diff --git a/CHANGELOG.md b/CHANGELOG.md index 840733d92..27d4dd1aa 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -33,6 +33,7 @@ - EjmlMatrix context is an object - Matrix LUP `inverse` renamed to `inverseWithLUP` - `NumericAlgebra` moved outside of regular algebra chain (`Ring` no longer implements it). +- Features moved to NDStructure and became transparent. ### Deprecated diff --git a/kmath-commons/src/main/kotlin/kscience/kmath/commons/linear/CMMatrix.kt b/kmath-commons/src/main/kotlin/kscience/kmath/commons/linear/CMMatrix.kt index 49888f8d6..48b6e0ef1 100644 --- a/kmath-commons/src/main/kotlin/kscience/kmath/commons/linear/CMMatrix.kt +++ b/kmath-commons/src/main/kotlin/kscience/kmath/commons/linear/CMMatrix.kt @@ -1,42 +1,28 @@ package kscience.kmath.commons.linear -import kscience.kmath.linear.* +import kscience.kmath.linear.DiagonalFeature +import kscience.kmath.linear.MatrixContext +import kscience.kmath.linear.MatrixWrapper +import kscience.kmath.linear.Point +import kscience.kmath.misc.UnstableKMathAPI import kscience.kmath.structures.Matrix -import kscience.kmath.structures.NDStructure import org.apache.commons.math3.linear.* +import kotlin.reflect.KClass +import kotlin.reflect.cast -public class CMMatrix(public val origin: RealMatrix, features: Set? = null) : FeaturedMatrix { +public inline class CMMatrix(public val origin: RealMatrix) : Matrix { public override val rowNum: Int get() = origin.rowDimension public override val colNum: Int get() = origin.columnDimension - public override val features: Set = features ?: sequence { - if (origin is DiagonalMatrix) yield(DiagonalFeature) - }.toHashSet() - - public override fun suggestFeature(vararg features: MatrixFeature): CMMatrix = - CMMatrix(origin, this.features + features) + @UnstableKMathAPI + override fun getFeature(type: KClass): T? = when (type) { + DiagonalFeature::class -> if (origin is DiagonalMatrix) DiagonalFeature else null + else -> null + }?.let { type.cast(it) } public override operator fun get(i: Int, j: Int): Double = origin.getEntry(i, j) - - public override fun equals(other: Any?): Boolean { - return NDStructure.equals(this, other as? NDStructure<*> ?: return false) - } - - public override fun hashCode(): Int { - var result = origin.hashCode() - result = 31 * result + features.hashCode() - return result - } } -//TODO move inside context -public fun Matrix.toCM(): CMMatrix = if (this is CMMatrix) { - this -} else { - //TODO add feature analysis - val array = Array(rowNum) { i -> DoubleArray(colNum) { j -> get(i, j) } } - CMMatrix(Array2DRowRealMatrix(array)) -} public fun RealMatrix.asMatrix(): CMMatrix = CMMatrix(this) @@ -61,6 +47,16 @@ public object CMMatrixContext : MatrixContext { return CMMatrix(Array2DRowRealMatrix(array)) } + public fun Matrix.toCM(): CMMatrix = when { + this is CMMatrix -> this + this is MatrixWrapper && matrix is CMMatrix -> matrix as CMMatrix + else -> { + //TODO add feature analysis + val array = Array(rowNum) { i -> DoubleArray(colNum) { j -> get(i, j) } } + CMMatrix(Array2DRowRealMatrix(array)) + } + } + public override fun Matrix.dot(other: Matrix): CMMatrix = CMMatrix(toCM().origin.multiply(other.toCM().origin)) diff --git a/kmath-core/src/commonMain/kotlin/kscience/kmath/linear/BufferMatrix.kt b/kmath-core/src/commonMain/kotlin/kscience/kmath/linear/BufferMatrix.kt index 402161207..80460baca 100644 --- a/kmath-core/src/commonMain/kotlin/kscience/kmath/linear/BufferMatrix.kt +++ b/kmath-core/src/commonMain/kotlin/kscience/kmath/linear/BufferMatrix.kt @@ -1,10 +1,7 @@ package kscience.kmath.linear import kscience.kmath.operations.Ring -import kscience.kmath.structures.Buffer -import kscience.kmath.structures.BufferFactory -import kscience.kmath.structures.NDStructure -import kscience.kmath.structures.asSequence +import kscience.kmath.structures.* /** * Basic implementation of Matrix space based on [NDStructure] @@ -27,8 +24,7 @@ public class BufferMatrix( public override val rowNum: Int, public override val colNum: Int, public val buffer: Buffer, - public override val features: Set = emptySet(), -) : FeaturedMatrix { +) : Matrix { init { require(buffer.size == rowNum * colNum) { "Dimension mismatch for matrix structure" } @@ -36,9 +32,6 @@ public class BufferMatrix( override val shape: IntArray get() = intArrayOf(rowNum, colNum) - public override fun suggestFeature(vararg features: MatrixFeature): BufferMatrix = - BufferMatrix(rowNum, colNum, buffer, this.features + features) - public override operator fun get(index: IntArray): T = get(index[0], index[1]) public override operator fun get(i: Int, j: Int): T = buffer[i * colNum + j] @@ -50,23 +43,26 @@ public class BufferMatrix( if (this === other) return true return when (other) { - is NDStructure<*> -> return NDStructure.equals(this, other) + is NDStructure<*> -> NDStructure.equals(this, other) else -> false } } - public override fun hashCode(): Int { - var result = buffer.hashCode() - result = 31 * result + features.hashCode() + override fun hashCode(): Int { + var result = rowNum + result = 31 * result + colNum + result = 31 * result + buffer.hashCode() return result } public override fun toString(): String { return if (rowNum <= 5 && colNum <= 5) - "Matrix(rowsNum = $rowNum, colNum = $colNum, features=$features)\n" + + "Matrix(rowsNum = $rowNum, colNum = $colNum)\n" + rows.asSequence().joinToString(prefix = "(", postfix = ")", separator = "\n ") { buffer -> buffer.asSequence().joinToString(separator = "\t") { it.toString() } } - else "Matrix(rowsNum = $rowNum, colNum = $colNum, features=$features)" + else "Matrix(rowsNum = $rowNum, colNum = $colNum)" } + + } diff --git a/kmath-core/src/commonMain/kotlin/kscience/kmath/linear/LUPDecomposition.kt b/kmath-core/src/commonMain/kotlin/kscience/kmath/linear/LupDecomposition.kt similarity index 78% rename from kmath-core/src/commonMain/kotlin/kscience/kmath/linear/LUPDecomposition.kt rename to kmath-core/src/commonMain/kotlin/kscience/kmath/linear/LupDecomposition.kt index 75acaf8a1..f4f998da2 100644 --- a/kmath-core/src/commonMain/kotlin/kscience/kmath/linear/LUPDecomposition.kt +++ b/kmath-core/src/commonMain/kotlin/kscience/kmath/linear/LupDecomposition.kt @@ -1,13 +1,14 @@ package kscience.kmath.linear +import kscience.kmath.misc.UnstableKMathAPI import kscience.kmath.operations.* import kscience.kmath.structures.* /** * Common implementation of [LupDecompositionFeature]. */ -public class LUPDecomposition( - public val context: MatrixContext>, +public class LupDecomposition( + public val context: MatrixContext>, public val elementContext: Field, public val lu: Matrix, public val pivot: IntArray, @@ -18,13 +19,13 @@ public class LUPDecomposition( * * L is a lower-triangular matrix with [Ring.one] in diagonal */ - override val l: FeaturedMatrix = VirtualMatrix(lu.shape[0], lu.shape[1], setOf(LFeature)) { i, j -> + override val l: Matrix = VirtualMatrix(lu.shape[0], lu.shape[1]) { i, j -> when { j < i -> lu[i, j] j == i -> elementContext.one else -> elementContext.zero } - } + } + LFeature /** @@ -32,9 +33,9 @@ public class LUPDecomposition( * * U is an upper-triangular matrix including the diagonal */ - override val u: FeaturedMatrix = VirtualMatrix(lu.shape[0], lu.shape[1], setOf(UFeature)) { i, j -> + override val u: Matrix = VirtualMatrix(lu.shape[0], lu.shape[1]) { i, j -> if (j >= i) lu[i, j] else elementContext.zero - } + } + UFeature /** * Returns the P rows permutation matrix. @@ -42,7 +43,7 @@ public class LUPDecomposition( * P is a sparse matrix with exactly one element set to [Ring.one] in * each row and each column, all other elements being set to [Ring.zero]. */ - override val p: FeaturedMatrix = VirtualMatrix(lu.shape[0], lu.shape[1]) { i, j -> + override val p: Matrix = VirtualMatrix(lu.shape[0], lu.shape[1]) { i, j -> if (j == pivot[i]) elementContext.one else elementContext.zero } @@ -63,12 +64,12 @@ internal fun , F : Field> GenericMatrixContext.abs /** * Create a lup decomposition of generic matrix. */ -public fun > MatrixContext>.lup( +public fun > MatrixContext>.lup( factory: MutableBufferFactory, elementContext: Field, matrix: Matrix, checkSingular: (T) -> Boolean, -): LUPDecomposition { +): LupDecomposition { require(matrix.rowNum == matrix.colNum) { "LU decomposition supports only square matrices" } val m = matrix.colNum val pivot = IntArray(matrix.rowNum) @@ -137,23 +138,23 @@ public fun > MatrixContext>.lup( for (row in col + 1 until m) lu[row, col] /= luDiag } - return LUPDecomposition(this@lup, elementContext, lu.collect(), pivot, even) + return LupDecomposition(this@lup, elementContext, lu.collect(), pivot, even) } } } -public inline fun , F : Field> GenericMatrixContext>.lup( +public inline fun , F : Field> GenericMatrixContext>.lup( matrix: Matrix, noinline checkSingular: (T) -> Boolean, -): LUPDecomposition = lup(MutableBuffer.Companion::auto, elementContext, matrix, checkSingular) +): LupDecomposition = lup(MutableBuffer.Companion::auto, elementContext, matrix, checkSingular) -public fun MatrixContext>.lup(matrix: Matrix): LUPDecomposition = +public fun MatrixContext>.lup(matrix: Matrix): LupDecomposition = lup(Buffer.Companion::real, RealField, matrix) { it < 1e-11 } -public fun LUPDecomposition.solveWithLUP( +public fun LupDecomposition.solveWithLUP( factory: MutableBufferFactory, - matrix: Matrix -): FeaturedMatrix { + matrix: Matrix, +): Matrix { require(matrix.rowNum == pivot.size) { "Matrix dimension mismatch. Expected ${pivot.size}, but got ${matrix.colNum}" } BufferAccessor2D(matrix.rowNum, matrix.colNum, factory).run { @@ -198,25 +199,40 @@ public fun LUPDecomposition.solveWithLUP( } } -public inline fun LUPDecomposition.solveWithLUP(matrix: Matrix): Matrix = +public inline fun LupDecomposition.solveWithLUP(matrix: Matrix): Matrix = solveWithLUP(MutableBuffer.Companion::auto, matrix) /** * Solve a linear equation **a*x = b** using LUP decomposition */ -public inline fun , F : Field> GenericMatrixContext>.solveWithLUP( +@OptIn(UnstableKMathAPI::class) +public inline fun , F : Field> GenericMatrixContext>.solveWithLUP( a: Matrix, b: Matrix, noinline bufferFactory: MutableBufferFactory = MutableBuffer.Companion::auto, noinline checkSingular: (T) -> Boolean, -): FeaturedMatrix { +): Matrix { // Use existing decomposition if it is provided by matrix val decomposition = a.getFeature() ?: lup(bufferFactory, elementContext, a, checkSingular) return decomposition.solveWithLUP(bufferFactory, b) } -public inline fun , F : Field> GenericMatrixContext>.inverseWithLUP( +public inline fun , F : Field> GenericMatrixContext>.inverseWithLUP( matrix: Matrix, noinline bufferFactory: MutableBufferFactory = MutableBuffer.Companion::auto, noinline checkSingular: (T) -> Boolean, -): FeaturedMatrix = solveWithLUP(matrix, one(matrix.rowNum, matrix.colNum), bufferFactory, checkSingular) +): Matrix = solveWithLUP(matrix, one(matrix.rowNum, matrix.colNum), bufferFactory, checkSingular) + + +public fun RealMatrixContext.solveWithLUP(a: Matrix, b: Matrix): Matrix { + // Use existing decomposition if it is provided by matrix + val bufferFactory: MutableBufferFactory = MutableBuffer.Companion::real + val decomposition: LupDecomposition = a.getFeature() ?: lup(bufferFactory, RealField, a) { it < 1e-11 } + return decomposition.solveWithLUP(bufferFactory, b) +} + +/** + * Inverses a square matrix using LUP decomposition. Non square matrix will throw a error. + */ +public fun RealMatrixContext.inverseWithLUP(matrix: Matrix): Matrix = + solveWithLUP(matrix, one(matrix.rowNum, matrix.colNum)) \ No newline at end of file diff --git a/kmath-core/src/commonMain/kotlin/kscience/kmath/linear/MatrixBuilder.kt b/kmath-core/src/commonMain/kotlin/kscience/kmath/linear/MatrixBuilder.kt index 91c1ec824..c0c209248 100644 --- a/kmath-core/src/commonMain/kotlin/kscience/kmath/linear/MatrixBuilder.kt +++ b/kmath-core/src/commonMain/kotlin/kscience/kmath/linear/MatrixBuilder.kt @@ -1,12 +1,9 @@ package kscience.kmath.linear -import kscience.kmath.structures.Buffer -import kscience.kmath.structures.BufferFactory -import kscience.kmath.structures.Structure2D -import kscience.kmath.structures.asBuffer +import kscience.kmath.structures.* public class MatrixBuilder(public val rows: Int, public val columns: Int) { - public operator fun invoke(vararg elements: T): FeaturedMatrix { + public operator fun invoke(vararg elements: T): Matrix { require(rows * columns == elements.size) { "The number of elements ${elements.size} is not equal $rows * $columns" } val buffer = elements.asBuffer() return BufferMatrix(rows, columns, buffer) @@ -17,7 +14,7 @@ public class MatrixBuilder(public val rows: Int, public val columns: Int) { public fun Structure2D.Companion.build(rows: Int, columns: Int): MatrixBuilder = MatrixBuilder(rows, columns) -public fun Structure2D.Companion.row(vararg values: T): FeaturedMatrix { +public fun Structure2D.Companion.row(vararg values: T): Matrix { val buffer = values.asBuffer() return BufferMatrix(1, values.size, buffer) } @@ -26,12 +23,12 @@ public inline fun Structure2D.Companion.row( size: Int, factory: BufferFactory = Buffer.Companion::auto, noinline builder: (Int) -> T -): FeaturedMatrix { +): Matrix { val buffer = factory(size, builder) return BufferMatrix(1, size, buffer) } -public fun Structure2D.Companion.column(vararg values: T): FeaturedMatrix { +public fun Structure2D.Companion.column(vararg values: T): Matrix { val buffer = values.asBuffer() return BufferMatrix(values.size, 1, buffer) } @@ -40,7 +37,7 @@ public inline fun Structure2D.Companion.column( size: Int, factory: BufferFactory = Buffer.Companion::auto, noinline builder: (Int) -> T -): FeaturedMatrix { +): Matrix { val buffer = factory(size, builder) return BufferMatrix(size, 1, buffer) } diff --git a/kmath-core/src/commonMain/kotlin/kscience/kmath/linear/MatrixContext.kt b/kmath-core/src/commonMain/kotlin/kscience/kmath/linear/MatrixContext.kt index 8c28a240f..59a41f840 100644 --- a/kmath-core/src/commonMain/kotlin/kscience/kmath/linear/MatrixContext.kt +++ b/kmath-core/src/commonMain/kotlin/kscience/kmath/linear/MatrixContext.kt @@ -133,8 +133,6 @@ public interface GenericMatrixContext, out M : Matrix> : public override fun multiply(a: Matrix, k: Number): M = produce(a.rowNum, a.colNum) { i, j -> elementContext { a[i, j] * k } } - public operator fun Number.times(matrix: FeaturedMatrix): M = multiply(matrix, this) - public override operator fun Matrix.times(value: T): M = produce(rowNum, colNum) { i, j -> elementContext { get(i, j) * value } } } diff --git a/kmath-core/src/commonMain/kotlin/kscience/kmath/linear/MatrixFeatures.kt b/kmath-core/src/commonMain/kotlin/kscience/kmath/linear/MatrixFeatures.kt index 1f93309a6..e61feec6c 100644 --- a/kmath-core/src/commonMain/kotlin/kscience/kmath/linear/MatrixFeatures.kt +++ b/kmath-core/src/commonMain/kotlin/kscience/kmath/linear/MatrixFeatures.kt @@ -11,17 +11,19 @@ public interface MatrixFeature /** * Matrices with this feature are considered to have only diagonal non-null elements. */ -public object DiagonalFeature : MatrixFeature +public interface DiagonalFeature : MatrixFeature{ + public companion object: DiagonalFeature +} /** * Matrices with this feature have all zero elements. */ -public object ZeroFeature : MatrixFeature +public object ZeroFeature : DiagonalFeature /** * Matrices with this feature have unit elements on diagonal and zero elements in all other places. */ -public object UnitFeature : MatrixFeature +public object UnitFeature : DiagonalFeature /** * Matrices with this feature can be inverted: [inverse] = `a`-1 where `a` is the owning matrix. @@ -76,17 +78,17 @@ public interface LupDecompositionFeature : MatrixFeature { /** * The lower triangular matrix in this decomposition. It may have [LFeature]. */ - public val l: FeaturedMatrix + public val l: Matrix /** * The upper triangular matrix in this decomposition. It may have [UFeature]. */ - public val u: FeaturedMatrix + public val u: Matrix /** * The permutation matrix in this decomposition. */ - public val p: FeaturedMatrix + public val p: Matrix } /** @@ -104,12 +106,12 @@ public interface QRDecompositionFeature : MatrixFeature { /** * The orthogonal matrix in this decomposition. It may have [OrthogonalFeature]. */ - public val q: FeaturedMatrix + public val q: Matrix /** * The upper triangular matrix in this decomposition. It may have [UFeature]. */ - public val r: FeaturedMatrix + public val r: Matrix } /** @@ -122,7 +124,7 @@ public interface CholeskyDecompositionFeature : MatrixFeature { /** * The triangular matrix in this decomposition. It may have either [UFeature] or [LFeature]. */ - public val l: FeaturedMatrix + public val l: Matrix } /** @@ -135,17 +137,17 @@ public interface SingularValueDecompositionFeature : MatrixFeature { /** * The matrix in this decomposition. It is unitary, and it consists from left singular vectors. */ - public val u: FeaturedMatrix + public val u: Matrix /** * The matrix in this decomposition. Its main diagonal elements are singular values. */ - public val s: FeaturedMatrix + public val s: Matrix /** * The matrix in this decomposition. It is unitary, and it consists from right singular vectors. */ - public val v: FeaturedMatrix + public val v: Matrix /** * The buffer of singular values of this SVD. diff --git a/kmath-core/src/commonMain/kotlin/kscience/kmath/linear/FeaturedMatrix.kt b/kmath-core/src/commonMain/kotlin/kscience/kmath/linear/MatrixWrapper.kt similarity index 50% rename from kmath-core/src/commonMain/kotlin/kscience/kmath/linear/FeaturedMatrix.kt rename to kmath-core/src/commonMain/kotlin/kscience/kmath/linear/MatrixWrapper.kt index 119f5d844..bbe9c1195 100644 --- a/kmath-core/src/commonMain/kotlin/kscience/kmath/linear/FeaturedMatrix.kt +++ b/kmath-core/src/commonMain/kotlin/kscience/kmath/linear/MatrixWrapper.kt @@ -1,35 +1,57 @@ package kscience.kmath.linear +import kscience.kmath.misc.UnstableKMathAPI import kscience.kmath.operations.Ring import kscience.kmath.structures.Matrix import kscience.kmath.structures.Structure2D import kscience.kmath.structures.asBuffer +import kscience.kmath.structures.getFeature import kotlin.math.sqrt +import kotlin.reflect.KClass +import kotlin.reflect.safeCast /** * A [Matrix] that holds [MatrixFeature] objects. * * @param T the type of items. */ -public interface FeaturedMatrix : Matrix { - public override val shape: IntArray get() = intArrayOf(rowNum, colNum) +public class MatrixWrapper( + public val matrix: Matrix, + public val features: Set, +) : Matrix by matrix { /** - * The set of features this matrix possesses. + * Get the first feature matching given class. Does not guarantee that matrix has only one feature matching the criteria */ - public val features: Set + @UnstableKMathAPI + override fun getFeature(type: KClass): T? = type.safeCast(features.find { type.isInstance(it) }) - /** - * Suggest new feature for this matrix. The result is the new matrix that may or may not reuse existing data structure. - * - * The implementation does not guarantee to check that matrix actually have the feature, so one should be careful to - * add only those features that are valid. - */ - public fun suggestFeature(vararg features: MatrixFeature): FeaturedMatrix - - public companion object + override fun equals(other: Any?): Boolean = matrix == other + override fun hashCode(): Int = matrix.hashCode() + override fun toString(): String { + return "MatrixWrapper(matrix=$matrix, features=$features)" + } } +/** + * Add a single feature to a [Matrix] + */ +public operator fun Matrix.plus(newFeature: MatrixFeature): MatrixWrapper = if (this is MatrixWrapper) { + MatrixWrapper(matrix, features + newFeature) +} else { + MatrixWrapper(this, setOf(newFeature)) +} + +/** + * Add a collection of features to a [Matrix] + */ +public operator fun Matrix.plus(newFeatures: Collection): MatrixWrapper = + if (this is MatrixWrapper) { + MatrixWrapper(matrix, features + newFeatures) + } else { + MatrixWrapper(this, newFeatures.toSet()) + } + public inline fun Structure2D.Companion.real( rows: Int, columns: Int, @@ -39,51 +61,37 @@ public inline fun Structure2D.Companion.real( /** * Build a square matrix from given elements. */ -public fun Structure2D.Companion.square(vararg elements: T): FeaturedMatrix { +public fun Structure2D.Companion.square(vararg elements: T): Matrix { val size: Int = sqrt(elements.size.toDouble()).toInt() require(size * size == elements.size) { "The number of elements ${elements.size} is not a full square" } val buffer = elements.asBuffer() return BufferMatrix(size, size, buffer) } -public val Matrix<*>.features: Set get() = (this as? FeaturedMatrix)?.features ?: emptySet() - -/** - * Check if matrix has the given feature class - */ -public inline fun Matrix<*>.hasFeature(): Boolean = - features.find { it is T } != null - -/** - * Get the first feature matching given class. Does not guarantee that matrix has only one feature matching the criteria - */ -public inline fun Matrix<*>.getFeature(): T? = - features.filterIsInstance().firstOrNull() - /** * Diagonal matrix of ones. The matrix is virtual no actual matrix is created */ -public fun > GenericMatrixContext.one(rows: Int, columns: Int): FeaturedMatrix = - VirtualMatrix(rows, columns, DiagonalFeature) { i, j -> +public fun > GenericMatrixContext.one(rows: Int, columns: Int): Matrix = + VirtualMatrix(rows, columns) { i, j -> if (i == j) elementContext.one else elementContext.zero - } + } + UnitFeature /** * A virtual matrix of zeroes */ -public fun > GenericMatrixContext.zero(rows: Int, columns: Int): FeaturedMatrix = - VirtualMatrix(rows, columns) { _, _ -> elementContext.zero } +public fun > GenericMatrixContext.zero(rows: Int, columns: Int): Matrix = + VirtualMatrix(rows, columns) { _, _ -> elementContext.zero } + ZeroFeature public class TransposedFeature(public val original: Matrix) : MatrixFeature /** * Create a virtual transposed matrix without copying anything. `A.transpose().transpose() === A` */ +@OptIn(UnstableKMathAPI::class) public fun Matrix.transpose(): Matrix { return getFeature>()?.original ?: VirtualMatrix( colNum, rowNum, - setOf(TransposedFeature(this)) - ) { i, j -> get(j, i) } + ) { i, j -> get(j, i) } + TransposedFeature(this) } \ No newline at end of file diff --git a/kmath-core/src/commonMain/kotlin/kscience/kmath/linear/RealMatrixContext.kt b/kmath-core/src/commonMain/kotlin/kscience/kmath/linear/RealMatrixContext.kt index 90e251c3a..8e197672f 100644 --- a/kmath-core/src/commonMain/kotlin/kscience/kmath/linear/RealMatrixContext.kt +++ b/kmath-core/src/commonMain/kotlin/kscience/kmath/linear/RealMatrixContext.kt @@ -1,9 +1,6 @@ package kscience.kmath.linear -import kscience.kmath.operations.RealField import kscience.kmath.structures.Matrix -import kscience.kmath.structures.MutableBuffer -import kscience.kmath.structures.MutableBufferFactory import kscience.kmath.structures.RealBuffer @Suppress("OVERRIDE_BY_INLINE") @@ -22,9 +19,9 @@ public object RealMatrixContext : MatrixContext> { produce(rowNum, colNum) { i, j -> get(i, j) } } - public fun one(rows: Int, columns: Int): FeaturedMatrix = VirtualMatrix(rows, columns, DiagonalFeature) { i, j -> + public fun one(rows: Int, columns: Int): Matrix = VirtualMatrix(rows, columns) { i, j -> if (i == j) 1.0 else 0.0 - } + } + DiagonalFeature public override infix fun Matrix.dot(other: Matrix): BufferMatrix { require(colNum == other.rowNum) { "Matrix dot operation dimension mismatch: ($rowNum, $colNum) x (${other.rowNum}, ${other.colNum})" } @@ -69,16 +66,3 @@ public object RealMatrixContext : MatrixContext> { * Partially optimized real-valued matrix */ public val MatrixContext.Companion.real: RealMatrixContext get() = RealMatrixContext - -public fun RealMatrixContext.solveWithLUP(a: Matrix, b: Matrix): FeaturedMatrix { - // Use existing decomposition if it is provided by matrix - val bufferFactory: MutableBufferFactory = MutableBuffer.Companion::real - val decomposition = a.getFeature() ?: lup(bufferFactory, RealField, a) { it < 1e-11 } - return decomposition.solveWithLUP(bufferFactory, b) -} - -/** - * Inverses a square matrix using LUP decomposition. Non square matrix will throw a error. - */ -public fun RealMatrixContext.inverseWithLUP(matrix: Matrix): FeaturedMatrix = - solveWithLUP(matrix, one(matrix.rowNum, matrix.colNum)) diff --git a/kmath-core/src/commonMain/kotlin/kscience/kmath/linear/VirtualMatrix.kt b/kmath-core/src/commonMain/kotlin/kscience/kmath/linear/VirtualMatrix.kt index e0a1d0026..0269a64d1 100644 --- a/kmath-core/src/commonMain/kotlin/kscience/kmath/linear/VirtualMatrix.kt +++ b/kmath-core/src/commonMain/kotlin/kscience/kmath/linear/VirtualMatrix.kt @@ -5,31 +5,16 @@ import kscience.kmath.structures.Matrix public class VirtualMatrix( override val rowNum: Int, override val colNum: Int, - override val features: Set = emptySet(), public val generator: (i: Int, j: Int) -> T -) : FeaturedMatrix { - public constructor( - rowNum: Int, - colNum: Int, - vararg features: MatrixFeature, - generator: (i: Int, j: Int) -> T - ) : this( - rowNum, - colNum, - setOf(*features), - generator - ) +) : Matrix { override val shape: IntArray get() = intArrayOf(rowNum, colNum) override operator fun get(i: Int, j: Int): T = generator(i, j) - override fun suggestFeature(vararg features: MatrixFeature): VirtualMatrix = - VirtualMatrix(rowNum, colNum, this.features + features, generator) - override fun equals(other: Any?): Boolean { if (this === other) return true - if (other !is FeaturedMatrix<*>) return false + if (other !is Matrix<*>) return false if (rowNum != other.rowNum) return false if (colNum != other.colNum) return false @@ -40,21 +25,9 @@ public class VirtualMatrix( override fun hashCode(): Int { var result = rowNum result = 31 * result + colNum - result = 31 * result + features.hashCode() result = 31 * result + generator.hashCode() return result } - public companion object { - /** - * Wrap a matrix adding additional features to it - */ - public fun wrap(matrix: Matrix, vararg features: MatrixFeature): FeaturedMatrix { - return if (matrix is VirtualMatrix) - VirtualMatrix(matrix.rowNum, matrix.colNum, matrix.features + features, matrix.generator) - else - VirtualMatrix(matrix.rowNum, matrix.colNum, matrix.features + features) { i, j -> matrix[i, j] } - } - } } diff --git a/kmath-core/src/commonMain/kotlin/kscience/kmath/operations/numbers.kt b/kmath-core/src/commonMain/kotlin/kscience/kmath/operations/numbers.kt index de3818aa6..0440d74e8 100644 --- a/kmath-core/src/commonMain/kotlin/kscience/kmath/operations/numbers.kt +++ b/kmath-core/src/commonMain/kotlin/kscience/kmath/operations/numbers.kt @@ -179,13 +179,15 @@ public object FloatField : ExtendedField, Norm { * A field for [Int] without boxing. Does not produce corresponding ring element. */ @Suppress("EXTENSION_SHADOWED_BY_MEMBER", "OVERRIDE_BY_INLINE", "NOTHING_TO_INLINE") -public object IntRing : Ring, Norm { +public object IntRing : Ring, Norm, NumericAlgebra { public override val zero: Int get() = 0 public override val one: Int get() = 1 + override fun number(value: Number): Int = value.toInt() + public override inline fun add(a: Int, b: Int): Int = a + b public override inline fun multiply(a: Int, k: Number): Int = k.toInt() * a @@ -203,13 +205,15 @@ public object IntRing : Ring, Norm { * A field for [Short] without boxing. Does not produce appropriate ring element. */ @Suppress("EXTENSION_SHADOWED_BY_MEMBER", "OVERRIDE_BY_INLINE", "NOTHING_TO_INLINE") -public object ShortRing : Ring, Norm { +public object ShortRing : Ring, Norm, NumericAlgebra { public override val zero: Short get() = 0 public override val one: Short get() = 1 + override fun number(value: Number): Short = value.toShort() + public override inline fun add(a: Short, b: Short): Short = (a + b).toShort() public override inline fun multiply(a: Short, k: Number): Short = (a * k.toShort()).toShort() @@ -227,13 +231,15 @@ public object ShortRing : Ring, Norm { * A field for [Byte] without boxing. Does not produce appropriate ring element. */ @Suppress("EXTENSION_SHADOWED_BY_MEMBER", "OVERRIDE_BY_INLINE", "NOTHING_TO_INLINE") -public object ByteRing : Ring, Norm { +public object ByteRing : Ring, Norm, NumericAlgebra { public override val zero: Byte get() = 0 public override val one: Byte get() = 1 + override fun number(value: Number): Byte = value.toByte() + public override inline fun add(a: Byte, b: Byte): Byte = (a + b).toByte() public override inline fun multiply(a: Byte, k: Number): Byte = (a * k.toByte()).toByte() @@ -251,13 +257,15 @@ public object ByteRing : Ring, Norm { * A field for [Double] without boxing. Does not produce appropriate ring element. */ @Suppress("EXTENSION_SHADOWED_BY_MEMBER", "OVERRIDE_BY_INLINE", "NOTHING_TO_INLINE") -public object LongRing : Ring, Norm { +public object LongRing : Ring, Norm, NumericAlgebra { public override val zero: Long get() = 0L public override val one: Long get() = 1L + override fun number(value: Number): Long = value.toLong() + public override inline fun add(a: Long, b: Long): Long = a + b public override inline fun multiply(a: Long, k: Number): Long = a * k.toLong() diff --git a/kmath-core/src/commonMain/kotlin/kscience/kmath/structures/NDStructure.kt b/kmath-core/src/commonMain/kotlin/kscience/kmath/structures/NDStructure.kt index 5c5d28882..64e723581 100644 --- a/kmath-core/src/commonMain/kotlin/kscience/kmath/structures/NDStructure.kt +++ b/kmath-core/src/commonMain/kotlin/kscience/kmath/structures/NDStructure.kt @@ -1,5 +1,6 @@ package kscience.kmath.structures +import kscience.kmath.misc.UnstableKMathAPI import kotlin.jvm.JvmName import kotlin.native.concurrent.ThreadLocal import kotlin.reflect.KClass @@ -42,6 +43,13 @@ public interface NDStructure { public override fun equals(other: Any?): Boolean public override fun hashCode(): Int + /** + * Feature is additional property or hint that does not directly affect the structure, but could in some cases help + * optimize operations and performance. If the feature is not present, null is defined. + */ + @UnstableKMathAPI + public fun getFeature(type: KClass): T? = null + public companion object { /** * Indicates whether some [NDStructure] is equal to another one. @@ -121,6 +129,9 @@ public interface NDStructure { */ public operator fun NDStructure.get(vararg index: Int): T = get(index) +@UnstableKMathAPI +public inline fun NDStructure<*>.getFeature(): T? = getFeature(T::class) + /** * Represents mutable [NDStructure]. */ diff --git a/kmath-core/src/commonMain/kotlin/kscience/kmath/structures/Structure2D.kt b/kmath-core/src/commonMain/kotlin/kscience/kmath/structures/Structure2D.kt index bac7d3389..d20e9e53b 100644 --- a/kmath-core/src/commonMain/kotlin/kscience/kmath/structures/Structure2D.kt +++ b/kmath-core/src/commonMain/kotlin/kscience/kmath/structures/Structure2D.kt @@ -9,12 +9,14 @@ public interface Structure2D : NDStructure { /** * The number of rows in this structure. */ - public val rowNum: Int get() = shape[0] + public val rowNum: Int /** * The number of columns in this structure. */ - public val colNum: Int get() = shape[1] + public val colNum: Int + + public override val shape: IntArray get() = intArrayOf(rowNum, colNum) /** * The buffer of rows of this structure. It gets elements from the structure dynamically. @@ -56,6 +58,9 @@ public interface Structure2D : NDStructure { private inline class Structure2DWrapper(val structure: NDStructure) : Structure2D { override val shape: IntArray get() = structure.shape + override val rowNum: Int get() = shape[0] + override val colNum: Int get() = shape[1] + override operator fun get(i: Int, j: Int): T = structure[i, j] override fun elements(): Sequence> = structure.elements() diff --git a/kmath-dimensions/src/commonMain/kotlin/kscience/kmath/dimensions/Wrappers.kt b/kmath-dimensions/src/commonMain/kotlin/kscience/kmath/dimensions/Wrappers.kt index 0422d11b2..0244eae7f 100644 --- a/kmath-dimensions/src/commonMain/kotlin/kscience/kmath/dimensions/Wrappers.kt +++ b/kmath-dimensions/src/commonMain/kotlin/kscience/kmath/dimensions/Wrappers.kt @@ -40,6 +40,8 @@ public inline class DMatrixWrapper( private val structure: Structure2D, ) : DMatrix { override val shape: IntArray get() = structure.shape + override val rowNum: Int get() = shape[0] + override val colNum: Int get() = shape[1] override operator fun get(i: Int, j: Int): T = structure[i, j] } @@ -147,6 +149,7 @@ public inline fun DMatrixContext.one(): DMatrix< if (i == j) 1.0 else 0.0 } -public inline fun DMatrixContext.zero(): DMatrix = produce { _, _ -> - 0.0 -} \ No newline at end of file +public inline fun DMatrixContext.zero(): DMatrix = + produce { _, _ -> + 0.0 + } \ No newline at end of file diff --git a/kmath-ejml/src/main/kotlin/kscience/kmath/ejml/EjmlMatrix.kt b/kmath-ejml/src/main/kotlin/kscience/kmath/ejml/EjmlMatrix.kt index a7d571b58..1c2ded447 100644 --- a/kmath-ejml/src/main/kotlin/kscience/kmath/ejml/EjmlMatrix.kt +++ b/kmath-ejml/src/main/kotlin/kscience/kmath/ejml/EjmlMatrix.kt @@ -1,10 +1,13 @@ package kscience.kmath.ejml import kscience.kmath.linear.* -import kscience.kmath.structures.NDStructure +import kscience.kmath.misc.UnstableKMathAPI +import kscience.kmath.structures.Matrix import kscience.kmath.structures.RealBuffer import org.ejml.dense.row.factory.DecompositionFactory_DDRM import org.ejml.simple.SimpleMatrix +import kotlin.reflect.KClass +import kotlin.reflect.cast /** * Represents featured matrix over EJML [SimpleMatrix]. @@ -12,85 +15,65 @@ import org.ejml.simple.SimpleMatrix * @property origin the underlying [SimpleMatrix]. * @author Iaroslav Postovalov */ -public class EjmlMatrix( +public inline class EjmlMatrix( public val origin: SimpleMatrix, - features: Set = emptySet() -) : FeaturedMatrix { - public override val rowNum: Int - get() = origin.numRows() +) : Matrix { + public override val rowNum: Int get() = origin.numRows() - public override val colNum: Int - get() = origin.numCols() + public override val colNum: Int get() = origin.numCols() - public override val shape: IntArray by lazy { intArrayOf(rowNum, colNum) } - - public override val features: Set = hashSetOf( - object : InverseMatrixFeature { - override val inverse: FeaturedMatrix by lazy { EjmlMatrix(origin.invert()) } - }, - - object : DeterminantFeature { + @UnstableKMathAPI + override fun getFeature(type: KClass): T? = when (type) { + InverseMatrixFeature::class -> object : InverseMatrixFeature { + override val inverse: Matrix by lazy { EjmlMatrix(origin.invert()) } + } + DeterminantFeature::class -> object : DeterminantFeature { override val determinant: Double by lazy(origin::determinant) - }, - - object : SingularValueDecompositionFeature { + } + SingularValueDecompositionFeature::class -> object : SingularValueDecompositionFeature { private val svd by lazy { DecompositionFactory_DDRM.svd(origin.numRows(), origin.numCols(), true, true, false) .apply { decompose(origin.ddrm.copy()) } } - override val u: FeaturedMatrix by lazy { EjmlMatrix(SimpleMatrix(svd.getU(null, false))) } - override val s: FeaturedMatrix by lazy { EjmlMatrix(SimpleMatrix(svd.getW(null))) } - override val v: FeaturedMatrix by lazy { EjmlMatrix(SimpleMatrix(svd.getV(null, false))) } + override val u: Matrix by lazy { EjmlMatrix(SimpleMatrix(svd.getU(null, false))) } + override val s: Matrix by lazy { EjmlMatrix(SimpleMatrix(svd.getW(null))) } + override val v: Matrix by lazy { EjmlMatrix(SimpleMatrix(svd.getV(null, false))) } override val singularValues: Point by lazy { RealBuffer(svd.singularValues) } - }, - - object : QRDecompositionFeature { + } + QRDecompositionFeature::class -> object : QRDecompositionFeature { private val qr by lazy { DecompositionFactory_DDRM.qr().apply { decompose(origin.ddrm.copy()) } } - override val q: FeaturedMatrix by lazy { EjmlMatrix(SimpleMatrix(qr.getQ(null, false))) } - override val r: FeaturedMatrix by lazy { EjmlMatrix(SimpleMatrix(qr.getR(null, false))) } - }, - - object : CholeskyDecompositionFeature { - override val l: FeaturedMatrix by lazy { + override val q: Matrix by lazy { EjmlMatrix(SimpleMatrix(qr.getQ(null, false))) } + override val r: Matrix by lazy { EjmlMatrix(SimpleMatrix(qr.getR(null, false))) } + } + CholeskyDecompositionFeature::class -> object : CholeskyDecompositionFeature { + override val l: Matrix by lazy { val cholesky = DecompositionFactory_DDRM.chol(rowNum, true).apply { decompose(origin.ddrm.copy()) } - EjmlMatrix(SimpleMatrix(cholesky.getT(null)), setOf(LFeature)) + EjmlMatrix(SimpleMatrix(cholesky.getT(null))) + LFeature } - }, - - object : LupDecompositionFeature { + } + LupDecompositionFeature::class -> object : LupDecompositionFeature { private val lup by lazy { DecompositionFactory_DDRM.lu(origin.numRows(), origin.numCols()).apply { decompose(origin.ddrm.copy()) } } - override val l: FeaturedMatrix by lazy { - EjmlMatrix(SimpleMatrix(lup.getLower(null)), setOf(LFeature)) + override val l: Matrix by lazy { + EjmlMatrix(SimpleMatrix(lup.getLower(null))) + LFeature } - override val u: FeaturedMatrix by lazy { - EjmlMatrix(SimpleMatrix(lup.getUpper(null)), setOf(UFeature)) + override val u: Matrix by lazy { + EjmlMatrix(SimpleMatrix(lup.getUpper(null))) + UFeature } - override val p: FeaturedMatrix by lazy { EjmlMatrix(SimpleMatrix(lup.getRowPivot(null))) } - }, - ) union features - - public override fun suggestFeature(vararg features: MatrixFeature): EjmlMatrix = - EjmlMatrix(origin, this.features + features) + override val p: Matrix by lazy { EjmlMatrix(SimpleMatrix(lup.getRowPivot(null))) } + } + else -> null + }?.let{type.cast(it)} public override operator fun get(i: Int, j: Int): Double = origin[i, j] - - public override fun equals(other: Any?): Boolean { - if (other is EjmlMatrix) return origin.isIdentical(other.origin, 0.0) - return NDStructure.equals(this, other as? NDStructure<*> ?: return false) - } - - public override fun hashCode(): Int = origin.hashCode() - - public override fun toString(): String = "EjmlMatrix($origin)" } diff --git a/kmath-ejml/src/main/kotlin/kscience/kmath/ejml/EjmlMatrixContext.kt b/kmath-ejml/src/main/kotlin/kscience/kmath/ejml/EjmlMatrixContext.kt index c8789a4a7..7198bbd0d 100644 --- a/kmath-ejml/src/main/kotlin/kscience/kmath/ejml/EjmlMatrixContext.kt +++ b/kmath-ejml/src/main/kotlin/kscience/kmath/ejml/EjmlMatrixContext.kt @@ -2,23 +2,29 @@ package kscience.kmath.ejml import kscience.kmath.linear.InverseMatrixFeature import kscience.kmath.linear.MatrixContext +import kscience.kmath.linear.MatrixWrapper import kscience.kmath.linear.Point -import kscience.kmath.linear.getFeature +import kscience.kmath.misc.UnstableKMathAPI import kscience.kmath.structures.Matrix +import kscience.kmath.structures.getFeature import org.ejml.simple.SimpleMatrix -/** - * Converts this matrix to EJML one. - */ -public fun Matrix.toEjml(): EjmlMatrix = - if (this is EjmlMatrix) this else EjmlMatrixContext.produce(rowNum, colNum) { i, j -> get(i, j) } - /** * Represents context of basic operations operating with [EjmlMatrix]. * * @author Iaroslav Postovalov */ public object EjmlMatrixContext : MatrixContext { + + /** + * Converts this matrix to EJML one. + */ + public fun Matrix.toEjml(): EjmlMatrix = when { + this is EjmlMatrix -> this + this is MatrixWrapper && matrix is EjmlMatrix -> matrix as EjmlMatrix + else -> produce(rowNum, colNum) { i, j -> get(i, j) } + } + /** * Converts this vector to EJML one. */ @@ -80,6 +86,7 @@ public fun EjmlMatrixContext.solve(a: Matrix, b: Matrix): EjmlMa public fun EjmlMatrixContext.solve(a: Matrix, b: Point): EjmlVector = EjmlVector(a.toEjml().origin.solve(b.toEjml().origin)) +@OptIn(UnstableKMathAPI::class) public fun EjmlMatrix.inverted(): EjmlMatrix = getFeature>()!!.inverse as EjmlMatrix public fun EjmlMatrixContext.inverse(matrix: Matrix): Matrix = matrix.toEjml().inverted() \ No newline at end of file diff --git a/kmath-ejml/src/test/kotlin/kscience/kmath/ejml/EjmlMatrixTest.kt b/kmath-ejml/src/test/kotlin/kscience/kmath/ejml/EjmlMatrixTest.kt index 70b82a3cb..30d146779 100644 --- a/kmath-ejml/src/test/kotlin/kscience/kmath/ejml/EjmlMatrixTest.kt +++ b/kmath-ejml/src/test/kotlin/kscience/kmath/ejml/EjmlMatrixTest.kt @@ -3,7 +3,8 @@ package kscience.kmath.ejml import kscience.kmath.linear.DeterminantFeature import kscience.kmath.linear.LupDecompositionFeature import kscience.kmath.linear.MatrixFeature -import kscience.kmath.linear.getFeature +import kscience.kmath.linear.plus +import kscience.kmath.structures.getFeature import org.ejml.dense.row.factory.DecompositionFactory_DDRM import org.ejml.simple.SimpleMatrix import kotlin.random.Random @@ -58,7 +59,7 @@ internal class EjmlMatrixTest { @Test fun suggestFeature() { - assertNotNull(EjmlMatrix(randomMatrix).suggestFeature(SomeFeature).getFeature()) + assertNotNull((EjmlMatrix(randomMatrix) + SomeFeature).getFeature()) } @Test diff --git a/kmath-for-real/src/commonMain/kotlin/kscience/kmath/real/RealMatrix.kt b/kmath-for-real/src/commonMain/kotlin/kscience/kmath/real/RealMatrix.kt index 772abfbed..274030aff 100644 --- a/kmath-for-real/src/commonMain/kotlin/kscience/kmath/real/RealMatrix.kt +++ b/kmath-for-real/src/commonMain/kotlin/kscience/kmath/real/RealMatrix.kt @@ -1,8 +1,12 @@ package kscience.kmath.real -import kscience.kmath.linear.* +import kscience.kmath.linear.MatrixContext +import kscience.kmath.linear.VirtualMatrix +import kscience.kmath.linear.inverseWithLUP +import kscience.kmath.linear.real import kscience.kmath.misc.UnstableKMathAPI import kscience.kmath.structures.Buffer +import kscience.kmath.structures.Matrix import kscience.kmath.structures.RealBuffer import kscience.kmath.structures.asIterable import kotlin.math.pow @@ -19,7 +23,7 @@ import kotlin.math.pow * Functions that help create a real (Double) matrix */ -public typealias RealMatrix = FeaturedMatrix +public typealias RealMatrix = Matrix public fun realMatrix(rowNum: Int, colNum: Int, initializer: (i: Int, j: Int) -> Double): RealMatrix = MatrixContext.real.produce(rowNum, colNum, initializer) diff --git a/kmath-for-real/src/commonTest/kotlin/kaceince/kmath/real/RealMatrixTest.kt b/kmath-for-real/src/commonTest/kotlin/kaceince/kmath/real/RealMatrixTest.kt index 5c33b76a9..a89f99b3c 100644 --- a/kmath-for-real/src/commonTest/kotlin/kaceince/kmath/real/RealMatrixTest.kt +++ b/kmath-for-real/src/commonTest/kotlin/kaceince/kmath/real/RealMatrixTest.kt @@ -1,6 +1,5 @@ package kaceince.kmath.real -import kscience.kmath.linear.VirtualMatrix import kscience.kmath.linear.build import kscience.kmath.real.* import kscience.kmath.structures.Matrix @@ -42,7 +41,7 @@ internal class RealMatrixTest { 1.0, 0.0, 0.0, 0.0, 1.0, 2.0 ) - assertEquals(VirtualMatrix.wrap(matrix2), matrix1.repeatStackVertical(3)) + assertEquals(matrix2, matrix1.repeatStackVertical(3)) } @Test