Merge remote-tracking branch 'origin/dev' into mp-samplers

# Conflicts:
#	examples/src/main/kotlin/kscience/kmath/commons/prob/DistributionBenchmark.kt
This commit is contained in:
Iaroslav Postovalov 2020-10-02 01:35:55 +07:00
commit 26d81bddb5
No known key found for this signature in database
GPG Key ID: 46E15E4A31B3BCD7
55 changed files with 969 additions and 252 deletions

View File

@ -7,6 +7,7 @@
- Better trigonometric and hyperbolic functions for `AutoDiffField` (https://github.com/mipt-npm/kmath/pull/140). - Better trigonometric and hyperbolic functions for `AutoDiffField` (https://github.com/mipt-npm/kmath/pull/140).
- Automatic README generation for features (#139) - Automatic README generation for features (#139)
- Native support for `memory`, `core` and `dimensions` - Native support for `memory`, `core` and `dimensions`
- `kmath-ejml` to supply EJML SimpleMatrix wrapper.
### Changed ### Changed
- Package changed from `scientifik` to `kscience.kmath`. - Package changed from `scientifik` to `kscience.kmath`.
@ -14,6 +15,7 @@
- Minor exceptions refactor (throwing `IllegalArgumentException` by argument checks instead of `IllegalStateException`) - Minor exceptions refactor (throwing `IllegalArgumentException` by argument checks instead of `IllegalStateException`)
- `Polynomial` secondary constructor made function. - `Polynomial` secondary constructor made function.
- Kotlin version: 1.3.72 -> 1.4.20-M1 - Kotlin version: 1.3.72 -> 1.4.20-M1
- `kmath-ast` doesn't depend on heavy `kotlin-reflect` library.
### Deprecated ### Deprecated

View File

@ -53,7 +53,9 @@ can be used for a wide variety of purposes from high performance calculations to
* **Commons-math wrapper** It is planned to gradually wrap most parts of [Apache commons-math](http://commons.apache.org/proper/commons-math/) * **Commons-math wrapper** It is planned to gradually wrap most parts of [Apache commons-math](http://commons.apache.org/proper/commons-math/)
library in Kotlin code and maybe rewrite some parts to better suit the Kotlin programming paradigm, however there is no fixed roadmap for that. Feel free library in Kotlin code and maybe rewrite some parts to better suit the Kotlin programming paradigm, however there is no fixed roadmap for that. Feel free
to submit a feature request if you want something to be done first. to submit a feature request if you want something to be done first.
* **EJML wrapper** Provides EJML `SimpleMatrix` wrapper consistent with the core matrix structures.
## Planned features ## Planned features
* **Messaging** A mathematical notation to support multi-language and multi-node communication for mathematical tasks. * **Messaging** A mathematical notation to support multi-language and multi-node communication for mathematical tasks.

View File

@ -2,9 +2,9 @@ plugins {
id("ru.mipt.npm.project") id("ru.mipt.npm.project")
} }
val kmathVersion by extra("0.2.0-dev-2") val kmathVersion: String by extra("0.2.0-dev-2")
val bintrayRepo by extra("kscience") val bintrayRepo: String by extra("kscience")
val githubProject by extra("kmath") val githubProject: String by extra("kmath")
allprojects { allprojects {
repositories { repositories {
@ -22,6 +22,6 @@ subprojects {
if (name.startsWith("kmath")) apply<ru.mipt.npm.gradle.KSciencePublishPlugin>() if (name.startsWith("kmath")) apply<ru.mipt.npm.gradle.KSciencePublishPlugin>()
} }
readme{ readme {
readmeTemplate = file("docs/templates/README-TEMPLATE.md") readmeTemplate = file("docs/templates/README-TEMPLATE.md")
} }

View File

@ -6,10 +6,10 @@ back-ends. The new operations added as extensions to contexts instead of being m
Two major contexts used for linear algebra and hyper-geometry: Two major contexts used for linear algebra and hyper-geometry:
* `VectorSpace` forms a mathematical space on top of array-like structure (`Buffer` and its typealias `Point` used for geometry). * `VectorSpace` forms a mathematical space on top of array-like structure (`Buffer` and its type alias `Point` used for geometry).
* `MatrixContext` forms a space-like context for 2d-structures. It does not store matrix size and therefore does not implement * `MatrixContext` forms a space-like context for 2d-structures. It does not store matrix size and therefore does not implement
`Space` interface (it is not possible to create zero element without knowing the matrix size). `Space` interface (it is impossible to create zero element without knowing the matrix size).
## Vector spaces ## Vector spaces

View File

@ -26,9 +26,12 @@ dependencies {
implementation(project(":kmath-prob")) implementation(project(":kmath-prob"))
implementation(project(":kmath-viktor")) implementation(project(":kmath-viktor"))
implementation(project(":kmath-dimensions")) implementation(project(":kmath-dimensions"))
implementation(project(":kmath-ejml"))
implementation("org.jetbrains.kotlinx:kotlinx-io:0.2.0-npm-dev-11") implementation("org.jetbrains.kotlinx:kotlinx-io:0.2.0-npm-dev-11")
implementation("org.jetbrains.kotlinx:kotlinx.benchmark.runtime:0.2.0-dev-20") implementation("org.jetbrains.kotlinx:kotlinx.benchmark.runtime:0.2.0-dev-20")
"benchmarksCompile"(sourceSets.main.get().output + sourceSets.main.get().compileClasspath) //sourceSets.main.output + sourceSets.main.runtimeClasspath implementation("org.slf4j:slf4j-simple:1.7.30")
"benchmarksImplementation"("org.jetbrains.kotlinx:kotlinx.benchmark.runtime-jvm:0.2.0-dev-8")
"benchmarksImplementation"(sourceSets.main.get().output + sourceSets.main.get().runtimeClasspath)
} }
// Configure benchmark // Configure benchmark

View File

@ -6,34 +6,33 @@ import org.openjdk.jmh.annotations.State
import java.nio.IntBuffer import java.nio.IntBuffer
@State(Scope.Benchmark) @State(Scope.Benchmark)
class ArrayBenchmark { internal class ArrayBenchmark {
@Benchmark @Benchmark
fun benchmarkArrayRead() { fun benchmarkArrayRead() {
var res = 0 var res = 0
for (i in 1.._root_ide_package_.kscience.kmath.structures.ArrayBenchmark.Companion.size) res += _root_ide_package_.kscience.kmath.structures.ArrayBenchmark.Companion.array[_root_ide_package_.kscience.kmath.structures.ArrayBenchmark.Companion.size - i] for (i in 1..size) res += array[size - i]
} }
@Benchmark @Benchmark
fun benchmarkBufferRead() { fun benchmarkBufferRead() {
var res = 0 var res = 0
for (i in 1.._root_ide_package_.kscience.kmath.structures.ArrayBenchmark.Companion.size) res += _root_ide_package_.kscience.kmath.structures.ArrayBenchmark.Companion.arrayBuffer.get( for (i in 1..size) res += arrayBuffer.get(
_root_ide_package_.kscience.kmath.structures.ArrayBenchmark.Companion.size - i) size - i
)
} }
@Benchmark @Benchmark
fun nativeBufferRead() { fun nativeBufferRead() {
var res = 0 var res = 0
for (i in 1.._root_ide_package_.kscience.kmath.structures.ArrayBenchmark.Companion.size) res += _root_ide_package_.kscience.kmath.structures.ArrayBenchmark.Companion.nativeBuffer.get( for (i in 1..size) res += nativeBuffer.get(
_root_ide_package_.kscience.kmath.structures.ArrayBenchmark.Companion.size - i) size - i
)
} }
companion object { companion object {
const val size: Int = 1000 const val size: Int = 1000
val array: IntArray = IntArray(_root_ide_package_.kscience.kmath.structures.ArrayBenchmark.Companion.size) { it } val array: IntArray = IntArray(size) { it }
val arrayBuffer: IntBuffer = IntBuffer.wrap(_root_ide_package_.kscience.kmath.structures.ArrayBenchmark.Companion.array) val arrayBuffer: IntBuffer = IntBuffer.wrap(array)
val nativeBuffer: IntBuffer = IntBuffer.allocate(size).also { for (i in 0 until size) it.put(i, i) }
val nativeBuffer: IntBuffer = IntBuffer.allocate(_root_ide_package_.kscience.kmath.structures.ArrayBenchmark.Companion.size).also {
for (i in 0 until _root_ide_package_.kscience.kmath.structures.ArrayBenchmark.Companion.size) it.put(i, i)
}
} }
} }

View File

@ -7,11 +7,10 @@ import org.openjdk.jmh.annotations.Scope
import org.openjdk.jmh.annotations.State import org.openjdk.jmh.annotations.State
@State(Scope.Benchmark) @State(Scope.Benchmark)
class BufferBenchmark { internal class BufferBenchmark {
@Benchmark @Benchmark
fun genericRealBufferReadWrite() { fun genericRealBufferReadWrite() {
val buffer = RealBuffer(size){it.toDouble()} val buffer = RealBuffer(size) { it.toDouble() }
(0 until size).forEach { (0 until size).forEach {
buffer[it] buffer[it]
@ -20,7 +19,7 @@ class BufferBenchmark {
@Benchmark @Benchmark
fun complexBufferReadWrite() { fun complexBufferReadWrite() {
val buffer = MutableBuffer.complex(size / 2){Complex(it.toDouble(), -it.toDouble())} val buffer = MutableBuffer.complex(size / 2) { Complex(it.toDouble(), -it.toDouble()) }
(0 until size / 2).forEach { (0 until size / 2).forEach {
buffer[it] buffer[it]
@ -28,6 +27,6 @@ class BufferBenchmark {
} }
companion object { companion object {
const val size = 100 const val size: Int = 100
} }
} }

View File

@ -7,7 +7,7 @@ import org.openjdk.jmh.annotations.Scope
import org.openjdk.jmh.annotations.State import org.openjdk.jmh.annotations.State
@State(Scope.Benchmark) @State(Scope.Benchmark)
class NDFieldBenchmark { internal class NDFieldBenchmark {
@Benchmark @Benchmark
fun autoFieldAdd() { fun autoFieldAdd() {
bufferedField { bufferedField {
@ -40,11 +40,10 @@ class NDFieldBenchmark {
} }
companion object { companion object {
val dim = 1000 const val dim: Int = 1000
val n = 100 const val n: Int = 100
val bufferedField: BufferedNDField<Double, RealField> = NDField.auto(RealField, dim, dim)
val bufferedField = NDField.auto(RealField, dim, dim) val specializedField: RealNDField = NDField.real(dim, dim)
val specializedField = NDField.real(dim, dim) val genericField: BoxingNDField<Double, RealField> = NDField.boxing(RealField, dim, dim)
val genericField = NDField.boxing(RealField, dim, dim)
} }
} }

View File

@ -9,9 +9,9 @@ import org.openjdk.jmh.annotations.Scope
import org.openjdk.jmh.annotations.State import org.openjdk.jmh.annotations.State
@State(Scope.Benchmark) @State(Scope.Benchmark)
class ViktorBenchmark { internal class ViktorBenchmark {
final val dim = 1000 final val dim: Int = 1000
final val n = 100 final val n: Int = 100
// automatically build context most suited for given type. // automatically build context most suited for given type.
final val autoField: BufferedNDField<Double, RealField> = NDField.auto(RealField, dim, dim) final val autoField: BufferedNDField<Double, RealField> = NDField.auto(RealField, dim, dim)
@ -42,7 +42,7 @@ class ViktorBenchmark {
} }
@Benchmark @Benchmark
fun realdFieldLog() { fun realFieldLog() {
realField { realField {
val fortyTwo = produce { 42.0 } val fortyTwo = produce { 42.0 }
var res = one var res = one

View File

@ -1,4 +1,4 @@
//package kscience.kmath.ast package kscience.kmath.ast
// //
//import kscience.kmath.asm.compile //import kscience.kmath.asm.compile
//import kscience.kmath.expressions.Expression //import kscience.kmath.expressions.Expression

View File

@ -6,9 +6,9 @@ import kscience.kmath.chains.collectWithState
import kscience.kmath.prob.RandomGenerator import kscience.kmath.prob.RandomGenerator
import kscience.kmath.prob.samplers.ZigguratNormalizedGaussianSampler import kscience.kmath.prob.samplers.ZigguratNormalizedGaussianSampler
data class AveragingChainState(var num: Int = 0, var value: Double = 0.0) private data class AveragingChainState(var num: Int = 0, var value: Double = 0.0)
fun Chain<Double>.mean(): Chain<Double> = collectWithState(AveragingChainState(), { it.copy() }) { chain -> private fun Chain<Double>.mean(): Chain<Double> = collectWithState(AveragingChainState(), { it.copy() }) { chain ->
val next = chain.next() val next = chain.next()
num++ num++
value += next value += next

View File

@ -0,0 +1,50 @@
package kscience.kmath.linear
import kscience.kmath.commons.linear.CMMatrixContext
import kscience.kmath.commons.linear.inverse
import kscience.kmath.commons.linear.toCM
import kscience.kmath.ejml.EjmlMatrixContext
import kscience.kmath.ejml.inverse
import kscience.kmath.operations.RealField
import kscience.kmath.operations.invoke
import kscience.kmath.structures.Matrix
import kotlin.random.Random
import kotlin.system.measureTimeMillis
fun main() {
val random = Random(1224)
val dim = 100
//creating invertible matrix
val u = Matrix.real(dim, dim) { i, j -> if (i <= j) random.nextDouble() else 0.0 }
val l = Matrix.real(dim, dim) { i, j -> if (i >= j) random.nextDouble() else 0.0 }
val matrix = l dot u
val n = 5000 // iterations
MatrixContext.real {
repeat(50) { inverse(matrix) }
val inverseTime = measureTimeMillis { repeat(n) { inverse(matrix) } }
println("[kmath] Inversion of $n matrices $dim x $dim finished in $inverseTime millis")
}
//commons-math
val commonsTime = measureTimeMillis {
CMMatrixContext {
val cm = matrix.toCM() //avoid overhead on conversion
repeat(n) { inverse(cm) }
}
}
println("[commons-math] Inversion of $n matrices $dim x $dim finished in $commonsTime millis")
val ejmlTime = measureTimeMillis {
(EjmlMatrixContext(RealField)) {
val km = matrix.toEjml() //avoid overhead on conversion
repeat(n) { inverse(km) }
}
}
println("[ejml] Inversion of $n matrices $dim x $dim finished in $ejmlTime millis")
}

View File

@ -0,0 +1,38 @@
package kscience.kmath.linear
import kscience.kmath.commons.linear.CMMatrixContext
import kscience.kmath.commons.linear.toCM
import kscience.kmath.ejml.EjmlMatrixContext
import kscience.kmath.operations.RealField
import kscience.kmath.operations.invoke
import kscience.kmath.structures.Matrix
import kotlin.random.Random
import kotlin.system.measureTimeMillis
fun main() {
val random = Random(12224)
val dim = 1000
//creating invertible matrix
val matrix1 = Matrix.real(dim, dim) { i, j -> if (i <= j) random.nextDouble() else 0.0 }
val matrix2 = Matrix.real(dim, dim) { i, j -> if (i <= j) random.nextDouble() else 0.0 }
// //warmup
// matrix1 dot matrix2
CMMatrixContext {
val cmMatrix1 = matrix1.toCM()
val cmMatrix2 = matrix2.toCM()
val cmTime = measureTimeMillis { cmMatrix1 dot cmMatrix2 }
println("CM implementation time: $cmTime")
}
(EjmlMatrixContext(RealField)) {
val ejmlMatrix1 = matrix1.toEjml()
val ejmlMatrix2 = matrix2.toEjml()
val ejmlTime = measureTimeMillis { ejmlMatrix1 dot ejmlMatrix2 }
println("EJML implementation time: $ejmlTime")
}
val genericTime = measureTimeMillis { val res = matrix1 dot matrix2 }
println("Generic implementation time: $genericTime")
}

View File

@ -1,8 +1,6 @@
package kscience.kmath.operations package kscience.kmath.operations
fun main() { fun main() {
val res = BigIntField { val res = BigIntField { number(1) * 2 }
number(1) * 2
}
println("bigint:$res") println("bigint:$res")
} }

View File

@ -5,15 +5,19 @@ import kscience.kmath.structures.NDField
import kscience.kmath.structures.complex import kscience.kmath.structures.complex
fun main() { fun main() {
// 2d element
val element = NDElement.complex(2, 2) { index: IntArray -> val element = NDElement.complex(2, 2) { index: IntArray ->
Complex(index[0].toDouble() - index[1].toDouble(), index[0].toDouble() + index[1].toDouble()) Complex(index[0].toDouble() - index[1].toDouble(), index[0].toDouble() + index[1].toDouble())
} }
println(element)
val compute = (NDField.complex(8)) { // 1d element operation
val result = with(NDField.complex(8)) {
val a = produce { (it) -> i * it - it.toDouble() } val a = produce { (it) -> i * it - it.toDouble() }
val b = 3 val b = 3
val c = Complex(1.0, 1.0) val c = Complex(1.0, 1.0)
(a pow b) + c (a pow b) + c
} }
println(result)
} }

View File

@ -4,32 +4,30 @@ import kotlin.system.measureTimeMillis
fun main() { fun main() {
val n = 6000 val n = 6000
val array = DoubleArray(n * n) { 1.0 } val array = DoubleArray(n * n) { 1.0 }
val buffer = RealBuffer(array) val buffer = RealBuffer(array)
val strides = DefaultStrides(intArrayOf(n, n)) val strides = DefaultStrides(intArrayOf(n, n))
val structure = BufferNDStructure(strides, buffer) val structure = BufferNDStructure(strides, buffer)
measureTimeMillis { measureTimeMillis {
var res: Double = 0.0 var res = 0.0
strides.indices().forEach { res = structure[it] } strides.indices().forEach { res = structure[it] }
} // warmup } // warmup
val time1 = measureTimeMillis { val time1 = measureTimeMillis {
var res: Double = 0.0 var res = 0.0
strides.indices().forEach { res = structure[it] } strides.indices().forEach { res = structure[it] }
} }
println("Structure reading finished in $time1 millis") println("Structure reading finished in $time1 millis")
val time2 = measureTimeMillis { val time2 = measureTimeMillis {
var res: Double = 0.0 var res = 0.0
strides.indices().forEach { res = buffer[strides.offset(it)] } strides.indices().forEach { res = buffer[strides.offset(it)] }
} }
println("Buffer reading finished in $time2 millis") println("Buffer reading finished in $time2 millis")
val time3 = measureTimeMillis { val time3 = measureTimeMillis {
var res: Double = 0.0 var res = 0.0
strides.indices().forEach { res = array[strides.offset(it)] } strides.indices().forEach { res = array[strides.offset(it)] }
} }
println("Array reading finished in $time3 millis") println("Array reading finished in $time3 millis")

View File

@ -4,24 +4,17 @@ import kotlin.system.measureTimeMillis
fun main() { fun main() {
val n = 6000 val n = 6000
val structure = NDStructure.build(intArrayOf(n, n), Buffer.Companion::auto) { 1.0 } val structure = NDStructure.build(intArrayOf(n, n), Buffer.Companion::auto) { 1.0 }
structure.mapToBuffer { it + 1 } // warm-up structure.mapToBuffer { it + 1 } // warm-up
val time1 = measureTimeMillis { val res = structure.mapToBuffer { it + 1 } }
val time1 = measureTimeMillis {
val res = structure.mapToBuffer { it + 1 }
}
println("Structure mapping finished in $time1 millis") println("Structure mapping finished in $time1 millis")
val array = DoubleArray(n * n) { 1.0 } val array = DoubleArray(n * n) { 1.0 }
val time2 = measureTimeMillis { val time2 = measureTimeMillis {
val target = DoubleArray(n * n) val target = DoubleArray(n * n)
val res = array.forEachIndexed { index, value -> val res = array.forEachIndexed { index, value -> target[index] = value + 1 }
target[index] = value + 1
}
} }
println("Array mapping finished in $time2 millis") println("Array mapping finished in $time2 millis")
val buffer = RealBuffer(DoubleArray(n * n) { 1.0 }) val buffer = RealBuffer(DoubleArray(n * n) { 1.0 })

View File

@ -6,7 +6,7 @@ import kscience.kmath.dimensions.DMatrixContext
import kscience.kmath.dimensions.Dimension import kscience.kmath.dimensions.Dimension
import kscience.kmath.operations.RealField import kscience.kmath.operations.RealField
fun DMatrixContext<Double, RealField>.simple() { private fun DMatrixContext<Double, RealField>.simple() {
val m1 = produce<D2, D3> { i, j -> (i + j).toDouble() } val m1 = produce<D2, D3> { i, j -> (i + j).toDouble() }
val m2 = produce<D3, D2> { i, j -> (i + j).toDouble() } val m2 = produce<D3, D2> { i, j -> (i + j).toDouble() }
@ -14,12 +14,11 @@ fun DMatrixContext<Double, RealField>.simple() {
m1.transpose() + m2 m1.transpose() + m2
} }
private object D5 : Dimension {
object D5 : Dimension {
override val dim: UInt = 5u override val dim: UInt = 5u
} }
fun DMatrixContext<Double, RealField>.custom() { private fun DMatrixContext<Double, RealField>.custom() {
val m1 = produce<D2, D5> { i, j -> (i + j).toDouble() } val m1 = produce<D2, D5> { i, j -> (i + j).toDouble() }
val m2 = produce<D5, D2> { i, j -> (i - j).toDouble() } val m2 = produce<D5, D2> { i, j -> (i - j).toDouble() }
val m3 = produce<D2, D2> { i, j -> (i - j).toDouble() } val m3 = produce<D2, D2> { i, j -> (i - j).toDouble() }

View File

@ -14,7 +14,6 @@ kotlin.sourceSets {
implementation("org.ow2.asm:asm:8.0.1") implementation("org.ow2.asm:asm:8.0.1")
implementation("org.ow2.asm:asm-commons:8.0.1") implementation("org.ow2.asm:asm-commons:8.0.1")
implementation("com.github.h0tk3y.betterParse:better-parse:0.4.0") implementation("com.github.h0tk3y.betterParse:better-parse:0.4.0")
implementation(kotlin("reflect"))
} }
} }
} }

View File

@ -8,7 +8,6 @@ import kscience.kmath.ast.MST
import kscience.kmath.ast.MstExpression import kscience.kmath.ast.MstExpression
import kscience.kmath.expressions.Expression import kscience.kmath.expressions.Expression
import kscience.kmath.operations.Algebra import kscience.kmath.operations.Algebra
import kotlin.reflect.KClass
/** /**
* Compiles given MST to an Expression using AST compiler. * Compiles given MST to an Expression using AST compiler.
@ -18,7 +17,8 @@ import kotlin.reflect.KClass
* @return the compiled expression. * @return the compiled expression.
* @author Alexander Nozik * @author Alexander Nozik
*/ */
public fun <T : Any> MST.compileWith(type: KClass<T>, algebra: Algebra<T>): Expression<T> { @PublishedApi
internal fun <T : Any> MST.compileWith(type: Class<T>, algebra: Algebra<T>): Expression<T> {
fun AsmBuilder<T>.visit(node: MST): Unit = when (node) { fun AsmBuilder<T>.visit(node: MST): Unit = when (node) {
is MST.Symbolic -> { is MST.Symbolic -> {
val symbol = try { val symbol = try {
@ -61,11 +61,12 @@ public fun <T : Any> MST.compileWith(type: KClass<T>, algebra: Algebra<T>): Expr
* *
* @author Alexander Nozik. * @author Alexander Nozik.
*/ */
public inline fun <reified T : Any> Algebra<T>.expression(mst: MST): Expression<T> = mst.compileWith(T::class, this) public inline fun <reified T : Any> Algebra<T>.expression(mst: MST): Expression<T> =
mst.compileWith(T::class.java, this)
/** /**
* Optimizes performance of an [MstExpression] using ASM codegen. * Optimizes performance of an [MstExpression] using ASM codegen.
* *
* @author Alexander Nozik. * @author Alexander Nozik.
*/ */
public inline fun <reified T : Any> MstExpression<T>.compile(): Expression<T> = mst.compileWith(T::class, algebra) public inline fun <reified T : Any> MstExpression<T>.compile(): Expression<T> = mst.compileWith(T::class.java, algebra)

View File

@ -10,7 +10,6 @@ import org.objectweb.asm.Opcodes.*
import org.objectweb.asm.commons.InstructionAdapter import org.objectweb.asm.commons.InstructionAdapter
import java.util.* import java.util.*
import java.util.stream.Collectors import java.util.stream.Collectors
import kotlin.reflect.KClass
/** /**
* ASM Builder is a structure that abstracts building a class designated to unwrap [MST] to plain Java expression. * ASM Builder is a structure that abstracts building a class designated to unwrap [MST] to plain Java expression.
@ -23,7 +22,7 @@ import kotlin.reflect.KClass
* @author Iaroslav Postovalov * @author Iaroslav Postovalov
*/ */
internal class AsmBuilder<T> internal constructor( internal class AsmBuilder<T> internal constructor(
private val classOfT: KClass<*>, private val classOfT: Class<*>,
private val algebra: Algebra<T>, private val algebra: Algebra<T>,
private val className: String, private val className: String,
private val invokeLabel0Visitor: AsmBuilder<T>.() -> Unit private val invokeLabel0Visitor: AsmBuilder<T>.() -> Unit
@ -32,7 +31,7 @@ internal class AsmBuilder<T> internal constructor(
* Internal classloader of [AsmBuilder] with alias to define class from byte array. * Internal classloader of [AsmBuilder] with alias to define class from byte array.
*/ */
private class ClassLoader(parent: java.lang.ClassLoader) : java.lang.ClassLoader(parent) { private class ClassLoader(parent: java.lang.ClassLoader) : java.lang.ClassLoader(parent) {
internal fun defineClass(name: String?, b: ByteArray): Class<*> = defineClass(name, b, 0, b.size) fun defineClass(name: String?, b: ByteArray): Class<*> = defineClass(name, b, 0, b.size)
} }
/** /**
@ -43,7 +42,7 @@ internal class AsmBuilder<T> internal constructor(
/** /**
* ASM Type for [algebra]. * ASM Type for [algebra].
*/ */
private val tAlgebraType: Type = algebra::class.asm private val tAlgebraType: Type = algebra.javaClass.asm
/** /**
* ASM type for [T]. * ASM type for [T].
@ -55,16 +54,6 @@ internal class AsmBuilder<T> internal constructor(
*/ */
private val classType: Type = Type.getObjectType(className.replace(oldChar = '.', newChar = '/'))!! private val classType: Type = Type.getObjectType(className.replace(oldChar = '.', newChar = '/'))!!
/**
* Index of `this` variable in invoke method of the built subclass.
*/
private val invokeThisVar: Int = 0
/**
* Index of `arguments` variable in invoke method of the built subclass.
*/
private val invokeArgumentsVar: Int = 1
/** /**
* List of constants to provide to the subclass. * List of constants to provide to the subclass.
*/ */
@ -76,22 +65,22 @@ internal class AsmBuilder<T> internal constructor(
private lateinit var invokeMethodVisitor: InstructionAdapter private lateinit var invokeMethodVisitor: InstructionAdapter
/** /**
* State if this [AsmBuilder] needs to generate constants field. * States whether this [AsmBuilder] needs to generate constants field.
*/ */
private var hasConstants: Boolean = true private var hasConstants: Boolean = true
/** /**
* State if [T] a primitive type, so [AsmBuilder] may generate direct primitive calls. * States whether [T] a primitive type, so [AsmBuilder] may generate direct primitive calls.
*/ */
internal var primitiveMode: Boolean = false internal var primitiveMode: Boolean = false
/** /**
* Primitive type to apple for specific primitive calls. Use [OBJECT_TYPE], if not in [primitiveMode]. * Primitive type to apply for specific primitive calls. Use [OBJECT_TYPE], if not in [primitiveMode].
*/ */
internal var primitiveMask: Type = OBJECT_TYPE internal var primitiveMask: Type = OBJECT_TYPE
/** /**
* Boxed primitive type to apple for specific primitive calls. Use [OBJECT_TYPE], if not in [primitiveMode]. * Boxed primitive type to apply for specific primitive calls. Use [OBJECT_TYPE], if not in [primitiveMode].
*/ */
internal var primitiveMaskBoxed: Type = OBJECT_TYPE internal var primitiveMaskBoxed: Type = OBJECT_TYPE
@ -103,7 +92,7 @@ internal class AsmBuilder<T> internal constructor(
/** /**
* Stack of useful objects types on stack expected by algebra calls. * Stack of useful objects types on stack expected by algebra calls.
*/ */
internal val expectationStack: ArrayDeque<Type> = ArrayDeque(listOf(tType)) internal val expectationStack: ArrayDeque<Type> = ArrayDeque<Type>(1).also { it.push(tType) }
/** /**
* The cache for instance built by this builder. * The cache for instance built by this builder.
@ -361,7 +350,7 @@ internal class AsmBuilder<T> internal constructor(
* from it). * from it).
*/ */
private fun loadNumberConstant(value: Number, mustBeBoxed: Boolean) { private fun loadNumberConstant(value: Number, mustBeBoxed: Boolean) {
val boxed = value::class.asm val boxed = value.javaClass.asm
val primitive = BOXED_TO_PRIMITIVES[boxed] val primitive = BOXED_TO_PRIMITIVES[boxed]
if (primitive != null) { if (primitive != null) {
@ -475,17 +464,27 @@ internal class AsmBuilder<T> internal constructor(
internal fun loadStringConstant(string: String): Unit = invokeMethodVisitor.aconst(string) internal fun loadStringConstant(string: String): Unit = invokeMethodVisitor.aconst(string)
internal companion object { internal companion object {
/**
* Index of `this` variable in invoke method of the built subclass.
*/
private const val invokeThisVar: Int = 0
/**
* Index of `arguments` variable in invoke method of the built subclass.
*/
private const val invokeArgumentsVar: Int = 1
/** /**
* Maps JVM primitive numbers boxed types to their primitive ASM types. * Maps JVM primitive numbers boxed types to their primitive ASM types.
*/ */
private val SIGNATURE_LETTERS: Map<KClass<out Any>, Type> by lazy { private val SIGNATURE_LETTERS: Map<Class<out Any>, Type> by lazy {
hashMapOf( hashMapOf(
java.lang.Byte::class to Type.BYTE_TYPE, java.lang.Byte::class.java to Type.BYTE_TYPE,
java.lang.Short::class to Type.SHORT_TYPE, java.lang.Short::class.java to Type.SHORT_TYPE,
java.lang.Integer::class to Type.INT_TYPE, java.lang.Integer::class.java to Type.INT_TYPE,
java.lang.Long::class to Type.LONG_TYPE, java.lang.Long::class.java to Type.LONG_TYPE,
java.lang.Float::class to Type.FLOAT_TYPE, java.lang.Float::class.java to Type.FLOAT_TYPE,
java.lang.Double::class to Type.DOUBLE_TYPE java.lang.Double::class.java to Type.DOUBLE_TYPE
) )
} }
@ -523,43 +522,43 @@ internal class AsmBuilder<T> internal constructor(
/** /**
* Provides boxed number types values of which can be stored in JVM bytecode constant pool. * Provides boxed number types values of which can be stored in JVM bytecode constant pool.
*/ */
private val INLINABLE_NUMBERS: Set<KClass<out Any>> by lazy { SIGNATURE_LETTERS.keys } private val INLINABLE_NUMBERS: Set<Class<out Any>> by lazy { SIGNATURE_LETTERS.keys }
/** /**
* ASM type for [Expression]. * ASM type for [Expression].
*/ */
internal val EXPRESSION_TYPE: Type by lazy { Expression::class.asm } internal val EXPRESSION_TYPE: Type by lazy { Type.getObjectType("kscience/kmath/expressions/Expression") }
/** /**
* ASM type for [java.lang.Number]. * ASM type for [java.lang.Number].
*/ */
internal val NUMBER_TYPE: Type by lazy { java.lang.Number::class.asm } internal val NUMBER_TYPE: Type by lazy { Type.getObjectType("java/lang/Number") }
/** /**
* ASM type for [java.util.Map]. * ASM type for [java.util.Map].
*/ */
internal val MAP_TYPE: Type by lazy { java.util.Map::class.asm } internal val MAP_TYPE: Type by lazy { Type.getObjectType("java/util/Map") }
/** /**
* ASM type for [java.lang.Object]. * ASM type for [java.lang.Object].
*/ */
internal val OBJECT_TYPE: Type by lazy { java.lang.Object::class.asm } internal val OBJECT_TYPE: Type by lazy { Type.getObjectType("java/lang/Object") }
/** /**
* ASM type for array of [java.lang.Object]. * ASM type for array of [java.lang.Object].
*/ */
@Suppress("PLATFORM_CLASS_MAPPED_TO_KOTLIN", "RemoveRedundantQualifierName") @Suppress("PLATFORM_CLASS_MAPPED_TO_KOTLIN", "RemoveRedundantQualifierName")
internal val OBJECT_ARRAY_TYPE: Type by lazy { Array<java.lang.Object>::class.asm } internal val OBJECT_ARRAY_TYPE: Type by lazy { Type.getType("[Ljava/lang/Object;") }
/** /**
* ASM type for [Algebra]. * ASM type for [Algebra].
*/ */
internal val ALGEBRA_TYPE: Type by lazy { Algebra::class.asm } internal val ALGEBRA_TYPE: Type by lazy { Type.getObjectType("kscience/kmath/operations/Algebra") }
/** /**
* ASM type for [java.lang.String]. * ASM type for [java.lang.String].
*/ */
internal val STRING_TYPE: Type by lazy { java.lang.String::class.asm } internal val STRING_TYPE: Type by lazy { Type.getObjectType("java/lang/String") }
/** /**
* ASM type for MapIntrinsics. * ASM type for MapIntrinsics.

View File

@ -10,9 +10,9 @@ import org.objectweb.asm.*
import org.objectweb.asm.Opcodes.INVOKEVIRTUAL import org.objectweb.asm.Opcodes.INVOKEVIRTUAL
import org.objectweb.asm.commons.InstructionAdapter import org.objectweb.asm.commons.InstructionAdapter
import java.lang.reflect.Method import java.lang.reflect.Method
import java.util.*
import kotlin.contracts.InvocationKind import kotlin.contracts.InvocationKind
import kotlin.contracts.contract import kotlin.contracts.contract
import kotlin.reflect.KClass
private val methodNameAdapters: Map<Pair<String, Int>, String> by lazy { private val methodNameAdapters: Map<Pair<String, Int>, String> by lazy {
hashMapOf( hashMapOf(
@ -26,12 +26,12 @@ private val methodNameAdapters: Map<Pair<String, Int>, String> by lazy {
} }
/** /**
* Returns ASM [Type] for given [KClass]. * Returns ASM [Type] for given [Class].
* *
* @author Iaroslav Postovalov * @author Iaroslav Postovalov
*/ */
internal val KClass<*>.asm: Type internal inline val Class<*>.asm: Type
get() = Type.getType(java) get() = Type.getType(this)
/** /**
* Returns singleton array with this value if the [predicate] is true, returns empty array otherwise. * Returns singleton array with this value if the [predicate] is true, returns empty array otherwise.
@ -140,7 +140,7 @@ private fun <T> AsmBuilder<T>.buildExpectationStack(
if (specific != null) if (specific != null)
mapTypes(specific, parameterTypes).reversed().forEach { expectationStack.push(it) } mapTypes(specific, parameterTypes).reversed().forEach { expectationStack.push(it) }
else else
repeat(arity) { expectationStack.push(tType) } expectationStack.addAll(Collections.nCopies(arity, tType))
return specific != null return specific != null
} }
@ -169,7 +169,7 @@ private fun <T> AsmBuilder<T>.tryInvokeSpecific(
val arity = parameterTypes.size val arity = parameterTypes.size
val theName = methodNameAdapters[name to arity] ?: name val theName = methodNameAdapters[name to arity] ?: name
val spec = findSpecific(context, theName, parameterTypes) ?: return false val spec = findSpecific(context, theName, parameterTypes) ?: return false
val owner = context::class.asm val owner = context.javaClass.asm
invokeAlgebraOperation( invokeAlgebraOperation(
owner = owner.internalName, owner = owner.internalName,

View File

@ -7,6 +7,7 @@ import com.github.h0tk3y.betterParse.grammar.parser
import com.github.h0tk3y.betterParse.grammar.tryParseToEnd import com.github.h0tk3y.betterParse.grammar.tryParseToEnd
import com.github.h0tk3y.betterParse.lexer.Token import com.github.h0tk3y.betterParse.lexer.Token
import com.github.h0tk3y.betterParse.lexer.TokenMatch import com.github.h0tk3y.betterParse.lexer.TokenMatch
import com.github.h0tk3y.betterParse.lexer.literalToken
import com.github.h0tk3y.betterParse.lexer.regexToken import com.github.h0tk3y.betterParse.lexer.regexToken
import com.github.h0tk3y.betterParse.parser.ParseResult import com.github.h0tk3y.betterParse.parser.ParseResult
import com.github.h0tk3y.betterParse.parser.Parser import com.github.h0tk3y.betterParse.parser.Parser
@ -23,14 +24,14 @@ public object ArithmeticsEvaluator : Grammar<MST>() {
// TODO replace with "...".toRegex() when better-parse 0.4.1 is released // TODO replace with "...".toRegex() when better-parse 0.4.1 is released
private val num: Token by regexToken("[\\d.]+(?:[eE][-+]?\\d+)?") private val num: Token by regexToken("[\\d.]+(?:[eE][-+]?\\d+)?")
private val id: Token by regexToken("[a-z_A-Z][\\da-z_A-Z]*") private val id: Token by regexToken("[a-z_A-Z][\\da-z_A-Z]*")
private val lpar: Token by regexToken("\\(") private val lpar: Token by literalToken("(")
private val rpar: Token by regexToken("\\)") private val rpar: Token by literalToken(")")
private val comma: Token by regexToken(",") private val comma: Token by literalToken(",")
private val mul: Token by regexToken("\\*") private val mul: Token by literalToken("*")
private val pow: Token by regexToken("\\^") private val pow: Token by literalToken("^")
private val div: Token by regexToken("/") private val div: Token by literalToken("/")
private val minus: Token by regexToken("-") private val minus: Token by literalToken("-")
private val plus: Token by regexToken("\\+") private val plus: Token by literalToken("+")
private val ws: Token by regexToken("\\s+", ignore = true) private val ws: Token by regexToken("\\s+", ignore = true)
private val number: Parser<MST> by num use { MST.Numeric(text.toDouble()) } private val number: Parser<MST> by num use { MST.Numeric(text.toDouble()) }

View File

@ -9,14 +9,17 @@ import org.apache.commons.math3.analysis.differentiation.DerivativeStructure
import kotlin.properties.ReadOnlyProperty import kotlin.properties.ReadOnlyProperty
/** /**
* A field wrapping commons-math derivative structures * A field over commons-math [DerivativeStructure].
*
* @property order The derivation order.
* @property parameters The map of free parameters.
*/ */
public class DerivativeStructureField( public class DerivativeStructureField(
public val order: Int, public val order: Int,
public val parameters: Map<String, Double> public val parameters: Map<String, Double>
) : ExtendedField<DerivativeStructure> { ) : ExtendedField<DerivativeStructure> {
public override val zero: DerivativeStructure by lazy { DerivativeStructure(order, parameters.size) } public override val zero: DerivativeStructure by lazy { DerivativeStructure(parameters.size, order) }
public override val one: DerivativeStructure by lazy { DerivativeStructure(order, parameters.size, 1.0) } public override val one: DerivativeStructure by lazy { DerivativeStructure(parameters.size, order, 1.0) }
private val variables: Map<String, DerivativeStructure> = parameters.mapValues { (key, value) -> private val variables: Map<String, DerivativeStructure> = parameters.mapValues { (key, value) ->
DerivativeStructure(parameters.size, order, parameters.keys.indexOf(key), value) DerivativeStructure(parameters.size, order, parameters.keys.indexOf(key), value)

View File

@ -4,7 +4,7 @@ import kscience.kmath.operations.*
internal class FunctionalUnaryOperation<T>(val context: Algebra<T>, val name: String, private val expr: Expression<T>) : internal class FunctionalUnaryOperation<T>(val context: Algebra<T>, val name: String, private val expr: Expression<T>) :
Expression<T> { Expression<T> {
public override operator fun invoke(arguments: Map<String, T>): T = override operator fun invoke(arguments: Map<String, T>): T =
context.unaryOperation(name, expr.invoke(arguments)) context.unaryOperation(name, expr.invoke(arguments))
} }
@ -14,17 +14,17 @@ internal class FunctionalBinaryOperation<T>(
val first: Expression<T>, val first: Expression<T>,
val second: Expression<T> val second: Expression<T>
) : Expression<T> { ) : Expression<T> {
public override operator fun invoke(arguments: Map<String, T>): T = override operator fun invoke(arguments: Map<String, T>): T =
context.binaryOperation(name, first.invoke(arguments), second.invoke(arguments)) context.binaryOperation(name, first.invoke(arguments), second.invoke(arguments))
} }
internal class FunctionalVariableExpression<T>(val name: String, val default: T? = null) : Expression<T> { internal class FunctionalVariableExpression<T>(val name: String, val default: T? = null) : Expression<T> {
public override operator fun invoke(arguments: Map<String, T>): T = override operator fun invoke(arguments: Map<String, T>): T =
arguments[name] ?: default ?: error("Parameter not found: $name") arguments[name] ?: default ?: error("Parameter not found: $name")
} }
internal class FunctionalConstantExpression<T>(val value: T) : Expression<T> { internal class FunctionalConstantExpression<T>(val value: T) : Expression<T> {
public override operator fun invoke(arguments: Map<String, T>): T = value override operator fun invoke(arguments: Map<String, T>): T = value
} }
internal class FunctionalConstProductExpression<T>( internal class FunctionalConstProductExpression<T>(
@ -32,7 +32,7 @@ internal class FunctionalConstProductExpression<T>(
private val expr: Expression<T>, private val expr: Expression<T>,
val const: Number val const: Number
) : Expression<T> { ) : Expression<T> {
public override operator fun invoke(arguments: Map<String, T>): T = context.multiply(expr.invoke(arguments), const) override operator fun invoke(arguments: Map<String, T>): T = context.multiply(expr.invoke(arguments), const)
} }
/** /**
@ -139,16 +139,27 @@ public open class FunctionalExpressionField<T, A>(algebra: A) :
public open class FunctionalExpressionExtendedField<T, A>(algebra: A) : public open class FunctionalExpressionExtendedField<T, A>(algebra: A) :
FunctionalExpressionField<T, A>(algebra), FunctionalExpressionField<T, A>(algebra),
ExtendedField<Expression<T>> where A : ExtendedField<T>, A : NumericAlgebra<T> { ExtendedField<Expression<T>> where A : ExtendedField<T>, A : NumericAlgebra<T> {
public override fun sin(arg: Expression<T>): Expression<T> = unaryOperation(TrigonometricOperations.SIN_OPERATION, arg) public override fun sin(arg: Expression<T>): Expression<T> =
public override fun cos(arg: Expression<T>): Expression<T> = unaryOperation(TrigonometricOperations.COS_OPERATION, arg) unaryOperation(TrigonometricOperations.SIN_OPERATION, arg)
public override fun asin(arg: Expression<T>): Expression<T> = unaryOperation(TrigonometricOperations.ASIN_OPERATION, arg)
public override fun acos(arg: Expression<T>): Expression<T> = unaryOperation(TrigonometricOperations.ACOS_OPERATION, arg) public override fun cos(arg: Expression<T>): Expression<T> =
public override fun atan(arg: Expression<T>): Expression<T> = unaryOperation(TrigonometricOperations.ATAN_OPERATION, arg) unaryOperation(TrigonometricOperations.COS_OPERATION, arg)
public override fun asin(arg: Expression<T>): Expression<T> =
unaryOperation(TrigonometricOperations.ASIN_OPERATION, arg)
public override fun acos(arg: Expression<T>): Expression<T> =
unaryOperation(TrigonometricOperations.ACOS_OPERATION, arg)
public override fun atan(arg: Expression<T>): Expression<T> =
unaryOperation(TrigonometricOperations.ATAN_OPERATION, arg)
public override fun power(arg: Expression<T>, pow: Number): Expression<T> = public override fun power(arg: Expression<T>, pow: Number): Expression<T> =
binaryOperation(PowerOperations.POW_OPERATION, arg, number(pow)) binaryOperation(PowerOperations.POW_OPERATION, arg, number(pow))
public override fun exp(arg: Expression<T>): Expression<T> = unaryOperation(ExponentialOperations.EXP_OPERATION, arg) public override fun exp(arg: Expression<T>): Expression<T> =
unaryOperation(ExponentialOperations.EXP_OPERATION, arg)
public override fun ln(arg: Expression<T>): Expression<T> = unaryOperation(ExponentialOperations.LN_OPERATION, arg) public override fun ln(arg: Expression<T>): Expression<T> = unaryOperation(ExponentialOperations.LN_OPERATION, arg)
public override fun unaryOperation(operation: String, arg: Expression<T>): Expression<T> = public override fun unaryOperation(operation: String, arg: Expression<T>): Expression<T> =

View File

@ -24,7 +24,11 @@ public interface FeaturedMatrix<T : Any> : Matrix<T> {
public companion object public companion object
} }
public inline fun Structure2D.Companion.real(rows: Int, columns: Int, initializer: (Int, Int) -> Double): Matrix<Double> = public inline fun Structure2D.Companion.real(
rows: Int,
columns: Int,
initializer: (Int, Int) -> Double
): Matrix<Double> =
MatrixContext.real.produce(rows, columns, initializer) MatrixContext.real.produce(rows, columns, initializer)
/** /**

View File

@ -18,20 +18,52 @@ public interface MatrixContext<T : Any> : SpaceOperations<Matrix<T>> {
*/ */
public fun produce(rows: Int, columns: Int, initializer: (i: Int, j: Int) -> T): Matrix<T> public fun produce(rows: Int, columns: Int, initializer: (i: Int, j: Int) -> T): Matrix<T>
public override fun binaryOperation(operation: String, left: Matrix<T>, right: Matrix<T>): Matrix<T> = when (operation) {
"dot" -> left dot right
else -> super.binaryOperation(operation, left, right)
}
/**
* Computes the dot product of this matrix and another one.
*
* @receiver the multiplicand.
* @param other the multiplier.
* @return the dot product.
*/
public infix fun Matrix<T>.dot(other: Matrix<T>): Matrix<T> public infix fun Matrix<T>.dot(other: Matrix<T>): Matrix<T>
/**
* Computes the dot product of this matrix and a vector.
*
* @receiver the multiplicand.
* @param vector the multiplier.
* @return the dot product.
*/
public infix fun Matrix<T>.dot(vector: Point<T>): Point<T> public infix fun Matrix<T>.dot(vector: Point<T>): Point<T>
/**
* Multiplies a matrix by its element.
*
* @receiver the multiplicand.
* @param value the multiplier.
* @receiver the product.
*/
public operator fun Matrix<T>.times(value: T): Matrix<T> public operator fun Matrix<T>.times(value: T): Matrix<T>
/**
* Multiplies an element by a matrix of it.
*
* @receiver the multiplicand.
* @param value the multiplier.
* @receiver the product.
*/
public operator fun T.times(m: Matrix<T>): Matrix<T> = m * this public operator fun T.times(m: Matrix<T>): Matrix<T> = m * this
public companion object { public companion object {
/** /**
* Non-boxing double matrix * Non-boxing double matrix
*/ */
public val real: RealMatrixContext public val real: RealMatrixContext = RealMatrixContext
get() = RealMatrixContext
/** /**
* A structured matrix with custom buffer * A structured matrix with custom buffer
@ -60,7 +92,7 @@ public interface GenericMatrixContext<T : Any, R : Ring<T>> : MatrixContext<T> {
*/ */
public fun point(size: Int, initializer: (Int) -> T): Point<T> public fun point(size: Int, initializer: (Int) -> T): Point<T>
override infix fun Matrix<T>.dot(other: Matrix<T>): Matrix<T> { public override infix fun Matrix<T>.dot(other: Matrix<T>): Matrix<T> {
//TODO add typed error //TODO add typed error
require(colNum == other.rowNum) { "Matrix dot operation dimension mismatch: ($rowNum, $colNum) x (${other.rowNum}, ${other.colNum})" } require(colNum == other.rowNum) { "Matrix dot operation dimension mismatch: ($rowNum, $colNum) x (${other.rowNum}, ${other.colNum})" }
@ -71,7 +103,7 @@ public interface GenericMatrixContext<T : Any, R : Ring<T>> : MatrixContext<T> {
} }
} }
override infix fun Matrix<T>.dot(vector: Point<T>): Point<T> { public override infix fun Matrix<T>.dot(vector: Point<T>): Point<T> {
//TODO add typed error //TODO add typed error
require(colNum == vector.size) { "Matrix dot vector operation dimension mismatch: ($rowNum, $colNum) x (${vector.size})" } require(colNum == vector.size) { "Matrix dot vector operation dimension mismatch: ($rowNum, $colNum) x (${vector.size})" }
@ -81,10 +113,10 @@ public interface GenericMatrixContext<T : Any, R : Ring<T>> : MatrixContext<T> {
} }
} }
override operator fun Matrix<T>.unaryMinus(): Matrix<T> = public override operator fun Matrix<T>.unaryMinus(): Matrix<T> =
produce(rowNum, colNum) { i, j -> elementContext { -get(i, j) } } produce(rowNum, colNum) { i, j -> elementContext { -get(i, j) } }
override fun add(a: Matrix<T>, b: Matrix<T>): Matrix<T> { public override fun add(a: Matrix<T>, b: Matrix<T>): Matrix<T> {
require(a.rowNum == b.rowNum && a.colNum == b.colNum) { require(a.rowNum == b.rowNum && a.colNum == b.colNum) {
"Matrix operation dimension mismatch. [${a.rowNum},${a.colNum}] + [${b.rowNum},${b.colNum}]" "Matrix operation dimension mismatch. [${a.rowNum},${a.colNum}] + [${b.rowNum},${b.colNum}]"
} }
@ -92,7 +124,7 @@ public interface GenericMatrixContext<T : Any, R : Ring<T>> : MatrixContext<T> {
return produce(a.rowNum, a.colNum) { i, j -> elementContext { a[i, j] + b[i, j] } } return produce(a.rowNum, a.colNum) { i, j -> elementContext { a[i, j] + b[i, j] } }
} }
override operator fun Matrix<T>.minus(b: Matrix<T>): Matrix<T> { public override operator fun Matrix<T>.minus(b: Matrix<T>): Matrix<T> {
require(rowNum == b.rowNum && colNum == b.colNum) { require(rowNum == b.rowNum && colNum == b.colNum) {
"Matrix operation dimension mismatch. [$rowNum,$colNum] - [${b.rowNum},${b.colNum}]" "Matrix operation dimension mismatch. [$rowNum,$colNum] - [${b.rowNum},${b.colNum}]"
} }
@ -100,11 +132,11 @@ public interface GenericMatrixContext<T : Any, R : Ring<T>> : MatrixContext<T> {
return produce(rowNum, colNum) { i, j -> elementContext { get(i, j) + b[i, j] } } return produce(rowNum, colNum) { i, j -> elementContext { get(i, j) + b[i, j] } }
} }
override fun multiply(a: Matrix<T>, k: Number): Matrix<T> = public override fun multiply(a: Matrix<T>, k: Number): Matrix<T> =
produce(a.rowNum, a.colNum) { i, j -> elementContext { a[i, j] * k } } produce(a.rowNum, a.colNum) { i, j -> elementContext { a[i, j] * k } }
public operator fun Number.times(matrix: FeaturedMatrix<T>): Matrix<T> = matrix * this public operator fun Number.times(matrix: FeaturedMatrix<T>): Matrix<T> = matrix * this
override operator fun Matrix<T>.times(value: T): Matrix<T> = public override operator fun Matrix<T>.times(value: T): Matrix<T> =
produce(rowNum, colNum) { i, j -> elementContext { get(i, j) * value } } produce(rowNum, colNum) { i, j -> elementContext { get(i, j) * value } }
} }

View File

@ -1,10 +1,7 @@
package kscience.kmath.misc package kscience.kmath.misc
import kscience.kmath.linear.Point import kscience.kmath.linear.Point
import kscience.kmath.operations.ExtendedField import kscience.kmath.operations.*
import kscience.kmath.operations.Field
import kscience.kmath.operations.invoke
import kscience.kmath.operations.sum
import kscience.kmath.structures.asBuffer import kscience.kmath.structures.asBuffer
import kotlin.contracts.InvocationKind import kotlin.contracts.InvocationKind
import kotlin.contracts.contract import kotlin.contracts.contract
@ -17,23 +14,37 @@ import kotlin.contracts.contract
/** /**
* Differentiable variable with value and derivative of differentiation ([deriv]) result * Differentiable variable with value and derivative of differentiation ([deriv]) result
* with respect to this variable. * with respect to this variable.
*
* @param T the non-nullable type of value.
* @property value The value of this variable.
*/ */
public open class Variable<T : Any>(public val value: T) public open class Variable<T : Any>(public val value: T)
/**
* Represents result of [deriv] call.
*
* @param T the non-nullable type of value.
* @param value the value of result.
* @property deriv The mapping of differentiated variables to their derivatives.
* @property context The field over [T].
*/
public class DerivationResult<T : Any>( public class DerivationResult<T : Any>(
value: T, value: T,
public val deriv: Map<Variable<T>, T>, public val deriv: Map<Variable<T>, T>,
public val context: Field<T> public val context: Field<T>
) : Variable<T>(value) { ) : Variable<T>(value) {
/**
* Returns derivative of [variable] or returns [Ring.zero] in [context].
*/
public fun deriv(variable: Variable<T>): T = deriv[variable] ?: context.zero public fun deriv(variable: Variable<T>): T = deriv[variable] ?: context.zero
/** /**
* compute divergence * Computes the divergence.
*/ */
public fun div(): T = context { sum(deriv.values) } public fun div(): T = context { sum(deriv.values) }
/** /**
* Compute a gradient for variables in given order * Computes the gradient for variables in given order.
*/ */
public fun grad(vararg variables: Variable<T>): Point<T> { public fun grad(vararg variables: Variable<T>): Point<T> {
check(variables.isNotEmpty()) { "Variable order is not provided for gradient construction" } check(variables.isNotEmpty()) { "Variable order is not provided for gradient construction" }
@ -53,6 +64,9 @@ public class DerivationResult<T : Any>(
* assertEquals(17.0, y.x) // the value of result (y) * assertEquals(17.0, y.x) // the value of result (y)
* assertEquals(9.0, x.d) // dy/dx * assertEquals(9.0, x.d) // dy/dx
* ``` * ```
*
* @param body the action in [AutoDiffField] context returning [Variable] to differentiate with respect to.
* @return the result of differentiation.
*/ */
public inline fun <T : Any, F : Field<T>> F.deriv(body: AutoDiffField<T, F>.() -> Variable<T>): DerivationResult<T> { public inline fun <T : Any, F : Field<T>> F.deriv(body: AutoDiffField<T, F>.() -> Variable<T>): DerivationResult<T> {
contract { callsInPlace(body, InvocationKind.EXACTLY_ONCE) } contract { callsInPlace(body, InvocationKind.EXACTLY_ONCE) }
@ -65,12 +79,15 @@ public inline fun <T : Any, F : Field<T>> F.deriv(body: AutoDiffField<T, F>.() -
} }
} }
/**
* Represents field in context of which functions can be derived.
*/
public abstract class AutoDiffField<T : Any, F : Field<T>> : Field<Variable<T>> { public abstract class AutoDiffField<T : Any, F : Field<T>> : Field<Variable<T>> {
public abstract val context: F public abstract val context: F
/** /**
* A variable accessing inner state of derivatives. * A variable accessing inner state of derivatives.
* Use this function in inner builders to avoid creating additional derivative bindings * Use this value in inner builders to avoid creating additional derivative bindings.
*/ */
public abstract var Variable<T>.d: T public abstract var Variable<T>.d: T
@ -87,6 +104,9 @@ public abstract class AutoDiffField<T : Any, F : Field<T>> : Field<Variable<T>>
*/ */
public abstract fun <R> derive(value: R, block: F.(R) -> Unit): R public abstract fun <R> derive(value: R, block: F.(R) -> Unit): R
/**
*
*/
public abstract fun variable(value: T): Variable<T> public abstract fun variable(value: T): Variable<T>
public inline fun variable(block: F.() -> T): Variable<T> = variable(context.block()) public inline fun variable(block: F.() -> T): Variable<T> = variable(context.block())

View File

@ -299,7 +299,7 @@ public class BigInt internal constructor(
for (i in mag.indices) { for (i in mag.indices) {
val cur: ULong = carry + mag[i].toULong() * x.toULong() val cur: ULong = carry + mag[i].toULong() * x.toULong()
result[i] = (cur and BASE.toULong()).toUInt() result[i] = (cur and BASE).toUInt()
carry = cur shr BASE_SIZE carry = cur shr BASE_SIZE
} }
result[resultLength - 1] = (carry and BASE).toUInt() result[resultLength - 1] = (carry and BASE).toUInt()
@ -316,7 +316,7 @@ public class BigInt internal constructor(
for (j in mag2.indices) { for (j in mag2.indices) {
val cur: ULong = result[i + j].toULong() + mag1[i].toULong() * mag2[j].toULong() + carry val cur: ULong = result[i + j].toULong() + mag1[i].toULong() * mag2[j].toULong() + carry
result[i + j] = (cur and BASE.toULong()).toUInt() result[i + j] = (cur and BASE).toUInt()
carry = cur shr BASE_SIZE carry = cur shr BASE_SIZE
} }

View File

@ -6,6 +6,7 @@ import kscience.kmath.memory.MemoryWriter
import kscience.kmath.structures.Buffer import kscience.kmath.structures.Buffer
import kscience.kmath.structures.MemoryBuffer import kscience.kmath.structures.MemoryBuffer
import kscience.kmath.structures.MutableBuffer import kscience.kmath.structures.MutableBuffer
import kscience.kmath.structures.MutableMemoryBuffer
import kotlin.math.* import kotlin.math.*
/** /**
@ -159,7 +160,7 @@ public object ComplexField : ExtendedField<Complex>, Norm<Complex, Complex> {
} }
/** /**
* Represents complex number. * Represents `double`-based complex number.
* *
* @property re The real part. * @property re The real part.
* @property im The imaginary part. * @property im The imaginary part.
@ -176,11 +177,16 @@ public data class Complex(val re: Double, val im: Double) : FieldElement<Complex
override fun compareTo(other: Complex): Int = r.compareTo(other.r) override fun compareTo(other: Complex): Int = r.compareTo(other.r)
public companion object : MemorySpec<Complex> { override fun toString(): String {
override val objectSize: Int = 16 return "($re + i*$im)"
}
override fun MemoryReader.read(offset: Int): Complex =
Complex(readDouble(offset), readDouble(offset + 8)) public companion object : MemorySpec<Complex> {
override val objectSize: Int
get() = 16
override fun MemoryReader.read(offset: Int): Complex = Complex(readDouble(offset), readDouble(offset + 8))
override fun MemoryWriter.write(offset: Int, value: Complex) { override fun MemoryWriter.write(offset: Int, value: Complex) {
writeDouble(offset, value.re) writeDouble(offset, value.re)
@ -197,8 +203,16 @@ public data class Complex(val re: Double, val im: Double) : FieldElement<Complex
*/ */
public fun Number.toComplex(): Complex = Complex(this, 0.0) public fun Number.toComplex(): Complex = Complex(this, 0.0)
/**
* Creates a new buffer of complex numbers with the specified [size], where each element is calculated by calling the
* specified [init] function.
*/
public inline fun Buffer.Companion.complex(size: Int, init: (Int) -> Complex): Buffer<Complex> = public inline fun Buffer.Companion.complex(size: Int, init: (Int) -> Complex): Buffer<Complex> =
MemoryBuffer.create(Complex, size, init) MemoryBuffer.create(Complex, size, init)
public inline fun MutableBuffer.Companion.complex(size: Int, init: (Int) -> Complex): Buffer<Complex> = /**
MemoryBuffer.create(Complex, size, init) * Creates a new buffer of complex numbers with the specified [size], where each element is calculated by calling the
* specified [init] function.
*/
public inline fun MutableBuffer.Companion.complex(size: Int, init: (Int) -> Complex): MutableBuffer<Complex> =
MutableMemoryBuffer.create(Complex, size, init)

View File

@ -15,8 +15,9 @@ public class BoxingNDField<T, F : Field<T>>(
public fun buildBuffer(size: Int, initializer: (Int) -> T): Buffer<T> = public fun buildBuffer(size: Int, initializer: (Int) -> T): Buffer<T> =
bufferFactory(size, initializer) bufferFactory(size, initializer)
public override fun check(vararg elements: NDBuffer<T>) { public override fun check(vararg elements: NDBuffer<T>): Array<out NDBuffer<T>> {
check(elements.all { it.strides == strides }) { "Element strides are not the same as context strides" } require(elements.all { it.strides == strides }) { "Element strides are not the same as context strides" }
return elements
} }
public override fun produce(initializer: F.(IntArray) -> T): BufferedNDFieldElement<T, F> = public override fun produce(initializer: F.(IntArray) -> T): BufferedNDFieldElement<T, F> =
@ -75,6 +76,6 @@ public inline fun <T : Any, F : Field<T>, R> F.nd(
vararg shape: Int, vararg shape: Int,
action: NDField<T, F, *>.() -> R action: NDField<T, F, *>.() -> R
): R { ): R {
val ndfield: BoxingNDField<T, F> = NDField.boxing(this, *shape, bufferFactory = bufferFactory) val ndfield = NDField.boxing(this, *shape, bufferFactory = bufferFactory)
return ndfield.action() return ndfield.action()
} }

View File

@ -14,8 +14,9 @@ public class BoxingNDRing<T, R : Ring<T>>(
public fun buildBuffer(size: Int, initializer: (Int) -> T): Buffer<T> = bufferFactory(size, initializer) public fun buildBuffer(size: Int, initializer: (Int) -> T): Buffer<T> = bufferFactory(size, initializer)
override fun check(vararg elements: NDBuffer<T>) { override fun check(vararg elements: NDBuffer<T>): Array<out NDBuffer<T>> {
require(elements.all { it.strides == strides }) { "Element strides are not the same as context strides" } if (!elements.all { it.strides == this.strides }) error("Element strides are not the same as context strides")
return elements
} }
override fun produce(initializer: R.(IntArray) -> T): BufferedNDRingElement<T, R> = override fun produce(initializer: R.(IntArray) -> T): BufferedNDRingElement<T, R> =

View File

@ -5,8 +5,10 @@ import kscience.kmath.operations.*
public interface BufferedNDAlgebra<T, C> : NDAlgebra<T, C, NDBuffer<T>> { public interface BufferedNDAlgebra<T, C> : NDAlgebra<T, C, NDBuffer<T>> {
public val strides: Strides public val strides: Strides
public override fun check(vararg elements: NDBuffer<T>): Unit = public override fun check(vararg elements: NDBuffer<T>): Array<out NDBuffer<T>> {
require(elements.all { it.strides == strides }) { ("Strides mismatch") } require(elements.all { it.strides == strides }) { "Strides mismatch" }
return elements
}
/** /**
* Convert any [NDStructure] to buffered structure using strides from this context. * Convert any [NDStructure] to buffered structure using strides from this context.

View File

@ -46,35 +46,48 @@ public interface Buffer<T> {
asSequence().mapIndexed { index, value -> value == other[index] }.all { it } asSequence().mapIndexed { index, value -> value == other[index] }.all { it }
public companion object { public companion object {
public inline fun real(size: Int, initializer: (Int) -> Double): RealBuffer { /**
val array = DoubleArray(size) { initializer(it) } * Creates a [RealBuffer] with the specified [size], where each element is calculated by calling the specified
return RealBuffer(array) * [initializer] function.
} */
public inline fun real(size: Int, initializer: (Int) -> Double): RealBuffer =
RealBuffer(size) { initializer(it) }
/** /**
* Create a boxing buffer of given type * Creates a [ListBuffer] of given type [T] with given [size]. Each element is calculated by calling the
* specified [initializer] function.
*/ */
public inline fun <T> boxing(size: Int, initializer: (Int) -> T): Buffer<T> = public inline fun <T> boxing(size: Int, initializer: (Int) -> T): Buffer<T> =
ListBuffer(List(size, initializer)) ListBuffer(List(size, initializer))
// TODO add resolution based on Annotation or companion resolution
/**
* Creates a [Buffer] of given [type]. If the type is primitive, specialized buffers are used ([IntBuffer],
* [RealBuffer], etc.), [ListBuffer] is returned otherwise.
*
* The [size] is specified, and each element is calculated by calling the specified [initializer] function.
*/
@Suppress("UNCHECKED_CAST") @Suppress("UNCHECKED_CAST")
public inline fun <T : Any> auto(type: KClass<T>, size: Int, crossinline initializer: (Int) -> T): Buffer<T> { public inline fun <T : Any> auto(type: KClass<T>, size: Int, initializer: (Int) -> T): Buffer<T> =
//TODO add resolution based on Annotation or companion resolution when (type) {
return when (type) { Double::class -> RealBuffer(size) { initializer(it) as Double } as Buffer<T>
Double::class -> RealBuffer(DoubleArray(size) { initializer(it) as Double }) as Buffer<T> Short::class -> ShortBuffer(size) { initializer(it) as Short } as Buffer<T>
Short::class -> ShortBuffer(ShortArray(size) { initializer(it) as Short }) as Buffer<T> Int::class -> IntBuffer(size) { initializer(it) as Int } as Buffer<T>
Int::class -> IntBuffer(IntArray(size) { initializer(it) as Int }) as Buffer<T> Long::class -> LongBuffer(size) { initializer(it) as Long } as Buffer<T>
Long::class -> LongBuffer(LongArray(size) { initializer(it) as Long }) as Buffer<T> Float::class -> FloatBuffer(size) { initializer(it) as Float } as Buffer<T>
Complex::class -> complex(size) { initializer(it) as Complex } as Buffer<T> Complex::class -> complex(size) { initializer(it) as Complex } as Buffer<T>
else -> boxing(size, initializer) else -> boxing(size, initializer)
} }
}
/** /**
* Create most appropriate immutable buffer for given type avoiding boxing wherever possible * Creates a [Buffer] of given type [T]. If the type is primitive, specialized buffers are used ([IntBuffer],
* [RealBuffer], etc.), [ListBuffer] is returned otherwise.
*
* The [size] is specified, and each element is calculated by calling the specified [initializer] function.
*/ */
@Suppress("UNCHECKED_CAST") @Suppress("UNCHECKED_CAST")
public inline fun <reified T : Any> auto(size: Int, crossinline initializer: (Int) -> T): Buffer<T> = public inline fun <reified T : Any> auto(size: Int, initializer: (Int) -> T): Buffer<T> =
auto(T::class, size, initializer) auto(T::class, size, initializer)
} }
} }
@ -117,25 +130,40 @@ public interface MutableBuffer<T> : Buffer<T> {
public inline fun <T> boxing(size: Int, initializer: (Int) -> T): MutableBuffer<T> = public inline fun <T> boxing(size: Int, initializer: (Int) -> T): MutableBuffer<T> =
MutableListBuffer(MutableList(size, initializer)) MutableListBuffer(MutableList(size, initializer))
/**
* Creates a [MutableBuffer] of given [type]. If the type is primitive, specialized buffers are used
* ([IntBuffer], [RealBuffer], etc.), [ListBuffer] is returned otherwise.
*
* The [size] is specified, and each element is calculated by calling the specified [initializer] function.
*/
@Suppress("UNCHECKED_CAST") @Suppress("UNCHECKED_CAST")
public inline fun <T : Any> auto(type: KClass<out T>, size: Int, initializer: (Int) -> T): MutableBuffer<T> = public inline fun <T : Any> auto(type: KClass<out T>, size: Int, initializer: (Int) -> T): MutableBuffer<T> =
when (type) { when (type) {
Double::class -> RealBuffer(DoubleArray(size) { initializer(it) as Double }) as MutableBuffer<T> Double::class -> RealBuffer(size) { initializer(it) as Double } as MutableBuffer<T>
Short::class -> ShortBuffer(ShortArray(size) { initializer(it) as Short }) as MutableBuffer<T> Short::class -> ShortBuffer(size) { initializer(it) as Short } as MutableBuffer<T>
Int::class -> IntBuffer(IntArray(size) { initializer(it) as Int }) as MutableBuffer<T> Int::class -> IntBuffer(size) { initializer(it) as Int } as MutableBuffer<T>
Long::class -> LongBuffer(LongArray(size) { initializer(it) as Long }) as MutableBuffer<T> Float::class -> FloatBuffer(size) { initializer(it) as Float } as MutableBuffer<T>
Long::class -> LongBuffer(size) { initializer(it) as Long } as MutableBuffer<T>
Complex::class -> complex(size) { initializer(it) as Complex } as MutableBuffer<T>
else -> boxing(size, initializer) else -> boxing(size, initializer)
} }
/** /**
* Create most appropriate mutable buffer for given type avoiding boxing wherever possible * Creates a [MutableBuffer] of given type [T]. If the type is primitive, specialized buffers are used
* ([IntBuffer], [RealBuffer], etc.), [ListBuffer] is returned otherwise.
*
* The [size] is specified, and each element is calculated by calling the specified [initializer] function.
*/ */
@Suppress("UNCHECKED_CAST") @Suppress("UNCHECKED_CAST")
public inline fun <reified T : Any> auto(size: Int, initializer: (Int) -> T): MutableBuffer<T> = public inline fun <reified T : Any> auto(size: Int, initializer: (Int) -> T): MutableBuffer<T> =
auto(T::class, size, initializer) auto(T::class, size, initializer)
public val real: MutableBufferFactory<Double> = /**
{ size, initializer -> RealBuffer(DoubleArray(size) { initializer(it) }) } * Creates a [RealBuffer] with the specified [size], where each element is calculated by calling the specified
* [initializer] function.
*/
public inline fun real(size: Int, initializer: (Int) -> Double): RealBuffer =
RealBuffer(size) { initializer(it) }
} }
} }

View File

@ -48,7 +48,8 @@ public fun FlaggedBuffer<*>.isMissing(index: Int): Boolean = hasFlag(index, Valu
/** /**
* A real buffer which supports flags for each value like NaN or Missing * A real buffer which supports flags for each value like NaN or Missing
*/ */
public class FlaggedRealBuffer(public val values: DoubleArray, public val flags: ByteArray) : FlaggedBuffer<Double?>, Buffer<Double?> { public class FlaggedRealBuffer(public val values: DoubleArray, public val flags: ByteArray) : FlaggedBuffer<Double?>,
Buffer<Double?> {
init { init {
require(values.size == flags.size) { "Values and flags must have the same dimensions" } require(values.size == flags.size) { "Values and flags must have the same dimensions" }
} }

View File

@ -53,7 +53,7 @@ public class MutableMemoryBuffer<T : Any>(memory: Memory, spec: MemorySpec<T>) :
public inline fun <T : Any> create( public inline fun <T : Any> create(
spec: MemorySpec<T>, spec: MemorySpec<T>,
size: Int, size: Int,
crossinline initializer: (Int) -> T initializer: (Int) -> T
): MutableMemoryBuffer<T> = MutableMemoryBuffer(Memory.allocate(size * spec.objectSize), spec).also { buffer -> ): MutableMemoryBuffer<T> = MutableMemoryBuffer(Memory.allocate(size * spec.objectSize), spec).also { buffer ->
(0 until size).forEach { buffer[it] = initializer(it) } (0 until size).forEach { buffer[it] = initializer(it) }
} }

View File

@ -7,49 +7,77 @@ import kscience.kmath.operations.Space
import kotlin.native.concurrent.ThreadLocal import kotlin.native.concurrent.ThreadLocal
/** /**
* An exception is thrown when the expected ans actual shape of NDArray differs * An exception is thrown when the expected ans actual shape of NDArray differs.
*
* @property expected the expected shape.
* @property actual the actual shape.
*/ */
public class ShapeMismatchException(public val expected: IntArray, public val actual: IntArray) : RuntimeException() public class ShapeMismatchException(public val expected: IntArray, public val actual: IntArray) :
RuntimeException("Shape ${actual.contentToString()} doesn't fit in expected shape ${expected.contentToString()}.")
/** /**
* The base interface for all nd-algebra implementations * The base interface for all ND-algebra implementations.
* @param T the type of nd-structure element *
* @param C the type of the element context * @param T the type of ND-structure element.
* @param N the type of the structure * @param C the type of the element context.
* @param N the type of the structure.
*/ */
public interface NDAlgebra<T, C, N : NDStructure<T>> { public interface NDAlgebra<T, C, N : NDStructure<T>> {
/**
* The shape of ND-structures this algebra operates on.
*/
public val shape: IntArray public val shape: IntArray
/**
* The algebra over elements of ND structure.
*/
public val elementContext: C public val elementContext: C
/** /**
* Produce a new [N] structure using given initializer function * Produces a new [N] structure using given initializer function.
*/ */
public fun produce(initializer: C.(IntArray) -> T): N public fun produce(initializer: C.(IntArray) -> T): N
/** /**
* Map elements from one structure to another one * Maps elements from one structure to another one by applying [transform] to them.
*/ */
public fun map(arg: N, transform: C.(T) -> T): N public fun map(arg: N, transform: C.(T) -> T): N
/** /**
* Map indexed elements * Maps elements from one structure to another one by applying [transform] to them alongside with their indices.
*/ */
public fun mapIndexed(arg: N, transform: C.(index: IntArray, T) -> T): N public fun mapIndexed(arg: N, transform: C.(index: IntArray, T) -> T): N
/** /**
* Combine two structures into one * Combines two structures into one.
*/ */
public fun combine(a: N, b: N, transform: C.(T, T) -> T): N public fun combine(a: N, b: N, transform: C.(T, T) -> T): N
/** /**
* Check if given elements are consistent with this context * Checks if given element is consistent with this context.
*
* @param element the structure to check.
* @return the valid structure.
*/ */
public fun check(vararg elements: N): Unit = elements.forEach { public fun check(element: N): N {
if (!shape.contentEquals(it.shape)) throw ShapeMismatchException(shape, it.shape) if (!element.shape.contentEquals(shape)) throw ShapeMismatchException(shape, element.shape)
return element
} }
/** /**
* element-by-element invoke a function working on [T] on a [NDStructure] * Checks if given elements are consistent with this context.
*
* @param elements the structures to check.
* @return the array of valid structures.
*/
public fun check(vararg elements: N): Array<out N> = elements
.map(NDStructure<T>::shape)
.singleOrNull { !shape.contentEquals(it) }
?.let { throw ShapeMismatchException(shape, it) }
?: elements
/**
* Element-wise invocation of function working on [T] on a [NDStructure].
*/ */
public operator fun Function1<T, T>.invoke(structure: N): N = map(structure) { value -> this@invoke(value) } public operator fun Function1<T, T>.invoke(structure: N): N = map(structure) { value -> this@invoke(value) }
@ -57,42 +85,107 @@ public interface NDAlgebra<T, C, N : NDStructure<T>> {
} }
/** /**
* An nd-space over element space * Space of [NDStructure].
*
* @param T the type of the element contained in ND structure.
* @param N the type of ND structure.
* @param S the type of space of structure elements.
*/ */
public interface NDSpace<T, S : Space<T>, N : NDStructure<T>> : Space<N>, NDAlgebra<T, S, N> { public interface NDSpace<T, S : Space<T>, N : NDStructure<T>> : Space<N>, NDAlgebra<T, S, N> {
/** /**
* Element-by-element addition * Element-wise addition.
*
* @param a the addend.
* @param b the augend.
* @return the sum.
*/ */
override fun add(a: N, b: N): N = combine(a, b) { aValue, bValue -> add(aValue, bValue) } public override fun add(a: N, b: N): N = combine(a, b) { aValue, bValue -> add(aValue, bValue) }
/** /**
* Multiply all elements by constant * Element-wise multiplication by scalar.
*
* @param a the multiplicand.
* @param k the multiplier.
* @return the product.
*/ */
override fun multiply(a: N, k: Number): N = map(a) { multiply(it, k) } public override fun multiply(a: N, k: Number): N = map(a) { multiply(it, k) }
//TODO move to extensions after KEEP-176 // TODO move to extensions after KEEP-176
/**
* Adds an ND structure to an element of it.
*
* @receiver the addend.
* @param arg the augend.
* @return the sum.
*/
public operator fun N.plus(arg: T): N = map(this) { value -> add(arg, value) } public operator fun N.plus(arg: T): N = map(this) { value -> add(arg, value) }
/**
* Subtracts an element from ND structure of it.
*
* @receiver the dividend.
* @param arg the divisor.
* @return the quotient.
*/
public operator fun N.minus(arg: T): N = map(this) { value -> add(arg, -value) } public operator fun N.minus(arg: T): N = map(this) { value -> add(arg, -value) }
/**
* Adds an element to ND structure of it.
*
* @receiver the addend.
* @param arg the augend.
* @return the sum.
*/
public operator fun T.plus(arg: N): N = map(arg) { value -> add(this@plus, value) } public operator fun T.plus(arg: N): N = map(arg) { value -> add(this@plus, value) }
/**
* Subtracts an ND structure from an element of it.
*
* @receiver the dividend.
* @param arg the divisor.
* @return the quotient.
*/
public operator fun T.minus(arg: N): N = map(arg) { value -> add(-this@minus, value) } public operator fun T.minus(arg: N): N = map(arg) { value -> add(-this@minus, value) }
public companion object public companion object
} }
/** /**
* An nd-ring over element ring * Ring of [NDStructure].
*
* @param T the type of the element contained in ND structure.
* @param N the type of ND structure.
* @param R the type of ring of structure elements.
*/ */
public interface NDRing<T, R : Ring<T>, N : NDStructure<T>> : Ring<N>, NDSpace<T, R, N> { public interface NDRing<T, R : Ring<T>, N : NDStructure<T>> : Ring<N>, NDSpace<T, R, N> {
/** /**
* Element-by-element multiplication * Element-wise multiplication.
*
* @param a the multiplicand.
* @param b the multiplier.
* @return the product.
*/ */
override fun multiply(a: N, b: N): N = combine(a, b) { aValue, bValue -> multiply(aValue, bValue) } public override fun multiply(a: N, b: N): N = combine(a, b) { aValue, bValue -> multiply(aValue, bValue) }
//TODO move to extensions after KEEP-176 //TODO move to extensions after KEEP-176
/**
* Multiplies an ND structure by an element of it.
*
* @receiver the multiplicand.
* @param arg the multiplier.
* @return the product.
*/
public operator fun N.times(arg: T): N = map(this) { value -> multiply(arg, value) } public operator fun N.times(arg: T): N = map(this) { value -> multiply(arg, value) }
/**
* Multiplies an element by a ND structure of it.
*
* @receiver the multiplicand.
* @param arg the multiplier.
* @return the product.
*/
public operator fun T.times(arg: N): N = map(arg) { value -> multiply(this@times, value) } public operator fun T.times(arg: N): N = map(arg) { value -> multiply(this@times, value) }
public companion object public companion object
@ -103,17 +196,35 @@ public interface NDRing<T, R : Ring<T>, N : NDStructure<T>> : Ring<N>, NDSpace<T
* *
* @param T the type of the element contained in ND structure. * @param T the type of the element contained in ND structure.
* @param N the type of ND structure. * @param N the type of ND structure.
* @param F field of structure elements. * @param F the type field of structure elements.
*/ */
public interface NDField<T, F : Field<T>, N : NDStructure<T>> : Field<N>, NDRing<T, F, N> { public interface NDField<T, F : Field<T>, N : NDStructure<T>> : Field<N>, NDRing<T, F, N> {
/** /**
* Element-by-element division * Element-wise division.
*
* @param a the dividend.
* @param b the divisor.
* @return the quotient.
*/ */
override fun divide(a: N, b: N): N = combine(a, b) { aValue, bValue -> divide(aValue, bValue) } public override fun divide(a: N, b: N): N = combine(a, b) { aValue, bValue -> divide(aValue, bValue) }
//TODO move to extensions after KEEP-176 //TODO move to extensions after KEEP-176
/**
* Divides an ND structure by an element of it.
*
* @receiver the dividend.
* @param arg the divisor.
* @return the quotient.
*/
public operator fun N.div(arg: T): N = map(this) { value -> divide(arg, value) } public operator fun N.div(arg: T): N = map(this) { value -> divide(arg, value) }
/**
* Divides an element by an ND structure of it.
*
* @receiver the dividend.
* @param arg the divisor.
* @return the quotient.
*/
public operator fun T.div(arg: N): N = map(arg) { divide(it, this@div) } public operator fun T.div(arg: N): N = map(arg) { divide(it, this@div) }
@ThreadLocal @ThreadLocal
@ -121,12 +232,12 @@ public interface NDField<T, F : Field<T>, N : NDStructure<T>> : Field<N>, NDRing
private val realNDFieldCache: MutableMap<IntArray, RealNDField> = hashMapOf() private val realNDFieldCache: MutableMap<IntArray, RealNDField> = hashMapOf()
/** /**
* Create a nd-field for [Double] values or pull it from cache if it was created previously * Create a nd-field for [Double] values or pull it from cache if it was created previously.
*/ */
public fun real(vararg shape: Int): RealNDField = realNDFieldCache.getOrPut(shape) { RealNDField(shape) } public fun real(vararg shape: Int): RealNDField = realNDFieldCache.getOrPut(shape) { RealNDField(shape) }
/** /**
* Create a nd-field with boxing generic buffer * Create an ND field with boxing generic buffer.
*/ */
public fun <T : Any, F : Field<T>> boxing( public fun <T : Any, F : Field<T>> boxing(
field: F, field: F,

View File

@ -38,9 +38,8 @@ public interface NDStructure<T> {
*/ */
public fun elements(): Sequence<Pair<IntArray, T>> public fun elements(): Sequence<Pair<IntArray, T>>
override fun equals(other: Any?): Boolean public override fun equals(other: Any?): Boolean
public override fun hashCode(): Int
override fun hashCode(): Int
public companion object { public companion object {
/** /**
@ -50,13 +49,8 @@ public interface NDStructure<T> {
if (st1 === st2) return true if (st1 === st2) return true
// fast comparison of buffers if possible // fast comparison of buffers if possible
if ( if (st1 is NDBuffer && st2 is NDBuffer && st1.strides == st2.strides)
st1 is NDBuffer &&
st2 is NDBuffer &&
st1.strides == st2.strides
) {
return st1.buffer.contentEquals(st2.buffer) return st1.buffer.contentEquals(st2.buffer)
}
//element by element comparison if it could not be avoided //element by element comparison if it could not be avoided
return st1.elements().all { (index, value) -> value == st2[index] } return st1.elements().all { (index, value) -> value == st2[index] }
@ -70,7 +64,7 @@ public interface NDStructure<T> {
public fun <T> build( public fun <T> build(
strides: Strides, strides: Strides,
bufferFactory: BufferFactory<T> = Buffer.Companion::boxing, bufferFactory: BufferFactory<T> = Buffer.Companion::boxing,
initializer: (IntArray) -> T initializer: (IntArray) -> T,
): BufferNDStructure<T> = ): BufferNDStructure<T> =
BufferNDStructure(strides, bufferFactory(strides.linearSize) { i -> initializer(strides.index(i)) }) BufferNDStructure(strides, bufferFactory(strides.linearSize) { i -> initializer(strides.index(i)) })
@ -79,40 +73,40 @@ public interface NDStructure<T> {
*/ */
public inline fun <reified T : Any> auto( public inline fun <reified T : Any> auto(
strides: Strides, strides: Strides,
crossinline initializer: (IntArray) -> T crossinline initializer: (IntArray) -> T,
): BufferNDStructure<T> = ): BufferNDStructure<T> =
BufferNDStructure(strides, Buffer.auto(strides.linearSize) { i -> initializer(strides.index(i)) }) BufferNDStructure(strides, Buffer.auto(strides.linearSize) { i -> initializer(strides.index(i)) })
public inline fun <T : Any> auto( public inline fun <T : Any> auto(
type: KClass<T>, type: KClass<T>,
strides: Strides, strides: Strides,
crossinline initializer: (IntArray) -> T crossinline initializer: (IntArray) -> T,
): BufferNDStructure<T> = ): BufferNDStructure<T> =
BufferNDStructure(strides, Buffer.auto(type, strides.linearSize) { i -> initializer(strides.index(i)) }) BufferNDStructure(strides, Buffer.auto(type, strides.linearSize) { i -> initializer(strides.index(i)) })
public fun <T> build( public fun <T> build(
shape: IntArray, shape: IntArray,
bufferFactory: BufferFactory<T> = Buffer.Companion::boxing, bufferFactory: BufferFactory<T> = Buffer.Companion::boxing,
initializer: (IntArray) -> T initializer: (IntArray) -> T,
): BufferNDStructure<T> = build(DefaultStrides(shape), bufferFactory, initializer) ): BufferNDStructure<T> = build(DefaultStrides(shape), bufferFactory, initializer)
public inline fun <reified T : Any> auto( public inline fun <reified T : Any> auto(
shape: IntArray, shape: IntArray,
crossinline initializer: (IntArray) -> T crossinline initializer: (IntArray) -> T,
): BufferNDStructure<T> = ): BufferNDStructure<T> =
auto(DefaultStrides(shape), initializer) auto(DefaultStrides(shape), initializer)
@JvmName("autoVarArg") @JvmName("autoVarArg")
public inline fun <reified T : Any> auto( public inline fun <reified T : Any> auto(
vararg shape: Int, vararg shape: Int,
crossinline initializer: (IntArray) -> T crossinline initializer: (IntArray) -> T,
): BufferNDStructure<T> = ): BufferNDStructure<T> =
auto(DefaultStrides(shape), initializer) auto(DefaultStrides(shape), initializer)
public inline fun <T : Any> auto( public inline fun <T : Any> auto(
type: KClass<T>, type: KClass<T>,
vararg shape: Int, vararg shape: Int,
crossinline initializer: (IntArray) -> T crossinline initializer: (IntArray) -> T,
): BufferNDStructure<T> = ): BufferNDStructure<T> =
auto(type, DefaultStrides(shape), initializer) auto(type, DefaultStrides(shape), initializer)
} }
@ -274,6 +268,22 @@ public abstract class NDBuffer<T> : NDStructure<T> {
result = 31 * result + buffer.hashCode() result = 31 * result + buffer.hashCode()
return result return result
} }
override fun toString(): String {
val bufferRepr: String = when (shape.size) {
1 -> buffer.asSequence().joinToString(prefix = "[", postfix = "]", separator = ", ")
2 -> (0 until shape[0]).joinToString(prefix = "[", postfix = "]", separator = ", ") { i ->
(0 until shape[1]).joinToString(prefix = "[", postfix = "]", separator = ", ") { j ->
val offset = strides.offset(intArrayOf(i, j))
buffer[offset].toString()
}
}
else -> "..."
}
return "NDBuffer(shape=${shape.contentToString()}, buffer=$bufferRepr)"
}
} }
/** /**
@ -281,7 +291,7 @@ public abstract class NDBuffer<T> : NDStructure<T> {
*/ */
public class BufferNDStructure<T>( public class BufferNDStructure<T>(
override val strides: Strides, override val strides: Strides,
override val buffer: Buffer<T> override val buffer: Buffer<T>,
) : NDBuffer<T>() { ) : NDBuffer<T>() {
init { init {
if (strides.linearSize != buffer.size) { if (strides.linearSize != buffer.size) {
@ -295,7 +305,7 @@ public class BufferNDStructure<T>(
*/ */
public inline fun <T, reified R : Any> NDStructure<T>.mapToBuffer( public inline fun <T, reified R : Any> NDStructure<T>.mapToBuffer(
factory: BufferFactory<R> = Buffer.Companion::auto, factory: BufferFactory<R> = Buffer.Companion::auto,
crossinline transform: (T) -> R crossinline transform: (T) -> R,
): BufferNDStructure<R> { ): BufferNDStructure<R> {
return if (this is BufferNDStructure<T>) return if (this is BufferNDStructure<T>)
BufferNDStructure(this.strides, factory.invoke(strides.linearSize) { transform(buffer[it]) }) BufferNDStructure(this.strides, factory.invoke(strides.linearSize) { transform(buffer[it]) })
@ -310,7 +320,7 @@ public inline fun <T, reified R : Any> NDStructure<T>.mapToBuffer(
*/ */
public class MutableBufferNDStructure<T>( public class MutableBufferNDStructure<T>(
override val strides: Strides, override val strides: Strides,
override val buffer: MutableBuffer<T> override val buffer: MutableBuffer<T>,
) : NDBuffer<T>(), MutableNDStructure<T> { ) : NDBuffer<T>(), MutableNDStructure<T> {
init { init {
@ -324,7 +334,7 @@ public class MutableBufferNDStructure<T>(
public inline fun <reified T : Any> NDStructure<T>.combine( public inline fun <reified T : Any> NDStructure<T>.combine(
struct: NDStructure<T>, struct: NDStructure<T>,
crossinline block: (T, T) -> T crossinline block: (T, T) -> T,
): NDStructure<T> { ): NDStructure<T> {
require(shape.contentEquals(struct.shape)) { "Shape mismatch in structure combination" } require(shape.contentEquals(struct.shape)) { "Shape mismatch in structure combination" }
return NDStructure.auto(shape) { block(this[it], struct[it]) } return NDStructure.auto(shape) { block(this[it], struct[it]) }

View File

@ -17,7 +17,7 @@ public interface Structure1D<T> : NDStructure<T>, Buffer<T> {
/** /**
* A 1D wrapper for nd-structure * A 1D wrapper for nd-structure
*/ */
private inline class Structure1DWrapper<T>(public val structure: NDStructure<T>) : Structure1D<T> { private inline class Structure1DWrapper<T>(val structure: NDStructure<T>) : Structure1D<T> {
override val shape: IntArray get() = structure.shape override val shape: IntArray get() = structure.shape
override val size: Int get() = structure.shape[0] override val size: Int get() = structure.shape[0]

View File

@ -21,7 +21,8 @@ internal class LazyDeferred<T>(val dispatcher: CoroutineDispatcher, val block: s
} }
public class AsyncFlow<T> internal constructor(internal val deferredFlow: Flow<LazyDeferred<T>>) : Flow<T> { public class AsyncFlow<T> internal constructor(internal val deferredFlow: Flow<LazyDeferred<T>>) : Flow<T> {
override suspend fun collect(collector: FlowCollector<T>): Unit = deferredFlow.collect { collector.emit((it.await())) } override suspend fun collect(collector: FlowCollector<T>): Unit =
deferredFlow.collect { collector.emit((it.await())) }
} }
public fun <T, R> Flow<T>.async( public fun <T, R> Flow<T>.async(

View File

@ -3,8 +3,9 @@ package kscience.kmath.dimensions
import kotlin.reflect.KClass import kotlin.reflect.KClass
/** /**
* An abstract class which is not used in runtime. Designates a size of some structure. * Represents a quantity of dimensions in certain structure.
* Could be replaced later by fully inline constructs *
* @property dim The number of dimensions.
*/ */
public interface Dimension { public interface Dimension {
public val dim: UInt public val dim: UInt
@ -16,18 +17,33 @@ public fun <D : Dimension> KClass<D>.dim(): UInt = Dimension.resolve(this).dim
public expect fun <D : Dimension> Dimension.Companion.resolve(type: KClass<D>): D public expect fun <D : Dimension> Dimension.Companion.resolve(type: KClass<D>): D
/**
* Finds or creates [Dimension] with [Dimension.dim] equal to [dim].
*/
public expect fun Dimension.Companion.of(dim: UInt): Dimension public expect fun Dimension.Companion.of(dim: UInt): Dimension
/**
* Finds [Dimension.dim] of given type [D].
*/
public inline fun <reified D : Dimension> Dimension.Companion.dim(): UInt = D::class.dim() public inline fun <reified D : Dimension> Dimension.Companion.dim(): UInt = D::class.dim()
/**
* Type representing 1 dimension.
*/
public object D1 : Dimension { public object D1 : Dimension {
override val dim: UInt get() = 1U override val dim: UInt get() = 1U
} }
/**
* Type representing 2 dimensions.
*/
public object D2 : Dimension { public object D2 : Dimension {
override val dim: UInt get() = 2U override val dim: UInt get() = 2U
} }
/**
* Type representing 3 dimensions.
*/
public object D3 : Dimension { public object D3 : Dimension {
override val dim: UInt get() = 3U override val dim: UInt get() = 3U
} }

View File

@ -0,0 +1,8 @@
plugins {
id("ru.mipt.npm.jvm")
}
dependencies {
implementation("org.ejml:ejml-simple:0.39")
implementation(project(":kmath-core"))
}

View File

@ -0,0 +1,71 @@
package kscience.kmath.ejml
import org.ejml.dense.row.factory.DecompositionFactory_DDRM
import org.ejml.simple.SimpleMatrix
import kscience.kmath.linear.DeterminantFeature
import kscience.kmath.linear.FeaturedMatrix
import kscience.kmath.linear.LUPDecompositionFeature
import kscience.kmath.linear.MatrixFeature
import kscience.kmath.structures.NDStructure
/**
* Represents featured matrix over EJML [SimpleMatrix].
*
* @property origin the underlying [SimpleMatrix].
* @author Iaroslav Postovalov
*/
public class EjmlMatrix(public val origin: SimpleMatrix, features: Set<MatrixFeature>? = null) : FeaturedMatrix<Double> {
public override val rowNum: Int
get() = origin.numRows()
public override val colNum: Int
get() = origin.numCols()
public override val shape: IntArray
get() = intArrayOf(origin.numRows(), origin.numCols())
public override val features: Set<MatrixFeature> = setOf(
object : LUPDecompositionFeature<Double>, DeterminantFeature<Double> {
override val determinant: Double
get() = origin.determinant()
private val lup by lazy {
val ludecompositionF64 = DecompositionFactory_DDRM.lu(origin.numRows(), origin.numCols())
.also { it.decompose(origin.ddrm.copy()) }
Triple(
EjmlMatrix(SimpleMatrix(ludecompositionF64.getRowPivot(null))),
EjmlMatrix(SimpleMatrix(ludecompositionF64.getLower(null))),
EjmlMatrix(SimpleMatrix(ludecompositionF64.getUpper(null))),
)
}
override val l: FeaturedMatrix<Double>
get() = lup.second
override val u: FeaturedMatrix<Double>
get() = lup.third
override val p: FeaturedMatrix<Double>
get() = lup.first
}
) union features.orEmpty()
public override fun suggestFeature(vararg features: MatrixFeature): EjmlMatrix =
EjmlMatrix(origin, this.features + features)
public override operator fun get(i: Int, j: Int): Double = origin[i, j]
public override fun equals(other: Any?): Boolean {
if (other is EjmlMatrix) return origin.isIdentical(other.origin, 0.0)
return NDStructure.equals(this, other as? NDStructure<*> ?: return false)
}
public override fun hashCode(): Int {
var result = origin.hashCode()
result = 31 * result + features.hashCode()
return result
}
public override fun toString(): String = "EjmlMatrix(origin=$origin, features=$features)"
}

View File

@ -0,0 +1,86 @@
package kscience.kmath.ejml
import org.ejml.simple.SimpleMatrix
import kscience.kmath.linear.MatrixContext
import kscience.kmath.linear.Point
import kscience.kmath.operations.Space
import kscience.kmath.operations.invoke
import kscience.kmath.structures.Matrix
/**
* Represents context of basic operations operating with [EjmlMatrix].
*
* @author Iaroslav Postovalov
*/
public class EjmlMatrixContext(private val space: Space<Double>) : MatrixContext<Double> {
/**
* Converts this matrix to EJML one.
*/
public fun Matrix<Double>.toEjml(): EjmlMatrix =
if (this is EjmlMatrix) this else produce(rowNum, colNum) { i, j -> get(i, j) }
/**
* Converts this vector to EJML one.
*/
public fun Point<Double>.toEjml(): EjmlVector =
if (this is EjmlVector) this else EjmlVector(SimpleMatrix(size, 1).also {
(0 until it.numRows()).forEach { row -> it[row, 0] = get(row) }
})
override fun produce(rows: Int, columns: Int, initializer: (i: Int, j: Int) -> Double): EjmlMatrix =
EjmlMatrix(SimpleMatrix(rows, columns).also {
(0 until it.numRows()).forEach { row ->
(0 until it.numCols()).forEach { col -> it[row, col] = initializer(row, col) }
}
})
public override fun Matrix<Double>.dot(other: Matrix<Double>): EjmlMatrix =
EjmlMatrix(toEjml().origin.mult(other.toEjml().origin))
public override fun Matrix<Double>.dot(vector: Point<Double>): EjmlVector =
EjmlVector(toEjml().origin.mult(vector.toEjml().origin))
public override fun add(a: Matrix<Double>, b: Matrix<Double>): EjmlMatrix =
EjmlMatrix(a.toEjml().origin + b.toEjml().origin)
public override operator fun Matrix<Double>.minus(b: Matrix<Double>): EjmlMatrix =
EjmlMatrix(toEjml().origin - b.toEjml().origin)
public override fun multiply(a: Matrix<Double>, k: Number): EjmlMatrix =
produce(a.rowNum, a.colNum) { i, j -> space { a[i, j] * k } }
public override operator fun Matrix<Double>.times(value: Double): EjmlMatrix = EjmlMatrix(toEjml().origin.scale(value))
public companion object
}
/**
* Solves for X in the following equation: x = a^-1*b, where 'a' is base matrix and 'b' is an n by p matrix.
*
* @param a the base matrix.
* @param b n by p matrix.
* @return the solution for 'x' that is n by p.
* @author Iaroslav Postovalov
*/
public fun EjmlMatrixContext.solve(a: Matrix<Double>, b: Matrix<Double>): EjmlMatrix =
EjmlMatrix(a.toEjml().origin.solve(b.toEjml().origin))
/**
* Solves for X in the following equation: x = a^(-1)*b, where 'a' is base matrix and 'b' is an n by p matrix.
*
* @param a the base matrix.
* @param b n by p vector.
* @return the solution for 'x' that is n by p.
* @author Iaroslav Postovalov
*/
public fun EjmlMatrixContext.solve(a: Matrix<Double>, b: Point<Double>): EjmlVector =
EjmlVector(a.toEjml().origin.solve(b.toEjml().origin))
/**
* Returns the inverse of given matrix: b = a^(-1).
*
* @param a the matrix.
* @return the inverse of this matrix.
* @author Iaroslav Postovalov
*/
public fun EjmlMatrixContext.inverse(a: Matrix<Double>): EjmlMatrix = EjmlMatrix(a.toEjml().origin.invert())

View File

@ -0,0 +1,40 @@
package kscience.kmath.ejml
import org.ejml.simple.SimpleMatrix
import kscience.kmath.linear.Point
import kscience.kmath.structures.Buffer
/**
* Represents point over EJML [SimpleMatrix].
*
* @property origin the underlying [SimpleMatrix].
* @author Iaroslav Postovalov
*/
public class EjmlVector internal constructor(public val origin: SimpleMatrix) : Point<Double> {
public override val size: Int
get() = origin.numRows()
init {
require(origin.numCols() == 1) { "Only single column matrices are allowed" }
}
public override operator fun get(index: Int): Double = origin[index]
public override operator fun iterator(): Iterator<Double> = object : Iterator<Double> {
private var cursor: Int = 0
override fun next(): Double {
cursor += 1
return origin[cursor - 1]
}
override fun hasNext(): Boolean = cursor < origin.numCols() * origin.numRows()
}
public override fun contentEquals(other: Buffer<*>): Boolean {
if (other is EjmlVector) return origin.isIdentical(other.origin, 0.0)
return super.contentEquals(other)
}
public override fun toString(): String = "EjmlVector(origin=$origin)"
}

View File

@ -0,0 +1,75 @@
package kscience.kmath.ejml
import kscience.kmath.linear.DeterminantFeature
import kscience.kmath.linear.LUPDecompositionFeature
import kscience.kmath.linear.MatrixFeature
import kscience.kmath.linear.getFeature
import org.ejml.dense.row.factory.DecompositionFactory_DDRM
import org.ejml.simple.SimpleMatrix
import kotlin.random.Random
import kotlin.random.asJavaRandom
import kotlin.test.*
internal class EjmlMatrixTest {
private val random = Random(0)
private val randomMatrix: SimpleMatrix
get() {
val s = random.nextInt(2, 100)
return SimpleMatrix.random_DDRM(s, s, 0.0, 10.0, random.asJavaRandom())
}
@Test
fun rowNum() {
val m = randomMatrix
assertEquals(m.numRows(), EjmlMatrix(m).rowNum)
}
@Test
fun colNum() {
val m = randomMatrix
assertEquals(m.numCols(), EjmlMatrix(m).rowNum)
}
@Test
fun shape() {
val m = randomMatrix
val w = EjmlMatrix(m)
assertEquals(listOf(m.numRows(), m.numCols()), w.shape.toList())
}
@Test
fun features() {
val m = randomMatrix
val w = EjmlMatrix(m)
val det = w.getFeature<DeterminantFeature<Double>>() ?: fail()
assertEquals(m.determinant(), det.determinant)
val lup = w.getFeature<LUPDecompositionFeature<Double>>() ?: fail()
val ludecompositionF64 = DecompositionFactory_DDRM.lu(m.numRows(), m.numCols())
.also { it.decompose(m.ddrm.copy()) }
assertEquals(EjmlMatrix(SimpleMatrix(ludecompositionF64.getLower(null))), lup.l)
assertEquals(EjmlMatrix(SimpleMatrix(ludecompositionF64.getUpper(null))), lup.u)
assertEquals(EjmlMatrix(SimpleMatrix(ludecompositionF64.getRowPivot(null))), lup.p)
}
private object SomeFeature : MatrixFeature {}
@Test
fun suggestFeature() {
assertNotNull(EjmlMatrix(randomMatrix).suggestFeature(SomeFeature).getFeature<SomeFeature>())
}
@Test
fun get() {
val m = randomMatrix
assertEquals(m[0, 0], EjmlMatrix(m)[0, 0])
}
@Test
fun origin() {
val m = randomMatrix
assertSame(m, EjmlMatrix(m).origin)
}
}

View File

@ -0,0 +1,47 @@
package kscience.kmath.ejml
import org.ejml.simple.SimpleMatrix
import kotlin.random.Random
import kotlin.random.asJavaRandom
import kotlin.test.Test
import kotlin.test.assertEquals
import kotlin.test.assertSame
internal class EjmlVectorTest {
private val random = Random(0)
private val randomMatrix: SimpleMatrix
get() = SimpleMatrix.random_DDRM(random.nextInt(2, 100), 1, 0.0, 10.0, random.asJavaRandom())
@Test
fun size() {
val m = randomMatrix
val w = EjmlVector(m)
assertEquals(m.numRows(), w.size)
}
@Test
fun get() {
val m = randomMatrix
val w = EjmlVector(m)
assertEquals(m[0, 0], w[0])
}
@Test
fun iterator() {
val m = randomMatrix
val w = EjmlVector(m)
assertEquals(
m.iterator(true, 0, 0, m.numRows() - 1, 0).asSequence().toList(),
w.iterator().asSequence().toList()
)
}
@Test
fun origin() {
val m = randomMatrix
val w = EjmlVector(m)
assertSame(m, w.origin)
}
}

View File

@ -4,7 +4,7 @@ import kscience.kmath.operations.Space
public interface Vector public interface Vector
public interface GeometrySpace<V: Vector>: Space<V> { public interface GeometrySpace<V : Vector> : Space<V> {
/** /**
* L2 distance * L2 distance
*/ */

View File

@ -10,9 +10,10 @@ import kscience.kmath.structures.RealBuffer
*/ */
public interface Bin<T : Any> : Domain<T> { public interface Bin<T : Any> : Domain<T> {
/** /**
* The value of this bin * The value of this bin.
*/ */
public val value: Number public val value: Number
public val center: Point<T> public val center: Point<T>
} }

View File

@ -5,10 +5,7 @@ import kscience.kmath.histogram.fill
import kscience.kmath.histogram.put import kscience.kmath.histogram.put
import kscience.kmath.real.RealVector import kscience.kmath.real.RealVector
import kotlin.random.Random import kotlin.random.Random
import kotlin.test.Test import kotlin.test.*
import kotlin.test.assertEquals
import kotlin.test.assertFalse
import kotlin.test.assertTrue
internal class MultivariateHistogramTest { internal class MultivariateHistogramTest {
@Test @Test
@ -18,7 +15,7 @@ internal class MultivariateHistogramTest {
(-1.0..1.0) (-1.0..1.0)
) )
histogram.put(0.55, 0.55) histogram.put(0.55, 0.55)
val bin = histogram.find { it.value.toInt() > 0 }!! val bin = histogram.find { it.value.toInt() > 0 } ?: fail()
assertTrue { bin.contains(RealVector(0.55, 0.55)) } assertTrue { bin.contains(RealVector(0.55, 0.55)) }
assertTrue { bin.contains(RealVector(0.6, 0.5)) } assertTrue { bin.contains(RealVector(0.6, 0.5)) }
assertFalse { bin.contains(RealVector(-0.55, 0.55)) } assertFalse { bin.contains(RealVector(-0.55, 0.55)) }

View File

@ -63,7 +63,7 @@ public fun <T : Any> Sampler<T>.sampleBuffer(
//clear list from previous run //clear list from previous run
tmp.clear() tmp.clear()
//Fill list //Fill list
repeat(size){ repeat(size) {
tmp.add(chain.next()) tmp.add(chain.next())
} }
//return new buffer with elements from tmp //return new buffer with elements from tmp

View File

@ -3,16 +3,59 @@ package kscience.kmath.prob
import kotlin.random.Random import kotlin.random.Random
/** /**
* A basic generator * An interface that is implemented by random number generator algorithms.
*/ */
public interface RandomGenerator { public interface RandomGenerator {
/**
* Gets the next random [Boolean] value.
*/
public fun nextBoolean(): Boolean public fun nextBoolean(): Boolean
/**
* Gets the next random [Double] value uniformly distributed between 0 (inclusive) and 1 (exclusive).
*/
public fun nextDouble(): Double public fun nextDouble(): Double
/**
* Gets the next random `Int` from the random number generator.
*
* Generates an `Int` random value uniformly distributed between [Int.MIN_VALUE] and [Int.MAX_VALUE] (inclusive).
*/
public fun nextInt(): Int public fun nextInt(): Int
/**
* Gets the next random non-negative `Int` from the random number generator less than the specified [until] bound.
*
* Generates an `Int` random value uniformly distributed between `0` (inclusive) and the specified [until] bound
* (exclusive).
*/
public fun nextInt(until: Int): Int public fun nextInt(until: Int): Int
/**
* Gets the next random `Long` from the random number generator.
*
* Generates a `Long` random value uniformly distributed between [Long.MIN_VALUE] and [Long.MAX_VALUE] (inclusive).
*/
public fun nextLong(): Long public fun nextLong(): Long
/**
* Gets the next random non-negative `Long` from the random number generator less than the specified [until] bound.
*
* Generates a `Long` random value uniformly distributed between `0` (inclusive) and the specified [until] bound (exclusive).
*/
public fun nextLong(until: Long): Long public fun nextLong(until: Long): Long
/**
* Fills a subrange of the specified byte [array] starting from [fromIndex] inclusive and ending [toIndex] exclusive
* with random bytes.
*
* @return [array] with the subrange filled with random bytes.
*/
public fun fillBytes(array: ByteArray, fromIndex: Int = 0, toIndex: Int = array.size) public fun fillBytes(array: ByteArray, fromIndex: Int = 0, toIndex: Int = array.size)
/**
* Creates a byte array of the specified [size], filled with random bytes.
*/
public fun nextBytes(size: Int): ByteArray = ByteArray(size).also { fillBytes(it) } public fun nextBytes(size: Int): ByteArray = ByteArray(size).also { fillBytes(it) }
/** /**
@ -25,12 +68,21 @@ public interface RandomGenerator {
public fun fork(): RandomGenerator public fun fork(): RandomGenerator
public companion object { public companion object {
public val default: DefaultGenerator by lazy { DefaultGenerator() } /**
* The [DefaultGenerator] instance.
*/
public val default: DefaultGenerator by lazy(::DefaultGenerator)
/**
* Returns [DefaultGenerator] of given [seed].
*/
public fun default(seed: Long): DefaultGenerator = DefaultGenerator(Random(seed)) public fun default(seed: Long): DefaultGenerator = DefaultGenerator(Random(seed))
} }
} }
/**
* Implements [RandomGenerator] by delegating all operations to [Random].
*/
public inline class DefaultGenerator(public val random: Random = Random) : RandomGenerator { public inline class DefaultGenerator(public val random: Random = Random) : RandomGenerator {
public override fun nextBoolean(): Boolean = random.nextBoolean() public override fun nextBoolean(): Boolean = random.nextBoolean()
public override fun nextDouble(): Double = random.nextDouble() public override fun nextDouble(): Double = random.nextDouble()

View File

@ -6,7 +6,7 @@ import kotlin.test.Test
class SamplerTest { class SamplerTest {
@Test @Test
fun bufferSamplerTest(){ fun bufferSamplerTest() {
val sampler: Sampler<Double> = val sampler: Sampler<Double> =
BasicSampler { it.chain { nextDouble() } } BasicSampler { it.chain { nextDouble() } }
val data = sampler.sampleBuffer(RandomGenerator.default, 100) val data = sampler.sampleBuffer(RandomGenerator.default, 100)

View File

@ -40,5 +40,6 @@ include(
":kmath-for-real", ":kmath-for-real",
":kmath-geometry", ":kmath-geometry",
":kmath-ast", ":kmath-ast",
":examples" ":examples",
":kmath-ejml"
) )