Merge remote-tracking branch 'origin/dev' into mp-samplers

This commit is contained in:
Iaroslav 2020-06-27 20:47:57 +07:00
commit 551d4991fb
No known key found for this signature in database
GPG Key ID: 46E15E4A31B3BCD7
70 changed files with 2431 additions and 375 deletions

View File

@ -87,7 +87,7 @@ dependencies{
}
```
Gradle `5.2+` is required for multiplatform artifacts.
Gradle `6.0+` is required for multiplatform artifacts.
### Development

View File

@ -2,7 +2,7 @@ plugins {
id("scientifik.publish") apply false
}
val kmathVersion by extra("0.1.4-dev-7")
val kmathVersion by extra("0.1.4-dev-8")
val bintrayRepo by extra("scientifik")
val githubProject by extra("kmath")

View File

@ -2,7 +2,7 @@
Buffer is one of main building blocks of kmath. It is a basic interface allowing random-access read and write (with `MutableBuffer`).
There are different types of buffers:
* Primitive buffers wrapping like `DoubleBuffer` which are wrapping primitive arrays.
* Primitive buffers wrapping like `RealBuffer` which are wrapping primitive arrays.
* Boxing `ListBuffer` wrapping a list
* Functionally defined `VirtualBuffer` which does not hold a state itself, but provides a function to calculate value
* `MemoryBuffer` allows direct allocation of objects in continuous memory block.

View File

@ -4,8 +4,8 @@ import org.jetbrains.kotlin.gradle.tasks.KotlinCompile
plugins {
java
kotlin("jvm")
kotlin("plugin.allopen") version "1.3.71"
id("kotlinx.benchmark") version "0.2.0-dev-7"
kotlin("plugin.allopen") version "1.3.72"
id("kotlinx.benchmark") version "0.2.0-dev-8"
}
configure<AllOpenExtension> {
@ -24,6 +24,7 @@ sourceSets {
}
dependencies {
implementation(project(":kmath-ast"))
implementation(project(":kmath-core"))
implementation(project(":kmath-coroutines"))
implementation(project(":kmath-commons"))
@ -33,8 +34,8 @@ dependencies {
implementation(project(":kmath-dimensions"))
implementation("com.kyonifer:koma-core-ejml:0.12")
implementation("org.jetbrains.kotlinx:kotlinx-io-jvm:0.2.0-npm-dev-6")
implementation("org.jetbrains.kotlinx:kotlinx.benchmark.runtime:0.2.0-dev-7")
"benchmarksCompile"(sourceSets.main.get().compileClasspath)
implementation("org.jetbrains.kotlinx:kotlinx.benchmark.runtime:0.2.0-dev-8")
"benchmarksCompile"(sourceSets.main.get().output + sourceSets.main.get().compileClasspath) //sourceSets.main.output + sourceSets.main.runtimeClasspath
}
// Configure benchmark

View File

@ -10,8 +10,8 @@ import scientifik.kmath.operations.complex
class BufferBenchmark {
@Benchmark
fun genericDoubleBufferReadWrite() {
val buffer = DoubleBuffer(size){it.toDouble()}
fun genericRealBufferReadWrite() {
val buffer = RealBuffer(size){it.toDouble()}
(0 until size).forEach {
buffer[it]

View File

@ -20,48 +20,39 @@ class ViktorBenchmark {
final val viktorField = ViktorNDField(intArrayOf(dim, dim))
@Benchmark
fun `Automatic field addition`() {
fun automaticFieldAddition() {
autoField.run {
var res = one
repeat(n) {
res += 1.0
}
repeat(n) { res += one }
}
}
@Benchmark
fun `Viktor field addition`() {
fun viktorFieldAddition() {
viktorField.run {
var res = one
repeat(n) {
res += one
}
repeat(n) { res += one }
}
}
@Benchmark
fun `Raw Viktor`() {
fun rawViktor() {
val one = F64Array.full(init = 1.0, shape = *intArrayOf(dim, dim))
var res = one
repeat(n) {
res = res + one
}
repeat(n) { res = res + one }
}
@Benchmark
fun `Real field log`() {
fun realdFieldLog() {
realField.run {
val fortyTwo = produce { 42.0 }
var res = one
repeat(n) {
res = ln(fortyTwo)
}
repeat(n) { res = ln(fortyTwo) }
}
}
@Benchmark
fun `Raw Viktor log`() {
fun rawViktorLog() {
val fortyTwo = F64Array.full(dim, dim, init = 42.0)
var res: F64Array
repeat(n) {

View File

@ -0,0 +1,70 @@
package scientifik.kmath.ast
import scientifik.kmath.asm.compile
import scientifik.kmath.expressions.Expression
import scientifik.kmath.expressions.expressionInField
import scientifik.kmath.expressions.invoke
import scientifik.kmath.operations.Field
import scientifik.kmath.operations.RealField
import kotlin.random.Random
import kotlin.system.measureTimeMillis
class ExpressionsInterpretersBenchmark {
private val algebra: Field<Double> = RealField
fun functionalExpression() {
val expr = algebra.expressionInField {
variable("x") * const(2.0) + const(2.0) / variable("x") - const(16.0)
}
invokeAndSum(expr)
}
fun mstExpression() {
val expr = algebra.mstInField {
symbol("x") * number(2.0) + number(2.0) / symbol("x") - number(16.0)
}
invokeAndSum(expr)
}
fun asmExpression() {
val expr = algebra.mstInField {
symbol("x") * number(2.0) + number(2.0) / symbol("x") - number(16.0)
}.compile()
invokeAndSum(expr)
}
private fun invokeAndSum(expr: Expression<Double>) {
val random = Random(0)
var sum = 0.0
repeat(1000000) {
sum += expr("x" to random.nextDouble())
}
println(sum)
}
}
fun main() {
val benchmark = ExpressionsInterpretersBenchmark()
val fe = measureTimeMillis {
benchmark.functionalExpression()
}
println("fe=$fe")
val mst = measureTimeMillis {
benchmark.mstExpression()
}
println("mst=$mst")
val asm = measureTimeMillis {
benchmark.asmExpression()
}
println("asm=$asm")
}

View File

@ -27,7 +27,7 @@ fun main() {
val complexTime = measureTimeMillis {
complexField.run {
var res = one
var res: NDBuffer<Complex> = one
repeat(n) {
res += 1.0
}

View File

@ -23,14 +23,14 @@ fun main() {
measureAndPrint("Automatic field addition") {
autoField.run {
var res = one
var res: NDBuffer<Double> = one
repeat(n) {
res += 1.0
res += number(1.0)
}
}
}
measureAndPrint("Element addition"){
measureAndPrint("Element addition") {
var res = genericField.one
repeat(n) {
res += 1.0
@ -63,7 +63,7 @@ fun main() {
genericField.run {
var res: NDBuffer<Double> = one
repeat(n) {
res += 1.0
res += one // con't avoid using `one` due to resolution ambiguity
}
}
}

View File

@ -6,7 +6,7 @@ fun main(args: Array<String>) {
val n = 6000
val array = DoubleArray(n * n) { 1.0 }
val buffer = DoubleBuffer(array)
val buffer = RealBuffer(array)
val strides = DefaultStrides(intArrayOf(n, n))
val structure = BufferNDStructure(strides, buffer)

View File

@ -26,10 +26,10 @@ fun main(args: Array<String>) {
}
println("Array mapping finished in $time2 millis")
val buffer = DoubleBuffer(DoubleArray(n * n) { 1.0 })
val buffer = RealBuffer(DoubleArray(n * n) { 1.0 })
val time3 = measureTimeMillis {
val target = DoubleBuffer(DoubleArray(n * n))
val target = RealBuffer(DoubleArray(n * n))
val res = array.forEachIndexed { index, value ->
target[index] = value + 1
}

62
kmath-ast/README.md Normal file
View File

@ -0,0 +1,62 @@
# AST-based expression representation and operations (`kmath-ast`)
This subproject implements the following features:
- Expression Language and its parser.
- MST as expression language's syntax intermediate representation.
- Type-safe builder of MST.
- Evaluating expressions by traversing MST.
## Dynamic expression code generation with OW2 ASM
`kmath-ast` JVM module supports runtime code generation to eliminate overhead of tree traversal. Code generator builds
a special implementation of `Expression<T>` with implemented `invoke` function.
For example, the following builder:
```kotlin
RealField.mstInField { symbol("x") + 2 }.compile()
```
… leads to generation of bytecode, which can be decompiled to the following Java class:
```java
package scientifik.kmath.asm.generated;
import java.util.Map;
import scientifik.kmath.asm.internal.MapIntrinsics;
import scientifik.kmath.expressions.Expression;
import scientifik.kmath.operations.RealField;
public final class AsmCompiledExpression_1073786867_0 implements Expression<Double> {
private final RealField algebra;
private final Object[] constants;
public AsmCompiledExpression_1073786867_0(RealField algebra, Object[] constants) {
this.algebra = algebra;
this.constants = constants;
}
public final Double invoke(Map<String, ? extends Double> arguments) {
return (Double)this.algebra.add(((Double)MapIntrinsics.getOrFail(arguments, "x", (Object)null)).doubleValue(), 2.0D);
}
}
```
### Example Usage
This API is an extension to MST and MstExpression APIs. You may optimize both MST and MSTExpression:
```kotlin
RealField.mstInField { symbol("x") + 2 }.compile()
RealField.expression("x+2".parseMath())
```
### Known issues
- The same classes may be generated and loaded twice, so it is recommended to cache compiled expressions to avoid
class loading overhead.
- This API is not supported by non-dynamic JVM implementations (like TeaVM and GraalVM) because of using class loaders.
Contributed by [Iaroslav Postovalov](https://github.com/CommanderTvis).

View File

@ -0,0 +1,37 @@
plugins {
id("scientifik.mpp")
}
repositories {
maven("https://dl.bintray.com/hotkeytlt/maven")
}
kotlin.sourceSets {
// all {
// languageSettings.apply{
// enableLanguageFeature("NewInference")
// }
// }
commonMain {
dependencies {
api(project(":kmath-core"))
implementation("com.github.h0tk3y.betterParse:better-parse-multiplatform:0.4.0-alpha-3")
implementation("com.github.h0tk3y.betterParse:better-parse-multiplatform-metadata:0.4.0-alpha-3")
}
}
jvmMain {
dependencies {
implementation("com.github.h0tk3y.betterParse:better-parse-jvm:0.4.0-alpha-3")
implementation("org.ow2.asm:asm:8.0.1")
implementation("org.ow2.asm:asm-commons:8.0.1")
implementation(kotlin("reflect"))
}
}
jsMain {
dependencies {
implementation("com.github.h0tk3y.betterParse:better-parse-js:0.4.0-alpha-3")
}
}
}

View File

@ -0,0 +1,67 @@
package scientifik.kmath.ast
import scientifik.kmath.operations.Algebra
import scientifik.kmath.operations.NumericAlgebra
import scientifik.kmath.operations.RealField
/**
* A Mathematical Syntax Tree node for mathematical expressions
*/
sealed class MST {
/**
* A node containing unparsed string
*/
data class Symbolic(val value: String) : MST()
/**
* A node containing a number
*/
data class Numeric(val value: Number) : MST()
/**
* A node containing an unary operation
*/
data class Unary(val operation: String, val value: MST) : MST() {
companion object {
const val ABS_OPERATION = "abs"
//TODO add operations
}
}
/**
* A node containing binary operation
*/
data class Binary(val operation: String, val left: MST, val right: MST) : MST() {
companion object
}
}
//TODO add a function with positional arguments
//TODO add a function with named arguments
fun <T> Algebra<T>.evaluate(node: MST): T {
return when (node) {
is MST.Numeric -> (this as? NumericAlgebra<T>)?.number(node.value)
?: error("Numeric nodes are not supported by $this")
is MST.Symbolic -> symbol(node.value)
is MST.Unary -> unaryOperation(node.operation, evaluate(node.value))
is MST.Binary -> when {
this !is NumericAlgebra -> binaryOperation(node.operation, evaluate(node.left), evaluate(node.right))
node.left is MST.Numeric && node.right is MST.Numeric -> {
val number = RealField.binaryOperation(
node.operation,
node.left.value.toDouble(),
node.right.value.toDouble()
)
number(number)
}
node.left is MST.Numeric -> leftSideNumberOperation(node.operation, node.left.value, evaluate(node.right))
node.right is MST.Numeric -> rightSideNumberOperation(node.operation, evaluate(node.left), node.right.value)
else -> binaryOperation(node.operation, evaluate(node.left), evaluate(node.right))
}
}
}
fun <T> MST.compile(algebra: Algebra<T>): T = algebra.evaluate(this)

View File

@ -0,0 +1,72 @@
package scientifik.kmath.ast
import scientifik.kmath.operations.*
object MstAlgebra : NumericAlgebra<MST> {
override fun number(value: Number): MST = MST.Numeric(value)
override fun symbol(value: String): MST = MST.Symbolic(value)
override fun unaryOperation(operation: String, arg: MST): MST =
MST.Unary(operation, arg)
override fun binaryOperation(operation: String, left: MST, right: MST): MST =
MST.Binary(operation, left, right)
}
object MstSpace : Space<MST>, NumericAlgebra<MST> {
override val zero: MST = number(0.0)
override fun number(value: Number): MST = MstAlgebra.number(value)
override fun symbol(value: String): MST = MstAlgebra.symbol(value)
override fun add(a: MST, b: MST): MST =
binaryOperation(SpaceOperations.PLUS_OPERATION, a, b)
override fun multiply(a: MST, k: Number): MST =
binaryOperation(RingOperations.TIMES_OPERATION, a, number(k))
override fun binaryOperation(operation: String, left: MST, right: MST): MST =
MstAlgebra.binaryOperation(operation, left, right)
override fun unaryOperation(operation: String, arg: MST): MST = MstAlgebra.unaryOperation(operation, arg)
}
object MstRing : Ring<MST>, NumericAlgebra<MST> {
override val zero: MST = number(0.0)
override val one: MST = number(1.0)
override fun number(value: Number): MST = MstAlgebra.number(value)
override fun symbol(value: String): MST = MstAlgebra.symbol(value)
override fun add(a: MST, b: MST): MST = binaryOperation(SpaceOperations.PLUS_OPERATION, a, b)
override fun multiply(a: MST, k: Number): MST =
binaryOperation(RingOperations.TIMES_OPERATION, a, MstSpace.number(k))
override fun multiply(a: MST, b: MST): MST = binaryOperation(RingOperations.TIMES_OPERATION, a, b)
override fun binaryOperation(operation: String, left: MST, right: MST): MST =
MstAlgebra.binaryOperation(operation, left, right)
override fun unaryOperation(operation: String, arg: MST): MST = MstAlgebra.unaryOperation(operation, arg)
}
object MstField : Field<MST> {
override val zero: MST = number(0.0)
override val one: MST = number(1.0)
override fun symbol(value: String): MST = MstAlgebra.symbol(value)
override fun number(value: Number): MST = MstAlgebra.number(value)
override fun add(a: MST, b: MST): MST = binaryOperation(SpaceOperations.PLUS_OPERATION, a, b)
override fun multiply(a: MST, k: Number): MST =
binaryOperation(RingOperations.TIMES_OPERATION, a, MstSpace.number(k))
override fun multiply(a: MST, b: MST): MST = binaryOperation(RingOperations.TIMES_OPERATION, a, b)
override fun divide(a: MST, b: MST): MST = binaryOperation(FieldOperations.DIV_OPERATION, a, b)
override fun binaryOperation(operation: String, left: MST, right: MST): MST =
MstAlgebra.binaryOperation(operation, left, right)
override fun unaryOperation(operation: String, arg: MST): MST = MstAlgebra.unaryOperation(operation, arg)
}

View File

@ -0,0 +1,55 @@
package scientifik.kmath.ast
import scientifik.kmath.expressions.Expression
import scientifik.kmath.expressions.FunctionalExpressionField
import scientifik.kmath.expressions.FunctionalExpressionRing
import scientifik.kmath.expressions.FunctionalExpressionSpace
import scientifik.kmath.operations.*
/**
* The expression evaluates MST on-flight. Should be much faster than functional expression, but slower than ASM-generated expressions.
*/
class MstExpression<T>(val algebra: Algebra<T>, val mst: MST) : Expression<T> {
/**
* Substitute algebra raw value
*/
private inner class InnerAlgebra(val arguments: Map<String, T>) : NumericAlgebra<T> {
override fun symbol(value: String): T = arguments[value] ?: algebra.symbol(value)
override fun unaryOperation(operation: String, arg: T): T = algebra.unaryOperation(operation, arg)
override fun binaryOperation(operation: String, left: T, right: T): T =
algebra.binaryOperation(operation, left, right)
override fun number(value: Number): T = if (algebra is NumericAlgebra)
algebra.number(value)
else
error("Numeric nodes are not supported by $this")
}
override fun invoke(arguments: Map<String, T>): T = InnerAlgebra(arguments).evaluate(mst)
}
inline fun <reified T : Any, A : Algebra<T>, E : Algebra<MST>> A.mst(
mstAlgebra: E,
block: E.() -> MST
): MstExpression<T> = MstExpression(this, mstAlgebra.block())
inline fun <reified T : Any> Space<T>.mstInSpace(block: MstSpace.() -> MST): MstExpression<T> =
MstExpression(this, MstSpace.block())
inline fun <reified T : Any> Ring<T>.mstInRing(block: MstRing.() -> MST): MstExpression<T> =
MstExpression(this, MstRing.block())
inline fun <reified T : Any> Field<T>.mstInField(block: MstField.() -> MST): MstExpression<T> =
MstExpression(this, MstField.block())
inline fun <reified T : Any, A : Space<T>> FunctionalExpressionSpace<T, A>.mstInSpace(block: MstSpace.() -> MST): MstExpression<T> =
algebra.mstInSpace(block)
inline fun <reified T : Any, A : Ring<T>> FunctionalExpressionRing<T, A>.mstInRing(block: MstRing.() -> MST): MstExpression<T> =
algebra.mstInRing(block)
inline fun <reified T : Any, A : Field<T>> FunctionalExpressionField<T, A>.mstInField(block: MstField.() -> MST): MstExpression<T> =
algebra.mstInField(block)

View File

@ -0,0 +1,59 @@
package scientifik.kmath.ast
import com.github.h0tk3y.betterParse.combinators.*
import com.github.h0tk3y.betterParse.grammar.Grammar
import com.github.h0tk3y.betterParse.grammar.parseToEnd
import com.github.h0tk3y.betterParse.grammar.parser
import com.github.h0tk3y.betterParse.grammar.tryParseToEnd
import com.github.h0tk3y.betterParse.parser.ParseResult
import com.github.h0tk3y.betterParse.parser.Parser
import scientifik.kmath.operations.FieldOperations
import scientifik.kmath.operations.PowerOperations
import scientifik.kmath.operations.RingOperations
import scientifik.kmath.operations.SpaceOperations
/**
* TODO move to common
*/
private object ArithmeticsEvaluator : Grammar<MST>() {
val num by token("-?[\\d.]+(?:[eE]-?\\d+)?".toRegex())
val lpar by token("\\(".toRegex())
val rpar by token("\\)".toRegex())
val mul by token("\\*".toRegex())
val pow by token("\\^".toRegex())
val div by token("/".toRegex())
val minus by token("-".toRegex())
val plus by token("\\+".toRegex())
val ws by token("\\s+".toRegex(), ignore = true)
val number: Parser<MST> by num use { MST.Numeric(text.toDouble()) }
val term: Parser<MST> by number or
(skip(minus) and parser(this::term) map { MST.Unary(SpaceOperations.MINUS_OPERATION, it) }) or
(skip(lpar) and parser(this::rootParser) and skip(rpar))
val powChain by leftAssociative(term, pow) { a, _, b ->
MST.Binary(PowerOperations.POW_OPERATION, a, b)
}
val divMulChain: Parser<MST> by leftAssociative(powChain, div or mul use { type }) { a, op, b ->
if (op == div) {
MST.Binary(FieldOperations.DIV_OPERATION, a, b)
} else {
MST.Binary(RingOperations.TIMES_OPERATION, a, b)
}
}
val subSumChain: Parser<MST> by leftAssociative(divMulChain, plus or minus use { type }) { a, op, b ->
if (op == plus) {
MST.Binary(SpaceOperations.PLUS_OPERATION, a, b)
} else {
MST.Binary(SpaceOperations.MINUS_OPERATION, a, b)
}
}
override val rootParser: Parser<MST> by subSumChain
}
fun String.tryParseMath(): ParseResult<MST> = ArithmeticsEvaluator.tryParseToEnd(this)
fun String.parseMath(): MST = ArithmeticsEvaluator.parseToEnd(this)

View File

@ -0,0 +1,60 @@
package scientifik.kmath.asm
import scientifik.kmath.asm.internal.AsmBuilder
import scientifik.kmath.asm.internal.buildAlgebraOperationCall
import scientifik.kmath.asm.internal.buildName
import scientifik.kmath.ast.MST
import scientifik.kmath.ast.MstExpression
import scientifik.kmath.expressions.Expression
import scientifik.kmath.operations.Algebra
import scientifik.kmath.operations.NumericAlgebra
import kotlin.reflect.KClass
/**
* Compile given MST to an Expression using AST compiler
*/
fun <T : Any> MST.compileWith(type: KClass<T>, algebra: Algebra<T>): Expression<T> {
fun AsmBuilder<T>.visit(node: MST) {
when (node) {
is MST.Symbolic -> loadVariable(node.value)
is MST.Numeric -> {
val constant = if (algebra is NumericAlgebra<T>)
algebra.number(node.value)
else
error("Number literals are not supported in $algebra")
loadTConstant(constant)
}
is MST.Unary -> buildAlgebraOperationCall(
context = algebra,
name = node.operation,
fallbackMethodName = "unaryOperation",
arity = 1
) { visit(node.value) }
is MST.Binary -> buildAlgebraOperationCall(
context = algebra,
name = node.operation,
fallbackMethodName = "binaryOperation",
arity = 2
) {
visit(node.left)
visit(node.right)
}
}
}
return AsmBuilder(type, algebra, buildName(this)) { visit(this@compileWith) }.getInstance()
}
/**
* Compile an [MST] to ASM using given algebra
*/
inline fun <reified T : Any> Algebra<T>.expression(mst: MST): Expression<T> = mst.compileWith(T::class, this)
/**
* Optimize performance of an [MstExpression] using ASM codegen
*/
inline fun <reified T : Any> MstExpression<T>.compile(): Expression<T> = mst.compileWith(T::class, algebra)

View File

@ -0,0 +1,518 @@
package scientifik.kmath.asm.internal
import org.objectweb.asm.*
import org.objectweb.asm.Opcodes.*
import org.objectweb.asm.commons.InstructionAdapter
import scientifik.kmath.asm.internal.AsmBuilder.ClassLoader
import scientifik.kmath.ast.MST
import scientifik.kmath.expressions.Expression
import scientifik.kmath.operations.Algebra
import java.util.*
import kotlin.reflect.KClass
/**
* ASM Builder is a structure that abstracts building a class designated to unwrap [MST] to plain Java expression.
* This class uses [ClassLoader] for loading the generated class, then it is able to instantiate the new class.
*
* @param T the type of AsmExpression to unwrap.
* @param algebra the algebra the applied AsmExpressions use.
* @param className the unique class name of new loaded class.
* @param invokeLabel0Visitor the function to apply to this object when generating invoke method, label 0.
*/
internal class AsmBuilder<T> internal constructor(
private val classOfT: KClass<*>,
private val algebra: Algebra<T>,
private val className: String,
private val invokeLabel0Visitor: AsmBuilder<T>.() -> Unit
) {
/**
* Internal classloader of [AsmBuilder] with alias to define class from byte array.
*/
private class ClassLoader(parent: java.lang.ClassLoader) : java.lang.ClassLoader(parent) {
internal fun defineClass(name: String?, b: ByteArray): Class<*> = defineClass(name, b, 0, b.size)
}
/**
* The instance of [ClassLoader] used by this builder.
*/
private val classLoader: ClassLoader = ClassLoader(javaClass.classLoader)
/**
* ASM Type for [algebra]
*/
private val tAlgebraType: Type = algebra::class.asm
/**
* ASM type for [T]
*/
internal val tType: Type = classOfT.asm
/**
* ASM type for new class
*/
private val classType: Type = Type.getObjectType(className.replace(oldChar = '.', newChar = '/'))!!
/**
* Index of `this` variable in invoke method of the built subclass.
*/
private val invokeThisVar: Int = 0
/**
* Index of `arguments` variable in invoke method of the built subclass.
*/
private val invokeArgumentsVar: Int = 1
/**
* List of constants to provide to the subclass.
*/
private val constants: MutableList<Any> = mutableListOf()
/**
* Method visitor of `invoke` method of the subclass.
*/
private lateinit var invokeMethodVisitor: InstructionAdapter
/**
* State if [T] a primitive type, so [AsmBuilder] may generate direct primitive calls.
*/
internal var primitiveMode: Boolean = false
/**
* Primitive type to apple for specific primitive calls. Use [OBJECT_TYPE], if not in [primitiveMode].
*/
internal var primitiveMask: Type = OBJECT_TYPE
/**
* Boxed primitive type to apple for specific primitive calls. Use [OBJECT_TYPE], if not in [primitiveMode].
*/
internal var primitiveMaskBoxed: Type = OBJECT_TYPE
/**
* Stack of useful objects types on stack to verify types.
*/
private val typeStack: ArrayDeque<Type> = ArrayDeque()
/**
* Stack of useful objects types on stack expected by algebra calls.
*/
internal val expectationStack: ArrayDeque<Type> = ArrayDeque<Type>().apply { push(tType) }
/**
* The cache for instance built by this builder.
*/
private var generatedInstance: Expression<T>? = null
/**
* Subclasses, loads and instantiates [Expression] for given parameters.
*
* The built instance is cached.
*/
@Suppress("UNCHECKED_CAST")
fun getInstance(): Expression<T> {
generatedInstance?.let { return it }
if (SIGNATURE_LETTERS.containsKey(classOfT)) {
primitiveMode = true
primitiveMask = SIGNATURE_LETTERS.getValue(classOfT)
primitiveMaskBoxed = tType
}
val classWriter = ClassWriter(ClassWriter.COMPUTE_FRAMES) {
visit(
V1_8,
ACC_PUBLIC or ACC_FINAL or ACC_SUPER,
classType.internalName,
"${OBJECT_TYPE.descriptor}L${EXPRESSION_TYPE.internalName}<${tType.descriptor}>;",
OBJECT_TYPE.internalName,
arrayOf(EXPRESSION_TYPE.internalName)
)
visitField(
access = ACC_PRIVATE or ACC_FINAL,
name = "algebra",
descriptor = tAlgebraType.descriptor,
signature = null,
value = null,
block = FieldVisitor::visitEnd
)
visitField(
access = ACC_PRIVATE or ACC_FINAL,
name = "constants",
descriptor = OBJECT_ARRAY_TYPE.descriptor,
signature = null,
value = null,
block = FieldVisitor::visitEnd
)
visitMethod(
ACC_PUBLIC,
"<init>",
Type.getMethodDescriptor(Type.VOID_TYPE, tAlgebraType, OBJECT_ARRAY_TYPE),
null,
null
).instructionAdapter {
val thisVar = 0
val algebraVar = 1
val constantsVar = 2
val l0 = label()
load(thisVar, classType)
invokespecial(OBJECT_TYPE.internalName, "<init>", Type.getMethodDescriptor(Type.VOID_TYPE), false)
label()
load(thisVar, classType)
load(algebraVar, tAlgebraType)
putfield(classType.internalName, "algebra", tAlgebraType.descriptor)
label()
load(thisVar, classType)
load(constantsVar, OBJECT_ARRAY_TYPE)
putfield(classType.internalName, "constants", OBJECT_ARRAY_TYPE.descriptor)
label()
visitInsn(RETURN)
val l4 = label()
visitLocalVariable("this", classType.descriptor, null, l0, l4, thisVar)
visitLocalVariable(
"algebra",
tAlgebraType.descriptor,
null,
l0,
l4,
algebraVar
)
visitLocalVariable("constants", OBJECT_ARRAY_TYPE.descriptor, null, l0, l4, constantsVar)
visitMaxs(0, 3)
visitEnd()
}
visitMethod(
ACC_PUBLIC or ACC_FINAL,
"invoke",
Type.getMethodDescriptor(tType, MAP_TYPE),
"(L${MAP_TYPE.internalName}<${STRING_TYPE.descriptor}+${tType.descriptor}>;)${tType.descriptor}",
null
).instructionAdapter {
invokeMethodVisitor = this
visitCode()
val l0 = label()
invokeLabel0Visitor()
areturn(tType)
val l1 = label()
visitLocalVariable(
"this",
classType.descriptor,
null,
l0,
l1,
invokeThisVar
)
visitLocalVariable(
"arguments",
MAP_TYPE.descriptor,
"L${MAP_TYPE.internalName}<${STRING_TYPE.descriptor}+${tType.descriptor}>;",
l0,
l1,
invokeArgumentsVar
)
visitMaxs(0, 2)
visitEnd()
}
visitMethod(
ACC_PUBLIC or ACC_FINAL or ACC_BRIDGE or ACC_SYNTHETIC,
"invoke",
Type.getMethodDescriptor(OBJECT_TYPE, MAP_TYPE),
null,
null
).instructionAdapter {
val thisVar = 0
val argumentsVar = 1
visitCode()
val l0 = label()
load(thisVar, OBJECT_TYPE)
load(argumentsVar, MAP_TYPE)
invokevirtual(classType.internalName, "invoke", Type.getMethodDescriptor(tType, MAP_TYPE), false)
areturn(tType)
val l1 = label()
visitLocalVariable(
"this",
classType.descriptor,
null,
l0,
l1,
thisVar
)
visitMaxs(0, 2)
visitEnd()
}
visitEnd()
}
val new = classLoader
.defineClass(className, classWriter.toByteArray())
.constructors
.first()
.newInstance(algebra, constants.toTypedArray()) as Expression<T>
generatedInstance = new
return new
}
/**
* Loads a [T] constant from [constants].
*/
internal fun loadTConstant(value: T) {
if (classOfT in INLINABLE_NUMBERS) {
val expectedType = expectationStack.pop()
val mustBeBoxed = expectedType.sort == Type.OBJECT
loadNumberConstant(value as Number, mustBeBoxed)
if (mustBeBoxed) typeStack.push(tType) else typeStack.push(primitiveMask)
return
}
loadConstant(value as Any, tType)
}
/**
* Boxes the current value and pushes it.
*/
private fun box(): Unit = invokeMethodVisitor.invokestatic(
tType.internalName,
"valueOf",
Type.getMethodDescriptor(tType, primitiveMask),
false
)
/**
* Unboxes the current boxed value and pushes it.
*/
private fun unbox(): Unit = invokeMethodVisitor.invokevirtual(
NUMBER_TYPE.internalName,
NUMBER_CONVERTER_METHODS.getValue(primitiveMask),
Type.getMethodDescriptor(primitiveMask),
false
)
/**
* Loads [java.lang.Object] constant from constants.
*/
private fun loadConstant(value: Any, type: Type): Unit = invokeMethodVisitor.run {
val idx = if (value in constants) constants.indexOf(value) else constants.apply { add(value) }.lastIndex
loadThis()
getfield(classType.internalName, "constants", OBJECT_ARRAY_TYPE.descriptor)
iconst(idx)
visitInsn(AALOAD)
checkcast(type)
}
/**
* Loads this variable.
*/
private fun loadThis(): Unit = invokeMethodVisitor.load(invokeThisVar, classType)
/**
* Either loads a numeric constant [value] from the class's constants field or boxes a primitive
* constant from the constant pool (some numbers with special opcodes like [Opcodes.ICONST_0] aren't even loaded
* from it).
*/
private fun loadNumberConstant(value: Number, mustBeBoxed: Boolean) {
val boxed = value::class.asm
val primitive = BOXED_TO_PRIMITIVES[boxed]
if (primitive != null) {
when (primitive) {
Type.BYTE_TYPE -> invokeMethodVisitor.iconst(value.toInt())
Type.DOUBLE_TYPE -> invokeMethodVisitor.dconst(value.toDouble())
Type.FLOAT_TYPE -> invokeMethodVisitor.fconst(value.toFloat())
Type.LONG_TYPE -> invokeMethodVisitor.lconst(value.toLong())
Type.INT_TYPE -> invokeMethodVisitor.iconst(value.toInt())
Type.SHORT_TYPE -> invokeMethodVisitor.iconst(value.toInt())
}
if (mustBeBoxed) {
box()
invokeMethodVisitor.checkcast(tType)
}
return
}
loadConstant(value, boxed)
if (!mustBeBoxed) unbox()
else invokeMethodVisitor.checkcast(tType)
}
/**
* Loads a variable [name] from arguments [Map] parameter of [Expression.invoke]. The [defaultValue] may be
* provided.
*/
internal fun loadVariable(name: String, defaultValue: T? = null): Unit = invokeMethodVisitor.run {
load(invokeArgumentsVar, MAP_TYPE)
aconst(name)
if (defaultValue != null)
loadTConstant(defaultValue)
else
aconst(null)
invokestatic(
MAP_INTRINSICS_TYPE.internalName,
"getOrFail",
Type.getMethodDescriptor(OBJECT_TYPE, MAP_TYPE, OBJECT_TYPE, OBJECT_TYPE),
false
)
checkcast(tType)
val expectedType = expectationStack.pop()
if (expectedType.sort == Type.OBJECT)
typeStack.push(tType)
else {
unbox()
typeStack.push(primitiveMask)
}
}
/**
* Loads algebra from according field of the class and casts it to class of [algebra] provided.
*/
internal fun loadAlgebra() {
loadThis()
invokeMethodVisitor.getfield(classType.internalName, "algebra", tAlgebraType.descriptor)
}
/**
* Writes a method instruction of opcode with its [owner], [method] and its [descriptor]. The default opcode is
* [Opcodes.INVOKEINTERFACE], since most Algebra functions are declared in interfaces. [loadAlgebra] should be
* called before the arguments and this operation.
*
* The result is casted to [T] automatically.
*/
internal fun invokeAlgebraOperation(
owner: String,
method: String,
descriptor: String,
expectedArity: Int,
opcode: Int = INVOKEINTERFACE
) {
run loop@{
repeat(expectedArity) {
if (typeStack.isEmpty()) return@loop
typeStack.pop()
}
}
invokeMethodVisitor.visitMethodInsn(
opcode,
owner,
method,
descriptor,
opcode == INVOKEINTERFACE
)
invokeMethodVisitor.checkcast(tType)
val isLastExpr = expectationStack.size == 1
val expectedType = expectationStack.pop()
if (expectedType.sort == Type.OBJECT || isLastExpr)
typeStack.push(tType)
else {
unbox()
typeStack.push(primitiveMask)
}
}
/**
* Writes a LDC Instruction with string constant provided.
*/
internal fun loadStringConstant(string: String): Unit = invokeMethodVisitor.aconst(string)
internal companion object {
/**
* Maps JVM primitive numbers boxed types to their primitive ASM types.
*/
private val SIGNATURE_LETTERS: Map<KClass<out Any>, Type> by lazy {
hashMapOf(
java.lang.Byte::class to Type.BYTE_TYPE,
java.lang.Short::class to Type.SHORT_TYPE,
java.lang.Integer::class to Type.INT_TYPE,
java.lang.Long::class to Type.LONG_TYPE,
java.lang.Float::class to Type.FLOAT_TYPE,
java.lang.Double::class to Type.DOUBLE_TYPE
)
}
/**
* Maps JVM primitive numbers boxed ASM types to their primitive ASM types.
*/
private val BOXED_TO_PRIMITIVES: Map<Type, Type> by lazy { SIGNATURE_LETTERS.mapKeys { (k, _) -> k.asm } }
/**
* Maps primitive ASM types to [Number] functions unboxing them.
*/
private val NUMBER_CONVERTER_METHODS: Map<Type, String> by lazy {
hashMapOf(
Type.BYTE_TYPE to "byteValue",
Type.SHORT_TYPE to "shortValue",
Type.INT_TYPE to "intValue",
Type.LONG_TYPE to "longValue",
Type.FLOAT_TYPE to "floatValue",
Type.DOUBLE_TYPE to "doubleValue"
)
}
/**
* Provides boxed number types values of which can be stored in JVM bytecode constant pool.
*/
private val INLINABLE_NUMBERS: Set<KClass<out Any>> by lazy { SIGNATURE_LETTERS.keys }
/**
* ASM type for [Expression].
*/
internal val EXPRESSION_TYPE: Type by lazy { Expression::class.asm }
/**
* ASM type for [java.lang.Number].
*/
internal val NUMBER_TYPE: Type by lazy { java.lang.Number::class.asm }
/**
* ASM type for [java.util.Map].
*/
internal val MAP_TYPE: Type by lazy { java.util.Map::class.asm }
/**
* ASM type for [java.lang.Object].
*/
internal val OBJECT_TYPE: Type by lazy { java.lang.Object::class.asm }
/**
* ASM type for array of [java.lang.Object].
*/
@Suppress("PLATFORM_CLASS_MAPPED_TO_KOTLIN", "RemoveRedundantQualifierName")
internal val OBJECT_ARRAY_TYPE: Type by lazy { Array<java.lang.Object>::class.asm }
/**
* ASM type for [Algebra].
*/
internal val ALGEBRA_TYPE: Type by lazy { Algebra::class.asm }
/**
* ASM type for [java.lang.String].
*/
internal val STRING_TYPE: Type by lazy { java.lang.String::class.asm }
/**
* ASM type for MapIntrinsics.
*/
internal val MAP_INTRINSICS_TYPE: Type by lazy { Type.getObjectType("scientifik/kmath/asm/internal/MapIntrinsics") }
}
}

View File

@ -0,0 +1,148 @@
package scientifik.kmath.asm.internal
import org.objectweb.asm.*
import org.objectweb.asm.Opcodes.INVOKEVIRTUAL
import org.objectweb.asm.commons.InstructionAdapter
import scientifik.kmath.ast.MST
import scientifik.kmath.expressions.Expression
import scientifik.kmath.operations.Algebra
import kotlin.reflect.KClass
private val methodNameAdapters: Map<Pair<String, Int>, String> by lazy {
hashMapOf(
"+" to 2 to "add",
"*" to 2 to "multiply",
"/" to 2 to "divide",
"+" to 1 to "unaryPlus",
"-" to 1 to "unaryMinus",
"-" to 2 to "minus"
)
}
internal val KClass<*>.asm: Type
get() = Type.getType(java)
/**
* Creates an [InstructionAdapter] from this [MethodVisitor].
*/
private fun MethodVisitor.instructionAdapter(): InstructionAdapter = InstructionAdapter(this)
/**
* Creates an [InstructionAdapter] from this [MethodVisitor] and applies [block] to it.
*/
internal fun MethodVisitor.instructionAdapter(block: InstructionAdapter.() -> Unit): InstructionAdapter =
instructionAdapter().apply(block)
/**
* Constructs a [Label], then applies it to this visitor.
*/
internal fun MethodVisitor.label(): Label {
val l = Label()
visitLabel(l)
return l
}
/**
* Creates a class name for [Expression] subclassed to implement [mst] provided.
*
* This methods helps to avoid collisions of class name to prevent loading several classes with the same name. If there
* is a colliding class, change [collision] parameter or leave it `0` to check existing classes recursively.
*/
internal tailrec fun buildName(mst: MST, collision: Int = 0): String {
val name = "scientifik.kmath.asm.generated.AsmCompiledExpression_${mst.hashCode()}_$collision"
try {
Class.forName(name)
} catch (ignored: ClassNotFoundException) {
return name
}
return buildName(mst, collision + 1)
}
@Suppress("FunctionName")
internal inline fun ClassWriter(flags: Int, block: ClassWriter.() -> Unit): ClassWriter =
ClassWriter(flags).apply(block)
internal inline fun ClassWriter.visitField(
access: Int,
name: String,
descriptor: String,
signature: String?,
value: Any?,
block: FieldVisitor.() -> Unit
): FieldVisitor = visitField(access, name, descriptor, signature, value).apply(block)
/**
* Checks if the target [context] for code generation contains a method with needed [name] and [arity], also builds
* type expectation stack for needed arity.
*
* @return `true` if contains, else `false`.
*/
private fun <T> AsmBuilder<T>.buildExpectationStack(context: Algebra<T>, name: String, arity: Int): Boolean {
val theName = methodNameAdapters[name to arity] ?: name
val hasSpecific = context.javaClass.methods.find { it.name == theName && it.parameters.size == arity } != null
val t = if (primitiveMode && hasSpecific) primitiveMask else tType
repeat(arity) { expectationStack.push(t) }
return hasSpecific
}
/**
* Checks if the target [context] for code generation contains a method with needed [name] and [arity] and inserts
* [AsmBuilder.invokeAlgebraOperation] of this method.
*
* @return `true` if contains, else `false`.
*/
private fun <T> AsmBuilder<T>.tryInvokeSpecific(context: Algebra<T>, name: String, arity: Int): Boolean {
val theName = methodNameAdapters[name to arity] ?: name
context.javaClass.methods.find {
var suitableSignature = it.name == theName && it.parameters.size == arity
if (primitiveMode && it.isBridge)
suitableSignature = false
suitableSignature
} ?: return false
val owner = context::class.asm
invokeAlgebraOperation(
owner = owner.internalName,
method = theName,
descriptor = Type.getMethodDescriptor(primitiveMaskBoxed, *Array(arity) { primitiveMask }),
expectedArity = arity,
opcode = INVOKEVIRTUAL
)
return true
}
/**
* Builds specialized algebra call with option to fallback to generic algebra operation accepting String.
*/
internal fun <T> AsmBuilder<T>.buildAlgebraOperationCall(
context: Algebra<T>,
name: String,
fallbackMethodName: String,
arity: Int,
parameters: AsmBuilder<T>.() -> Unit
) {
loadAlgebra()
if (!buildExpectationStack(context, name, arity)) loadStringConstant(name)
parameters()
if (!tryInvokeSpecific(context, name, arity)) invokeAlgebraOperation(
owner = AsmBuilder.ALGEBRA_TYPE.internalName,
method = fallbackMethodName,
descriptor = Type.getMethodDescriptor(
AsmBuilder.OBJECT_TYPE,
AsmBuilder.STRING_TYPE,
*Array(arity) { AsmBuilder.OBJECT_TYPE }
),
expectedArity = arity
)
}

View File

@ -0,0 +1,10 @@
package scientifik.kmath.asm.internal
import org.objectweb.asm.Label
import org.objectweb.asm.commons.InstructionAdapter
internal fun InstructionAdapter.label(): Label {
val l = Label()
visitLabel(l)
return l
}

View File

@ -0,0 +1,7 @@
@file:JvmName("MapIntrinsics")
package scientifik.kmath.asm.internal
internal fun <K, V> Map<K, V>.getOrFail(key: K, default: V?): V {
return this[key] ?: default ?: error("Parameter not found: $key")
}

View File

@ -0,0 +1,110 @@
package scietifik.kmath.asm
import scientifik.kmath.asm.compile
import scientifik.kmath.ast.mstInField
import scientifik.kmath.ast.mstInRing
import scientifik.kmath.ast.mstInSpace
import scientifik.kmath.expressions.invoke
import scientifik.kmath.operations.ByteRing
import scientifik.kmath.operations.RealField
import kotlin.test.Test
import kotlin.test.assertEquals
internal class TestAsmAlgebras {
@Test
fun space() {
val res1 = ByteRing.mstInSpace {
binaryOperation(
"+",
unaryOperation(
"+",
number(3.toByte()) - (number(2.toByte()) + (multiply(
add(number(1), number(1)),
2
) + number(1.toByte()) * 3.toByte() - number(1.toByte())))
),
number(1)
) + symbol("x") + zero
}("x" to 2.toByte())
val res2 = ByteRing.mstInSpace {
binaryOperation(
"+",
unaryOperation(
"+",
number(3.toByte()) - (number(2.toByte()) + (multiply(
add(number(1), number(1)),
2
) + number(1.toByte()) * 3.toByte() - number(1.toByte())))
),
number(1)
) + symbol("x") + zero
}.compile()("x" to 2.toByte())
assertEquals(res1, res2)
}
@Test
fun ring() {
val res1 = ByteRing.mstInRing {
binaryOperation(
"+",
unaryOperation(
"+",
(symbol("x") - (2.toByte() + (multiply(
add(number(1), number(1)),
2
) + 1.toByte()))) * 3.0 - 1.toByte()
),
number(1)
) * number(2)
}("x" to 3.toByte())
val res2 = ByteRing.mstInRing {
binaryOperation(
"+",
unaryOperation(
"+",
(symbol("x") - (2.toByte() + (multiply(
add(number(1), number(1)),
2
) + 1.toByte()))) * 3.0 - 1.toByte()
),
number(1)
) * number(2)
}.compile()("x" to 3.toByte())
assertEquals(res1, res2)
}
@Test
fun field() {
val res1 = RealField.mstInField {
+(3 - 2 + 2 * number(1) + 1.0) + binaryOperation(
"+",
(3.0 - (symbol("x") + (multiply(add(number(1.0), number(1.0)), 2) + 1.0))) * 3 - 1.0
+ number(1),
number(1) / 2 + number(2.0) * one
) + zero
}("x" to 2.0)
val res2 = RealField.mstInField {
+(3 - 2 + 2 * number(1) + 1.0) + binaryOperation(
"+",
(3.0 - (symbol("x") + (multiply(add(number(1.0), number(1.0)), 2) + 1.0))) * 3 - 1.0
+ number(1),
number(1) / 2 + number(2.0) * one
) + zero
}.compile()("x" to 2.0)
assertEquals(res1, res2)
}
}

View File

@ -0,0 +1,31 @@
package scietifik.kmath.asm
import scientifik.kmath.asm.compile
import scientifik.kmath.ast.mstInField
import scientifik.kmath.ast.mstInSpace
import scientifik.kmath.expressions.invoke
import scientifik.kmath.operations.RealField
import kotlin.test.Test
import kotlin.test.assertEquals
internal class TestAsmExpressions {
@Test
fun testUnaryOperationInvocation() {
val expression = RealField.mstInSpace { -symbol("x") }.compile()
val res = expression("x" to 2.0)
assertEquals(-2.0, res)
}
@Test
fun testBinaryOperationInvocation() {
val expression = RealField.mstInSpace { -symbol("x") + number(1.0) }.compile()
val res = expression("x" to 2.0)
assertEquals(-1.0, res)
}
@Test
fun testConstProductInvocation() {
val res = RealField.mstInField { symbol("x") * 2 }("x" to 2.0)
assertEquals(4.0, res)
}
}

View File

@ -0,0 +1,46 @@
package scietifik.kmath.asm
import scientifik.kmath.asm.compile
import scientifik.kmath.ast.mstInField
import scientifik.kmath.expressions.invoke
import scientifik.kmath.operations.RealField
import kotlin.test.Test
import kotlin.test.assertEquals
internal class TestAsmSpecialization {
@Test
fun testUnaryPlus() {
val expr = RealField.mstInField { unaryOperation("+", symbol("x")) }.compile()
assertEquals(2.0, expr("x" to 2.0))
}
@Test
fun testUnaryMinus() {
val expr = RealField.mstInField { unaryOperation("-", symbol("x")) }.compile()
assertEquals(-2.0, expr("x" to 2.0))
}
@Test
fun testAdd() {
val expr = RealField.mstInField { binaryOperation("+", symbol("x"), symbol("x")) }.compile()
assertEquals(4.0, expr("x" to 2.0))
}
@Test
fun testSine() {
val expr = RealField.mstInField { unaryOperation("sin", symbol("x")) }.compile()
assertEquals(0.0, expr("x" to 0.0))
}
@Test
fun testMinus() {
val expr = RealField.mstInField { binaryOperation("-", symbol("x"), symbol("x")) }.compile()
assertEquals(0.0, expr("x" to 2.0))
}
@Test
fun testDivide() {
val expr = RealField.mstInField { binaryOperation("/", symbol("x"), symbol("x")) }.compile()
assertEquals(1.0, expr("x" to 2.0))
}
}

View File

@ -0,0 +1,22 @@
package scietifik.kmath.asm
import scientifik.kmath.ast.mstInRing
import scientifik.kmath.expressions.invoke
import scientifik.kmath.operations.ByteRing
import kotlin.test.Test
import kotlin.test.assertEquals
import kotlin.test.assertFailsWith
internal class TestAsmVariables {
@Test
fun testVariableWithoutDefault() {
val expr = ByteRing.mstInRing { symbol("x") }
assertEquals(1.toByte(), expr("x" to 1.toByte()))
}
@Test
fun testVariableWithoutDefaultFails() {
val expr = ByteRing.mstInRing { symbol("x") }
assertFailsWith<IllegalStateException> { expr() }
}
}

View File

@ -0,0 +1,26 @@
package scietifik.kmath.ast
import scientifik.kmath.asm.compile
import scientifik.kmath.asm.expression
import scientifik.kmath.ast.mstInField
import scientifik.kmath.ast.parseMath
import scientifik.kmath.expressions.invoke
import scientifik.kmath.operations.Complex
import scientifik.kmath.operations.ComplexField
import kotlin.test.Test
import kotlin.test.assertEquals
internal class AsmTest {
@Test
fun `compile MST`() {
val mst = "2+2*(2+2)".parseMath()
val res = ComplexField.expression(mst)()
assertEquals(Complex(10.0, 0.0), res)
}
@Test
fun `compile MSTExpression`() {
val res = ComplexField.mstInField { number(2) + number(2) * (number(2) + number(2)) }.compile()()
assertEquals(Complex(10.0, 0.0), res)
}
}

View File

@ -0,0 +1,25 @@
package scietifik.kmath.ast
import scientifik.kmath.ast.evaluate
import scientifik.kmath.ast.mstInField
import scientifik.kmath.ast.parseMath
import scientifik.kmath.expressions.invoke
import scientifik.kmath.operations.Complex
import scientifik.kmath.operations.ComplexField
import kotlin.test.Test
import kotlin.test.assertEquals
internal class ParserTest {
@Test
fun `evaluate MST`() {
val mst = "2+2*(2+2)".parseMath()
val res = ComplexField.evaluate(mst)
assertEquals(Complex(10.0, 0.0), res)
}
@Test
fun `evaluate MSTExpression`() {
val res = ComplexField.mstInField { number(2) + number(2) * (number(2) + number(2)) }()
assertEquals(Complex(10.0, 0.0), res)
}
}

View File

@ -2,7 +2,7 @@ package scientifik.kmath.commons.expressions
import org.apache.commons.math3.analysis.differentiation.DerivativeStructure
import scientifik.kmath.expressions.Expression
import scientifik.kmath.expressions.ExpressionContext
import scientifik.kmath.expressions.ExpressionAlgebra
import scientifik.kmath.operations.ExtendedField
import scientifik.kmath.operations.Field
import kotlin.properties.ReadOnlyProperty
@ -59,8 +59,10 @@ class DerivativeStructureField(
override fun divide(a: DerivativeStructure, b: DerivativeStructure): DerivativeStructure = a.divide(b)
override fun sin(arg: DerivativeStructure): DerivativeStructure = arg.sin()
override fun cos(arg: DerivativeStructure): DerivativeStructure = arg.cos()
override fun asin(arg: DerivativeStructure): DerivativeStructure = arg.asin()
override fun acos(arg: DerivativeStructure): DerivativeStructure = arg.acos()
override fun atan(arg: DerivativeStructure): DerivativeStructure = arg.atan()
override fun power(arg: DerivativeStructure, pow: Number): DerivativeStructure = when (pow) {
is Double -> arg.pow(pow)
@ -74,10 +76,10 @@ class DerivativeStructureField(
override fun ln(arg: DerivativeStructure): DerivativeStructure = arg.log()
operator fun DerivativeStructure.plus(n: Number): DerivativeStructure = add(n.toDouble())
operator fun DerivativeStructure.minus(n: Number): DerivativeStructure = subtract(n.toDouble())
operator fun Number.plus(s: DerivativeStructure) = s + this
operator fun Number.minus(s: DerivativeStructure) = s - this
override operator fun DerivativeStructure.plus(b: Number): DerivativeStructure = add(b.toDouble())
override operator fun DerivativeStructure.minus(b: Number): DerivativeStructure = subtract(b.toDouble())
override operator fun Number.plus(b: DerivativeStructure) = b + this
override operator fun Number.minus(b: DerivativeStructure) = b - this
}
/**
@ -113,7 +115,7 @@ fun DiffExpression.derivative(name: String) = derivative(name to 1)
/**
* A context for [DiffExpression] (not to be confused with [DerivativeStructure])
*/
object DiffExpressionContext : ExpressionContext<Double>, Field<DiffExpression> {
object DiffExpressionAlgebra : ExpressionAlgebra<Double, DiffExpression>, Field<DiffExpression> {
override fun variable(name: String, default: Double?) =
DiffExpression { variable(name, default?.const()) }
@ -136,6 +138,3 @@ object DiffExpressionContext : ExpressionContext<Double>, Field<DiffExpression>
override fun divide(a: DiffExpression, b: DiffExpression) =
DiffExpression { a.function(this) / b.function(this) }
}

View File

@ -0,0 +1,38 @@
package scientifik.kmath.commons.random
import scientifik.kmath.prob.RandomGenerator
class CMRandomGeneratorWrapper(val factory: (IntArray) -> RandomGenerator) :
org.apache.commons.math3.random.RandomGenerator {
private var generator = factory(intArrayOf())
override fun nextBoolean(): Boolean = generator.nextBoolean()
override fun nextFloat(): Float = generator.nextDouble().toFloat()
override fun setSeed(seed: Int) {
generator = factory(intArrayOf(seed))
}
override fun setSeed(seed: IntArray) {
generator = factory(seed)
}
override fun setSeed(seed: Long) {
setSeed(seed.toInt())
}
override fun nextBytes(bytes: ByteArray) {
generator.fillBytes(bytes)
}
override fun nextInt(): Int = generator.nextInt()
override fun nextInt(n: Int): Int = generator.nextInt(n)
override fun nextGaussian(): Double = TODO()
override fun nextDouble(): Double = generator.nextDouble()
override fun nextLong(): Long = generator.nextLong()
}

View File

@ -18,7 +18,7 @@ object Transformations {
private fun Buffer<Complex>.toArray(): Array<org.apache.commons.math3.complex.Complex> =
Array(size) { org.apache.commons.math3.complex.Complex(get(it).re, get(it).im) }
private fun Buffer<Double>.asArray() = if (this is DoubleBuffer) {
private fun Buffer<Double>.asArray() = if (this is RealBuffer) {
array
} else {
DoubleArray(size) { i -> get(i) }

View File

@ -0,0 +1,15 @@
package scientifik.kmath.domains
import scientifik.kmath.linear.Point
/**
* A simple geometric domain
*/
interface Domain<T : Any> {
operator fun contains(point: Point<T>): Boolean
/**
* Number of hyperspace dimensions
*/
val dimension: Int
}

View File

@ -0,0 +1,67 @@
/*
* Copyright 2015 Alexander Nozik.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package scientifik.kmath.domains
import scientifik.kmath.linear.Point
import scientifik.kmath.structures.RealBuffer
import scientifik.kmath.structures.indices
/**
*
* HyperSquareDomain class.
*
* @author Alexander Nozik
*/
class HyperSquareDomain(private val lower: RealBuffer, private val upper: RealBuffer) : RealDomain {
override operator fun contains(point: Point<Double>): Boolean = point.indices.all { i ->
point[i] in lower[i]..upper[i]
}
override val dimension: Int get() = lower.size
override fun getLowerBound(num: Int, point: Point<Double>): Double? = lower[num]
override fun getLowerBound(num: Int): Double? = lower[num]
override fun getUpperBound(num: Int, point: Point<Double>): Double? = upper[num]
override fun getUpperBound(num: Int): Double? = upper[num]
override fun nearestInDomain(point: Point<Double>): Point<Double> {
val res: DoubleArray = DoubleArray(point.size) { i ->
when {
point[i] < lower[i] -> lower[i]
point[i] > upper[i] -> upper[i]
else -> point[i]
}
}
return RealBuffer(*res)
}
override fun volume(): Double {
var res = 1.0
for (i in 0 until dimension) {
if (lower[i].isInfinite() || upper[i].isInfinite()) {
return Double.POSITIVE_INFINITY
}
if (upper[i] > lower[i]) {
res *= upper[i] - lower[i]
}
}
return res
}
}

View File

@ -0,0 +1,65 @@
/*
* Copyright 2015 Alexander Nozik.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package scientifik.kmath.domains
import scientifik.kmath.linear.Point
/**
* n-dimensional volume
*
* @author Alexander Nozik
*/
interface RealDomain: Domain<Double> {
fun nearestInDomain(point: Point<Double>): Point<Double>
/**
* The lower edge for the domain going down from point
* @param num
* @param point
* @return
*/
fun getLowerBound(num: Int, point: Point<Double>): Double?
/**
* The upper edge of the domain going up from point
* @param num
* @param point
* @return
*/
fun getUpperBound(num: Int, point: Point<Double>): Double?
/**
* Global lower edge
* @param num
* @return
*/
fun getLowerBound(num: Int): Double?
/**
* Global upper edge
* @param num
* @return
*/
fun getUpperBound(num: Int): Double?
/**
* Hyper volume
* @return
*/
fun volume(): Double
}

View File

@ -0,0 +1,36 @@
/*
* Copyright 2015 Alexander Nozik.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package scientifik.kmath.domains
import scientifik.kmath.linear.Point
class UnconstrainedDomain(override val dimension: Int) : RealDomain {
override operator fun contains(point: Point<Double>): Boolean = true
override fun getLowerBound(num: Int, point: Point<Double>): Double? = Double.NEGATIVE_INFINITY
override fun getLowerBound(num: Int): Double? = Double.NEGATIVE_INFINITY
override fun getUpperBound(num: Int, point: Point<Double>): Double? = Double.POSITIVE_INFINITY
override fun getUpperBound(num: Int): Double? = Double.POSITIVE_INFINITY
override fun nearestInDomain(point: Point<Double>): Point<Double> = point
override fun volume(): Double = Double.POSITIVE_INFINITY
}

View File

@ -0,0 +1,48 @@
package scientifik.kmath.domains
import scientifik.kmath.linear.Point
import scientifik.kmath.structures.asBuffer
inline class UnivariateDomain(val range: ClosedFloatingPointRange<Double>) : RealDomain {
operator fun contains(d: Double): Boolean = range.contains(d)
override operator fun contains(point: Point<Double>): Boolean {
require(point.size == 0)
return contains(point[0])
}
override fun nearestInDomain(point: Point<Double>): Point<Double> {
require(point.size == 1)
val value = point[0]
return when{
value in range -> point
value >= range.endInclusive -> doubleArrayOf(range.endInclusive).asBuffer()
else -> doubleArrayOf(range.start).asBuffer()
}
}
override fun getLowerBound(num: Int, point: Point<Double>): Double? {
require(num == 0)
return range.start
}
override fun getUpperBound(num: Int, point: Point<Double>): Double? {
require(num == 0)
return range.endInclusive
}
override fun getLowerBound(num: Int): Double? {
require(num == 0)
return range.start
}
override fun getUpperBound(num: Int): Double? {
require(num == 0)
return range.endInclusive
}
override fun volume(): Double = range.endInclusive - range.start
override val dimension: Int get() = 1
}

View File

@ -0,0 +1,23 @@
package scientifik.kmath.expressions
import scientifik.kmath.operations.Field
import scientifik.kmath.operations.Ring
import scientifik.kmath.operations.Space
/**
* Create a functional expression on this [Space]
*/
fun <T> Space<T>.spaceExpression(block: FunctionalExpressionSpace<T, Space<T>>.() -> Expression<T>): Expression<T> =
FunctionalExpressionSpace(this).run(block)
/**
* Create a functional expression on this [Ring]
*/
fun <T> Ring<T>.ringExpression(block: FunctionalExpressionRing<T, Ring<T>>.() -> Expression<T>): Expression<T> =
FunctionalExpressionRing(this).run(block)
/**
* Create a functional expression on this [Field]
*/
fun <T> Field<T>.fieldExpression(block: FunctionalExpressionField<T, Field<T>>.() -> Expression<T>): Expression<T> =
FunctionalExpressionField(this).run(block)

View File

@ -1,14 +1,21 @@
package scientifik.kmath.expressions
import scientifik.kmath.operations.Field
import scientifik.kmath.operations.Ring
import scientifik.kmath.operations.Space
import scientifik.kmath.operations.Algebra
/**
* An elementary function that could be invoked on a map of arguments
*/
interface Expression<T> {
operator fun invoke(arguments: Map<String, T>): T
companion object
}
/**
* Create simple lazily evaluated expression inside given algebra
*/
fun <T> Algebra<T>.expression(block: Algebra<T>.(arguments: Map<String, T>) -> T): Expression<T> = object: Expression<T> {
override fun invoke(arguments: Map<String, T>): T = block(arguments)
}
operator fun <T> Expression<T>.invoke(vararg pairs: Pair<String, T>): T = invoke(mapOf(*pairs))
@ -16,77 +23,14 @@ operator fun <T> Expression<T>.invoke(vararg pairs: Pair<String, T>): T = invoke
/**
* A context for expression construction
*/
interface ExpressionContext<T> {
interface ExpressionAlgebra<T, E> : Algebra<E> {
/**
* Introduce a variable into expression context
*/
fun variable(name: String, default: T? = null): Expression<T>
fun variable(name: String, default: T? = null): E
/**
* A constant expression which does not depend on arguments
*/
fun const(value: T): Expression<T>
}
internal class VariableExpression<T>(val name: String, val default: T? = null) : Expression<T> {
override fun invoke(arguments: Map<String, T>): T =
arguments[name] ?: default ?: error("Parameter not found: $name")
}
internal class ConstantExpression<T>(val value: T) : Expression<T> {
override fun invoke(arguments: Map<String, T>): T = value
}
internal class SumExpression<T>(val context: Space<T>, val first: Expression<T>, val second: Expression<T>) :
Expression<T> {
override fun invoke(arguments: Map<String, T>): T = context.add(first.invoke(arguments), second.invoke(arguments))
}
internal class ProductExpression<T>(val context: Ring<T>, val first: Expression<T>, val second: Expression<T>) :
Expression<T> {
override fun invoke(arguments: Map<String, T>): T =
context.multiply(first.invoke(arguments), second.invoke(arguments))
}
internal class ConstProductExpession<T>(val context: Space<T>, val expr: Expression<T>, val const: Number) :
Expression<T> {
override fun invoke(arguments: Map<String, T>): T = context.multiply(expr.invoke(arguments), const)
}
internal class DivExpession<T>(val context: Field<T>, val expr: Expression<T>, val second: Expression<T>) :
Expression<T> {
override fun invoke(arguments: Map<String, T>): T = context.divide(expr.invoke(arguments), second.invoke(arguments))
}
open class ExpressionSpace<T>(val space: Space<T>) : Space<Expression<T>>, ExpressionContext<T> {
override val zero: Expression<T> = ConstantExpression(space.zero)
override fun const(value: T): Expression<T> = ConstantExpression(value)
override fun variable(name: String, default: T?): Expression<T> = VariableExpression(name, default)
override fun add(a: Expression<T>, b: Expression<T>): Expression<T> = SumExpression(space, a, b)
override fun multiply(a: Expression<T>, k: Number): Expression<T> = ConstProductExpession(space, a, k)
operator fun Expression<T>.plus(arg: T) = this + const(arg)
operator fun Expression<T>.minus(arg: T) = this - const(arg)
operator fun T.plus(arg: Expression<T>) = arg + this
operator fun T.minus(arg: Expression<T>) = arg - this
}
class ExpressionField<T>(val field: Field<T>) : Field<Expression<T>>, ExpressionSpace<T>(field) {
override val one: Expression<T> = ConstantExpression(field.one)
override fun multiply(a: Expression<T>, b: Expression<T>): Expression<T> = ProductExpression(field, a, b)
override fun divide(a: Expression<T>, b: Expression<T>): Expression<T> = DivExpession(field, a, b)
operator fun Expression<T>.times(arg: T) = this * const(arg)
operator fun Expression<T>.div(arg: T) = this / const(arg)
operator fun T.times(arg: Expression<T>) = arg * this
operator fun T.div(arg: Expression<T>) = arg / this
fun const(value: T): E
}

View File

@ -0,0 +1,146 @@
package scientifik.kmath.expressions
import scientifik.kmath.operations.*
internal class FunctionalUnaryOperation<T>(val context: Algebra<T>, val name: String, private val expr: Expression<T>) :
Expression<T> {
override fun invoke(arguments: Map<String, T>): T = context.unaryOperation(name, expr.invoke(arguments))
}
internal class FunctionalBinaryOperation<T>(
val context: Algebra<T>,
val name: String,
val first: Expression<T>,
val second: Expression<T>
) : Expression<T> {
override fun invoke(arguments: Map<String, T>): T =
context.binaryOperation(name, first.invoke(arguments), second.invoke(arguments))
}
internal class FunctionalVariableExpression<T>(val name: String, val default: T? = null) : Expression<T> {
override fun invoke(arguments: Map<String, T>): T =
arguments[name] ?: default ?: error("Parameter not found: $name")
}
internal class FunctionalConstantExpression<T>(val value: T) : Expression<T> {
override fun invoke(arguments: Map<String, T>): T = value
}
internal class FunctionalConstProductExpression<T>(
val context: Space<T>,
private val expr: Expression<T>,
val const: Number
) : Expression<T> {
override fun invoke(arguments: Map<String, T>): T = context.multiply(expr.invoke(arguments), const)
}
/**
* A context class for [Expression] construction.
*
* @param algebra The algebra to provide for Expressions built.
*/
abstract class FunctionalExpressionAlgebra<T, A : Algebra<T>>(val algebra: A) : ExpressionAlgebra<T, Expression<T>> {
/**
* Builds an Expression of constant expression which does not depend on arguments.
*/
override fun const(value: T): Expression<T> = FunctionalConstantExpression(value)
/**
* Builds an Expression to access a variable.
*/
override fun variable(name: String, default: T?): Expression<T> = FunctionalVariableExpression(name, default)
/**
* Builds an Expression of dynamic call of binary operation [operation] on [left] and [right].
*/
override fun binaryOperation(operation: String, left: Expression<T>, right: Expression<T>): Expression<T> =
FunctionalBinaryOperation(algebra, operation, left, right)
/**
* Builds an Expression of dynamic call of unary operation with name [operation] on [arg].
*/
override fun unaryOperation(operation: String, arg: Expression<T>): Expression<T> =
FunctionalUnaryOperation(algebra, operation, arg)
}
/**
* A context class for [Expression] construction for [Space] algebras.
*/
open class FunctionalExpressionSpace<T, A : Space<T>>(algebra: A) :
FunctionalExpressionAlgebra<T, A>(algebra), Space<Expression<T>> {
override val zero: Expression<T> get() = const(algebra.zero)
/**
* Builds an Expression of addition of two another expressions.
*/
override fun add(a: Expression<T>, b: Expression<T>): Expression<T> =
FunctionalBinaryOperation(algebra, SpaceOperations.PLUS_OPERATION, a, b)
/**
* Builds an Expression of multiplication of expression by number.
*/
override fun multiply(a: Expression<T>, k: Number): Expression<T> =
FunctionalConstProductExpression(algebra, a, k)
operator fun Expression<T>.plus(arg: T): Expression<T> = this + const(arg)
operator fun Expression<T>.minus(arg: T): Expression<T> = this - const(arg)
operator fun T.plus(arg: Expression<T>): Expression<T> = arg + this
operator fun T.minus(arg: Expression<T>): Expression<T> = arg - this
override fun unaryOperation(operation: String, arg: Expression<T>): Expression<T> =
super<FunctionalExpressionAlgebra>.unaryOperation(operation, arg)
override fun binaryOperation(operation: String, left: Expression<T>, right: Expression<T>): Expression<T> =
super<FunctionalExpressionAlgebra>.binaryOperation(operation, left, right)
}
open class FunctionalExpressionRing<T, A>(algebra: A) : FunctionalExpressionSpace<T, A>(algebra),
Ring<Expression<T>> where A : Ring<T>, A : NumericAlgebra<T> {
override val one: Expression<T>
get() = const(algebra.one)
/**
* Builds an Expression of multiplication of two expressions.
*/
override fun multiply(a: Expression<T>, b: Expression<T>): Expression<T> =
FunctionalBinaryOperation(algebra, RingOperations.TIMES_OPERATION, a, b)
operator fun Expression<T>.times(arg: T): Expression<T> = this * const(arg)
operator fun T.times(arg: Expression<T>): Expression<T> = arg * this
override fun unaryOperation(operation: String, arg: Expression<T>): Expression<T> =
super<FunctionalExpressionSpace>.unaryOperation(operation, arg)
override fun binaryOperation(operation: String, left: Expression<T>, right: Expression<T>): Expression<T> =
super<FunctionalExpressionSpace>.binaryOperation(operation, left, right)
}
open class FunctionalExpressionField<T, A>(algebra: A) :
FunctionalExpressionRing<T, A>(algebra),
Field<Expression<T>> where A : Field<T>, A : NumericAlgebra<T> {
/**
* Builds an Expression of division an expression by another one.
*/
override fun divide(a: Expression<T>, b: Expression<T>): Expression<T> =
FunctionalBinaryOperation(algebra, FieldOperations.DIV_OPERATION, a, b)
operator fun Expression<T>.div(arg: T): Expression<T> = this / const(arg)
operator fun T.div(arg: Expression<T>): Expression<T> = arg / this
override fun unaryOperation(operation: String, arg: Expression<T>): Expression<T> =
super<FunctionalExpressionRing>.unaryOperation(operation, arg)
override fun binaryOperation(operation: String, left: Expression<T>, right: Expression<T>): Expression<T> =
super<FunctionalExpressionRing>.binaryOperation(operation, left, right)
}
inline fun <T, A : Space<T>> A.expressionInSpace(block: FunctionalExpressionSpace<T, A>.() -> Expression<T>): Expression<T> =
FunctionalExpressionSpace(this).block()
inline fun <T, A : Ring<T>> A.expressionInRing(block: FunctionalExpressionRing<T, A>.() -> Expression<T>): Expression<T> =
FunctionalExpressionRing(this).block()
inline fun <T, A : Field<T>> A.expressionInField(block: FunctionalExpressionField<T, A>.() -> Expression<T>): Expression<T> =
FunctionalExpressionField(this).block()

View File

@ -30,11 +30,11 @@ object RealMatrixContext : GenericMatrixContext<Double, RealField> {
override val elementContext get() = RealField
override inline fun produce(rows: Int, columns: Int, initializer: (i: Int, j: Int) -> Double): Matrix<Double> {
val buffer = DoubleBuffer(rows * columns) { offset -> initializer(offset / columns, offset % columns) }
val buffer = RealBuffer(rows * columns) { offset -> initializer(offset / columns, offset % columns) }
return BufferMatrix(rows, columns, buffer)
}
override inline fun point(size: Int, initializer: (Int) -> Double): Point<Double> = DoubleBuffer(size,initializer)
override inline fun point(size: Int, initializer: (Int) -> Double): Point<Double> = RealBuffer(size,initializer)
}
class BufferMatrix<T : Any>(
@ -102,7 +102,7 @@ infix fun BufferMatrix<Double>.dot(other: BufferMatrix<Double>): BufferMatrix<Do
val array = DoubleArray(this.rowNum * other.colNum)
//convert to array to insure there is not memory indirection
fun Buffer<out Double>.unsafeArray(): DoubleArray = if (this is DoubleBuffer) {
fun Buffer<out Double>.unsafeArray(): DoubleArray = if (this is RealBuffer) {
array
} else {
DoubleArray(size) { get(it) }
@ -119,6 +119,6 @@ infix fun BufferMatrix<Double>.dot(other: BufferMatrix<Double>): BufferMatrix<Do
}
}
val buffer = DoubleBuffer(array)
val buffer = RealBuffer(array)
return BufferMatrix(rowNum, other.colNum, buffer)
}

View File

@ -128,14 +128,14 @@ fun <T : Comparable<T>, F : Field<T>> GenericMatrixContext<T, F>.lup(
luRow[col] = sum
// maintain best permutation choice
if (abs(sum) > largest) {
largest = abs(sum)
if (this@lup.abs(sum) > largest) {
largest = this@lup.abs(sum)
max = row
}
}
// Singularity check
if (checkSingular(abs(lu[max, col]))) {
if (checkSingular(this@lup.abs(lu[max, col]))) {
error("The matrix is singular")
}

View File

@ -90,20 +90,20 @@ abstract class AutoDiffField<T : Any, F : Field<T>> : Field<Variable<T>> {
// Overloads for Double constants
operator fun Number.plus(that: Variable<T>): Variable<T> =
derive(variable { this@plus.toDouble() * one + that.value }) { z ->
that.d += z.d
override operator fun Number.plus(b: Variable<T>): Variable<T> =
derive(variable { this@plus.toDouble() * one + b.value }) { z ->
b.d += z.d
}
operator fun Variable<T>.plus(b: Number): Variable<T> = b.plus(this)
override operator fun Variable<T>.plus(b: Number): Variable<T> = b.plus(this)
operator fun Number.minus(that: Variable<T>): Variable<T> =
derive(variable { this@minus.toDouble() * one - that.value }) { z ->
that.d -= z.d
override operator fun Number.minus(b: Variable<T>): Variable<T> =
derive(variable { this@minus.toDouble() * one - b.value }) { z ->
b.d -= z.d
}
operator fun Variable<T>.minus(that: Number): Variable<T> =
derive(variable { this@minus.value - one * that.toDouble() }) { z ->
override operator fun Variable<T>.minus(b: Number): Variable<T> =
derive(variable { this@minus.value - one * b.toDouble() }) { z ->
this@minus.d += z.d
}
}

View File

@ -1,5 +1,7 @@
package scientifik.kmath.misc
import kotlin.math.abs
/**
* Convert double range to sequence.
*
@ -8,28 +10,36 @@ package scientifik.kmath.misc
*
* If step is negative, the same goes from upper boundary downwards
*/
fun ClosedFloatingPointRange<Double>.toSequence(step: Double): Sequence<Double> =
when {
step == 0.0 -> error("Zero step in double progression")
step > 0 -> sequence {
var current = start
while (current <= endInclusive) {
yield(current)
current += step
}
}
else -> sequence {
var current = endInclusive
while (current >= start) {
yield(current)
current += step
}
}
fun ClosedFloatingPointRange<Double>.toSequenceWithStep(step: Double): Sequence<Double> = when {
step == 0.0 -> error("Zero step in double progression")
step > 0 -> sequence {
var current = start
while (current <= endInclusive) {
yield(current)
current += step
}
}
else -> sequence {
var current = endInclusive
while (current >= start) {
yield(current)
current += step
}
}
}
/**
* Convert double range to sequence with the fixed number of points
*/
fun ClosedFloatingPointRange<Double>.toSequenceWithPoints(numPoints: Int): Sequence<Double> {
require(numPoints > 1) { "The number of points should be more than 2" }
return toSequenceWithStep(abs(endInclusive - start) / (numPoints - 1))
}
/**
* Convert double range to array of evenly spaced doubles, where the size of array equals [numPoints]
*/
@Deprecated("Replace by 'toSequenceWithPoints'")
fun ClosedFloatingPointRange<Double>.toGrid(numPoints: Int): DoubleArray {
if (numPoints < 2) error("Can't create generic grid with less than two points")
return DoubleArray(numPoints) { i -> start + (endInclusive - start) / (numPoints - 1) * i }

View File

@ -6,9 +6,43 @@ annotation class KMathContext
/**
* Marker interface for any algebra
*/
interface Algebra<T>
interface Algebra<T> {
/**
* Wrap raw string or variable
*/
fun symbol(value: String): T = error("Wrapping of '$value' is not supported in $this")
inline operator fun <T : Algebra<*>, R> T.invoke(block: T.() -> R): R = run(block)
/**
* Dynamic call of unary operation with name [operation] on [arg]
*/
fun unaryOperation(operation: String, arg: T): T
/**
* Dynamic call of binary operation [operation] on [left] and [right]
*/
fun binaryOperation(operation: String, left: T, right: T): T
}
/**
* An algebra with numeric representation of members
*/
interface NumericAlgebra<T> : Algebra<T> {
/**
* Wrap a number
*/
fun number(value: Number): T
fun leftSideNumberOperation(operation: String, left: Number, right: T): T =
binaryOperation(operation, number(left), right)
fun rightSideNumberOperation(operation: String, left: T, right: Number): T =
leftSideNumberOperation(operation, right, left)
}
/**
* Call a block with an [Algebra] as receiver
*/
inline operator fun <A : Algebra<*>, R> A.invoke(block: A.() -> R): R = run(block)
/**
* Space-like operations without neutral element
@ -24,14 +58,34 @@ interface SpaceOperations<T> : Algebra<T> {
*/
fun multiply(a: T, k: Number): T
//Operation to be performed in this context
//Operation to be performed in this context. Could be moved to extensions in case of KEEP-176
operator fun T.unaryMinus(): T = multiply(this, -1.0)
operator fun T.unaryPlus(): T = this
operator fun T.plus(b: T): T = add(this, b)
operator fun T.minus(b: T): T = add(this, -b)
operator fun T.times(k: Number) = multiply(this, k.toDouble())
operator fun T.div(k: Number) = multiply(this, 1.0 / k.toDouble())
operator fun Number.times(b: T) = b * this
override fun unaryOperation(operation: String, arg: T): T = when (operation) {
PLUS_OPERATION -> arg
MINUS_OPERATION -> -arg
else -> error("Unary operation $operation not defined in $this")
}
override fun binaryOperation(operation: String, left: T, right: T): T = when (operation) {
PLUS_OPERATION -> add(left, right)
MINUS_OPERATION -> left - right
else -> error("Binary operation $operation not defined in $this")
}
companion object {
const val PLUS_OPERATION = "+"
const val MINUS_OPERATION = "-"
const val NOT_OPERATION = "!"
}
}
@ -60,22 +114,48 @@ interface RingOperations<T> : SpaceOperations<T> {
fun multiply(a: T, b: T): T
operator fun T.times(b: T): T = multiply(this, b)
override fun binaryOperation(operation: String, left: T, right: T): T = when (operation) {
TIMES_OPERATION -> multiply(left, right)
else -> super.binaryOperation(operation, left, right)
}
companion object {
const val TIMES_OPERATION = "*"
}
}
/**
* The same as {@link Space} but with additional multiplication operation
*/
interface Ring<T> : Space<T>, RingOperations<T> {
interface Ring<T> : Space<T>, RingOperations<T>, NumericAlgebra<T> {
/**
* neutral operation for multiplication
*/
val one: T
// operator fun T.plus(b: Number) = this.plus(b * one)
// operator fun Number.plus(b: T) = b + this
//
// operator fun T.minus(b: Number) = this.minus(b * one)
// operator fun Number.minus(b: T) = -b + this
override fun number(value: Number): T = one * value.toDouble()
override fun leftSideNumberOperation(operation: String, left: Number, right: T): T = when (operation) {
SpaceOperations.PLUS_OPERATION -> left + right
SpaceOperations.MINUS_OPERATION -> left - right
RingOperations.TIMES_OPERATION -> left * right
else -> super.leftSideNumberOperation(operation, left, right)
}
override fun rightSideNumberOperation(operation: String, left: T, right: Number): T = when (operation) {
SpaceOperations.PLUS_OPERATION -> left + right
SpaceOperations.MINUS_OPERATION -> left - right
RingOperations.TIMES_OPERATION -> left * right
else -> super.rightSideNumberOperation(operation, left, right)
}
operator fun T.plus(b: Number) = this.plus(number(b))
operator fun Number.plus(b: T) = b + this
operator fun T.minus(b: Number) = this.minus(number(b))
operator fun Number.minus(b: T) = -b + this
}
/**
@ -85,6 +165,15 @@ interface FieldOperations<T> : RingOperations<T> {
fun divide(a: T, b: T): T
operator fun T.div(b: T): T = divide(this, b)
override fun binaryOperation(operation: String, left: T, right: T): T = when (operation) {
DIV_OPERATION -> divide(left, right)
else -> super.binaryOperation(operation, left, right)
}
companion object {
const val DIV_OPERATION = "/"
}
}
/**

View File

@ -8,10 +8,12 @@ import scientifik.memory.MemorySpec
import scientifik.memory.MemoryWriter
import kotlin.math.*
private val PI_DIV_2 = Complex(PI / 2, 0)
/**
* A field for complex numbers
*/
object ComplexField : ExtendedFieldOperations<Complex>, Field<Complex> {
object ComplexField : ExtendedField<Complex> {
override val zero: Complex = Complex(0.0, 0.0)
override val one: Complex = Complex(1.0, 0.0)
@ -30,9 +32,11 @@ object ComplexField : ExtendedFieldOperations<Complex>, Field<Complex> {
return Complex((a.re * b.re + a.im * b.im) / norm, (a.re * b.im - a.im * b.re) / norm)
}
override fun sin(arg: Complex): Complex = i / 2 * (exp(-i * arg) - exp(i * arg))
override fun sin(arg: Complex): Complex = i * (exp(-i * arg) - exp(i * arg)) / 2
override fun cos(arg: Complex): Complex = (exp(-i * arg) + exp(i * arg)) / 2
override fun asin(arg: Complex): Complex = -i * ln(sqrt(one - arg pow 2) + i * arg)
override fun acos(arg: Complex): Complex = PI_DIV_2 + i * ln(sqrt(one - arg pow 2) + i * arg)
override fun atan(arg: Complex): Complex = i * (ln(one - i * arg) - ln(one + i * arg)) / 2
override fun power(arg: Complex, pow: Number): Complex =
arg.r.pow(pow.toDouble()) * (cos(pow.toDouble() * arg.theta) + i * sin(pow.toDouble() * arg.theta))
@ -50,6 +54,12 @@ object ComplexField : ExtendedFieldOperations<Complex>, Field<Complex> {
operator fun Complex.minus(d: Double) = add(this, -d.toComplex())
operator fun Double.times(c: Complex) = Complex(c.re * this, c.im * this)
override fun symbol(value: String): Complex = if (value == "i") {
i
} else {
super.symbol(value)
}
}
/**

View File

@ -7,12 +7,32 @@ import kotlin.math.pow as kpow
* Advanced Number-like field that implements basic operations
*/
interface ExtendedFieldOperations<T> :
FieldOperations<T>,
TrigonometricOperations<T>,
InverseTrigonometricOperations<T>,
PowerOperations<T>,
ExponentialOperations<T>
ExponentialOperations<T> {
interface ExtendedField<T> : ExtendedFieldOperations<T>, Field<T>
override fun tan(arg: T): T = sin(arg) / cos(arg)
override fun unaryOperation(operation: String, arg: T): T = when (operation) {
TrigonometricOperations.COS_OPERATION -> cos(arg)
TrigonometricOperations.SIN_OPERATION -> sin(arg)
TrigonometricOperations.TAN_OPERATION -> tan(arg)
InverseTrigonometricOperations.ACOS_OPERATION -> acos(arg)
InverseTrigonometricOperations.ASIN_OPERATION -> asin(arg)
InverseTrigonometricOperations.ATAN_OPERATION -> atan(arg)
PowerOperations.SQRT_OPERATION -> sqrt(arg)
ExponentialOperations.EXP_OPERATION -> exp(arg)
ExponentialOperations.LN_OPERATION -> ln(arg)
else -> super.unaryOperation(operation, arg)
}
}
interface ExtendedField<T> : ExtendedFieldOperations<T>, Field<T> {
override fun rightSideNumberOperation(operation: String, left: T, right: Number): T = when (operation) {
PowerOperations.POW_OPERATION -> power(left, right)
else -> super.rightSideNumberOperation(operation, left, right)
}
}
/**
* Real field element wrapping double.
@ -44,6 +64,10 @@ object RealField : ExtendedField<Double>, Norm<Double, Double> {
override inline fun sin(arg: Double) = kotlin.math.sin(arg)
override inline fun cos(arg: Double) = kotlin.math.cos(arg)
override inline fun tan(arg: Double): Double = kotlin.math.tan(arg)
override inline fun acos(arg: Double): Double = kotlin.math.acos(arg)
override inline fun asin(arg: Double): Double = kotlin.math.asin(arg)
override inline fun atan(arg: Double): Double = kotlin.math.atan(arg)
override inline fun power(arg: Double, pow: Number) = arg.kpow(pow.toDouble())
@ -75,6 +99,10 @@ object FloatField : ExtendedField<Float>, Norm<Float, Float> {
override inline fun sin(arg: Float) = kotlin.math.sin(arg)
override inline fun cos(arg: Float) = kotlin.math.cos(arg)
override inline fun tan(arg: Float) = kotlin.math.tan(arg)
override inline fun acos(arg: Float) = kotlin.math.acos(arg)
override inline fun asin(arg: Float) = kotlin.math.asin(arg)
override inline fun atan(arg: Float) = kotlin.math.atan(arg)
override inline fun power(arg: Float, pow: Number) = arg.pow(pow.toFloat())

View File

@ -13,16 +13,33 @@ package scientifik.kmath.operations
interface TrigonometricOperations<T> : FieldOperations<T> {
fun sin(arg: T): T
fun cos(arg: T): T
fun tan(arg: T): T
fun tg(arg: T): T = sin(arg) / cos(arg)
companion object {
const val SIN_OPERATION = "sin"
const val COS_OPERATION = "cos"
const val TAN_OPERATION = "tan"
}
}
fun ctg(arg: T): T = cos(arg) / sin(arg)
interface InverseTrigonometricOperations<T> : TrigonometricOperations<T> {
fun asin(arg: T): T
fun acos(arg: T): T
fun atan(arg: T): T
companion object {
const val ASIN_OPERATION = "asin"
const val ACOS_OPERATION = "acos"
const val ATAN_OPERATION = "atan"
}
}
fun <T : MathElement<out TrigonometricOperations<T>>> sin(arg: T): T = arg.context.sin(arg)
fun <T : MathElement<out TrigonometricOperations<T>>> cos(arg: T): T = arg.context.cos(arg)
fun <T : MathElement<out TrigonometricOperations<T>>> tg(arg: T): T = arg.context.tg(arg)
fun <T : MathElement<out TrigonometricOperations<T>>> ctg(arg: T): T = arg.context.ctg(arg)
fun <T : MathElement<out TrigonometricOperations<T>>> tan(arg: T): T = arg.context.tan(arg)
fun <T : MathElement<out InverseTrigonometricOperations<T>>> asin(arg: T): T = arg.context.asin(arg)
fun <T : MathElement<out InverseTrigonometricOperations<T>>> acos(arg: T): T = arg.context.acos(arg)
fun <T : MathElement<out InverseTrigonometricOperations<T>>> atan(arg: T): T = arg.context.atan(arg)
/* Power and roots */
@ -34,6 +51,11 @@ interface PowerOperations<T> : Algebra<T> {
fun sqrt(arg: T) = power(arg, 0.5)
infix fun T.pow(pow: Number) = power(this, pow)
companion object {
const val POW_OPERATION = "pow"
const val SQRT_OPERATION = "sqrt"
}
}
infix fun <T : MathElement<out PowerOperations<T>>> T.pow(power: Double): T = context.power(this, power)
@ -42,9 +64,14 @@ fun <T : MathElement<out PowerOperations<T>>> sqr(arg: T): T = arg pow 2.0
/* Exponential */
interface ExponentialOperations<T>: Algebra<T> {
interface ExponentialOperations<T> : Algebra<T> {
fun exp(arg: T): T
fun ln(arg: T): T
companion object {
const val EXP_OPERATION = "exp"
const val LN_OPERATION = "ln"
}
}
fun <T : MathElement<out ExponentialOperations<T>>> exp(arg: T): T = arg.context.exp(arg)

View File

@ -37,9 +37,9 @@ interface Buffer<T> {
companion object {
inline fun real(size: Int, initializer: (Int) -> Double): DoubleBuffer {
inline fun real(size: Int, initializer: (Int) -> Double): RealBuffer {
val array = DoubleArray(size) { initializer(it) }
return DoubleBuffer(array)
return RealBuffer(array)
}
/**
@ -51,7 +51,7 @@ interface Buffer<T> {
inline fun <T : Any> auto(type: KClass<T>, size: Int, crossinline initializer: (Int) -> T): Buffer<T> {
//TODO add resolution based on Annotation or companion resolution
return when (type) {
Double::class -> DoubleBuffer(DoubleArray(size) { initializer(it) as Double }) as Buffer<T>
Double::class -> RealBuffer(DoubleArray(size) { initializer(it) as Double }) as Buffer<T>
Short::class -> ShortBuffer(ShortArray(size) { initializer(it) as Short }) as Buffer<T>
Int::class -> IntBuffer(IntArray(size) { initializer(it) as Int }) as Buffer<T>
Long::class -> LongBuffer(LongArray(size) { initializer(it) as Long }) as Buffer<T>
@ -93,7 +93,7 @@ interface MutableBuffer<T> : Buffer<T> {
@Suppress("UNCHECKED_CAST")
inline fun <T : Any> auto(type: KClass<out T>, size: Int, initializer: (Int) -> T): MutableBuffer<T> {
return when (type) {
Double::class -> DoubleBuffer(DoubleArray(size) { initializer(it) as Double }) as MutableBuffer<T>
Double::class -> RealBuffer(DoubleArray(size) { initializer(it) as Double }) as MutableBuffer<T>
Short::class -> ShortBuffer(ShortArray(size) { initializer(it) as Short }) as MutableBuffer<T>
Int::class -> IntBuffer(IntArray(size) { initializer(it) as Int }) as MutableBuffer<T>
Long::class -> LongBuffer(LongArray(size) { initializer(it) as Long }) as MutableBuffer<T>
@ -109,12 +109,11 @@ interface MutableBuffer<T> : Buffer<T> {
auto(T::class, size, initializer)
val real: MutableBufferFactory<Double> = { size: Int, initializer: (Int) -> Double ->
DoubleBuffer(DoubleArray(size) { initializer(it) })
RealBuffer(DoubleArray(size) { initializer(it) })
}
}
}
inline class ListBuffer<T>(val list: List<T>) : Buffer<T> {
override val size: Int
@ -163,57 +162,6 @@ class ArrayBuffer<T>(private val array: Array<T>) : MutableBuffer<T> {
fun <T> Array<T>.asBuffer(): ArrayBuffer<T> = ArrayBuffer(this)
inline class ShortBuffer(val array: ShortArray) : MutableBuffer<Short> {
override val size: Int get() = array.size
override fun get(index: Int): Short = array[index]
override fun set(index: Int, value: Short) {
array[index] = value
}
override fun iterator() = array.iterator()
override fun copy(): MutableBuffer<Short> = ShortBuffer(array.copyOf())
}
fun ShortArray.asBuffer() = ShortBuffer(this)
inline class IntBuffer(val array: IntArray) : MutableBuffer<Int> {
override val size: Int get() = array.size
override fun get(index: Int): Int = array[index]
override fun set(index: Int, value: Int) {
array[index] = value
}
override fun iterator() = array.iterator()
override fun copy(): MutableBuffer<Int> = IntBuffer(array.copyOf())
}
fun IntArray.asBuffer() = IntBuffer(this)
inline class LongBuffer(val array: LongArray) : MutableBuffer<Long> {
override val size: Int get() = array.size
override fun get(index: Int): Long = array[index]
override fun set(index: Int, value: Long) {
array[index] = value
}
override fun iterator() = array.iterator()
override fun copy(): MutableBuffer<Long> = LongBuffer(array.copyOf())
}
fun LongArray.asBuffer() = LongBuffer(this)
inline class ReadOnlyBuffer<T>(val buffer: MutableBuffer<T>) : Buffer<T> {
override val size: Int get() = buffer.size

View File

@ -79,6 +79,13 @@ class ComplexNDField(override val shape: IntArray) :
override fun cos(arg: NDBuffer<Complex>) = map(arg) { cos(it) }
override fun tan(arg: NDBuffer<Complex>): NDBuffer<Complex> = map(arg) { tan(it) }
override fun asin(arg: NDBuffer<Complex>): NDBuffer<Complex> = map(arg) { asin(it) }
override fun acos(arg: NDBuffer<Complex>): NDBuffer<Complex> = map(arg) {acos(it)}
override fun atan(arg: NDBuffer<Complex>): NDBuffer<Complex> = map(arg) {atan(it)}
}

View File

@ -1,13 +1,8 @@
package scientifik.kmath.structures
import scientifik.kmath.operations.*
import scientifik.kmath.operations.ExtendedField
interface ExtendedNDField<T : Any, F, N : NDStructure<T>> :
NDField<T, F, N>,
TrigonometricOperations<N>,
PowerOperations<N>,
ExponentialOperations<N>
where F : ExtendedFieldOperations<T>, F : Field<T>
interface ExtendedNDField<T : Any, F : ExtendedField<T>, N : NDStructure<T>> : NDField<T, F, N>, ExtendedField<N>
///**

View File

@ -0,0 +1,53 @@
package scientifik.kmath.structures
import kotlin.experimental.and
enum class ValueFlag(val mask: Byte) {
NAN(0b0000_0001),
MISSING(0b0000_0010),
NEGATIVE_INFINITY(0b0000_0100),
POSITIVE_INFINITY(0b0000_1000)
}
/**
* A buffer with flagged values
*/
interface FlaggedBuffer<T> : Buffer<T> {
fun getFlag(index: Int): Byte
}
/**
* The value is valid if all flags are down
*/
fun FlaggedBuffer<*>.isValid(index: Int) = getFlag(index) != 0.toByte()
fun FlaggedBuffer<*>.hasFlag(index: Int, flag: ValueFlag) = (getFlag(index) and flag.mask) != 0.toByte()
fun FlaggedBuffer<*>.isMissing(index: Int) = hasFlag(index, ValueFlag.MISSING)
/**
* A real buffer which supports flags for each value like NaN or Missing
*/
class FlaggedRealBuffer(val values: DoubleArray, val flags: ByteArray) : FlaggedBuffer<Double?>, Buffer<Double?> {
init {
require(values.size == flags.size) { "Values and flags must have the same dimensions" }
}
override fun getFlag(index: Int): Byte = flags[index]
override val size: Int get() = values.size
override fun get(index: Int): Double? = if (isValid(index)) values[index] else null
override fun iterator(): Iterator<Double?> = values.indices.asSequence().map {
if (isValid(it)) values[it] else null
}.iterator()
}
inline fun FlaggedRealBuffer.forEachValid(block: (Double) -> Unit) {
for(i in indices){
if(isValid(i)){
block(values[i])
}
}
}

View File

@ -0,0 +1,20 @@
package scientifik.kmath.structures
inline class IntBuffer(val array: IntArray) : MutableBuffer<Int> {
override val size: Int get() = array.size
override fun get(index: Int): Int = array[index]
override fun set(index: Int, value: Int) {
array[index] = value
}
override fun iterator() = array.iterator()
override fun copy(): MutableBuffer<Int> =
IntBuffer(array.copyOf())
}
fun IntArray.asBuffer() = IntBuffer(this)

View File

@ -0,0 +1,19 @@
package scientifik.kmath.structures
inline class LongBuffer(val array: LongArray) : MutableBuffer<Long> {
override val size: Int get() = array.size
override fun get(index: Int): Long = array[index]
override fun set(index: Int, value: Long) {
array[index] = value
}
override fun iterator() = array.iterator()
override fun copy(): MutableBuffer<Long> =
LongBuffer(array.copyOf())
}
fun LongArray.asBuffer() = LongBuffer(this)

View File

@ -1,6 +1,6 @@
package scientifik.kmath.structures
inline class DoubleBuffer(val array: DoubleArray) : MutableBuffer<Double> {
inline class RealBuffer(val array: DoubleArray) : MutableBuffer<Double> {
override val size: Int get() = array.size
override fun get(index: Int): Double = array[index]
@ -12,23 +12,23 @@ inline class DoubleBuffer(val array: DoubleArray) : MutableBuffer<Double> {
override fun iterator() = array.iterator()
override fun copy(): MutableBuffer<Double> =
DoubleBuffer(array.copyOf())
RealBuffer(array.copyOf())
}
@Suppress("FunctionName")
inline fun DoubleBuffer(size: Int, init: (Int) -> Double): DoubleBuffer = DoubleBuffer(DoubleArray(size) { init(it) })
inline fun RealBuffer(size: Int, init: (Int) -> Double): RealBuffer = RealBuffer(DoubleArray(size) { init(it) })
@Suppress("FunctionName")
fun DoubleBuffer(vararg doubles: Double): DoubleBuffer = DoubleBuffer(doubles)
fun RealBuffer(vararg doubles: Double): RealBuffer = RealBuffer(doubles)
/**
* Transform buffer of doubles into array for high performance operations
*/
val MutableBuffer<out Double>.array: DoubleArray
get() = if (this is DoubleBuffer) {
get() = if (this is RealBuffer) {
array
} else {
DoubleArray(size) { get(it) }
}
fun DoubleArray.asBuffer() = DoubleBuffer(this)
fun DoubleArray.asBuffer() = RealBuffer(this)

View File

@ -9,145 +9,172 @@ import kotlin.math.*
* A simple field over linear buffers of [Double]
*/
object RealBufferFieldOperations : ExtendedFieldOperations<Buffer<Double>> {
override fun add(a: Buffer<Double>, b: Buffer<Double>): DoubleBuffer {
override fun add(a: Buffer<Double>, b: Buffer<Double>): RealBuffer {
require(b.size == a.size) { "The size of the first buffer ${a.size} should be the same as for second one: ${b.size} " }
return if (a is DoubleBuffer && b is DoubleBuffer) {
return if (a is RealBuffer && b is RealBuffer) {
val aArray = a.array
val bArray = b.array
DoubleBuffer(DoubleArray(a.size) { aArray[it] + bArray[it] })
} else {
DoubleBuffer(DoubleArray(a.size) { a[it] + b[it] })
}
RealBuffer(DoubleArray(a.size) { aArray[it] + bArray[it] })
} else
RealBuffer(DoubleArray(a.size) { a[it] + b[it] })
}
override fun multiply(a: Buffer<Double>, k: Number): DoubleBuffer {
override fun multiply(a: Buffer<Double>, k: Number): RealBuffer {
val kValue = k.toDouble()
return if (a is DoubleBuffer) {
return if (a is RealBuffer) {
val aArray = a.array
DoubleBuffer(DoubleArray(a.size) { aArray[it] * kValue })
} else {
DoubleBuffer(DoubleArray(a.size) { a[it] * kValue })
}
RealBuffer(DoubleArray(a.size) { aArray[it] * kValue })
} else
RealBuffer(DoubleArray(a.size) { a[it] * kValue })
}
override fun multiply(a: Buffer<Double>, b: Buffer<Double>): DoubleBuffer {
override fun multiply(a: Buffer<Double>, b: Buffer<Double>): RealBuffer {
require(b.size == a.size) { "The size of the first buffer ${a.size} should be the same as for second one: ${b.size} " }
return if (a is DoubleBuffer && b is DoubleBuffer) {
return if (a is RealBuffer && b is RealBuffer) {
val aArray = a.array
val bArray = b.array
DoubleBuffer(DoubleArray(a.size) { aArray[it] * bArray[it] })
} else {
DoubleBuffer(DoubleArray(a.size) { a[it] * b[it] })
}
RealBuffer(DoubleArray(a.size) { aArray[it] * bArray[it] })
} else
RealBuffer(DoubleArray(a.size) { a[it] * b[it] })
}
override fun divide(a: Buffer<Double>, b: Buffer<Double>): DoubleBuffer {
override fun divide(a: Buffer<Double>, b: Buffer<Double>): RealBuffer {
require(b.size == a.size) { "The size of the first buffer ${a.size} should be the same as for second one: ${b.size} " }
return if (a is DoubleBuffer && b is DoubleBuffer) {
return if (a is RealBuffer && b is RealBuffer) {
val aArray = a.array
val bArray = b.array
DoubleBuffer(DoubleArray(a.size) { aArray[it] / bArray[it] })
} else {
DoubleBuffer(DoubleArray(a.size) { a[it] / b[it] })
}
RealBuffer(DoubleArray(a.size) { aArray[it] / bArray[it] })
} else
RealBuffer(DoubleArray(a.size) { a[it] / b[it] })
}
override fun sin(arg: Buffer<Double>): DoubleBuffer {
return if (arg is DoubleBuffer) {
val array = arg.array
DoubleBuffer(DoubleArray(arg.size) { sin(array[it]) })
} else {
DoubleBuffer(DoubleArray(arg.size) { sin(arg[it]) })
}
override fun sin(arg: Buffer<Double>): RealBuffer = if (arg is RealBuffer) {
val array = arg.array
RealBuffer(DoubleArray(arg.size) { sin(array[it]) })
} else {
RealBuffer(DoubleArray(arg.size) { sin(arg[it]) })
}
override fun cos(arg: Buffer<Double>): DoubleBuffer {
return if (arg is DoubleBuffer) {
val array = arg.array
DoubleBuffer(DoubleArray(arg.size) { cos(array[it]) })
} else {
DoubleBuffer(DoubleArray(arg.size) { cos(arg[it]) })
}
override fun cos(arg: Buffer<Double>): RealBuffer = if (arg is RealBuffer) {
val array = arg.array
RealBuffer(DoubleArray(arg.size) { cos(array[it]) })
} else
RealBuffer(DoubleArray(arg.size) { cos(arg[it]) })
override fun tan(arg: Buffer<Double>): RealBuffer = if (arg is RealBuffer) {
val array = arg.array
RealBuffer(DoubleArray(arg.size) { tan(array[it]) })
} else
RealBuffer(DoubleArray(arg.size) { tan(arg[it]) })
override fun asin(arg: Buffer<Double>): RealBuffer = if (arg is RealBuffer) {
val array = arg.array
RealBuffer(DoubleArray(arg.size) { asin(array[it]) })
} else {
RealBuffer(DoubleArray(arg.size) { asin(arg[it]) })
}
override fun power(arg: Buffer<Double>, pow: Number): DoubleBuffer {
return if (arg is DoubleBuffer) {
val array = arg.array
DoubleBuffer(DoubleArray(arg.size) { array[it].pow(pow.toDouble()) })
} else {
DoubleBuffer(DoubleArray(arg.size) { arg[it].pow(pow.toDouble()) })
}
}
override fun acos(arg: Buffer<Double>): RealBuffer = if (arg is RealBuffer) {
val array = arg.array
RealBuffer(DoubleArray(arg.size) { acos(array[it]) })
} else
RealBuffer(DoubleArray(arg.size) { acos(arg[it]) })
override fun exp(arg: Buffer<Double>): DoubleBuffer {
return if (arg is DoubleBuffer) {
val array = arg.array
DoubleBuffer(DoubleArray(arg.size) { exp(array[it]) })
} else {
DoubleBuffer(DoubleArray(arg.size) { exp(arg[it]) })
}
}
override fun atan(arg: Buffer<Double>): RealBuffer = if (arg is RealBuffer) {
val array = arg.array
RealBuffer(DoubleArray(arg.size) { atan(array[it]) })
} else
RealBuffer(DoubleArray(arg.size) { atan(arg[it]) })
override fun ln(arg: Buffer<Double>): DoubleBuffer {
return if (arg is DoubleBuffer) {
val array = arg.array
DoubleBuffer(DoubleArray(arg.size) { ln(array[it]) })
} else {
DoubleBuffer(DoubleArray(arg.size) { ln(arg[it]) })
}
}
override fun power(arg: Buffer<Double>, pow: Number): RealBuffer = if (arg is RealBuffer) {
val array = arg.array
RealBuffer(DoubleArray(arg.size) { array[it].pow(pow.toDouble()) })
} else
RealBuffer(DoubleArray(arg.size) { arg[it].pow(pow.toDouble()) })
override fun exp(arg: Buffer<Double>): RealBuffer = if (arg is RealBuffer) {
val array = arg.array
RealBuffer(DoubleArray(arg.size) { exp(array[it]) })
} else
RealBuffer(DoubleArray(arg.size) { exp(arg[it]) })
override fun ln(arg: Buffer<Double>): RealBuffer = if (arg is RealBuffer) {
val array = arg.array
RealBuffer(DoubleArray(arg.size) { ln(array[it]) })
} else
RealBuffer(DoubleArray(arg.size) { ln(arg[it]) })
}
class RealBufferField(val size: Int) : ExtendedField<Buffer<Double>> {
override val zero: Buffer<Double> by lazy { RealBuffer(size) { 0.0 } }
override val one: Buffer<Double> by lazy { RealBuffer(size) { 1.0 } }
override val zero: Buffer<Double> by lazy { DoubleBuffer(size) { 0.0 } }
override val one: Buffer<Double> by lazy { DoubleBuffer(size) { 1.0 } }
override fun add(a: Buffer<Double>, b: Buffer<Double>): DoubleBuffer {
override fun add(a: Buffer<Double>, b: Buffer<Double>): RealBuffer {
require(a.size == size) { "The buffer size ${a.size} does not match context size $size" }
return RealBufferFieldOperations.add(a, b)
}
override fun multiply(a: Buffer<Double>, k: Number): DoubleBuffer {
override fun multiply(a: Buffer<Double>, k: Number): RealBuffer {
require(a.size == size) { "The buffer size ${a.size} does not match context size $size" }
return RealBufferFieldOperations.multiply(a, k)
}
override fun multiply(a: Buffer<Double>, b: Buffer<Double>): DoubleBuffer {
override fun multiply(a: Buffer<Double>, b: Buffer<Double>): RealBuffer {
require(a.size == size) { "The buffer size ${a.size} does not match context size $size" }
return RealBufferFieldOperations.multiply(a, b)
}
override fun divide(a: Buffer<Double>, b: Buffer<Double>): DoubleBuffer {
override fun divide(a: Buffer<Double>, b: Buffer<Double>): RealBuffer {
require(a.size == size) { "The buffer size ${a.size} does not match context size $size" }
return RealBufferFieldOperations.divide(a, b)
}
override fun sin(arg: Buffer<Double>): DoubleBuffer {
override fun sin(arg: Buffer<Double>): RealBuffer {
require(arg.size == size) { "The buffer size ${arg.size} does not match context size $size" }
return RealBufferFieldOperations.sin(arg)
}
override fun cos(arg: Buffer<Double>): DoubleBuffer {
override fun cos(arg: Buffer<Double>): RealBuffer {
require(arg.size == size) { "The buffer size ${arg.size} does not match context size $size" }
return RealBufferFieldOperations.cos(arg)
}
override fun power(arg: Buffer<Double>, pow: Number): DoubleBuffer {
override fun tan(arg: Buffer<Double>): RealBuffer {
require(arg.size == size) { "The buffer size ${arg.size} does not match context size $size" }
return RealBufferFieldOperations.tan(arg)
}
override fun asin(arg: Buffer<Double>): RealBuffer {
require(arg.size == size) { "The buffer size ${arg.size} does not match context size $size" }
return RealBufferFieldOperations.asin(arg)
}
override fun acos(arg: Buffer<Double>): RealBuffer {
require(arg.size == size) { "The buffer size ${arg.size} does not match context size $size" }
return RealBufferFieldOperations.acos(arg)
}
override fun atan(arg: Buffer<Double>): RealBuffer {
require(arg.size == size) { "The buffer size ${arg.size} does not match context size $size" }
return RealBufferFieldOperations.atan(arg)
}
override fun power(arg: Buffer<Double>, pow: Number): RealBuffer {
require(arg.size == size) { "The buffer size ${arg.size} does not match context size $size" }
return RealBufferFieldOperations.power(arg, pow)
}
override fun exp(arg: Buffer<Double>): DoubleBuffer {
override fun exp(arg: Buffer<Double>): RealBuffer {
require(arg.size == size) { "The buffer size ${arg.size} does not match context size $size" }
return RealBufferFieldOperations.exp(arg)
}
override fun ln(arg: Buffer<Double>): DoubleBuffer {
override fun ln(arg: Buffer<Double>): RealBuffer {
require(arg.size == size) { "The buffer size ${arg.size} does not match context size $size" }
return RealBufferFieldOperations.ln(arg)
}
}

View File

@ -16,7 +16,7 @@ class RealNDField(override val shape: IntArray) :
override val one by lazy { produce { one } }
inline fun buildBuffer(size: Int, crossinline initializer: (Int) -> Double): Buffer<Double> =
DoubleBuffer(DoubleArray(size) { initializer(it) })
RealBuffer(DoubleArray(size) { initializer(it) })
/**
* Inline transform an NDStructure to
@ -74,6 +74,13 @@ class RealNDField(override val shape: IntArray) :
override fun cos(arg: NDBuffer<Double>) = map(arg) { cos(it) }
override fun tan(arg: NDBuffer<Double>): NDBuffer<Double> = map(arg) { tan(it) }
override fun asin(arg: NDBuffer<Double>): NDBuffer<Double> = map(arg) { asin(it) }
override fun acos(arg: NDBuffer<Double>): NDBuffer<Double> = map(arg) { acos(it) }
override fun atan(arg: NDBuffer<Double>): NDBuffer<Double> = map(arg) { atan(it) }
}
@ -82,7 +89,7 @@ class RealNDField(override val shape: IntArray) :
*/
inline fun BufferedNDField<Double, RealField>.produceInline(crossinline initializer: RealField.(Int) -> Double): RealNDElement {
val array = DoubleArray(strides.linearSize) { offset -> RealField.initializer(offset) }
return BufferedNDFieldElement(this, DoubleBuffer(array))
return BufferedNDFieldElement(this, RealBuffer(array))
}
/**
@ -96,7 +103,7 @@ inline fun RealNDElement.mapIndexed(crossinline transform: RealField.(index: Int
*/
inline fun RealNDElement.map(crossinline transform: RealField.(Double) -> Double): RealNDElement {
val array = DoubleArray(strides.linearSize) { offset -> RealField.transform(buffer[offset]) }
return BufferedNDFieldElement(context, DoubleBuffer(array))
return BufferedNDFieldElement(context, RealBuffer(array))
}
/**

View File

@ -0,0 +1,20 @@
package scientifik.kmath.structures
inline class ShortBuffer(val array: ShortArray) : MutableBuffer<Short> {
override val size: Int get() = array.size
override fun get(index: Int): Short = array[index]
override fun set(index: Int, value: Short) {
array[index] = value
}
override fun iterator() = array.iterator()
override fun copy(): MutableBuffer<Short> =
ShortBuffer(array.copyOf())
}
fun ShortArray.asBuffer() = ShortBuffer(this)

View File

@ -9,7 +9,7 @@ import kotlin.test.assertEquals
class ExpressionFieldTest {
@Test
fun testExpression() {
val context = ExpressionField(RealField)
val context = FunctionalExpressionField(RealField)
val expression = with(context) {
val x = variable("x", 2.0)
x * x + 2 * x + one
@ -20,7 +20,7 @@ class ExpressionFieldTest {
@Test
fun testComplex() {
val context = ExpressionField(ComplexField)
val context = FunctionalExpressionField(ComplexField)
val expression = with(context) {
val x = variable("x", Complex(2.0, 0.0))
x * x + 2 * x + one
@ -31,23 +31,23 @@ class ExpressionFieldTest {
@Test
fun separateContext() {
fun <T> ExpressionField<T>.expression(): Expression<T> {
fun <T> FunctionalExpressionField<T,*>.expression(): Expression<T> {
val x = variable("x")
return x * x + 2 * x + one
}
val expression = ExpressionField(RealField).expression()
val expression = FunctionalExpressionField(RealField).expression()
assertEquals(expression("x" to 1.0), 4.0)
}
@Test
fun valueExpression() {
val expressionBuilder: ExpressionField<Double>.() -> Expression<Double> = {
val expressionBuilder: FunctionalExpressionField<Double,*>.() -> Expression<Double> = {
val x = variable("x")
x * x + 2 * x + one
}
val expression = ExpressionField(RealField).expressionBuilder()
val expression = FunctionalExpressionField(RealField).expressionBuilder()
assertEquals(expression("x" to 1.0), 4.0)
}
}

View File

@ -1,10 +1,12 @@
package scientifik.kmath.operations
import scientifik.kmath.structures.*
import java.math.BigDecimal
import java.math.BigInteger
import java.math.MathContext
/**
* A field wrapper for Java [BigInteger]
*/
object JBigIntegerField : Field<BigInteger> {
override val zero: BigInteger = BigInteger.ZERO
override val one: BigInteger = BigInteger.ONE
@ -18,6 +20,9 @@ object JBigIntegerField : Field<BigInteger> {
override fun divide(a: BigInteger, b: BigInteger): BigInteger = a.div(b)
}
/**
* A Field wrapper for Java [BigDecimal]
*/
class JBigDecimalField(val mathContext: MathContext = MathContext.DECIMAL64) : Field<BigDecimal> {
override val zero: BigDecimal = BigDecimal.ZERO
override val one: BigDecimal = BigDecimal.ONE

View File

@ -5,7 +5,7 @@ import kotlinx.coroutines.flow.*
import scientifik.kmath.chains.BlockingRealChain
import scientifik.kmath.structures.Buffer
import scientifik.kmath.structures.BufferFactory
import scientifik.kmath.structures.DoubleBuffer
import scientifik.kmath.structures.RealBuffer
import scientifik.kmath.structures.asBuffer
/**
@ -45,7 +45,7 @@ fun <T> Flow<T>.chunked(bufferSize: Int, bufferFactory: BufferFactory<T>): Flow<
/**
* Specialized flow chunker for real buffer
*/
fun Flow<Double>.chunked(bufferSize: Int): Flow<DoubleBuffer> = flow {
fun Flow<Double>.chunked(bufferSize: Int): Flow<RealBuffer> = flow {
require(bufferSize > 0) { "Resulting chunk size must be more than zero" }
if (this@chunked is BlockingRealChain) {
@ -61,13 +61,13 @@ fun Flow<Double>.chunked(bufferSize: Int): Flow<DoubleBuffer> = flow {
array[counter] = element
counter++
if (counter == bufferSize) {
val buffer = DoubleBuffer(array)
val buffer = RealBuffer(array)
emit(buffer)
counter = 0
}
}
if (counter > 0) {
emit(DoubleBuffer(counter) { array[it] })
emit(RealBuffer(counter) { array[it] })
}
}
}

View File

@ -7,31 +7,28 @@ import scientifik.kmath.operations.Norm
import scientifik.kmath.operations.RealField
import scientifik.kmath.operations.SpaceElement
import scientifik.kmath.structures.Buffer
import scientifik.kmath.structures.DoubleBuffer
import scientifik.kmath.structures.RealBuffer
import scientifik.kmath.structures.asBuffer
import scientifik.kmath.structures.asIterable
import kotlin.math.sqrt
typealias RealPoint = Point<Double>
fun DoubleArray.asVector() = RealVector(this.asBuffer())
fun List<Double>.asVector() = RealVector(this.asBuffer())
object VectorL2Norm : Norm<Point<out Number>, Double> {
override fun norm(arg: Point<out Number>): Double = sqrt(arg.asIterable().sumByDouble { it.toDouble() })
}
inline class RealVector(private val point: Point<Double>) :
SpaceElement<Point<Double>, RealVector, VectorSpace<Double, RealField>>, Point<Double> {
SpaceElement<RealPoint, RealVector, VectorSpace<Double, RealField>>, RealPoint {
override val context: VectorSpace<Double, RealField>
get() = space(
point.size
)
override val context: VectorSpace<Double, RealField> get() = space(point.size)
override fun unwrap(): Point<Double> = point
override fun unwrap(): RealPoint = point
override fun Point<Double>.wrap(): RealVector =
RealVector(this)
override fun RealPoint.wrap(): RealVector = RealVector(this)
override val size: Int get() = point.size
@ -44,16 +41,12 @@ inline class RealVector(private val point: Point<Double>) :
private val spaceCache = HashMap<Int, BufferVectorSpace<Double, RealField>>()
inline operator fun invoke(dim: Int, initializer: (Int) -> Double) =
RealVector(DoubleBuffer(dim, initializer))
RealVector(RealBuffer(dim, initializer))
operator fun invoke(vararg values: Double): RealVector = values.asVector()
fun space(dim: Int): BufferVectorSpace<Double, RealField> =
spaceCache.getOrPut(dim) {
BufferVectorSpace(
dim,
RealField
) { size, init -> Buffer.real(size, init) }
}
fun space(dim: Int): BufferVectorSpace<Double, RealField> = spaceCache.getOrPut(dim) {
BufferVectorSpace(dim, RealField) { size, init -> Buffer.real(size, init) }
}
}
}

View File

@ -1,8 +1,8 @@
package scientifik.kmath.real
import scientifik.kmath.structures.DoubleBuffer
import scientifik.kmath.structures.RealBuffer
/**
* Simplified [DoubleBuffer] to array comparison
* Simplified [RealBuffer] to array comparison
*/
fun DoubleBuffer.contentEquals(vararg doubles: Double) = array.contentEquals(doubles)
fun RealBuffer.contentEquals(vararg doubles: Double) = array.contentEquals(doubles)

View File

@ -5,8 +5,8 @@ import scientifik.kmath.linear.RealMatrixContext.elementContext
import scientifik.kmath.linear.VirtualMatrix
import scientifik.kmath.operations.sum
import scientifik.kmath.structures.Buffer
import scientifik.kmath.structures.DoubleBuffer
import scientifik.kmath.structures.Matrix
import scientifik.kmath.structures.RealBuffer
import scientifik.kmath.structures.asIterable
import kotlin.math.pow
@ -27,6 +27,10 @@ typealias RealMatrix = Matrix<Double>
fun realMatrix(rowNum: Int, colNum: Int, initializer: (i: Int, j: Int) -> Double): RealMatrix =
MatrixContext.real.produce(rowNum, colNum, initializer)
fun Array<DoubleArray>.toMatrix(): RealMatrix{
return MatrixContext.real.produce(size, this[0].size) { row, col -> this[row][col] }
}
fun Sequence<DoubleArray>.toMatrix(): RealMatrix = toList().let {
MatrixContext.real.produce(it.size, it[0].size) { row, col -> it[row][col] }
}
@ -129,22 +133,22 @@ fun Matrix<Double>.extractColumns(columnRange: IntRange): RealMatrix =
fun Matrix<Double>.extractColumn(columnIndex: Int): RealMatrix =
extractColumns(columnIndex..columnIndex)
fun Matrix<Double>.sumByColumn(): DoubleBuffer = DoubleBuffer(colNum) { j ->
fun Matrix<Double>.sumByColumn(): RealBuffer = RealBuffer(colNum) { j ->
val column = columns[j]
with(elementContext) {
sum(column.asIterable())
}
}
fun Matrix<Double>.minByColumn(): DoubleBuffer = DoubleBuffer(colNum) { j ->
fun Matrix<Double>.minByColumn(): RealBuffer = RealBuffer(colNum) { j ->
columns[j].asIterable().min() ?: throw Exception("Cannot produce min on empty column")
}
fun Matrix<Double>.maxByColumn(): DoubleBuffer = DoubleBuffer(colNum) { j ->
fun Matrix<Double>.maxByColumn(): RealBuffer = RealBuffer(colNum) { j ->
columns[j].asIterable().max() ?: throw Exception("Cannot produce min on empty column")
}
fun Matrix<Double>.averageByColumn(): DoubleBuffer = DoubleBuffer(colNum) { j ->
fun Matrix<Double>.averageByColumn(): RealBuffer = RealBuffer(colNum) { j ->
columns[j].asIterable().average()
}

View File

@ -1,17 +1,9 @@
package scientifik.kmath.histogram
import scientifik.kmath.domains.Domain
import scientifik.kmath.linear.Point
import scientifik.kmath.structures.ArrayBuffer
import scientifik.kmath.structures.DoubleBuffer
/**
* A simple geometric domain
* TODO move to geometry module
*/
interface Domain<T : Any> {
operator fun contains(vector: Point<out T>): Boolean
val dimension: Int
}
import scientifik.kmath.structures.RealBuffer
/**
* The bin in the histogram. The histogram is by definition always done in the real space
@ -51,9 +43,9 @@ interface MutableHistogram<T : Any, out B : Bin<T>> : Histogram<T, B> {
fun <T : Any> MutableHistogram<T, *>.put(vararg point: T) = put(ArrayBuffer(point))
fun MutableHistogram<Double, *>.put(vararg point: Number) =
put(DoubleBuffer(point.map { it.toDouble() }.toDoubleArray()))
put(RealBuffer(point.map { it.toDouble() }.toDoubleArray()))
fun MutableHistogram<Double, *>.put(vararg point: Double) = put(DoubleBuffer(point))
fun MutableHistogram<Double, *>.put(vararg point: Double) = put(RealBuffer(point))
fun <T : Any> MutableHistogram<T, *>.fill(sequence: Iterable<Point<T>>) = sequence.forEach { put(it) }

View File

@ -1,8 +1,8 @@
package scientifik.kmath.histogram
import scientifik.kmath.linear.Point
import scientifik.kmath.real.asVector
import scientifik.kmath.operations.SpaceOperations
import scientifik.kmath.real.asVector
import scientifik.kmath.structures.*
import kotlin.math.floor
@ -21,7 +21,7 @@ data class BinDef<T : Comparable<T>>(val space: SpaceOperations<Point<T>>, val c
class MultivariateBin<T : Comparable<T>>(val def: BinDef<T>, override val value: Number) : Bin<T> {
override fun contains(vector: Point<out T>): Boolean = def.contains(vector)
override fun contains(point: Point<T>): Boolean = def.contains(point)
override val dimension: Int
get() = def.center.size
@ -50,7 +50,7 @@ class RealHistogram(
override val dimension: Int get() = lower.size
private val binSize = DoubleBuffer(dimension) { (upper[it] - lower[it]) / binNums[it] }
private val binSize = RealBuffer(dimension) { (upper[it] - lower[it]) / binNums[it] }
init {
// argument checks

View File

@ -16,7 +16,7 @@ class UnivariateBin(val position: Double, val size: Double, val counter: LongCou
operator fun contains(value: Double): Boolean = value in (position - size / 2)..(position + size / 2)
override fun contains(vector: Buffer<out Double>): Boolean = contains(vector[0])
override fun contains(point: Buffer<Double>): Boolean = contains(point[0])
internal operator fun inc() = this.also { counter.increment() }

View File

@ -10,6 +10,7 @@ interface MemorySpec<T : Any> {
val objectSize: Int
fun MemoryReader.read(offset: Int): T
//TODO consider thread safety
fun MemoryWriter.write(offset: Int, value: T)
}

View File

@ -3,10 +3,12 @@ pluginManagement {
val toolsVersion = "0.5.0"
plugins {
id("kotlinx.benchmark") version "0.2.0-dev-8"
id("scientifik.mpp") version toolsVersion
id("scientifik.jvm") version toolsVersion
id("scientifik.atomic") version toolsVersion
id("scientifik.publish") version toolsVersion
kotlin("plugin.allopen") version "1.3.72"
}
repositories {
@ -45,5 +47,6 @@ include(
":kmath-dimensions",
":kmath-for-real",
":kmath-geometry",
":kmath-ast",
":examples"
)