From 37ad48e820cde271ba93d1249b84b0abfd033f21 Mon Sep 17 00:00:00 2001 From: Gleb Minaev <43728100+lounres@users.noreply.github.com> Date: Mon, 13 Jun 2022 02:06:15 +0300 Subject: [PATCH] Sift # 3. Filtered last sift and usages of [ListPolynomial]s. --- .../kmath/functions/LabeledPolynomial.kt | 539 ------------------ .../functions/LabeledRationalFunction.kt | 139 ----- .../kmath/functions/ListPolynomial.kt | 80 ++- .../kmath/functions/ListRationalFunction.kt | 158 +++-- .../kmath/functions/NumberedPolynomial.kt | 389 ------------- .../functions/NumberedRationalFunction.kt | 188 ------ .../kscience/kmath/functions/Polynomial.kt | 152 ++++- .../kmath/functions/RationalFunction.kt | 511 ++++++++++++----- .../kmath/functions/labeledConstructors.kt | 203 ------- .../kmath/functions/labeledPolynomialUtil.kt | 495 ---------------- .../functions/labeledRationalFunctionUtil.kt | 33 -- .../kmath/functions/listConstructors.kt | 61 +- .../kmath/functions/listPolynomialUtil.kt | 233 -------- .../kscience/kmath/functions/listUtil.kt | 268 +++++++++ ...alFunctionUtil.kt => listUtilOptimized.kt} | 129 +++-- .../space/kscience/kmath/functions/misc.kt | 13 + .../kmath/functions/numberedConstructors.kt | 195 ------- .../kmath/functions/numberedPolynomialUtil.kt | 528 ----------------- .../functions/numberedRationalFunctionUtil.kt | 33 -- .../kmath/functions/ListPolynomialTest.kt | 32 +- .../kmath/functions/ListPolynomialUtilTest.kt | 2 + .../kscience/kmath/test/misc/IntModulo.kt | 138 +++++ .../kscience/kmath/test/misc/Rational.kt | 135 +++++ .../space/kscience/kmath/test/misc/misc.kt | 29 + 24 files changed, 1378 insertions(+), 3305 deletions(-) delete mode 100644 kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/LabeledPolynomial.kt delete mode 100644 kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/LabeledRationalFunction.kt delete mode 100644 kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/NumberedPolynomial.kt delete mode 100644 kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/NumberedRationalFunction.kt delete mode 100644 kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/labeledConstructors.kt delete mode 100644 kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/labeledPolynomialUtil.kt delete mode 100644 kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/labeledRationalFunctionUtil.kt delete mode 100644 kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/listPolynomialUtil.kt create mode 100644 kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/listUtil.kt rename kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/{listRationalFunctionUtil.kt => listUtilOptimized.kt} (72%) create mode 100644 kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/misc.kt delete mode 100644 kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/numberedConstructors.kt delete mode 100644 kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/numberedPolynomialUtil.kt delete mode 100644 kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/numberedRationalFunctionUtil.kt create mode 100644 kmath-functions/src/commonTest/kotlin/space/kscience/kmath/test/misc/IntModulo.kt create mode 100644 kmath-functions/src/commonTest/kotlin/space/kscience/kmath/test/misc/Rational.kt create mode 100644 kmath-functions/src/commonTest/kotlin/space/kscience/kmath/test/misc/misc.kt diff --git a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/LabeledPolynomial.kt b/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/LabeledPolynomial.kt deleted file mode 100644 index b904f7331..000000000 --- a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/LabeledPolynomial.kt +++ /dev/null @@ -1,539 +0,0 @@ -/* - * Copyright 2018-2021 KMath contributors. - * Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file. - */ - -package space.kscience.kmath.functions - -import space.kscience.kmath.expressions.Symbol -import space.kscience.kmath.operations.Ring -import space.kscience.kmath.operations.ScaleOperations -import kotlin.math.max - - -/** - * Represents multivariate polynomials with labeled variables. - * - * @param C Ring in which the polynomial is considered. - */ -public data class LabeledPolynomial -internal constructor( - /** - * Map that collects coefficients of the polynomial. Every non-zero monomial - * `a x_1^{d_1} ... x_n^{d_n}` is represented as pair "key-value" in the map, where value is coefficients `a` and - * key is map that associates variables in the monomial with multiplicity of them occurring in the monomial. - * For example polynomial - * ``` - * 5 a^2 c^3 - 6 b + 0 b c - * ``` - * has coefficients represented as - * ``` - * mapOf( - * mapOf( - * a to 2, - * c to 3 - * ) to 5, - * mapOf( - * b to 1 - * ) to (-6) - * ) - * ``` - * where `a`, `b` and `c` are corresponding [Symbol] objects. - */ - public val coefficients: Map, C> -) : Polynomial { - override fun toString(): String = "LabeledPolynomial$coefficients" -} - -/** - * Space of polynomials. - * - * @param C the type of operated polynomials. - * @param A the intersection of [Ring] of [C] and [ScaleOperations] of [C]. - * @param ring the [A] instance. - */ -public class LabeledPolynomialSpace>( - public override val ring: A, -) : MultivariatePolynomialSpace>, PolynomialSpaceOverRing, A> { - public override operator fun Symbol.plus(other: Int): LabeledPolynomial = - if (other == 0) LabeledPolynomial(mapOf( - mapOf(this@plus to 1U) to constantOne, - )) - else LabeledPolynomial(mapOf( - mapOf(this@plus to 1U) to constantOne, - emptyMap() to constantOne * other, - )) - public override operator fun Symbol.minus(other: Int): LabeledPolynomial = - if (other == 0) LabeledPolynomial(mapOf( - mapOf(this@minus to 1U) to -constantOne, - )) - else LabeledPolynomial(mapOf( - mapOf(this@minus to 1U) to -constantOne, - emptyMap() to constantOne * other, - )) - public override operator fun Symbol.times(other: Int): LabeledPolynomial = - if (other == 0) zero - else LabeledPolynomial(mapOf( - mapOf(this to 1U) to constantOne * other, - )) - - public override operator fun Int.plus(other: Symbol): LabeledPolynomial = - if (this == 0) LabeledPolynomial(mapOf( - mapOf(other to 1U) to constantOne, - )) - else LabeledPolynomial(mapOf( - mapOf(other to 1U) to constantOne, - emptyMap() to constantOne * this@plus, - )) - public override operator fun Int.minus(other: Symbol): LabeledPolynomial = - if (this == 0) LabeledPolynomial(mapOf( - mapOf(other to 1U) to -constantOne, - )) - else LabeledPolynomial(mapOf( - mapOf(other to 1U) to -constantOne, - emptyMap() to constantOne * this@minus, - )) - public override operator fun Int.times(other: Symbol): LabeledPolynomial = - if (this == 0) zero - else LabeledPolynomial(mapOf( - mapOf(other to 1U) to constantOne * this@times, - )) - - /** - * Returns sum of the polynomial and the integer represented as polynomial. - * - * The operation is equivalent to adding [other] copies of unit polynomial to [this]. - */ - public override operator fun LabeledPolynomial.plus(other: Int): LabeledPolynomial = - if (other == 0) this - else with(coefficients) { - if (isEmpty()) LabeledPolynomial(mapOf(emptyMap() to other.asConstant())) - else LabeledPolynomial( - toMutableMap() - .apply { - val degs = emptyMap() - - this[degs] = getOrElse(degs) { constantZero } + other - } - ) - } - /** - * Returns difference between the polynomial and the integer represented as polynomial. - * - * The operation is equivalent to subtraction [other] copies of unit polynomial from [this]. - */ - public override operator fun LabeledPolynomial.minus(other: Int): LabeledPolynomial = - if (other == 0) this - else with(coefficients) { - if (isEmpty()) LabeledPolynomial(mapOf(emptyMap() to (-other).asConstant())) - else LabeledPolynomial( - toMutableMap() - .apply { - val degs = emptyMap() - - this[degs] = getOrElse(degs) { constantZero } - other - } - ) - } - /** - * Returns product of the polynomial and the integer represented as polynomial. - * - * The operation is equivalent to sum of [other] copies of [this]. - */ - public override operator fun LabeledPolynomial.times(other: Int): LabeledPolynomial = - if (other == 0) zero - else LabeledPolynomial( - coefficients - .toMutableMap() - .apply { - for (degs in keys) this[degs] = this[degs]!! * other - } - ) - - /** - * Returns sum of the integer represented as polynomial and the polynomial. - * - * The operation is equivalent to adding [this] copies of unit polynomial to [other]. - */ - public override operator fun Int.plus(other: LabeledPolynomial): LabeledPolynomial = - if (this == 0) other - else with(other.coefficients) { - if (isEmpty()) LabeledPolynomial(mapOf(emptyMap() to this@plus.asConstant())) - else LabeledPolynomial( - toMutableMap() - .apply { - val degs = emptyMap() - - this[degs] = this@plus + getOrElse(degs) { constantZero } - } - ) - } - /** - * Returns difference between the integer represented as polynomial and the polynomial. - * - * The operation is equivalent to subtraction [this] copies of unit polynomial from [other]. - */ - public override operator fun Int.minus(other: LabeledPolynomial): LabeledPolynomial = - if (this == 0) other - else with(other.coefficients) { - if (isEmpty()) LabeledPolynomial(mapOf(emptyMap() to this@minus.asConstant())) - else LabeledPolynomial( - toMutableMap() - .apply { - val degs = emptyMap() - - this[degs] = this@minus - getOrElse(degs) { constantZero } - } - ) - } - /** - * Returns product of the integer represented as polynomial and the polynomial. - * - * The operation is equivalent to sum of [this] copies of [other]. - */ - public override operator fun Int.times(other: LabeledPolynomial): LabeledPolynomial = - if (this == 0) zero - else LabeledPolynomial( - other.coefficients - .toMutableMap() - .apply { - for (degs in keys) this[degs] = this@times * this[degs]!! - } - ) - - /** - * Converts the integer [value] to polynomial. - */ - public override fun number(value: Int): LabeledPolynomial = number(constantNumber(value)) - - public override operator fun C.plus(other: Symbol): LabeledPolynomial = - LabeledPolynomial(mapOf( - mapOf(other to 1U) to constantOne, - emptyMap() to this@plus, - )) - public override operator fun C.minus(other: Symbol): LabeledPolynomial = - LabeledPolynomial(mapOf( - mapOf(other to 1U) to -constantOne, - emptyMap() to this@minus, - )) - public override operator fun C.times(other: Symbol): LabeledPolynomial = - LabeledPolynomial(mapOf( - mapOf(other to 1U) to this@times, - )) - - public override operator fun Symbol.plus(other: C): LabeledPolynomial = - LabeledPolynomial(mapOf( - mapOf(this@plus to 1U) to constantOne, - emptyMap() to other, - )) - public override operator fun Symbol.minus(other: C): LabeledPolynomial = - LabeledPolynomial(mapOf( - mapOf(this@minus to 1U) to -constantOne, - emptyMap() to other, - )) - public override operator fun Symbol.times(other: C): LabeledPolynomial = - LabeledPolynomial(mapOf( - mapOf(this@times to 1U) to other, - )) - - /** - * Returns sum of the constant represented as polynomial and the polynomial. - */ - override operator fun C.plus(other: LabeledPolynomial): LabeledPolynomial = - with(other.coefficients) { - if (isEmpty()) LabeledPolynomial(mapOf(emptyMap() to this@plus)) - else LabeledPolynomial( - toMutableMap() - .apply { - val degs = emptyMap() - - this[degs] = this@plus + getOrElse(degs) { constantZero } - } - ) - } - /** - * Returns difference between the constant represented as polynomial and the polynomial. - */ - override operator fun C.minus(other: LabeledPolynomial): LabeledPolynomial = - with(other.coefficients) { - if (isEmpty()) LabeledPolynomial(mapOf(emptyMap() to this@minus)) - else LabeledPolynomial( - toMutableMap() - .apply { - forEach { (degs, c) -> if(degs.isNotEmpty()) this[degs] = -c } - - val degs = emptyMap() - - this[degs] = this@minus - getOrElse(degs) { constantZero } - } - ) - } - /** - * Returns product of the constant represented as polynomial and the polynomial. - */ - override operator fun C.times(other: LabeledPolynomial): LabeledPolynomial = - LabeledPolynomial( - other.coefficients - .toMutableMap() - .apply { - for (degs in keys) this[degs] = this@times * this[degs]!! - } - ) - - /** - * Returns sum of the constant represented as polynomial and the polynomial. - */ - override operator fun LabeledPolynomial.plus(other: C): LabeledPolynomial = - with(coefficients) { - if (isEmpty()) LabeledPolynomial(mapOf(emptyMap() to other)) - else LabeledPolynomial( - toMutableMap() - .apply { - val degs = emptyMap() - - this[degs] = getOrElse(degs) { constantZero } + other - } - ) - } - /** - * Returns difference between the constant represented as polynomial and the polynomial. - */ - override operator fun LabeledPolynomial.minus(other: C): LabeledPolynomial = - with(coefficients) { - if (isEmpty()) LabeledPolynomial(mapOf(emptyMap() to other)) - else LabeledPolynomial( - toMutableMap() - .apply { - forEach { (degs, c) -> if(degs.isNotEmpty()) this[degs] = -c } - - val degs = emptyMap() - - this[degs] = getOrElse(degs) { constantZero } - other - } - ) - } - /** - * Returns product of the constant represented as polynomial and the polynomial. - */ - override operator fun LabeledPolynomial.times(other: C): LabeledPolynomial = - LabeledPolynomial( - coefficients - .toMutableMap() - .apply { - for (degs in keys) this[degs] = this[degs]!! * other - } - ) - - /** - * Converts the constant [value] to polynomial. - */ - public override fun number(value: C): LabeledPolynomial = - LabeledPolynomial(mapOf(emptyMap() to value)) - - public override operator fun Symbol.unaryPlus(): LabeledPolynomial = - LabeledPolynomial(mapOf( - mapOf(this to 1U) to constantOne, - )) - public override operator fun Symbol.unaryMinus(): LabeledPolynomial = - LabeledPolynomial(mapOf( - mapOf(this to 1U) to -constantOne, - )) - public override operator fun Symbol.plus(other: Symbol): LabeledPolynomial = - if (this == other) LabeledPolynomial(mapOf( - mapOf(this to 1U) to constantOne * 2 - )) - else LabeledPolynomial(mapOf( - mapOf(this to 1U) to constantOne, - mapOf(other to 1U) to constantOne, - )) - public override operator fun Symbol.minus(other: Symbol): LabeledPolynomial = - if (this == other) zero - else LabeledPolynomial(mapOf( - mapOf(this to 1U) to constantOne, - mapOf(other to 1U) to -constantOne, - )) - public override operator fun Symbol.times(other: Symbol): LabeledPolynomial = - if (this == other) LabeledPolynomial(mapOf( - mapOf(this to 2U) to constantOne - )) - else LabeledPolynomial(mapOf( - mapOf(this to 1U, other to 1U) to constantOne, - )) - - public override operator fun Symbol.plus(other: LabeledPolynomial): LabeledPolynomial = - with(other.coefficients) { - if (isEmpty()) LabeledPolynomial(mapOf(mapOf(this@plus to 1u) to constantOne)) - else LabeledPolynomial( - toMutableMap() - .apply { - val degs = mapOf(this@plus to 1U) - - this[degs] = constantOne + getOrElse(degs) { constantZero } - } - ) - } - public override operator fun Symbol.minus(other: LabeledPolynomial): LabeledPolynomial = - with(other.coefficients) { - if (isEmpty()) LabeledPolynomial(mapOf(mapOf(this@minus to 1u) to constantOne)) - else LabeledPolynomial( - toMutableMap() - .apply { - forEach { (degs, c) -> if(degs.isNotEmpty()) this[degs] = -c } - - val degs = mapOf(this@minus to 1U) - - this[degs] = constantOne - getOrElse(degs) { constantZero } - } - ) - } - public override operator fun Symbol.times(other: LabeledPolynomial): LabeledPolynomial = - LabeledPolynomial( - other.coefficients - .mapKeys { (degs, _) -> degs.toMutableMap().also{ it[this] = if (this in it) it[this]!! + 1U else 1U } } - ) - - public override operator fun LabeledPolynomial.plus(other: Symbol): LabeledPolynomial = - with(coefficients) { - if (isEmpty()) LabeledPolynomial(mapOf(mapOf(other to 1u) to constantOne)) - else LabeledPolynomial( - toMutableMap() - .apply { - val degs = mapOf(other to 1U) - - this[degs] = constantOne + getOrElse(degs) { constantZero } - } - ) - } - public override operator fun LabeledPolynomial.minus(other: Symbol): LabeledPolynomial = - with(coefficients) { - if (isEmpty()) LabeledPolynomial(mapOf(mapOf(other to 1u) to constantOne)) - else LabeledPolynomial( - toMutableMap() - .apply { - val degs = mapOf(other to 1U) - - this[degs] = constantOne - getOrElse(degs) { constantZero } - } - ) - } - public override operator fun LabeledPolynomial.times(other: Symbol): LabeledPolynomial = - LabeledPolynomial( - coefficients - .mapKeys { (degs, _) -> degs.toMutableMap().also{ it[other] = if (other in it) it[other]!! + 1U else 1U } } - ) - - /** - * Returns negation of the polynomial. - */ - override fun LabeledPolynomial.unaryMinus(): LabeledPolynomial = - LabeledPolynomial( - coefficients.mapValues { -it.value } - ) - /** - * Returns sum of the polynomials. - */ - override operator fun LabeledPolynomial.plus(other: LabeledPolynomial): LabeledPolynomial = - LabeledPolynomial( - buildMap(coefficients.size + other.coefficients.size) { - other.coefficients.mapValuesTo(this) { it.value } - other.coefficients.mapValuesTo(this) { (key, value) -> if (key in this) this[key]!! + value else value } - } - ) - /** - * Returns difference of the polynomials. - */ - override operator fun LabeledPolynomial.minus(other: LabeledPolynomial): LabeledPolynomial = - LabeledPolynomial( - buildMap(coefficients.size + other.coefficients.size) { - other.coefficients.mapValuesTo(this) { it.value } - other.coefficients.mapValuesTo(this) { (key, value) -> if (key in this) this[key]!! - value else -value } - } - ) - /** - * Returns product of the polynomials. - */ - override operator fun LabeledPolynomial.times(other: LabeledPolynomial): LabeledPolynomial = - LabeledPolynomial( - buildMap(coefficients.size * other.coefficients.size) { - for ((degs1, c1) in coefficients) for ((degs2, c2) in other.coefficients) { - val degs = degs1.toMutableMap() - degs2.mapValuesTo(degs) { (variable, deg) -> degs.getOrElse(variable) { 0u } + deg } - val c = c1 * c2 - this[degs] = if (degs in this) this[degs]!! + c else c - } - } - ) - - /** - * Instance of zero polynomial (zero of the polynomial ring). - */ - override val zero: LabeledPolynomial = LabeledPolynomial(mapOf(emptyMap() to constantZero)) - /** - * Instance of unit polynomial (unit of the polynomial ring). - */ - override val one: LabeledPolynomial = LabeledPolynomial(mapOf(emptyMap() to constantOne)) - - /** - * Degree of the polynomial, [see also](https://en.wikipedia.org/wiki/Degree_of_a_polynomial). If the polynomial is - * zero, degree is -1. - */ - override val LabeledPolynomial.degree: Int - get() = coefficients.entries.maxOfOrNull { (degs, c) -> degs.values.sum().toInt() } ?: -1 - /** - * Map that associates variables (that appear in the polynomial in positive exponents) with their most exponents - * in which they are appeared in the polynomial. - * - * As consequence all values in the map are positive integers. Also, if the polynomial is constant, the map is empty. - * And keys of the map is the same as in [variables]. - */ - public override val LabeledPolynomial.degrees: Map - get() = - buildMap { - coefficients.entries.forEach { (degs, _) -> - degs.mapValuesTo(this) { (variable, deg) -> - max(getOrElse(variable) { 0u }, deg) - } - } - } - /** - * Counts degree of the polynomial by the specified [variable]. - */ - public override fun LabeledPolynomial.degreeBy(variable: Symbol): UInt = - coefficients.entries.maxOfOrNull { (degs, _) -> degs.getOrElse(variable) { 0u } } ?: 0u - /** - * Counts degree of the polynomial by the specified [variables]. - */ - public override fun LabeledPolynomial.degreeBy(variables: Collection): UInt = - coefficients.entries.maxOfOrNull { (degs, _) -> degs.filterKeys { it in variables }.values.sum() } ?: 0u - /** - * Set of all variables that appear in the polynomial in positive exponents. - */ - public override val LabeledPolynomial.variables: Set - get() = - buildSet { - coefficients.entries.forEach { (degs, _) -> addAll(degs.keys) } - } - /** - * Count of all variables that appear in the polynomial in positive exponents. - */ - public override val LabeledPolynomial.countOfVariables: Int get() = variables.size - -// @Suppress("NOTHING_TO_INLINE") -// public inline fun LabeledPolynomial.substitute(argument: Map): LabeledPolynomial = this.substitute(ring, argument) -// @Suppress("NOTHING_TO_INLINE") -// @JvmName("substitutePolynomial") -// public inline fun LabeledPolynomial.substitute(argument: Map>): LabeledPolynomial = this.substitute(ring, argument) -// -// @Suppress("NOTHING_TO_INLINE") -// public inline fun LabeledPolynomial.asFunction(): (Map) -> LabeledPolynomial = { this.substitute(ring, it) } -// @Suppress("NOTHING_TO_INLINE") -// public inline fun LabeledPolynomial.asFunctionOnConstants(): (Map) -> LabeledPolynomial = { this.substitute(ring, it) } -// @Suppress("NOTHING_TO_INLINE") -// public inline fun LabeledPolynomial.asFunctionOnPolynomials(): (Map>) -> LabeledPolynomial = { this.substitute(ring, it) } -// -// @Suppress("NOTHING_TO_INLINE") -// public inline operator fun LabeledPolynomial.invoke(argument: Map): LabeledPolynomial = this.substitute(ring, argument) -// @Suppress("NOTHING_TO_INLINE") -// @JvmName("invokePolynomial") -// public inline operator fun LabeledPolynomial.invoke(argument: Map>): LabeledPolynomial = this.substitute(ring, argument) -} \ No newline at end of file diff --git a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/LabeledRationalFunction.kt b/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/LabeledRationalFunction.kt deleted file mode 100644 index 76c6874f5..000000000 --- a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/LabeledRationalFunction.kt +++ /dev/null @@ -1,139 +0,0 @@ -/* - * Copyright 2018-2021 KMath contributors. - * Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file. - */ - -package space.kscience.kmath.functions - -import space.kscience.kmath.expressions.Symbol -import space.kscience.kmath.operations.Ring -import space.kscience.kmath.operations.invoke - - -public class LabeledRationalFunction( - public override val numerator: LabeledPolynomial, - public override val denominator: LabeledPolynomial -) : RationalFunction> { - override fun toString(): String = "LabeledRationalFunction${numerator.coefficients}/${denominator.coefficients}" -} - -public class LabeledRationalFunctionSpace>( - public val ring: A, -) : - MultivariateRationalFunctionalSpaceOverMultivariatePolynomialSpace< - C, - Symbol, - LabeledPolynomial, - LabeledRationalFunction, - LabeledPolynomialSpace, - >, - MultivariatePolynomialSpaceOfFractions< - C, - Symbol, - LabeledPolynomial, - LabeledRationalFunction, - >() { - - override val polynomialRing : LabeledPolynomialSpace = LabeledPolynomialSpace(ring) - override fun constructRationalFunction( - numerator: LabeledPolynomial, - denominator: LabeledPolynomial - ): LabeledRationalFunction = - LabeledRationalFunction(numerator, denominator) - - /** - * Instance of zero rational function (zero of the rational functions ring). - */ - public override val zero: LabeledRationalFunction = LabeledRationalFunction(polynomialZero, polynomialOne) - /** - * Instance of unit polynomial (unit of the rational functions ring). - */ - public override val one: LabeledRationalFunction = LabeledRationalFunction(polynomialOne, polynomialOne) - - // TODO: Разобрать - -// operator fun invoke(arg: Map): LabeledRationalFunction = -// LabeledRationalFunction( -// numerator(arg), -// denominator(arg) -// ) -// -// @JvmName("invokeLabeledPolynomial") -// operator fun invoke(arg: Map>): LabeledRationalFunction = -// LabeledRationalFunction( -// numerator(arg), -// denominator(arg) -// ) -// -// @JvmName("invokeLabeledRationalFunction") -// operator fun invoke(arg: Map>): LabeledRationalFunction { -// var num = numerator invokeRFTakeNumerator arg -// var den = denominator invokeRFTakeNumerator arg -// for (variable in variables) if (variable in arg) { -// val degreeDif = degrees[variable]!! -// if (degreeDif > 0) -// den = multiplyByPower(den, arg[variable]!!.denominator, degreeDif) -// else -// num = multiplyByPower(num, arg[variable]!!.denominator, -degreeDif) -// } -// return LabeledRationalFunction(num, den) -// } -// -// override fun toString(): String = toString(emptyMap()) -// -// fun toString(names: Map = emptyMap()): String = -// when (true) { -// numerator.isZero() -> "0" -// denominator.isOne() -> numerator.toString(names) -// else -> "${numerator.toStringWithBrackets(names)}/${denominator.toStringWithBrackets(names)}" -// } -// -// fun toString(namer: (Symbol) -> String): String = -// when (true) { -// numerator.isZero() -> "0" -// denominator.isOne() -> numerator.toString(namer) -// else -> "${numerator.toStringWithBrackets(namer)}/${denominator.toStringWithBrackets(namer)}" -// } -// -// fun toStringWithBrackets(names: Map = emptyMap()): String = -// when (true) { -// numerator.isZero() -> "0" -// denominator.isOne() -> numerator.toStringWithBrackets(names) -// else -> "(${numerator.toStringWithBrackets(names)}/${denominator.toStringWithBrackets(names)})" -// } -// -// fun toStringWithBrackets(namer: (Symbol) -> String): String = -// when (true) { -// numerator.isZero() -> "0" -// denominator.isOne() -> numerator.toStringWithBrackets(namer) -// else -> "(${numerator.toStringWithBrackets(namer)}/${denominator.toStringWithBrackets(namer)})" -// } -// -// fun toReversedString(names: Map = emptyMap()): String = -// when (true) { -// numerator.isZero() -> "0" -// denominator.isOne() -> numerator.toReversedString(names) -// else -> "${numerator.toReversedStringWithBrackets(names)}/${denominator.toReversedStringWithBrackets(names)}" -// } -// -// fun toReversedString(namer: (Symbol) -> String): String = -// when (true) { -// numerator.isZero() -> "0" -// denominator.isOne() -> numerator.toReversedString(namer) -// else -> "${numerator.toReversedStringWithBrackets(namer)}/${denominator.toReversedStringWithBrackets(namer)}" -// } -// -// fun toReversedStringWithBrackets(names: Map = emptyMap()): String = -// when (true) { -// numerator.isZero() -> "0" -// denominator.isOne() -> numerator.toReversedStringWithBrackets(names) -// else -> "(${numerator.toReversedStringWithBrackets(names)}/${denominator.toReversedStringWithBrackets(names)})" -// } -// -// fun toReversedStringWithBrackets(namer: (Symbol) -> String): String = -// when (true) { -// numerator.isZero() -> "0" -// denominator.isOne() -> numerator.toReversedStringWithBrackets(namer) -// else -> "(${numerator.toReversedStringWithBrackets(namer)}/${denominator.toReversedStringWithBrackets(namer)})" -// } -} \ No newline at end of file diff --git a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/ListPolynomial.kt b/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/ListPolynomial.kt index 585da95ea..fce179fc8 100644 --- a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/ListPolynomial.kt +++ b/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/ListPolynomial.kt @@ -8,23 +8,19 @@ package space.kscience.kmath.functions import space.kscience.kmath.operations.Ring import space.kscience.kmath.operations.ScaleOperations import space.kscience.kmath.operations.invoke -import kotlin.contracts.InvocationKind -import kotlin.contracts.contract -import kotlin.experimental.ExperimentalTypeInference -import kotlin.jvm.JvmName import kotlin.math.max import kotlin.math.min /** - * Polynomial model without fixation on specific context they are applied to. + * Represents univariate polynomial that stores its coefficients in a [List]. * * @param coefficients constant is the leftmost coefficient. */ public data class ListPolynomial( /** - * List that collects coefficients of the polynomial. Every monomial `a x^d` is represented as a coefficients - * `a` placed into the list with index `d`. For example coefficients of polynomial `5 x^2 - 6` can be represented as + * List that contains coefficients of the polynomial. Every monomial `a x^d` is stored as a coefficient `a` placed + * into the list at index `d`. For example, coefficients of a polynomial `5 x^2 - 6` can be represented as * ``` * listOf( * -6, // -6 + @@ -42,26 +38,28 @@ public data class ListPolynomial( * 0, // 0 x^4 * ) * ``` - * It is recommended not to put extra zeros at end of the list (as for `0x^3` and `0x^4` in the example), but is not - * prohibited. + * It is not prohibited to put extra zeros at end of the list (as for `0x^3` and `0x^4` in the example). But the + * longer the coefficients list the worse performance of arithmetical operations performed on it. Thus, it is + * recommended not to put (or even to remove) extra (or useless) coefficients at the end of the coefficients list. */ public val coefficients: List ) : Polynomial { - override fun toString(): String = "Polynomial$coefficients" + override fun toString(): String = "ListPolynomial$coefficients" } /** - * Space of univariate polynomials constructed over ring. + * Arithmetic context for univariate polynomials with coefficients stored as a [List] constructed with the given [ring] + * of constants. * - * @param C the type of constants. Polynomials have them as a coefficients in their terms. - * @param A type of underlying ring of constants. It's [Ring] of [C]. + * @param C the type of constants. Polynomials have them a coefficients in their terms. + * @param A type of provided underlying ring of constants. It's [Ring] of [C]. * @param ring underlying ring of constants of type [A]. */ public open class ListPolynomialSpace>( public override val ring: A, ) : PolynomialSpaceOverRing, A> { /** - * Returns sum of the polynomial and the integer represented as polynomial. + * Returns sum of the polynomial and the integer represented as a polynomial. * * The operation is equivalent to adding [other] copies of unit polynomial to [this]. */ @@ -79,7 +77,7 @@ public open class ListPolynomialSpace>( } ) /** - * Returns difference between the polynomial and the integer represented as polynomial. + * Returns difference between the polynomial and the integer represented as a polynomial. * * The operation is equivalent to subtraction [other] copies of unit polynomial from [this]. */ @@ -97,7 +95,7 @@ public open class ListPolynomialSpace>( } ) /** - * Returns product of the polynomial and the integer represented as polynomial. + * Returns product of the polynomial and the integer represented as a polynomial. * * The operation is equivalent to sum of [other] copies of [this]. */ @@ -112,7 +110,7 @@ public open class ListPolynomialSpace>( ) /** - * Returns sum of the integer represented as polynomial and the polynomial. + * Returns sum of the integer represented as a polynomial and the polynomial. * * The operation is equivalent to adding [this] copies of unit polynomial to [other]. */ @@ -130,7 +128,7 @@ public open class ListPolynomialSpace>( } ) /** - * Returns difference between the integer represented as polynomial and the polynomial. + * Returns difference between the integer represented as a polynomial and the polynomial. * * The operation is equivalent to subtraction [this] copies of unit polynomial from [other]. */ @@ -150,7 +148,7 @@ public open class ListPolynomialSpace>( } ) /** - * Returns product of the integer represented as polynomial and the polynomial. + * Returns product of the integer represented as a polynomial and the polynomial. * * The operation is equivalent to sum of [this] copies of [other]. */ @@ -170,7 +168,7 @@ public open class ListPolynomialSpace>( public override fun number(value: Int): ListPolynomial = number(constantNumber(value)) /** - * Returns sum of the constant represented as polynomial and the polynomial. + * Returns sum of the constant represented as a polynomial and the polynomial. */ public override operator fun C.plus(other: ListPolynomial): ListPolynomial = with(other.coefficients) { @@ -186,7 +184,7 @@ public open class ListPolynomialSpace>( ) } /** - * Returns difference between the constant represented as polynomial and the polynomial. + * Returns difference between the constant represented as a polynomial and the polynomial. */ public override operator fun C.minus(other: ListPolynomial): ListPolynomial = with(other.coefficients) { @@ -204,7 +202,7 @@ public open class ListPolynomialSpace>( ) } /** - * Returns product of the constant represented as polynomial and the polynomial. + * Returns product of the constant represented as a polynomial and the polynomial. */ public override operator fun C.times(other: ListPolynomial): ListPolynomial = ListPolynomial( @@ -216,7 +214,7 @@ public open class ListPolynomialSpace>( ) /** - * Returns sum of the constant represented as polynomial and the polynomial. + * Returns sum of the constant represented as a polynomial and the polynomial. */ public override operator fun ListPolynomial.plus(other: C): ListPolynomial = with(coefficients) { @@ -232,7 +230,7 @@ public open class ListPolynomialSpace>( ) } /** - * Returns difference between the constant represented as polynomial and the polynomial. + * Returns difference between the constant represented as a polynomial and the polynomial. */ public override operator fun ListPolynomial.minus(other: C): ListPolynomial = with(coefficients) { @@ -248,7 +246,7 @@ public open class ListPolynomialSpace>( ) } /** - * Returns product of the constant represented as polynomial and the polynomial. + * Returns product of the constant represented as a polynomial and the polynomial. */ public override operator fun ListPolynomial.times(other: C): ListPolynomial = ListPolynomial( @@ -262,7 +260,7 @@ public open class ListPolynomialSpace>( /** * Converts the constant [value] to polynomial. */ - public override fun number(value: C): ListPolynomial = ListPolynomial(value) + public override fun number(value: C): ListPolynomial = ListPolynomial(listOf(value)) /** * Returns negation of the polynomial. @@ -321,9 +319,9 @@ public open class ListPolynomialSpace>( */ override val zero: ListPolynomial = ListPolynomial(emptyList()) /** - * Instance of unit constant (unit of the underlying ring). + * Instance of unit polynomial (unit of the polynomial ring). */ - override val one: ListPolynomial = ListPolynomial(listOf(constantOne)) + override val one: ListPolynomial by lazy { ListPolynomial(listOf(constantOne)) } /** * Degree of the polynomial, [see also](https://en.wikipedia.org/wiki/Degree_of_a_polynomial). If the polynomial is @@ -331,23 +329,43 @@ public open class ListPolynomialSpace>( */ public override val ListPolynomial.degree: Int get() = coefficients.lastIndex + // TODO: When context receivers will be ready move all of this substitutions and invocations to utilities with + // [ListPolynomialSpace] as a context receiver + /** + * Evaluates value of [this] polynomial on provided argument. + */ @Suppress("NOTHING_TO_INLINE") public inline fun ListPolynomial.substitute(argument: C): C = this.substitute(ring, argument) + /** + * Substitutes provided polynomial [argument] into [this] polynomial. + */ @Suppress("NOTHING_TO_INLINE") public inline fun ListPolynomial.substitute(argument: ListPolynomial): ListPolynomial = this.substitute(ring, argument) + /** + * Represent [this] polynomial as a regular context-less function. + */ @Suppress("NOTHING_TO_INLINE") public inline fun ListPolynomial.asFunction(): (C) -> C = { this.substitute(ring, it) } + /** + * Represent [this] polynomial as a regular context-less function. + */ @Suppress("NOTHING_TO_INLINE") - public inline fun ListPolynomial.asFunctionOnConstants(): (C) -> C = { this.substitute(ring, it) } + public inline fun ListPolynomial.asFunctionOfConstant(): (C) -> C = { this.substitute(ring, it) } + /** + * Represent [this] polynomial as a regular context-less function. + */ @Suppress("NOTHING_TO_INLINE") - public inline fun ListPolynomial.asFunctionOnPolynomials(): (ListPolynomial) -> ListPolynomial = { this.substitute(ring, it) } + public inline fun ListPolynomial.asFunctionOfPolynomial(): (ListPolynomial) -> ListPolynomial = { this.substitute(ring, it) } /** - * Evaluates the polynomial for the given value [argument]. + * Evaluates value of [this] polynomial on provided [argument]. */ @Suppress("NOTHING_TO_INLINE") public inline operator fun ListPolynomial.invoke(argument: C): C = this.substitute(ring, argument) + /** + * Evaluates value of [this] polynomial on provided [argument]. + */ @Suppress("NOTHING_TO_INLINE") public inline operator fun ListPolynomial.invoke(argument: ListPolynomial): ListPolynomial = this.substitute(ring, argument) } diff --git a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/ListRationalFunction.kt b/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/ListRationalFunction.kt index 7b6c23ac3..f3e352bcd 100644 --- a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/ListRationalFunction.kt +++ b/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/ListRationalFunction.kt @@ -8,13 +8,23 @@ package space.kscience.kmath.functions import space.kscience.kmath.operations.Ring +/** + * Represents rational function that stores its numerator and denominator as [ListPolynomial]s. + */ public data class ListRationalFunction( public override val numerator: ListPolynomial, public override val denominator: ListPolynomial ) : RationalFunction> { - override fun toString(): String = "RationalFunction${numerator.coefficients}/${denominator.coefficients}" + override fun toString(): String = "ListRationalFunction${numerator.coefficients}/${denominator.coefficients}" } +/** + * Arithmetic context for univariate rational functions with numerator and denominator represented as [ListPolynomial]s. + * + * @param C the type of constants. Polynomials have them a coefficients in their terms. + * @param A type of provided underlying ring of constants. It's [Ring] of [C]. + * @param ring underlying ring of constants of type [A]. + */ public class ListRationalFunctionSpace> ( public val ring: A, ) : @@ -30,76 +40,98 @@ public class ListRationalFunctionSpace> ( ListRationalFunction, >() { + /** + * Underlying polynomial ring. Its polynomial operations are inherited by local polynomial operations. + */ override val polynomialRing : ListPolynomialSpace = ListPolynomialSpace(ring) + /** + * Constructor of [ListRationalFunction] from numerator and denominator [ListPolynomial]. + */ override fun constructRationalFunction(numerator: ListPolynomial, denominator: ListPolynomial): ListRationalFunction = ListRationalFunction(numerator, denominator) + // TODO: When context receivers will be ready move all of this substitutions and invocations to utilities with + // [ListPolynomialSpace] as a context receiver /** - * Instance of zero rational function (zero of the rational functions ring). + * Evaluates value of [this] polynomial on provided argument. */ - public override val zero: ListRationalFunction = ListRationalFunction(polynomialZero, polynomialOne) + @Suppress("NOTHING_TO_INLINE") + public inline fun ListPolynomial.substitute(argument: C): C = this.substitute(ring, argument) /** - * Instance of unit polynomial (unit of the rational functions ring). + * Substitutes provided polynomial [argument] into [this] polynomial. */ - public override val one: ListRationalFunction = ListRationalFunction(polynomialOne, polynomialOne) + @Suppress("NOTHING_TO_INLINE") + public inline fun ListPolynomial.substitute(argument: ListPolynomial): ListPolynomial = this.substitute(ring, argument) + /** + * Substitutes provided rational function [argument] into [this] polynomial. + */ + @Suppress("NOTHING_TO_INLINE") + public inline fun ListPolynomial.substitute(argument: ListRationalFunction): ListRationalFunction = this.substitute(ring, argument) + /** + * Substitutes provided polynomial [argument] into [this] rational function. + */ + @Suppress("NOTHING_TO_INLINE") + public inline fun ListRationalFunction.substitute(argument: ListPolynomial): ListRationalFunction = this.substitute(ring, argument) + /** + * Substitutes provided rational function [argument] into [this] rational function. + */ + @Suppress("NOTHING_TO_INLINE") + public inline fun ListRationalFunction.substitute(argument: ListRationalFunction): ListRationalFunction = this.substitute(ring, argument) - // TODO: Разобрать + /** + * Represent [this] polynomial as a regular context-less function. + */ + @Suppress("NOTHING_TO_INLINE") + public inline fun ListPolynomial.asFunction(): (C) -> C = { this.substitute(ring, it) } + /** + * Represent [this] polynomial as a regular context-less function. + */ + @Suppress("NOTHING_TO_INLINE") + public inline fun ListPolynomial.asFunctionOfConstant(): (C) -> C = { this.substitute(ring, it) } + /** + * Represent [this] polynomial as a regular context-less function. + */ + @Suppress("NOTHING_TO_INLINE") + public inline fun ListPolynomial.asFunctionOfPolynomial(): (ListPolynomial) -> ListPolynomial = { this.substitute(ring, it) } + /** + * Represent [this] polynomial as a regular context-less function. + */ + @Suppress("NOTHING_TO_INLINE") + public inline fun ListPolynomial.asFunctionOfRationalFunction(): (ListRationalFunction) -> ListRationalFunction = { this.substitute(ring, it) } + /** + * Represent [this] rational function as a regular context-less function. + */ + @Suppress("NOTHING_TO_INLINE") + public inline fun ListRationalFunction.asFunctionOfPolynomial(): (ListPolynomial) -> ListRationalFunction = { this.substitute(ring, it) } + /** + * Represent [this] rational function as a regular context-less function. + */ + @Suppress("NOTHING_TO_INLINE") + public inline fun ListRationalFunction.asFunctionOfRationalFunction(): (ListRationalFunction) -> ListRationalFunction = { this.substitute(ring, it) } -// operator fun invoke(arg: UnivariatePolynomial): RationalFunction = -// RationalFunction( -// numerator(arg), -// denominator(arg) -// ) -// -// operator fun invoke(arg: RationalFunction): RationalFunction { -// val num = numerator invokeRFTakeNumerator arg -// val den = denominator invokeRFTakeNumerator arg -// val degreeDif = numeratorDegree - denominatorDegree -// return if (degreeDif > 0) -// RationalFunction( -// num, -// multiplyByPower(den, arg.denominator, degreeDif) -// ) -// else -// RationalFunction( -// multiplyByPower(num, arg.denominator, -degreeDif), -// den -// ) -// } -// -// override fun toString(): String = toString(UnivariatePolynomial.variableName) -// -// fun toString(withVariableName: String = UnivariatePolynomial.variableName): String = -// when(true) { -// numerator.isZero() -> "0" -// denominator.isOne() -> numerator.toString(withVariableName) -// else -> "${numerator.toStringWithBrackets(withVariableName)}/${denominator.toStringWithBrackets(withVariableName)}" -// } -// -// fun toStringWithBrackets(withVariableName: String = UnivariatePolynomial.variableName): String = -// when(true) { -// numerator.isZero() -> "0" -// denominator.isOne() -> numerator.toStringWithBrackets(withVariableName) -// else -> "(${numerator.toStringWithBrackets(withVariableName)}/${denominator.toStringWithBrackets(withVariableName)})" -// } -// -// fun toReversedString(withVariableName: String = UnivariatePolynomial.variableName): String = -// when(true) { -// numerator.isZero() -> "0" -// denominator.isOne() -> numerator.toReversedString(withVariableName) -// else -> "${numerator.toReversedStringWithBrackets(withVariableName)}/${denominator.toReversedStringWithBrackets(withVariableName)}" -// } -// -// fun toReversedStringWithBrackets(withVariableName: String = UnivariatePolynomial.variableName): String = -// when(true) { -// numerator.isZero() -> "0" -// denominator.isOne() -> numerator.toReversedStringWithBrackets(withVariableName) -// else -> "(${numerator.toReversedStringWithBrackets(withVariableName)}/${denominator.toReversedStringWithBrackets(withVariableName)})" -// } -// -// fun removeZeros() = -// RationalFunction( -// numerator.removeZeros(), -// denominator.removeZeros() -// ) + /** + * Evaluates value of [this] polynomial on provided argument. + */ + @Suppress("NOTHING_TO_INLINE") + public inline operator fun ListPolynomial.invoke(argument: C): C = this.substitute(ring, argument) + /** + * Evaluates value of [this] polynomial on provided argument. + */ + @Suppress("NOTHING_TO_INLINE") + public inline operator fun ListPolynomial.invoke(argument: ListPolynomial): ListPolynomial = this.substitute(ring, argument) + /** + * Evaluates value of [this] polynomial on provided argument. + */ + @Suppress("NOTHING_TO_INLINE") + public inline operator fun ListPolynomial.invoke(argument: ListRationalFunction): ListRationalFunction = this.substitute(ring, argument) + /** + * Evaluates value of [this] rational function on provided argument. + */ + @Suppress("NOTHING_TO_INLINE") + public inline operator fun ListRationalFunction.invoke(argument: ListPolynomial): ListRationalFunction = this.substitute(ring, argument) + /** + * Evaluates value of [this] rational function on provided argument. + */ + @Suppress("NOTHING_TO_INLINE") + public inline operator fun ListRationalFunction.invoke(argument: ListRationalFunction): ListRationalFunction = this.substitute(ring, argument) } \ No newline at end of file diff --git a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/NumberedPolynomial.kt b/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/NumberedPolynomial.kt deleted file mode 100644 index e75373819..000000000 --- a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/NumberedPolynomial.kt +++ /dev/null @@ -1,389 +0,0 @@ -/* - * Copyright 2018-2021 KMath contributors. - * Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file. - */ - -package space.kscience.kmath.functions - -import space.kscience.kmath.operations.invoke -import space.kscience.kmath.operations.Ring -import space.kscience.kmath.operations.ScaleOperations -import kotlin.contracts.InvocationKind -import kotlin.contracts.contract -import kotlin.experimental.ExperimentalTypeInference -import kotlin.jvm.JvmName -import kotlin.math.max - - -/** - * Polynomial model without fixation on specific context they are applied to. - * - * @param C the type of constants. - */ -public data class NumberedPolynomial -internal constructor( - /** - * Map that collects coefficients of the polynomial. Every monomial `a x_1^{d_1} ... x_n^{d_n}` is represented as - * pair "key-value" in the map, where value is coefficients `a` and - * key is list that associates index of every variable in the monomial with multiplicity of the variable occurring - * in the monomial. For example coefficients of polynomial `5 x_1^2 x_3^3 - 6 x_2` can be represented as - * ``` - * mapOf( - * listOf(2, 0, 3) to 5, - * listOf(0, 1) to (-6), - * ) - * ``` - * and also as - * ``` - * mapOf( - * listOf(2, 0, 3) to 5, - * listOf(0, 1) to (-6), - * listOf(0, 1, 1) to 0, - * ) - * ``` - * It is recommended not to put zero monomials into the map, but is not prohibited. Lists of degrees always do not - * contain any zeros on end, but can contain zeros on start or anywhere in middle. - */ - public val coefficients: Map, C> -) : Polynomial { - override fun toString(): String = "NumberedPolynomial$coefficients" -} - -/** - * Space of polynomials. - * - * @param C the type of operated polynomials. - * @param A the intersection of [Ring] of [C] and [ScaleOperations] of [C]. - * @param ring the [A] instance. - */ -public open class NumberedPolynomialSpace>( - public final override val ring: A, -) : PolynomialSpaceOverRing, A> { - /** - * Returns sum of the polynomial and the integer represented as polynomial. - * - * The operation is equivalent to adding [other] copies of unit polynomial to [this]. - */ - public override operator fun NumberedPolynomial.plus(other: Int): NumberedPolynomial = - if (other == 0) this - else - NumberedPolynomial( - coefficients - .toMutableMap() - .apply { - val degs = emptyList() - - this[degs] = getOrElse(degs) { constantZero } + other - } - ) - /** - * Returns difference between the polynomial and the integer represented as polynomial. - * - * The operation is equivalent to subtraction [other] copies of unit polynomial from [this]. - */ - public override operator fun NumberedPolynomial.minus(other: Int): NumberedPolynomial = - if (other == 0) this - else - NumberedPolynomial( - coefficients - .toMutableMap() - .apply { - val degs = emptyList() - - this[degs] = getOrElse(degs) { constantZero } - other - } - ) - /** - * Returns product of the polynomial and the integer represented as polynomial. - * - * The operation is equivalent to sum of [other] copies of [this]. - */ - public override operator fun NumberedPolynomial.times(other: Int): NumberedPolynomial = - if (other == 0) zero - else NumberedPolynomial( - coefficients - .toMutableMap() - .apply { - for (degs in keys) this[degs] = this[degs]!! * other - } - ) - - /** - * Returns sum of the integer represented as polynomial and the polynomial. - * - * The operation is equivalent to adding [this] copies of unit polynomial to [other]. - */ - public override operator fun Int.plus(other: NumberedPolynomial): NumberedPolynomial = - if (this == 0) other - else - NumberedPolynomial( - other.coefficients - .toMutableMap() - .apply { - val degs = emptyList() - - this[degs] = this@plus + getOrElse(degs) { constantZero } - } - ) - /** - * Returns difference between the integer represented as polynomial and the polynomial. - * - * The operation is equivalent to subtraction [this] copies of unit polynomial from [other]. - */ - public override operator fun Int.minus(other: NumberedPolynomial): NumberedPolynomial = - if (this == 0) other - else - NumberedPolynomial( - other.coefficients - .toMutableMap() - .apply { - val degs = emptyList() - - this[degs] = this@minus - getOrElse(degs) { constantZero } - } - ) - /** - * Returns product of the integer represented as polynomial and the polynomial. - * - * The operation is equivalent to sum of [this] copies of [other]. - */ - public override operator fun Int.times(other: NumberedPolynomial): NumberedPolynomial = - if (this == 0) zero - else NumberedPolynomial( - other.coefficients - .toMutableMap() - .apply { - for (degs in keys) this[degs] = this@times * this[degs]!! - } - ) - - /** - * Converts the integer [value] to polynomial. - */ - public override fun number(value: Int): NumberedPolynomial = number(constantNumber(value)) - - /** - * Returns sum of the constant represented as polynomial and the polynomial. - */ - override operator fun C.plus(other: NumberedPolynomial): NumberedPolynomial = - with(other.coefficients) { - if (isEmpty()) NumberedPolynomial(mapOf(emptyList() to this@plus)) - else NumberedPolynomial( - toMutableMap() - .apply { - val degs = emptyList() - - this[degs] = this@plus + getOrElse(degs) { constantZero } - } - ) - } - /** - * Returns difference between the constant represented as polynomial and the polynomial. - */ - override operator fun C.minus(other: NumberedPolynomial): NumberedPolynomial = - with(other.coefficients) { - if (isEmpty()) NumberedPolynomial(mapOf(emptyList() to this@minus)) - else NumberedPolynomial( - toMutableMap() - .apply { - forEach { (degs, c) -> if(degs.isNotEmpty()) this[degs] = -c } - - val degs = emptyList() - - this[degs] = this@minus - getOrElse(degs) { constantZero } - } - ) - } - /** - * Returns product of the constant represented as polynomial and the polynomial. - */ - override operator fun C.times(other: NumberedPolynomial): NumberedPolynomial = - NumberedPolynomial( - other.coefficients - .toMutableMap() - .apply { - for (degs in keys) this[degs] = this@times * this[degs]!! - } - ) - - /** - * Returns sum of the constant represented as polynomial and the polynomial. - */ - override operator fun NumberedPolynomial.plus(other: C): NumberedPolynomial = - with(coefficients) { - if (isEmpty()) NumberedPolynomial(mapOf(emptyList() to other)) - else NumberedPolynomial( - toMutableMap() - .apply { - val degs = emptyList() - - this[degs] = getOrElse(degs) { constantZero } + other - } - ) - } - /** - * Returns difference between the constant represented as polynomial and the polynomial. - */ - override operator fun NumberedPolynomial.minus(other: C): NumberedPolynomial = - with(coefficients) { - if (isEmpty()) NumberedPolynomial(mapOf(emptyList() to other)) - else NumberedPolynomial( - toMutableMap() - .apply { - val degs = emptyList() - - this[degs] = getOrElse(degs) { constantZero } - other - } - ) - } - /** - * Returns product of the constant represented as polynomial and the polynomial. - */ - override operator fun NumberedPolynomial.times(other: C): NumberedPolynomial = - NumberedPolynomial( - coefficients - .toMutableMap() - .apply { - for (degs in keys) this[degs] = this[degs]!! * other - } - ) - - /** - * Converts the constant [value] to polynomial. - */ - public override fun number(value: C): NumberedPolynomial = - NumberedPolynomial(mapOf(emptyList() to value)) - - /** - * Returns negation of the polynomial. - */ - override fun NumberedPolynomial.unaryMinus(): NumberedPolynomial = - NumberedPolynomial( - coefficients.mapValues { -it.value } - ) - /** - * Returns sum of the polynomials. - */ - override operator fun NumberedPolynomial.plus(other: NumberedPolynomial): NumberedPolynomial = - NumberedPolynomial( - buildMap(coefficients.size + other.coefficients.size) { - other.coefficients.mapValuesTo(this) { it.value } - other.coefficients.mapValuesTo(this) { (key, value) -> if (key in this) this[key]!! + value else value } - } - ) - /** - * Returns difference of the polynomials. - */ - override operator fun NumberedPolynomial.minus(other: NumberedPolynomial): NumberedPolynomial = - NumberedPolynomial( - buildMap(coefficients.size + other.coefficients.size) { - other.coefficients.mapValuesTo(this) { it.value } - other.coefficients.mapValuesTo(this) { (key, value) -> if (key in this) this[key]!! - value else -value } - } - ) - /** - * Returns product of the polynomials. - */ - override operator fun NumberedPolynomial.times(other: NumberedPolynomial): NumberedPolynomial = - NumberedPolynomial( - buildMap(coefficients.size * other.coefficients.size) { - for ((degs1, c1) in coefficients) for ((degs2, c2) in other.coefficients) { - val degs = - (0..max(degs1.lastIndex, degs2.lastIndex)) - .map { degs1.getOrElse(it) { 0U } + degs2.getOrElse(it) { 0U } } - val c = c1 * c2 - this[degs] = if (degs in this) this[degs]!! + c else c - } - } - ) - - /** - * Instance of zero polynomial (zero of the polynomial ring). - */ - override val zero: NumberedPolynomial = NumberedPolynomial(emptyMap()) - /** - * Instance of unit polynomial (unit of the polynomial ring). - */ - override val one: NumberedPolynomial = - NumberedPolynomial( - mapOf( - emptyList() to constantOne // 1 * x_1^0 * x_2^0 * ... - ) - ) - - /** - * Maximal index (ID) of variable occurring in the polynomial with positive power. If there is no such variable, - * the result is `-1`. - */ - public val NumberedPolynomial.lastVariable: Int - get() = coefficients.entries.maxOfOrNull { (degs, _) -> degs.lastIndex } ?: -1 - /** - * Degree of the polynomial, [see also](https://en.wikipedia.org/wiki/Degree_of_a_polynomial). If the polynomial is - * zero, degree is -1. - */ - override val NumberedPolynomial.degree: Int - get() = coefficients.entries.maxOfOrNull { (degs, _) -> degs.sum().toInt() } ?: -1 - /** - * List that associates indices of variables (that appear in the polynomial in positive exponents) with their most - * exponents in which the variables are appeared in the polynomial. - * - * As consequence all values in the list are non-negative integers. Also, if the polynomial is constant, the list is empty. - * And last index of the list is [lastVariable]. - */ - public val NumberedPolynomial.degrees: List - get() = - MutableList(lastVariable + 1) { 0u }.apply { - coefficients.entries.forEach { (degs, _) -> - degs.forEachIndexed { index, deg -> - this[index] = max(this[index], deg) - } - } - } - /** - * Counts degree of the polynomial by the specified [variable]. - */ - public fun NumberedPolynomial.degreeBy(variable: Int): UInt = - coefficients.entries.maxOfOrNull { (degs, _) -> degs.getOrElse(variable) { 0u } } ?: 0u - /** - * Counts degree of the polynomial by the specified [variables]. - */ - public fun NumberedPolynomial.degreeBy(variables: Collection): UInt = - coefficients.entries.maxOfOrNull { (degs, _) -> - degs.withIndex().filter { (index, _) -> index in variables }.sumOf { it.value } - } ?: 0u - /** - * Count of variables occurring in the polynomial with positive power. If there is no such variable, - * the result is `0`. - */ - public val NumberedPolynomial.countOfVariables: Int - get() = - MutableList(lastVariable + 1) { false }.apply { - coefficients.entries.forEach { (degs, _) -> - degs.forEachIndexed { index, deg -> - if (deg != 0u) this[index] = true - } - } - }.count { it } - - @Suppress("NOTHING_TO_INLINE") - public inline fun NumberedPolynomial.substitute(argument: Map): NumberedPolynomial = this.substitute(ring, argument) - @Suppress("NOTHING_TO_INLINE") - @JvmName("substitutePolynomial") - public inline fun NumberedPolynomial.substitute(argument: Map>): NumberedPolynomial = this.substitute(ring, argument) - - @Suppress("NOTHING_TO_INLINE") - public inline fun NumberedPolynomial.asFunction(): (Map) -> NumberedPolynomial = { this.substitute(ring, it) } - @Suppress("NOTHING_TO_INLINE") - public inline fun NumberedPolynomial.asFunctionOnConstants(): (Map) -> NumberedPolynomial = { this.substitute(ring, it) } - @Suppress("NOTHING_TO_INLINE") - public inline fun NumberedPolynomial.asFunctionOnPolynomials(): (Map>) -> NumberedPolynomial = { this.substitute(ring, it) } - - @Suppress("NOTHING_TO_INLINE") - public inline operator fun NumberedPolynomial.invoke(argument: Map): NumberedPolynomial = this.substitute(ring, argument) - @Suppress("NOTHING_TO_INLINE") - @JvmName("invokePolynomial") - public inline operator fun NumberedPolynomial.invoke(argument: Map>): NumberedPolynomial = this.substitute(ring, argument) - - // FIXME: Move to other constructors with context receiver - public fun C.asNumberedPolynomial() : NumberedPolynomial = NumberedPolynomial(mapOf(emptyList() to this)) -} \ No newline at end of file diff --git a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/NumberedRationalFunction.kt b/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/NumberedRationalFunction.kt deleted file mode 100644 index 30c7f0188..000000000 --- a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/NumberedRationalFunction.kt +++ /dev/null @@ -1,188 +0,0 @@ -/* - * Copyright 2018-2021 KMath contributors. - * Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file. - */ - -package space.kscience.kmath.functions - -import space.kscience.kmath.operations.Ring -import space.kscience.kmath.operations.invoke -import kotlin.math.max - - -public class NumberedRationalFunction internal constructor( - public override val numerator: NumberedPolynomial, - public override val denominator: NumberedPolynomial -) : RationalFunction> { - override fun toString(): String = "NumberedRationalFunction${numerator.coefficients}/${denominator.coefficients}" -} - -public class NumberedRationalFunctionSpace> ( - public val ring: A, -) : - RationalFunctionalSpaceOverPolynomialSpace< - C, - NumberedPolynomial, - NumberedRationalFunction, - NumberedPolynomialSpace, - >, - PolynomialSpaceOfFractions< - C, - NumberedPolynomial, - NumberedRationalFunction, - >() { - - override val polynomialRing : NumberedPolynomialSpace = NumberedPolynomialSpace(ring) - override fun constructRationalFunction( - numerator: NumberedPolynomial, - denominator: NumberedPolynomial - ): NumberedRationalFunction = - NumberedRationalFunction(numerator, denominator) - - /** - * Instance of zero rational function (zero of the rational functions ring). - */ - public override val zero: NumberedRationalFunction = NumberedRationalFunction(polynomialZero, polynomialOne) - /** - * Instance of unit polynomial (unit of the rational functions ring). - */ - public override val one: NumberedRationalFunction = NumberedRationalFunction(polynomialOne, polynomialOne) - - /** - * Maximal index (ID) of variable occurring in the polynomial with positive power. If there is no such variable, - * the result is `-1`. - */ - public val NumberedPolynomial.lastVariable: Int get() = polynomialRing { lastVariable } - /** - * List that associates indices of variables (that appear in the polynomial in positive exponents) with their most - * exponents in which the variables are appeared in the polynomial. - * - * As consequence all values in the list are non-negative integers. Also, if the polynomial is constant, the list is empty. - * And last index of the list is [lastVariable]. - */ - public val NumberedPolynomial.degrees: List get() = polynomialRing { degrees } - /** - * Counts degree of the polynomial by the specified [variable]. - */ - public fun NumberedPolynomial.degreeBy(variable: Int): UInt = polynomialRing { degreeBy(variable) } - /** - * Counts degree of the polynomial by the specified [variables]. - */ - public fun NumberedPolynomial.degreeBy(variables: Collection): UInt = polynomialRing { degreeBy(variables) } - /** - * Count of variables occurring in the polynomial with positive power. If there is no such variable, - * the result is `0`. - */ - public val NumberedPolynomial.countOfVariables: Int get() = polynomialRing { countOfVariables } - - /** - * Count of all variables that appear in the polynomial in positive exponents. - */ - public val NumberedRationalFunction.lastVariable: Int - get() = polynomialRing { max(numerator.lastVariable, denominator.lastVariable) } - /** - * Count of variables occurring in the rational function with positive power. If there is no such variable, - * the result is `0`. - */ - public val NumberedRationalFunction.countOfVariables: Int - get() = - MutableList(lastVariable + 1) { false }.apply { - numerator.coefficients.entries.forEach { (degs, _) -> - degs.forEachIndexed { index, deg -> - if (deg != 0u) this[index] = true - } - } - denominator.coefficients.entries.forEach { (degs, _) -> - degs.forEachIndexed { index, deg -> - if (deg != 0u) this[index] = true - } - } - }.count { it } - - // TODO: Разобрать - -// operator fun invoke(arg: Map): NumberedRationalFunction = -// NumberedRationalFunction( -// numerator(arg), -// denominator(arg) -// ) -// -// @JvmName("invokePolynomial") -// operator fun invoke(arg: Map>): NumberedRationalFunction = -// NumberedRationalFunction( -// numerator(arg), -// denominator(arg) -// ) -// -// @JvmName("invokeRationalFunction") -// operator fun invoke(arg: Map>): NumberedRationalFunction { -// var num = numerator invokeRFTakeNumerator arg -// var den = denominator invokeRFTakeNumerator arg -// for (variable in 0 until max(numerator.countOfVariables, denominator.countOfVariables)) if (variable in arg) { -// val degreeDif = numerator.degrees.getOrElse(variable) { 0 } - denominator.degrees.getOrElse(variable) { 0 } -// if (degreeDif > 0) -// den = multiplyByPower(den, arg[variable]!!.denominator, degreeDif) -// else -// num = multiplyByPower(num, arg[variable]!!.denominator, -degreeDif) -// } -// return NumberedRationalFunction(num, den) -// } -// -// override fun toString(): String = toString(Polynomial.variableName) -// -// fun toString(withVariableName: String = Polynomial.variableName): String = -// when(true) { -// numerator.isZero() -> "0" -// denominator.isOne() -> numerator.toString(withVariableName) -// else -> "${numerator.toStringWithBrackets(withVariableName)}/${denominator.toStringWithBrackets(withVariableName)}" -// } -// -// fun toString(namer: (Int) -> String): String = -// when(true) { -// numerator.isZero() -> "0" -// denominator.isOne() -> numerator.toString(namer) -// else -> "${numerator.toStringWithBrackets(namer)}/${denominator.toStringWithBrackets(namer)}" -// } -// -// fun toStringWithBrackets(withVariableName: String = Polynomial.variableName): String = -// when(true) { -// numerator.isZero() -> "0" -// denominator.isOne() -> numerator.toStringWithBrackets(withVariableName) -// else -> "(${numerator.toStringWithBrackets(withVariableName)}/${denominator.toStringWithBrackets(withVariableName)})" -// } -// -// fun toStringWithBrackets(namer: (Int) -> String): String = -// when(true) { -// numerator.isZero() -> "0" -// denominator.isOne() -> numerator.toStringWithBrackets(namer) -// else -> "(${numerator.toStringWithBrackets(namer)}/${denominator.toStringWithBrackets(namer)})" -// } -// -// fun toReversedString(withVariableName: String = Polynomial.variableName): String = -// when(true) { -// numerator.isZero() -> "0" -// denominator.isOne() -> numerator.toReversedString(withVariableName) -// else -> "${numerator.toReversedStringWithBrackets(withVariableName)}/${denominator.toReversedStringWithBrackets(withVariableName)}" -// } -// -// fun toReversedString(namer: (Int) -> String): String = -// when(true) { -// numerator.isZero() -> "0" -// denominator.isOne() -> numerator.toReversedString(namer) -// else -> "${numerator.toReversedStringWithBrackets(namer)}/${denominator.toReversedStringWithBrackets(namer)}" -// } -// -// fun toReversedStringWithBrackets(withVariableName: String = Polynomial.variableName): String = -// when(true) { -// numerator.isZero() -> "0" -// denominator.isOne() -> numerator.toReversedStringWithBrackets(withVariableName) -// else -> "(${numerator.toReversedStringWithBrackets(withVariableName)}/${denominator.toReversedStringWithBrackets(withVariableName)})" -// } -// -// fun toReversedStringWithBrackets(namer: (Int) -> String): String = -// when(true) { -// numerator.isZero() -> "0" -// denominator.isOne() -> numerator.toReversedStringWithBrackets(namer) -// else -> "(${numerator.toReversedStringWithBrackets(namer)}/${denominator.toReversedStringWithBrackets(namer)})" -// } -} \ No newline at end of file diff --git a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/Polynomial.kt b/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/Polynomial.kt index e201f1f6e..12490d133 100644 --- a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/Polynomial.kt +++ b/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/Polynomial.kt @@ -25,38 +25,38 @@ public interface Polynomial @Suppress("INAPPLICABLE_JVM_NAME", "PARAMETER_NAME_CHANGED_ON_OVERRIDE") // FIXME: Waiting for KT-31420 public interface PolynomialSpace> : Ring

{ /** - * Returns sum of the constant and the integer represented as constant (member of underlying ring). + * Returns sum of the constant and the integer represented as a constant (member of underlying ring). * * The operation is equivalent to adding [other] copies of unit of underlying ring to [this]. */ public operator fun C.plus(other: Int): C /** - * Returns difference between the constant and the integer represented as constant (member of underlying ring). + * Returns difference between the constant and the integer represented as a constant (member of underlying ring). * * The operation is equivalent to subtraction [other] copies of unit of underlying ring from [this]. */ public operator fun C.minus(other: Int): C /** - * Returns product of the constant and the integer represented as constant (member of underlying ring). + * Returns product of the constant and the integer represented as a constant (member of underlying ring). * * The operation is equivalent to sum of [other] copies of [this]. */ public operator fun C.times(other: Int): C /** - * Returns sum of the integer represented as constant (member of underlying ring) and the constant. + * Returns sum of the integer represented as a constant (member of underlying ring) and the constant. * * The operation is equivalent to adding [this] copies of unit of underlying ring to [other]. */ public operator fun Int.plus(other: C): C /** - * Returns difference between the integer represented as constant (member of underlying ring) and the constant. + * Returns difference between the integer represented as a constant (member of underlying ring) and the constant. * * The operation is equivalent to subtraction [this] copies of unit of underlying ring from [other]. */ public operator fun Int.minus(other: C): C /** - * Returns product of the integer represented as constant (member of underlying ring) and the constant. + * Returns product of the integer represented as a constant (member of underlying ring) and the constant. * * The operation is equivalent to sum of [this] copies of [other]. */ @@ -72,38 +72,38 @@ public interface PolynomialSpace> : Ring

{ public fun Int.asConstant(): C = constantNumber(this) /** - * Returns sum of the polynomial and the integer represented as polynomial. + * Returns sum of the polynomial and the integer represented as a polynomial. * * The operation is equivalent to adding [other] copies of unit polynomial to [this]. */ public operator fun P.plus(other: Int): P = addMultipliedByDoubling(this, one, other) /** - * Returns difference between the polynomial and the integer represented as polynomial. + * Returns difference between the polynomial and the integer represented as a polynomial. * * The operation is equivalent to subtraction [other] copies of unit polynomial from [this]. */ public operator fun P.minus(other: Int): P = addMultipliedByDoubling(this, one, -other) /** - * Returns product of the polynomial and the integer represented as polynomial. + * Returns product of the polynomial and the integer represented as a polynomial. * * The operation is equivalent to sum of [other] copies of [this]. */ public operator fun P.times(other: Int): P = multiplyByDoubling(this, other) /** - * Returns sum of the integer represented as polynomial and the polynomial. + * Returns sum of the integer represented as a polynomial and the polynomial. * * The operation is equivalent to adding [this] copies of unit polynomial to [other]. */ public operator fun Int.plus(other: P): P = addMultipliedByDoubling(other, one, this) /** - * Returns difference between the integer represented as polynomial and the polynomial. + * Returns difference between the integer represented as a polynomial and the polynomial. * * The operation is equivalent to subtraction [this] copies of unit polynomial from [other]. */ public operator fun Int.minus(other: P): P = addMultipliedByDoubling(-other, one, this) /** - * Returns product of the integer represented as polynomial and the polynomial. + * Returns product of the integer represented as a polynomial and the polynomial. * * The operation is equivalent to sum of [this] copies of [other]. */ @@ -165,28 +165,28 @@ public interface PolynomialSpace> : Ring

{ public val constantOne: C /** - * Returns sum of the constant represented as polynomial and the polynomial. + * Returns sum of the constant represented as a polynomial and the polynomial. */ public operator fun C.plus(other: P): P /** - * Returns difference between the constant represented as polynomial and the polynomial. + * Returns difference between the constant represented as a polynomial and the polynomial. */ public operator fun C.minus(other: P): P /** - * Returns product of the constant represented as polynomial and the polynomial. + * Returns product of the constant represented as a polynomial and the polynomial. */ public operator fun C.times(other: P): P /** - * Returns sum of the constant represented as polynomial and the polynomial. + * Returns sum of the constant represented as a polynomial and the polynomial. */ public operator fun P.plus(other: C): P /** - * Returns difference between the constant represented as polynomial and the polynomial. + * Returns difference between the constant represented as a polynomial and the polynomial. */ public operator fun P.minus(other: C): P /** - * Returns product of the constant represented as polynomial and the polynomial. + * Returns product of the constant represented as a polynomial and the polynomial. */ public operator fun P.times(other: C): P @@ -254,41 +254,44 @@ public interface PolynomialSpace> : Ring

{ @Suppress("INAPPLICABLE_JVM_NAME") // FIXME: Waiting for KT-31420 public interface PolynomialSpaceOverRing, A: Ring> : PolynomialSpace { + /** + * Underlying ring of constants. Its operations on constants are inherited by local operations on constants. + */ public val ring: A /** - * Returns sum of the constant and the integer represented as constant (member of underlying ring). + * Returns sum of the constant and the integer represented as a constant (member of underlying ring). * * The operation is equivalent to adding [other] copies of unit of underlying ring to [this]. */ public override operator fun C.plus(other: Int): C = ring { addMultipliedByDoubling(this@plus, one, other) } /** - * Returns difference between the constant and the integer represented as constant (member of underlying ring). + * Returns difference between the constant and the integer represented as a constant (member of underlying ring). * * The operation is equivalent to subtraction [other] copies of unit of underlying ring from [this]. */ public override operator fun C.minus(other: Int): C = ring { addMultipliedByDoubling(this@minus, one, -other) } /** - * Returns product of the constant and the integer represented as constant (member of underlying ring). + * Returns product of the constant and the integer represented as a constant (member of underlying ring). * * The operation is equivalent to sum of [other] copies of [this]. */ public override operator fun C.times(other: Int): C = ring { multiplyByDoubling(this@times, other) } /** - * Returns sum of the integer represented as constant (member of underlying ring) and the constant. + * Returns sum of the integer represented as a constant (member of underlying ring) and the constant. * * The operation is equivalent to adding [this] copies of unit of underlying ring to [other]. */ public override operator fun Int.plus(other: C): C = ring { addMultipliedByDoubling(other, one, this@plus) } /** - * Returns difference between the integer represented as constant (member of underlying ring) and the constant. + * Returns difference between the integer represented as a constant (member of underlying ring) and the constant. * * The operation is equivalent to subtraction [this] copies of unit of underlying ring from [other]. */ public override operator fun Int.minus(other: C): C = ring { addMultipliedByDoubling(-other, one, this@minus) } /** - * Returns product of the integer represented as constant (member of underlying ring) and the constant. + * Returns product of the integer represented as a constant (member of underlying ring) and the constant. * * The operation is equivalent to sum of [this] copies of [other]. */ @@ -330,58 +333,145 @@ public interface PolynomialSpaceOverRing, A: Ring> : Poly public override val constantOne: C get() = ring.one } +/** + * Abstraction of ring of polynomials of type [P] of variables of type [V] and over ring of constants of type [C]. + * + * @param C the type of constants. Polynomials have them as coefficients in their terms. + * @param V the type of variables. Polynomials have them in representations of terms. + * @param P the type of polynomials. + */ @Suppress("INAPPLICABLE_JVM_NAME") // FIXME: Waiting for KT-31420 public interface MultivariatePolynomialSpace>: PolynomialSpace { + /** + * Returns sum of the variable represented as a monic monomial and the integer represented as a constant polynomial. + */ @JvmName("plusVariableInt") public operator fun V.plus(other: Int): P + /** + * Returns difference between the variable represented as a monic monomial and the integer represented as a constant polynomial. + */ @JvmName("minusVariableInt") public operator fun V.minus(other: Int): P + /** + * Returns product of the variable represented as a monic monomial and the integer represented as a constant polynomial. + */ @JvmName("timesVariableInt") public operator fun V.times(other: Int): P + /** + * Returns sum of the integer represented as a constant polynomial and the variable represented as a monic monomial. + */ @JvmName("plusIntVariable") public operator fun Int.plus(other: V): P + /** + * Returns difference between the integer represented as a constant polynomial and the variable represented as a monic monomial. + */ @JvmName("minusIntVariable") public operator fun Int.minus(other: V): P + /** + * Returns product of the integer represented as a constant polynomial and the variable represented as a monic monomial. + */ @JvmName("timesIntVariable") public operator fun Int.times(other: V): P - @JvmName("plusConstantVariable") - public operator fun C.plus(other: V): P - @JvmName("minusConstantVariable") - public operator fun C.minus(other: V): P - @JvmName("timesConstantVariable") - public operator fun C.times(other: V): P - + /** + * Returns sum of the variable represented as a monic monomial and the constant represented as a constant polynomial. + */ @JvmName("plusVariableConstant") public operator fun V.plus(other: C): P + /** + * Returns difference between the variable represented as a monic monomial and the constant represented as a constant polynomial. + */ @JvmName("minusVariableConstant") public operator fun V.minus(other: C): P + /** + * Returns product of the variable represented as a monic monomial and the constant represented as a constant polynomial. + */ @JvmName("timesVariableConstant") public operator fun V.times(other: C): P + /** + * Returns sum of the constant represented as a constant polynomial and the variable represented as a monic monomial. + */ + @JvmName("plusConstantVariable") + public operator fun C.plus(other: V): P + /** + * Returns difference between the constant represented as a constant polynomial and the variable represented as a monic monomial. + */ + @JvmName("minusConstantVariable") + public operator fun C.minus(other: V): P + /** + * Returns product of the constant represented as a constant polynomial and the variable represented as a monic monomial. + */ + @JvmName("timesConstantVariable") + public operator fun C.times(other: V): P + + /** + * Represents the variable as a monic monomial. + */ @JvmName("unaryPlusVariable") public operator fun V.unaryPlus(): P + /** + * Returns negation of representation of the variable as a monic monomial. + */ @JvmName("unaryMinusVariable") public operator fun V.unaryMinus(): P + /** + * Returns sum of the variables represented as monic monomials. + */ @JvmName("plusVariableVariable") public operator fun V.plus(other: V): P + /** + * Returns difference between the variables represented as monic monomials. + */ @JvmName("minusVariableVariable") public operator fun V.minus(other: V): P + /** + * Returns product of the variables represented as monic monomials. + */ @JvmName("timesVariableVariable") public operator fun V.times(other: V): P + /** + * Represents the [variable] as a monic monomial. + */ + @JvmName("numberVariable") + public fun number(variable: V): P = +variable + /** + * Represents the variable as a monic monomial. + */ + @JvmName("asPolynomialVariable") + public fun V.asPolynomial(): P = number(this) + + /** + * Returns sum of the variable represented as a monic monomial and the polynomial. + */ @JvmName("plusVariablePolynomial") public operator fun V.plus(other: P): P + /** + * Returns difference between the variable represented as a monic monomial and the polynomial. + */ @JvmName("minusVariablePolynomial") public operator fun V.minus(other: P): P + /** + * Returns product of the variable represented as a monic monomial and the polynomial. + */ @JvmName("timesVariablePolynomial") public operator fun V.times(other: P): P + /** + * Returns sum of the polynomial and the variable represented as a monic monomial. + */ @JvmName("plusPolynomialVariable") public operator fun P.plus(other: V): P + /** + * Returns difference between the polynomial and the variable represented as a monic monomial. + */ @JvmName("minusPolynomialVariable") public operator fun P.minus(other: V): P + /** + * Returns product of the polynomial and the variable represented as a monic monomial. + */ @JvmName("timesPolynomialVariable") public operator fun P.times(other: V): P diff --git a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/RationalFunction.kt b/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/RationalFunction.kt index dfec126f3..01911f980 100644 --- a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/RationalFunction.kt +++ b/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/RationalFunction.kt @@ -25,44 +25,44 @@ public interface RationalFunction> { * [C]. * * @param C the type of constants. Polynomials have them as coefficients in their terms. - * @param P the type of polynomials. Rational functions have them as numerators and denominators in them. + * @param P the type of polynomials. Rational functions have them as numerators and denominators. * @param R the type of rational functions. */ @Suppress("INAPPLICABLE_JVM_NAME", "PARAMETER_NAME_CHANGED_ON_OVERRIDE") // FIXME: Waiting for KT-31420 public interface RationalFunctionalSpace, R: RationalFunction> : Ring { /** - * Returns sum of the constant and the integer represented as constant (member of underlying ring). + * Returns sum of the constant and the integer represented as a constant (member of underlying ring). * * The operation is equivalent to adding [other] copies of unit of underlying ring to [this]. */ public operator fun C.plus(other: Int): C /** - * Returns difference between the constant and the integer represented as constant (member of underlying ring). + * Returns difference between the constant and the integer represented as a constant (member of underlying ring). * * The operation is equivalent to subtraction [other] copies of unit of underlying ring from [this]. */ public operator fun C.minus(other: Int): C /** - * Returns product of the constant and the integer represented as constant (member of underlying ring). + * Returns product of the constant and the integer represented as a constant (member of underlying ring). * * The operation is equivalent to sum of [other] copies of [this]. */ public operator fun C.times(other: Int): C /** - * Returns sum of the integer represented as constant (member of underlying ring) and the constant. + * Returns sum of the integer represented as a constant (member of underlying ring) and the constant. * * The operation is equivalent to adding [this] copies of unit of underlying ring to [other]. */ public operator fun Int.plus(other: C): C /** - * Returns difference between the integer represented as constant (member of underlying ring) and the constant. + * Returns difference between the integer represented as a constant (member of underlying ring) and the constant. * * The operation is equivalent to subtraction [this] copies of unit of underlying ring from [other]. */ public operator fun Int.minus(other: C): C /** - * Returns product of the integer represented as constant (member of underlying ring) and the constant. + * Returns product of the integer represented as a constant (member of underlying ring) and the constant. * * The operation is equivalent to sum of [this] copies of [other]. */ @@ -78,38 +78,38 @@ public interface RationalFunctionalSpace, R: RationalFunctio public fun Int.asConstant(): C = constantNumber(this) /** - * Returns sum of the constant and the integer represented as polynomial. + * Returns sum of the constant and the integer represented as a polynomial. * * The operation is equivalent to adding [other] copies of unit polynomial to [this]. */ public operator fun P.plus(other: Int): P /** - * Returns difference between the constant and the integer represented as polynomial. + * Returns difference between the constant and the integer represented as a polynomial. * * The operation is equivalent to subtraction [other] copies of unit polynomial from [this]. */ public operator fun P.minus(other: Int): P /** - * Returns product of the constant and the integer represented as polynomial. + * Returns product of the constant and the integer represented as a polynomial. * * The operation is equivalent to sum of [other] copies of [this]. */ public operator fun P.times(other: Int): P /** - * Returns sum of the integer represented as polynomial and the constant. + * Returns sum of the integer represented as a polynomial and the constant. * * The operation is equivalent to adding [this] copies of unit polynomial to [other]. */ public operator fun Int.plus(other: P): P /** - * Returns difference between the integer represented as polynomial and the constant. + * Returns difference between the integer represented as a polynomial and the constant. * * The operation is equivalent to subtraction [this] copies of unit polynomial from [other]. */ public operator fun Int.minus(other: P): P /** - * Returns product of the integer represented as polynomial and the constant. + * Returns product of the integer represented as a polynomial and the constant. * * The operation is equivalent to sum of [this] copies of [other]. */ @@ -125,25 +125,25 @@ public interface RationalFunctionalSpace, R: RationalFunctio public fun Int.asPolynomial(): P = polynomialNumber(this) /** - * Returns sum of the rational function and the integer represented as rational function. + * Returns sum of the rational function and the integer represented as a rational function. * * The operation is equivalent to adding [other] copies of unit polynomial to [this]. */ public operator fun R.plus(other: Int): R = addMultipliedByDoubling(this, one, other) /** - * Returns difference between the rational function and the integer represented as rational function. + * Returns difference between the rational function and the integer represented as a rational function. * * The operation is equivalent to subtraction [other] copies of unit polynomial from [this]. */ public operator fun R.minus(other: Int): R = addMultipliedByDoubling(this, one, -other) /** - * Returns product of the rational function and the integer represented as rational function. + * Returns product of the rational function and the integer represented as a rational function. * * The operation is equivalent to sum of [other] copies of [this]. */ public operator fun R.times(other: Int): R = multiplyByDoubling(this, other) /** - * Returns quotient of the rational function and the integer represented as rational function. + * Returns quotient of the rational function and the integer represented as a rational function. * * The operation is equivalent to creating a new rational function by preserving numerator of [this] and * multiplication denominator of [this] to [other]. @@ -151,25 +151,25 @@ public interface RationalFunctionalSpace, R: RationalFunctio public operator fun R.div(other: Int): R = this / multiplyByDoubling(one, other) /** - * Returns sum of the integer represented as rational function and the rational function. + * Returns sum of the integer represented as a rational function and the rational function. * * The operation is equivalent to adding [this] copies of unit polynomial to [other]. */ public operator fun Int.plus(other: R): R = addMultipliedByDoubling(other, one, this) /** - * Returns difference between the integer represented as rational function and the rational function. + * Returns difference between the integer represented as a rational function and the rational function. * * The operation is equivalent to subtraction [this] copies of unit polynomial from [other]. */ public operator fun Int.minus(other: R): R = addMultipliedByDoubling(-other, one, this) /** - * Returns product of the integer represented as rational function and the rational function. + * Returns product of the integer represented as a rational function and the rational function. * * The operation is equivalent to sum of [this] copies of [other]. */ public operator fun Int.times(other: R): R = multiplyByDoubling(other, this) /** - * Returns quotient of the integer represented as rational function and the rational function. + * Returns quotient of the integer represented as a rational function and the rational function. * * The operation is equivalent to creating a new rational function which numerator is [this] times denominator of * [other] and which denominator is [other]'s numerator. @@ -232,28 +232,28 @@ public interface RationalFunctionalSpace, R: RationalFunctio public val constantOne: C /** - * Returns sum of the constant represented as polynomial and the polynomial. + * Returns sum of the constant represented as a polynomial and the polynomial. */ public operator fun C.plus(other: P): P /** - * Returns difference between the constant represented as polynomial and the polynomial. + * Returns difference between the constant represented as a polynomial and the polynomial. */ public operator fun C.minus(other: P): P /** - * Returns product of the constant represented as polynomial and the polynomial. + * Returns product of the constant represented as a polynomial and the polynomial. */ public operator fun C.times(other: P): P /** - * Returns sum of the constant represented as polynomial and the polynomial. + * Returns sum of the constant represented as a polynomial and the polynomial. */ public operator fun P.plus(other: C): P /** - * Returns difference between the constant represented as polynomial and the polynomial. + * Returns difference between the constant represented as a polynomial and the polynomial. */ public operator fun P.minus(other: C): P /** - * Returns product of the constant represented as polynomial and the polynomial. + * Returns product of the constant represented as a polynomial and the polynomial. */ public operator fun P.times(other: C): P @@ -305,36 +305,36 @@ public interface RationalFunctionalSpace, R: RationalFunctio public val polynomialOne: P /** - * Returns sum of the constant represented as rational function and the rational function. + * Returns sum of the constant represented as a rational function and the rational function. */ public operator fun C.plus(other: R): R /** - * Returns difference between the constant represented as polynomial and the rational function. + * Returns difference between the constant represented as a polynomial and the rational function. */ public operator fun C.minus(other: R): R /** - * Returns product of the constant represented as polynomial and the rational function. + * Returns product of the constant represented as a polynomial and the rational function. */ public operator fun C.times(other: R): R /** - * Returns quotient of the constant represented as polynomial and the rational function. + * Returns quotient of the constant represented as a polynomial and the rational function. */ public operator fun C.div(other: R): R /** - * Returns sum of the rational function and the constant represented as rational function. + * Returns sum of the rational function and the constant represented as a rational function. */ public operator fun R.plus(other: C): R /** - * Returns difference between the rational function and the constant represented as rational function. + * Returns difference between the rational function and the constant represented as a rational function. */ public operator fun R.minus(other: C): R /** - * Returns product of the rational function and the constant represented as rational function. + * Returns product of the rational function and the constant represented as a rational function. */ public operator fun R.times(other: C): R /** - * Returns quotient of the rational function and the constant represented as rational function. + * Returns quotient of the rational function and the constant represented as a rational function. */ public operator fun R.div(other: C): R @@ -348,36 +348,36 @@ public interface RationalFunctionalSpace, R: RationalFunctio public fun C.asRationalFunction(): R = number(this) /** - * Returns sum of the polynomial represented as rational function and the rational function. + * Returns sum of the polynomial represented as a rational function and the rational function. */ public operator fun P.plus(other: R): R /** - * Returns difference between the polynomial represented as polynomial and the rational function. + * Returns difference between the polynomial represented as a polynomial and the rational function. */ public operator fun P.minus(other: R): R /** - * Returns product of the polynomial represented as polynomial and the rational function. + * Returns product of the polynomial represented as a polynomial and the rational function. */ public operator fun P.times(other: R): R /** - * Returns quotient of the polynomial represented as polynomial and the rational function. + * Returns quotient of the polynomial represented as a polynomial and the rational function. */ public operator fun P.div(other: R): R /** - * Returns sum of the rational function and the polynomial represented as rational function. + * Returns sum of the rational function and the polynomial represented as a rational function. */ public operator fun R.plus(other: P): R /** - * Returns difference between the rational function and the polynomial represented as rational function. + * Returns difference between the rational function and the polynomial represented as a rational function. */ public operator fun R.minus(other: P): R /** - * Returns product of the rational function and the polynomial represented as rational function. + * Returns product of the rational function and the polynomial represented as a rational function. */ public operator fun R.times(other: P): R /** - * Returns quotient of the rational function and the polynomial represented as rational function. + * Returns quotient of the rational function and the polynomial represented as a rational function. */ public operator fun R.div(other: P): R @@ -459,43 +459,51 @@ public interface RationalFunctionalSpace, R: RationalFunctio * @param A the type of algebraic structure (precisely, of ring) provided for constants. */ @Suppress("INAPPLICABLE_JVM_NAME") // FIXME: Waiting for KT-31420 -public interface RationalFunctionalSpaceOverRing, R: RationalFunction, A: Ring> : RationalFunctionalSpace { +public interface RationalFunctionalSpaceOverRing< + C, + P: Polynomial, + R: RationalFunction, + A: Ring + > : RationalFunctionalSpace { + /** + * Underlying ring of constants. Its operations on constants are inherited by local operations on constants. + */ public val ring: A /** - * Returns sum of the constant and the integer represented as constant (member of underlying ring). + * Returns sum of the constant and the integer represented as a constant (member of underlying ring). * * The operation is equivalent to adding [other] copies of unit of underlying ring to [this]. */ public override operator fun C.plus(other: Int): C = ring { addMultipliedByDoubling(this@plus, one, other) } /** - * Returns difference between the constant and the integer represented as constant (member of underlying ring). + * Returns difference between the constant and the integer represented as a constant (member of underlying ring). * * The operation is equivalent to subtraction [other] copies of unit of underlying ring from [this]. */ public override operator fun C.minus(other: Int): C = ring { addMultipliedByDoubling(this@minus, one, -other) } /** - * Returns product of the constant and the integer represented as constant (member of underlying ring). + * Returns product of the constant and the integer represented as a constant (member of underlying ring). * * The operation is equivalent to sum of [other] copies of [this]. */ public override operator fun C.times(other: Int): C = ring { multiplyByDoubling(this@times, other) } /** - * Returns sum of the integer represented as constant (member of underlying ring) and the constant. + * Returns sum of the integer represented as a constant (member of underlying ring) and the constant. * * The operation is equivalent to adding [this] copies of unit of underlying ring to [other]. */ public override operator fun Int.plus(other: C): C = ring { addMultipliedByDoubling(other, one, this@plus) } /** - * Returns difference between the integer represented as constant (member of underlying ring) and the constant. + * Returns difference between the integer represented as a constant (member of underlying ring) and the constant. * * The operation is equivalent to subtraction [this] copies of unit of underlying ring from [other]. */ public override operator fun Int.minus(other: C): C = ring { addMultipliedByDoubling(-other, one, this@minus) } /** - * Returns product of the integer represented as constant (member of underlying ring) and the constant. + * Returns product of the integer represented as a constant (member of underlying ring) and the constant. * * The operation is equivalent to sum of [this] copies of [other]. */ @@ -560,41 +568,44 @@ public interface RationalFunctionalSpaceOverPolynomialSpace< AP: PolynomialSpace, > : RationalFunctionalSpace { + /** + * Underlying polynomial ring. Its polynomial operations are inherited by local polynomial operations. + */ public val polynomialRing: AP /** - * Returns sum of the constant and the integer represented as constant (member of underlying ring). + * Returns sum of the constant and the integer represented as a constant (member of underlying ring). * * The operation is equivalent to adding [other] copies of unit of underlying ring to [this]. */ public override operator fun C.plus(other: Int): C = polynomialRing { this@plus + other } /** - * Returns difference between the constant and the integer represented as constant (member of underlying ring). + * Returns difference between the constant and the integer represented as a constant (member of underlying ring). * * The operation is equivalent to subtraction [other] copies of unit of underlying ring from [this]. */ public override operator fun C.minus(other: Int): C = polynomialRing { this@minus - other } /** - * Returns product of the constant and the integer represented as constant (member of underlying ring). + * Returns product of the constant and the integer represented as a constant (member of underlying ring). * * The operation is equivalent to sum of [other] copies of [this]. */ public override operator fun C.times(other: Int): C = polynomialRing { this@times * other } /** - * Returns sum of the integer represented as constant (member of underlying ring) and the constant. + * Returns sum of the integer represented as a constant (member of underlying ring) and the constant. * * The operation is equivalent to adding [this] copies of unit of underlying ring to [other]. */ public override operator fun Int.plus(other: C): C = polynomialRing { this@plus + other } /** - * Returns difference between the integer represented as constant (member of underlying ring) and the constant. + * Returns difference between the integer represented as a constant (member of underlying ring) and the constant. * * The operation is equivalent to subtraction [this] copies of unit of underlying ring from [other]. */ public override operator fun Int.minus(other: C): C = polynomialRing { this@minus - other } /** - * Returns product of the integer represented as constant (member of underlying ring) and the constant. + * Returns product of the integer represented as a constant (member of underlying ring) and the constant. * * The operation is equivalent to sum of [this] copies of [other]. */ @@ -610,38 +621,38 @@ public interface RationalFunctionalSpaceOverPolynomialSpace< override fun Int.asConstant(): C = polynomialRing { asConstant() } /** - * Returns sum of the constant and the integer represented as polynomial. + * Returns sum of the constant and the integer represented as a polynomial. * * The operation is equivalent to adding [other] copies of unit polynomial to [this]. */ public override operator fun P.plus(other: Int): P = polynomialRing { this@plus + other } /** - * Returns difference between the constant and the integer represented as polynomial. + * Returns difference between the constant and the integer represented as a polynomial. * * The operation is equivalent to subtraction [other] copies of unit polynomial from [this]. */ public override operator fun P.minus(other: Int): P = polynomialRing { this@minus - other } /** - * Returns product of the constant and the integer represented as polynomial. + * Returns product of the constant and the integer represented as a polynomial. * * The operation is equivalent to sum of [other] copies of [this]. */ public override operator fun P.times(other: Int): P = polynomialRing { this@times * other } /** - * Returns sum of the integer represented as polynomial and the constant. + * Returns sum of the integer represented as a polynomial and the constant. * * The operation is equivalent to adding [this] copies of unit polynomial to [other]. */ public override operator fun Int.plus(other: P): P = polynomialRing { this@plus + other } /** - * Returns difference between the integer represented as polynomial and the constant. + * Returns difference between the integer represented as a polynomial and the constant. * * The operation is equivalent to subtraction [this] copies of unit polynomial from [other]. */ public override operator fun Int.minus(other: P): P = polynomialRing { this@minus - other } /** - * Returns product of the integer represented as polynomial and the constant. + * Returns product of the integer represented as a polynomial and the constant. * * The operation is equivalent to sum of [this] copies of [other]. */ @@ -697,28 +708,28 @@ public interface RationalFunctionalSpaceOverPolynomialSpace< public override val constantOne: C get() = polynomialRing.constantOne /** - * Returns sum of the constant represented as polynomial and the polynomial. + * Returns sum of the constant represented as a polynomial and the polynomial. */ public override operator fun C.plus(other: P): P = polynomialRing { this@plus + other } /** - * Returns difference between the constant represented as polynomial and the polynomial. + * Returns difference between the constant represented as a polynomial and the polynomial. */ public override operator fun C.minus(other: P): P = polynomialRing { this@minus - other } /** - * Returns product of the constant represented as polynomial and the polynomial. + * Returns product of the constant represented as a polynomial and the polynomial. */ public override operator fun C.times(other: P): P = polynomialRing { this@times * other } /** - * Returns sum of the constant represented as polynomial and the polynomial. + * Returns sum of the constant represented as a polynomial and the polynomial. */ public override operator fun P.plus(other: C): P = polynomialRing { this@plus + other } /** - * Returns difference between the constant represented as polynomial and the polynomial. + * Returns difference between the constant represented as a polynomial and the polynomial. */ public override operator fun P.minus(other: C): P = polynomialRing { this@minus - other } /** - * Returns product of the constant represented as polynomial and the polynomial. + * Returns product of the constant represented as a polynomial and the polynomial. */ public override operator fun P.times(other: C): P = polynomialRing { this@times * other } @@ -774,7 +785,8 @@ public interface RationalFunctionalSpaceOverPolynomialSpace< /** * Abstraction of field of rational functions of type [R] with respect to polynomials of type [P] and constants of type - * [C]. It also assumes that there is provided constructor + * [C]. It also assumes that there is provided constructor [constructRationalFunction] of rational functions from + * polynomial numerator and denominator. * * @param C the type of constants. Polynomials have them as coefficients in their terms. * @param P the type of polynomials. Rational functions have them as numerators and denominators in them. @@ -786,10 +798,14 @@ public abstract class PolynomialSpaceOfFractions< P: Polynomial, R: RationalFunction, > : RationalFunctionalSpace { + + /** + * Constructor of rational functions (of type [R]) from numerator and denominator (of type [P]). + */ protected abstract fun constructRationalFunction(numerator: P, denominator: P = polynomialOne) : R /** - * Returns sum of the rational function and the integer represented as rational function. + * Returns sum of the rational function and the integer represented as a rational function. * * The operation is equivalent to adding [other] copies of unit polynomial to [this]. */ @@ -799,7 +815,7 @@ public abstract class PolynomialSpaceOfFractions< denominator ) /** - * Returns difference between the rational function and the integer represented as rational function. + * Returns difference between the rational function and the integer represented as a rational function. * * The operation is equivalent to subtraction [other] copies of unit polynomial from [this]. */ @@ -809,7 +825,7 @@ public abstract class PolynomialSpaceOfFractions< denominator ) /** - * Returns product of the rational function and the integer represented as rational function. + * Returns product of the rational function and the integer represented as a rational function. * * The operation is equivalent to sum of [other] copies of [this]. */ @@ -818,7 +834,12 @@ public abstract class PolynomialSpaceOfFractions< numerator * other, denominator ) - + /** + * Returns quotient of the rational function and the integer represented as a rational function. + * + * The operation is equivalent to creating a new rational function by preserving numerator of [this] and + * multiplication denominator of [this] to [other]. + */ public override operator fun R.div(other: Int): R = constructRationalFunction( numerator, @@ -826,7 +847,7 @@ public abstract class PolynomialSpaceOfFractions< ) /** - * Returns sum of the integer represented as rational function and the rational function. + * Returns sum of the integer represented as a rational function and the rational function. * * The operation is equivalent to adding [this] copies of unit polynomial to [other]. */ @@ -836,7 +857,7 @@ public abstract class PolynomialSpaceOfFractions< other.denominator ) /** - * Returns difference between the integer represented as rational function and the rational function. + * Returns difference between the integer represented as a rational function and the rational function. * * The operation is equivalent to subtraction [this] copies of unit polynomial from [other]. */ @@ -846,7 +867,7 @@ public abstract class PolynomialSpaceOfFractions< other.denominator ) /** - * Returns product of the integer represented as rational function and the rational function. + * Returns product of the integer represented as a rational function and the rational function. * * The operation is equivalent to sum of [this] copies of [other]. */ @@ -855,7 +876,12 @@ public abstract class PolynomialSpaceOfFractions< this * other.numerator, other.denominator ) - + /** + * Returns quotient of the integer represented as a rational function and the rational function. + * + * The operation is equivalent to creating a new rational function which numerator is [this] times denominator of + * [other] and which denominator is [other]'s numerator. + */ public override operator fun Int.div(other: R): R = constructRationalFunction( this * other.denominator, @@ -873,7 +899,7 @@ public abstract class PolynomialSpaceOfFractions< public override operator fun P.div(other: P): R = constructRationalFunction(this, other) /** - * Returns sum of the constant represented as rational function and the rational function. + * Returns sum of the constant represented as a rational function and the rational function. */ public override operator fun C.plus(other: R): R = constructRationalFunction( @@ -881,7 +907,7 @@ public abstract class PolynomialSpaceOfFractions< other.denominator ) /** - * Returns difference between the constant represented as polynomial and the rational function. + * Returns difference between the constant represented as a polynomial and the rational function. */ public override operator fun C.minus(other: R): R = constructRationalFunction( @@ -889,14 +915,16 @@ public abstract class PolynomialSpaceOfFractions< other.denominator ) /** - * Returns product of the constant represented as polynomial and the rational function. + * Returns product of the constant represented as a polynomial and the rational function. */ public override operator fun C.times(other: R): R = constructRationalFunction( this * other.numerator, other.denominator ) - + /** + * Returns quotient of the constant represented as a polynomial and the rational function. + */ public override operator fun C.div(other: R): R = constructRationalFunction( this * other.denominator, @@ -904,7 +932,7 @@ public abstract class PolynomialSpaceOfFractions< ) /** - * Returns sum of the constant represented as rational function and the rational function. + * Returns sum of the constant represented as a rational function and the rational function. */ public override operator fun R.plus(other: C): R = constructRationalFunction( @@ -912,7 +940,7 @@ public abstract class PolynomialSpaceOfFractions< denominator ) /** - * Returns difference between the constant represented as rational function and the rational function. + * Returns difference between the constant represented as a rational function and the rational function. */ public override operator fun R.minus(other: C): R = constructRationalFunction( @@ -920,14 +948,16 @@ public abstract class PolynomialSpaceOfFractions< denominator ) /** - * Returns product of the constant represented as rational function and the rational function. + * Returns product of the constant represented as a rational function and the rational function. */ public override operator fun R.times(other: C): R = constructRationalFunction( numerator * other, denominator ) - + /** + * Returns quotient of the rational function and the constant represented as a rational function. + */ public override operator fun R.div(other: C): R = constructRationalFunction( numerator, @@ -940,7 +970,7 @@ public abstract class PolynomialSpaceOfFractions< public override fun number(value: C): R = constructRationalFunction(polynomialNumber(value)) /** - * Returns sum of the polynomial represented as rational function and the rational function. + * Returns sum of the polynomial represented as a rational function and the rational function. */ public override operator fun P.plus(other: R): R = constructRationalFunction( @@ -948,7 +978,7 @@ public abstract class PolynomialSpaceOfFractions< other.denominator ) /** - * Returns difference between the polynomial represented as polynomial and the rational function. + * Returns difference between the polynomial represented as a polynomial and the rational function. */ public override operator fun P.minus(other: R): R = constructRationalFunction( @@ -956,14 +986,16 @@ public abstract class PolynomialSpaceOfFractions< other.denominator ) /** - * Returns product of the polynomial represented as polynomial and the rational function. + * Returns product of the polynomial represented as a polynomial and the rational function. */ public override operator fun P.times(other: R): R = constructRationalFunction( this * other.numerator, other.denominator ) - + /** + * Returns quotient of the polynomial represented as a polynomial and the rational function. + */ public override operator fun P.div(other: R): R = constructRationalFunction( this * other.denominator, @@ -971,7 +1003,7 @@ public abstract class PolynomialSpaceOfFractions< ) /** - * Returns sum of the polynomial represented as rational function and the rational function. + * Returns sum of the polynomial represented as a rational function and the rational function. */ public override operator fun R.plus(other: P): R = constructRationalFunction( @@ -979,7 +1011,7 @@ public abstract class PolynomialSpaceOfFractions< denominator ) /** - * Returns difference between the polynomial represented as rational function and the rational function. + * Returns difference between the polynomial represented as a rational function and the rational function. */ public override operator fun R.minus(other: P): R = constructRationalFunction( @@ -987,14 +1019,16 @@ public abstract class PolynomialSpaceOfFractions< denominator ) /** - * Returns product of the polynomial represented as rational function and the rational function. + * Returns product of the polynomial represented as a rational function and the rational function. */ public override operator fun R.times(other: P): R = constructRationalFunction( numerator * other, denominator ) - + /** + * Returns quotient of the rational function and the polynomial represented as a rational function. + */ public override operator fun R.div(other: P): R = constructRationalFunction( numerator, @@ -1034,7 +1068,9 @@ public abstract class PolynomialSpaceOfFractions< numerator * other.numerator, denominator * other.denominator ) - + /** + * Returns quotient of the rational functions. + */ public override operator fun R.div(other: R): R = constructRationalFunction( numerator * other.denominator, @@ -1044,14 +1080,23 @@ public abstract class PolynomialSpaceOfFractions< /** * Instance of zero rational function (zero of the rational functions ring). */ - public override val zero: R get() = constructRationalFunction(polynomialZero) + public override val zero: R by lazy { constructRationalFunction(polynomialZero) } /** * Instance of unit polynomial (unit of the rational functions ring). */ - public override val one: R get() = constructRationalFunction(polynomialOne) + public override val one: R by lazy { constructRationalFunction(polynomialOne) } } +/** + * Abstraction of field of rational functions of type [R] with respect to polynomials of type [P] of variables of type + * [V] and over ring of constants of type [C]. + * + * @param C the type of constants. Polynomials have them as coefficients in their terms. + * @param V the type of variables. Polynomials have them in representations of terms. + * @param P the type of polynomials. Rational functions have them as numerators and denominators in them. + * @param R the type of rational functions. + */ @Suppress("INAPPLICABLE_JVM_NAME") // FIXME: Waiting for KT-31420 public interface MultivariateRationalFunctionalSpace< C, @@ -1059,70 +1104,179 @@ public interface MultivariateRationalFunctionalSpace< P: Polynomial, R: RationalFunction >: RationalFunctionalSpace { + /** + * Returns sum of the variable represented as a monic monomial and the integer represented as a constant polynomial. + */ @JvmName("plusVariableInt") public operator fun V.plus(other: Int): P + /** + * Returns difference between the variable represented as a monic monomial and the integer represented as a constant polynomial. + */ @JvmName("minusVariableInt") public operator fun V.minus(other: Int): P + /** + * Returns product of the variable represented as a monic monomial and the integer represented as a constant polynomial. + */ @JvmName("timesVariableInt") public operator fun V.times(other: Int): P + /** + * Returns sum of the integer represented as a constant polynomial and the variable represented as a monic monomial. + */ @JvmName("plusIntVariable") public operator fun Int.plus(other: V): P + /** + * Returns difference between the integer represented as a constant polynomial and the variable represented as a monic monomial. + */ @JvmName("minusIntVariable") public operator fun Int.minus(other: V): P + /** + * Returns product of the integer represented as a constant polynomial and the variable represented as a monic monomial. + */ @JvmName("timesIntVariable") public operator fun Int.times(other: V): P - @JvmName("plusConstantVariable") - public operator fun C.plus(other: V): P - @JvmName("minusConstantVariable") - public operator fun C.minus(other: V): P - @JvmName("timesConstantVariable") - public operator fun C.times(other: V): P - + /** + * Returns sum of the variable represented as a monic monomial and the constant represented as a constant polynomial. + */ @JvmName("plusVariableConstant") public operator fun V.plus(other: C): P + /** + * Returns difference between the variable represented as a monic monomial and the constant represented as a constant polynomial. + */ @JvmName("minusVariableConstant") public operator fun V.minus(other: C): P + /** + * Returns product of the variable represented as a monic monomial and the constant represented as a constant polynomial. + */ @JvmName("timesVariableConstant") public operator fun V.times(other: C): P + /** + * Returns sum of the constant represented as a constant polynomial and the variable represented as a monic monomial. + */ + @JvmName("plusConstantVariable") + public operator fun C.plus(other: V): P + /** + * Returns difference between the constant represented as a constant polynomial and the variable represented as a monic monomial. + */ + @JvmName("minusConstantVariable") + public operator fun C.minus(other: V): P + /** + * Returns product of the constant represented as a constant polynomial and the variable represented as a monic monomial. + */ + @JvmName("timesConstantVariable") + public operator fun C.times(other: V): P + + /** + * Represents the variable as a monic monomial. + */ @JvmName("unaryPlusVariable") public operator fun V.unaryPlus(): P + /** + * Returns negation of representation of the variable as a monic monomial. + */ @JvmName("unaryMinusVariable") public operator fun V.unaryMinus(): P + /** + * Returns sum of the variables represented as monic monomials. + */ @JvmName("plusVariableVariable") public operator fun V.plus(other: V): P + /** + * Returns difference between the variables represented as monic monomials. + */ @JvmName("minusVariableVariable") public operator fun V.minus(other: V): P + /** + * Returns product of the variables represented as monic monomials. + */ @JvmName("timesVariableVariable") public operator fun V.times(other: V): P + /** + * Represents the [variable] as a monic monomial. + */ + @JvmName("polynomialNumberVariable") + public fun polynomialNumber(variable: V): P = +variable + /** + * Represents the variable as a monic monomial. + */ + @JvmName("asPolynomialVariable") + public fun V.asPolynomial(): P = polynomialNumber(this) + + /** + * Represents the [variable] as a rational function. + */ + @JvmName("numberVariable") + public fun number(variable: V): R = number(polynomialNumber(variable)) + /** + * Represents the variable as a rational function. + */ + @JvmName("asRationalFunctionVariable") + public fun V.asRationalFunction(): R = number(this) + + /** + * Returns sum of the variable represented as a monic monomial and the polynomial. + */ @JvmName("plusVariablePolynomial") public operator fun V.plus(other: P): P + /** + * Returns difference between the variable represented as a monic monomial and the polynomial. + */ @JvmName("minusVariablePolynomial") public operator fun V.minus(other: P): P + /** + * Returns product of the variable represented as a monic monomial and the polynomial. + */ @JvmName("timesVariablePolynomial") public operator fun V.times(other: P): P + /** + * Returns sum of the polynomial and the variable represented as a monic monomial. + */ @JvmName("plusPolynomialVariable") public operator fun P.plus(other: V): P + /** + * Returns difference between the polynomial and the variable represented as a monic monomial. + */ @JvmName("minusPolynomialVariable") public operator fun P.minus(other: V): P + /** + * Returns product of the polynomial and the variable represented as a monic monomial. + */ @JvmName("timesPolynomialVariable") public operator fun P.times(other: V): P + /** + * Returns sum of the variable represented as a rational function and the rational function. + */ @JvmName("plusVariableRational") public operator fun V.plus(other: R): R + /** + * Returns difference between the variable represented as a rational function and the rational function. + */ @JvmName("minusVariableRational") public operator fun V.minus(other: R): R + /** + * Returns product of the variable represented as a rational function and the rational function. + */ @JvmName("timesVariableRational") public operator fun V.times(other: R): R + /** + * Returns sum of the rational function and the variable represented as a rational function. + */ @JvmName("plusRationalVariable") public operator fun R.plus(other: V): R + /** + * Returns difference between the rational function and the variable represented as a rational function. + */ @JvmName("minusRationalVariable") public operator fun R.minus(other: V): R + /** + * Returns product of the rational function and the variable represented as a rational function. + */ @JvmName("timesRationalVariable") public operator fun R.times(other: V): R @@ -1161,22 +1315,17 @@ public interface MultivariateRationalFunctionalSpace< public val R.countOfVariables: Int get() = variables.size } -public interface MultivariateRationalFunctionalSpaceOverRing< - C, - V, - P: Polynomial, - R: RationalFunction, - A: Ring - > : RationalFunctionalSpaceOverRing, MultivariateRationalFunctionalSpace - -public interface MultivariateRationalFunctionalSpaceOverPolynomialSpace< - C, - V, - P: Polynomial, - R: RationalFunction, - AP: PolynomialSpace, - > : RationalFunctionalSpaceOverPolynomialSpace, MultivariateRationalFunctionalSpace - +/** + * Abstraction of field of rational functions of type [R] with respect to polynomials of type [P] of variables of type + * [V] and over ring of constants of type [C]. It also assumes that there is provided [polynomialRing] (of type [AP]), + * that provides constant-, variable- and polynomial-wise operations. + * + * @param C the type of constants. Polynomials have them as coefficients in their terms. + * @param V the type of variables. Polynomials have them in representations of terms. + * @param P the type of polynomials. Rational functions have them as numerators and denominators in them. + * @param R the type of rational functions. + * @param AP the type of algebraic structure (precisely, of ring) provided for polynomials. + */ @Suppress("INAPPLICABLE_JVM_NAME") // FIXME: Waiting for KT-31420 public interface MultivariateRationalFunctionalSpaceOverMultivariatePolynomialSpace< C, @@ -1184,57 +1333,137 @@ public interface MultivariateRationalFunctionalSpaceOverMultivariatePolynomialSp P: Polynomial, R: RationalFunction, AP: MultivariatePolynomialSpace, - > : MultivariateRationalFunctionalSpaceOverPolynomialSpace { + > : RationalFunctionalSpaceOverPolynomialSpace, MultivariateRationalFunctionalSpace { + /** + * Returns sum of the variable represented as a monic monomial and the integer represented as a constant polynomial. + */ @JvmName("plusVariableInt") public override operator fun V.plus(other: Int): P = polynomialRing { this@plus + other } + /** + * Returns difference between the variable represented as a monic monomial and the integer represented as a constant polynomial. + */ @JvmName("minusVariableInt") public override operator fun V.minus(other: Int): P = polynomialRing { this@minus - other } + /** + * Returns product of the variable represented as a monic monomial and the integer represented as a constant polynomial. + */ @JvmName("timesVariableInt") public override operator fun V.times(other: Int): P = polynomialRing { this@times * other } + /** + * Returns sum of the integer represented as a constant polynomial and the variable represented as a monic monomial. + */ @JvmName("plusIntVariable") public override operator fun Int.plus(other: V): P = polynomialRing { this@plus + other } + /** + * Returns difference between the integer represented as a constant polynomial and the variable represented as a monic monomial. + */ @JvmName("minusIntVariable") public override operator fun Int.minus(other: V): P = polynomialRing { this@minus - other } + /** + * Returns product of the integer represented as a constant polynomial and the variable represented as a monic monomial. + */ @JvmName("timesIntVariable") public override operator fun Int.times(other: V): P = polynomialRing { this@times * other } - @JvmName("plusConstantVariable") - public override operator fun C.plus(other: V): P = polynomialRing { this@plus + other } - @JvmName("minusConstantVariable") - public override operator fun C.minus(other: V): P = polynomialRing { this@minus - other } - @JvmName("timesConstantVariable") - public override operator fun C.times(other: V): P = polynomialRing { this@times * other } - + /** + * Returns sum of the variable represented as a monic monomial and the constant represented as a constant polynomial. + */ @JvmName("plusVariableConstant") public override operator fun V.plus(other: C): P = polynomialRing { this@plus + other } + /** + * Returns difference between the variable represented as a monic monomial and the constant represented as a constant polynomial. + */ @JvmName("minusVariableConstant") public override operator fun V.minus(other: C): P = polynomialRing { this@minus - other } + /** + * Returns product of the variable represented as a monic monomial and the constant represented as a constant polynomial. + */ @JvmName("timesVariableConstant") public override operator fun V.times(other: C): P = polynomialRing { this@times * other } + /** + * Returns sum of the constant represented as a constant polynomial and the variable represented as a monic monomial. + */ + @JvmName("plusConstantVariable") + public override operator fun C.plus(other: V): P = polynomialRing { this@plus + other } + /** + * Returns difference between the constant represented as a constant polynomial and the variable represented as a monic monomial. + */ + @JvmName("minusConstantVariable") + public override operator fun C.minus(other: V): P = polynomialRing { this@minus - other } + /** + * Returns product of the constant represented as a constant polynomial and the variable represented as a monic monomial. + */ + @JvmName("timesConstantVariable") + public override operator fun C.times(other: V): P = polynomialRing { this@times * other } + + /** + * Represents the variable as a monic monomial. + */ @JvmName("unaryPlusVariable") public override operator fun V.unaryPlus(): P = polynomialRing { +this@unaryPlus } + /** + * Returns negation of representation of the variable as a monic monomial. + */ @JvmName("unaryMinusVariable") public override operator fun V.unaryMinus(): P = polynomialRing { -this@unaryMinus } + /** + * Returns sum of the variables represented as monic monomials. + */ @JvmName("plusVariableVariable") public override operator fun V.plus(other: V): P = polynomialRing { this@plus + other } + /** + * Returns difference between the variables represented as monic monomials. + */ @JvmName("minusVariableVariable") public override operator fun V.minus(other: V): P = polynomialRing { this@minus - other } + /** + * Returns product of the variables represented as monic monomials. + */ @JvmName("timesVariableVariable") public override operator fun V.times(other: V): P = polynomialRing { this@times * other } + /** + * Represents the [variable] as a monic monomial. + */ + @JvmName("polynomialNumberVariable") + public override fun polynomialNumber(variable: V): P = polynomialRing { number(variable) } + /** + * Represents the variable as a monic monomial. + */ + @JvmName("asPolynomialVariable") + public override fun V.asPolynomial(): P = polynomialRing { this@asPolynomial.asPolynomial() } + + /** + * Returns sum of the variable represented as a monic monomial and the polynomial. + */ @JvmName("plusVariablePolynomial") public override operator fun V.plus(other: P): P = polynomialRing { this@plus + other } + /** + * Returns difference between the variable represented as a monic monomial and the polynomial. + */ @JvmName("minusVariablePolynomial") public override operator fun V.minus(other: P): P = polynomialRing { this@minus - other } + /** + * Returns product of the variable represented as a monic monomial and the polynomial. + */ @JvmName("timesVariablePolynomial") public override operator fun V.times(other: P): P = polynomialRing { this@times * other } + /** + * Returns sum of the polynomial and the variable represented as a monic monomial. + */ @JvmName("plusPolynomialVariable") public override operator fun P.plus(other: V): P = polynomialRing { this@plus + other } + /** + * Returns difference between the polynomial and the variable represented as a monic monomial. + */ @JvmName("minusPolynomialVariable") public override operator fun P.minus(other: V): P = polynomialRing { this@minus - other } + /** + * Returns product of the polynomial and the variable represented as a monic monomial. + */ @JvmName("timesPolynomialVariable") public override operator fun P.times(other: V): P = polynomialRing { this@times * other } @@ -1264,6 +1493,16 @@ public interface MultivariateRationalFunctionalSpaceOverMultivariatePolynomialSp public override val P.countOfVariables: Int get() = polynomialRing { countOfVariables } } +/** + * Abstraction of field of rational functions of type [R] with respect to polynomials of type [P] of variables of type + * [V] and over ring of constants of type [C]. It also assumes that there is provided constructor + * [constructRationalFunction] of rational functions from polynomial numerator and denominator. + * + * @param C the type of constants. Polynomials have them as coefficients in their terms. + * @param V the type of variables. Polynomials have them in representations of terms. + * @param P the type of polynomials. Rational functions have them as numerators and denominators in them. + * @param R the type of rational functions. + */ @Suppress("INAPPLICABLE_JVM_NAME") // FIXME: Waiting for KT-31420 public abstract class MultivariatePolynomialSpaceOfFractions< C, @@ -1271,18 +1510,27 @@ public abstract class MultivariatePolynomialSpaceOfFractions< P: Polynomial, R: RationalFunction, > : MultivariateRationalFunctionalSpace, PolynomialSpaceOfFractions() { + /** + * Returns sum of the variable represented as a rational function and the rational function. + */ @JvmName("plusVariableRational") public override operator fun V.plus(other: R): R = constructRationalFunction( this * other.denominator + other.numerator, other.denominator ) + /** + * Returns difference between the variable represented as a rational function and the rational function. + */ @JvmName("minusVariableRational") public override operator fun V.minus(other: R): R = constructRationalFunction( this * other.denominator - other.numerator, other.denominator ) + /** + * Returns product of the variable represented as a rational function and the rational function. + */ @JvmName("timesVariableRational") public override operator fun V.times(other: R): R = constructRationalFunction( @@ -1290,18 +1538,27 @@ public abstract class MultivariatePolynomialSpaceOfFractions< other.denominator ) + /** + * Returns sum of the rational function and the variable represented as a rational function. + */ @JvmName("plusRationalVariable") public override operator fun R.plus(other: V): R = constructRationalFunction( numerator + denominator * other, denominator ) + /** + * Returns difference between the rational function and the variable represented as a rational function. + */ @JvmName("minusRationalVariable") public override operator fun R.minus(other: V): R = constructRationalFunction( numerator - denominator * other, denominator ) + /** + * Returns product of the rational function and the variable represented as a rational function. + */ @JvmName("timesRationalVariable") public override operator fun R.times(other: V): R = constructRationalFunction( diff --git a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/labeledConstructors.kt b/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/labeledConstructors.kt deleted file mode 100644 index e81a9388e..000000000 --- a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/labeledConstructors.kt +++ /dev/null @@ -1,203 +0,0 @@ -/* - * Copyright 2018-2021 KMath contributors. - * Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file. - */ - -package space.kscience.kmath.functions - -import space.kscience.kmath.expressions.Symbol -import space.kscience.kmath.misc.UnstableKMathAPI -import space.kscience.kmath.operations.Ring - - -/** - * Returns the same degrees' description of the monomial, but without zero degrees. - */ -internal fun Map.cleanUp() = filterValues { it > 0U } - -// Waiting for context receivers :( FIXME: Replace with context receivers when they will be available - -@Suppress("FunctionName", "NOTHING_TO_INLINE") -internal inline fun > LabeledPolynomialSpace.LabeledPolynomial(coefs: Map, C>, toCheckInput: Boolean = true) : LabeledPolynomial = ring.LabeledPolynomial(coefs, toCheckInput) -@Suppress("FunctionName", "NOTHING_TO_INLINE") -internal inline fun > LabeledRationalFunctionSpace.LabeledPolynomial(coefs: Map, C>, toCheckInput: Boolean = true) : LabeledPolynomial = ring.LabeledPolynomial(coefs, toCheckInput) -@Suppress("FunctionName") -internal fun > A.LabeledPolynomial(coefs: Map, C>, toCheckInput: Boolean = true) : LabeledPolynomial { - if (!toCheckInput) return LabeledPolynomial(coefs) - - val fixedCoefs = LinkedHashMap, C>(coefs.size) - - for (entry in coefs) { - val key = entry.key.cleanUp() - val value = entry.value - fixedCoefs[key] = if (key in fixedCoefs) fixedCoefs[key]!! + value else value - } - - return LabeledPolynomial(fixedCoefs) -} - -@Suppress("FunctionName", "NOTHING_TO_INLINE") -internal inline fun > LabeledPolynomialSpace.LabeledPolynomial(pairs: Collection, C>>, toCheckInput: Boolean = true) : LabeledPolynomial = ring.LabeledPolynomial(pairs, toCheckInput) -@Suppress("FunctionName", "NOTHING_TO_INLINE") -internal inline fun > LabeledRationalFunctionSpace.LabeledPolynomial(pairs: Collection, C>>, toCheckInput: Boolean = true) : LabeledPolynomial = ring.LabeledPolynomial(pairs, toCheckInput) -@Suppress("FunctionName") -internal fun > A.LabeledPolynomial(pairs: Collection, C>>, toCheckInput: Boolean = true) : LabeledPolynomial { - if (!toCheckInput) return LabeledPolynomial(pairs.toMap()) - - val fixedCoefs = LinkedHashMap, C>(pairs.size) - - for (entry in pairs) { - val key = entry.first.cleanUp() - val value = entry.second - fixedCoefs[key] = if (key in fixedCoefs) fixedCoefs[key]!! + value else value - } - - return LabeledPolynomial(fixedCoefs) -} - -@Suppress("FunctionName", "NOTHING_TO_INLINE") -internal inline fun > LabeledPolynomialSpace.LabeledPolynomial(vararg pairs: Pair, C>, toCheckInput: Boolean = true) : LabeledPolynomial = ring.LabeledPolynomial(pairs = pairs, toCheckInput = toCheckInput) -@Suppress("FunctionName", "NOTHING_TO_INLINE") -internal inline fun > LabeledRationalFunctionSpace.LabeledPolynomial(vararg pairs: Pair, C>, toCheckInput: Boolean = true) : LabeledPolynomial = ring.LabeledPolynomial(pairs = pairs, toCheckInput = toCheckInput) -@Suppress("FunctionName") -internal fun > A.LabeledPolynomial(vararg pairs: Pair, C>, toCheckInput: Boolean = true) : LabeledPolynomial { - if (!toCheckInput) return LabeledPolynomial(pairs.toMap()) - - val fixedCoefs = LinkedHashMap, C>(pairs.size) - - for (entry in pairs) { - val key = entry.first.cleanUp() - val value = entry.second - fixedCoefs[key] = if (key in fixedCoefs) fixedCoefs[key]!! + value else value - } - - return LabeledPolynomial(fixedCoefs) -} - -@Suppress("FunctionName") -public fun > A.LabeledPolynomial(coefs: Map, C>) : LabeledPolynomial = LabeledPolynomial(coefs, toCheckInput = true) -@Suppress("FunctionName") -public fun > LabeledPolynomialSpace.LabeledPolynomial(coefs: Map, C>) : LabeledPolynomial = LabeledPolynomial(coefs, toCheckInput = true) -@Suppress("FunctionName") -public fun > LabeledRationalFunctionSpace.LabeledPolynomial(coefs: Map, C>) : LabeledPolynomial = LabeledPolynomial(coefs, toCheckInput = true) - -@Suppress("FunctionName") -public fun > A.LabeledPolynomial(pairs: Collection, C>>) : LabeledPolynomial = LabeledPolynomial(pairs, toCheckInput = true) -@Suppress("FunctionName") -public fun > LabeledPolynomialSpace.LabeledPolynomial(pairs: Collection, C>>) : LabeledPolynomial = LabeledPolynomial(pairs, toCheckInput = true) -@Suppress("FunctionName") -public fun > LabeledRationalFunctionSpace.LabeledPolynomial(pairs: Collection, C>>) : LabeledPolynomial = LabeledPolynomial(pairs, toCheckInput = true) - -@Suppress("FunctionName") -public fun > A.LabeledPolynomial(vararg pairs: Pair, C>) : LabeledPolynomial = LabeledPolynomial(*pairs, toCheckInput = true) -@Suppress("FunctionName") -public fun > LabeledPolynomialSpace.LabeledPolynomial(vararg pairs: Pair, C>) : LabeledPolynomial = LabeledPolynomial(*pairs, toCheckInput = true) -@Suppress("FunctionName") -public fun > LabeledRationalFunctionSpace.LabeledPolynomial(vararg pairs: Pair, C>) : LabeledPolynomial = LabeledPolynomial(*pairs, toCheckInput = true) - -//context(A) -//public fun > Symbol.asLabeledPolynomial() : LabeledPolynomial = LabeledPolynomial(mapOf(mapOf(this to 1u) to one)) -//context(LabeledPolynomialSpace) -//public fun > Symbol.asLabeledPolynomial() : LabeledPolynomial = LabeledPolynomial(mapOf(mapOf(this to 1u) to constantOne)) -//context(LabeledRationalFunctionSpace) -//public fun > Symbol.asLabeledPolynomial() : LabeledPolynomial = LabeledPolynomial(mapOf(mapOf(this to 1u) to constantOne)) - -public fun C.asLabeledPolynomial() : LabeledPolynomial = LabeledPolynomial(mapOf(emptyMap() to this)) - -@DslMarker -@UnstableKMathAPI -internal annotation class LabeledPolynomialConstructorDSL - -@UnstableKMathAPI -@LabeledPolynomialConstructorDSL -public class LabeledPolynomialTermSignatureBuilder { - private val signature: MutableMap = LinkedHashMap() - public fun build(): Map = signature - public infix fun Symbol.inPowerOf(deg: UInt) { - signature[this] = deg - } - @Suppress("NOTHING_TO_INLINE") - public inline infix fun Symbol.pow(deg: UInt): Unit = this inPowerOf deg - @Suppress("NOTHING_TO_INLINE") - public inline infix fun Symbol.`in`(deg: UInt): Unit = this inPowerOf deg - @Suppress("NOTHING_TO_INLINE") - public inline infix fun Symbol.of(deg: UInt): Unit = this inPowerOf deg -} - -@UnstableKMathAPI -public class LabeledPolynomialBuilder(private val zero: C, private val add: (C, C) -> C, capacity: Int = 0) { - private val coefficients: MutableMap, C> = LinkedHashMap(capacity) - public fun build(): LabeledPolynomial = LabeledPolynomial(coefficients) - public operator fun C.invoke(block: LabeledPolynomialTermSignatureBuilder.() -> Unit) { - val signature = LabeledPolynomialTermSignatureBuilder().apply(block).build() - coefficients[signature] = add(coefficients.getOrElse(signature) { zero }, this@invoke) - } - @Suppress("NOTHING_TO_INLINE") - public inline infix fun C.with(noinline block: LabeledPolynomialTermSignatureBuilder.() -> Unit): Unit = this.invoke(block) - @Suppress("NOTHING_TO_INLINE") - public inline infix fun (LabeledPolynomialTermSignatureBuilder.() -> Unit).with(coef: C): Unit = coef.invoke(this) - @Suppress("NOTHING_TO_INLINE") - public infix fun sig(block: LabeledPolynomialTermSignatureBuilder.() -> Unit): LabeledPolynomialTermSignatureBuilder.() -> Unit = block -} - -// Waiting for context receivers :( FIXME: Replace with context receivers when they will be available - -@UnstableKMathAPI -@LabeledPolynomialConstructorDSL -@Suppress("FunctionName") -public inline fun > A.LabeledPolynomial(block: LabeledPolynomialBuilder.() -> Unit) : LabeledPolynomial = LabeledPolynomialBuilder(zero, ::add).apply(block).build() -@UnstableKMathAPI -@LabeledPolynomialConstructorDSL -@Suppress("FunctionName") -public inline fun > A.LabeledPolynomial(capacity: Int, block: LabeledPolynomialBuilder.() -> Unit) : LabeledPolynomial = LabeledPolynomialBuilder(zero, ::add, capacity).apply(block).build() -@UnstableKMathAPI -@LabeledPolynomialConstructorDSL -@Suppress("FunctionName") -public inline fun > LabeledPolynomialSpace.LabeledPolynomial(block: LabeledPolynomialBuilder.() -> Unit) : LabeledPolynomial = LabeledPolynomialBuilder(constantZero, { left: C, right: C -> left + right}).apply(block).build() -@UnstableKMathAPI -@LabeledPolynomialConstructorDSL -@Suppress("FunctionName") -public inline fun > LabeledPolynomialSpace.LabeledPolynomial(capacity: Int, block: LabeledPolynomialBuilder.() -> Unit) : LabeledPolynomial = LabeledPolynomialBuilder(constantZero, { left: C, right: C -> left + right}, capacity).apply(block).build() - -// Waiting for context receivers :( FIXME: Replace with context receivers when they will be available - -@Suppress("FunctionName") -public fun > LabeledRationalFunctionSpace.LabeledRationalFunction(numeratorCoefficients: Map, C>, denominatorCoefficients: Map, C>): LabeledRationalFunction = - LabeledRationalFunction( - LabeledPolynomial(numeratorCoefficients, toCheckInput = true), - LabeledPolynomial(denominatorCoefficients, toCheckInput = true) - ) -@Suppress("FunctionName") -public fun > A.LabeledRationalFunction(numeratorCoefficients: Map, C>, denominatorCoefficients: Map, C>): LabeledRationalFunction = - LabeledRationalFunction( - LabeledPolynomial(numeratorCoefficients, toCheckInput = true), - LabeledPolynomial(denominatorCoefficients, toCheckInput = true) - ) -@Suppress("FunctionName") -public fun > LabeledRationalFunctionSpace.LabeledRationalFunction(numerator: LabeledPolynomial): LabeledRationalFunction = - LabeledRationalFunction(numerator, polynomialOne) -@Suppress("FunctionName") -public fun > A.LabeledRationalFunction(numerator: LabeledPolynomial): LabeledRationalFunction = - LabeledRationalFunction(numerator, LabeledPolynomial(mapOf(emptyMap() to one), toCheckInput = false)) -@Suppress("FunctionName") -public fun > LabeledRationalFunctionSpace.LabeledRationalFunction(numeratorCoefficients: Map, C>): LabeledRationalFunction = - LabeledRationalFunction( - LabeledPolynomial(numeratorCoefficients, toCheckInput = true), - polynomialOne - ) -@Suppress("FunctionName") -public fun > A.LabeledRationalFunction(numeratorCoefficients: Map, C>): LabeledRationalFunction = - LabeledRationalFunction( - LabeledPolynomial(numeratorCoefficients, toCheckInput = true), - LabeledPolynomial(mapOf(emptyMap() to one), toCheckInput = false) - ) - -//context(A) -//public fun > Symbol.asLabeledRationalFunction() : LabeledRationalFunction = LabeledRationalFunction(asLabeledPolynomial()) -//context(LabeledRationalFunctionSpace) -//public fun > Symbol.asLabeledRationalFunction() : LabeledRationalFunction = LabeledRationalFunction(asLabeledPolynomial()) - -//context(A) -//public fun > C.asLabeledRationalFunction() : LabeledRationalFunction = LabeledRationalFunction(asLabeledPolynomial()) -//context(LabeledRationalFunctionSpace) -//public fun > C.asLabeledRationalFunction() : LabeledRationalFunction = LabeledRationalFunction(asLabeledPolynomial()) \ No newline at end of file diff --git a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/labeledPolynomialUtil.kt b/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/labeledPolynomialUtil.kt deleted file mode 100644 index af918b9ae..000000000 --- a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/labeledPolynomialUtil.kt +++ /dev/null @@ -1,495 +0,0 @@ -/* - * Copyright 2018-2021 KMath contributors. - * Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file. - */ - -package space.kscience.kmath.functions - -import space.kscience.kmath.expressions.Symbol -import space.kscience.kmath.misc.UnstableKMathAPI -import space.kscience.kmath.operations.Field -import space.kscience.kmath.operations.Ring -import space.kscience.kmath.operations.invoke -import kotlin.contracts.ExperimentalContracts -import kotlin.contracts.InvocationKind -import kotlin.contracts.contract - - -// TODO: Docs - -/** - * Creates a [LabeledPolynomialSpace] over a received ring. - */ -public fun > A.labeledPolynomial(): LabeledPolynomialSpace = - LabeledPolynomialSpace(this) - -/** - * Creates a [LabeledPolynomialSpace]'s scope over a received ring. - */ -@OptIn(ExperimentalContracts::class) -public inline fun , R> A.labeledPolynomial(block: LabeledPolynomialSpace.() -> R): R { - contract { callsInPlace(block, InvocationKind.EXACTLY_ONCE) } - return LabeledPolynomialSpace(this).block() -} - -///** -// * Represents the polynomial as a [String] with names of variables substituted with names from [names]. -// * Consider that monomials are sorted in lexicographic order. -// */ -//context(LabeledPolynomialSpace) -//fun > LabeledPolynomial.represent(names: Map = emptyMap()): String = -// coefficients.entries -// .sortedWith { o1, o2 -> LabeledPolynomial.monomialComparator.compare(o1.key, o2.key) } -// .asSequence() -// .map { (degs, t) -> -// if (degs.isEmpty()) "$t" -// else { -// when { -// t.isOne() -> "" -// t.isMinusOne() -> "-" -// else -> "$t " -// } + -// degs -// .toSortedMap() -// .filter { it.value > 0U } -// .map { (variable, deg) -> -// val variableName = names.getOrDefault(variable, variable.toString()) -// when (deg) { -// 1U -> variableName -// else -> "$variableName^$deg" -// } -// } -// .joinToString(separator = " ") { it } -// } -// } -// .joinToString(separator = " + ") { it } -// .ifEmpty { "0" } -// -///** -// * Represents the polynomial as a [String] naming variables by [namer]. -// * Consider that monomials are sorted in lexicographic order. -// */ -//context(LabeledPolynomialSpace) -//fun > LabeledPolynomial.represent(namer: (Symbol) -> String): String = -// coefficients.entries -// .sortedWith { o1, o2 -> LabeledPolynomial.monomialComparator.compare(o1.key, o2.key) } -// .asSequence() -// .map { (degs, t) -> -// if (degs.isEmpty()) "$t" -// else { -// when { -// t.isOne() -> "" -// t.isMinusOne() -> "-" -// else -> "$t " -// } + -// degs -// .toSortedMap() -// .filter { it.value > 0U } -// .map { (variable, deg) -> -// when (deg) { -// 1U -> namer(variable) -// else -> "${namer(variable)}^$deg" -// } -// } -// .joinToString(separator = " ") { it } -// } -// } -// .joinToString(separator = " + ") { it } -// .ifEmpty { "0" } -// -///** -// * Represents the polynomial as a [String] with names of variables substituted with names from [names] and with -// * brackets around the string if needed (i.e. when there are at least two addends in the representation). -// * Consider that monomials are sorted in lexicographic order. -// */ -//context(LabeledPolynomialSpace) -//fun > LabeledPolynomial.representWithBrackets(names: Map = emptyMap()): String = -// with(represent(names)) { if (coefficients.count() == 1) this else "($this)" } -// -///** -// * Represents the polynomial as a [String] naming variables by [namer] and with brackets around the string if needed -// * (i.e. when there are at least two addends in the representation). -// * Consider that monomials are sorted in lexicographic order. -// */ -//context(LabeledPolynomialSpace) -//fun > LabeledPolynomial.representWithBrackets(namer: (Symbol) -> String): String = -// with(represent(namer)) { if (coefficients.count() == 1) this else "($this)" } -// -///** -// * Represents the polynomial as a [String] with names of variables substituted with names from [names]. -// * Consider that monomials are sorted in **reversed** lexicographic order. -// */ -//context(LabeledPolynomialSpace) -//fun > LabeledPolynomial.representReversed(names: Map = emptyMap()): String = -// coefficients.entries -// .sortedWith { o1, o2 -> -LabeledPolynomial.monomialComparator.compare(o1.key, o2.key) } -// .asSequence() -// .map { (degs, t) -> -// if (degs.isEmpty()) "$t" -// else { -// when { -// t.isOne() -> "" -// t.isMinusOne() -> "-" -// else -> "$t " -// } + -// degs -// .toSortedMap() -// .filter { it.value > 0U } -// .map { (variable, deg) -> -// val variableName = names.getOrDefault(variable, variable.toString()) -// when (deg) { -// 1U -> variableName -// else -> "$variableName^$deg" -// } -// } -// .joinToString(separator = " ") { it } -// } -// } -// .joinToString(separator = " + ") { it } -// .ifEmpty { "0" } -// -///** -// * Represents the polynomial as a [String] naming variables by [namer]. -// * Consider that monomials are sorted in **reversed** lexicographic order. -// */ -//context(LabeledPolynomialSpace) -//fun > LabeledPolynomial.representReversed(namer: (Symbol) -> String): String = -// coefficients.entries -// .sortedWith { o1, o2 -> -LabeledPolynomial.monomialComparator.compare(o1.key, o2.key) } -// .asSequence() -// .map { (degs, t) -> -// if (degs.isEmpty()) "$t" -// else { -// when { -// t.isOne() -> "" -// t.isMinusOne() -> "-" -// else -> "$t " -// } + -// degs -// .toSortedMap() -// .filter { it.value > 0U } -// .map { (variable, deg) -> -// when (deg) { -// 1U -> namer(variable) -// else -> "${namer(variable)}^$deg" -// } -// } -// .joinToString(separator = " ") { it } -// } -// } -// .joinToString(separator = " + ") { it } -// .ifEmpty { "0" } -// -///** -// * Represents the polynomial as a [String] with names of variables substituted with names from [names] and with -// * brackets around the string if needed (i.e. when there are at least two addends in the representation). -// * Consider that monomials are sorted in **reversed** lexicographic order. -// */ -//context(LabeledPolynomialSpace) -//fun > LabeledPolynomial.representReversedWithBrackets(names: Map = emptyMap()): String = -// with(representReversed(names)) { if (coefficients.count() == 1) this else "($this)" } -// -///** -// * Represents the polynomial as a [String] naming variables by [namer] and with brackets around the string if needed -// * (i.e. when there are at least two addends in the representation). -// * Consider that monomials are sorted in **reversed** lexicographic order. -// */ -//context(LabeledPolynomialSpace) -//fun > LabeledPolynomial.representReversedWithBrackets(namer: (Symbol) -> String): String = -// with(representReversed(namer)) { if (coefficients.count() == 1) this else "($this)" } - -//operator fun > Polynomial.div(other: T): Polynomial = -// if (other.isZero()) throw ArithmeticException("/ by zero") -// else -// Polynomial( -// coefficients -// .mapValues { it.value / other }, -// toCheckInput = false -// ) - -//public fun LabeledPolynomial.substitute(ring: Ring, args: Map): LabeledPolynomial = ring { -// if (coefficients.isEmpty()) return this@substitute -// LabeledPolynomial( -// buildMap { -// coefficients.forEach { (degs, c) -> -// val newDegs = degs.filterKeys { it !in args } -// val newC = degs.entries.asSequence().filter { it.key in args }.fold(c) { acc, (variable, deg) -> -// multiplyWithPower(acc, args[variable]!!, deg) -// } -// this[newDegs] = if (newDegs in this) this[newDegs]!! + newC else newC -// } -// } -// ) -//} -// -//// TODO: Replace with optimisation: the [result] may be unboxed, and all operations may be performed as soon as -//// possible on it -//@JvmName("substitutePolynomial") -//fun LabeledPolynomial.substitute(ring: Ring, arg: Map>) : LabeledPolynomial = -// ring.labeledPolynomial { -// if (coefficients.isEmpty()) return zero -// coefficients -// .asSequence() -// .map { (degs, c) -> -// degs.entries -// .asSequence() -// .filter { it.key in arg } -// .fold(LabeledPolynomial(mapOf(degs.filterKeys { it !in arg } to c))) { acc, (index, deg) -> -// multiplyWithPower(acc, arg[index]!!, deg) -// } -// } -// .reduce { acc, polynomial -> acc + polynomial } // TODO: Rewrite. Might be slow. -// } -// -//// TODO: Substitute rational function -// -//fun > LabeledPolynomial.asFunctionOver(ring: A): (Map) -> LabeledPolynomial = -// { substitute(ring, it) } -// -//fun > LabeledPolynomial.asPolynomialFunctionOver(ring: A): (Map>) -> LabeledPolynomial = -// { substitute(ring, it) } - -/** - * Returns algebraic derivative of received polynomial. - */ -@UnstableKMathAPI -public fun > LabeledPolynomial.derivativeWithRespectTo( - algebra: A, - variable: Symbol, -): LabeledPolynomial = algebra { - LabeledPolynomial( - buildMap(coefficients.size) { - coefficients - .forEach { (degs, c) -> - if (variable !in degs) return@forEach - put( - buildMap { - degs.forEach { (vari, deg) -> - when { - vari != variable -> put(vari, deg) - deg > 1u -> put(vari, deg - 1u) - } - } - }, - multiplyByDoubling(c, degs[variable]!!) - ) - } - } - ) -} - -/** - * Returns algebraic derivative of received polynomial. - */ -@UnstableKMathAPI -public fun > LabeledPolynomial.derivativeWithRespectTo( - algebra: A, - variables: Collection, -): LabeledPolynomial = algebra { - val cleanedVariables = variables.toSet() - if (cleanedVariables.isEmpty()) return this@derivativeWithRespectTo - LabeledPolynomial( - buildMap(coefficients.size) { - coefficients - .forEach { (degs, c) -> - if (!degs.keys.containsAll(cleanedVariables)) return@forEach - put( - buildMap { - degs.forEach { (vari, deg) -> - when { - vari !in cleanedVariables -> put(vari, deg) - deg > 1u -> put(vari, deg - 1u) - } - } - }, - cleanedVariables.fold(c) { acc, variable -> multiplyByDoubling(acc, degs[variable]!!) } - ) - } - } - ) -} - -/** - * Returns algebraic derivative of received polynomial. - */ -@UnstableKMathAPI -public fun > LabeledPolynomial.nthDerivativeWithRespectTo( - algebra: A, - variable: Symbol, - order: UInt -): LabeledPolynomial = algebra { - if (order == 0u) return this@nthDerivativeWithRespectTo - LabeledPolynomial( - buildMap(coefficients.size) { - coefficients - .forEach { (degs, c) -> - if (degs.getOrElse(variable) { 0u } < order) return@forEach - put( - buildMap { - degs.forEach { (vari, deg) -> - when { - vari != variable -> put(vari, deg) - deg > order -> put(vari, deg - order) - } - } - }, - degs[variable]!!.let { deg -> - (deg downTo deg - order + 1u) - .fold(c) { acc, ord -> multiplyByDoubling(acc, ord) } - } - ) - } - } - ) -} - -/** - * Returns algebraic derivative of received polynomial. - */ -@UnstableKMathAPI -public fun > LabeledPolynomial.nthDerivativeWithRespectTo( - algebra: A, - variablesAndOrders: Map, -): LabeledPolynomial = algebra { - val filteredVariablesAndOrders = variablesAndOrders.filterValues { it != 0u } - if (filteredVariablesAndOrders.isEmpty()) return this@nthDerivativeWithRespectTo - LabeledPolynomial( - buildMap(coefficients.size) { - coefficients - .forEach { (degs, c) -> - if (filteredVariablesAndOrders.any { (variable, order) -> degs.getOrElse(variable) { 0u } < order }) return@forEach - put( - buildMap { - degs.forEach { (vari, deg) -> - if (vari !in filteredVariablesAndOrders) put(vari, deg) - else { - val order = filteredVariablesAndOrders[vari]!! - if (deg > order) put(vari, deg - order) - } - } - }, - filteredVariablesAndOrders.entries.fold(c) { acc1, (index, order) -> - degs[index]!!.let { deg -> - (deg downTo deg - order + 1u) - .fold(acc1) { acc2, ord -> multiplyByDoubling(acc2, ord) } - } - } - ) - } - } - ) -} - -/** - * Returns algebraic antiderivative of received polynomial. - */ -@UnstableKMathAPI -public fun > LabeledPolynomial.antiderivativeWithRespectTo( - algebra: A, - variable: Symbol, -): LabeledPolynomial = algebra { - LabeledPolynomial( - buildMap(coefficients.size) { - coefficients - .forEach { (degs, c) -> - val newDegs = buildMap(degs.size + 1) { - put(variable, 1u) - for ((vari, deg) in degs) put(vari, deg + getOrElse(vari) { 0u }) - } - put( - newDegs, - c / multiplyByDoubling(one, newDegs[variable]!!) - ) - } - } - ) -} - -/** - * Returns algebraic antiderivative of received polynomial. - */ -@UnstableKMathAPI -public fun > LabeledPolynomial.antiderivativeWithRespectTo( - algebra: A, - variables: Collection, -): LabeledPolynomial = algebra { - val cleanedVariables = variables.toSet() - if (cleanedVariables.isEmpty()) return this@antiderivativeWithRespectTo - LabeledPolynomial( - buildMap(coefficients.size) { - coefficients - .forEach { (degs, c) -> - val newDegs = buildMap(degs.size + 1) { - for (variable in cleanedVariables) put(variable, 1u) - for ((vari, deg) in degs) put(vari, deg + getOrElse(vari) { 0u }) - } - put( - newDegs, - cleanedVariables.fold(c) { acc, variable -> acc / multiplyByDoubling(one, newDegs[variable]!!) } - ) - } - } - ) -} - -/** - * Returns algebraic derivative of received polynomial. - */ -@UnstableKMathAPI -public fun > LabeledPolynomial.nthAntiderivativeWithRespectTo( - algebra: A, - variable: Symbol, - order: UInt -): LabeledPolynomial = algebra { - if (order == 0u) return this@nthAntiderivativeWithRespectTo - LabeledPolynomial( - buildMap(coefficients.size) { - coefficients - .forEach { (degs, c) -> - val newDegs = buildMap(degs.size + 1) { - put(variable, order) - for ((vari, deg) in degs) put(vari, deg + getOrElse(vari) { 0u }) - } - put( - newDegs, - newDegs[variable]!!.let { deg -> - (deg downTo deg - order + 1u) - .fold(c) { acc, ord -> acc / multiplyByDoubling(one, ord) } - } - ) - } - } - ) -} - -/** - * Returns algebraic derivative of received polynomial. - */ -@UnstableKMathAPI -public fun > LabeledPolynomial.nthAntiderivativeWithRespectTo( - algebra: A, - variablesAndOrders: Map, -): LabeledPolynomial = algebra { - val filteredVariablesAndOrders = variablesAndOrders.filterValues { it != 0u } - if (filteredVariablesAndOrders.isEmpty()) return this@nthAntiderivativeWithRespectTo - LabeledPolynomial( - buildMap(coefficients.size) { - coefficients - .forEach { (degs, c) -> - val newDegs = buildMap(degs.size + 1) { - for ((variable, order) in filteredVariablesAndOrders) put(variable, order) - for ((vari, deg) in degs) put(vari, deg + getOrElse(vari) { 0u }) - } - put( - newDegs, - filteredVariablesAndOrders.entries.fold(c) { acc1, (index, order) -> - newDegs[index]!!.let { deg -> - (deg downTo deg - order + 1u) - .fold(acc1) { acc2, ord -> acc2 / multiplyByDoubling(one, ord) } - } - } - ) - } - } - ) -} \ No newline at end of file diff --git a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/labeledRationalFunctionUtil.kt b/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/labeledRationalFunctionUtil.kt deleted file mode 100644 index 583160cf4..000000000 --- a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/labeledRationalFunctionUtil.kt +++ /dev/null @@ -1,33 +0,0 @@ -/* - * Copyright 2018-2021 KMath contributors. - * Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file. - */ - -package space.kscience.kmath.functions - -import space.kscience.kmath.operations.Ring -import kotlin.contracts.InvocationKind -import kotlin.contracts.contract - - -/** - * Creates a [LabeledRationalFunctionSpace] over a received ring. - */ -public fun > A.labeledRationalFunction(): LabeledRationalFunctionSpace = - LabeledRationalFunctionSpace(this) - -/** - * Creates a [LabeledRationalFunctionSpace]'s scope over a received ring. - */ -public inline fun , R> A.labeledRationalFunction(block: LabeledRationalFunctionSpace.() -> R): R { - contract { callsInPlace(block, InvocationKind.EXACTLY_ONCE) } - return LabeledRationalFunctionSpace(this).block() -} - -//fun > LabeledRationalFunction.reduced(): LabeledRationalFunction { -// val greatestCommonDivider = polynomialGCD(numerator, denominator) -// return LabeledRationalFunction( -// numerator / greatestCommonDivider, -// denominator / greatestCommonDivider -// ) -//} \ No newline at end of file diff --git a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/listConstructors.kt b/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/listConstructors.kt index 9498c77ca..35c736914 100644 --- a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/listConstructors.kt +++ b/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/listConstructors.kt @@ -3,58 +3,95 @@ * Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file. */ +/* + * Copyright 2018-2021 KMath contributors. + * Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file. + */ + package space.kscience.kmath.functions import space.kscience.kmath.operations.Ring /** - * Returns a [ListPolynomial] instance with given [coefficients]. The collection of coefficients will be reversed if - * [reverse] parameter is true. + * Constructs a [ListPolynomial] instance with provided [coefficients]. The collection of coefficients will be reversed + * if [reverse] parameter is true. */ @Suppress("FunctionName") public fun ListPolynomial(coefficients: List, reverse: Boolean = false): ListPolynomial = ListPolynomial(with(coefficients) { if (reverse) reversed() else this }) /** - * Returns a [ListPolynomial] instance with given [coefficients]. The collection of coefficients will be reversed if - * [reverse] parameter is true. + * Constructs a [ListPolynomial] instance with provided [coefficients]. The collection of coefficients will be reversed + * if [reverse] parameter is true. */ @Suppress("FunctionName") public fun ListPolynomial(vararg coefficients: C, reverse: Boolean = false): ListPolynomial = ListPolynomial(with(coefficients) { if (reverse) reversed() else toList() }) +/** + * Represents [this] constant as a [ListPolynomial]. + */ public fun C.asListPolynomial() : ListPolynomial = ListPolynomial(listOf(this)) // Waiting for context receivers :( FIXME: Replace with context receivers when they will be available +/** + * Constructs [ListRationalFunction] instance with numerator and denominator constructed with provided + * [numeratorCoefficients] and [denominatorCoefficients]. The both collections of coefficients will be reversed if + * [reverse] parameter is true. + */ @Suppress("FunctionName") public fun ListRationalFunction(numeratorCoefficients: List, denominatorCoefficients: List, reverse: Boolean = false): ListRationalFunction = ListRationalFunction( ListPolynomial( with(numeratorCoefficients) { if (reverse) reversed() else this } ), ListPolynomial( with(denominatorCoefficients) { if (reverse) reversed() else this } ) ) -@Suppress("FunctionName") -public fun > ListRationalFunctionSpace.ListRationalFunction(numerator: ListPolynomial): ListRationalFunction = - ListRationalFunction(numerator, polynomialOne) +/** + * Constructs [ListRationalFunction] instance with provided [numerator] and unit denominator. + */ @Suppress("FunctionName") public fun > A.ListRationalFunction(numerator: ListPolynomial): ListRationalFunction = ListRationalFunction(numerator, ListPolynomial(listOf(one))) +/** + * Constructs [ListRationalFunction] instance with provided [numerator] and unit denominator. + */ @Suppress("FunctionName") -public fun > ListRationalFunctionSpace.ListRationalFunction(numeratorCoefficients: List, reverse: Boolean = false): ListRationalFunction = - ListRationalFunction( - ListPolynomial( with(numeratorCoefficients) { if (reverse) reversed() else this } ), - polynomialOne - ) +public fun > ListRationalFunctionSpace.ListRationalFunction(numerator: ListPolynomial): ListRationalFunction = + ListRationalFunction(numerator, polynomialOne) +/** + * Constructs [ListRationalFunction] instance with numerator constructed with provided [numeratorCoefficients] and unit + * denominator. The collection of numerator coefficients will be reversed if [reverse] parameter is true. + */ @Suppress("FunctionName") public fun > A.ListRationalFunction(numeratorCoefficients: List, reverse: Boolean = false): ListRationalFunction = ListRationalFunction( ListPolynomial( with(numeratorCoefficients) { if (reverse) reversed() else this } ), ListPolynomial(listOf(one)) ) +/** + * Constructs [ListRationalFunction] instance with numerator constructed with provided [numeratorCoefficients] and unit + * denominator. The collection of numerator coefficients will be reversed if [reverse] parameter is true. + */ +@Suppress("FunctionName") +public fun > ListRationalFunctionSpace.ListRationalFunction(numeratorCoefficients: List, reverse: Boolean = false): ListRationalFunction = + ListRationalFunction( + ListPolynomial( with(numeratorCoefficients) { if (reverse) reversed() else this } ), + polynomialOne + ) +/** + * Represents [this] constant as a rational function. + */ // FIXME: When context receivers will be ready, delete this function and uncomment the following two +public fun > C.asListRationalFunction(ring: A) : ListRationalFunction = ring.ListRationalFunction(asListPolynomial()) +///** +// * Represents [this] constant as a rational function. +// */ //context(A) //public fun > C.asListRationalFunction() : ListRationalFunction = ListRationalFunction(asListPolynomial()) +///** +// * Represents [this] constant as a rational function. +// */ //context(ListRationalFunctionSpace) //public fun > C.asListRationalFunction() : ListRationalFunction = ListRationalFunction(asListPolynomial()) \ No newline at end of file diff --git a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/listPolynomialUtil.kt b/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/listPolynomialUtil.kt deleted file mode 100644 index 50313cab9..000000000 --- a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/listPolynomialUtil.kt +++ /dev/null @@ -1,233 +0,0 @@ -/* - * Copyright 2018-2021 KMath contributors. - * Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file. - */ - -package space.kscience.kmath.functions - -import space.kscience.kmath.misc.UnstableKMathAPI -import space.kscience.kmath.operations.* -import kotlin.contracts.InvocationKind -import kotlin.contracts.contract -import kotlin.math.max -import kotlin.math.min -import kotlin.math.pow - - -/** - * Removes zeros on the end of the coefficient list of polynomial. - */ -//context(PolynomialSpace) -//fun > Polynomial.removeZeros() : Polynomial = -// if (degree > -1) Polynomial(coefficients.subList(0, degree + 1)) else zero - -/** - * Creates a [ListPolynomialSpace] over a received ring. - */ -public fun > A.listPolynomial(): ListPolynomialSpace = - ListPolynomialSpace(this) - -/** - * Creates a [ListPolynomialSpace]'s scope over a received ring. - */ -public inline fun , R> A.listPolynomial(block: ListPolynomialSpace.() -> R): R { - contract { callsInPlace(block, InvocationKind.EXACTLY_ONCE) } - return ListPolynomialSpace(this).block() -} - -/** - * Creates a [ScalableListPolynomialSpace] over a received scalable ring. - */ -public fun A.scalableListPolynomial(): ScalableListPolynomialSpace where A : Ring, A : ScaleOperations = - ScalableListPolynomialSpace(this) - -/** - * Creates a [ScalableListPolynomialSpace]'s scope over a received scalable ring. - */ -public inline fun A.scalableListPolynomial(block: ScalableListPolynomialSpace.() -> R): R where A : Ring, A : ScaleOperations { - contract { callsInPlace(block, InvocationKind.EXACTLY_ONCE) } - return ScalableListPolynomialSpace(this).block() -} - -@Suppress("NOTHING_TO_INLINE") -internal inline fun copyTo( - origin: List, - originDegree: Int, - target: MutableList, -) { - for (deg in 0 .. originDegree) target[deg] = origin[deg] -} - -@Suppress("NOTHING_TO_INLINE") -internal inline fun multiplyAddingToUpdater( - ring: Ring, - multiplicand: MutableList, - multiplicandDegree: Int, - multiplier: List, - multiplierDegree: Int, - updater: MutableList, - zero: C, -) { - multiplyAddingTo( - ring = ring, - multiplicand = multiplicand, - multiplicandDegree = multiplicandDegree, - multiplier = multiplier, - multiplierDegree = multiplierDegree, - target = updater - ) - for (updateDeg in 0 .. multiplicandDegree + multiplierDegree) { - multiplicand[updateDeg] = updater[updateDeg] - updater[updateDeg] = zero - } -} - -@Suppress("NOTHING_TO_INLINE") -internal inline fun multiplyAddingTo( - ring: Ring, - multiplicand: List, - multiplicandDegree: Int, - multiplier: List, - multiplierDegree: Int, - target: MutableList -) = ring { - for (d in 0 .. multiplicandDegree + multiplierDegree) - for (k in max(0, d - multiplierDegree)..min(multiplicandDegree, d)) - target[d] += multiplicand[k] * multiplier[d - k] -} - -/** - * Evaluates the value of the given double polynomial for given double argument. - */ -public fun ListPolynomial.substitute(arg: Double): Double = - coefficients.reduceIndexedOrNull { index, acc, c -> - acc + c * arg.pow(index) - } ?: .0 - -/** - * Evaluates the value of the given polynomial for given argument. - * - * It is an implementation of [Horner's method](https://en.wikipedia.org/wiki/Horner%27s_method). - */ -public fun ListPolynomial.substitute(ring: Ring, arg: C): C = ring { - if (coefficients.isEmpty()) return@ring zero - var result: C = coefficients.last() - for (j in coefficients.size - 2 downTo 0) { - result = (arg * result) + coefficients[j] - } - return result -} - -public fun ListPolynomial.substitute(ring: Ring, arg: ListPolynomial) : ListPolynomial = ring { - if (coefficients.isEmpty()) return ListPolynomial(emptyList()) - - val thisDegree = coefficients.lastIndex - if (thisDegree == -1) return ListPolynomial(emptyList()) - val argDegree = arg.coefficients.lastIndex - if (argDegree == -1) return coefficients[0].asListPolynomial() - val constantZero = zero - val resultCoefs: MutableList = MutableList(thisDegree * argDegree + 1) { constantZero } - resultCoefs[0] = coefficients[thisDegree] - val resultCoefsUpdate: MutableList = MutableList(thisDegree * argDegree + 1) { constantZero } - var resultDegree = 0 - for (deg in thisDegree - 1 downTo 0) { - resultCoefsUpdate[0] = coefficients[deg] - multiplyAddingToUpdater( - ring = ring, - multiplicand = resultCoefs, - multiplicandDegree = resultDegree, - multiplier = arg.coefficients, - multiplierDegree = argDegree, - updater = resultCoefsUpdate, - zero = constantZero - ) - resultDegree += argDegree - } - - return ListPolynomial(resultCoefs) -} - -/** - * Represent the polynomial as a regular context-less function. - */ -public fun > ListPolynomial.asFunction(ring: A): (C) -> C = { substitute(ring, it) } - -/** - * Represent the polynomial as a regular context-less function. - */ -public fun > ListPolynomial.asPolynomialFunctionOver(ring: A): (ListPolynomial) -> ListPolynomial = { substitute(ring, it) } - -/** - * Returns algebraic derivative of received polynomial. - */ -@UnstableKMathAPI -public fun ListPolynomial.derivative( - algebra: A, -): ListPolynomial where A : Ring, A : NumericAlgebra = algebra { - ListPolynomial( - buildList(max(0, coefficients.size - 1)) { - for (deg in 1 .. coefficients.lastIndex) add(number(deg) * coefficients[deg]) - } - ) -} - -/** - * Returns algebraic derivative of received polynomial. - */ -@UnstableKMathAPI -public fun ListPolynomial.nthDerivative( - algebra: A, - order: Int, -): ListPolynomial where A : Ring, A : NumericAlgebra = algebra { - require(order >= 0) { "Order of derivative must be non-negative" } - ListPolynomial( - buildList(max(0, coefficients.size - order)) { - for (deg in order.. coefficients.lastIndex) - add((deg - order + 1 .. deg).fold(coefficients[deg]) { acc, d -> acc * number(d) }) - } - ) -} - -/** - * Returns algebraic antiderivative of received polynomial. - */ -@UnstableKMathAPI -public fun ListPolynomial.antiderivative( - algebra: A, -): ListPolynomial where A : Field, A : NumericAlgebra = algebra { - ListPolynomial( - buildList(coefficients.size + 1) { - add(zero) - coefficients.mapIndexedTo(this) { index, t -> t / number(index + 1) } - } - ) -} - -/** - * Returns algebraic antiderivative of received polynomial. - */ -@UnstableKMathAPI -public fun ListPolynomial.nthAntiderivative( - algebra: A, - order: Int, -): ListPolynomial where A : Field, A : NumericAlgebra = algebra { - require(order >= 0) { "Order of antiderivative must be non-negative" } - ListPolynomial( - buildList(coefficients.size + order) { - repeat(order) { add(zero) } - coefficients.mapIndexedTo(this) { index, c -> (1..order).fold(c) { acc, i -> acc / number(index + i) } } - } - ) -} - -/** - * Compute a definite integral of a given polynomial in a [range] - */ -@UnstableKMathAPI -public fun > ListPolynomial.integrate( - algebra: Field, - range: ClosedRange, -): C = algebra { - val integral = antiderivative(algebra) - integral.substitute(algebra, range.endInclusive) - integral.substitute(algebra, range.start) -} \ No newline at end of file diff --git a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/listUtil.kt b/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/listUtil.kt new file mode 100644 index 000000000..127dd8c7a --- /dev/null +++ b/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/listUtil.kt @@ -0,0 +1,268 @@ +/* + * Copyright 2018-2021 KMath contributors. + * Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file. + */ + +package space.kscience.kmath.functions + +import space.kscience.kmath.misc.UnstableKMathAPI +import space.kscience.kmath.operations.* +import kotlin.contracts.InvocationKind +import kotlin.contracts.contract +import kotlin.math.max +import kotlin.math.pow + + +/** + * Creates a [ListPolynomialSpace] over a received ring. + */ +public fun > A.listPolynomialSpace(): ListPolynomialSpace = + ListPolynomialSpace(this) + +/** + * Creates a [ListPolynomialSpace]'s scope over a received ring. + */ // TODO: When context will be ready move [ListPolynomialSpace] and add [A] to context receivers of [block] +public inline fun , R> A.listPolynomialSpace(block: ListPolynomialSpace.() -> R): R { + contract { callsInPlace(block, InvocationKind.EXACTLY_ONCE) } + return ListPolynomialSpace(this).block() +} + +/** + * Creates a [ScalableListPolynomialSpace] over a received scalable ring. + */ +public fun A.scalableListPolynomialSpace(): ScalableListPolynomialSpace where A : Ring, A : ScaleOperations = + ScalableListPolynomialSpace(this) + +/** + * Creates a [ScalableListPolynomialSpace]'s scope over a received scalable ring. + */ // TODO: When context will be ready move [ListPolynomialSpace] and add [A] to context receivers of [block] +public inline fun A.scalableListPolynomialSpace(block: ScalableListPolynomialSpace.() -> R): R where A : Ring, A : ScaleOperations { + contract { callsInPlace(block, InvocationKind.EXACTLY_ONCE) } + return ScalableListPolynomialSpace(this).block() +} + +/** + * Creates a [ListRationalFunctionSpace] over a received ring. + */ +public fun > A.listRationalFunctionSpace(): ListRationalFunctionSpace = + ListRationalFunctionSpace(this) + +/** + * Creates a [ListRationalFunctionSpace]'s scope over a received ring. + */ // TODO: When context will be ready move [ListRationalFunctionSpace] and add [A] to context receivers of [block] +public inline fun , R> A.listRationalFunctionSpace(block: ListRationalFunctionSpace.() -> R): R { + contract { callsInPlace(block, InvocationKind.EXACTLY_ONCE) } + return ListRationalFunctionSpace(this).block() +} + + +/** + * Evaluates value of [this] Double polynomial on provided Double argument. + */ +public fun ListPolynomial.substitute(arg: Double): Double = + coefficients.reduceIndexedOrNull { index, acc, c -> + acc + c * arg.pow(index) + } ?: .0 + +/** + * Evaluates value of [this] polynomial on provided argument. + * + * It is an implementation of [Horner's method](https://en.wikipedia.org/wiki/Horner%27s_method). + */ +public fun ListPolynomial.substitute(ring: Ring, arg: C): C = ring { + if (coefficients.isEmpty()) return zero + var result: C = coefficients.last() + for (j in coefficients.size - 2 downTo 0) { + result = (arg * result) + coefficients[j] + } + return result +} + +/** + * Substitutes provided polynomial [arg] into [this] polynomial. + * + * It is an implementation of [Horner's method](https://en.wikipedia.org/wiki/Horner%27s_method). + */ // TODO: To optimize boxing +public fun ListPolynomial.substitute(ring: Ring, arg: ListPolynomial) : ListPolynomial = + ring.listPolynomialSpace { + if (coefficients.isEmpty()) return zero + var result: ListPolynomial = coefficients.last().asPolynomial() + for (j in coefficients.size - 2 downTo 0) { + result = (arg * result) + coefficients[j] + } + return result + } + +/** + * Substitutes provided rational function [arg] into [this] polynomial. + * + * It is an implementation of [Horner's method](https://en.wikipedia.org/wiki/Horner%27s_method). + */ // TODO: To optimize boxing +public fun ListPolynomial.substitute(ring: Ring, arg: ListRationalFunction) : ListRationalFunction = + ring.listRationalFunctionSpace { + if (coefficients.isEmpty()) return zero + var result: ListRationalFunction = coefficients.last().asRationalFunction() + for (j in coefficients.size - 2 downTo 0) { + result = (arg * result) + coefficients[j] + } + return result + } + +/** + * Evaluates value of [this] Double rational function in provided Double argument. + */ +public fun ListRationalFunction.substitute(arg: Double): Double = + numerator.substitute(arg) / denominator.substitute(arg) + +/** + * Evaluates value of [this] polynomial for provided argument. + * + * It is an implementation of [Horner's method](https://en.wikipedia.org/wiki/Horner%27s_method). + */ +public fun ListRationalFunction.substitute(ring: Field, arg: C): C = ring { + numerator.substitute(ring, arg) / denominator.substitute(ring, arg) +} + +/** + * Substitutes provided polynomial [arg] into [this] rational function. + */ // TODO: To optimize boxing +public fun ListRationalFunction.substitute(ring: Ring, arg: ListPolynomial) : ListRationalFunction = + ring.listRationalFunctionSpace { + numerator.substitute(ring, arg) / denominator.substitute(ring, arg) + } + +/** + * Substitutes provided rational function [arg] into [this] rational function. + */ // TODO: To optimize boxing +public fun ListRationalFunction.substitute(ring: Ring, arg: ListRationalFunction) : ListRationalFunction = + ring.listRationalFunctionSpace { + numerator.substitute(ring, arg) / denominator.substitute(ring, arg) + } + +/** + * Represent [this] polynomial as a regular context-less function. + */ +public fun > ListPolynomial.asFunctionOver(ring: A): (C) -> C = { substitute(ring, it) } + +/** + * Represent [this] polynomial as a regular context-less function. + */ +public fun > ListPolynomial.asPolynomialFunctionOver(ring: A): (ListPolynomial) -> ListPolynomial = { substitute(ring, it) } + +/** + * Represent [this] polynomial as a regular context-less function. + */ +public fun > ListPolynomial.asFunctionOfRationalFunctionOver(ring: A): (ListPolynomial) -> ListPolynomial = { substitute(ring, it) } + +/** + * Represent [this] rational function as a regular context-less function. + */ +public fun > ListRationalFunction.asFunctionOver(ring: A): (C) -> C = { substitute(ring, it) } + +/** + * Represent [this] rational function as a regular context-less function. + */ +public fun > ListRationalFunction.asPolynomialFunctionOver(ring: A): (ListPolynomial) -> ListRationalFunction = { substitute(ring, it) } + +/** + * Represent [this] rational function as a regular context-less function. + */ +public fun > ListRationalFunction.asFunctionOfRationalFunctionOver(ring: A): (ListPolynomial) -> ListRationalFunction = { substitute(ring, it) } + +/** + * Returns algebraic derivative of received polynomial. + */ +@UnstableKMathAPI +public fun ListPolynomial.derivative( + ring: A, +): ListPolynomial where A : Ring, A : NumericAlgebra = ring { + ListPolynomial( + buildList(max(0, coefficients.size - 1)) { + for (deg in 1 .. coefficients.lastIndex) add(number(deg) * coefficients[deg]) + } + ) +} + +/** + * Returns algebraic derivative of received polynomial of specified [order]. The [order] should be non-negative integer. + */ +@UnstableKMathAPI +public fun ListPolynomial.nthDerivative( + ring: A, + order: Int, +): ListPolynomial where A : Ring, A : NumericAlgebra = ring { + require(order >= 0) { "Order of derivative must be non-negative" } + ListPolynomial( + buildList(max(0, coefficients.size - order)) { + for (deg in order.. coefficients.lastIndex) + add((deg - order + 1 .. deg).fold(coefficients[deg]) { acc, d -> acc * number(d) }) + } + ) +} + +/** + * Returns algebraic antiderivative of received polynomial. + */ +@UnstableKMathAPI +public fun ListPolynomial.antiderivative( + ring: A, +): ListPolynomial where A : Field, A : NumericAlgebra = ring { + ListPolynomial( + buildList(coefficients.size + 1) { + add(zero) + coefficients.mapIndexedTo(this) { index, t -> t / number(index + 1) } + } + ) +} + +/** + * Returns algebraic antiderivative of received polynomial of specified [order]. The [order] should be non-negative integer. + */ +@UnstableKMathAPI +public fun ListPolynomial.nthAntiderivative( + ring: A, + order: Int, +): ListPolynomial where A : Field, A : NumericAlgebra = ring { + require(order >= 0) { "Order of antiderivative must be non-negative" } + ListPolynomial( + buildList(coefficients.size + order) { + repeat(order) { add(zero) } + coefficients.mapIndexedTo(this) { index, c -> (1..order).fold(c) { acc, i -> acc / number(index + i) } } + } + ) +} + +/** + * Computes a definite integral of [this] polynomial in the specified [range]. + */ +@UnstableKMathAPI +public fun > ListPolynomial.integrate( + ring: Field, + range: ClosedRange, +): C = ring { + val antiderivative = antiderivative(ring) + antiderivative.substitute(ring, range.endInclusive) - antiderivative.substitute(ring, range.start) +} + +/** + * Returns algebraic derivative of received rational function. + */ +@UnstableKMathAPI +public fun ListRationalFunction.derivative( + ring: A, +): ListRationalFunction where A : Ring, A : NumericAlgebra = ring.listRationalFunctionSpace { + ListRationalFunction( + numerator.derivative(ring) * denominator - numerator * denominator.derivative(ring), + denominator * denominator + ) +} + +/** + * Returns algebraic derivative of received rational function of specified [order]. The [order] should be non-negative integer. + */ +@UnstableKMathAPI +public tailrec fun ListRationalFunction.nthDerivative( + ring: A, + order: Int, +): ListRationalFunction where A : Ring, A : NumericAlgebra = + if (order == 0) this else derivative(ring).nthDerivative(ring, order - 1) \ No newline at end of file diff --git a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/listRationalFunctionUtil.kt b/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/listUtilOptimized.kt similarity index 72% rename from kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/listRationalFunctionUtil.kt rename to kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/listUtilOptimized.kt index 367212588..6eb3a1dc7 100644 --- a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/listRationalFunctionUtil.kt +++ b/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/listUtilOptimized.kt @@ -5,41 +5,91 @@ package space.kscience.kmath.functions -import space.kscience.kmath.operations.Field import space.kscience.kmath.operations.Ring import space.kscience.kmath.operations.invoke -import kotlin.contracts.InvocationKind -import kotlin.contracts.contract import kotlin.math.max +import kotlin.math.min -/** - * Creates a [ListRationalFunctionSpace] over a received ring. - */ -public fun > A.listRationalFunction(): ListRationalFunctionSpace = - ListRationalFunctionSpace(this) - -/** - * Creates a [ListRationalFunctionSpace]'s scope over a received ring. - */ -public inline fun , R> A.listRationalFunction(block: ListRationalFunctionSpace.() -> R): R { - contract { callsInPlace(block, InvocationKind.EXACTLY_ONCE) } - return ListRationalFunctionSpace(this).block() +// TODO: Optimized copies of substitution and invocation +@UnstablePolynomialBoxingOptimization +@Suppress("NOTHING_TO_INLINE") +internal inline fun copyTo( + origin: List, + originDegree: Int, + target: MutableList, +) { + for (deg in 0 .. originDegree) target[deg] = origin[deg] } -/** - * Evaluates the value of the given double polynomial for given double argument. - */ -public fun ListRationalFunction.substitute(arg: Double): Double = - numerator.substitute(arg) / denominator.substitute(arg) +@UnstablePolynomialBoxingOptimization +@Suppress("NOTHING_TO_INLINE") +internal inline fun multiplyAddingToUpdater( + ring: Ring, + multiplicand: MutableList, + multiplicandDegree: Int, + multiplier: List, + multiplierDegree: Int, + updater: MutableList, + zero: C, +) { + multiplyAddingTo( + ring = ring, + multiplicand = multiplicand, + multiplicandDegree = multiplicandDegree, + multiplier = multiplier, + multiplierDegree = multiplierDegree, + target = updater + ) + for (updateDeg in 0 .. multiplicandDegree + multiplierDegree) { + multiplicand[updateDeg] = updater[updateDeg] + updater[updateDeg] = zero + } +} -/** - * Evaluates the value of the given polynomial for given argument. - * - * It is an implementation of [Horner's method](https://en.wikipedia.org/wiki/Horner%27s_method). - */ -public fun ListRationalFunction.substitute(ring: Field, arg: C): C = ring { - numerator.substitute(ring, arg) / denominator.substitute(ring, arg) +@UnstablePolynomialBoxingOptimization +@Suppress("NOTHING_TO_INLINE") +internal inline fun multiplyAddingTo( + ring: Ring, + multiplicand: List, + multiplicandDegree: Int, + multiplier: List, + multiplierDegree: Int, + target: MutableList +) = ring { + for (d in 0 .. multiplicandDegree + multiplierDegree) + for (k in max(0, d - multiplierDegree)..min(multiplicandDegree, d)) + target[d] += multiplicand[k] * multiplier[d - k] +} + +@UnstablePolynomialBoxingOptimization +public fun ListPolynomial.substitute2(ring: Ring, arg: ListPolynomial) : ListPolynomial = ring { + if (coefficients.isEmpty()) return ListPolynomial(emptyList()) + + val thisDegree = coefficients.lastIndex + if (thisDegree == -1) return ListPolynomial(emptyList()) + val argDegree = arg.coefficients.lastIndex + if (argDegree == -1) return coefficients[0].asListPolynomial() + val constantZero = zero + val resultCoefs: MutableList = MutableList(thisDegree * argDegree + 1) { constantZero } + resultCoefs[0] = coefficients[thisDegree] + val resultCoefsUpdate: MutableList = MutableList(thisDegree * argDegree + 1) { constantZero } + var resultDegree = 0 + for (deg in thisDegree - 1 downTo 0) { + resultCoefsUpdate[0] = coefficients[deg] + multiplyAddingToUpdater( + ring = ring, + multiplicand = resultCoefs, + multiplicandDegree = resultDegree, + multiplier = arg.coefficients, + multiplierDegree = argDegree, + updater = resultCoefsUpdate, + zero = constantZero + ) + resultDegree += argDegree + } + + return ListPolynomial(resultCoefs) } /** @@ -52,6 +102,7 @@ public fun ListRationalFunction.substitute(ring: Field, arg: C): C = r * * Used in [ListPolynomial.substitute] and [ListRationalFunction.substitute] for performance optimisation. */ // TODO: Дописать +@UnstablePolynomialBoxingOptimization internal fun ListPolynomial.substituteRationalFunctionTakeNumerator(ring: Ring, arg: ListRationalFunction): ListPolynomial = ring { if (coefficients.isEmpty()) return ListPolynomial(emptyList()) @@ -196,26 +247,4 @@ internal fun ListPolynomial.substituteRationalFunctionTakeNumerator(ring: end = thisDegree + 1 ) ) -} - -//operator fun > RationalFunction.invoke(arg: T): T = numerator(arg) / denominator(arg) -// -//fun > RationalFunction.reduced(): RationalFunction = -// polynomialGCD(numerator, denominator).let { -// RationalFunction( -// numerator / it, -// denominator / it -// ) -// } - -///** -// * Returns result of applying formal derivative to the polynomial. -// * -// * @param T Field where we are working now. -// * @return Result of the operator. -// */ -//fun > RationalFunction.derivative() = -// RationalFunction( -// numerator.derivative() * denominator - denominator.derivative() * numerator, -// denominator * denominator -// ) \ No newline at end of file +} \ No newline at end of file diff --git a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/misc.kt b/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/misc.kt new file mode 100644 index 000000000..8b6fac39e --- /dev/null +++ b/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/misc.kt @@ -0,0 +1,13 @@ +/* + * Copyright 2018-2021 KMath contributors. + * Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file. + */ + +package space.kscience.kmath.functions + + +@RequiresOptIn( + message = "It's copy of operation with optimized boxing. It's currently unstable.", + level = RequiresOptIn.Level.ERROR +) +internal annotation class UnstablePolynomialBoxingOptimization \ No newline at end of file diff --git a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/numberedConstructors.kt b/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/numberedConstructors.kt deleted file mode 100644 index dca8a0cff..000000000 --- a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/numberedConstructors.kt +++ /dev/null @@ -1,195 +0,0 @@ -/* - * Copyright 2018-2021 KMath contributors. - * Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file. - */ - -package space.kscience.kmath.functions - -import space.kscience.kmath.misc.UnstableKMathAPI -import space.kscience.kmath.operations.Ring - - -/** - * Returns the same degrees' description of the monomial, but without extra zero degrees on the end. - */ -internal fun List.cleanUp() = subList(0, indexOfLast { it != 0U } + 1) - -// Waiting for context receivers :( FIXME: Replace with context receivers when they will be available - -@Suppress("FunctionName", "NOTHING_TO_INLINE") -internal inline fun > NumberedPolynomialSpace.NumberedPolynomial(coefs: Map, C>, toCheckInput: Boolean = true) : NumberedPolynomial = ring.NumberedPolynomial(coefs, toCheckInput) -@Suppress("FunctionName", "NOTHING_TO_INLINE") -internal inline fun > NumberedRationalFunctionSpace.NumberedPolynomial(coefs: Map, C>, toCheckInput: Boolean = true) : NumberedPolynomial = ring.NumberedPolynomial(coefs, toCheckInput) -@Suppress("FunctionName") -internal fun > A.NumberedPolynomial(coefs: Map, C>, toCheckInput: Boolean = true) : NumberedPolynomial { - if (!toCheckInput) return NumberedPolynomial(coefs) - - val fixedCoefs = mutableMapOf, C>() - - for (entry in coefs) { - val key = entry.key.cleanUp() - val value = entry.value - fixedCoefs[key] = if (key in fixedCoefs) fixedCoefs[key]!! + value else value - } - - return NumberedPolynomial(fixedCoefs) -} - -@Suppress("FunctionName", "NOTHING_TO_INLINE") -internal inline fun > NumberedPolynomialSpace.NumberedPolynomial(pairs: Collection, C>>, toCheckInput: Boolean = true) : NumberedPolynomial = ring.NumberedPolynomial(pairs, toCheckInput) -@Suppress("FunctionName", "NOTHING_TO_INLINE") -internal inline fun > NumberedRationalFunctionSpace.NumberedPolynomial(pairs: Collection, C>>, toCheckInput: Boolean = true) : NumberedPolynomial = ring.NumberedPolynomial(pairs, toCheckInput) -@Suppress("FunctionName") -internal fun > A.NumberedPolynomial(pairs: Collection, C>>, toCheckInput: Boolean = true) : NumberedPolynomial { - if (!toCheckInput) return NumberedPolynomial(pairs.toMap()) - - val fixedCoefs = mutableMapOf, C>() - - for (entry in pairs) { - val key = entry.first.cleanUp() - val value = entry.second - fixedCoefs[key] = if (key in fixedCoefs) fixedCoefs[key]!! + value else value - } - - return NumberedPolynomial(fixedCoefs) -} - -@Suppress("FunctionName", "NOTHING_TO_INLINE") -internal inline fun > NumberedPolynomialSpace.NumberedPolynomial(vararg pairs: Pair, C>, toCheckInput: Boolean = true) : NumberedPolynomial = ring.NumberedPolynomial(pairs = pairs, toCheckInput = toCheckInput) -@Suppress("FunctionName", "NOTHING_TO_INLINE") -internal inline fun > NumberedRationalFunctionSpace.NumberedPolynomial(vararg pairs: Pair, C>, toCheckInput: Boolean = true) : NumberedPolynomial = ring.NumberedPolynomial(pairs = pairs, toCheckInput = toCheckInput) -@Suppress("FunctionName") -internal fun > A.NumberedPolynomial(vararg pairs: Pair, C>, toCheckInput: Boolean = true) : NumberedPolynomial { - if (!toCheckInput) return NumberedPolynomial(pairs.toMap()) - - val fixedCoefs = mutableMapOf, C>() - - for (entry in pairs) { - val key = entry.first.cleanUp() - val value = entry.second - fixedCoefs[key] = if (key in fixedCoefs) fixedCoefs[key]!! + value else value - } - - return NumberedPolynomial(fixedCoefs) -} - -@Suppress("FunctionName") -public fun > A.NumberedPolynomial(coefs: Map, C>) : NumberedPolynomial = NumberedPolynomial(coefs, toCheckInput = true) -@Suppress("FunctionName") -public fun > NumberedPolynomialSpace.NumberedPolynomial(coefs: Map, C>) : NumberedPolynomial = NumberedPolynomial(coefs, toCheckInput = true) -@Suppress("FunctionName") -public fun > NumberedRationalFunctionSpace.NumberedPolynomial(coefs: Map, C>) : NumberedPolynomial = NumberedPolynomial(coefs, toCheckInput = true) - -@Suppress("FunctionName") -public fun > A.NumberedPolynomial(pairs: Collection, C>>) : NumberedPolynomial = NumberedPolynomial(pairs, toCheckInput = true) -@Suppress("FunctionName") -public fun > NumberedPolynomialSpace.NumberedPolynomial(pairs: Collection, C>>) : NumberedPolynomial = NumberedPolynomial(pairs, toCheckInput = true) -@Suppress("FunctionName") -public fun > NumberedRationalFunctionSpace.NumberedPolynomial(pairs: Collection, C>>) : NumberedPolynomial = NumberedPolynomial(pairs, toCheckInput = true) - -@Suppress("FunctionName") -public fun > A.NumberedPolynomial(vararg pairs: Pair, C>) : NumberedPolynomial = NumberedPolynomial(*pairs, toCheckInput = true) -@Suppress("FunctionName") -public fun > NumberedPolynomialSpace.NumberedPolynomial(vararg pairs: Pair, C>) : NumberedPolynomial = NumberedPolynomial(*pairs, toCheckInput = true) -@Suppress("FunctionName") -public fun > NumberedRationalFunctionSpace.NumberedPolynomial(vararg pairs: Pair, C>) : NumberedPolynomial = NumberedPolynomial(*pairs, toCheckInput = true) - -public fun C.asNumberedPolynomial() : NumberedPolynomial = NumberedPolynomial(mapOf(emptyList() to this)) - -@DslMarker -@UnstableKMathAPI -internal annotation class NumberedPolynomialConstructorDSL - -@UnstableKMathAPI -@NumberedPolynomialConstructorDSL -public class NumberedPolynomialTermSignatureBuilder { - private val signature: MutableList = ArrayList() - public fun build(): List = signature - public infix fun Int.inPowerOf(deg: UInt) { - if (this > signature.lastIndex) { - signature.addAll(List(this - signature.lastIndex - 1) { 0u }) - signature.add(deg) - } else { - signature[this] = deg - } - } - @Suppress("NOTHING_TO_INLINE") - public inline infix fun Int.pow(deg: UInt): Unit = this inPowerOf deg - @Suppress("NOTHING_TO_INLINE") - public inline infix fun Int.`in`(deg: UInt): Unit = this inPowerOf deg - @Suppress("NOTHING_TO_INLINE") - public inline infix fun Int.of(deg: UInt): Unit = this inPowerOf deg -} - -@UnstableKMathAPI -public class NumberedPolynomialBuilder(private val zero: C, private val add: (C, C) -> C, capacity: Int = 0) { - private val coefficients: MutableMap, C> = LinkedHashMap(capacity) - public fun build(): NumberedPolynomial = NumberedPolynomial(coefficients) - public operator fun C.invoke(block: NumberedPolynomialTermSignatureBuilder.() -> Unit) { - val signature = NumberedPolynomialTermSignatureBuilder().apply(block).build() - coefficients[signature] = add(coefficients.getOrElse(signature) { zero }, this@invoke) - } - @Suppress("NOTHING_TO_INLINE") - public inline infix fun C.with(noinline block: NumberedPolynomialTermSignatureBuilder.() -> Unit): Unit = this.invoke(block) - @Suppress("NOTHING_TO_INLINE") - public inline infix fun (NumberedPolynomialTermSignatureBuilder.() -> Unit).with(coef: C): Unit = coef.invoke(this) - @Suppress("NOTHING_TO_INLINE") - public infix fun sig(block: NumberedPolynomialTermSignatureBuilder.() -> Unit): NumberedPolynomialTermSignatureBuilder.() -> Unit = block -} - -// Waiting for context receivers :( FIXME: Replace with context receivers when they will be available - -@UnstableKMathAPI -@NumberedPolynomialConstructorDSL -@Suppress("FunctionName") -public inline fun > A.NumberedPolynomial(block: NumberedPolynomialBuilder.() -> Unit) : NumberedPolynomial = NumberedPolynomialBuilder(zero, ::add).apply(block).build() -@UnstableKMathAPI -@NumberedPolynomialConstructorDSL -@Suppress("FunctionName") -public inline fun > A.NumberedPolynomial(capacity: Int, block: NumberedPolynomialBuilder.() -> Unit) : NumberedPolynomial = NumberedPolynomialBuilder(zero, ::add, capacity).apply(block).build() -@UnstableKMathAPI -@NumberedPolynomialConstructorDSL -@Suppress("FunctionName") -public inline fun > NumberedPolynomialSpace.NumberedPolynomial(block: NumberedPolynomialBuilder.() -> Unit) : NumberedPolynomial = NumberedPolynomialBuilder(constantZero, { left: C, right: C -> left + right}).apply(block).build() -@UnstableKMathAPI -@NumberedPolynomialConstructorDSL -@Suppress("FunctionName") -public inline fun > NumberedPolynomialSpace.NumberedPolynomial(capacity: Int, block: NumberedPolynomialBuilder.() -> Unit) : NumberedPolynomial = NumberedPolynomialBuilder(constantZero, { left: C, right: C -> left + right}, capacity).apply(block).build() - -// Waiting for context receivers :( FIXME: Replace with context receivers when they will be available - -@Suppress("FunctionName") -public fun > NumberedRationalFunctionSpace.NumberedRationalFunction(numeratorCoefficients: Map, C>, denominatorCoefficients: Map, C>): NumberedRationalFunction = - NumberedRationalFunction( - NumberedPolynomial(numeratorCoefficients, toCheckInput = true), - NumberedPolynomial(denominatorCoefficients, toCheckInput = true) - ) -@Suppress("FunctionName") -public fun > A.NumberedRationalFunction(numeratorCoefficients: Map, C>, denominatorCoefficients: Map, C>): NumberedRationalFunction = - NumberedRationalFunction( - NumberedPolynomial(numeratorCoefficients, toCheckInput = true), - NumberedPolynomial(denominatorCoefficients, toCheckInput = true) - ) -@Suppress("FunctionName") -public fun > NumberedRationalFunctionSpace.NumberedRationalFunction(numerator: NumberedPolynomial): NumberedRationalFunction = - NumberedRationalFunction(numerator, polynomialOne) -@Suppress("FunctionName") -public fun > A.NumberedRationalFunction(numerator: NumberedPolynomial): NumberedRationalFunction = - NumberedRationalFunction(numerator, NumberedPolynomial(mapOf(emptyList() to one), toCheckInput = false)) -@Suppress("FunctionName") -public fun > NumberedRationalFunctionSpace.NumberedRationalFunction(numeratorCoefficients: Map, C>): NumberedRationalFunction = - NumberedRationalFunction( - NumberedPolynomial(numeratorCoefficients, toCheckInput = true), - polynomialOne - ) -@Suppress("FunctionName") -public fun > A.NumberedRationalFunction(numeratorCoefficients: Map, C>): NumberedRationalFunction = - NumberedRationalFunction( - NumberedPolynomial(numeratorCoefficients, toCheckInput = true), - NumberedPolynomial(mapOf(emptyList() to one), toCheckInput = false) - ) - -//context(A) -//public fun > C.asNumberedRationalFunction() : NumberedRationalFunction = NumberedRationalFunction(asLabeledPolynomial()) -//context(NumberedRationalFunctionSpace) -//public fun > C.asNumberedRationalFunction() : NumberedRationalFunction = NumberedRationalFunction(asLabeledPolynomial()) \ No newline at end of file diff --git a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/numberedPolynomialUtil.kt b/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/numberedPolynomialUtil.kt deleted file mode 100644 index ad817c7ba..000000000 --- a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/numberedPolynomialUtil.kt +++ /dev/null @@ -1,528 +0,0 @@ -package space.kscience.kmath.functions - -import space.kscience.kmath.misc.UnstableKMathAPI -import space.kscience.kmath.operations.* -import kotlin.contracts.* -import kotlin.jvm.JvmName -import kotlin.math.max - - -// TODO: Docs - -/** - * Creates a [NumberedPolynomialSpace] over a received ring. - */ -public fun > A.numberedPolynomial(): NumberedPolynomialSpace = - NumberedPolynomialSpace(this) - -/** - * Creates a [NumberedPolynomialSpace]'s scope over a received ring. - */ -@OptIn(ExperimentalContracts::class) -public inline fun , R> A.numberedPolynomial(block: NumberedPolynomialSpace.() -> R): R { - contract { callsInPlace(block, InvocationKind.EXACTLY_ONCE) } - return NumberedPolynomialSpace(this).block() -} - -///** -// * Represents the polynomial as a [String] where name of variable with index `i` is [withVariableName] + `"_${i+1}"`. -// * Consider that monomials are sorted in lexicographic order. -// */ -//context(NumberedPolynomialSpace) -//public fun > NumberedPolynomial.represent(withVariableName: String = NumberedPolynomial.defaultVariableName): String = -// coefficients.entries -// .sortedWith { o1, o2 -> NumberedPolynomial.monomialComparator.compare(o1.key, o2.key) } -// .asSequence() -// .map { (degs, t) -> -// if (degs.isEmpty()) "$t" -// else { -// when { -// t.isOne() -> "" -// t.isMinusOne() -> "-" -// else -> "$t " -// } + -// degs -// .mapIndexed { index, deg -> -// when (deg) { -// 0U -> "" -// 1U -> "${withVariableName}_${index+1}" -// else -> "${withVariableName}_${index+1}^$deg" -// } -// } -// .filter { it.isNotEmpty() } -// .joinToString(separator = " ") { it } -// } -// } -// .joinToString(separator = " + ") { it } -// .ifEmpty { "0" } -// -///** -// * Represents the polynomial as a [String] naming variables by [namer]. -// * Consider that monomials are sorted in lexicographic order. -// */ -//context(NumberedPolynomialSpace) -//public fun > NumberedPolynomial.represent(namer: (Int) -> String): String = -// coefficients.entries -// .sortedWith { o1, o2 -> NumberedPolynomial.monomialComparator.compare(o1.key, o2.key) } -// .asSequence() -// .map { (degs, t) -> -// if (degs.isEmpty()) "$t" -// else { -// when { -// t.isOne() -> "" -// t.isMinusOne() -> "-" -// else -> "$t " -// } + -// degs -// .mapIndexed { index, deg -> -// when (deg) { -// 0U -> "" -// 1U -> namer(index) -// else -> "${namer(index)}^$deg" -// } -// } -// .filter { it.isNotEmpty() } -// .joinToString(separator = " ") { it } -// } -// } -// .joinToString(separator = " + ") { it } -// .ifEmpty { "0" } -// -///** -// * Represents the polynomial as a [String] where name of variable with index `i` is [withVariableName] + `"_${i+1}"` -// * and with brackets around the string if needed (i.e. when there are at least two addends in the representation). -// * Consider that monomials are sorted in lexicographic order. -// */ -//context(NumberedPolynomialSpace) -//public fun > NumberedPolynomial.representWithBrackets(withVariableName: String = NumberedPolynomial.defaultVariableName): String = -// with(represent(withVariableName)) { if (coefficients.count() == 1) this else "($this)" } -// -///** -// * Represents the polynomial as a [String] naming variables by [namer] and with brackets around the string if needed -// * (i.e. when there are at least two addends in the representation). -// * Consider that monomials are sorted in lexicographic order. -// */ -//context(NumberedPolynomialSpace) -//public fun > NumberedPolynomial.representWithBrackets(namer: (Int) -> String): String = -// with(represent(namer)) { if (coefficients.count() == 1) this else "($this)" } -// -///** -// * Represents the polynomial as a [String] where name of variable with index `i` is [withVariableName] + `"_${i+1}"`. -// * Consider that monomials are sorted in **reversed** lexicographic order. -// */ -//context(NumberedPolynomialSpace) -//public fun > NumberedPolynomial.representReversed(withVariableName: String = NumberedPolynomial.defaultVariableName): String = -// coefficients.entries -// .sortedWith { o1, o2 -> -NumberedPolynomial.monomialComparator.compare(o1.key, o2.key) } -// .asSequence() -// .map { (degs, t) -> -// if (degs.isEmpty()) "$t" -// else { -// when { -// t.isOne() -> "" -// t.isMinusOne() -> "-" -// else -> "$t " -// } + -// degs -// .mapIndexed { index, deg -> -// when (deg) { -// 0U -> "" -// 1U -> "${withVariableName}_${index+1}" -// else -> "${withVariableName}_${index+1}^$deg" -// } -// } -// .filter { it.isNotEmpty() } -// .joinToString(separator = " ") { it } -// } -// } -// .joinToString(separator = " + ") { it } -// .ifEmpty { "0" } -// -///** -// * Represents the polynomial as a [String] naming variables by [namer]. -// * Consider that monomials are sorted in **reversed** lexicographic order. -// */ -//context(NumberedPolynomialSpace) -//public fun > NumberedPolynomial.representReversed(namer: (Int) -> String): String = -// coefficients.entries -// .sortedWith { o1, o2 -> -NumberedPolynomial.monomialComparator.compare(o1.key, o2.key) } -// .asSequence() -// .map { (degs, t) -> -// if (degs.isEmpty()) "$t" -// else { -// when { -// t.isOne() -> "" -// t.isMinusOne() -> "-" -// else -> "$t " -// } + -// degs -// .mapIndexed { index, deg -> -// when (deg) { -// 0U -> "" -// 1U -> namer(index) -// else -> "${namer(index)}^$deg" -// } -// } -// .filter { it.isNotEmpty() } -// .joinToString(separator = " ") { it } -// } -// } -// .joinToString(separator = " + ") { it } -// .ifEmpty { "0" } -// -///** -// * Represents the polynomial as a [String] where name of variable with index `i` is [withVariableName] + `"_${i+1}"` -// * and with brackets around the string if needed (i.e. when there are at least two addends in the representation). -// * Consider that monomials are sorted in **reversed** lexicographic order. -// */ -//context(NumberedPolynomialSpace) -//public fun > NumberedPolynomial.representReversedWithBrackets(withVariableName: String = NumberedPolynomial.defaultVariableName): String = -// with(representReversed(withVariableName)) { if (coefficients.count() == 1) this else "($this)" } -// -///** -// * Represents the polynomial as a [String] naming variables by [namer] and with brackets around the string if needed -// * (i.e. when there are at least two addends in the representation). -// * Consider that monomials are sorted in **reversed** lexicographic order. -// */ -//context(NumberedPolynomialSpace) -//public fun > NumberedPolynomial.representReversedWithBrackets(namer: (Int) -> String): String = -// with(representReversed(namer)) { if (coefficients.count() == 1) this else "($this)" } - -//public fun NumberedPolynomial.substitute(ring: Ring, args: Map): NumberedPolynomial = ring { -// if (coefficients.isEmpty()) return this@substitute -// NumberedPolynomial( -// buildMap { -// coefficients.forEach { (degs, c) -> -// val newDegs = degs.mapIndexed { index, deg -> if (index in args) 0U else deg }.cleanUp() -// val newC = degs.foldIndexed(c) { index, acc, deg -> -// if (index in args) multiplyWithPower(acc, args[index]!!, deg) -// else acc -// } -// this[newDegs] = if (newDegs in this) this[newDegs]!! + newC else newC -// } -// } -// ) -//} -// -//// TODO: Replace with optimisation: the [result] may be unboxed, and all operations may be performed as soon as -//// possible on it -//@JvmName("substitutePolynomial") -//public fun NumberedPolynomial.substitute(ring: Ring, arg: Map>) : NumberedPolynomial = -// ring.numberedPolynomialSpace { -// if (coefficients.isEmpty()) return zero -// coefficients -// .asSequence() -// .map { (degs, c) -> -// degs.foldIndexed( -// NumberedPolynomial( -// degs.mapIndexed { index, deg -> if (index in arg) 0U else deg } to c -// ) -// ) { index, acc, deg -> if (index in arg) multiplyWithPower(acc, arg[index]!!, deg) else acc } -// } -// .reduce { acc, polynomial -> acc + polynomial } // TODO: Rewrite. Might be slow. -// } -// -//// TODO: Substitute rational function -// -//public fun > NumberedPolynomial.asFunctionOver(ring: A): (Map) -> NumberedPolynomial = -// { substitute(ring, it) } -// -//public fun > NumberedPolynomial.asPolynomialFunctionOver(ring: A): (Map>) -> NumberedPolynomial = -// { substitute(ring, it) } - -//operator fun > Polynomial.div(other: T): Polynomial = -// if (other.isZero()) throw ArithmeticException("/ by zero") -// else -// Polynomial( -// coefficients -// .mapValues { it.value / other }, -// toCheckInput = false -// ) - -/** - * Evaluates the value of the given double polynomial for given double argument. - */ -public fun NumberedPolynomial.substitute(args: Map): NumberedPolynomial = Double.algebra { - val acc = LinkedHashMap, Double>(coefficients.size) - for ((degs, c) in coefficients) { - val newDegs = degs.mapIndexed { index, deg -> if (index !in args) deg else 0u }.cleanUp() - val newC = args.entries.fold(c) { product, (variable, substitution) -> - val deg = degs.getOrElse(variable) { 0u } - if (deg == 0u) product else product * substitution.pow(deg.toInt()) - } - if (newDegs !in acc) acc[newDegs] = newC - else acc[newDegs] = acc[newDegs]!! + newC - } - return NumberedPolynomial(acc) -} - -/** - * Evaluates the value of the given polynomial for given argument. - * - * It is an implementation of [Horner's method](https://en.wikipedia.org/wiki/Horner%27s_method). - */ -public fun NumberedPolynomial.substitute(ring: Ring, args: Map): NumberedPolynomial = ring { - val acc = LinkedHashMap, C>(coefficients.size) - for ((degs, c) in coefficients) { - val newDegs = degs.mapIndexed { index, deg -> if (index !in args) deg else 0u }.cleanUp() - val newC = args.entries.fold(c) { product, (variable, substitution) -> - val deg = degs.getOrElse(variable) { 0u } - if (deg == 0u) product else product * power(substitution, deg) - } - if (newDegs !in acc) acc[newDegs] = newC - else acc[newDegs] = acc[newDegs]!! + newC - } - return NumberedPolynomial(acc) -} - -// TODO: (Waiting for hero) Replace with optimisation: the [result] may be unboxed, and all operations may be performed -// as soon as possible on it -@JvmName("substitutePolynomial") -public fun NumberedPolynomial.substitute(ring: Ring, args: Map>) : NumberedPolynomial = TODO() /*ring.numberedPolynomial { - val acc = LinkedHashMap, NumberedPolynomial>(coefficients.size) - for ((degs, c) in coefficients) { - val newDegs = degs.mapIndexed { index, deg -> if (index !in args) deg else 0u }.cleanUp() - val newC = args.entries.fold(c.asNumberedPolynomial()) { product, (variable, substitution) -> - val deg = degs.getOrElse(variable) { 0u } - if (deg == 0u) product else product * power(substitution, deg) - } - if (newDegs !in acc) acc[newDegs] = c.asNumberedPolynomial() - else acc[newDegs] = acc[newDegs]!! + c - } -}*/ - -/** - * Represent the polynomial as a regular context-less function. - */ -public fun > NumberedPolynomial.asFunction(ring: A): (Map) -> NumberedPolynomial = { substitute(ring, it) } - -/** - * Represent the polynomial as a regular context-less function. - */ -public fun > NumberedPolynomial.asPolynomialFunctionOver(ring: A): (Map>) -> NumberedPolynomial = { substitute(ring, it) } - -/** - * Returns algebraic derivative of received polynomial. - */ -@UnstableKMathAPI -public fun > NumberedPolynomial.derivativeWithRespectTo( - algebra: A, - variable: Int, -): NumberedPolynomial = algebra { - NumberedPolynomial( - buildMap(coefficients.size) { - coefficients - .forEach { (degs, c) -> - if (degs.size > variable) return@forEach - put( - degs.mapIndexed { index, deg -> - when { - index != variable -> deg - deg > 0u -> deg - 1u - else -> return@forEach - } - }.cleanUp(), - multiplyByDoubling(c, degs[variable]) - ) - } - } - ) -} - -/** - * Returns algebraic derivative of received polynomial. - */ -@UnstableKMathAPI -public fun > NumberedPolynomial.derivativeWithRespectTo( - algebra: A, - variables: Collection, -): NumberedPolynomial = algebra { - val cleanedVariables = variables.toSet() - if (cleanedVariables.isEmpty()) return this@derivativeWithRespectTo - val maxRespectedVariable = cleanedVariables.maxOrNull()!! - NumberedPolynomial( - buildMap(coefficients.size) { - coefficients - .forEach { (degs, c) -> - if (degs.size > maxRespectedVariable) return@forEach - put( - degs.mapIndexed { index, deg -> - when { - index !in cleanedVariables -> deg - deg > 0u -> deg - 1u - else -> return@forEach - } - }.cleanUp(), - cleanedVariables.fold(c) { acc, variable -> multiplyByDoubling(acc, degs[variable]) } - ) - } - } - ) -} - -/** - * Returns algebraic derivative of received polynomial. - */ -@UnstableKMathAPI -public fun > NumberedPolynomial.nthDerivativeWithRespectTo( - algebra: A, - variable: Int, - order: UInt -): NumberedPolynomial = algebra { - if (order == 0u) return this@nthDerivativeWithRespectTo - NumberedPolynomial( - buildMap(coefficients.size) { - coefficients - .forEach { (degs, c) -> - if (degs.size > variable) return@forEach - put( - degs.mapIndexed { index, deg -> - when { - index != variable -> deg - deg >= order -> deg - order - else -> return@forEach - } - }.cleanUp(), - degs[variable].let { deg -> - (deg downTo deg - order + 1u) - .fold(c) { acc, ord -> multiplyByDoubling(acc, ord) } - } - ) - } - } - ) -} - -/** - * Returns algebraic derivative of received polynomial. - */ -@UnstableKMathAPI -public fun > NumberedPolynomial.nthDerivativeWithRespectTo( - algebra: A, - variablesAndOrders: Map, -): NumberedPolynomial = algebra { - val filteredVariablesAndOrders = variablesAndOrders.filterValues { it != 0u } - if (filteredVariablesAndOrders.isEmpty()) return this@nthDerivativeWithRespectTo - val maxRespectedVariable = filteredVariablesAndOrders.keys.maxOrNull()!! - NumberedPolynomial( - buildMap(coefficients.size) { - coefficients - .forEach { (degs, c) -> - if (degs.size > maxRespectedVariable) return@forEach - put( - degs.mapIndexed { index, deg -> - if (index !in filteredVariablesAndOrders) return@mapIndexed deg - val order = filteredVariablesAndOrders[index]!! - if (deg >= order) deg - order else return@forEach - }.cleanUp(), - filteredVariablesAndOrders.entries.fold(c) { acc1, (index, order) -> - degs[index].let { deg -> - (deg downTo deg - order + 1u) - .fold(acc1) { acc2, ord -> multiplyByDoubling(acc2, ord) } - } - } - ) - } - } - ) -} - -/** - * Returns algebraic antiderivative of received polynomial. - */ -@UnstableKMathAPI -public fun > NumberedPolynomial.antiderivativeWithRespectTo( - algebra: A, - variable: Int, -): NumberedPolynomial = algebra { - NumberedPolynomial( - buildMap(coefficients.size) { - coefficients - .forEach { (degs, c) -> - put( - List(max(variable + 1, degs.size)) { if (it != variable) degs[it] else degs[it] + 1u }, - c / multiplyByDoubling(one, degs[variable]) - ) - } - } - ) -} - -/** - * Returns algebraic antiderivative of received polynomial. - */ -@UnstableKMathAPI -public fun > NumberedPolynomial.antiderivativeWithRespectTo( - algebra: A, - variables: Collection, -): NumberedPolynomial = algebra { - val cleanedVariables = variables.toSet() - if (cleanedVariables.isEmpty()) return this@antiderivativeWithRespectTo - val maxRespectedVariable = cleanedVariables.maxOrNull()!! - NumberedPolynomial( - buildMap(coefficients.size) { - coefficients - .forEach { (degs, c) -> - put( - List(max(maxRespectedVariable + 1, degs.size)) { if (it !in variables) degs[it] else degs[it] + 1u }, - cleanedVariables.fold(c) { acc, variable -> acc / multiplyByDoubling(one, degs[variable]) } - ) - } - } - ) -} - -/** - * Returns algebraic derivative of received polynomial. - */ -@UnstableKMathAPI -public fun > NumberedPolynomial.nthAntiderivativeWithRespectTo( - algebra: A, - variable: Int, - order: UInt -): NumberedPolynomial = algebra { - if (order == 0u) return this@nthAntiderivativeWithRespectTo - NumberedPolynomial( - buildMap(coefficients.size) { - coefficients - .forEach { (degs, c) -> - put( - List(max(variable + 1, degs.size)) { if (it != variable) degs[it] else degs[it] + order }, - degs[variable].let { deg -> - (deg downTo deg - order + 1u) - .fold(c) { acc, ord -> acc / multiplyByDoubling(one, ord) } - } - ) - } - } - ) -} - -/** - * Returns algebraic derivative of received polynomial. - */ -@UnstableKMathAPI -public fun > NumberedPolynomial.nthAntiderivativeWithRespectTo( - algebra: A, - variablesAndOrders: Map, -): NumberedPolynomial = algebra { - val filteredVariablesAndOrders = variablesAndOrders.filterValues { it != 0u } - if (filteredVariablesAndOrders.isEmpty()) return this@nthAntiderivativeWithRespectTo - val maxRespectedVariable = filteredVariablesAndOrders.keys.maxOrNull()!! - NumberedPolynomial( - buildMap(coefficients.size) { - coefficients - .forEach { (degs, c) -> - put( - List(max(maxRespectedVariable + 1, degs.size)) { degs[it] + filteredVariablesAndOrders.getOrElse(it) { 0u } }, - filteredVariablesAndOrders.entries.fold(c) { acc1, (index, order) -> - degs[index].let { deg -> - (deg downTo deg - order + 1u) - .fold(acc1) { acc2, ord -> acc2 / multiplyByDoubling(one, ord) } - } - } - ) - } - } - ) -} \ No newline at end of file diff --git a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/numberedRationalFunctionUtil.kt b/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/numberedRationalFunctionUtil.kt deleted file mode 100644 index 5cd0679ab..000000000 --- a/kmath-functions/src/commonMain/kotlin/space/kscience/kmath/functions/numberedRationalFunctionUtil.kt +++ /dev/null @@ -1,33 +0,0 @@ -/* - * Copyright 2018-2021 KMath contributors. - * Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file. - */ - -package space.kscience.kmath.functions - -import space.kscience.kmath.operations.Ring -import kotlin.contracts.InvocationKind -import kotlin.contracts.contract - - -/** - * Creates a [NumberedRationalFunctionSpace] over a received ring. - */ -public fun > A.numberedRationalFunction(): NumberedRationalFunctionSpace = - NumberedRationalFunctionSpace(this) - -/** - * Creates a [NumberedRationalFunctionSpace]'s scope over a received ring. - */ -public inline fun , R> A.numberedRationalFunction(block: NumberedRationalFunctionSpace.() -> R): R { - contract { callsInPlace(block, InvocationKind.EXACTLY_ONCE) } - return NumberedRationalFunctionSpace(this).block() -} - -//fun > NumberedRationalFunction.reduced(): NumberedRationalFunction { -// val greatestCommonDivider = polynomialGCD(numerator, denominator) -// return NumberedRationalFunction( -// numerator / greatestCommonDivider, -// denominator / greatestCommonDivider -// ) -//} \ No newline at end of file diff --git a/kmath-functions/src/commonTest/kotlin/space/kscience/kmath/functions/ListPolynomialTest.kt b/kmath-functions/src/commonTest/kotlin/space/kscience/kmath/functions/ListPolynomialTest.kt index 5401be707..c9950fac5 100644 --- a/kmath-functions/src/commonTest/kotlin/space/kscience/kmath/functions/ListPolynomialTest.kt +++ b/kmath-functions/src/commonTest/kotlin/space/kscience/kmath/functions/ListPolynomialTest.kt @@ -12,7 +12,7 @@ import kotlin.test.* class ListPolynomialTest { @Test fun test_Polynomial_Int_plus() { - RationalField.listPolynomial { + RationalField.listPolynomialSpace { assertEquals( ListPolynomial(Rational(-22, 9), Rational(-8, 9), Rational(-8, 7)), ListPolynomial(Rational(5, 9), Rational(-8, 9), Rational(-8, 7)) + -3, @@ -52,7 +52,7 @@ class ListPolynomialTest { } @Test fun test_Polynomial_Int_minus() { - RationalField.listPolynomial { + RationalField.listPolynomialSpace { assertEquals( ListPolynomial(Rational(32, 9), Rational(-8, 9), Rational(-8, 7)), ListPolynomial(Rational(5, 9), Rational(-8, 9), Rational(-8, 7)) - -3, @@ -92,7 +92,7 @@ class ListPolynomialTest { } @Test fun test_Polynomial_Int_times() { - IntModuloRing(35).listPolynomial { + IntModuloRing(35).listPolynomialSpace { assertEquals( ListPolynomial(34, 2, 1, 20, 2), ListPolynomial(22, 26, 13, 15, 26) * 27, @@ -107,7 +107,7 @@ class ListPolynomialTest { } @Test fun test_Int_Polynomial_plus() { - RationalField.listPolynomial { + RationalField.listPolynomialSpace { assertEquals( ListPolynomial(Rational(-22, 9), Rational(-8, 9), Rational(-8, 7)), -3 + ListPolynomial(Rational(5, 9), Rational(-8, 9), Rational(-8, 7)), @@ -147,7 +147,7 @@ class ListPolynomialTest { } @Test fun test_Int_Polynomial_minus() { - RationalField.listPolynomial { + RationalField.listPolynomialSpace { assertEquals( ListPolynomial(Rational(32, 9), Rational(-8, 9), Rational(-8, 7)), 3 - ListPolynomial(Rational(-5, 9), Rational(8, 9), Rational(8, 7)), @@ -187,7 +187,7 @@ class ListPolynomialTest { } @Test fun test_Int_Polynomial_times() { - IntModuloRing(35).listPolynomial { + IntModuloRing(35).listPolynomialSpace { assertEquals( ListPolynomial(34, 2, 1, 20, 2), 27 * ListPolynomial(22, 26, 13, 15, 26), @@ -202,7 +202,7 @@ class ListPolynomialTest { } @Test fun test_Polynomial_Constant_plus() { - RationalField.listPolynomial { + RationalField.listPolynomialSpace { assertEquals( ListPolynomial(Rational(-22, 9), Rational(-8, 9), Rational(-8, 7)), ListPolynomial(Rational(5, 9), Rational(-8, 9), Rational(-8, 7)) + Rational(-3), @@ -242,7 +242,7 @@ class ListPolynomialTest { } @Test fun test_Polynomial_Constant_minus() { - RationalField.listPolynomial { + RationalField.listPolynomialSpace { assertEquals( ListPolynomial(Rational(32, 9), Rational(-8, 9), Rational(-8, 7)), ListPolynomial(Rational(5, 9), Rational(-8, 9), Rational(-8, 7)) - Rational(-3), @@ -282,7 +282,7 @@ class ListPolynomialTest { } @Test fun test_Polynomial_Constant_times() { - IntModuloRing(35).listPolynomial { + IntModuloRing(35).listPolynomialSpace { assertEquals( ListPolynomial(34, 2, 1, 20, 2), ListPolynomial(22, 26, 13, 15, 26) * 27.asConstant(), @@ -297,7 +297,7 @@ class ListPolynomialTest { } @Test fun test_Constant_Polynomial_plus() { - RationalField.listPolynomial { + RationalField.listPolynomialSpace { assertEquals( ListPolynomial(Rational(-22, 9), Rational(-8, 9), Rational(-8, 7)), Rational(-3) + ListPolynomial(Rational(5, 9), Rational(-8, 9), Rational(-8, 7)), @@ -337,7 +337,7 @@ class ListPolynomialTest { } @Test fun test_Constant_Polynomial_minus() { - RationalField.listPolynomial { + RationalField.listPolynomialSpace { assertEquals( ListPolynomial(Rational(32, 9), Rational(-8, 9), Rational(-8, 7)), Rational(3) - ListPolynomial(Rational(-5, 9), Rational(8, 9), Rational(8, 7)), @@ -377,7 +377,7 @@ class ListPolynomialTest { } @Test fun test_Constant_Polynomial_times() { - IntModuloRing(35).listPolynomial { + IntModuloRing(35).listPolynomialSpace { assertEquals( ListPolynomial(34, 2, 1, 20, 2), 27 * ListPolynomial(22, 26, 13, 15, 26), @@ -392,7 +392,7 @@ class ListPolynomialTest { } @Test fun test_Polynomial_unaryMinus() { - RationalField.listPolynomial { + RationalField.listPolynomialSpace { assertEquals( ListPolynomial(Rational(-5, 9), Rational(8, 9), Rational(8, 7)), -ListPolynomial(Rational(5, 9), Rational(-8, 9), Rational(-8, 7)), @@ -407,7 +407,7 @@ class ListPolynomialTest { } @Test fun test_Polynomial_Polynomial_plus() { - RationalField.listPolynomial { + RationalField.listPolynomialSpace { // (5/9 - 8/9 x - 8/7 x^2) + (-5/7 + 5/1 x + 5/8 x^2) ?= -10/63 + 37/9 x - 29/56 x^2 assertEquals( ListPolynomial(Rational(-10, 63), Rational(37, 9), Rational(-29, 56)), @@ -440,7 +440,7 @@ class ListPolynomialTest { } @Test fun test_Polynomial_Polynomial_minus() { - RationalField.listPolynomial { + RationalField.listPolynomialSpace { // (5/9 - 8/9 x - 8/7 x^2) - (-5/7 + 5/1 x + 5/8 x^2) ?= 80/63 - 53/9 x - 99/56 x^2 assertEquals( ListPolynomial(Rational(80, 63), Rational(-53, 9), Rational(-99, 56)), @@ -473,7 +473,7 @@ class ListPolynomialTest { } @Test fun test_Polynomial_Polynomial_times() { - IntModuloRing(35).listPolynomial { + IntModuloRing(35).listPolynomialSpace { // (1 + x + x^2) * (1 - x + x^2) ?= 1 + x^2 + x^4 assertEquals( ListPolynomial(1, 0, 1, 0, 1), diff --git a/kmath-functions/src/commonTest/kotlin/space/kscience/kmath/functions/ListPolynomialUtilTest.kt b/kmath-functions/src/commonTest/kotlin/space/kscience/kmath/functions/ListPolynomialUtilTest.kt index c5eb8fb81..69c1611f3 100644 --- a/kmath-functions/src/commonTest/kotlin/space/kscience/kmath/functions/ListPolynomialUtilTest.kt +++ b/kmath-functions/src/commonTest/kotlin/space/kscience/kmath/functions/ListPolynomialUtilTest.kt @@ -5,6 +5,7 @@ package space.kscience.kmath.functions +import space.kscience.kmath.misc.UnstableKMathAPI import space.kscience.kmath.test.misc.Rational import space.kscience.kmath.test.misc.RationalField import kotlin.test.Test @@ -12,6 +13,7 @@ import kotlin.test.assertEquals import kotlin.test.assertFailsWith +@OptIn(UnstableKMathAPI::class) class ListPolynomialUtilTest { @Test fun test_substitute_Double() { diff --git a/kmath-functions/src/commonTest/kotlin/space/kscience/kmath/test/misc/IntModulo.kt b/kmath-functions/src/commonTest/kotlin/space/kscience/kmath/test/misc/IntModulo.kt new file mode 100644 index 000000000..89764db46 --- /dev/null +++ b/kmath-functions/src/commonTest/kotlin/space/kscience/kmath/test/misc/IntModulo.kt @@ -0,0 +1,138 @@ +/* + * Copyright 2018-2021 KMath contributors. + * Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file. + */ + +package space.kscience.kmath.test.misc + +import space.kscience.kmath.functions.ListPolynomial +import space.kscience.kmath.functions.ListPolynomialSpace +import space.kscience.kmath.operations.Ring + + +class IntModulo { + val residue: Int + val modulus: Int + + @PublishedApi + internal constructor(residue: Int, modulus: Int, toCheckInput: Boolean = true) { + if (toCheckInput) { + require(modulus != 0) { "modulus can not be zero" } + this.modulus = if (modulus < 0) -modulus else modulus + this.residue = residue.mod(modulus) + } else { + this.residue = residue + this.modulus = modulus + } + } + + constructor(residue: Int, modulus: Int) : this(residue, modulus, true) + + operator fun unaryPlus(): IntModulo = this + operator fun unaryMinus(): IntModulo = + IntModulo( + if (residue == 0) 0 else modulus - residue, + modulus, + toCheckInput = false + ) + operator fun plus(other: IntModulo): IntModulo { + require(modulus == other.modulus) { "can not add two residue different modulo" } + return IntModulo( + (residue + other.residue) % modulus, + modulus, + toCheckInput = false + ) + } + operator fun plus(other: Int): IntModulo = + IntModulo( + (residue + other) % modulus, + modulus, + toCheckInput = false + ) + operator fun minus(other: IntModulo): IntModulo { + require(modulus == other.modulus) { "can not subtract two residue different modulo" } + return IntModulo( + (residue - other.residue) % modulus, + modulus, + toCheckInput = false + ) + } + operator fun minus(other: Int): IntModulo = + IntModulo( + (residue - other) % modulus, + modulus, + toCheckInput = false + ) + operator fun times(other: IntModulo): IntModulo { + require(modulus == other.modulus) { "can not multiply two residue different modulo" } + return IntModulo( + (residue * other.residue) % modulus, + modulus, + toCheckInput = false + ) + } + operator fun times(other: Int): IntModulo = + IntModulo( + (residue * other) % modulus, + modulus, + toCheckInput = false + ) + operator fun div(other: IntModulo): IntModulo { + require(modulus == other.modulus) { "can not divide two residue different modulo" } + val (reciprocalCandidate, gcdOfOtherResidueAndModulus) = bezoutIdentityWithGCD(other.residue, modulus) + require(gcdOfOtherResidueAndModulus == 1) { "can not divide to residue that has non-trivial GCD with modulo" } + return IntModulo( + (residue * reciprocalCandidate) % modulus, + modulus, + toCheckInput = false + ) + } + operator fun div(other: Int): IntModulo { + val (reciprocalCandidate, gcdOfOtherResidueAndModulus) = bezoutIdentityWithGCD(other, modulus) + require(gcdOfOtherResidueAndModulus == 1) { "can not divide to residue that has non-trivial GCD with modulo" } + return IntModulo( + (residue * reciprocalCandidate) % modulus, + modulus, + toCheckInput = false + ) + } + override fun equals(other: Any?): Boolean = + when (other) { + is IntModulo -> residue == other.residue && modulus == other.modulus + else -> false + } + + override fun hashCode(): Int = residue.hashCode() + + override fun toString(): String = "$residue mod $modulus" +} + +@Suppress("EXTENSION_SHADOWED_BY_MEMBER", "OVERRIDE_BY_INLINE", "NOTHING_TO_INLINE") +class IntModuloRing : Ring { + + val modulus: Int + + constructor(modulus: Int) { + require(modulus != 0) { "modulus can not be zero" } + this.modulus = if (modulus < 0) -modulus else modulus + } + + override inline val zero: IntModulo get() = IntModulo(0, modulus, toCheckInput = false) + override inline val one: IntModulo get() = IntModulo(1, modulus, toCheckInput = false) + + fun number(arg: Int) = IntModulo(arg, modulus, toCheckInput = false) + + override inline fun add(left: IntModulo, right: IntModulo): IntModulo = left + right + override inline fun multiply(left: IntModulo, right: IntModulo): IntModulo = left * right + + override inline fun IntModulo.unaryMinus(): IntModulo = -this + override inline fun IntModulo.plus(arg: IntModulo): IntModulo = this + arg + override inline fun IntModulo.minus(arg: IntModulo): IntModulo = this - arg + override inline fun IntModulo.times(arg: IntModulo): IntModulo = this * arg + inline fun IntModulo.div(arg: IntModulo): IntModulo = this / arg +} + +fun ListPolynomialSpace.ListPolynomial(vararg coefs: Int): ListPolynomial = + ListPolynomial(coefs.map { IntModulo(it, ring.modulus) }) +fun IntModuloRing.ListPolynomial(vararg coefs: Int): ListPolynomial = + ListPolynomial(coefs.map { IntModulo(it, modulus) }) \ No newline at end of file diff --git a/kmath-functions/src/commonTest/kotlin/space/kscience/kmath/test/misc/Rational.kt b/kmath-functions/src/commonTest/kotlin/space/kscience/kmath/test/misc/Rational.kt new file mode 100644 index 000000000..72bb5942c --- /dev/null +++ b/kmath-functions/src/commonTest/kotlin/space/kscience/kmath/test/misc/Rational.kt @@ -0,0 +1,135 @@ +/* + * Copyright 2018-2021 KMath contributors. + * Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file. + */ + +package space.kscience.kmath.test.misc + +import space.kscience.kmath.misc.UnstableKMathAPI +import space.kscience.kmath.operations.Field +import space.kscience.kmath.operations.NumbersAddOps + +class Rational { + companion object { + val ZERO: Rational = Rational(0L) + val ONE: Rational = Rational(1L) + } + + val numerator: Long + val denominator: Long + + internal constructor(numerator: Long, denominator: Long, toCheckInput: Boolean = true) { + if (toCheckInput) { + if (denominator == 0L) throw ArithmeticException("/ by zero") + + val greatestCommonDivider = gcd(numerator, denominator).let { if (denominator < 0L) -it else it } + + this.numerator = numerator / greatestCommonDivider + this.denominator = denominator / greatestCommonDivider + } else { + this.numerator = numerator + this.denominator = denominator + } + } + + constructor(numerator: Int, denominator: Int) : this(numerator.toLong(), denominator.toLong(), true) + constructor(numerator: Int, denominator: Long) : this(numerator.toLong(), denominator, true) + constructor(numerator: Long, denominator: Int) : this(numerator, denominator.toLong(), true) + constructor(numerator: Long, denominator: Long) : this(numerator, denominator, true) + constructor(numerator: Int) : this(numerator.toLong(), 1L, false) + constructor(numerator: Long) : this(numerator, 1L, false) + + operator fun unaryPlus(): Rational = this + operator fun unaryMinus(): Rational = Rational(-this.numerator, this.denominator) + operator fun plus(other: Rational): Rational = + Rational( + numerator * other.denominator + denominator * other.numerator, + denominator * other.denominator + ) + operator fun plus(other: Int): Rational = + Rational( + numerator + denominator * other.toLong(), + denominator + ) + operator fun plus(other: Long): Rational = + Rational( + numerator + denominator * other, + denominator + ) + operator fun minus(other: Rational): Rational = + Rational( + numerator * other.denominator - denominator * other.numerator, + denominator * other.denominator + ) + operator fun minus(other: Int): Rational = + Rational( + numerator - denominator * other.toLong(), + denominator + ) + operator fun minus(other: Long): Rational = + Rational( + numerator - denominator * other, + denominator + ) + operator fun times(other: Rational): Rational = + Rational( + numerator * other.numerator, + denominator * other.denominator + ) + operator fun times(other: Int): Rational = + Rational( + numerator * other.toLong(), + denominator + ) + operator fun times(other: Long): Rational = + Rational( + numerator * other, + denominator + ) + operator fun div(other: Rational): Rational = + Rational( + numerator * other.denominator, + denominator * other.numerator + ) + operator fun div(other: Int): Rational = + Rational( + numerator, + denominator * other.toLong() + ) + operator fun div(other: Long): Rational = + Rational( + numerator, + denominator * other + ) + override fun equals(other: Any?): Boolean = + when (other) { + is Rational -> numerator == other.numerator && denominator == other.denominator + is Int -> numerator == other && denominator == 1L + is Long -> numerator == other && denominator == 1L + else -> false + } + + override fun hashCode(): Int = 31 * numerator.hashCode() + denominator.hashCode() + + override fun toString(): String = if (denominator == 1L) "$numerator" else "$numerator/$denominator" +} + +@Suppress("EXTENSION_SHADOWED_BY_MEMBER", "OVERRIDE_BY_INLINE", "NOTHING_TO_INLINE") +@OptIn(UnstableKMathAPI::class) +object RationalField : Field, NumbersAddOps { + override inline val zero: Rational get() = Rational.ZERO + override inline val one: Rational get() = Rational.ONE + + override inline fun number(value: Number): Rational = Rational(value.toLong()) + + override inline fun add(left: Rational, right: Rational): Rational = left + right + override inline fun multiply(left: Rational, right: Rational): Rational = left * right + override inline fun divide(left: Rational, right: Rational): Rational = left / right + override inline fun scale(a: Rational, value: Double): Rational = a * number(value) + + override inline fun Rational.unaryMinus(): Rational = -this + override inline fun Rational.plus(arg: Rational): Rational = this + arg + override inline fun Rational.minus(arg: Rational): Rational = this - arg + override inline fun Rational.times(arg: Rational): Rational = this * arg + override inline fun Rational.div(arg: Rational): Rational = this / arg +} \ No newline at end of file diff --git a/kmath-functions/src/commonTest/kotlin/space/kscience/kmath/test/misc/misc.kt b/kmath-functions/src/commonTest/kotlin/space/kscience/kmath/test/misc/misc.kt new file mode 100644 index 000000000..ed41b9245 --- /dev/null +++ b/kmath-functions/src/commonTest/kotlin/space/kscience/kmath/test/misc/misc.kt @@ -0,0 +1,29 @@ +/* + * Copyright 2018-2021 KMath contributors. + * Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file. + */ + +package space.kscience.kmath.test.misc + +import kotlin.math.abs + + +data class BezoutIdentityWithGCD(val first: T, val second: T, val gcd: T) + +tailrec fun gcd(a: Long, b: Long): Long = if (a == 0L) abs(b) else gcd(b % a, a) + +fun bezoutIdentityWithGCD(a: Int, b: Int): BezoutIdentityWithGCD = + when { + a < 0 && b < 0 -> with(bezoutIdentityWithGCDInternalLogic(-a, -b, 1, 0, 0, 1)) { BezoutIdentityWithGCD(-first, -second, gcd) } + a < 0 -> with(bezoutIdentityWithGCDInternalLogic(-a, b, 1, 0, 0, 1)) { BezoutIdentityWithGCD(-first, second, gcd) } + b < 0 -> with(bezoutIdentityWithGCDInternalLogic(a, -b, 1, 0, 0, 1)) { BezoutIdentityWithGCD(first, -second, gcd) } + else -> bezoutIdentityWithGCDInternalLogic(a, b, 1, 0, 0, 1) + } + +internal tailrec fun bezoutIdentityWithGCDInternalLogic(a: Int, b: Int, m1: Int, m2: Int, m3: Int, m4: Int): BezoutIdentityWithGCD = + if (b == 0) BezoutIdentityWithGCD(m1, m3, a) + else { + val quotient = a / b + val reminder = a % b + bezoutIdentityWithGCDInternalLogic(b, reminder, m2, m1 - quotient * m2, m4, m3 - quotient * m4) + } \ No newline at end of file