<divclass="platform-hinted "data-platform-hinted="data-platform-hinted"><divclass="content sourceset-dependent-content"data-active=""data-togglable=":kmath-core:dokkaHtmlPartial/commonMain"><divclass="symbol monospace"><spanclass="token keyword">interface </span><ahref="index.html">SingularValueDecompositionFeature</a><spanclass="token operator"><</span><spanclass="token keyword">out </span><ahref="index.html">T</a><spanclass="token operator"> : </span><ahref="https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-any/index.html">Any</a><spanclass="token operator">></span> : <ahref="../-matrix-feature/index.html">MatrixFeature</a><spanclass="clearfix"><spanclass="floating-right">(<ahref="https://github.com/SciProgCentre/kmath/tree/master/kmath-core/src/commonMain/kotlin/space/kscience/kmath/linear/MatrixFeatures.kt#L160">source</a>)</span></span></div><pclass="paragraph">Matrices with this feature support SVD: <i>a = </i><ahref="u.html"><i>u</i></a><i> · </i><ahref="s.html"><i>s</i></a><i> · </i><ahref="v.html"><i>v</i></a><sup><i>H</i></sup> where <i>a</i> is the owning matrix.</p><h4class="">Parameters</h4><divclass="table"><divclass="table-row"data-filterable-current=":kmath-core:dokkaHtmlPartial/commonMain"data-filterable-set=":kmath-core:dokkaHtmlPartial/commonMain"><divclass="main-subrow keyValue "><divclass=""><spanclass="inline-flex"><div><u><span><span>T</span></span></u></div></span></div><div><divclass="title"><pclass="paragraph">the type of matrices' items.</p></div></div></div></div></div></div></div>
<divclass="copy-popup-wrapper "><spanclass="copy-popup-icon"></span><span>Link copied to clipboard</span></div>
</span></span></div>
<div>
<divclass="title">
<divclass="platform-hinted "data-platform-hinted="data-platform-hinted"><divclass="content sourceset-dependent-content"data-active=""data-togglable=":kmath-core:dokkaHtmlPartial/commonMain"><divclass="symbol monospace"><spanclass="token keyword">abstract </span><spanclass="token keyword"></span><spanclass="token keyword">val </span><ahref="s.html">s</a><spanclass="token operator">: </span><ahref="../index.html#-828842962%2FClasslikes%2F244675578">Matrix</a><spanclass="token operator"><</span><spanclass="token keyword"></span><ahref="index.html">T</a><spanclass="token operator">></span></div><divclass="brief "><pclass="paragraph">The matrix in this decomposition. Its main diagonal elements are singular values.</p></div></div></div>
<divclass="copy-popup-wrapper "><spanclass="copy-popup-icon"></span><span>Link copied to clipboard</span></div>
</span></span></div>
<div>
<divclass="title">
<divclass="platform-hinted "data-platform-hinted="data-platform-hinted"><divclass="content sourceset-dependent-content"data-active=""data-togglable=":kmath-core:dokkaHtmlPartial/commonMain"><divclass="symbol monospace"><spanclass="token keyword">abstract </span><spanclass="token keyword"></span><spanclass="token keyword">val </span><ahref="u.html">u</a><spanclass="token operator">: </span><ahref="../index.html#-828842962%2FClasslikes%2F244675578">Matrix</a><spanclass="token operator"><</span><spanclass="token keyword"></span><ahref="index.html">T</a><spanclass="token operator">></span></div><divclass="brief "><pclass="paragraph">The matrix in this decomposition. It is unitary, and it consists from left singular vectors.</p></div></div></div>
<divclass="copy-popup-wrapper "><spanclass="copy-popup-icon"></span><span>Link copied to clipboard</span></div>
</span></span></div>
<div>
<divclass="title">
<divclass="platform-hinted "data-platform-hinted="data-platform-hinted"><divclass="content sourceset-dependent-content"data-active=""data-togglable=":kmath-core:dokkaHtmlPartial/commonMain"><divclass="symbol monospace"><spanclass="token keyword">abstract </span><spanclass="token keyword"></span><spanclass="token keyword">val </span><ahref="v.html">v</a><spanclass="token operator">: </span><ahref="../index.html#-828842962%2FClasslikes%2F244675578">Matrix</a><spanclass="token operator"><</span><spanclass="token keyword"></span><ahref="index.html">T</a><spanclass="token operator">></span></div><divclass="brief "><pclass="paragraph">The matrix in this decomposition. It is unitary, and it consists from right singular vectors.</p></div></div></div>