added helper functions for levenberg-marquardt algorithm

This commit is contained in:
Margarita Lashina 2023-05-03 21:25:30 +03:00
parent 10f84bd630
commit 19c1af1874

View File

@ -12,7 +12,14 @@ import space.kscience.kmath.structures.IntBuffer
import space.kscience.kmath.structures.asBuffer import space.kscience.kmath.structures.asBuffer
import space.kscience.kmath.structures.indices import space.kscience.kmath.structures.indices
import space.kscience.kmath.tensors.core.* import space.kscience.kmath.tensors.core.*
import space.kscience.kmath.tensors.core.BroadcastDoubleTensorAlgebra.div
import space.kscience.kmath.tensors.core.BroadcastDoubleTensorAlgebra.dot
import space.kscience.kmath.tensors.core.BroadcastDoubleTensorAlgebra.minus
import space.kscience.kmath.tensors.core.BroadcastDoubleTensorAlgebra.times
import space.kscience.kmath.tensors.core.BroadcastDoubleTensorAlgebra.transposed
import space.kscience.kmath.tensors.core.DoubleTensorAlgebra.Companion.plus
import kotlin.math.abs import kotlin.math.abs
import kotlin.math.max
import kotlin.math.min import kotlin.math.min
import kotlin.math.sqrt import kotlin.math.sqrt
@ -308,3 +315,224 @@ internal fun DoubleTensorAlgebra.svdHelper(
matrixV.source[i] = vBuffer[i] matrixV.source[i] = vBuffer[i]
} }
} }
data class LMSettings (
var iteration:Int,
var func_calls: Int,
var example_number:Int
)
/* matrix -> column of all elemnets */
fun make_column(tensor: MutableStructure2D<Double>) : MutableStructure2D<Double> {
val shape = intArrayOf(tensor.shape.component1() * tensor.shape.component2(), 1)
var buffer = DoubleArray(tensor.shape.component1() * tensor.shape.component2())
for (i in 0 until tensor.shape.component1()) {
for (j in 0 until tensor.shape.component2()) {
buffer[i * tensor.shape.component2() + j] = tensor[i, j]
}
}
var column = BroadcastDoubleTensorAlgebra.fromArray(ShapeND(shape), buffer).as2D()
return column
}
/* column length */
fun length(column: MutableStructure2D<Double>) : Int {
return column.shape.component1()
}
fun MutableStructure2D<Double>.abs() {
for (i in 0 until this.shape.component1()) {
for (j in 0 until this.shape.component2()) {
this[i, j] = abs(this[i, j])
}
}
}
fun abs(input: MutableStructure2D<Double>): MutableStructure2D<Double> {
val tensor = BroadcastDoubleTensorAlgebra.ones(
ShapeND(
intArrayOf(
input.shape.component1(),
input.shape.component2()
)
)
).as2D()
for (i in 0 until tensor.shape.component1()) {
for (j in 0 until tensor.shape.component2()) {
tensor[i, j] = abs(input[i, j])
}
}
return tensor
}
fun diag(input: MutableStructure2D<Double>): MutableStructure2D<Double> {
val tensor = BroadcastDoubleTensorAlgebra.ones(ShapeND(intArrayOf(input.shape.component1(), 1))).as2D()
for (i in 0 until tensor.shape.component1()) {
tensor[i, 0] = input[i, i]
}
return tensor
}
fun make_matrx_with_diagonal(column: MutableStructure2D<Double>): MutableStructure2D<Double> {
val size = column.shape.component1()
val tensor = BroadcastDoubleTensorAlgebra.zeros(ShapeND(intArrayOf(size, size))).as2D()
for (i in 0 until size) {
tensor[i, i] = column[i, 0]
}
return tensor
}
fun lm_eye(size: Int): MutableStructure2D<Double> {
val column = BroadcastDoubleTensorAlgebra.ones(ShapeND(intArrayOf(size, 1))).as2D()
return make_matrx_with_diagonal(column)
}
fun largest_element_comparison(a: MutableStructure2D<Double>, b: MutableStructure2D<Double>): MutableStructure2D<Double> {
val a_sizeX = a.shape.component1()
val a_sizeY = a.shape.component2()
val b_sizeX = b.shape.component1()
val b_sizeY = b.shape.component2()
val tensor = BroadcastDoubleTensorAlgebra.zeros(ShapeND(intArrayOf(max(a_sizeX, b_sizeX), max(a_sizeY, b_sizeY)))).as2D()
for (i in 0 until tensor.shape.component1()) {
for (j in 0 until tensor.shape.component2()) {
if (i < a_sizeX && i < b_sizeX && j < a_sizeY && j < b_sizeY) {
tensor[i, j] = max(a[i, j], b[i, j])
}
else if (i < a_sizeX && j < a_sizeY) {
tensor[i, j] = a[i, j]
}
else {
tensor[i, j] = b[i, j]
}
}
}
return tensor
}
fun smallest_element_comparison(a: MutableStructure2D<Double>, b: MutableStructure2D<Double>): MutableStructure2D<Double> {
val a_sizeX = a.shape.component1()
val a_sizeY = a.shape.component2()
val b_sizeX = b.shape.component1()
val b_sizeY = b.shape.component2()
val tensor = BroadcastDoubleTensorAlgebra.zeros(ShapeND(intArrayOf(max(a_sizeX, b_sizeX), max(a_sizeY, b_sizeY)))).as2D()
for (i in 0 until tensor.shape.component1()) {
for (j in 0 until tensor.shape.component2()) {
if (i < a_sizeX && i < b_sizeX && j < a_sizeY && j < b_sizeY) {
tensor[i, j] = min(a[i, j], b[i, j])
}
else if (i < a_sizeX && j < a_sizeY) {
tensor[i, j] = a[i, j]
}
else {
tensor[i, j] = b[i, j]
}
}
}
return tensor
}
fun get_zero_indices(column: MutableStructure2D<Double>, epsilon: Double = 0.000001): MutableStructure2D<Double>? {
var idx = emptyArray<Double>()
for (i in 0 until column.shape.component1()) {
if (abs(column[i, 0]) > epsilon) {
idx += (i + 1.0)
}
}
if (idx.size > 0) {
return BroadcastDoubleTensorAlgebra.fromArray(ShapeND(intArrayOf(idx.size, 1)), idx.toDoubleArray()).as2D()
}
return null
}
fun feval(func: (MutableStructure2D<Double>, MutableStructure2D<Double>, LMSettings) -> MutableStructure2D<Double>,
t: MutableStructure2D<Double>, p: MutableStructure2D<Double>, settings: LMSettings)
: MutableStructure2D<Double>
{
return func(t, p, settings)
}
fun lm_matx(func: (MutableStructure2D<Double>, MutableStructure2D<Double>, LMSettings) -> MutableStructure2D<Double>,
t: MutableStructure2D<Double>, p_old: MutableStructure2D<Double>, y_old: MutableStructure2D<Double>,
dX2: Int, J_input: MutableStructure2D<Double>, p: MutableStructure2D<Double>,
y_dat: MutableStructure2D<Double>, weight: MutableStructure2D<Double>, dp:MutableStructure2D<Double>, settings:LMSettings) : Array<MutableStructure2D<Double>>
{
// default: dp = 0.001
val Npnt = length(y_dat) // number of data points
val Npar = length(p) // number of parameters
val y_hat = feval(func, t, p, settings) // evaluate model using parameters 'p'
settings.func_calls += 1
var J = J_input
if (settings.iteration % (2 * Npar) == 0 || dX2 > 0) {
J = lm_FD_J(func, t, p, y_hat, dp, settings).as2D() // finite difference
}
else {
J = lm_Broyden_J(p_old, y_old, J, p, y_hat).as2D() // rank-1 update
}
val delta_y = y_dat.minus(y_hat)
val Chi_sq = delta_y.transposed().dot( delta_y.times(weight) ).as2D()
val JtWJ = J.transposed().dot ( J.times( weight.dot(BroadcastDoubleTensorAlgebra.ones(ShapeND(intArrayOf(1, Npar)))) ) ).as2D()
val JtWdy = J.transposed().dot( weight.times(delta_y) ).as2D()
return arrayOf(JtWJ,JtWdy,Chi_sq,y_hat,J)
}
fun lm_Broyden_J(p_old: MutableStructure2D<Double>, y_old: MutableStructure2D<Double>, J_input: MutableStructure2D<Double>,
p: MutableStructure2D<Double>, y: MutableStructure2D<Double>): MutableStructure2D<Double> {
var J = J_input.copyToTensor()
val h = p.minus(p_old)
val increase = y.minus(y_old).minus( J.dot(h) ).dot(h.transposed()).div( (h.transposed().dot(h)).as2D()[0, 0] )
J = J.plus(increase)
return J.as2D()
}
fun lm_FD_J(func: (MutableStructure2D<Double>, MutableStructure2D<Double>, settings: LMSettings) -> MutableStructure2D<Double>,
t: MutableStructure2D<Double>, p: MutableStructure2D<Double>, y: MutableStructure2D<Double>,
dp: MutableStructure2D<Double>, settings: LMSettings): MutableStructure2D<Double> {
// default: dp = 0.001 * ones(1,n)
val m = length(y) // number of data points
val n = length(p) // number of parameters
val ps = p.copyToTensor().as2D()
val J = BroadcastDoubleTensorAlgebra.zeros(ShapeND(intArrayOf(m, n))).as2D() // initialize Jacobian to Zero
val del = BroadcastDoubleTensorAlgebra.zeros(ShapeND(intArrayOf(n, 1))).as2D()
for (j in 0 until n) {
del[j, 0] = dp[j, 0] * (1 + abs(p[j, 0])) // parameter perturbation
p[j, 0] = ps[j, 0] + del[j, 0] // perturb parameter p(j)
val epsilon = 0.0000001
if (kotlin.math.abs(del[j, 0]) > epsilon) {
val y1 = feval(func, t, p, settings)
settings.func_calls += 1
if (dp[j, 0] < 0) { // backwards difference
for (i in 0 until J.shape.component1()) {
J[i, j] = (y1.as2D().minus(y).as2D())[i, 0] / del[j, 0]
}
}
else {
// Do tests for it
println("Potential mistake")
p[j, 0] = ps[j, 0] - del[j, 0] // central difference, additional func call
for (i in 0 until J.shape.component1()) {
J[i, j] = (y1.as2D().minus(feval(func, t, p, settings)).as2D())[i, 0] / (2 * del[j, 0])
}
settings.func_calls += 1
}
}
p[j, 0] = ps[j, 0] // restore p(j)
}
return J.as2D()
}