
* A simple chain of independent tokens
*/
class SimpleChain<out R>(private val gen: suspend () -> R) : Chain<R> {
private val atomicValue = atomic<R?>(null)
override val value: R? get() = atomicValue.value
override suspend fun next(): R = gen().also { atomicValue.lazySet(it) }
override suspend fun next(): R = gen()
override fun fork(): Chain<R> = this
}
//TODO force forks on mapping operations?
/**
* A stateless Markov chain
*/
class MarkovChain<out R : Any>(private val seed: () -> R, private val gen: suspend (R) -> R) :
Chain<R> {
class MarkovChain<out R : Any>(private val seed: suspend () -> R, private val gen: suspend (R) -> R) : Chain<R> {
constructor(seed: R, gen: suspend (R) -> R) : this({ seed }, gen)
constructor(seedValue: R, gen: suspend (R) -> R) : this({ seedValue }, gen)
private val atomicValue = atomic<R?>(null)
override val value: R get() = atomicValue.value ?: seed()
private val value = atomic<R?>(null)
override suspend fun next(): R {
val newValue = gen(value)
atomicValue.lazySet(newValue)
return value
return value.updateAndGet { prev -> gen(prev ?: seed()) }!!
}
override fun fork(): Chain<R> {
return MarkovChain(value, gen)
return MarkovChain(seed = { value.value ?: seed() }, gen = gen)
}
}
/**
* A chain with possibly mutable state. The state must not be changed outside the chain. Two chins should never share the state
* @param S - the state of the chain
* @param forkState - the function to copy current state without modifying it
*/
class StatefulChain<S, out R>(
private val state: S,
private val seed: S.() -> R,
private val forkState: ((S) -> S),
private val gen: suspend S.(R) -> R
) : Chain<R> {
constructor(state: S, seed: R, gen: suspend S.(R) -> R) : this(state, { seed }, gen)
constructor(state: S, seedValue: R, forkState: ((S) -> S), gen: suspend S.(R) -> R) : this(
state,
{ seedValue },
forkState,
gen
)
private val atomicValue = atomic<R?>(null)
override val value: R get() = atomicValue.value ?: seed(state)
override suspend fun next(): R {
val newValue = gen(state, value)
atomicValue.lazySet(newValue)
return value
return atomicValue.updateAndGet { prev -> state.gen(prev ?: state.seed()) }!!
}
override fun fork(): Chain<R> {
throw RuntimeException("Fork not supported for stateful chain")
return StatefulChain(forkState(state), seed, forkState, gen)
}
}
/**
* A chain that repeats the same value
*/
class ConstantChain<out T>(override val value: T) : Chain<T> {
override suspend fun next(): T {
return value
}
class ConstantChain<out T>(val value: T) : Chain<T> {
override suspend fun next(): T = value
override fun fork(): Chain<T> {
return this
}
}
/**
* Map the chain result using suspended transformation. Initial chain result can no longer be safely consumed
* since mapped chain consumes tokens. Accepts regular transformation function
*/
fun <T, R> Chain<T>.pipe(func: suspend (T) -> R): Chain<R> = object : Chain<R> {
override suspend fun next(): R = func(this@pipe.next())
override fun fork(): Chain<R> = this@pipe.fork().pipe(func)
}
/**
* Map the whole chain
*/
fun <T, R> Chain<T>.map(mapper: suspend (Chain<T>) -> R): Chain<R> = object : Chain<R> {
override suspend fun next(): R = mapper(this@map)
override fun fork(): Chain<R> = this@map.fork().map(mapper)
}
fun <T, S, R> Chain<T>.mapWithState(state: S, stateFork: (S) -> S, mapper: suspend S.(Chain<T>) -> R): Chain<R> =
object : Chain<R> {
override suspend fun next(): R = state.mapper(this@mapWithState)
override fun fork(): Chain<R> = this@mapWithState.fork().mapWithState(stateFork(state), stateFork, mapper)
}
/**
* Zip two chains together using given transformation
*/
fun <T, U, R> Chain<T>.zip(other: Chain<U>, block: suspend (T, U) -> R): Chain<R> = object : Chain<R> {
override suspend fun next(): R = block(this@zip.next(), other.next())
override fun fork(): Chain<R> = this@zip.fork().zip(other.fork(), block)
}

View File

@ -1,4 +1,4 @@
package scientifik.kmath
package scientifik.kmath.coroutines
import kotlinx.coroutines.*
import kotlinx.coroutines.channels.produce
@ -42,13 +42,14 @@ fun <T, R> Flow<T>.async(
}
@FlowPreview
fun <T, R> AsyncFlow<T>.map(action: (T) -> R) = AsyncFlow(deferredFlow.map { input ->
//TODO add function composition
LazyDeferred(input.dispatcher) {
input.start(this)
action(input.await())
}
})
fun <T, R> AsyncFlow<T>.map(action: (T) -> R) =
AsyncFlow(deferredFlow.map { input ->
//TODO add function composition
LazyDeferred(input.dispatcher) {
input.start(this)
action(input.await())
}
})
@ExperimentalCoroutinesApi
@FlowPreview

View File

@ -22,7 +22,7 @@ fun <T> Flow<Buffer<out T>>.spread(): Flow<T> = flatMapConcat { it.asFlow() }
* Collect incoming flow into fixed size chunks
*/
@FlowPreview
fun <T> Flow<T>.chunked(bufferSize: Int, bufferFactory: BufferFactory<T>) = flow {
fun <T> Flow<T>.chunked(bufferSize: Int, bufferFactory: BufferFactory<T>): Flow<Buffer<T>> = flow {
require(bufferSize > 0) { "Resulting chunk size must be more than zero" }
val list = ArrayList<T>(bufferSize)
var counter = 0
@ -46,7 +46,7 @@ fun <T> Flow<T>.chunked(bufferSize: Int, bufferFactory: BufferFactory<T>) = flow
* Specialized flow chunker for real buffer
*/
@FlowPreview
fun Flow<Double>.chunked(bufferSize: Int) = flow {
fun Flow<Double>.chunked(bufferSize: Int): Flow<DoubleBuffer> = flow {
require(bufferSize > 0) { "Resulting chunk size must be more than zero" }
val array = DoubleArray(bufferSize)
var counter = 0

View File

@ -18,23 +18,3 @@ operator fun <R> Chain<R>.iterator() = object : Iterator<R> {
fun <R> Chain<R>.asSequence(): Sequence<R> = object : Sequence<R> {
override fun iterator(): Iterator<R> = this@asSequence.iterator()
}
/**
* Map the chain result using suspended transformation. Initial chain result can no longer be safely consumed
* since mapped chain consumes tokens. Accepts suspending transformation function.
*/
fun <T, R> Chain<T>.map(func: suspend (T) -> R): Chain<R> {
val parent = this;
return object : Chain<R> {
override val value: R? get() = runBlocking { parent.value?.let { func(it) } }
override suspend fun next(): R {
return func(parent.next())
}
override fun fork(): Chain<R> {
return parent.fork().map(func)
}
}
}

View File

@ -1,7 +1,7 @@
package scientifik.kmath.structures
import kotlinx.coroutines.*
import scientifik.kmath.Math
import scientifik.kmath.coroutines.Math
class LazyNDStructure<T>(
val scope: CoroutineScope,

View File

@ -4,9 +4,9 @@ import kotlinx.coroutines.*
import kotlinx.coroutines.flow.asFlow
import kotlinx.coroutines.flow.collect
import org.junit.Test
import scientifik.kmath.async
import scientifik.kmath.collect
import scientifik.kmath.map
import scientifik.kmath.coroutines.async
import scientifik.kmath.coroutines.collect
import scientifik.kmath.coroutines.map
import java.util.concurrent.Executors

View File

@ -2,7 +2,6 @@ plugins {
`npm-multiplatform`
}
// Just an example how we can collapse nested DSL for simple declarations
kotlin.sourceSets.commonMain {
dependencies {
api(project(":kmath-core"))

View File

@ -6,13 +6,14 @@ plugins {
kotlin.sourceSets {
commonMain {
dependencies {
api(project(":kmath-core"))
api(project(":kmath-coroutines"))
compileOnly("org.jetbrains.kotlinx:atomicfu-common:${Versions.atomicfuVersion}")
}
}
jvmMain {
dependencies {
// https://mvnrepository.com/artifact/org.apache.commons/commons-rng-simple
//api("org.apache.commons:commons-rng-sampling:1.2")
compileOnly("org.jetbrains.kotlinx:atomicfu:${Versions.atomicfuVersion}")
}
}

View File

@ -0,0 +1,68 @@
package scientifik.kmath.prob
import scientifik.kmath.chains.Chain
import scientifik.kmath.chains.map
import kotlin.jvm.JvmName
interface Sampler<T : Any> {
fun sample(generator: RandomGenerator): Chain<T>
}
/**
* A distribution of typed objects
*/
interface Distribution<T : Any> : Sampler<T> {
/**
* A probability value for given argument [arg].
* For continuous distributions returns PDF
*/
fun probability(arg: T): Double
/**
* Create a chain of samples from this distribution.
* The chain is not guaranteed to be stateless.
*/
override fun sample(generator: RandomGenerator): Chain<T>
/**
* An empty companion. Distribution factories should be written as its extensions
*/
companion object
}
interface UnivariateDistribution<T : Comparable<T>> : Distribution<T> {
/**
* Cumulative distribution for ordered parameter
*/
fun cumulative(arg: T): Double
}
/**
* Compute probability integral in an interval
*/
fun <T : Comparable<T>> UnivariateDistribution<T>.integral(from: T, to: T): Double {
require(to > from)
return cumulative(to) - cumulative(from)
}
/**
* Sample a bunch of values
*/
fun <T : Any> Sampler<T>.sampleBunch(generator: RandomGenerator, size: Int): Chain<List<T>> {
require(size > 1)
return sample(generator).map{chain ->
List(size){chain.next()}
}
}
/**
* Generate a bunch of samples from real distributions
*/
@JvmName("realSampleBunch")
fun Sampler<Double>.sampleBunch(generator: RandomGenerator, size: Int): Chain<DoubleArray> {
require(size > 1)
return sample(generator).map{chain ->
DoubleArray(size){chain.next()}
}
}

View File

@ -0,0 +1,13 @@
package scientifik.kmath.prob
import kotlinx.atomicfu.atomic
import scientifik.kmath.chains.Chain
/**
* A possibly stateful chain producing random values.
*/
class RandomChain<out R>(val generator: RandomGenerator, private val gen: suspend RandomGenerator.() -> R) : Chain<R> {
override suspend fun next(): R = generator.gen()
override fun fork(): Chain<R> = RandomChain(generator.fork(), gen)
}

View File

@ -0,0 +1,41 @@
package scientifik.kmath.prob
import kotlin.random.Random
/**
* A basic generator
*/
interface RandomGenerator {
fun nextDouble(): Double
fun nextInt(): Int
fun nextLong(): Long
fun nextBlock(size: Int): ByteArray
/**
* Create a new generator which is independent from current generator (operations on new generator do not affect this one
* and vise versa). The statistical properties of new generator should be the same as for this one.
* For pseudo-random generator, the fork is keeping the same sequence of numbers for given call order for each run.
*
* The thread safety of this operation is not guaranteed since it could affect the state of the generator.
*/
fun fork(): RandomGenerator
companion object {
val default by lazy { DefaultGenerator(Random.nextLong()) }
}
}
class DefaultGenerator(seed: Long?) : RandomGenerator {
private val random = seed?.let { Random(it) } ?: Random
override fun nextDouble(): Double = random.nextDouble()
override fun nextInt(): Int = random.nextInt()
override fun nextLong(): Long = random.nextLong()
override fun nextBlock(size: Int): ByteArray = random.nextBytes(size)
override fun fork(): RandomGenerator = DefaultGenerator(nextLong())
}

View File

@ -0,0 +1,31 @@
package scientifik.kmath.prob
import scientifik.kmath.chains.Chain
import scientifik.kmath.chains.ConstantChain
import scientifik.kmath.chains.pipe
import scientifik.kmath.chains.zip
import scientifik.kmath.operations.Space
class BasicSampler<T : Any>(val chainBuilder: (RandomGenerator) -> Chain<T>) : Sampler<T> {
override fun sample(generator: RandomGenerator): Chain<T> = chainBuilder(generator)
}
class ConstantSampler<T : Any>(val value: T) : Sampler<T> {
override fun sample(generator: RandomGenerator): Chain<T> = ConstantChain(value)
}
/**
* A space for samplers. Allows to perform simple operations on distributions
*/
class SamplerSpace<T : Any>(val space: Space<T>) : Space<Sampler<T>> {
override val zero: Sampler<T> = ConstantSampler(space.zero)
override fun add(a: Sampler<T>, b: Sampler<T>): Sampler<T> = BasicSampler { generator ->
a.sample(generator).zip(b.sample(generator)) { aValue, bValue -> space.run { aValue + bValue } }
}
override fun multiply(a: Sampler<T>, k: Number): Sampler<T> = BasicSampler { generator ->
a.sample(generator).pipe { space.run { it * k.toDouble() } }
}
}

View File

@ -3,6 +3,7 @@ pluginManagement {
jcenter()
gradlePluginPortal()
maven("https://dl.bintray.com/kotlin/kotlin-eap")
maven("https://dl.bintray.com/orangy/maven")
}
resolutionStrategy {
eachPlugin {
@ -28,5 +29,5 @@ include(
":kmath-commons",
":kmath-koma",
":kmath-prob",
":benchmarks"
":examples"
)