Merge remote-tracking branch 'upstream/dev' into zelenyy

This commit is contained in:
Mikhail Zelenyy 2019-01-31 14:46:32 +03:00
commit 18454c56fc
15 changed files with 197 additions and 96 deletions

View File

@ -1,14 +1,10 @@
buildscript {
extra["kotlinVersion"] = "1.3.20-eap-100"
extra["ioVersion"] = "0.1.2"
extra["coroutinesVersion"] = "1.1.0"
val kotlinVersion: String by extra
val ioVersion: String by extra
val coroutinesVersion: String by extra
val kotlinVersion: String by rootProject.extra("1.3.20")
val ioVersion: String by rootProject.extra("0.1.2")
val coroutinesVersion: String by rootProject.extra("1.1.1")
repositories {
maven("https://dl.bintray.com/kotlin/kotlin-eap")
//maven("https://dl.bintray.com/kotlin/kotlin-eap")
jcenter()
}
@ -28,7 +24,7 @@ allprojects {
apply(plugin = "com.jfrog.artifactory")
group = "scientifik"
version = "0.0.3-dev-3"
version = "0.0.3-dev-4"
repositories {
maven("https://dl.bintray.com/kotlin/kotlin-eap")

View File

@ -4,11 +4,16 @@ import org.apache.commons.math3.linear.*
import org.apache.commons.math3.linear.RealMatrix
import org.apache.commons.math3.linear.RealVector
inline class CMMatrix(val origin: RealMatrix) : Matrix<Double> {
class CMMatrix(val origin: RealMatrix, features: Set<MatrixFeature>? = null) : Matrix<Double> {
override val rowNum: Int get() = origin.rowDimension
override val colNum: Int get() = origin.columnDimension
override val features: Set<MatrixFeature> get() = emptySet()
override val features: Set<MatrixFeature> = features ?: sequence<MatrixFeature> {
if(origin is DiagonalMatrix) yield(DiagonalFeature)
}.toSet()
override fun suggestFeature(vararg features: MatrixFeature) =
CMMatrix(origin, this.features + features)
override fun get(i: Int, j: Int): Double = origin.getEntry(i, j)
}
@ -23,7 +28,7 @@ fun Matrix<Double>.toCM(): CMMatrix = if (this is CMMatrix) {
fun RealMatrix.toMatrix() = CMMatrix(this)
inline class CMVector(val origin: RealVector) : Point<Double> {
class CMVector(val origin: RealVector) : Point<Double> {
override val size: Int get() = origin.dimension
override fun get(index: Int): Double = origin.getEntry(index)

View File

@ -1,50 +0,0 @@
plugins {
id "org.jetbrains.kotlin.multiplatform"
}
kotlin {
jvm {
compilations["main"].kotlinOptions.jvmTarget = "1.8"
compilations["test"].kotlinOptions.jvmTarget = "1.8"
}
js()
sourceSets {
commonMain {
dependencies {
api 'org.jetbrains.kotlin:kotlin-stdlib-common'
}
}
commonTest {
dependencies {
implementation 'org.jetbrains.kotlin:kotlin-test-common'
implementation 'org.jetbrains.kotlin:kotlin-test-annotations-common'
}
}
jvmMain {
dependencies {
api 'org.jetbrains.kotlin:kotlin-stdlib-jdk8'
}
}
jvmTest {
dependencies {
implementation 'org.jetbrains.kotlin:kotlin-test'
implementation 'org.jetbrains.kotlin:kotlin-test-junit'
}
}
jsMain {
dependencies {
api 'org.jetbrains.kotlin:kotlin-stdlib-js'
}
}
jsTest {
dependencies {
implementation 'org.jetbrains.kotlin:kotlin-test-js'
}
}
// mingwMain {
// }
// mingwTest {
// }
}
}

View File

@ -0,0 +1,55 @@
plugins {
kotlin("multiplatform")
}
kotlin {
jvm {
compilations.all {
kotlinOptions {
jvmTarget = "1.8"
freeCompilerArgs += "-progressive"
}
}
}
js()
sourceSets {
val commonMain by getting {
dependencies {
api(kotlin("stdlib"))
}
}
val commonTest by getting {
dependencies {
implementation(kotlin("test-common"))
implementation(kotlin("test-annotations-common"))
}
}
val jvmMain by getting {
dependencies {
api(kotlin("stdlib-jdk8"))
}
}
val jvmTest by getting {
dependencies {
implementation(kotlin("test"))
implementation(kotlin("test-junit"))
}
}
val jsMain by getting {
dependencies {
api(kotlin("stdlib-js"))
}
}
val jsTest by getting {
dependencies {
implementation(kotlin("test-js"))
}
}
// mingwMain {
// }
// mingwTest {
// }
}
}

View File

@ -35,6 +35,9 @@ class BufferMatrix<T : Any>(
override val shape: IntArray get() = intArrayOf(rowNum, colNum)
override fun suggestFeature(vararg features: MatrixFeature) =
BufferMatrix(rowNum, colNum, buffer, this.features + features)
override fun get(index: IntArray): T = get(index[0], index[1])
override fun get(i: Int, j: Int): T = buffer[i * colNum + j]

View File

@ -8,20 +8,19 @@ import scientifik.kmath.structures.MutableBufferFactory
import scientifik.kmath.structures.NDStructure
import scientifik.kmath.structures.get
class LUPDecomposition<T : Comparable<T>>(
private val elementContext: Ring<T>,
internal val lu: NDStructure<T>,
val pivot: IntArray,
private val even: Boolean
) : DeterminantFeature<T> {
) : LUPDecompositionFeature<T>, DeterminantFeature<T> {
/**
* Returns the matrix L of the decomposition.
*
* L is a lower-triangular matrix with [Ring.one] in diagonal
*/
val l: Matrix<T> = VirtualMatrix(lu.shape[0], lu.shape[1]) { i, j ->
override val l: Matrix<T> = VirtualMatrix(lu.shape[0], lu.shape[1], setOf(LFeature)) { i, j ->
when {
j < i -> lu[i, j]
j == i -> elementContext.one
@ -35,7 +34,7 @@ class LUPDecomposition<T : Comparable<T>>(
*
* U is an upper-triangular matrix including the diagonal
*/
val u: Matrix<T> = VirtualMatrix(lu.shape[0], lu.shape[1]) { i, j ->
override val u: Matrix<T> = VirtualMatrix(lu.shape[0], lu.shape[1], setOf(UFeature)) { i, j ->
if (j >= i) lu[i, j] else elementContext.zero
}
@ -46,7 +45,7 @@ class LUPDecomposition<T : Comparable<T>>(
* P is a sparse matrix with exactly one element set to [Ring.one] in
* each row and each column, all other elements being set to [Ring.zero].
*/
val p: Matrix<T> = VirtualMatrix(lu.shape[0], lu.shape[1]) { i, j ->
override val p: Matrix<T> = VirtualMatrix(lu.shape[0], lu.shape[1]) { i, j ->
if (j == pivot[i]) elementContext.one else elementContext.zero
}

View File

@ -107,26 +107,6 @@ interface GenericMatrixContext<T : Any, R : Ring<T>> : MatrixContext<T> {
produce(rowNum, colNum) { i, j -> elementContext.run { get(i, j) * value } }
}
/**
* A marker interface representing some matrix feature like diagonal, sparce, zero, etc. Features used to optimize matrix
* operations performance in some cases.
*/
interface MatrixFeature
object DiagonalFeature : MatrixFeature
object ZeroFeature : MatrixFeature
object UnitFeature : MatrixFeature
interface InverseMatrixFeature<T : Any> : MatrixFeature {
val inverse: Matrix<T>
}
interface DeterminantFeature<T : Any> : MatrixFeature {
val determinant: T
}
/**
* Specialized 2-d structure
*/
@ -136,6 +116,14 @@ interface Matrix<T : Any> : NDStructure<T> {
val features: Set<MatrixFeature>
/**
* Suggest new feature for this matrix. The result is the new matrix that may or may not reuse existing data structure.
*
* The implementation does not guarantee to check that matrix actually have the feature, so one should be careful to
* add only those features that are valid.
*/
fun suggestFeature(vararg features: MatrixFeature): Matrix<T>
operator fun get(i: Int, j: Int): T
override fun get(index: IntArray): T = get(index[0], index[1])
@ -167,12 +155,22 @@ interface Matrix<T : Any> : NDStructure<T> {
/**
* Build a square matrix from given elements.
*/
fun <T : Any> build(vararg elements: T): Matrix<T> {
fun <T : Any> square(vararg elements: T): Matrix<T> {
val size: Int = sqrt(elements.size.toDouble()).toInt()
if (size * size != elements.size) error("The number of elements ${elements.size} is not a full square")
val buffer = elements.asBuffer()
return BufferMatrix(size, size, buffer)
}
fun <T : Any> build(rows: Int, columns: Int): MatrixBuilder<T> = MatrixBuilder(rows, columns)
}
}
class MatrixBuilder<T : Any>(val rows: Int, val columns: Int) {
operator fun invoke(vararg elements: T): Matrix<T> {
if (rows * columns != elements.size) error("The number of elements ${elements.size} is not equal $rows * $columns")
val buffer = elements.asBuffer()
return BufferMatrix(rows, columns, buffer)
}
}

View File

@ -0,0 +1,62 @@
package scientifik.kmath.linear
/**
* A marker interface representing some matrix feature like diagonal, sparce, zero, etc. Features used to optimize matrix
* operations performance in some cases.
*/
interface MatrixFeature
/**
* The matrix with this feature is considered to have only diagonal non-null elements
*/
object DiagonalFeature : MatrixFeature
/**
* Matrix with this feature has all zero elements
*/
object ZeroFeature : MatrixFeature
/**
* Matrix with this feature have unit elements on diagonal and zero elements in all other places
*/
object UnitFeature : MatrixFeature
/**
* Inverted matrix feature
*/
interface InverseMatrixFeature<T : Any> : MatrixFeature {
val inverse: Matrix<T>
}
/**
* A determinant container
*/
interface DeterminantFeature<T : Any> : MatrixFeature {
val determinant: T
}
@Suppress("FunctionName")
fun <T: Any> DeterminantFeature(determinant: T) = object: DeterminantFeature<T>{
override val determinant: T = determinant
}
/**
* Lower triangular matrix
*/
object LFeature: MatrixFeature
/**
* Upper triangular feature
*/
object UFeature: MatrixFeature
/**
* TODO add documentation
*/
interface LUPDecompositionFeature<T : Any> : MatrixFeature {
val l: Matrix<T>
val u: Matrix<T>
val p: Matrix<T>
}
//TODO add sparse matrix feature

View File

@ -8,6 +8,9 @@ class VirtualMatrix<T : Any>(
) : Matrix<T> {
override fun get(i: Int, j: Int): T = generator(i, j)
override fun suggestFeature(vararg features: MatrixFeature) =
VirtualMatrix(rowNum, colNum, this.features + features, generator)
override fun equals(other: Any?): Boolean {
if (this === other) return true
if (other !is Matrix<*>) return false

View File

@ -15,6 +15,7 @@ class ShortNDRing(override val shape: IntArray) :
override val zero by lazy { produce { ShortRing.zero } }
override val one by lazy { produce { ShortRing.one } }
@Suppress("OVERRIDE_BY_INLINE")
override inline fun buildBuffer(size: Int, crossinline initializer: (Int) -> Short): Buffer<Short> =
ShortBuffer(ShortArray(size) { initializer(it) })

View File

@ -41,4 +41,14 @@ class MatrixTest {
assertEquals(5.0, product[1, 0])
assertEquals(6.0, product[2, 2])
}
@Test
fun testBuilder() {
val matrix = Matrix.build<Double>(2, 3)(
1.0, 0.0, 0.0,
0.0, 1.0, 2.0
)
assertEquals(2.0, matrix[1, 2])
}
}

View File

@ -13,7 +13,7 @@ class RealLUSolverTest {
@Test
fun testInvert() {
val matrix = Matrix.build(
val matrix = Matrix.square(
3.0, 1.0,
1.0, 3.0
)
@ -31,7 +31,7 @@ class RealLUSolverTest {
val inverted = LUSolver.real.inverse(decomposed)
val expected = Matrix.build(
val expected = Matrix.square(
0.375, -0.125,
-0.125, 0.375
)

View File

@ -1,5 +1,5 @@
plugins {
id("kotlin-multiplatform")
kotlin("multiplatform")
}
repositories {
@ -8,8 +8,12 @@ repositories {
kotlin {
jvm {
compilations["main"].kotlinOptions.jvmTarget = "1.8"
compilations["test"].kotlinOptions.jvmTarget = "1.8"
compilations.all {
kotlinOptions {
jvmTarget = "1.8"
freeCompilerArgs += "-progressive"
}
}
}
js()

View File

@ -48,10 +48,25 @@ class KomaMatrixContext<T : Any>(val factory: MatrixFactory<koma.matrix.Matrix<T
KomaMatrix(a.toKoma().origin.inv())
}
inline class KomaMatrix<T : Any>(val origin: koma.matrix.Matrix<T>) : Matrix<T> {
class KomaMatrix<T : Any>(val origin: koma.matrix.Matrix<T>, features: Set<MatrixFeature>? = null) :
Matrix<T> {
override val rowNum: Int get() = origin.numRows()
override val colNum: Int get() = origin.numCols()
override val features: Set<MatrixFeature> get() = emptySet()
override val features: Set<MatrixFeature> = features ?: setOf(
object : DeterminantFeature<T> {
override val determinant: T get() = origin.det()
},
object : LUPDecompositionFeature<T> {
private val lup by lazy { origin.LU() }
override val l: Matrix<T> get() = KomaMatrix(lup.second)
override val u: Matrix<T> get() = KomaMatrix(lup.third)
override val p: Matrix<T> get() = KomaMatrix(lup.first)
}
)
override fun suggestFeature(vararg features: MatrixFeature): Matrix<T> =
KomaMatrix(this.origin, this.features + features)
override fun get(i: Int, j: Int): T = origin.getGeneric(i, j)
}

View File

@ -2,7 +2,7 @@ pluginManagement {
repositories {
mavenCentral()
maven("https://plugins.gradle.org/m2/")
maven ("https://dl.bintray.com/kotlin/kotlin-eap")
//maven ("https://dl.bintray.com/kotlin/kotlin-eap")
}
}