Finish move.

This commit is contained in:
Gleb Minaev 2022-07-11 22:39:13 +03:00
parent 1c719b9e70
commit 51dd72e48f
29 changed files with 1278 additions and 24 deletions

View File

@ -16,7 +16,7 @@ dependencies {
implementation(project(":kmath-commons")) implementation(project(":kmath-commons"))
implementation(project(":kmath-complex")) implementation(project(":kmath-complex"))
implementation(project(":kmath-functions")) implementation(project(":kmath-functions"))
implementation(project(":kmath-polynomialX")) implementation(project(":kmath-polynomial"))
implementation(project(":kmath-optimization")) implementation(project(":kmath-optimization"))
implementation(project(":kmath-stat")) implementation(project(":kmath-stat"))
implementation(project(":kmath-viktor")) implementation(project(":kmath-viktor"))

View File

@ -10,13 +10,11 @@ kotlin.sourceSets {
commonMain { commonMain {
dependencies { dependencies {
api(projects.kmathCore) api(projects.kmathCore)
api(projects.kmathFunctions)
} }
} }
commonTest { commonTest {
dependencies { dependencies {
api(projects.testUtilsFunctions) api(projects.testUtilsPolynomial)
api(projects.testUtilsPolynomialX)
api(kotlin("test")) api(kotlin("test"))
} }
} }

View File

@ -0,0 +1,387 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
@file:Suppress("NOTHING_TO_INLINE", "KotlinRedundantDiagnosticSuppress")
package space.kscience.kmath.functions
import space.kscience.kmath.operations.Ring
import space.kscience.kmath.operations.ScaleOperations
import space.kscience.kmath.operations.invoke
import kotlin.math.max
import kotlin.math.min
/**
* Represents univariate polynomial that stores its coefficients in a [List].
*
* @param C the type of constants.
*/
public data class ListPolynomial<C>(
/**
* List that contains coefficients of the polynomial. Every monomial `a x^d` is stored as a coefficient `a` placed
* into the list at index `d`. For example, coefficients of a polynomial `5 x^2 - 6` can be represented as
* ```
* listOf(
* -6, // -6 +
* 0, // 0 x +
* 5, // 5 x^2
* )
* ```
* and also as
* ```
* listOf(
* -6, // -6 +
* 0, // 0 x +
* 5, // 5 x^2
* 0, // 0 x^3
* 0, // 0 x^4
* )
* ```
* It is not prohibited to put extra zeros at end of the list (as for `0x^3` and `0x^4` in the example). But the
* longer the coefficients list the worse performance of arithmetical operations performed on it. Thus, it is
* recommended not to put (or even to remove) extra (or useless) coefficients at the end of the coefficients list.
*/
public val coefficients: List<C>
) : Polynomial<C> {
override fun toString(): String = "ListPolynomial$coefficients"
}
/**
* Arithmetic context for univariate polynomials with coefficients stored as a [List] constructed with the provided
* [ring] of constants.
*
* @param C the type of constants. Polynomials have them a coefficients in their terms.
* @param A type of provided underlying ring of constants. It's [Ring] of [C].
* @param ring underlying ring of constants of type [A].
*/
public open class ListPolynomialSpace<C, A : Ring<C>>(
public override val ring: A,
) : PolynomialSpaceOverRing<C, ListPolynomial<C>, A> {
/**
* Returns sum of the polynomial and the integer represented as a polynomial.
*
* The operation is equivalent to adding [other] copies of unit polynomial to [this].
*/
public override operator fun ListPolynomial<C>.plus(other: Int): ListPolynomial<C> =
if (other == 0) this
else
ListPolynomial(
coefficients
.toMutableList()
.apply {
val result = getOrElse(0) { constantZero } + other
if(size == 0) add(result)
else this[0] = result
}
)
/**
* Returns difference between the polynomial and the integer represented as a polynomial.
*
* The operation is equivalent to subtraction [other] copies of unit polynomial from [this].
*/
public override operator fun ListPolynomial<C>.minus(other: Int): ListPolynomial<C> =
if (other == 0) this
else
ListPolynomial(
coefficients
.toMutableList()
.apply {
val result = getOrElse(0) { constantZero } - other
if(size == 0) add(result)
else this[0] = result
}
)
/**
* Returns product of the polynomial and the integer represented as a polynomial.
*
* The operation is equivalent to sum of [other] copies of [this].
*/
public override operator fun ListPolynomial<C>.times(other: Int): ListPolynomial<C> =
when (other) {
0 -> zero
1 -> this
else -> ListPolynomial(
coefficients
.toMutableList()
.apply {
for (deg in indices) this[deg] = this[deg] * other
}
)
}
/**
* Returns sum of the integer represented as a polynomial and the polynomial.
*
* The operation is equivalent to adding [this] copies of unit polynomial to [other].
*/
public override operator fun Int.plus(other: ListPolynomial<C>): ListPolynomial<C> =
if (this == 0) other
else
ListPolynomial(
other.coefficients
.toMutableList()
.apply {
val result = this@plus + getOrElse(0) { constantZero }
if(size == 0) add(result)
else this[0] = result
}
)
/**
* Returns difference between the integer represented as a polynomial and the polynomial.
*
* The operation is equivalent to subtraction [this] copies of unit polynomial from [other].
*/
public override operator fun Int.minus(other: ListPolynomial<C>): ListPolynomial<C> =
ListPolynomial(
other.coefficients
.toMutableList()
.apply {
if (this@minus == 0) {
indices.forEach { this[it] = -this[it] }
} else {
(1..lastIndex).forEach { this[it] = -this[it] }
val result = this@minus - getOrElse(0) { constantZero }
if (size == 0) add(result)
else this[0] = result
}
}
)
/**
* Returns product of the integer represented as a polynomial and the polynomial.
*
* The operation is equivalent to sum of [this] copies of [other].
*/
public override operator fun Int.times(other: ListPolynomial<C>): ListPolynomial<C> =
when (this) {
0 -> zero
1 -> other
else -> ListPolynomial(
other.coefficients
.toMutableList()
.apply {
for (deg in indices) this[deg] = this@times * this[deg]
}
)
}
/**
* Returns sum of the constant represented as a polynomial and the polynomial.
*/
public override operator fun C.plus(other: ListPolynomial<C>): ListPolynomial<C> =
with(other.coefficients) {
if (isEmpty()) ListPolynomial(listOf(this@plus))
else ListPolynomial(
toMutableList()
.apply {
val result = if (size == 0) this@plus else this@plus + get(0)
if(size == 0) add(result)
else this[0] = result
}
)
}
/**
* Returns difference between the constant represented as a polynomial and the polynomial.
*/
public override operator fun C.minus(other: ListPolynomial<C>): ListPolynomial<C> =
with(other.coefficients) {
if (isEmpty()) ListPolynomial(listOf(this@minus))
else ListPolynomial(
toMutableList()
.apply {
(1 .. lastIndex).forEach { this[it] = -this[it] }
val result = if (size == 0) this@minus else this@minus - get(0)
if(size == 0) add(result)
else this[0] = result
}
)
}
/**
* Returns product of the constant represented as a polynomial and the polynomial.
*/
public override operator fun C.times(other: ListPolynomial<C>): ListPolynomial<C> =
ListPolynomial(
other.coefficients
.toMutableList()
.apply {
for (deg in indices) this[deg] = this@times * this[deg]
}
)
/**
* Returns sum of the constant represented as a polynomial and the polynomial.
*/
public override operator fun ListPolynomial<C>.plus(other: C): ListPolynomial<C> =
with(coefficients) {
if (isEmpty()) ListPolynomial(listOf(other))
else ListPolynomial(
toMutableList()
.apply {
val result = if (size == 0) other else get(0) + other
if(size == 0) add(result)
else this[0] = result
}
)
}
/**
* Returns difference between the constant represented as a polynomial and the polynomial.
*/
public override operator fun ListPolynomial<C>.minus(other: C): ListPolynomial<C> =
with(coefficients) {
if (isEmpty()) ListPolynomial(listOf(-other))
else ListPolynomial(
toMutableList()
.apply {
val result = if (size == 0) other else get(0) - other
if(size == 0) add(result)
else this[0] = result
}
)
}
/**
* Returns product of the constant represented as a polynomial and the polynomial.
*/
public override operator fun ListPolynomial<C>.times(other: C): ListPolynomial<C> =
ListPolynomial(
coefficients
.toMutableList()
.apply {
for (deg in indices) this[deg] = this[deg] * other
}
)
/**
* Converts the constant [value] to polynomial.
*/
public override fun number(value: C): ListPolynomial<C> = ListPolynomial(listOf(value))
/**
* Returns negation of the polynomial.
*/
public override operator fun ListPolynomial<C>.unaryMinus(): ListPolynomial<C> =
ListPolynomial(coefficients.map { -it })
/**
* Returns sum of the polynomials.
*/
public override operator fun ListPolynomial<C>.plus(other: ListPolynomial<C>): ListPolynomial<C> {
val thisDegree = degree
val otherDegree = other.degree
return ListPolynomial(
List(max(thisDegree, otherDegree) + 1) {
when {
it > thisDegree -> other.coefficients[it]
it > otherDegree -> coefficients[it]
else -> coefficients[it] + other.coefficients[it]
}
}
)
}
/**
* Returns difference of the polynomials.
*/
public override operator fun ListPolynomial<C>.minus(other: ListPolynomial<C>): ListPolynomial<C> {
val thisDegree = degree
val otherDegree = other.degree
return ListPolynomial(
List(max(thisDegree, otherDegree) + 1) {
when {
it > thisDegree -> -other.coefficients[it]
it > otherDegree -> coefficients[it]
else -> coefficients[it] - other.coefficients[it]
}
}
)
}
/**
* Returns product of the polynomials.
*/
public override operator fun ListPolynomial<C>.times(other: ListPolynomial<C>): ListPolynomial<C> {
val thisDegree = degree
val otherDegree = other.degree
return ListPolynomial(
List(thisDegree + otherDegree + 1) { d ->
(max(0, d - otherDegree)..min(thisDegree, d))
.map { coefficients[it] * other.coefficients[d - it] }
.reduce { acc, rational -> acc + rational }
}
)
}
/**
* Raises [arg] to the integer power [exponent].
*/ // TODO: To optimize boxing
override fun power(arg: ListPolynomial<C>, exponent: UInt): ListPolynomial<C> = super.power(arg, exponent)
/**
* Instance of zero polynomial (zero of the polynomial ring).
*/
override val zero: ListPolynomial<C> = ListPolynomial(emptyList())
/**
* Instance of unit polynomial (unit of the polynomial ring).
*/
override val one: ListPolynomial<C> by lazy { ListPolynomial(listOf(constantOne)) }
/**
* Degree of the polynomial, [see also](https://en.wikipedia.org/wiki/Degree_of_a_polynomial). If the polynomial is
* zero, degree is -1.
*/
public override val ListPolynomial<C>.degree: Int get() = coefficients.lastIndex
// TODO: When context receivers will be ready move all of this substitutions and invocations to utilities with
// [ListPolynomialSpace] as a context receiver
/**
* Evaluates value of [this] polynomial on provided [argument].
*/
public inline fun ListPolynomial<C>.substitute(argument: C): C = substitute(ring, argument)
/**
* Substitutes provided polynomial [argument] into [this] polynomial.
*/
public inline fun ListPolynomial<C>.substitute(argument: ListPolynomial<C>): ListPolynomial<C> = substitute(ring, argument)
/**
* Represent [this] polynomial as a regular context-less function.
*/
public inline fun ListPolynomial<C>.asFunction(): (C) -> C = asFunctionOver(ring)
/**
* Represent [this] polynomial as a regular context-less function.
*/
public inline fun ListPolynomial<C>.asFunctionOfConstant(): (C) -> C = asFunctionOfConstantOver(ring)
/**
* Represent [this] polynomial as a regular context-less function.
*/
public inline fun ListPolynomial<C>.asFunctionOfPolynomial(): (ListPolynomial<C>) -> ListPolynomial<C> = asFunctionOfPolynomialOver(ring)
/**
* Evaluates value of [this] polynomial on provided [argument].
*/
public inline operator fun ListPolynomial<C>.invoke(argument: C): C = substitute(ring, argument)
/**
* Evaluates value of [this] polynomial on provided [argument].
*/
public inline operator fun ListPolynomial<C>.invoke(argument: ListPolynomial<C>): ListPolynomial<C> = substitute(ring, argument)
}
/**
* Space of polynomials constructed over ring.
*
* @param C the type of constants. Polynomials have them as a coefficients in their terms.
* @param A type of underlying ring of constants. It's [Ring] of [C].
* @param ring underlying ring of constants of type [A].
*/
public class ScalableListPolynomialSpace<C, A>(
ring: A,
) : ListPolynomialSpace<C, A>(ring), ScaleOperations<ListPolynomial<C>> where A : Ring<C>, A : ScaleOperations<C> {
override fun scale(a: ListPolynomial<C>, value: Double): ListPolynomial<C> =
ring { ListPolynomial(a.coefficients.map { scale(it, value) }) }
}

View File

@ -0,0 +1,502 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.functions
import space.kscience.kmath.operations.Ring
import space.kscience.kmath.operations.invoke
import kotlin.js.JsName
import kotlin.jvm.JvmName
/**
* Abstraction of polynomials.
*/
public interface Polynomial<C>
/**
* Abstraction of ring of polynomials of type [P] over ring of constants of type [C].
*
* @param C the type of constants. Polynomials have them as coefficients in their terms.
* @param P the type of polynomials.
*/
@Suppress("INAPPLICABLE_JVM_NAME", "PARAMETER_NAME_CHANGED_ON_OVERRIDE") // FIXME: Waiting for KT-31420
public interface PolynomialSpace<C, P: Polynomial<C>> : Ring<P> {
/**
* Returns sum of the constant and the integer represented as a constant (member of underlying ring).
*
* The operation is equivalent to adding [other] copies of unit of underlying ring to [this].
*/
public operator fun C.plus(other: Int): C
/**
* Returns difference between the constant and the integer represented as a constant (member of underlying ring).
*
* The operation is equivalent to subtraction [other] copies of unit of underlying ring from [this].
*/
public operator fun C.minus(other: Int): C
/**
* Returns product of the constant and the integer represented as a constant (member of underlying ring).
*
* The operation is equivalent to sum of [other] copies of [this].
*/
public operator fun C.times(other: Int): C
/**
* Returns sum of the integer represented as a constant (member of underlying ring) and the constant.
*
* The operation is equivalent to adding [this] copies of unit of underlying ring to [other].
*/
public operator fun Int.plus(other: C): C
/**
* Returns difference between the integer represented as a constant (member of underlying ring) and the constant.
*
* The operation is equivalent to subtraction [this] copies of unit of underlying ring from [other].
*/
public operator fun Int.minus(other: C): C
/**
* Returns product of the integer represented as a constant (member of underlying ring) and the constant.
*
* The operation is equivalent to sum of [this] copies of [other].
*/
public operator fun Int.times(other: C): C
/**
* Converts the integer [value] to constant.
*/
public fun constantNumber(value: Int): C = constantOne * value
/**
* Converts the integer to constant.
*/
public fun Int.asConstant(): C = constantNumber(this)
/**
* Returns sum of the polynomial and the integer represented as a polynomial.
*
* The operation is equivalent to adding [other] copies of unit polynomial to [this].
*/
public operator fun P.plus(other: Int): P = addMultipliedByDoubling(this, one, other)
/**
* Returns difference between the polynomial and the integer represented as a polynomial.
*
* The operation is equivalent to subtraction [other] copies of unit polynomial from [this].
*/
public operator fun P.minus(other: Int): P = addMultipliedByDoubling(this, one, -other)
/**
* Returns product of the polynomial and the integer represented as a polynomial.
*
* The operation is equivalent to sum of [other] copies of [this].
*/
public operator fun P.times(other: Int): P = multiplyByDoubling(this, other)
/**
* Returns sum of the integer represented as a polynomial and the polynomial.
*
* The operation is equivalent to adding [this] copies of unit polynomial to [other].
*/
public operator fun Int.plus(other: P): P = addMultipliedByDoubling(other, one, this)
/**
* Returns difference between the integer represented as a polynomial and the polynomial.
*
* The operation is equivalent to subtraction [this] copies of unit polynomial from [other].
*/
public operator fun Int.minus(other: P): P = addMultipliedByDoubling(-other, one, this)
/**
* Returns product of the integer represented as a polynomial and the polynomial.
*
* The operation is equivalent to sum of [this] copies of [other].
*/
public operator fun Int.times(other: P): P = multiplyByDoubling(other, this)
/**
* Converts the integer [value] to polynomial.
*/
public fun number(value: Int): P = number(constantNumber(value))
/**
* Converts the integer to polynomial.
*/
public fun Int.asPolynomial(): P = number(this)
/**
* Returns the same constant.
*/
@JvmName("unaryPlusConstant")
@JsName("unaryPlusConstant")
public operator fun C.unaryPlus(): C = this
/**
* Returns negation of the constant.
*/
@JvmName("unaryMinusConstant")
@JsName("unaryMinusConstant")
public operator fun C.unaryMinus(): C
/**
* Returns sum of the constants.
*/
@JvmName("plusConstantConstant")
@JsName("plusConstantConstant")
public operator fun C.plus(other: C): C
/**
* Returns difference of the constants.
*/
@JvmName("minusConstantConstant")
@JsName("minusConstantConstant")
public operator fun C.minus(other: C): C
/**
* Returns product of the constants.
*/
@JvmName("timesConstantConstant")
@JsName("timesConstantConstant")
public operator fun C.times(other: C): C
/**
* Raises [arg] to the integer power [exponent].
*/
@JvmName("powerConstant")
@JsName("powerConstant")
public fun power(arg: C, exponent: UInt) : C
/**
* Instance of zero constant (zero of the underlying ring).
*/
public val constantZero: C
/**
* Instance of unit constant (unit of the underlying ring).
*/
public val constantOne: C
/**
* Returns sum of the constant represented as a polynomial and the polynomial.
*/
public operator fun C.plus(other: P): P
/**
* Returns difference between the constant represented as a polynomial and the polynomial.
*/
public operator fun C.minus(other: P): P
/**
* Returns product of the constant represented as a polynomial and the polynomial.
*/
public operator fun C.times(other: P): P
/**
* Returns sum of the constant represented as a polynomial and the polynomial.
*/
public operator fun P.plus(other: C): P
/**
* Returns difference between the constant represented as a polynomial and the polynomial.
*/
public operator fun P.minus(other: C): P
/**
* Returns product of the constant represented as a polynomial and the polynomial.
*/
public operator fun P.times(other: C): P
/**
* Converts the constant [value] to polynomial.
*/
public fun number(value: C): P = one * value
/**
* Converts the constant to polynomial.
*/
public fun C.asPolynomial(): P = number(this)
/**
* Returns the same polynomial.
*/
public override operator fun P.unaryPlus(): P = this
/**
* Returns negation of the polynomial.
*/
public override operator fun P.unaryMinus(): P
/**
* Returns sum of the polynomials.
*/
public override operator fun P.plus(other: P): P
/**
* Returns difference of the polynomials.
*/
public override operator fun P.minus(other: P): P
/**
* Returns product of the polynomials.
*/
public override operator fun P.times(other: P): P
/**
* Raises [arg] to the integer power [exponent].
*/
public override fun power(arg: P, exponent: UInt) : P = exponentiateBySquaring(arg, exponent)
/**
* Instance of zero polynomial (zero of the polynomial ring).
*/
public override val zero: P
/**
* Instance of unit polynomial (unit of the polynomial ring).
*/
public override val one: P
/**
* Degree of the polynomial, [see also](https://en.wikipedia.org/wiki/Degree_of_a_polynomial). If the polynomial is
* zero, degree is -1.
*/
public val P.degree: Int
override fun add(left: P, right: P): P = left + right
override fun multiply(left: P, right: P): P = left * right
}
/**
* Abstraction of ring of polynomials of type [P] over ring of constants of type [C]. It also assumes that there is
* provided [ring] (of type [A]), that provides constant-wise operations.
*
* @param C the type of constants. Polynomials have them as coefficients in their terms.
* @param P the type of polynomials.
* @param A the type of algebraic structure (precisely, of ring) provided for constants.
*/
@Suppress("INAPPLICABLE_JVM_NAME") // FIXME: Waiting for KT-31420
public interface PolynomialSpaceOverRing<C, P: Polynomial<C>, A: Ring<C>> : PolynomialSpace<C, P> {
/**
* Underlying ring of constants. Its operations on constants are inherited by local operations on constants.
*/
public val ring: A
/**
* Returns sum of the constant and the integer represented as a constant (member of underlying ring).
*
* The operation is equivalent to adding [other] copies of unit of underlying ring to [this].
*/
public override operator fun C.plus(other: Int): C = ring { addMultipliedByDoubling(this@plus, one, other) }
/**
* Returns difference between the constant and the integer represented as a constant (member of underlying ring).
*
* The operation is equivalent to subtraction [other] copies of unit of underlying ring from [this].
*/
public override operator fun C.minus(other: Int): C = ring { addMultipliedByDoubling(this@minus, one, -other) }
/**
* Returns product of the constant and the integer represented as a constant (member of underlying ring).
*
* The operation is equivalent to sum of [other] copies of [this].
*/
public override operator fun C.times(other: Int): C = ring { multiplyByDoubling(this@times, other) }
/**
* Returns sum of the integer represented as a constant (member of underlying ring) and the constant.
*
* The operation is equivalent to adding [this] copies of unit of underlying ring to [other].
*/
public override operator fun Int.plus(other: C): C = ring { addMultipliedByDoubling(other, one, this@plus) }
/**
* Returns difference between the integer represented as a constant (member of underlying ring) and the constant.
*
* The operation is equivalent to subtraction [this] copies of unit of underlying ring from [other].
*/
public override operator fun Int.minus(other: C): C = ring { addMultipliedByDoubling(-other, one, this@minus) }
/**
* Returns product of the integer represented as a constant (member of underlying ring) and the constant.
*
* The operation is equivalent to sum of [this] copies of [other].
*/
public override operator fun Int.times(other: C): C = ring { multiplyByDoubling(other, this@times) }
/**
* Returns negation of the constant.
*/
@JvmName("unaryMinusConstant")
public override operator fun C.unaryMinus(): C = ring { -this@unaryMinus }
/**
* Returns sum of the constants.
*/
@JvmName("plusConstantConstant")
public override operator fun C.plus(other: C): C = ring { this@plus + other }
/**
* Returns difference of the constants.
*/
@JvmName("minusConstantConstant")
public override operator fun C.minus(other: C): C = ring { this@minus - other }
/**
* Returns product of the constants.
*/
@JvmName("timesConstantConstant")
public override operator fun C.times(other: C): C = ring { this@times * other }
/**
* Raises [arg] to the integer power [exponent].
*/
@JvmName("powerConstant")
override fun power(arg: C, exponent: UInt): C = ring { power(arg, exponent) }
/**
* Instance of zero constant (zero of the underlying ring).
*/
public override val constantZero: C get() = ring.zero
/**
* Instance of unit constant (unit of the underlying ring).
*/
public override val constantOne: C get() = ring.one
}
/**
* Abstraction of ring of polynomials of type [P] of variables of type [V] and over ring of constants of type [C].
*
* @param C the type of constants. Polynomials have them as coefficients in their terms.
* @param V the type of variables. Polynomials have them in representations of terms.
* @param P the type of polynomials.
*/
@Suppress("INAPPLICABLE_JVM_NAME") // FIXME: Waiting for KT-31420
public interface MultivariatePolynomialSpace<C, V, P: Polynomial<C>>: PolynomialSpace<C, P> {
/**
* Returns sum of the variable represented as a monic monomial and the integer represented as a constant polynomial.
*/
@JvmName("plusVariableInt")
public operator fun V.plus(other: Int): P
/**
* Returns difference between the variable represented as a monic monomial and the integer represented as a constant polynomial.
*/
@JvmName("minusVariableInt")
public operator fun V.minus(other: Int): P
/**
* Returns product of the variable represented as a monic monomial and the integer represented as a constant polynomial.
*/
@JvmName("timesVariableInt")
public operator fun V.times(other: Int): P
/**
* Returns sum of the integer represented as a constant polynomial and the variable represented as a monic monomial.
*/
@JvmName("plusIntVariable")
public operator fun Int.plus(other: V): P
/**
* Returns difference between the integer represented as a constant polynomial and the variable represented as a monic monomial.
*/
@JvmName("minusIntVariable")
public operator fun Int.minus(other: V): P
/**
* Returns product of the integer represented as a constant polynomial and the variable represented as a monic monomial.
*/
@JvmName("timesIntVariable")
public operator fun Int.times(other: V): P
/**
* Returns sum of the variable represented as a monic monomial and the constant represented as a constant polynomial.
*/
@JvmName("plusVariableConstant")
public operator fun V.plus(other: C): P
/**
* Returns difference between the variable represented as a monic monomial and the constant represented as a constant polynomial.
*/
@JvmName("minusVariableConstant")
public operator fun V.minus(other: C): P
/**
* Returns product of the variable represented as a monic monomial and the constant represented as a constant polynomial.
*/
@JvmName("timesVariableConstant")
public operator fun V.times(other: C): P
/**
* Returns sum of the constant represented as a constant polynomial and the variable represented as a monic monomial.
*/
@JvmName("plusConstantVariable")
public operator fun C.plus(other: V): P
/**
* Returns difference between the constant represented as a constant polynomial and the variable represented as a monic monomial.
*/
@JvmName("minusConstantVariable")
public operator fun C.minus(other: V): P
/**
* Returns product of the constant represented as a constant polynomial and the variable represented as a monic monomial.
*/
@JvmName("timesConstantVariable")
public operator fun C.times(other: V): P
/**
* Represents the variable as a monic monomial.
*/
@JvmName("unaryPlusVariable")
public operator fun V.unaryPlus(): P
/**
* Returns negation of representation of the variable as a monic monomial.
*/
@JvmName("unaryMinusVariable")
public operator fun V.unaryMinus(): P
/**
* Returns sum of the variables represented as monic monomials.
*/
@JvmName("plusVariableVariable")
public operator fun V.plus(other: V): P
/**
* Returns difference between the variables represented as monic monomials.
*/
@JvmName("minusVariableVariable")
public operator fun V.minus(other: V): P
/**
* Returns product of the variables represented as monic monomials.
*/
@JvmName("timesVariableVariable")
public operator fun V.times(other: V): P
/**
* Represents the [variable] as a monic monomial.
*/
@JvmName("numberVariable")
public fun number(variable: V): P = +variable
/**
* Represents the variable as a monic monomial.
*/
@JvmName("asPolynomialVariable")
public fun V.asPolynomial(): P = number(this)
/**
* Returns sum of the variable represented as a monic monomial and the polynomial.
*/
@JvmName("plusVariablePolynomial")
public operator fun V.plus(other: P): P
/**
* Returns difference between the variable represented as a monic monomial and the polynomial.
*/
@JvmName("minusVariablePolynomial")
public operator fun V.minus(other: P): P
/**
* Returns product of the variable represented as a monic monomial and the polynomial.
*/
@JvmName("timesVariablePolynomial")
public operator fun V.times(other: P): P
/**
* Returns sum of the polynomial and the variable represented as a monic monomial.
*/
@JvmName("plusPolynomialVariable")
public operator fun P.plus(other: V): P
/**
* Returns difference between the polynomial and the variable represented as a monic monomial.
*/
@JvmName("minusPolynomialVariable")
public operator fun P.minus(other: V): P
/**
* Returns product of the polynomial and the variable represented as a monic monomial.
*/
@JvmName("timesPolynomialVariable")
public operator fun P.times(other: V): P
/**
* Map that associates variables (that appear in the polynomial in positive exponents) with their most exponents
* in which they are appeared in the polynomial.
*
* As consequence all values in the map are positive integers. Also, if the polynomial is constant, the map is empty.
* And keys of the map is the same as in [variables].
*/
public val P.degrees: Map<V, UInt>
/**
* Counts degree of the polynomial by the specified [variable].
*/
public fun P.degreeBy(variable: V): UInt = degrees.getOrElse(variable) { 0u }
/**
* Counts degree of the polynomial by the specified [variables].
*/
public fun P.degreeBy(variables: Collection<V>): UInt
/**
* Set of all variables that appear in the polynomial in positive exponents.
*/
public val P.variables: Set<V> get() = degrees.keys
/**
* Count of all variables that appear in the polynomial in positive exponents.
*/
public val P.countOfVariables: Int get() = variables.size
}

View File

@ -5,7 +5,8 @@
package space.kscience.kmath.functions package space.kscience.kmath.functions
import space.kscience.kmath.operations.* import space.kscience.kmath.operations.Ring
import space.kscience.kmath.operations.invoke
import kotlin.js.JsName import kotlin.js.JsName
import kotlin.jvm.JvmName import kotlin.jvm.JvmName

View File

@ -8,9 +8,9 @@ package space.kscience.kmath.functions
import space.kscience.kmath.expressions.Symbol import space.kscience.kmath.expressions.Symbol
import space.kscience.kmath.misc.UnstableKMathAPI import space.kscience.kmath.misc.UnstableKMathAPI
import space.kscience.kmath.operations.Field import space.kscience.kmath.operations.Field
import space.kscience.kmath.operations.invoke
import space.kscience.kmath.operations.Ring import space.kscience.kmath.operations.Ring
import space.kscience.kmath.operations.algebra import space.kscience.kmath.operations.algebra
import space.kscience.kmath.operations.invoke
import kotlin.contracts.InvocationKind import kotlin.contracts.InvocationKind
import kotlin.contracts.contract import kotlin.contracts.contract
import kotlin.jvm.JvmName import kotlin.jvm.JvmName

View File

@ -0,0 +1,92 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.functions
import space.kscience.kmath.operations.Ring
/**
* Constructs a [ListPolynomial] instance with provided [coefficients]. The collection of coefficients will be reversed
* if [reverse] parameter is true.
*/
@Suppress("FunctionName")
public fun <C> ListPolynomial(coefficients: List<C>, reverse: Boolean = false): ListPolynomial<C> =
ListPolynomial(with(coefficients) { if (reverse) reversed() else this })
/**
* Constructs a [ListPolynomial] instance with provided [coefficients]. The collection of coefficients will be reversed
* if [reverse] parameter is true.
*/
@Suppress("FunctionName")
public fun <C> ListPolynomial(vararg coefficients: C, reverse: Boolean = false): ListPolynomial<C> =
ListPolynomial(with(coefficients) { if (reverse) reversed() else toList() })
/**
* Represents [this] constant as a [ListPolynomial].
*/
public fun <C> C.asListPolynomial() : ListPolynomial<C> = ListPolynomial(listOf(this))
// Waiting for context receivers :( FIXME: Replace with context receivers when they will be available
/**
* Constructs [ListRationalFunction] instance with numerator and denominator constructed with provided
* [numeratorCoefficients] and [denominatorCoefficients]. The both collections of coefficients will be reversed if
* [reverse] parameter is true.
*/
@Suppress("FunctionName")
public fun <C> ListRationalFunction(numeratorCoefficients: List<C>, denominatorCoefficients: List<C>, reverse: Boolean = false): ListRationalFunction<C> =
ListRationalFunction<C>(
ListPolynomial( with(numeratorCoefficients) { if (reverse) reversed() else this } ),
ListPolynomial( with(denominatorCoefficients) { if (reverse) reversed() else this } )
)
/**
* Constructs [ListRationalFunction] instance with provided [numerator] and unit denominator.
*/
@Suppress("FunctionName")
public fun <C, A: Ring<C>> A.ListRationalFunction(numerator: ListPolynomial<C>): ListRationalFunction<C> =
ListRationalFunction<C>(numerator, ListPolynomial(listOf(one)))
/**
* Constructs [ListRationalFunction] instance with provided [numerator] and unit denominator.
*/
@Suppress("FunctionName")
public fun <C, A: Ring<C>> ListRationalFunctionSpace<C, A>.ListRationalFunction(numerator: ListPolynomial<C>): ListRationalFunction<C> =
ListRationalFunction<C>(numerator, polynomialOne)
/**
* Constructs [ListRationalFunction] instance with numerator constructed with provided [numeratorCoefficients] and unit
* denominator. The collection of numerator coefficients will be reversed if [reverse] parameter is true.
*/
@Suppress("FunctionName")
public fun <C, A: Ring<C>> A.ListRationalFunction(numeratorCoefficients: List<C>, reverse: Boolean = false): ListRationalFunction<C> =
ListRationalFunction<C>(
ListPolynomial( with(numeratorCoefficients) { if (reverse) reversed() else this } ),
ListPolynomial(listOf(one))
)
/**
* Constructs [ListRationalFunction] instance with numerator constructed with provided [numeratorCoefficients] and unit
* denominator. The collection of numerator coefficients will be reversed if [reverse] parameter is true.
*/
@Suppress("FunctionName")
public fun <C, A: Ring<C>> ListRationalFunctionSpace<C, A>.ListRationalFunction(numeratorCoefficients: List<C>, reverse: Boolean = false): ListRationalFunction<C> =
ListRationalFunction<C>(
ListPolynomial( with(numeratorCoefficients) { if (reverse) reversed() else this } ),
polynomialOne
)
/**
* Represents [this] constant as a rational function.
*/ // FIXME: When context receivers will be ready, delete this function and uncomment the following two
public fun <C, A: Ring<C>> C.asListRationalFunction(ring: A) : ListRationalFunction<C> = ring.ListRationalFunction(asListPolynomial())
///**
// * Represents [this] constant as a rational function.
// */
//context(A)
//public fun <C, A: Ring<C>> C.asListRationalFunction() : ListRationalFunction<C> = ListRationalFunction(asListPolynomial())
///**
// * Represents [this] constant as a rational function.
// */
//context(ListRationalFunctionSpace<C, A>)
//public fun <C, A: Ring<C>> C.asListRationalFunction() : ListRationalFunction<C> = ListRationalFunction(asListPolynomial())

View File

@ -0,0 +1,255 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.functions
import space.kscience.kmath.misc.UnstableKMathAPI
import space.kscience.kmath.operations.*
import kotlin.contracts.InvocationKind
import kotlin.contracts.contract
import kotlin.math.max
import kotlin.math.pow
/**
* Creates a [ListPolynomialSpace] over a received ring.
*/
public inline val <C, A : Ring<C>> A.listPolynomialSpace: ListPolynomialSpace<C, A>
get() = ListPolynomialSpace(this)
/**
* Creates a [ListPolynomialSpace]'s scope over a received ring.
*/ // TODO: When context will be ready move [ListPolynomialSpace] and add [A] to context receivers of [block]
public inline fun <C, A : Ring<C>, R> A.listPolynomialSpace(block: ListPolynomialSpace<C, A>.() -> R): R {
contract { callsInPlace(block, InvocationKind.EXACTLY_ONCE) }
return ListPolynomialSpace(this).block()
}
/**
* Creates a [ScalableListPolynomialSpace] over a received scalable ring.
*/
public inline val <C, A> A.scalableListPolynomialSpace: ScalableListPolynomialSpace<C, A> where A : Ring<C>, A : ScaleOperations<C>
get() = ScalableListPolynomialSpace(this)
/**
* Creates a [ScalableListPolynomialSpace]'s scope over a received scalable ring.
*/ // TODO: When context will be ready move [ListPolynomialSpace] and add [A] to context receivers of [block]
public inline fun <C, A, R> A.scalableListPolynomialSpace(block: ScalableListPolynomialSpace<C, A>.() -> R): R where A : Ring<C>, A : ScaleOperations<C> {
contract { callsInPlace(block, InvocationKind.EXACTLY_ONCE) }
return ScalableListPolynomialSpace(this).block()
}
/**
* Creates a [ListRationalFunctionSpace] over a received ring.
*/
public inline val <C, A : Ring<C>> A.listRationalFunctionSpace: ListRationalFunctionSpace<C, A>
get() = ListRationalFunctionSpace(this)
/**
* Creates a [ListRationalFunctionSpace]'s scope over a received ring.
*/ // TODO: When context will be ready move [ListRationalFunctionSpace] and add [A] to context receivers of [block]
public inline fun <C, A : Ring<C>, R> A.listRationalFunctionSpace(block: ListRationalFunctionSpace<C, A>.() -> R): R {
contract { callsInPlace(block, InvocationKind.EXACTLY_ONCE) }
return ListRationalFunctionSpace(this).block()
}
/**
* Evaluates value of [this] Double polynomial on provided Double argument.
*/
public fun ListPolynomial<Double>.substitute(arg: Double): Double =
coefficients.reduceIndexedOrNull { index, acc, c ->
acc + c * arg.pow(index)
} ?: .0
/**
* Evaluates value of [this] polynomial on provided argument.
*
* It is an implementation of [Horner's method](https://en.wikipedia.org/wiki/Horner%27s_method).
*/
public fun <C> ListPolynomial<C>.substitute(ring: Ring<C>, arg: C): C = ring {
if (coefficients.isEmpty()) return zero
var result: C = coefficients.last()
for (j in coefficients.size - 2 downTo 0) {
result = (arg * result) + coefficients[j]
}
return result
}
/**
* Substitutes provided polynomial [arg] into [this] polynomial.
*
* It is an implementation of [Horner's method](https://en.wikipedia.org/wiki/Horner%27s_method).
*/ // TODO: To optimize boxing
public fun <C> ListPolynomial<C>.substitute(ring: Ring<C>, arg: ListPolynomial<C>) : ListPolynomial<C> =
ring.listPolynomialSpace {
if (coefficients.isEmpty()) return zero
var result: ListPolynomial<C> = coefficients.last().asPolynomial()
for (j in coefficients.size - 2 downTo 0) {
result = (arg * result) + coefficients[j]
}
return result
}
/**
* Substitutes provided rational function [arg] into [this] polynomial.
*
* It is an implementation of [Horner's method](https://en.wikipedia.org/wiki/Horner%27s_method).
*/ // TODO: To optimize boxing
public fun <C> ListPolynomial<C>.substitute(ring: Ring<C>, arg: ListRationalFunction<C>) : ListRationalFunction<C> =
ring.listRationalFunctionSpace {
if (coefficients.isEmpty()) return zero
var result: ListRationalFunction<C> = coefficients.last().asRationalFunction()
for (j in coefficients.size - 2 downTo 0) {
result = (arg * result) + coefficients[j]
}
return result
}
/**
* Evaluates value of [this] Double rational function in provided Double argument.
*/
public fun ListRationalFunction<Double>.substitute(arg: Double): Double =
numerator.substitute(arg) / denominator.substitute(arg)
/**
* Evaluates value of [this] polynomial for provided argument.
*
* It is an implementation of [Horner's method](https://en.wikipedia.org/wiki/Horner%27s_method).
*/
public fun <C> ListRationalFunction<C>.substitute(ring: Field<C>, arg: C): C = ring {
numerator.substitute(ring, arg) / denominator.substitute(ring, arg)
}
/**
* Substitutes provided polynomial [arg] into [this] rational function.
*/ // TODO: To optimize boxing
public fun <C> ListRationalFunction<C>.substitute(ring: Ring<C>, arg: ListPolynomial<C>) : ListRationalFunction<C> =
ring.listRationalFunctionSpace {
numerator.substitute(ring, arg) / denominator.substitute(ring, arg)
}
/**
* Substitutes provided rational function [arg] into [this] rational function.
*/ // TODO: To optimize boxing
public fun <C> ListRationalFunction<C>.substitute(ring: Ring<C>, arg: ListRationalFunction<C>) : ListRationalFunction<C> =
ring.listRationalFunctionSpace {
numerator.substitute(ring, arg) / denominator.substitute(ring, arg)
}
/**
* Represent [this] polynomial as a regular context-less function.
*/
public fun <C, A : Ring<C>> ListPolynomial<C>.asFunctionOver(ring: A): (C) -> C = { substitute(ring, it) }
/**
* Represent [this] polynomial as a regular context-less function.
*/
public fun <C, A : Ring<C>> ListPolynomial<C>.asFunctionOfConstantOver(ring: A): (C) -> C = { substitute(ring, it) }
/**
* Represent [this] polynomial as a regular context-less function.
*/
public fun <C, A : Ring<C>> ListPolynomial<C>.asFunctionOfPolynomialOver(ring: A): (ListPolynomial<C>) -> ListPolynomial<C> = { substitute(ring, it) }
/**
* Represent [this] polynomial as a regular context-less function.
*/
public fun <C, A : Ring<C>> ListPolynomial<C>.asFunctionOfRationalFunctionOver(ring: A): (ListRationalFunction<C>) -> ListRationalFunction<C> = { substitute(ring, it) }
/**
* Represent [this] rational function as a regular context-less function.
*/
public fun <C, A : Field<C>> ListRationalFunction<C>.asFunctionOver(ring: A): (C) -> C = { substitute(ring, it) }
/**
* Represent [this] rational function as a regular context-less function.
*/
public fun <C, A : Field<C>> ListRationalFunction<C>.asFunctionOfConstantOver(ring: A): (C) -> C = { substitute(ring, it) }
/**
* Represent [this] rational function as a regular context-less function.
*/
public fun <C, A : Ring<C>> ListRationalFunction<C>.asFunctionOfPolynomialOver(ring: A): (ListPolynomial<C>) -> ListRationalFunction<C> = { substitute(ring, it) }
/**
* Represent [this] rational function as a regular context-less function.
*/
public fun <C, A : Ring<C>> ListRationalFunction<C>.asFunctionOfRationalFunctionOver(ring: A): (ListRationalFunction<C>) -> ListRationalFunction<C> = { substitute(ring, it) }
/**
* Returns algebraic derivative of received polynomial.
*/
@UnstableKMathAPI
public fun <C, A> ListPolynomial<C>.derivative(
ring: A,
): ListPolynomial<C> where A : Ring<C>, A : NumericAlgebra<C> = ring {
ListPolynomial(
buildList(max(0, coefficients.size - 1)) {
for (deg in 1 .. coefficients.lastIndex) add(number(deg) * coefficients[deg])
}
)
}
/**
* Returns algebraic derivative of received polynomial of specified [order]. The [order] should be non-negative integer.
*/
@UnstableKMathAPI
public fun <C, A> ListPolynomial<C>.nthDerivative(
ring: A,
order: Int,
): ListPolynomial<C> where A : Ring<C>, A : NumericAlgebra<C> = ring {
require(order >= 0) { "Order of derivative must be non-negative" }
ListPolynomial(
buildList(max(0, coefficients.size - order)) {
for (deg in order.. coefficients.lastIndex)
add((deg - order + 1 .. deg).fold(coefficients[deg]) { acc, d -> acc * number(d) })
}
)
}
/**
* Returns algebraic antiderivative of received polynomial.
*/
@UnstableKMathAPI
public fun <C, A> ListPolynomial<C>.antiderivative(
ring: A,
): ListPolynomial<C> where A : Field<C>, A : NumericAlgebra<C> = ring {
ListPolynomial(
buildList(coefficients.size + 1) {
add(zero)
coefficients.mapIndexedTo(this) { index, t -> t / number(index + 1) }
}
)
}
/**
* Returns algebraic antiderivative of received polynomial of specified [order]. The [order] should be non-negative integer.
*/
@UnstableKMathAPI
public fun <C, A> ListPolynomial<C>.nthAntiderivative(
ring: A,
order: Int,
): ListPolynomial<C> where A : Field<C>, A : NumericAlgebra<C> = ring {
require(order >= 0) { "Order of antiderivative must be non-negative" }
ListPolynomial(
buildList(coefficients.size + order) {
repeat(order) { add(zero) }
coefficients.mapIndexedTo(this) { index, c -> (1..order).fold(c) { acc, i -> acc / number(index + i) } }
}
)
}
/**
* Computes a definite integral of [this] polynomial in the specified [range].
*/
@UnstableKMathAPI
public fun <C : Comparable<C>> ListPolynomial<C>.integrate(
ring: Field<C>,
range: ClosedRange<C>,
): C = ring {
val antiderivative = antiderivative(ring)
antiderivative.substitute(ring, range.endInclusive) - antiderivative.substitute(ring, range.start)
}

View File

@ -0,0 +1,22 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.functions
/**
* Marks declarations that give access to internal entities of polynomials delicate structure. Thus, it allows to
* optimize performance a bit by skipping standard steps, but such skips may cause critical errors if something is
* implemented badly. Make sure you fully read and understand documentation and don't break internal contracts.
*/
@RequiresOptIn(
message = "This declaration gives access to delicate internal structure of polynomials. " +
"It allows to optimize performance by skipping unnecessary arguments check. " +
"But at the same time makes it easy to make a mistake " +
"that will cause wrong computation result or even runtime error. " +
"Make sure you fully read and understand documentation.",
level = RequiresOptIn.Level.ERROR
)
public annotation class DelicatePolynomialAPI

View File

@ -6,13 +6,13 @@
package space.kscience.kmath.functions package space.kscience.kmath.functions
import space.kscience.kmath.expressions.Symbol import space.kscience.kmath.expressions.Symbol
import space.kscience.kmath.misc.UnstableKMathAPI
import space.kscience.kmath.operations.algebra
import space.kscience.kmath.operations.invoke
import space.kscience.kmath.functions.testUtils.t import space.kscience.kmath.functions.testUtils.t
import space.kscience.kmath.functions.testUtils.x import space.kscience.kmath.functions.testUtils.x
import space.kscience.kmath.functions.testUtils.y import space.kscience.kmath.functions.testUtils.y
import space.kscience.kmath.functions.testUtils.z import space.kscience.kmath.functions.testUtils.z
import space.kscience.kmath.misc.UnstableKMathAPI
import space.kscience.kmath.operations.algebra
import space.kscience.kmath.operations.invoke
import kotlin.test.Test import kotlin.test.Test
import kotlin.test.assertEquals import kotlin.test.assertEquals

View File

@ -11,15 +11,15 @@ import space.kscience.kmath.expressions.Symbol
import space.kscience.kmath.functions.testUtils.IntModuloRing import space.kscience.kmath.functions.testUtils.IntModuloRing
import space.kscience.kmath.functions.testUtils.Rational import space.kscience.kmath.functions.testUtils.Rational
import space.kscience.kmath.functions.testUtils.RationalField import space.kscience.kmath.functions.testUtils.RationalField
import space.kscience.kmath.functions.testUtils.o import space.kscience.kmath.functions.testUtils.iota
import space.kscience.kmath.functions.testUtils.m import space.kscience.kmath.functions.testUtils.m
import kotlin.test.* import space.kscience.kmath.functions.testUtils.o
import space.kscience.kmath.functions.testUtils.s
import space.kscience.kmath.functions.testUtils.t
import space.kscience.kmath.functions.testUtils.x import space.kscience.kmath.functions.testUtils.x
import space.kscience.kmath.functions.testUtils.y import space.kscience.kmath.functions.testUtils.y
import space.kscience.kmath.functions.testUtils.z import space.kscience.kmath.functions.testUtils.z
import space.kscience.kmath.functions.testUtils.t import kotlin.test.*
import space.kscience.kmath.functions.testUtils.s
import space.kscience.kmath.functions.testUtils.iota
// TODO: Тесты на конвертацию. // TODO: Тесты на конвертацию.

View File

@ -6,16 +6,15 @@
package space.kscience.kmath.functions package space.kscience.kmath.functions
import space.kscience.kmath.expressions.Symbol import space.kscience.kmath.expressions.Symbol
import space.kscience.kmath.misc.UnstableKMathAPI
import space.kscience.kmath.functions.testUtils.Rational import space.kscience.kmath.functions.testUtils.Rational
import space.kscience.kmath.functions.testUtils.RationalField import space.kscience.kmath.functions.testUtils.RationalField
import space.kscience.kmath.functions.testUtils.iota
import space.kscience.kmath.functions.testUtils.x
import space.kscience.kmath.functions.testUtils.y
import space.kscience.kmath.misc.UnstableKMathAPI
import kotlin.test.Ignore import kotlin.test.Ignore
import kotlin.test.Test import kotlin.test.Test
import kotlin.test.assertEquals import kotlin.test.assertEquals
import space.kscience.kmath.functions.testUtils.x
import space.kscience.kmath.functions.testUtils.y
import space.kscience.kmath.functions.testUtils.iota
import space.kscience.kmath.functions.testUtils.assertEquals
class LabeledPolynomialUtilTest { class LabeledPolynomialUtilTest {
@Test @Test

View File

@ -27,8 +27,8 @@ include(
":kmath-coroutines", ":kmath-coroutines",
":kmath-functions", ":kmath-functions",
":test-utils-functions", ":test-utils-functions",
":kmath-polynomialX", ":kmath-polynomial",
":test-utils-polynomialX", ":test-utils-polynomial",
":kmath-histograms", ":kmath-histograms",
":kmath-commons", ":kmath-commons",
":kmath-viktor", ":kmath-viktor",

View File

@ -7,9 +7,7 @@ kotlin.sourceSets {
commonMain { commonMain {
dependencies { dependencies {
api(projects.kmathCore) api(projects.kmathCore)
api(projects.kmathFunctions) api(projects.kmathPolynomial)
api(projects.testUtilsFunctions)
api(projects.kmathPolynomialX)
api(kotlin("test")) api(kotlin("test"))
} }
} }