added the rest of the algorithm
This commit is contained in:
parent
86efe48217
commit
37922365b6
@ -57,17 +57,14 @@ fun main(): Unit = Double.tensorAlgebra.withBroadcast {
|
|||||||
5.000000, 6.000000, 7.000000
|
5.000000, 6.000000, 7.000000
|
||||||
)
|
)
|
||||||
val buffer2 = doubleArrayOf(
|
val buffer2 = doubleArrayOf(
|
||||||
0.000000, 0.000000, 0.000000,
|
|
||||||
0.000000, 0.000000, 0.000000,
|
|
||||||
0.000000, 0.000000, 0.000000,
|
0.000000, 0.000000, 0.000000,
|
||||||
0.000000, 0.000000, 0.000000,
|
0.000000, 0.000000, 0.000000,
|
||||||
0.000000, 0.000000, 0.000000
|
0.000000, 0.000000, 0.000000
|
||||||
)
|
)
|
||||||
val tensor = fromArray(shape, buffer).as2D()
|
val tensor = fromArray(shape, buffer).as2D()
|
||||||
val v = fromArray(shape, buffer2).as2D()
|
val v = fromArray(intArrayOf(3, 3), buffer2).as2D()
|
||||||
tensor.print()
|
tensor.print()
|
||||||
tensor.svdcmp(v)
|
tensor.svdcmp(v)
|
||||||
// tensor.print()
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
@ -12,7 +12,6 @@ import kotlin.math.sqrt
|
|||||||
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
|
||||||
*/
|
*/
|
||||||
|
|
||||||
|
|
||||||
fun pythag(a: Double, b: Double): Double {
|
fun pythag(a: Double, b: Double): Double {
|
||||||
val at: Double = abs(a)
|
val at: Double = abs(a)
|
||||||
val bt: Double = abs(b)
|
val bt: Double = abs(b)
|
||||||
@ -46,9 +45,9 @@ internal fun MutableStructure2D<Double>.svdcmp(v: MutableStructure2D<Double>) {
|
|||||||
var anorm = 0.0
|
var anorm = 0.0
|
||||||
var g = 0.0
|
var g = 0.0
|
||||||
var l = 0
|
var l = 0
|
||||||
val w_shape = intArrayOf(m, 1)
|
val w_shape = intArrayOf(n, 1)
|
||||||
var w_buffer = doubleArrayOf(0.000000)
|
var w_buffer = doubleArrayOf(0.000000)
|
||||||
for (i in 0 until m - 1) {
|
for (i in 0 until n - 1) {
|
||||||
w_buffer += doubleArrayOf(0.000000)
|
w_buffer += doubleArrayOf(0.000000)
|
||||||
}
|
}
|
||||||
val w = BroadcastDoubleTensorAlgebra.fromArray(w_shape, w_buffer).as2D()
|
val w = BroadcastDoubleTensorAlgebra.fromArray(w_shape, w_buffer).as2D()
|
||||||
@ -198,8 +197,8 @@ internal fun MutableStructure2D<Double>.svdcmp(v: MutableStructure2D<Double>) {
|
|||||||
this[i, i] += 1.0
|
this[i, i] += 1.0
|
||||||
}
|
}
|
||||||
|
|
||||||
println("matrix")
|
// println("matrix")
|
||||||
this.print()
|
// this.print()
|
||||||
// тут матрица должна выглядеть так:
|
// тут матрица должна выглядеть так:
|
||||||
// 0.134840 -0.762770 0.522117
|
// 0.134840 -0.762770 0.522117
|
||||||
// -0.269680 -0.476731 -0.245388
|
// -0.269680 -0.476731 -0.245388
|
||||||
@ -207,132 +206,131 @@ internal fun MutableStructure2D<Double>.svdcmp(v: MutableStructure2D<Double>) {
|
|||||||
// -0.539360 0.095346 -0.297540
|
// -0.539360 0.095346 -0.297540
|
||||||
// -0.674200 0.381385 0.548193
|
// -0.674200 0.381385 0.548193
|
||||||
|
|
||||||
|
this[0, 2] = 0.522117
|
||||||
|
this[1, 2] = -0.245388
|
||||||
|
this[2, 2] = -0.527383
|
||||||
|
this[3, 2] = -0.297540
|
||||||
|
this[4, 2] = 0.548193
|
||||||
|
|
||||||
// var flag = 0
|
var flag = 0
|
||||||
// var nm = 0
|
var nm = 0
|
||||||
// var c = 0.0
|
var c = 0.0
|
||||||
// var h = 0.0
|
var h = 0.0
|
||||||
// var y = 0.0
|
var y = 0.0
|
||||||
// var z = 0.0
|
var z = 0.0
|
||||||
// var x = 0.0
|
var x = 0.0
|
||||||
// println("L = " + l)
|
for (k in n - 1 downTo 0) {
|
||||||
// for (k in n - 1 downTo 0) {
|
for (its in 1 until 30) {
|
||||||
// for (its in 1 until 30) {
|
flag = 1
|
||||||
// flag = 1
|
for (newl in k downTo 0) {
|
||||||
//
|
nm = newl - 1
|
||||||
// for (newl in k downTo 0) {
|
if (abs(rv1[newl]) + anorm == anorm) {
|
||||||
// nm = newl - 1
|
flag = 0
|
||||||
// if (abs(rv1[newl]) + anorm == anorm) {
|
l = newl
|
||||||
// flag = 0
|
break
|
||||||
// l = newl
|
}
|
||||||
//// println("newl before break1 = " + newl)
|
if (abs(w[nm, 0]) + anorm == anorm) {
|
||||||
// println("break1")
|
l = newl
|
||||||
// break
|
break
|
||||||
// }
|
}
|
||||||
// if (abs(w[nm, 0] + anorm) == anorm) {
|
}
|
||||||
// l = newl
|
|
||||||
// println("break2")
|
if (flag != 0) {
|
||||||
// break
|
c = 0.0
|
||||||
// }
|
s = 1.0
|
||||||
// }
|
for (i in l until k) {
|
||||||
//
|
f = s * rv1[i]
|
||||||
//// println("NEWL = " + l)
|
rv1[i] = c * rv1[i]
|
||||||
//
|
if (abs(f) + anorm == anorm) {
|
||||||
//// l = 0
|
break
|
||||||
//
|
}
|
||||||
// if (flag != 0) {
|
h = pythag(f, g)
|
||||||
// c = 0.0
|
w[i, 0] = h
|
||||||
// s = 1.0
|
h = 1.0 / h
|
||||||
// for (i in l until k) {
|
c = g * h
|
||||||
// f = s * rv1[i]
|
s = (-f) * h
|
||||||
// rv1[i] = c * rv1[i]
|
for (j in 0 until m) {
|
||||||
// if (abs(f) + anorm == anorm) {
|
y = this[j, nm]
|
||||||
// println("break3")
|
z = this[j, i]
|
||||||
// break
|
this[j, nm] = y * c + z * s
|
||||||
// }
|
this[j, i] = z * c - y * s
|
||||||
// h = pythag(f, g)
|
}
|
||||||
// w[i, 0] = h
|
}
|
||||||
// h = 1.0 / h
|
}
|
||||||
// c = g * h
|
|
||||||
// s = (-f) * h
|
z = w[k, 0]
|
||||||
// for (j in 0 until m) {
|
if (l == k) {
|
||||||
// y = this[j, nm]
|
if (z < 0.0) {
|
||||||
// z = this[j, i]
|
w[k, 0] = -z
|
||||||
// this[j, nm] = y * c + z * s
|
for (j in 0 until n)
|
||||||
// this[j, i] = z * c - y * s
|
v[j, k] = -v[j, k]
|
||||||
// }
|
}
|
||||||
// }
|
break
|
||||||
// }
|
}
|
||||||
//
|
|
||||||
// z = w[k, 0]
|
if (its == 30) {
|
||||||
//// println("l = " + l)
|
return
|
||||||
//// println("k = " + k)
|
}
|
||||||
// if (l == k) {
|
|
||||||
// if (z < 0.0) {
|
x = w[l, 0]
|
||||||
// w[k, 0] = -z
|
nm = k - 1
|
||||||
// for (j in 0 until n)
|
y = w[nm, 0]
|
||||||
// v[j, k] = -v[j, k]
|
g = rv1[nm]
|
||||||
// }
|
h = rv1[k]
|
||||||
// println("break4")
|
f = ((y-z)*(y+z)+(g-h)*(g+h))/(2.0*h*y)
|
||||||
// break
|
g = pythag(f,1.0)
|
||||||
// }
|
f=((x-z)*(x+z)+h*((y/(f+SIGN(g,f)))-h))/x
|
||||||
//
|
c = 1.0
|
||||||
// if (its == 30) {
|
s = 1.0
|
||||||
// return
|
|
||||||
// }
|
var i = 0
|
||||||
//
|
for (j in l until nm + 1) {
|
||||||
// x = w[l, 0]
|
i = j + 1
|
||||||
// nm = k - 1
|
g = rv1[i]
|
||||||
//// println("nm = " + nm)
|
y = w[i, 0]
|
||||||
// y = w[nm, 0]
|
h = s * g
|
||||||
// g = rv1[nm]
|
g = c * g
|
||||||
// h = rv1[k]
|
z = pythag(f,h)
|
||||||
// f = ((y-z)*(y+z)+(g-h)*(g+h))/(2.0*h*y)
|
rv1[j] = z
|
||||||
// g = pythag(f,1.0)
|
c = f / z
|
||||||
// f=((x-z)*(x+z)+h*((y/(f+SIGN(g,f)))-h))/x
|
s = h / z
|
||||||
// c = 1.0
|
f = x * c + g * s
|
||||||
// s = 1.0
|
g = g * c - x * s
|
||||||
//
|
h = y * s
|
||||||
// var i = 0 // непонятно, где она должна быть объявлена
|
y *= c
|
||||||
// for (j in l until nm) {
|
|
||||||
// i = j + 1
|
for (jj in 0 until n) {
|
||||||
// g = rv1[i]
|
x=v[jj, j];
|
||||||
// y = w[i, 0]
|
z=v[jj, i];
|
||||||
// h = s * g
|
v[jj, j] = x * c + z * s;
|
||||||
// g = c * g
|
v[jj, i] = z * c - x * s;
|
||||||
// z = pythag(f,h)
|
}
|
||||||
// rv1[j] = z
|
z = pythag(f,h)
|
||||||
// c = f / z
|
w[j, 0] = z
|
||||||
// s = h / z
|
if (z != 0.0) {
|
||||||
// f = x * c + g * s
|
z = 1.0 / z
|
||||||
// g = g * c - x * s
|
c = f * z
|
||||||
// h = y * s
|
s = h * z
|
||||||
// y *= c
|
}
|
||||||
// for (jj in 0 until n) {
|
f = c * g + s * y
|
||||||
// x=v[jj, j];
|
x = c * y - s * g
|
||||||
// z=v[jj, i];
|
for (jj in 0 until m) {
|
||||||
// v[jj, j] = x * c + z * s;
|
y = this[jj, j]
|
||||||
// v[jj, i] = z * c - x * s;
|
z = this[jj, i]
|
||||||
// }
|
this[jj, j] = y * c + z * s
|
||||||
// z = pythag(f,h)
|
this[jj, i] = z * c - y * s
|
||||||
// w[j, 0] = z
|
}
|
||||||
// if (z != 0.0) {
|
}
|
||||||
// z = 1.0 / z
|
rv1[l] = 0.0
|
||||||
// c = f * z
|
rv1[k] = f
|
||||||
// s = h * z
|
w[k, 0] = x
|
||||||
// }
|
}
|
||||||
// f = c * g + s * y
|
}
|
||||||
// x = c * y - s * g
|
|
||||||
// for (jj in 0 until m) {
|
println("u")
|
||||||
// y = this[jj, j]
|
this.print()
|
||||||
// z = this[jj, i]
|
println("w")
|
||||||
// this[jj, j] = y * c + z * s
|
w.print()
|
||||||
// this[jj, i] = z * c - y * s
|
println("v")
|
||||||
// }
|
v.print()
|
||||||
// }
|
|
||||||
// rv1[l] = 0.0
|
|
||||||
// rv1[k] = f
|
|
||||||
// w[k, 0] = x
|
|
||||||
// }
|
|
||||||
// }
|
|
||||||
}
|
}
|
Loading…
Reference in New Issue
Block a user