Merging implementations together

This commit is contained in:
Roland Grinis 2021-05-07 12:52:17 +01:00
parent 14ca7cdd31
commit 0920e21d62
24 changed files with 488 additions and 505 deletions

View File

@ -7,22 +7,22 @@ package space.kscience.kmath.tensors
import space.kscience.kmath.operations.invoke
import space.kscience.kmath.tensors.core.algebras.BroadcastDoubleTensorAlgebra
import space.kscience.kmath.tensors.core.algebras.DoubleAnalyticTensorAlgebra
// Dataset normalization
fun main() {
// work in context with analytic methods
DoubleAnalyticTensorAlgebra {
// work in context with broadcast methods
BroadcastDoubleTensorAlgebra {
// take dataset of 5-element vectors from normal distribution
val dataset = randomNormal(intArrayOf(100, 5)) * 1.5 // all elements from N(0, 1.5)
BroadcastDoubleTensorAlgebra {
dataset += fromArray(
intArrayOf(5),
doubleArrayOf(0.0, 1.0, 1.5, 3.0, 5.0) // rows means
)
}
dataset += fromArray(
intArrayOf(5),
doubleArrayOf(0.0, 1.0, 1.5, 3.0, 5.0) // rows means
)
// find out mean and standard deviation of each column
val mean = dataset.mean(0, false)
@ -36,7 +36,7 @@ fun main() {
println("Maximum:\n${dataset.max(0, false)}")
// now we can scale dataset with mean normalization
val datasetScaled = BroadcastDoubleTensorAlgebra { (dataset - mean) / std }
val datasetScaled = (dataset - mean) / std
// find out mean and std of scaled dataset

View File

@ -7,14 +7,14 @@ package space.kscience.kmath.tensors
import space.kscience.kmath.operations.invoke
import space.kscience.kmath.tensors.core.DoubleTensor
import space.kscience.kmath.tensors.core.algebras.DoubleLinearOpsTensorAlgebra
import space.kscience.kmath.tensors.core.algebras.BroadcastDoubleTensorAlgebra
// solving linear system with LUP decomposition
fun main () {
// work in context with linear operations
DoubleLinearOpsTensorAlgebra {
BroadcastDoubleTensorAlgebra {
// set true value of x
val trueX = fromArray(

View File

@ -8,7 +8,6 @@ package space.kscience.kmath.tensors
import space.kscience.kmath.operations.invoke
import space.kscience.kmath.tensors.core.DoubleTensor
import space.kscience.kmath.tensors.core.algebras.BroadcastDoubleTensorAlgebra
import space.kscience.kmath.tensors.core.algebras.DoubleAnalyticTensorAlgebra
import space.kscience.kmath.tensors.core.algebras.DoubleTensorAlgebra
import space.kscience.kmath.tensors.core.toDoubleArray
import kotlin.math.sqrt
@ -48,7 +47,7 @@ fun reluDer(x: DoubleTensor): DoubleTensor = DoubleTensorAlgebra {
// activation layer with relu activator
class ReLU : Activation(::relu, ::reluDer)
fun sigmoid(x: DoubleTensor): DoubleTensor = DoubleAnalyticTensorAlgebra {
fun sigmoid(x: DoubleTensor): DoubleTensor = DoubleTensorAlgebra {
1.0 / (1.0 + (-x).exp())
}
@ -83,9 +82,7 @@ class Dense(
val gradInput = outputError dot weights.transpose()
val gradW = input.transpose() dot outputError
val gradBias = DoubleAnalyticTensorAlgebra {
outputError.mean(dim = 0, keepDim = false) * input.shape[0].toDouble()
}
val gradBias = outputError.mean(dim = 0, keepDim = false) * input.shape[0].toDouble()
weights -= learningRate * gradW
bias -= learningRate * gradBias
@ -110,7 +107,7 @@ fun accuracy(yPred: DoubleTensor, yTrue: DoubleTensor): Double {
// neural network class
class NeuralNetwork(private val layers: List<Layer>) {
private fun softMaxLoss(yPred: DoubleTensor, yTrue: DoubleTensor): DoubleTensor = DoubleAnalyticTensorAlgebra {
private fun softMaxLoss(yPred: DoubleTensor, yTrue: DoubleTensor): DoubleTensor = BroadcastDoubleTensorAlgebra {
val onesForAnswers = yPred.zeroesLike()
yTrue.toDoubleArray().forEachIndexed { index, labelDouble ->
@ -118,7 +115,7 @@ class NeuralNetwork(private val layers: List<Layer>) {
onesForAnswers[intArrayOf(index, label)] = 1.0
}
val softmaxValue = BroadcastDoubleTensorAlgebra { yPred.exp() / yPred.exp().sum(dim = 1, keepDim = true) }
val softmaxValue = yPred.exp() / yPred.exp().sum(dim = 1, keepDim = true)
(-onesForAnswers + softmaxValue) / (yPred.shape[0].toDouble())
}
@ -177,10 +174,9 @@ class NeuralNetwork(private val layers: List<Layer>) {
}
@OptIn(ExperimentalStdlibApi::class)
fun main() {
DoubleTensorAlgebra {
BroadcastDoubleTensorAlgebra {
val features = 5
val sampleSize = 250
val trainSize = 180
@ -188,12 +184,12 @@ fun main() {
// take sample of features from normal distribution
val x = randomNormal(intArrayOf(sampleSize, features), seed) * 2.5
BroadcastDoubleTensorAlgebra {
x += fromArray(
intArrayOf(5),
doubleArrayOf(0.0, -1.0, -2.5, -3.0, 5.5) // rows means
)
}
x += fromArray(
intArrayOf(5),
doubleArrayOf(0.0, -1.0, -2.5, -3.0, 5.5) // rows means
)
// define class like '1' if the sum of features > 0 and '0' otherwise
val y = fromArray(

View File

@ -7,8 +7,7 @@ package space.kscience.kmath.tensors
import space.kscience.kmath.operations.invoke
import space.kscience.kmath.tensors.core.DoubleTensor
import space.kscience.kmath.tensors.core.algebras.DoubleAnalyticTensorAlgebra
import space.kscience.kmath.tensors.core.algebras.DoubleLinearOpsTensorAlgebra
import space.kscience.kmath.tensors.core.algebras.DoubleTensorAlgebra
import kotlin.math.abs
@ -19,7 +18,7 @@ fun main() {
val randSeed = 100500L
// work in context with linear operations
DoubleLinearOpsTensorAlgebra {
DoubleTensorAlgebra {
// take coefficient vector from normal distribution
val alpha = randomNormal(
intArrayOf(5),
@ -56,12 +55,12 @@ fun main() {
"$alphaOLS")
// figure out MSE of approximation
fun mse(yTrue: DoubleTensor, yPred: DoubleTensor): Double = DoubleAnalyticTensorAlgebra{
fun mse(yTrue: DoubleTensor, yPred: DoubleTensor): Double {
require(yTrue.shape.size == 1)
require(yTrue.shape contentEquals yPred.shape)
val diff = yTrue - yPred
diff.dot(diff).sqrt().value()
return diff.dot(diff).sqrt().value()
}
println("MSE: ${mse(alpha, alphaOLS)}")

View File

@ -7,9 +7,6 @@ package space.kscience.kmath.tensors
import space.kscience.kmath.operations.invoke
import space.kscience.kmath.tensors.core.algebras.BroadcastDoubleTensorAlgebra
import space.kscience.kmath.tensors.core.algebras.DoubleAnalyticTensorAlgebra
import space.kscience.kmath.tensors.core.algebras.DoubleLinearOpsTensorAlgebra
// simple PCA
@ -17,8 +14,8 @@ import space.kscience.kmath.tensors.core.algebras.DoubleLinearOpsTensorAlgebra
fun main(){
val seed = 100500L
// work in context with analytic methods
DoubleAnalyticTensorAlgebra {
// work in context with broadcast methods
BroadcastDoubleTensorAlgebra {
// assume x is range from 0 until 10
val x = fromArray(
@ -63,7 +60,7 @@ fun main(){
println("Covariance matrix:\n$covMatrix")
// and find out eigenvector of it
val (_, evecs) = DoubleLinearOpsTensorAlgebra {covMatrix.symEig()}
val (_, evecs) = covMatrix.symEig()
val v = evecs[0]
println("Eigenvector:\n$v")
@ -74,7 +71,7 @@ fun main(){
// we can restore original data from reduced data.
// for example, find 7th element of dataset
val n = 7
val restored = BroadcastDoubleTensorAlgebra{(datasetReduced[n] dot v.view(intArrayOf(1, 2))) * std + mean}
val restored = (datasetReduced[n] dot v.view(intArrayOf(1, 2))) * std + mean
println("Original value:\n${dataset[n]}")
println("Restored value:\n$restored")
}

View File

@ -11,8 +11,7 @@ package space.kscience.kmath.tensors.api
*
* @param T the type of items closed under analytic functions in the tensors.
*/
public interface AnalyticTensorAlgebra<T> :
TensorPartialDivisionAlgebra<T> {
public interface AnalyticTensorAlgebra<T> : TensorPartialDivisionAlgebra<T> {
/**
* @return the mean of all elements in the input tensor.

View File

@ -10,8 +10,7 @@ package space.kscience.kmath.tensors.api
*
* @param T the type of items closed under division in the tensors.
*/
public interface LinearOpsTensorAlgebra<T> :
TensorPartialDivisionAlgebra<T> {
public interface LinearOpsTensorAlgebra<T> : TensorPartialDivisionAlgebra<T> {
/**
* Computes the determinant of a square matrix input, or of each square matrix in a batched input.

View File

@ -11,8 +11,7 @@ package space.kscience.kmath.tensors.api
*
* @param T the type of items closed under division in the tensors.
*/
public interface TensorPartialDivisionAlgebra<T> :
TensorAlgebra<T> {
public interface TensorPartialDivisionAlgebra<T> : TensorAlgebra<T> {
/**
* Each element of the tensor [other] is divided by this value.

View File

@ -6,6 +6,7 @@
package space.kscience.kmath.tensors.core
import space.kscience.kmath.structures.DoubleBuffer
import space.kscience.kmath.tensors.core.internal.toPrettyString
/**
* Default [BufferedTensor] implementation for [Double] values

View File

@ -7,8 +7,10 @@ package space.kscience.kmath.tensors.core.algebras
import space.kscience.kmath.tensors.api.Tensor
import space.kscience.kmath.tensors.core.*
import space.kscience.kmath.tensors.core.broadcastTensors
import space.kscience.kmath.tensors.core.broadcastTo
import space.kscience.kmath.tensors.core.internal.array
import space.kscience.kmath.tensors.core.internal.broadcastTensors
import space.kscience.kmath.tensors.core.internal.broadcastTo
import space.kscience.kmath.tensors.core.internal.tensor
/**
* Basic linear algebra operations implemented with broadcasting.

View File

@ -1,116 +0,0 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.tensors.core.algebras
import space.kscience.kmath.tensors.api.AnalyticTensorAlgebra
import space.kscience.kmath.tensors.api.Tensor
import space.kscience.kmath.tensors.core.DoubleTensor
import space.kscience.kmath.tensors.core.tensor
import kotlin.math.*
public object DoubleAnalyticTensorAlgebra :
AnalyticTensorAlgebra<Double>,
DoubleTensorAlgebra() {
override fun Tensor<Double>.mean(): Double = this.fold { it.sum() / tensor.numElements }
override fun Tensor<Double>.mean(dim: Int, keepDim: Boolean): DoubleTensor =
foldDim(
{ arr ->
check(dim < dimension) { "Dimension $dim out of range $dimension" }
arr.sum() / shape[dim]
},
dim,
keepDim
)
override fun Tensor<Double>.std(): Double = this.fold { arr ->
val mean = arr.sum() / tensor.numElements
sqrt(arr.sumOf { (it - mean) * (it - mean) } / (tensor.numElements - 1))
}
override fun Tensor<Double>.std(dim: Int, keepDim: Boolean): DoubleTensor = foldDim(
{ arr ->
check(dim < dimension) { "Dimension $dim out of range $dimension" }
val mean = arr.sum() / shape[dim]
sqrt(arr.sumOf { (it - mean) * (it - mean) } / (shape[dim] - 1))
},
dim,
keepDim
)
override fun Tensor<Double>.variance(): Double = this.fold { arr ->
val mean = arr.sum() / tensor.numElements
arr.sumOf { (it - mean) * (it - mean) } / (tensor.numElements - 1)
}
override fun Tensor<Double>.variance(dim: Int, keepDim: Boolean): DoubleTensor = foldDim(
{ arr ->
check(dim < dimension) { "Dimension $dim out of range $dimension" }
val mean = arr.sum() / shape[dim]
arr.sumOf { (it - mean) * (it - mean) } / (shape[dim] - 1)
},
dim,
keepDim
)
private fun cov(x: DoubleTensor, y:DoubleTensor): Double{
val n = x.shape[0]
return ((x - x.mean()) * (y - y.mean())).mean() * n / (n - 1)
}
override fun cov(tensors: List<Tensor<Double>>): DoubleTensor {
check(tensors.isNotEmpty()) { "List must have at least 1 element" }
val n = tensors.size
val m = tensors[0].shape[0]
check(tensors.all { it.shape contentEquals intArrayOf(m) }) { "Tensors must have same shapes" }
val resTensor = DoubleTensor(
intArrayOf(n, n),
DoubleArray(n * n) {0.0}
)
for (i in 0 until n){
for (j in 0 until n){
resTensor[intArrayOf(i, j)] = cov(tensors[i].tensor, tensors[j].tensor)
}
}
return resTensor
}
override fun Tensor<Double>.exp(): DoubleTensor = tensor.map(::exp)
override fun Tensor<Double>.ln(): DoubleTensor = tensor.map(::ln)
override fun Tensor<Double>.sqrt(): DoubleTensor = tensor.map(::sqrt)
override fun Tensor<Double>.cos(): DoubleTensor = tensor.map(::cos)
override fun Tensor<Double>.acos(): DoubleTensor = tensor.map(::acos)
override fun Tensor<Double>.cosh(): DoubleTensor = tensor.map(::cosh)
override fun Tensor<Double>.acosh(): DoubleTensor = tensor.map(::acosh)
override fun Tensor<Double>.sin(): DoubleTensor = tensor.map(::sin)
override fun Tensor<Double>.asin(): DoubleTensor = tensor.map(::asin)
override fun Tensor<Double>.sinh(): DoubleTensor = tensor.map(::sinh)
override fun Tensor<Double>.asinh(): DoubleTensor = tensor.map(::asinh)
override fun Tensor<Double>.tan(): DoubleTensor = tensor.map(::tan)
override fun Tensor<Double>.atan(): DoubleTensor = tensor.map(::atan)
override fun Tensor<Double>.tanh(): DoubleTensor = tensor.map(::tanh)
override fun Tensor<Double>.atanh(): DoubleTensor = tensor.map(::atanh)
override fun Tensor<Double>.ceil(): DoubleTensor = tensor.map(::ceil)
override fun Tensor<Double>.floor(): DoubleTensor = tensor.map(::floor)
}

View File

@ -1,278 +0,0 @@
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.tensors.core.algebras
import space.kscience.kmath.tensors.api.LinearOpsTensorAlgebra
import space.kscience.kmath.nd.as1D
import space.kscience.kmath.nd.as2D
import space.kscience.kmath.tensors.api.Tensor
import space.kscience.kmath.tensors.core.*
import space.kscience.kmath.tensors.core.checkSquareMatrix
import space.kscience.kmath.tensors.core.choleskyHelper
import space.kscience.kmath.tensors.core.cleanSymHelper
import space.kscience.kmath.tensors.core.luHelper
import space.kscience.kmath.tensors.core.luMatrixDet
import space.kscience.kmath.tensors.core.luMatrixInv
import space.kscience.kmath.tensors.core.luPivotHelper
import space.kscience.kmath.tensors.core.pivInit
import kotlin.math.min
/**
* Implementation of common linear algebra operations on double numbers.
* Implements the LinearOpsTensorAlgebra<Double> interface.
*/
public object DoubleLinearOpsTensorAlgebra :
LinearOpsTensorAlgebra<Double>,
DoubleTensorAlgebra() {
override fun Tensor<Double>.inv(): DoubleTensor = invLU(1e-9)
override fun Tensor<Double>.det(): DoubleTensor = detLU(1e-9)
/**
* Computes the LU factorization of a matrix or batches of matrices `input`.
* Returns a tuple containing the LU factorization and pivots of `input`.
*
* @param epsilon permissible error when comparing the determinant of a matrix with zero
* @return pair of `factorization` and `pivots`.
* The `factorization` has the shape ``(*, m, n)``, where``(*, m, n)`` is the shape of the `input` tensor.
* The `pivots` has the shape ``(, min(m, n))``. `pivots` stores all the intermediate transpositions of rows.
*/
public fun Tensor<Double>.luFactor(epsilon: Double): Pair<DoubleTensor, IntTensor> =
computeLU(tensor, epsilon)
?: throw IllegalArgumentException("Tensor contains matrices which are singular at precision $epsilon")
/**
* Computes the LU factorization of a matrix or batches of matrices `input`.
* Returns a tuple containing the LU factorization and pivots of `input`.
* Uses an error of ``1e-9`` when calculating whether a matrix is degenerate.
*
* @return pair of `factorization` and `pivots`.
* The `factorization` has the shape ``(*, m, n)``, where``(*, m, n)`` is the shape of the `input` tensor.
* The `pivots` has the shape ``(, min(m, n))``. `pivots` stores all the intermediate transpositions of rows.
*/
public fun Tensor<Double>.luFactor(): Pair<DoubleTensor, IntTensor> = luFactor(1e-9)
/**
* Unpacks the data and pivots from a LU factorization of a tensor.
* Given a tensor [luTensor], return tensors (P, L, U) satisfying ``P * luTensor = L * U``,
* with `P` being a permutation matrix or batch of matrices,
* `L` being a lower triangular matrix or batch of matrices,
* `U` being an upper triangular matrix or batch of matrices.
*
* @param luTensor the packed LU factorization data
* @param pivotsTensor the packed LU factorization pivots
* @return triple of P, L and U tensors
*/
public fun luPivot(
luTensor: Tensor<Double>,
pivotsTensor: Tensor<Int>
): Triple<DoubleTensor, DoubleTensor, DoubleTensor> {
checkSquareMatrix(luTensor.shape)
check(
luTensor.shape.dropLast(2).toIntArray() contentEquals pivotsTensor.shape.dropLast(1).toIntArray() ||
luTensor.shape.last() == pivotsTensor.shape.last() - 1
) { "Inappropriate shapes of input tensors" }
val n = luTensor.shape.last()
val pTensor = luTensor.zeroesLike()
pTensor
.matrixSequence()
.zip(pivotsTensor.tensor.vectorSequence())
.forEach { (p, pivot) -> pivInit(p.as2D(), pivot.as1D(), n) }
val lTensor = luTensor.zeroesLike()
val uTensor = luTensor.zeroesLike()
lTensor.matrixSequence()
.zip(uTensor.matrixSequence())
.zip(luTensor.tensor.matrixSequence())
.forEach { (pairLU, lu) ->
val (l, u) = pairLU
luPivotHelper(l.as2D(), u.as2D(), lu.as2D(), n)
}
return Triple(pTensor, lTensor, uTensor)
}
/**
* QR decomposition.
*
* Computes the QR decomposition of a matrix or a batch of matrices, and returns a pair `(Q, R)` of tensors.
* Given a tensor `input`, return tensors (Q, R) satisfying ``input = Q * R``,
* with `Q` being an orthogonal matrix or batch of orthogonal matrices
* and `R` being an upper triangular matrix or batch of upper triangular matrices.
*
* @param epsilon permissible error when comparing tensors for equality.
* Used when checking the positive definiteness of the input matrix or matrices.
* @return pair of Q and R tensors.
*/
public fun Tensor<Double>.cholesky(epsilon: Double): DoubleTensor {
checkSquareMatrix(shape)
checkPositiveDefinite(tensor, epsilon)
val n = shape.last()
val lTensor = zeroesLike()
for ((a, l) in tensor.matrixSequence().zip(lTensor.matrixSequence()))
for (i in 0 until n) choleskyHelper(a.as2D(), l.as2D(), n)
return lTensor
}
override fun Tensor<Double>.cholesky(): DoubleTensor = cholesky(1e-6)
override fun Tensor<Double>.qr(): Pair<DoubleTensor, DoubleTensor> {
checkSquareMatrix(shape)
val qTensor = zeroesLike()
val rTensor = zeroesLike()
tensor.matrixSequence()
.zip((qTensor.matrixSequence()
.zip(rTensor.matrixSequence()))).forEach { (matrix, qr) ->
val (q, r) = qr
qrHelper(matrix.asTensor(), q.asTensor(), r.as2D())
}
return qTensor to rTensor
}
override fun Tensor<Double>.svd(): Triple<DoubleTensor, DoubleTensor, DoubleTensor> =
svd(epsilon = 1e-10)
/**
* Singular Value Decomposition.
*
* Computes the singular value decomposition of either a matrix or batch of matrices `input`.
* The singular value decomposition is represented as a triple `(U, S, V)`,
* such that ``input = U.dot(diagonalEmbedding(S).dot(V.T))``.
* If input is a batch of tensors, then U, S, and Vh are also batched with the same batch dimensions as input.
*
* @param epsilon permissible error when calculating the dot product of vectors,
* i.e. the precision with which the cosine approaches 1 in an iterative algorithm.
* @return triple `(U, S, V)`.
*/
public fun Tensor<Double>.svd(epsilon: Double): Triple<DoubleTensor, DoubleTensor, DoubleTensor> {
val size = tensor.dimension
val commonShape = tensor.shape.sliceArray(0 until size - 2)
val (n, m) = tensor.shape.sliceArray(size - 2 until size)
val uTensor = zeros(commonShape + intArrayOf(min(n, m), n))
val sTensor = zeros(commonShape + intArrayOf(min(n, m)))
val vTensor = zeros(commonShape + intArrayOf(min(n, m), m))
tensor.matrixSequence()
.zip(uTensor.matrixSequence()
.zip(sTensor.vectorSequence()
.zip(vTensor.matrixSequence()))).forEach { (matrix, USV) ->
val matrixSize = matrix.shape.reduce { acc, i -> acc * i }
val curMatrix = DoubleTensor(
matrix.shape,
matrix.mutableBuffer.array().slice(matrix.bufferStart until matrix.bufferStart + matrixSize)
.toDoubleArray()
)
svdHelper(curMatrix, USV, m, n, epsilon)
}
return Triple(uTensor.transpose(), sTensor, vTensor.transpose())
}
override fun Tensor<Double>.symEig(): Pair<DoubleTensor, DoubleTensor> =
symEig(epsilon = 1e-15)
/**
* Returns eigenvalues and eigenvectors of a real symmetric matrix input or a batch of real symmetric matrices,
* represented by a pair (eigenvalues, eigenvectors).
*
* @param epsilon permissible error when comparing tensors for equality
* and when the cosine approaches 1 in the SVD algorithm.
* @return a pair (eigenvalues, eigenvectors)
*/
public fun Tensor<Double>.symEig(epsilon: Double): Pair<DoubleTensor, DoubleTensor> {
checkSymmetric(tensor, epsilon)
val (u, s, v) = tensor.svd(epsilon)
val shp = s.shape + intArrayOf(1)
val utv = u.transpose() dot v
val n = s.shape.last()
for (matrix in utv.matrixSequence())
cleanSymHelper(matrix.as2D(), n)
val eig = (utv dot s.view(shp)).view(s.shape)
return eig to v
}
/**
* Computes the determinant of a square matrix input, or of each square matrix in a batched input
* using LU factorization algorithm.
*
* @param epsilon error in the LU algorithm - permissible error when comparing the determinant of a matrix with zero
* @return the determinant.
*/
public fun Tensor<Double>.detLU(epsilon: Double = 1e-9): DoubleTensor {
checkSquareMatrix(tensor.shape)
val luTensor = tensor.copy()
val pivotsTensor = tensor.setUpPivots()
val n = shape.size
val detTensorShape = IntArray(n - 1) { i -> shape[i] }
detTensorShape[n - 2] = 1
val resBuffer = DoubleArray(detTensorShape.reduce(Int::times)) { 0.0 }
val detTensor = DoubleTensor(
detTensorShape,
resBuffer
)
luTensor.matrixSequence().zip(pivotsTensor.vectorSequence()).forEachIndexed { index, (lu, pivots) ->
resBuffer[index] = if (luHelper(lu.as2D(), pivots.as1D(), epsilon))
0.0 else luMatrixDet(lu.as2D(), pivots.as1D())
}
return detTensor
}
/**
* Computes the multiplicative inverse matrix of a square matrix input, or of each square matrix in a batched input
* using LU factorization algorithm.
* Given a square matrix `a`, return the matrix `aInv` satisfying
* ``a.dot(aInv) = aInv.dot(a) = eye(a.shape[0])``.
*
* @param epsilon error in the LU algorithm - permissible error when comparing the determinant of a matrix with zero
* @return the multiplicative inverse of a matrix.
*/
public fun Tensor<Double>.invLU(epsilon: Double = 1e-9): DoubleTensor {
val (luTensor, pivotsTensor) = luFactor(epsilon)
val invTensor = luTensor.zeroesLike()
val seq = luTensor.matrixSequence().zip(pivotsTensor.vectorSequence()).zip(invTensor.matrixSequence())
for ((luP, invMatrix) in seq) {
val (lu, pivots) = luP
luMatrixInv(lu.as2D(), pivots.as1D(), invMatrix.as2D())
}
return invTensor
}
/**
* LUP decomposition
*
* Computes the LUP decomposition of a matrix or a batch of matrices.
* Given a tensor `input`, return tensors (P, L, U) satisfying ``P * input = L * U``,
* with `P` being a permutation matrix or batch of matrices,
* `L` being a lower triangular matrix or batch of matrices,
* `U` being an upper triangular matrix or batch of matrices.
*
* @param epsilon permissible error when comparing the determinant of a matrix with zero
* @return triple of P, L and U tensors
*/
public fun Tensor<Double>.lu(epsilon: Double = 1e-9): Triple<DoubleTensor, DoubleTensor, DoubleTensor> {
val (lu, pivots) = this.luFactor(epsilon)
return luPivot(lu, pivots)
}
override fun Tensor<Double>.lu(): Triple<DoubleTensor, DoubleTensor, DoubleTensor> = lu(1e-9)
}

View File

@ -5,28 +5,34 @@
package space.kscience.kmath.tensors.core.algebras
import space.kscience.kmath.nd.as1D
import space.kscience.kmath.nd.as2D
import space.kscience.kmath.tensors.api.AnalyticTensorAlgebra
import space.kscience.kmath.tensors.api.LinearOpsTensorAlgebra
import space.kscience.kmath.tensors.api.TensorPartialDivisionAlgebra
import space.kscience.kmath.tensors.api.Tensor
import space.kscience.kmath.tensors.core.*
import space.kscience.kmath.tensors.core.algebras.DoubleAnalyticTensorAlgebra.fold
import space.kscience.kmath.tensors.core.algebras.DoubleAnalyticTensorAlgebra.foldDim
import space.kscience.kmath.tensors.core.broadcastOuterTensors
import space.kscience.kmath.tensors.core.checkBufferShapeConsistency
import space.kscience.kmath.tensors.core.checkEmptyDoubleBuffer
import space.kscience.kmath.tensors.core.checkEmptyShape
import space.kscience.kmath.tensors.core.checkShapesCompatible
import space.kscience.kmath.tensors.core.checkTranspose
import space.kscience.kmath.tensors.core.checkView
import space.kscience.kmath.tensors.core.dotHelper
import space.kscience.kmath.tensors.core.getRandomNormals
import space.kscience.kmath.tensors.core.minusIndexFrom
import kotlin.math.abs
import space.kscience.kmath.tensors.core.internal.dotHelper
import space.kscience.kmath.tensors.core.internal.getRandomNormals
import space.kscience.kmath.tensors.core.internal.*
import space.kscience.kmath.tensors.core.internal.broadcastOuterTensors
import space.kscience.kmath.tensors.core.internal.checkBufferShapeConsistency
import space.kscience.kmath.tensors.core.internal.checkEmptyDoubleBuffer
import space.kscience.kmath.tensors.core.internal.checkEmptyShape
import space.kscience.kmath.tensors.core.internal.checkShapesCompatible
import space.kscience.kmath.tensors.core.internal.checkSquareMatrix
import space.kscience.kmath.tensors.core.internal.checkTranspose
import space.kscience.kmath.tensors.core.internal.checkView
import space.kscience.kmath.tensors.core.internal.minusIndexFrom
import kotlin.math.*
/**
* Implementation of basic operations over double tensors and basic algebra operations on them.
*/
public open class DoubleTensorAlgebra : TensorPartialDivisionAlgebra<Double> {
public open class DoubleTensorAlgebra :
TensorPartialDivisionAlgebra<Double>,
AnalyticTensorAlgebra<Double>,
LinearOpsTensorAlgebra<Double> {
public companion object : DoubleTensorAlgebra()
@ -311,9 +317,8 @@ public open class DoubleTensorAlgebra : TensorPartialDivisionAlgebra<Double> {
return DoubleTensor(shape, tensor.mutableBuffer.array(), tensor.bufferStart)
}
override fun Tensor<Double>.viewAs(other: Tensor<Double>): DoubleTensor {
return tensor.view(other.shape)
}
override fun Tensor<Double>.viewAs(other: Tensor<Double>): DoubleTensor =
tensor.view(other.shape)
override infix fun Tensor<Double>.dot(other: Tensor<Double>): DoubleTensor {
if (tensor.shape.size == 1 && other.shape.size == 1) {
@ -565,4 +570,350 @@ public open class DoubleTensorAlgebra : TensorPartialDivisionAlgebra<Double> {
x.withIndex().maxByOrNull { it.value }?.index!!.toDouble()
}, dim, keepDim)
override fun Tensor<Double>.mean(): Double = this.fold { it.sum() / tensor.numElements }
override fun Tensor<Double>.mean(dim: Int, keepDim: Boolean): DoubleTensor =
foldDim(
{ arr ->
check(dim < dimension) { "Dimension $dim out of range $dimension" }
arr.sum() / shape[dim]
},
dim,
keepDim
)
override fun Tensor<Double>.std(): Double = this.fold { arr ->
val mean = arr.sum() / tensor.numElements
sqrt(arr.sumOf { (it - mean) * (it - mean) } / (tensor.numElements - 1))
}
override fun Tensor<Double>.std(dim: Int, keepDim: Boolean): DoubleTensor = foldDim(
{ arr ->
check(dim < dimension) { "Dimension $dim out of range $dimension" }
val mean = arr.sum() / shape[dim]
sqrt(arr.sumOf { (it - mean) * (it - mean) } / (shape[dim] - 1))
},
dim,
keepDim
)
override fun Tensor<Double>.variance(): Double = this.fold { arr ->
val mean = arr.sum() / tensor.numElements
arr.sumOf { (it - mean) * (it - mean) } / (tensor.numElements - 1)
}
override fun Tensor<Double>.variance(dim: Int, keepDim: Boolean): DoubleTensor = foldDim(
{ arr ->
check(dim < dimension) { "Dimension $dim out of range $dimension" }
val mean = arr.sum() / shape[dim]
arr.sumOf { (it - mean) * (it - mean) } / (shape[dim] - 1)
},
dim,
keepDim
)
private fun cov(x: DoubleTensor, y:DoubleTensor): Double{
val n = x.shape[0]
return ((x - x.mean()) * (y - y.mean())).mean() * n / (n - 1)
}
override fun cov(tensors: List<Tensor<Double>>): DoubleTensor {
check(tensors.isNotEmpty()) { "List must have at least 1 element" }
val n = tensors.size
val m = tensors[0].shape[0]
check(tensors.all { it.shape contentEquals intArrayOf(m) }) { "Tensors must have same shapes" }
val resTensor = DoubleTensor(
intArrayOf(n, n),
DoubleArray(n * n) {0.0}
)
for (i in 0 until n){
for (j in 0 until n){
resTensor[intArrayOf(i, j)] = cov(tensors[i].tensor, tensors[j].tensor)
}
}
return resTensor
}
override fun Tensor<Double>.exp(): DoubleTensor = tensor.map(::exp)
override fun Tensor<Double>.ln(): DoubleTensor = tensor.map(::ln)
override fun Tensor<Double>.sqrt(): DoubleTensor = tensor.map(::sqrt)
override fun Tensor<Double>.cos(): DoubleTensor = tensor.map(::cos)
override fun Tensor<Double>.acos(): DoubleTensor = tensor.map(::acos)
override fun Tensor<Double>.cosh(): DoubleTensor = tensor.map(::cosh)
override fun Tensor<Double>.acosh(): DoubleTensor = tensor.map(::acosh)
override fun Tensor<Double>.sin(): DoubleTensor = tensor.map(::sin)
override fun Tensor<Double>.asin(): DoubleTensor = tensor.map(::asin)
override fun Tensor<Double>.sinh(): DoubleTensor = tensor.map(::sinh)
override fun Tensor<Double>.asinh(): DoubleTensor = tensor.map(::asinh)
override fun Tensor<Double>.tan(): DoubleTensor = tensor.map(::tan)
override fun Tensor<Double>.atan(): DoubleTensor = tensor.map(::atan)
override fun Tensor<Double>.tanh(): DoubleTensor = tensor.map(::tanh)
override fun Tensor<Double>.atanh(): DoubleTensor = tensor.map(::atanh)
override fun Tensor<Double>.ceil(): DoubleTensor = tensor.map(::ceil)
override fun Tensor<Double>.floor(): DoubleTensor = tensor.map(::floor)
override fun Tensor<Double>.inv(): DoubleTensor = invLU(1e-9)
override fun Tensor<Double>.det(): DoubleTensor = detLU(1e-9)
/**
* Computes the LU factorization of a matrix or batches of matrices `input`.
* Returns a tuple containing the LU factorization and pivots of `input`.
*
* @param epsilon permissible error when comparing the determinant of a matrix with zero
* @return pair of `factorization` and `pivots`.
* The `factorization` has the shape ``(*, m, n)``, where``(*, m, n)`` is the shape of the `input` tensor.
* The `pivots` has the shape ``(, min(m, n))``. `pivots` stores all the intermediate transpositions of rows.
*/
public fun Tensor<Double>.luFactor(epsilon: Double): Pair<DoubleTensor, IntTensor> =
computeLU(tensor, epsilon)
?: throw IllegalArgumentException("Tensor contains matrices which are singular at precision $epsilon")
/**
* Computes the LU factorization of a matrix or batches of matrices `input`.
* Returns a tuple containing the LU factorization and pivots of `input`.
* Uses an error of ``1e-9`` when calculating whether a matrix is degenerate.
*
* @return pair of `factorization` and `pivots`.
* The `factorization` has the shape ``(*, m, n)``, where``(*, m, n)`` is the shape of the `input` tensor.
* The `pivots` has the shape ``(, min(m, n))``. `pivots` stores all the intermediate transpositions of rows.
*/
public fun Tensor<Double>.luFactor(): Pair<DoubleTensor, IntTensor> = luFactor(1e-9)
/**
* Unpacks the data and pivots from a LU factorization of a tensor.
* Given a tensor [luTensor], return tensors (P, L, U) satisfying ``P * luTensor = L * U``,
* with `P` being a permutation matrix or batch of matrices,
* `L` being a lower triangular matrix or batch of matrices,
* `U` being an upper triangular matrix or batch of matrices.
*
* @param luTensor the packed LU factorization data
* @param pivotsTensor the packed LU factorization pivots
* @return triple of P, L and U tensors
*/
public fun luPivot(
luTensor: Tensor<Double>,
pivotsTensor: Tensor<Int>
): Triple<DoubleTensor, DoubleTensor, DoubleTensor> {
checkSquareMatrix(luTensor.shape)
check(
luTensor.shape.dropLast(2).toIntArray() contentEquals pivotsTensor.shape.dropLast(1).toIntArray() ||
luTensor.shape.last() == pivotsTensor.shape.last() - 1
) { "Inappropriate shapes of input tensors" }
val n = luTensor.shape.last()
val pTensor = luTensor.zeroesLike()
pTensor
.matrixSequence()
.zip(pivotsTensor.tensor.vectorSequence())
.forEach { (p, pivot) -> pivInit(p.as2D(), pivot.as1D(), n) }
val lTensor = luTensor.zeroesLike()
val uTensor = luTensor.zeroesLike()
lTensor.matrixSequence()
.zip(uTensor.matrixSequence())
.zip(luTensor.tensor.matrixSequence())
.forEach { (pairLU, lu) ->
val (l, u) = pairLU
luPivotHelper(l.as2D(), u.as2D(), lu.as2D(), n)
}
return Triple(pTensor, lTensor, uTensor)
}
/**
* QR decomposition.
*
* Computes the QR decomposition of a matrix or a batch of matrices, and returns a pair `(Q, R)` of tensors.
* Given a tensor `input`, return tensors (Q, R) satisfying ``input = Q * R``,
* with `Q` being an orthogonal matrix or batch of orthogonal matrices
* and `R` being an upper triangular matrix or batch of upper triangular matrices.
*
* @param epsilon permissible error when comparing tensors for equality.
* Used when checking the positive definiteness of the input matrix or matrices.
* @return pair of Q and R tensors.
*/
public fun Tensor<Double>.cholesky(epsilon: Double): DoubleTensor {
checkSquareMatrix(shape)
checkPositiveDefinite(tensor, epsilon)
val n = shape.last()
val lTensor = zeroesLike()
for ((a, l) in tensor.matrixSequence().zip(lTensor.matrixSequence()))
for (i in 0 until n) choleskyHelper(a.as2D(), l.as2D(), n)
return lTensor
}
override fun Tensor<Double>.cholesky(): DoubleTensor = cholesky(1e-6)
override fun Tensor<Double>.qr(): Pair<DoubleTensor, DoubleTensor> {
checkSquareMatrix(shape)
val qTensor = zeroesLike()
val rTensor = zeroesLike()
tensor.matrixSequence()
.zip((qTensor.matrixSequence()
.zip(rTensor.matrixSequence()))).forEach { (matrix, qr) ->
val (q, r) = qr
qrHelper(matrix.asTensor(), q.asTensor(), r.as2D())
}
return qTensor to rTensor
}
override fun Tensor<Double>.svd(): Triple<DoubleTensor, DoubleTensor, DoubleTensor> =
svd(epsilon = 1e-10)
/**
* Singular Value Decomposition.
*
* Computes the singular value decomposition of either a matrix or batch of matrices `input`.
* The singular value decomposition is represented as a triple `(U, S, V)`,
* such that ``input = U.dot(diagonalEmbedding(S).dot(V.T))``.
* If input is a batch of tensors, then U, S, and Vh are also batched with the same batch dimensions as input.
*
* @param epsilon permissible error when calculating the dot product of vectors,
* i.e. the precision with which the cosine approaches 1 in an iterative algorithm.
* @return triple `(U, S, V)`.
*/
public fun Tensor<Double>.svd(epsilon: Double): Triple<DoubleTensor, DoubleTensor, DoubleTensor> {
val size = tensor.dimension
val commonShape = tensor.shape.sliceArray(0 until size - 2)
val (n, m) = tensor.shape.sliceArray(size - 2 until size)
val uTensor = zeros(commonShape + intArrayOf(min(n, m), n))
val sTensor = zeros(commonShape + intArrayOf(min(n, m)))
val vTensor = zeros(commonShape + intArrayOf(min(n, m), m))
tensor.matrixSequence()
.zip(uTensor.matrixSequence()
.zip(sTensor.vectorSequence()
.zip(vTensor.matrixSequence()))).forEach { (matrix, USV) ->
val matrixSize = matrix.shape.reduce { acc, i -> acc * i }
val curMatrix = DoubleTensor(
matrix.shape,
matrix.mutableBuffer.array().slice(matrix.bufferStart until matrix.bufferStart + matrixSize)
.toDoubleArray()
)
svdHelper(curMatrix, USV, m, n, epsilon)
}
return Triple(uTensor.transpose(), sTensor, vTensor.transpose())
}
override fun Tensor<Double>.symEig(): Pair<DoubleTensor, DoubleTensor> =
symEig(epsilon = 1e-15)
/**
* Returns eigenvalues and eigenvectors of a real symmetric matrix input or a batch of real symmetric matrices,
* represented by a pair (eigenvalues, eigenvectors).
*
* @param epsilon permissible error when comparing tensors for equality
* and when the cosine approaches 1 in the SVD algorithm.
* @return a pair (eigenvalues, eigenvectors)
*/
public fun Tensor<Double>.symEig(epsilon: Double): Pair<DoubleTensor, DoubleTensor> {
checkSymmetric(tensor, epsilon)
val (u, s, v) = tensor.svd(epsilon)
val shp = s.shape + intArrayOf(1)
val utv = u.transpose() dot v
val n = s.shape.last()
for (matrix in utv.matrixSequence())
cleanSymHelper(matrix.as2D(), n)
val eig = (utv dot s.view(shp)).view(s.shape)
return eig to v
}
/**
* Computes the determinant of a square matrix input, or of each square matrix in a batched input
* using LU factorization algorithm.
*
* @param epsilon error in the LU algorithm - permissible error when comparing the determinant of a matrix with zero
* @return the determinant.
*/
public fun Tensor<Double>.detLU(epsilon: Double = 1e-9): DoubleTensor {
checkSquareMatrix(tensor.shape)
val luTensor = tensor.copy()
val pivotsTensor = tensor.setUpPivots()
val n = shape.size
val detTensorShape = IntArray(n - 1) { i -> shape[i] }
detTensorShape[n - 2] = 1
val resBuffer = DoubleArray(detTensorShape.reduce(Int::times)) { 0.0 }
val detTensor = DoubleTensor(
detTensorShape,
resBuffer
)
luTensor.matrixSequence().zip(pivotsTensor.vectorSequence()).forEachIndexed { index, (lu, pivots) ->
resBuffer[index] = if (luHelper(lu.as2D(), pivots.as1D(), epsilon))
0.0 else luMatrixDet(lu.as2D(), pivots.as1D())
}
return detTensor
}
/**
* Computes the multiplicative inverse matrix of a square matrix input, or of each square matrix in a batched input
* using LU factorization algorithm.
* Given a square matrix `a`, return the matrix `aInv` satisfying
* ``a.dot(aInv) = aInv.dot(a) = eye(a.shape[0])``.
*
* @param epsilon error in the LU algorithm - permissible error when comparing the determinant of a matrix with zero
* @return the multiplicative inverse of a matrix.
*/
public fun Tensor<Double>.invLU(epsilon: Double = 1e-9): DoubleTensor {
val (luTensor, pivotsTensor) = luFactor(epsilon)
val invTensor = luTensor.zeroesLike()
val seq = luTensor.matrixSequence().zip(pivotsTensor.vectorSequence()).zip(invTensor.matrixSequence())
for ((luP, invMatrix) in seq) {
val (lu, pivots) = luP
luMatrixInv(lu.as2D(), pivots.as1D(), invMatrix.as2D())
}
return invTensor
}
/**
* LUP decomposition
*
* Computes the LUP decomposition of a matrix or a batch of matrices.
* Given a tensor `input`, return tensors (P, L, U) satisfying ``P * input = L * U``,
* with `P` being a permutation matrix or batch of matrices,
* `L` being a lower triangular matrix or batch of matrices,
* `U` being an upper triangular matrix or batch of matrices.
*
* @param epsilon permissible error when comparing the determinant of a matrix with zero
* @return triple of P, L and U tensors
*/
public fun Tensor<Double>.lu(epsilon: Double = 1e-9): Triple<DoubleTensor, DoubleTensor, DoubleTensor> {
val (lu, pivots) = this.luFactor(epsilon)
return luPivot(lu, pivots)
}
override fun Tensor<Double>.lu(): Triple<DoubleTensor, DoubleTensor, DoubleTensor> = lu(1e-9)
}

View File

@ -1,5 +1,11 @@
package space.kscience.kmath.tensors.core
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.tensors.core.internal
import space.kscience.kmath.tensors.core.DoubleTensor
import kotlin.math.max
internal fun multiIndexBroadCasting(tensor: DoubleTensor, resTensor: DoubleTensor, linearSize: Int) {

View File

@ -1,7 +1,12 @@
package space.kscience.kmath.tensors.core
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.tensors.core.internal
import space.kscience.kmath.tensors.api.Tensor
import space.kscience.kmath.tensors.core.algebras.DoubleLinearOpsTensorAlgebra
import space.kscience.kmath.tensors.core.DoubleTensor
import space.kscience.kmath.tensors.core.algebras.DoubleTensorAlgebra
@ -50,7 +55,7 @@ internal fun DoubleTensorAlgebra.checkSymmetric(
"Tensor is not symmetric about the last 2 dimensions at precision $epsilon"
}
internal fun DoubleLinearOpsTensorAlgebra.checkPositiveDefinite(tensor: DoubleTensor, epsilon: Double = 1e-6) {
internal fun DoubleTensorAlgebra.checkPositiveDefinite(tensor: DoubleTensor, epsilon: Double = 1e-6) {
checkSymmetric(tensor, epsilon)
for (mat in tensor.matrixSequence())
check(mat.asTensor().detLU().value() > 0.0) {

View File

@ -1,12 +1,17 @@
package space.kscience.kmath.tensors.core
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.tensors.core.internal
import space.kscience.kmath.nd.MutableStructure1D
import space.kscience.kmath.nd.MutableStructure2D
import space.kscience.kmath.nd.as1D
import space.kscience.kmath.nd.as2D
import space.kscience.kmath.operations.invoke
import space.kscience.kmath.tensors.core.algebras.DoubleAnalyticTensorAlgebra
import space.kscience.kmath.tensors.core.algebras.DoubleLinearOpsTensorAlgebra
import space.kscience.kmath.tensors.core.*
import space.kscience.kmath.tensors.core.algebras.DoubleTensorAlgebra
import kotlin.math.abs
import kotlin.math.min
import kotlin.math.sign
@ -114,7 +119,7 @@ internal fun <T> BufferedTensor<T>.setUpPivots(): IntTensor {
)
}
internal fun DoubleLinearOpsTensorAlgebra.computeLU(
internal fun DoubleTensorAlgebra.computeLU(
tensor: DoubleTensor,
epsilon: Double
): Pair<DoubleTensor, IntTensor>? {
@ -218,7 +223,7 @@ internal fun luMatrixInv(
}
}
internal fun DoubleLinearOpsTensorAlgebra.qrHelper(
internal fun DoubleTensorAlgebra.qrHelper(
matrix: DoubleTensor,
q: DoubleTensor,
r: MutableStructure2D<Double>
@ -241,14 +246,14 @@ internal fun DoubleLinearOpsTensorAlgebra.qrHelper(
}
}
}
r[j, j] = DoubleAnalyticTensorAlgebra { (v dot v).sqrt().value() }
r[j, j] = DoubleTensorAlgebra { (v dot v).sqrt().value() }
for (i in 0 until n) {
qM[i, j] = vv[i] / r[j, j]
}
}
}
internal fun DoubleLinearOpsTensorAlgebra.svd1d(a: DoubleTensor, epsilon: Double = 1e-10): DoubleTensor {
internal fun DoubleTensorAlgebra.svd1d(a: DoubleTensor, epsilon: Double = 1e-10): DoubleTensor {
val (n, m) = a.shape
var v: DoubleTensor
val b: DoubleTensor
@ -264,7 +269,7 @@ internal fun DoubleLinearOpsTensorAlgebra.svd1d(a: DoubleTensor, epsilon: Double
while (true) {
lastV = v
v = b.dot(lastV)
val norm = DoubleAnalyticTensorAlgebra { (v dot v).sqrt().value() }
val norm = DoubleTensorAlgebra { (v dot v).sqrt().value() }
v = v.times(1.0 / norm)
if (abs(v.dot(lastV).value()) > 1 - epsilon) {
return v
@ -272,7 +277,7 @@ internal fun DoubleLinearOpsTensorAlgebra.svd1d(a: DoubleTensor, epsilon: Double
}
}
internal fun DoubleLinearOpsTensorAlgebra.svdHelper(
internal fun DoubleTensorAlgebra.svdHelper(
matrix: DoubleTensor,
USV: Pair<BufferedTensor<Double>, Pair<BufferedTensor<Double>, BufferedTensor<Double>>>,
m: Int, n: Int, epsilon: Double
@ -298,12 +303,12 @@ internal fun DoubleLinearOpsTensorAlgebra.svdHelper(
if (n > m) {
v = svd1d(a, epsilon)
u = matrix.dot(v)
norm = DoubleAnalyticTensorAlgebra { (u dot u).sqrt().value() }
norm = DoubleTensorAlgebra { (u dot u).sqrt().value() }
u = u.times(1.0 / norm)
} else {
u = svd1d(a, epsilon)
v = matrix.transpose(0, 1).dot(u)
norm = DoubleAnalyticTensorAlgebra { (v dot v).sqrt().value() }
norm = DoubleTensorAlgebra { (v dot v).sqrt().value() }
v = v.times(1.0 / norm)
}

View File

@ -3,11 +3,14 @@
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.tensors.core
package space.kscience.kmath.tensors.core.internal
import space.kscience.kmath.nd.MutableBufferND
import space.kscience.kmath.structures.asMutableBuffer
import space.kscience.kmath.tensors.api.Tensor
import space.kscience.kmath.tensors.core.BufferedTensor
import space.kscience.kmath.tensors.core.DoubleTensor
import space.kscience.kmath.tensors.core.IntTensor
import space.kscience.kmath.tensors.core.algebras.TensorLinearStructure
internal fun BufferedTensor<Int>.asTensor(): IntTensor =

View File

@ -1,9 +1,16 @@
package space.kscience.kmath.tensors.core
/*
* Copyright 2018-2021 KMath contributors.
* Use of this source code is governed by the Apache 2.0 license that can be found in the license/LICENSE.txt file.
*/
package space.kscience.kmath.tensors.core.internal
import space.kscience.kmath.nd.as1D
import space.kscience.kmath.samplers.GaussianSampler
import space.kscience.kmath.stat.RandomGenerator
import space.kscience.kmath.structures.*
import space.kscience.kmath.tensors.core.BufferedTensor
import space.kscience.kmath.tensors.core.DoubleTensor
import kotlin.math.*
/**

View File

@ -6,6 +6,7 @@
package space.kscience.kmath.tensors.core
import space.kscience.kmath.tensors.api.Tensor
import space.kscience.kmath.tensors.core.internal.tensor
/**
* Casts [Tensor<Double>] to [DoubleTensor]

View File

@ -3,6 +3,7 @@ package space.kscience.kmath.tensors.core
import space.kscience.kmath.operations.invoke
import space.kscience.kmath.tensors.core.algebras.BroadcastDoubleTensorAlgebra
import space.kscience.kmath.tensors.core.algebras.DoubleTensorAlgebra
import space.kscience.kmath.tensors.core.internal.*
import kotlin.test.Test
import kotlin.test.assertTrue

View File

@ -1,7 +1,6 @@
package space.kscience.kmath.tensors.core
import space.kscience.kmath.operations.invoke
import space.kscience.kmath.tensors.core.algebras.DoubleAnalyticTensorAlgebra
import space.kscience.kmath.tensors.core.algebras.DoubleTensorAlgebra
import kotlin.math.*
import kotlin.test.Test
@ -28,73 +27,73 @@ internal class TestDoubleAnalyticTensorAlgebra {
}
@Test
fun testExp() = DoubleAnalyticTensorAlgebra {
fun testExp() = DoubleTensorAlgebra {
assertTrue { tensor.exp() eq expectedTensor(::exp) }
}
@Test
fun testLog() = DoubleAnalyticTensorAlgebra {
fun testLog() = DoubleTensorAlgebra {
assertTrue { tensor.ln() eq expectedTensor(::ln) }
}
@Test
fun testSqrt() = DoubleAnalyticTensorAlgebra {
fun testSqrt() = DoubleTensorAlgebra {
assertTrue { tensor.sqrt() eq expectedTensor(::sqrt) }
}
@Test
fun testCos() = DoubleAnalyticTensorAlgebra {
fun testCos() = DoubleTensorAlgebra {
assertTrue { tensor.cos() eq expectedTensor(::cos) }
}
@Test
fun testCosh() = DoubleAnalyticTensorAlgebra {
fun testCosh() = DoubleTensorAlgebra {
assertTrue { tensor.cosh() eq expectedTensor(::cosh) }
}
@Test
fun testAcosh() = DoubleAnalyticTensorAlgebra {
fun testAcosh() = DoubleTensorAlgebra {
assertTrue { tensor.acosh() eq expectedTensor(::acosh) }
}
@Test
fun testSin() = DoubleAnalyticTensorAlgebra {
fun testSin() = DoubleTensorAlgebra {
assertTrue { tensor.sin() eq expectedTensor(::sin) }
}
@Test
fun testSinh() = DoubleAnalyticTensorAlgebra {
fun testSinh() = DoubleTensorAlgebra {
assertTrue { tensor.sinh() eq expectedTensor(::sinh) }
}
@Test
fun testAsinh() = DoubleAnalyticTensorAlgebra {
fun testAsinh() = DoubleTensorAlgebra {
assertTrue { tensor.asinh() eq expectedTensor(::asinh) }
}
@Test
fun testTan() = DoubleAnalyticTensorAlgebra {
fun testTan() = DoubleTensorAlgebra {
assertTrue { tensor.tan() eq expectedTensor(::tan) }
}
@Test
fun testAtan() = DoubleAnalyticTensorAlgebra {
fun testAtan() = DoubleTensorAlgebra {
assertTrue { tensor.atan() eq expectedTensor(::atan) }
}
@Test
fun testTanh() = DoubleAnalyticTensorAlgebra {
fun testTanh() = DoubleTensorAlgebra {
assertTrue { tensor.tanh() eq expectedTensor(::tanh) }
}
@Test
fun testCeil() = DoubleAnalyticTensorAlgebra {
fun testCeil() = DoubleTensorAlgebra {
assertTrue { tensor.ceil() eq expectedTensor(::ceil) }
}
@Test
fun testFloor() = DoubleAnalyticTensorAlgebra {
fun testFloor() = DoubleTensorAlgebra {
assertTrue { tensor.floor() eq expectedTensor(::floor) }
}
@ -145,7 +144,7 @@ internal class TestDoubleAnalyticTensorAlgebra {
}
@Test
fun testMean() = DoubleAnalyticTensorAlgebra {
fun testMean() = DoubleTensorAlgebra {
assertTrue { tensor2.mean() == 1.0 }
assertTrue { tensor2.mean(0, true) eq fromArray(
intArrayOf(1, 2),

View File

@ -1,7 +1,9 @@
package space.kscience.kmath.tensors.core
import space.kscience.kmath.operations.invoke
import space.kscience.kmath.tensors.core.algebras.DoubleLinearOpsTensorAlgebra
import space.kscience.kmath.tensors.core.algebras.DoubleTensorAlgebra
import space.kscience.kmath.tensors.core.internal.array
import space.kscience.kmath.tensors.core.internal.svd1d
import kotlin.math.abs
import kotlin.test.Test
import kotlin.test.assertEquals
@ -10,7 +12,7 @@ import kotlin.test.assertTrue
internal class TestDoubleLinearOpsTensorAlgebra {
@Test
fun testDetLU() = DoubleLinearOpsTensorAlgebra {
fun testDetLU() = DoubleTensorAlgebra {
val tensor = fromArray(
intArrayOf(2, 2, 2),
doubleArrayOf(
@ -35,7 +37,7 @@ internal class TestDoubleLinearOpsTensorAlgebra {
}
@Test
fun testDet() = DoubleLinearOpsTensorAlgebra {
fun testDet() = DoubleTensorAlgebra {
val expectedValue = 0.019827417
val m = fromArray(
intArrayOf(3, 3), doubleArrayOf(
@ -49,7 +51,7 @@ internal class TestDoubleLinearOpsTensorAlgebra {
}
@Test
fun testDetSingle() = DoubleLinearOpsTensorAlgebra {
fun testDetSingle() = DoubleTensorAlgebra {
val expectedValue = 48.151623
val m = fromArray(
intArrayOf(1, 1), doubleArrayOf(
@ -61,7 +63,7 @@ internal class TestDoubleLinearOpsTensorAlgebra {
}
@Test
fun testInvLU() = DoubleLinearOpsTensorAlgebra {
fun testInvLU() = DoubleTensorAlgebra {
val tensor = fromArray(
intArrayOf(2, 2, 2),
doubleArrayOf(
@ -86,14 +88,14 @@ internal class TestDoubleLinearOpsTensorAlgebra {
}
@Test
fun testScalarProduct() = DoubleLinearOpsTensorAlgebra {
fun testScalarProduct() = DoubleTensorAlgebra {
val a = fromArray(intArrayOf(3), doubleArrayOf(1.8, 2.5, 6.8))
val b = fromArray(intArrayOf(3), doubleArrayOf(5.5, 2.6, 6.4))
assertEquals(a.dot(b).value(), 59.92)
}
@Test
fun testQR() = DoubleLinearOpsTensorAlgebra {
fun testQR() = DoubleTensorAlgebra {
val shape = intArrayOf(2, 2, 2)
val buffer = doubleArrayOf(
1.0, 3.0,
@ -114,7 +116,7 @@ internal class TestDoubleLinearOpsTensorAlgebra {
}
@Test
fun testLU() = DoubleLinearOpsTensorAlgebra {
fun testLU() = DoubleTensorAlgebra {
val shape = intArrayOf(2, 2, 2)
val buffer = doubleArrayOf(
1.0, 3.0,
@ -134,7 +136,7 @@ internal class TestDoubleLinearOpsTensorAlgebra {
}
@Test
fun testCholesky() = DoubleLinearOpsTensorAlgebra {
fun testCholesky() = DoubleTensorAlgebra {
val tensor = randomNormal(intArrayOf(2, 5, 5), 0)
val sigma = (tensor dot tensor.transpose()) + diagonalEmbedding(
fromArray(intArrayOf(2, 5), DoubleArray(10) { 0.1 })
@ -145,7 +147,7 @@ internal class TestDoubleLinearOpsTensorAlgebra {
}
@Test
fun testSVD1D() = DoubleLinearOpsTensorAlgebra {
fun testSVD1D() = DoubleTensorAlgebra {
val tensor2 = fromArray(intArrayOf(2, 3), doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0))
val res = svd1d(tensor2)
@ -156,13 +158,13 @@ internal class TestDoubleLinearOpsTensorAlgebra {
}
@Test
fun testSVD() = DoubleLinearOpsTensorAlgebra{
fun testSVD() = DoubleTensorAlgebra{
testSVDFor(fromArray(intArrayOf(2, 3), doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0, 6.0)))
testSVDFor(fromArray(intArrayOf(2, 2), doubleArrayOf(-1.0, 0.0, 239.0, 238.0)))
}
@Test
fun testBatchedSVD() = DoubleLinearOpsTensorAlgebra {
fun testBatchedSVD() = DoubleTensorAlgebra {
val tensor = randomNormal(intArrayOf(2, 5, 3), 0)
val (tensorU, tensorS, tensorV) = tensor.svd()
val tensorSVD = tensorU dot (diagonalEmbedding(tensorS) dot tensorV.transpose())
@ -170,7 +172,7 @@ internal class TestDoubleLinearOpsTensorAlgebra {
}
@Test
fun testBatchedSymEig() = DoubleLinearOpsTensorAlgebra {
fun testBatchedSymEig() = DoubleTensorAlgebra {
val tensor = randomNormal(shape = intArrayOf(2, 3, 3), 0)
val tensorSigma = tensor + tensor.transpose()
val (tensorS, tensorV) = tensorSigma.symEig()
@ -182,7 +184,7 @@ internal class TestDoubleLinearOpsTensorAlgebra {
}
private fun DoubleLinearOpsTensorAlgebra.testSVDFor(tensor: DoubleTensor, epsilon: Double = 1e-10): Unit {
private fun DoubleTensorAlgebra.testSVDFor(tensor: DoubleTensor, epsilon: Double = 1e-10): Unit {
val svd = tensor.svd()
val tensorSVD = svd.first

View File

@ -8,6 +8,10 @@ import space.kscience.kmath.operations.invoke
import space.kscience.kmath.structures.DoubleBuffer
import space.kscience.kmath.structures.toDoubleArray
import space.kscience.kmath.tensors.core.algebras.DoubleTensorAlgebra
import space.kscience.kmath.tensors.core.internal.array
import space.kscience.kmath.tensors.core.internal.asTensor
import space.kscience.kmath.tensors.core.internal.matrixSequence
import space.kscience.kmath.tensors.core.internal.toBufferedTensor
import kotlin.test.Test
import kotlin.test.assertEquals
import kotlin.test.assertTrue

View File

@ -3,6 +3,7 @@ package space.kscience.kmath.tensors.core
import space.kscience.kmath.operations.invoke
import space.kscience.kmath.tensors.core.algebras.DoubleTensorAlgebra
import space.kscience.kmath.tensors.core.internal.array
import kotlin.test.Test
import kotlin.test.assertFalse
import kotlin.test.assertTrue