Added examples for polynomials. Also:
- Fixed bug in differentiation of NumberedPolynomials. - Fixed bug in addition and subtraction of LabeledPolynomials. - Added references to NumberedPolynomialWithoutCheck and LabeledPolynomialWithoutCheck. - Made NumberedRationalFunction and LabeledRationalFunction classes data. Made their constructor public.
This commit is contained in:
parent
403ff93f4a
commit
3e917baaaf
@ -0,0 +1,396 @@
|
||||
/*
|
||||
* Copyright 2018-2021 KMath contributors.
|
||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||
*/
|
||||
|
||||
package space.kscience.kmath.functions
|
||||
|
||||
import space.kscience.kmath.expressions.Symbol
|
||||
import space.kscience.kmath.expressions.symbol
|
||||
import space.kscience.kmath.operations.algebra
|
||||
|
||||
|
||||
/**
|
||||
* Shows [ListPolynomial]s' and [ListRationalFunction]s' capabilities.
|
||||
*/
|
||||
fun listPolynomialsExample() {
|
||||
// [ListPolynomial] is a representation of a univariate polynomial as a list of coefficients from the least term to
|
||||
// the greatest term. For example,
|
||||
val polynomial1: ListPolynomial<Int> = ListPolynomial(listOf(2, -3, 1))
|
||||
// represents polynomial 2 + (-3) x + x^2
|
||||
|
||||
// There are also shortcut fabrics:
|
||||
val polynomial2: ListPolynomial<Int> = ListPolynomial(2, -3, 1)
|
||||
println(polynomial1 == polynomial2) // true
|
||||
// and even
|
||||
val polynomial3: ListPolynomial<Int> = 57.asListPolynomial()
|
||||
val polynomial4: ListPolynomial<Int> = ListPolynomial(listOf(57))
|
||||
println(polynomial3 == polynomial4) // true
|
||||
|
||||
val polynomial5: ListPolynomial<Int> = ListPolynomial(3, -1)
|
||||
// For every ring there can be provided a polynomial ring:
|
||||
Int.algebra.listPolynomialSpace {
|
||||
println(-polynomial5 == ListPolynomial(-3, 1)) // true
|
||||
println(polynomial1 + polynomial5 == ListPolynomial(5, -4, 1)) // true
|
||||
println(polynomial1 - polynomial5 == ListPolynomial(-1, -2, 1)) // true
|
||||
println(polynomial1 * polynomial5 == ListPolynomial(6, -11, 6, -1)) // true
|
||||
}
|
||||
// You can even write
|
||||
val x: ListPolynomial<Double> = ListPolynomial(0.0, 1.0)
|
||||
val polynomial6: ListPolynomial<Double> = ListPolynomial(2.0, -3.0, 1.0)
|
||||
Double.algebra.listPolynomialSpace {
|
||||
println(2 - 3 * x + x * x == polynomial6)
|
||||
println(2.0 - 3.0 * x + x * x == polynomial6)
|
||||
}
|
||||
|
||||
// Also there are some utilities for polynomials:
|
||||
println(polynomial1.substitute(Int.algebra, 1) == 0) // true, because 2 + (-3) * 1 + 1^2 = 0
|
||||
println(polynomial1.substitute(Int.algebra, polynomial5) == polynomial1) // true, because 2 + (-3) * (3-x) + (3-x)^2 = 2 - 3x + x^2
|
||||
println(polynomial1.derivative(Int.algebra) == ListPolynomial(-3, 2)) // true, (2 - 3x + x^2)' = -3 + 2x
|
||||
println(polynomial1.nthDerivative(Int.algebra, 2) == 2.asListPolynomial()) // true, (2 - 3x + x^2)'' = 2
|
||||
|
||||
// Lastly, there are rational functions and some other utilities:
|
||||
Double.algebra.listRationalFunctionSpace {
|
||||
val rationalFunction1: ListRationalFunction<Double> = ListRationalFunction(listOf(2.0, -3.0, 1.0), listOf(3.0, -1.0))
|
||||
// It's just (2 - 3x + x^2)/(3 - x)
|
||||
|
||||
val rationalFunction2 : ListRationalFunction<Double> = ListRationalFunction(listOf(5.0, -4.0, 1.0), listOf(3.0, -1.0))
|
||||
// It's just (5 - 4x + x^2)/(3 - x)
|
||||
|
||||
println(rationalFunction1 + 1 == rationalFunction2)
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Shows [NumberedPolynomial]s' and [NumberedRationalFunction]s' capabilities.
|
||||
*/
|
||||
fun numberedPolynomialsExample() {
|
||||
// Consider polynomial
|
||||
// 3 + 5 x_2 - 7 x_1^2 x_3
|
||||
// Consider, for example, its term -7 x_1^2 x_3. -7 is a coefficient of the term, whereas (2, 0, 1, 0, 0, ...) is
|
||||
// description of degrees of variables x_1, x_2, ... in the term. Such description with removed leading zeros
|
||||
// [2, 0, 1] is called "signature" of the term -7 x_1^2 x_3.
|
||||
|
||||
val polynomial1: NumberedPolynomial<Int>
|
||||
with(Int.algebra) {
|
||||
// [NumberedPolynomial] is a representation of a multivariate polynomial, that stores terms in a map with terms'
|
||||
// signatures as the map's keys and terms' coefficients as corresponding values. For example,
|
||||
polynomial1 = NumberedPolynomial(
|
||||
mapOf(
|
||||
listOf<UInt>() to 3,
|
||||
listOf(0u, 1u) to 5,
|
||||
listOf(2u, 0u, 1u) to -7,
|
||||
)
|
||||
)
|
||||
// represents polynomial 3 + 5 x_2 - 7 x_1^2 x_3
|
||||
|
||||
// This `NumberedPolynomial` function needs context of either ring of constant (as `Int.algebra` in this example)
|
||||
// or space of NumberedPolynomials over it. To understand why it is like this see documentations of functions
|
||||
// NumberedPolynomial and NumberedPolynomialWithoutCheck
|
||||
|
||||
// There are also shortcut fabrics:
|
||||
val polynomial2: NumberedPolynomial<Int> = NumberedPolynomial(
|
||||
listOf<UInt>() to 3,
|
||||
listOf(0u, 1u) to 5,
|
||||
listOf(2u, 0u, 1u) to -7,
|
||||
)
|
||||
println(polynomial1 == polynomial2) // true
|
||||
// and even
|
||||
val polynomial3: NumberedPolynomial<Int> = 57.asNumberedPolynomial() // This one actually does not algebraic context!
|
||||
val polynomial4: NumberedPolynomial<Int> = NumberedPolynomial(listOf<UInt>() to 57)
|
||||
println(polynomial3 == polynomial4) // true
|
||||
|
||||
numberedPolynomialSpace {
|
||||
// Also there is DSL for constructing NumberedPolynomials:
|
||||
val polynomial5: NumberedPolynomial<Int> = NumberedPolynomial {
|
||||
3 {}
|
||||
5 { 2 inPowerOf 1u }
|
||||
-7 with { 1 pow 2u; 3 pow 1u }
|
||||
// `pow` and `inPowerOf` are the same
|
||||
// `with` is omittable
|
||||
}
|
||||
println(polynomial1 == polynomial5) // true
|
||||
|
||||
// Unfortunately the DSL does not work good in bare context of constants' ring, so for now it's disabled and
|
||||
// works only in NumberedPolynomialSpace and NumberedRationalFunctionSpace
|
||||
}
|
||||
}
|
||||
|
||||
val polynomial6: NumberedPolynomial<Int> = with(Int.algebra) {
|
||||
NumberedPolynomial(
|
||||
listOf<UInt>() to 7,
|
||||
listOf(0u, 1u) to -5,
|
||||
listOf(2u, 0u, 1u) to 0,
|
||||
listOf(0u, 0u, 0u, 4u) to 4,
|
||||
)
|
||||
}
|
||||
// For every ring there can be provided a polynomial ring:
|
||||
Int.algebra.numberedPolynomialSpace {
|
||||
println(
|
||||
-polynomial6 == NumberedPolynomial {
|
||||
(-7) {}
|
||||
5 { 2 pow 1u }
|
||||
0 { 1 pow 2u; 3 pow 1u }
|
||||
(-4) { 4 pow 4u }
|
||||
}
|
||||
) // true
|
||||
println(
|
||||
polynomial1 + polynomial6 == NumberedPolynomial {
|
||||
10 {}
|
||||
0 { 2 pow 1u }
|
||||
(-7) { 1 pow 2u; 3 pow 1u }
|
||||
4 { 4 pow 4u }
|
||||
}
|
||||
) // true
|
||||
println(
|
||||
polynomial1 - polynomial6 == NumberedPolynomial {
|
||||
(-4) {}
|
||||
10 { 2 pow 1u }
|
||||
(-7) { 1 pow 2u; 3 pow 1u }
|
||||
(-4) { 4 pow 4u }
|
||||
}
|
||||
) // true
|
||||
|
||||
polynomial1 * polynomial6 // Multiplication works too
|
||||
}
|
||||
|
||||
Double.algebra.numberedPolynomialSpace {
|
||||
// You can even write
|
||||
val x_1: NumberedPolynomial<Double> = NumberedPolynomial { 1.0 { 1 pow 1u } }
|
||||
val x_2: NumberedPolynomial<Double> = NumberedPolynomial { 1.0 { 2 pow 1u } }
|
||||
val x_3: NumberedPolynomial<Double> = NumberedPolynomial { 1.0 { 3 pow 1u } }
|
||||
val polynomial7: NumberedPolynomial<Double> = NumberedPolynomial {
|
||||
3.0 {}
|
||||
5.0 { 2 pow 1u }
|
||||
(-7.0) { 1 pow 2u; 3 pow 1u }
|
||||
}
|
||||
Double.algebra.listPolynomialSpace {
|
||||
println(3 + 5 * x_2 - 7 * x_1 * x_1 * x_3 == polynomial7)
|
||||
println(3.0 + 5.0 * x_2 - 7.0 * x_1 * x_1 * x_3 == polynomial7)
|
||||
}
|
||||
}
|
||||
|
||||
Int.algebra.numberedPolynomialSpace {
|
||||
val x_4: NumberedPolynomial<Int> = NumberedPolynomial { 1 { 4 pow 1u } }
|
||||
// Also there are some utilities for polynomials:
|
||||
println(polynomial1.substitute(mapOf(0 to 1, 1 to -2, 2 to -1)) == 0.asNumberedPolynomial()) // true,
|
||||
// because it's substitution x_1 -> 1, x_2 -> -2, x_3 -> -1,
|
||||
// so 3 + 5 x_2 - 7 x_1^2 x_3 = 3 + 5 * (-2) - 7 * 1^2 * (-1) = 3 - 10 + 7 = 0
|
||||
println(
|
||||
polynomial1.substitute(mapOf(1 to x_4)) == NumberedPolynomial {
|
||||
3 {}
|
||||
5 { 4 pow 1u }
|
||||
(-7) { 1 pow 2u; 3 pow 1u }
|
||||
}
|
||||
) // true, because it's substitution x_2 -> x_4, so result is 3 + 5 x_4 - 7 x_1^2 x_3
|
||||
println(
|
||||
polynomial1.derivativeWithRespectTo(Int.algebra, 1) ==
|
||||
NumberedPolynomial { 5 {} }
|
||||
) // true, d/dx_2 (3 + 5 x_2 - 7 x_1^2 x_3) = 5
|
||||
}
|
||||
|
||||
// Lastly, there are rational functions and some other utilities:
|
||||
Double.algebra.numberedRationalFunctionSpace {
|
||||
val rationalFunction1: NumberedRationalFunction<Double> = NumberedRationalFunction(
|
||||
NumberedPolynomial {
|
||||
2.0 {}
|
||||
(-3.0) { 1 pow 1u }
|
||||
1.0 { 1 pow 2u }
|
||||
},
|
||||
NumberedPolynomial {
|
||||
3.0 {}
|
||||
(-1.0) { 1 pow 1u }
|
||||
}
|
||||
)
|
||||
// It's just (2 - 3x + x^2)/(3 - x) where x = x_1
|
||||
|
||||
val rationalFunction2: NumberedRationalFunction<Double> = NumberedRationalFunction(
|
||||
NumberedPolynomial {
|
||||
5.0 {}
|
||||
(-4.0) { 1 pow 1u }
|
||||
1.0 { 1 pow 2u }
|
||||
},
|
||||
NumberedPolynomial {
|
||||
3.0 {}
|
||||
(-1.0) { 1 pow 1u }
|
||||
}
|
||||
)
|
||||
// It's just (5 - 4x + x^2)/(3 - x) where x = x_1
|
||||
|
||||
println(rationalFunction1 + 1 == rationalFunction2)
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Shows [LabeledPolynomial]s' and [LabeledRationalFunction]s' capabilities.
|
||||
*/
|
||||
fun labeledPolynomialsExample() {
|
||||
val x by symbol
|
||||
val y by symbol
|
||||
val z by symbol
|
||||
val t by symbol
|
||||
|
||||
// Consider polynomial
|
||||
// 3 + 5 y - 7 x^2 z
|
||||
// Consider, for example, its term -7 x^2 z. -7 is a coefficient of the term, whereas matching (x -> 2, z -> 3) is
|
||||
// description of degrees of variables x_1, x_2, ... in the term. Such description is called "signature" of the
|
||||
// term -7 x_1^2 x_3.
|
||||
|
||||
val polynomial1: LabeledPolynomial<Int>
|
||||
with(Int.algebra) {
|
||||
// [LabeledPolynomial] is a representation of a multivariate polynomial, that stores terms in a map with terms'
|
||||
// signatures as the map's keys and terms' coefficients as corresponding values. For example,
|
||||
polynomial1 = LabeledPolynomial(
|
||||
mapOf(
|
||||
mapOf<Symbol, UInt>() to 3,
|
||||
mapOf(y to 1u) to 5,
|
||||
mapOf(x to 2u, z to 1u) to -7,
|
||||
)
|
||||
)
|
||||
// represents polynomial 3 + 5 y - 7 x^2 z
|
||||
|
||||
// This `LabeledPolynomial` function needs context of either ring of constant (as `Int.algebra` in this example)
|
||||
// or space of LabeledPolynomials over it. To understand why it is like this see documentations of functions
|
||||
// LabeledPolynomial and LabeledPolynomialWithoutCheck
|
||||
|
||||
// There are also shortcut fabrics:
|
||||
val polynomial2: LabeledPolynomial<Int> = LabeledPolynomial(
|
||||
mapOf<Symbol, UInt>() to 3,
|
||||
mapOf(y to 1u) to 5,
|
||||
mapOf(x to 2u, z to 1u) to -7,
|
||||
)
|
||||
println(polynomial1 == polynomial2) // true
|
||||
// and even
|
||||
val polynomial3: LabeledPolynomial<Int> = 57.asLabeledPolynomial() // This one actually does not algebraic context!
|
||||
val polynomial4: LabeledPolynomial<Int> = LabeledPolynomial(mapOf<Symbol, UInt>() to 57)
|
||||
println(polynomial3 == polynomial4) // true
|
||||
|
||||
labeledPolynomialSpace {
|
||||
// Also there is DSL for constructing NumberedPolynomials:
|
||||
val polynomial5: LabeledPolynomial<Int> = LabeledPolynomial {
|
||||
3 {}
|
||||
5 { y inPowerOf 1u }
|
||||
-7 with { x pow 2u; z pow 1u }
|
||||
// `pow` and `inPowerOf` are the same
|
||||
// `with` is omittable
|
||||
}
|
||||
println(polynomial1 == polynomial5) // true
|
||||
|
||||
// Unfortunately the DSL does not work good in bare context of constants' ring, so for now it's disabled and
|
||||
// works only in NumberedPolynomialSpace and NumberedRationalFunctionSpace
|
||||
}
|
||||
}
|
||||
|
||||
val polynomial6: LabeledPolynomial<Int> = with(Int.algebra) {
|
||||
LabeledPolynomial(
|
||||
mapOf<Symbol, UInt>() to 7,
|
||||
mapOf(y to 1u) to -5,
|
||||
mapOf(x to 2u, z to 1u) to 0,
|
||||
mapOf(t to 4u) to 4,
|
||||
)
|
||||
}
|
||||
// For every ring there can be provided a polynomial ring:
|
||||
Int.algebra.labeledPolynomialSpace {
|
||||
println(
|
||||
-polynomial6 == LabeledPolynomial {
|
||||
(-7) {}
|
||||
5 { y pow 1u }
|
||||
0 { x pow 2u; z pow 1u }
|
||||
(-4) { t pow 4u }
|
||||
}
|
||||
) // true
|
||||
println(
|
||||
polynomial1 + polynomial6 == LabeledPolynomial {
|
||||
10 {}
|
||||
0 { y pow 1u }
|
||||
(-7) { x pow 2u; z pow 1u }
|
||||
4 { t pow 4u }
|
||||
}
|
||||
) // true
|
||||
println(
|
||||
polynomial1 - polynomial6 == LabeledPolynomial {
|
||||
(-4) {}
|
||||
10 { y pow 1u }
|
||||
(-7) { x pow 2u; z pow 1u }
|
||||
(-4) { t pow 4u }
|
||||
}
|
||||
) // true
|
||||
|
||||
polynomial1 * polynomial6 // Multiplication works too
|
||||
}
|
||||
|
||||
Double.algebra.labeledPolynomialSpace {
|
||||
// You can even write
|
||||
val polynomial7: LabeledPolynomial<Double> = LabeledPolynomial {
|
||||
3.0 {}
|
||||
5.0 { y pow 1u }
|
||||
(-7.0) { x pow 2u; z pow 1u }
|
||||
}
|
||||
Double.algebra.listPolynomialSpace {
|
||||
println(3 + 5 * y - 7 * x * x * z == polynomial7)
|
||||
println(3.0 + 5.0 * y - 7.0 * x * x * z == polynomial7)
|
||||
}
|
||||
}
|
||||
|
||||
Int.algebra.labeledPolynomialSpace {
|
||||
// Also there are some utilities for polynomials:
|
||||
println(polynomial1.substitute(mapOf(x to 1, y to -2, z to -1)) == 0.asLabeledPolynomial()) // true,
|
||||
// because it's substitution x -> 1, y -> -2, z -> -1,
|
||||
// so 3 + 5 y - 7 x^2 z = 3 + 5 * (-2) - 7 * 1^2 * (-1) = 3 - 10 + 7 = 0
|
||||
println(
|
||||
polynomial1.substitute(mapOf(y to t.asPolynomial())) == LabeledPolynomial {
|
||||
3 {}
|
||||
5 { t pow 1u }
|
||||
(-7) { x pow 2u; z pow 1u }
|
||||
}
|
||||
) // true, because it's substitution y -> t, so result is 3 + 5 t - 7 x^2 z
|
||||
println(
|
||||
polynomial1.derivativeWithRespectTo(Int.algebra, y) == LabeledPolynomial { 5 {} }
|
||||
) // true, d/dy (3 + 5 y - 7 x^2 z) = 5
|
||||
}
|
||||
|
||||
// Lastly, there are rational functions and some other utilities:
|
||||
Double.algebra.labeledRationalFunctionSpace {
|
||||
val rationalFunction1: LabeledRationalFunction<Double> = LabeledRationalFunction(
|
||||
LabeledPolynomial {
|
||||
2.0 {}
|
||||
(-3.0) { x pow 1u }
|
||||
1.0 { x pow 2u }
|
||||
},
|
||||
LabeledPolynomial {
|
||||
3.0 {}
|
||||
(-1.0) { x pow 1u }
|
||||
}
|
||||
)
|
||||
// It's just (2 - 3x + x^2)/(3 - x)
|
||||
|
||||
val rationalFunction2: LabeledRationalFunction<Double> = LabeledRationalFunction(
|
||||
LabeledPolynomial {
|
||||
5.0 {}
|
||||
(-4.0) { x pow 1u }
|
||||
1.0 { x pow 2u }
|
||||
},
|
||||
LabeledPolynomial {
|
||||
3.0 {}
|
||||
(-1.0) { x pow 1u }
|
||||
}
|
||||
)
|
||||
// It's just (5 - 4x + x^2)/(3 - x)
|
||||
|
||||
println(rationalFunction1 + 1 == rationalFunction2)
|
||||
}
|
||||
}
|
||||
|
||||
fun main() {
|
||||
println("ListPolynomials:")
|
||||
listPolynomialsExample()
|
||||
println()
|
||||
|
||||
println("NumberedPolynomials:")
|
||||
numberedPolynomialsExample()
|
||||
println()
|
||||
|
||||
println("ListPolynomials:")
|
||||
labeledPolynomialsExample()
|
||||
println()
|
||||
}
|
@ -522,7 +522,7 @@ public class LabeledPolynomialSpace<C, A : Ring<C>>(
|
||||
override operator fun LabeledPolynomial<C>.plus(other: LabeledPolynomial<C>): LabeledPolynomial<C> =
|
||||
LabeledPolynomialAsIs(
|
||||
buildMap(coefficients.size + other.coefficients.size) {
|
||||
other.coefficients.mapValuesTo(this) { it.value }
|
||||
coefficients.mapValuesTo(this) { it.value }
|
||||
other.coefficients.mapValuesTo(this) { (key, value) -> if (key in this) this[key]!! + value else value }
|
||||
}
|
||||
)
|
||||
@ -532,7 +532,7 @@ public class LabeledPolynomialSpace<C, A : Ring<C>>(
|
||||
override operator fun LabeledPolynomial<C>.minus(other: LabeledPolynomial<C>): LabeledPolynomial<C> =
|
||||
LabeledPolynomialAsIs(
|
||||
buildMap(coefficients.size + other.coefficients.size) {
|
||||
other.coefficients.mapValuesTo(this) { it.value }
|
||||
coefficients.mapValuesTo(this) { it.value }
|
||||
other.coefficients.mapValuesTo(this) { (key, value) -> if (key in this) this[key]!! - value else -value }
|
||||
}
|
||||
)
|
||||
|
@ -13,7 +13,7 @@ import kotlin.jvm.JvmName
|
||||
/**
|
||||
* Represents multivariate rational function that stores its numerator and denominator as [LabeledPolynomial]s.
|
||||
*/
|
||||
public class LabeledRationalFunction<C>(
|
||||
public data class LabeledRationalFunction<C>(
|
||||
public override val numerator: LabeledPolynomial<C>,
|
||||
public override val denominator: LabeledPolynomial<C>
|
||||
) : RationalFunction<C, LabeledPolynomial<C>> {
|
||||
|
@ -15,7 +15,7 @@ import kotlin.math.max
|
||||
/**
|
||||
* Represents multivariate rational function that stores its numerator and denominator as [NumberedPolynomial]s.
|
||||
*/
|
||||
public class NumberedRationalFunction<C> internal constructor(
|
||||
public data class NumberedRationalFunction<C>(
|
||||
public override val numerator: NumberedPolynomial<C>,
|
||||
public override val denominator: NumberedPolynomial<C>
|
||||
) : RationalFunction<C, NumberedPolynomial<C>> {
|
||||
|
@ -73,6 +73,8 @@ public inline fun <C> LabeledPolynomialWithoutCheck(vararg pairs: Pair<Map<Symbo
|
||||
* 1. Zeros at the ends of terms' signatures (e.g. [coefs] keys) will be removed. (See [cleanUp].)
|
||||
* 1. Terms that happen to have the same signature will be summed up.
|
||||
* 1. New map will be formed of resulting terms.
|
||||
*
|
||||
* @see LabeledPolynomialWithoutCheck
|
||||
*/
|
||||
public fun <C> LabeledPolynomial(coefs: Map<Map<Symbol, UInt>, C>, add: (C, C) -> C) : LabeledPolynomial<C> {
|
||||
val fixedCoefs = mutableMapOf<Map<Symbol, UInt>, C>()
|
||||
@ -93,6 +95,8 @@ public fun <C> LabeledPolynomial(coefs: Map<Map<Symbol, UInt>, C>, add: (C, C) -
|
||||
* 1. Zeros at the ends of terms' signatures (e.g. [pairs] keys) will be removed. (See [cleanUp].)
|
||||
* 1. Terms that happen to have the same signature will be summed up.
|
||||
* 1. New map will be formed of resulting terms.
|
||||
*
|
||||
* @see LabeledPolynomialWithoutCheck
|
||||
*/
|
||||
public fun <C> LabeledPolynomial(pairs: Collection<Pair<Map<Symbol, UInt>, C>>, add: (C, C) -> C) : LabeledPolynomial<C> {
|
||||
val fixedCoefs = mutableMapOf<Map<Symbol, UInt>, C>()
|
||||
@ -113,6 +117,8 @@ public fun <C> LabeledPolynomial(pairs: Collection<Pair<Map<Symbol, UInt>, C>>,
|
||||
* 1. Zeros at the ends of terms' signatures (e.g. [pairs] keys) will be removed. (See [cleanUp].)
|
||||
* 1. Terms that happen to have the same signature will be summed up.
|
||||
* 1. New map will be formed of resulting terms.
|
||||
*
|
||||
* @see LabeledPolynomialWithoutCheck
|
||||
*/
|
||||
public fun <C> LabeledPolynomial(vararg pairs: Pair<Map<Symbol, UInt>, C>, add: (C, C) -> C) : LabeledPolynomial<C> {
|
||||
val fixedCoefs = mutableMapOf<Map<Symbol, UInt>, C>()
|
||||
@ -135,6 +141,8 @@ public fun <C> LabeledPolynomial(vararg pairs: Pair<Map<Symbol, UInt>, C>, add:
|
||||
* 1. Zeros at the ends of terms' signatures (e.g. [coefs] keys) will be removed. (See [cleanUp].)
|
||||
* 1. Terms that happen to have the same signature will be summed up.
|
||||
* 1. New map will be formed of resulting terms.
|
||||
*
|
||||
* @see LabeledPolynomialWithoutCheck
|
||||
*/
|
||||
public inline fun <C, A: Ring<C>> A.LabeledPolynomial(coefs: Map<Map<Symbol, UInt>, C>) : LabeledPolynomial<C> = LabeledPolynomial(coefs, ::add)
|
||||
/**
|
||||
@ -144,6 +152,8 @@ public inline fun <C, A: Ring<C>> A.LabeledPolynomial(coefs: Map<Map<Symbol, UIn
|
||||
* 1. Zeros at the ends of terms' signatures (e.g. [coefs] keys) will be removed. (See [cleanUp].)
|
||||
* 1. Terms that happen to have the same signature will be summed up.
|
||||
* 1. New map will be formed of resulting terms.
|
||||
*
|
||||
* @see LabeledPolynomialWithoutCheck
|
||||
*/
|
||||
public inline fun <C, A: Ring<C>> LabeledPolynomialSpace<C, A>.LabeledPolynomial(coefs: Map<Map<Symbol, UInt>, C>) : LabeledPolynomial<C> = LabeledPolynomial(coefs) { left: C, right: C -> left + right }
|
||||
|
||||
@ -154,6 +164,8 @@ public inline fun <C, A: Ring<C>> LabeledPolynomialSpace<C, A>.LabeledPolynomial
|
||||
* 1. Zeros at the ends of terms' signatures (e.g. [coefs] keys) will be removed. (See [cleanUp].)
|
||||
* 1. Terms that happen to have the same signature will be summed up.
|
||||
* 1. New map will be formed of resulting terms.
|
||||
*
|
||||
* @see LabeledPolynomialWithoutCheck
|
||||
*/
|
||||
public inline fun <C, A: Ring<C>> LabeledRationalFunctionSpace<C, A>.LabeledPolynomial(coefs: Map<Map<Symbol, UInt>, C>) : LabeledPolynomial<C> = LabeledPolynomial(coefs) { left: C, right: C -> left + right }
|
||||
|
||||
@ -164,6 +176,8 @@ public inline fun <C, A: Ring<C>> LabeledRationalFunctionSpace<C, A>.LabeledPoly
|
||||
* 1. Zeros at the ends of terms' signatures (e.g. [pairs] keys) will be removed. (See [cleanUp].)
|
||||
* 1. Terms that happen to have the same signature will be summed up.
|
||||
* 1. New map will be formed of resulting terms.
|
||||
*
|
||||
* @see LabeledPolynomialWithoutCheck
|
||||
*/
|
||||
public inline fun <C, A: Ring<C>> A.LabeledPolynomial(pairs: Collection<Pair<Map<Symbol, UInt>, C>>) : LabeledPolynomial<C> = LabeledPolynomial(pairs, ::add)
|
||||
|
||||
@ -174,6 +188,8 @@ public inline fun <C, A: Ring<C>> A.LabeledPolynomial(pairs: Collection<Pair<Map
|
||||
* 1. Zeros at the ends of terms' signatures (e.g. [pairs] keys) will be removed. (See [cleanUp].)
|
||||
* 1. Terms that happen to have the same signature will be summed up.
|
||||
* 1. New map will be formed of resulting terms.
|
||||
*
|
||||
* @see LabeledPolynomialWithoutCheck
|
||||
*/
|
||||
public inline fun <C, A: Ring<C>> LabeledPolynomialSpace<C, A>.LabeledPolynomial(pairs: Collection<Pair<Map<Symbol, UInt>, C>>) : LabeledPolynomial<C> = LabeledPolynomial(pairs) { left: C, right: C -> left + right }
|
||||
/**
|
||||
@ -183,6 +199,8 @@ public inline fun <C, A: Ring<C>> LabeledPolynomialSpace<C, A>.LabeledPolynomial
|
||||
* 1. Zeros at the ends of terms' signatures (e.g. [pairs] keys) will be removed. (See [cleanUp].)
|
||||
* 1. Terms that happen to have the same signature will be summed up.
|
||||
* 1. New map will be formed of resulting terms.
|
||||
*
|
||||
* @see LabeledPolynomialWithoutCheck
|
||||
*/
|
||||
public inline fun <C, A: Ring<C>> LabeledRationalFunctionSpace<C, A>.LabeledPolynomial(pairs: Collection<Pair<Map<Symbol, UInt>, C>>) : LabeledPolynomial<C> = LabeledPolynomial(pairs) { left: C, right: C -> left + right }
|
||||
|
||||
@ -193,6 +211,8 @@ public inline fun <C, A: Ring<C>> LabeledRationalFunctionSpace<C, A>.LabeledPoly
|
||||
* 1. Zeros at the ends of terms' signatures (e.g. [pairs] keys) will be removed. (See [cleanUp].)
|
||||
* 1. Terms that happen to have the same signature will be summed up.
|
||||
* 1. New map will be formed of resulting terms.
|
||||
*
|
||||
* @see LabeledPolynomialWithoutCheck
|
||||
*/
|
||||
public inline fun <C, A: Ring<C>> A.LabeledPolynomial(vararg pairs: Pair<Map<Symbol, UInt>, C>) : LabeledPolynomial<C> = LabeledPolynomial(*pairs) { left: C, right: C -> left + right }
|
||||
/**
|
||||
@ -202,6 +222,8 @@ public inline fun <C, A: Ring<C>> A.LabeledPolynomial(vararg pairs: Pair<Map<Sym
|
||||
* 1. Zeros at the ends of terms' signatures (e.g. [pairs] keys) will be removed. (See [cleanUp].)
|
||||
* 1. Terms that happen to have the same signature will be summed up.
|
||||
* 1. New map will be formed of resulting terms.
|
||||
*
|
||||
* @see LabeledPolynomialWithoutCheck
|
||||
*/
|
||||
public inline fun <C, A: Ring<C>> LabeledPolynomialSpace<C, A>.LabeledPolynomial(vararg pairs: Pair<Map<Symbol, UInt>, C>) : LabeledPolynomial<C> = LabeledPolynomial(*pairs) { left: C, right: C -> left + right }
|
||||
/**
|
||||
@ -211,6 +233,8 @@ public inline fun <C, A: Ring<C>> LabeledPolynomialSpace<C, A>.LabeledPolynomial
|
||||
* 1. Zeros at the ends of terms' signatures (e.g. [pairs] keys) will be removed. (See [cleanUp].)
|
||||
* 1. Terms that happen to have the same signature will be summed up.
|
||||
* 1. New map will be formed of resulting terms.
|
||||
*
|
||||
* @see LabeledPolynomialWithoutCheck
|
||||
*/
|
||||
public inline fun <C, A: Ring<C>> LabeledRationalFunctionSpace<C, A>.LabeledPolynomial(vararg pairs: Pair<Map<Symbol, UInt>, C>) : LabeledPolynomial<C> = LabeledPolynomial(*pairs) { left: C, right: C -> left + right }
|
||||
|
||||
|
@ -72,6 +72,8 @@ public inline fun <C> NumberedPolynomialWithoutCheck(vararg pairs: Pair<List<UIn
|
||||
* 1. Zeros at the ends of terms' signatures (e.g. [coefs] keys) will be removed. (See [cleanUp].)
|
||||
* 1. Terms that happen to have the same signature will be summed up.
|
||||
* 1. New map will be formed of resulting terms.
|
||||
*
|
||||
* @see NumberedPolynomialWithoutCheck
|
||||
*/
|
||||
public fun <C> NumberedPolynomial(coefs: Map<List<UInt>, C>, add: (C, C) -> C) : NumberedPolynomial<C> {
|
||||
val fixedCoefs = mutableMapOf<List<UInt>, C>()
|
||||
@ -92,6 +94,8 @@ public fun <C> NumberedPolynomial(coefs: Map<List<UInt>, C>, add: (C, C) -> C) :
|
||||
* 1. Zeros at the ends of terms' signatures (e.g. [pairs] keys) will be removed. (See [cleanUp].)
|
||||
* 1. Terms that happen to have the same signature will be summed up.
|
||||
* 1. New map will be formed of resulting terms.
|
||||
*
|
||||
* @see NumberedPolynomialWithoutCheck
|
||||
*/
|
||||
public fun <C> NumberedPolynomial(pairs: Collection<Pair<List<UInt>, C>>, add: (C, C) -> C) : NumberedPolynomial<C> {
|
||||
val fixedCoefs = mutableMapOf<List<UInt>, C>()
|
||||
@ -112,6 +116,8 @@ public fun <C> NumberedPolynomial(pairs: Collection<Pair<List<UInt>, C>>, add: (
|
||||
* 1. Zeros at the ends of terms' signatures (e.g. [pairs] keys) will be removed. (See [cleanUp].)
|
||||
* 1. Terms that happen to have the same signature will be summed up.
|
||||
* 1. New map will be formed of resulting terms.
|
||||
*
|
||||
* @see NumberedPolynomialWithoutCheck
|
||||
*/
|
||||
public fun <C> NumberedPolynomial(vararg pairs: Pair<List<UInt>, C>, add: (C, C) -> C) : NumberedPolynomial<C> {
|
||||
val fixedCoefs = mutableMapOf<List<UInt>, C>()
|
||||
@ -134,6 +140,8 @@ public fun <C> NumberedPolynomial(vararg pairs: Pair<List<UInt>, C>, add: (C, C)
|
||||
* 1. Zeros at the ends of terms' signatures (e.g. [coefs] keys) will be removed. (See [cleanUp].)
|
||||
* 1. Terms that happen to have the same signature will be summed up.
|
||||
* 1. New map will be formed of resulting terms.
|
||||
*
|
||||
* @see NumberedPolynomialWithoutCheck
|
||||
*/
|
||||
public inline fun <C, A: Ring<C>> A.NumberedPolynomial(coefs: Map<List<UInt>, C>) : NumberedPolynomial<C> = NumberedPolynomial(coefs, ::add)
|
||||
/**
|
||||
@ -143,6 +151,8 @@ public inline fun <C, A: Ring<C>> A.NumberedPolynomial(coefs: Map<List<UInt>, C>
|
||||
* 1. Zeros at the ends of terms' signatures (e.g. [coefs] keys) will be removed. (See [cleanUp].)
|
||||
* 1. Terms that happen to have the same signature will be summed up.
|
||||
* 1. New map will be formed of resulting terms.
|
||||
*
|
||||
* @see NumberedPolynomialWithoutCheck
|
||||
*/
|
||||
public inline fun <C, A: Ring<C>> NumberedPolynomialSpace<C, A>.NumberedPolynomial(coefs: Map<List<UInt>, C>) : NumberedPolynomial<C> = NumberedPolynomial(coefs) { left: C, right: C -> left + right }
|
||||
|
||||
@ -153,6 +163,8 @@ public inline fun <C, A: Ring<C>> NumberedPolynomialSpace<C, A>.NumberedPolynomi
|
||||
* 1. Zeros at the ends of terms' signatures (e.g. [coefs] keys) will be removed. (See [cleanUp].)
|
||||
* 1. Terms that happen to have the same signature will be summed up.
|
||||
* 1. New map will be formed of resulting terms.
|
||||
*
|
||||
* @see NumberedPolynomialWithoutCheck
|
||||
*/
|
||||
public inline fun <C, A: Ring<C>> NumberedRationalFunctionSpace<C, A>.NumberedPolynomial(coefs: Map<List<UInt>, C>) : NumberedPolynomial<C> = NumberedPolynomial(coefs) { left: C, right: C -> left + right }
|
||||
|
||||
@ -163,6 +175,8 @@ public inline fun <C, A: Ring<C>> NumberedRationalFunctionSpace<C, A>.NumberedPo
|
||||
* 1. Zeros at the ends of terms' signatures (e.g. [pairs] keys) will be removed. (See [cleanUp].)
|
||||
* 1. Terms that happen to have the same signature will be summed up.
|
||||
* 1. New map will be formed of resulting terms.
|
||||
*
|
||||
* @see NumberedPolynomialWithoutCheck
|
||||
*/
|
||||
public inline fun <C, A: Ring<C>> A.NumberedPolynomial(pairs: Collection<Pair<List<UInt>, C>>) : NumberedPolynomial<C> = NumberedPolynomial(pairs, ::add)
|
||||
|
||||
@ -173,6 +187,8 @@ public inline fun <C, A: Ring<C>> A.NumberedPolynomial(pairs: Collection<Pair<Li
|
||||
* 1. Zeros at the ends of terms' signatures (e.g. [pairs] keys) will be removed. (See [cleanUp].)
|
||||
* 1. Terms that happen to have the same signature will be summed up.
|
||||
* 1. New map will be formed of resulting terms.
|
||||
*
|
||||
* @see NumberedPolynomialWithoutCheck
|
||||
*/
|
||||
public inline fun <C, A: Ring<C>> NumberedPolynomialSpace<C, A>.NumberedPolynomial(pairs: Collection<Pair<List<UInt>, C>>) : NumberedPolynomial<C> = NumberedPolynomial(pairs) { left: C, right: C -> left + right }
|
||||
/**
|
||||
@ -192,6 +208,8 @@ public inline fun <C, A: Ring<C>> NumberedRationalFunctionSpace<C, A>.NumberedPo
|
||||
* 1. Zeros at the ends of terms' signatures (e.g. [pairs] keys) will be removed. (See [cleanUp].)
|
||||
* 1. Terms that happen to have the same signature will be summed up.
|
||||
* 1. New map will be formed of resulting terms.
|
||||
*
|
||||
* @see NumberedPolynomialWithoutCheck
|
||||
*/
|
||||
public inline fun <C, A: Ring<C>> A.NumberedPolynomial(vararg pairs: Pair<List<UInt>, C>) : NumberedPolynomial<C> = NumberedPolynomial(*pairs) { left: C, right: C -> left + right }
|
||||
/**
|
||||
@ -201,6 +219,8 @@ public inline fun <C, A: Ring<C>> A.NumberedPolynomial(vararg pairs: Pair<List<U
|
||||
* 1. Zeros at the ends of terms' signatures (e.g. [pairs] keys) will be removed. (See [cleanUp].)
|
||||
* 1. Terms that happen to have the same signature will be summed up.
|
||||
* 1. New map will be formed of resulting terms.
|
||||
*
|
||||
* @see NumberedPolynomialWithoutCheck
|
||||
*/
|
||||
public inline fun <C, A: Ring<C>> NumberedPolynomialSpace<C, A>.NumberedPolynomial(vararg pairs: Pair<List<UInt>, C>) : NumberedPolynomial<C> = NumberedPolynomial(*pairs) { left: C, right: C -> left + right }
|
||||
/**
|
||||
@ -210,6 +230,8 @@ public inline fun <C, A: Ring<C>> NumberedPolynomialSpace<C, A>.NumberedPolynomi
|
||||
* 1. Zeros at the ends of terms' signatures (e.g. [pairs] keys) will be removed. (See [cleanUp].)
|
||||
* 1. Terms that happen to have the same signature will be summed up.
|
||||
* 1. New map will be formed of resulting terms.
|
||||
*
|
||||
* @see NumberedPolynomialWithoutCheck
|
||||
*/
|
||||
public inline fun <C, A: Ring<C>> NumberedRationalFunctionSpace<C, A>.NumberedPolynomial(vararg pairs: Pair<List<UInt>, C>) : NumberedPolynomial<C> = NumberedPolynomial(*pairs) { left: C, right: C -> left + right }
|
||||
|
||||
|
@ -353,7 +353,7 @@ public fun <C, A : Ring<C>> NumberedPolynomial<C>.derivativeWithRespectTo(
|
||||
buildMap(coefficients.size) {
|
||||
coefficients
|
||||
.forEach { (degs, c) ->
|
||||
if (degs.size > variable) return@forEach
|
||||
if (degs.lastIndex < variable) return@forEach
|
||||
put(
|
||||
degs.mapIndexed { index, deg ->
|
||||
when {
|
||||
@ -383,7 +383,7 @@ public fun <C, A : Ring<C>> NumberedPolynomial<C>.nthDerivativeWithRespectTo(
|
||||
buildMap(coefficients.size) {
|
||||
coefficients
|
||||
.forEach { (degs, c) ->
|
||||
if (degs.size > variable) return@forEach
|
||||
if (degs.lastIndex < variable) return@forEach
|
||||
put(
|
||||
degs.mapIndexed { index, deg ->
|
||||
when {
|
||||
@ -417,7 +417,7 @@ public fun <C, A : Ring<C>> NumberedPolynomial<C>.nthDerivativeWithRespectTo(
|
||||
buildMap(coefficients.size) {
|
||||
coefficients
|
||||
.forEach { (degs, c) ->
|
||||
if (degs.size > maxRespectedVariable) return@forEach
|
||||
if (degs.lastIndex < maxRespectedVariable) return@forEach
|
||||
put(
|
||||
degs.mapIndexed { index, deg ->
|
||||
if (index !in filteredVariablesAndOrders) return@mapIndexed deg
|
||||
|
Loading…
Reference in New Issue
Block a user