diff --git a/benchmarks/src/jvmMain/kotlin/space/kscience/kmath/benchmarks/SVDBenchmark.kt b/benchmarks/src/jvmMain/kotlin/space/kscience/kmath/benchmarks/SVDBenchmark.kt index ee581f778..500cb0ad5 100644 --- a/benchmarks/src/jvmMain/kotlin/space/kscience/kmath/benchmarks/SVDBenchmark.kt +++ b/benchmarks/src/jvmMain/kotlin/space/kscience/kmath/benchmarks/SVDBenchmark.kt @@ -29,13 +29,6 @@ class SVDBenchmark { @Benchmark fun svdPowerMethodSmall(blackhole: Blackhole) { - val svd = tensorSmall.svdPowerMethod() - val tensorSVD = svd.first - .dot( - diagonalEmbedding(svd.second) - .dot(svd.third.transpose()) - ) - assertTrue(tensorSVD.eq(tensorSmall, epsilon)) blackhole.consume( tensorSmall.svdPowerMethod() ) @@ -43,13 +36,6 @@ class SVDBenchmark { @Benchmark fun svdPowerMethodMedium(blackhole: Blackhole) { - val svd = tensorMedium.svdPowerMethod() - val tensorSVD = svd.first - .dot( - diagonalEmbedding(svd.second) - .dot(svd.third.transpose()) - ) - assertTrue(tensorSVD.eq(tensorMedium, epsilon)) blackhole.consume( tensorMedium.svdPowerMethod() ) @@ -57,13 +43,6 @@ class SVDBenchmark { @Benchmark fun svdPowerMethodLarge(blackhole: Blackhole) { - val svd = tensorLarge.svdPowerMethod() - val tensorSVD = svd.first - .dot( - diagonalEmbedding(svd.second) - .dot(svd.third.transpose()) - ) - assertTrue(tensorSVD.eq(tensorLarge, epsilon)) blackhole.consume( tensorLarge.svdPowerMethod() ) @@ -71,13 +50,6 @@ class SVDBenchmark { @Benchmark fun svdPowerMethodVeryLarge(blackhole: Blackhole) { - val svd = tensorVeryLarge.svdPowerMethod() - val tensorSVD = svd.first - .dot( - diagonalEmbedding(svd.second) - .dot(svd.third.transpose()) - ) - assertTrue(tensorSVD.eq(tensorVeryLarge, epsilon)) blackhole.consume( tensorVeryLarge.svdPowerMethod() ) @@ -85,13 +57,6 @@ class SVDBenchmark { @Benchmark fun svdGolubKahanSmall(blackhole: Blackhole) { - val svd = tensorSmall.svdGolubKahan() - val tensorSVD = svd.first - .dot( - diagonalEmbedding(svd.second) - .dot(svd.third.transpose()) - ) - assertTrue(tensorSVD.eq(tensorSmall, epsilon)) blackhole.consume( tensorSmall.svdGolubKahan() ) @@ -99,13 +64,6 @@ class SVDBenchmark { @Benchmark fun svdGolubKahanMedium(blackhole: Blackhole) { - val svd = tensorMedium.svdGolubKahan() - val tensorSVD = svd.first - .dot( - diagonalEmbedding(svd.second) - .dot(svd.third.transpose()) - ) - assertTrue(tensorSVD.eq(tensorMedium, epsilon)) blackhole.consume( tensorMedium.svdGolubKahan() ) @@ -113,13 +71,6 @@ class SVDBenchmark { @Benchmark fun svdGolubKahanLarge(blackhole: Blackhole) { - val svd = tensorLarge.svdGolubKahan() - val tensorSVD = svd.first - .dot( - diagonalEmbedding(svd.second) - .dot(svd.third.transpose()) - ) - assertTrue(tensorSVD.eq(tensorLarge, epsilon)) blackhole.consume( tensorLarge.svdGolubKahan() ) @@ -127,13 +78,6 @@ class SVDBenchmark { @Benchmark fun svdGolubKahanVeryLarge(blackhole: Blackhole) { - val svd = tensorVeryLarge.svdGolubKahan() - val tensorSVD = svd.first - .dot( - diagonalEmbedding(svd.second) - .dot(svd.third.transpose()) - ) - assertTrue(tensorSVD.eq(tensorVeryLarge, epsilon)) blackhole.consume( tensorVeryLarge.svdGolubKahan() )