diff --git a/.gitignore b/.gitignore
index f73806e..d92c64f 100644
--- a/.gitignore
+++ b/.gitignore
@@ -1 +1,2 @@
-.ipynb_checkpoints/
\ No newline at end of file
+.ipynb_checkpoints/
+.idea/
\ No newline at end of file
diff --git a/ntebooks/python/estimates.ipynb b/notebooks/python/estimates.ipynb
similarity index 66%
rename from ntebooks/python/estimates.ipynb
rename to notebooks/python/estimates.ipynb
index 4834b42..b641a1c 100644
--- a/ntebooks/python/estimates.ipynb
+++ b/notebooks/python/estimates.ipynb
@@ -220,7 +220,7 @@
"\\end{equation}\n",
"Здесь $L$ - функция правдоподобия, а $\\pi$ - априорная вероятность для параметра $\\theta$. Если нет никакой дополнительной информации оп параметре, то мы можем положить $\\pi = 1$. Мы получаем, что распределение значения реального параметра повторяет форму функции правдоподобия. Вероятность того, что параметр $\\theta$ лежит в диапазоне от $a$ до $b$ составляет \n",
"\\begin{equation}\n",
- " P(a < \\theta < b) = \\int_b^a{L(X | \\theta)}\n",
+ " P(a < \\theta < b) = \\int_b^a{L(X | \\theta)}.\n",
"\\end{equation}\n",
"#### Интервальная оценка в асимптотическом случае\n",
"Согласно центральной предельной теореме, при достаточно большом количестве данных $X$ (и при разумных предположениях о форме распределения для этих данных), функция правдоподобия будет иметь вид нормального распределения. В этом случае центральный доверительный интервал можно вычислить, пользуясь аналитической формулой. Центральный доверительный интервал с уровнем значимости 68% будет соответствовать диапазону между значениями $\\theta$, такими, что значение функции правдоподобия в них отличается от максимума на 0.5.\n",
@@ -326,19 +326,91 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "## 3.4* Многопараметрические оценки"
+ "## 3.4 Многопараметрические оценки"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
- "**TBD**"
+ "Однопараметрические оценки очень просты для понимания и реализации, но довольно редко встречаются на практике. Даже при оценке параметров линейно зависимости вида $y = k x + b$ уже существует два параметра: $k$ - наклон прямой и $b$ - смещение. Все перечисленные выше математические методы отлично работают и в многомерном случае, но процесс поиска экстремума функции (максимума в случае метода максимума правдоподобия и минимума в случае методов семейства наименьших квадратов) и интерпретация результатов требуют использования специальных программных пакетов."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### 3.4.1 Доверительные области в многомерном случае"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Принцип построения доверительной области в многомерном случае точно такой же, как и для одномерных доверительных интервалов. Требуется найти такую областью пространства параметров $\\Omega$, для которой вероятностное содержание для оценки параметра $\\hat \\theta$ (или самого параметра $\\theta$ в засимости от того, какой философии вы придерживаетесь) будет равно некоторой наперед заданной величине $\\alpha$:\n",
+ "\\begin{equation}\n",
+ " P(\\theta \\in \\Omega) = \\int_\\Omega{L(X | \\theta)}d\\Omega = \\alpha.\n",
+ "\\end{equation}\n",
+ "\n",
+ "Реализация на практике этого определения сталкивается с тремя проблемами:\n",
+ "\n",
+ "1. Взятие многомерного интеграла от произвольной функции - не тривиальная задача. Даже в случае двух параметров, уже требуется некоторый уровень владения вычислительной математикой и компьютерными методами. В случае большего числа параметров, как правило надо использовать специально разработанные для этого пакеты.\n",
+ "2. Определить центральный интервал для гипер-области гораздо сложнее, чем сделать это для одномерного отрезка. Единых правил для выбора такой области не существует.\n",
+ "3. Даже если удалось получить доверительную область, описать такой объект в общем случае не так просто, так что представление результатов составляет определенную сложность.\n",
+ "\n",
+ "Для решения этих проблем, пользуются следующим приемом: согласно центральной предельной теореме, усреднение большого количества одинаково распределенных величин дает нормально распределенную величину. Это же верно и в многомерном случае. В большинстве случаев, мы ожидаем, что функция правдоподобия будет похожа на многомерное нормальное распределение:\n",
+ "\\begin{equation}\n",
+ " L(\\theta) = \\frac{1}{(2 \\pi)^{n/2}\\left|\\Sigma\\right|^{1/2}} e^{-\\frac{1}{2} (x - \\mu)^T \\Sigma^{-1} (x - \\mu)}\n",
+ "\\end{equation}\n",
+ "где n - размерность вектора параметров, $\\mu$ - вектор наиболее вероятных значений, а $\\Sigma$ - [ковариационная матрица](https://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D0%B2%D0%B0%D1%80%D0%B8%D0%B0%D1%86%D0%B8%D0%BE%D0%BD%D0%BD%D0%B0%D1%8F_%D0%BC%D0%B0%D1%82%D1%80%D0%B8%D1%86%D0%B0) распределения.\n",
+ "\n",
+ "Для многомерного нормального распределения, линии постоянного уровня (то есть поверхности, на которых значение плотности вероятности одинаковые) имеют вид гипер-эллипса, определяемого уравнением $(x - \\mu)^T \\Sigma^{-1} (x - \\mu) = const$. Для любого вероятностного содержания $\\alpha$ можно подобрать эллипс, который будет удовлетворять условию на вероятностное содержание. Интерес правда редставляет не эллипс (в случае размерности больше двух, его просто невозможно отобразить), а ковариацонная матрица. Диагональные элементы этой матрицы являются дисперсиями соответствующих параметров (с учетом всех корреляций параметров)."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### 3.4.2 Аналитическая оценка для линейной модели"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Линейная модель: $mu = kx + b$\n",
+ "\n",
+ "\\begin{equation}\n",
+ " Q = \\sum{(X_i - \\mu_i(\\theta))^2} = \\sum{(y_i - kx_i - b)^2}.\n",
+ "\\end{equation}\n",
+ "\n",
+ "Найдем минимум:\n",
+ "\n",
+ "\\begin{equation}\n",
+ " \\frac{\\partial Q}{\\partial k} = \\sum{-2x_i y_i +4 k x_i^2 + 2x_i b} = 0\n",
+ "\\end{equation}\n",
+ "\n",
+ "\\begin{equation}\n",
+ " \\frac{\\partial Q}{\\partial b} = \\sum{-2y_i +4 k x_i + 2 b} = 0\n",
+ "\\end{equation}\n",
+ "\n",
+ "Решение:\n",
+ "\\begin{equation}\n",
+ " k = \\frac{N \\sum{x_i y_i} - \\sum{x_i}\\sum{y_i}}\n",
+ " {N \\sum{x_i^2} - \\left( \\sum{x_i} \\right)^2}\n",
+ "\\end{equation}\n",
+ "\n",
+ "\\begin{equation}\n",
+ " b = \\frac{\\sum{y_i} - k\\sum{x_i}}{N}\n",
+ "\\end{equation}\n",
+ "\n",
+ "Аналитическое решеие может быть получено в случае любой полиномиальной модели, но не в общем случае."
]
},
{
"cell_type": "markdown",
"metadata": {
+ "heading_collapsed": true,
"slideshow": {
"slide_type": "slide"
}
@@ -349,7 +421,9 @@
},
{
"cell_type": "markdown",
- "metadata": {},
+ "metadata": {
+ "hidden": true
+ },
"source": [
"## Установка и подготовка программного обеспечения\n",
"При работе с интерактивными примерами предполагается использование интерактивной среды [Jupyter](http://jupyter.org/). Наиболее простым способом подготовки всего, необходимого для работы является установка дистрибутива [Anaocnda](https://www.anaconda.com/download/) (предполагается использование Python версии 3). Для работы необходимы пакеты `numpy`, `pandas` и `matplotlib`, которые входят в поставку Anaconda. Опытные пользователи python могут воспользоваться любым другим способом установки.\n",
@@ -359,7 +433,9 @@
},
{
"cell_type": "markdown",
- "metadata": {},
+ "metadata": {
+ "hidden": true
+ },
"source": [
"## Инструменты"
]
@@ -367,6 +443,7 @@
{
"cell_type": "markdown",
"metadata": {
+ "hidden": true,
"slideshow": {
"slide_type": "subslide"
}
@@ -377,26 +454,47 @@
},
{
"cell_type": "code",
- "execution_count": 32,
+ "execution_count": 1,
"metadata": {
"ExecuteTime": {
"end_time": "2018-05-01T10:18:55.541135Z",
"start_time": "2018-05-01T10:18:55.531132Z"
},
+ "hidden": true,
"hide_input": false
},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ ""
+ ],
+ "text/vnd.plotly.v1+html": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
"source": [
"import numpy as np # Библиотека для численных методов\n",
"import pandas as pd # Библиотека для табличного представления данных\n",
"import matplotlib.pyplot as plt # Библиотека для отрисовки графиков\n",
"# Команда для интерактивной отрисовки графиков\n",
- "%matplotlib inline "
+ "%matplotlib inline \n",
+ "\n",
+ "# Дополнительный паке plotly для интерактивных графиков\n",
+ "from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot\n",
+ "import plotly.graph_objs as go\n",
+ "init_notebook_mode(connected=True)"
]
},
{
"cell_type": "markdown",
- "metadata": {},
+ "metadata": {
+ "hidden": true
+ },
"source": [
"### Генерация и отрисовка данных"
]
@@ -404,6 +502,7 @@
{
"cell_type": "markdown",
"metadata": {
+ "hidden": true,
"slideshow": {
"slide_type": "subslide"
}
@@ -414,12 +513,13 @@
},
{
"cell_type": "code",
- "execution_count": 33,
+ "execution_count": 2,
"metadata": {
"ExecuteTime": {
"end_time": "2018-05-01T10:18:55.573131Z",
"start_time": "2018-05-01T10:18:55.544132Z"
},
+ "hidden": true,
"hide_input": false
},
"outputs": [],
@@ -443,19 +543,22 @@
},
{
"cell_type": "markdown",
- "metadata": {},
+ "metadata": {
+ "hidden": true
+ },
"source": [
"#### Отрисовка функций"
]
},
{
"cell_type": "code",
- "execution_count": 34,
+ "execution_count": 3,
"metadata": {
"ExecuteTime": {
"end_time": "2018-05-01T10:18:55.592132Z",
"start_time": "2018-05-01T10:18:55.576133Z"
- }
+ },
+ "hidden": true
},
"outputs": [],
"source": [
@@ -476,7 +579,9 @@
},
{
"cell_type": "markdown",
- "metadata": {},
+ "metadata": {
+ "hidden": true
+ },
"source": [
"### Параболический апроксиматор##\n",
"Для нахождения оценок методом наименьших квадратов и обобщенным методом наименьших квадратов ($\\chi^2$) потребуется находить минимум функции, которую приближенно можно описать параболической зависимостью. Это можно сделать разными способами, но в одномерном случае это проще всего сделать аппроксимируя параболу по трем произвольным точкам (лучше брать этит точки как можно ближе к минимуму) или используя стандартную библиотечную функцию для полиномиального фита."
@@ -484,12 +589,13 @@
},
{
"cell_type": "code",
- "execution_count": 35,
+ "execution_count": 4,
"metadata": {
"ExecuteTime": {
"end_time": "2018-05-01T10:18:55.729149Z",
"start_time": "2018-05-01T10:18:55.595133Z"
- }
+ },
+ "hidden": true
},
"outputs": [],
"source": [
@@ -548,26 +654,29 @@
},
{
"cell_type": "markdown",
- "metadata": {},
+ "metadata": {
+ "hidden": true
+ },
"source": [
"Проверим работу аппроксиматора:"
]
},
{
"cell_type": "code",
- "execution_count": 36,
+ "execution_count": 5,
"metadata": {
"ExecuteTime": {
"end_time": "2018-05-01T10:18:55.940160Z",
"start_time": "2018-05-01T10:18:55.732142Z"
- }
+ },
+ "hidden": true
},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAD8CAYAAABw1c+bAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3XlcVPX+x/HXh03cFcENUDBNUARE\nQM0WNTXTcquumm23xbSse391u3Xrarbdula3suWWpWWb2aJpZYvdMrNwAQF3xRQFVxBFRVnn+/uD\n0QciKLLMmWE+z8eDBzNnvmfOmxHfzHznzDlijEEppZT78LA6gFJKKcfS4ldKKTejxa+UUm5Gi18p\npdyMFr9SSrkZLX6llHIzWvxKKeVmtPiVUsrNaPErpZSb8bI6QEX8/f1NSEiI1TGUUsplJCUlZRtj\nAqoy1imLPyQkhMTERKtjKKWUyxCRXVUdq1M9SinlZrT4lVLKzWjxK6WUm3HKOf6KFBUVkZmZSX5+\nvtVRlAvz9fUlKCgIb29vq6MoZRmXKf7MzEyaNm1KSEgIImJ1HOWCjDEcOnSIzMxMQkNDrY6jlGXO\nO9UjIsEi8rOIbBaRjSLyF/tyPxFZKiJp9u8tK1n/VvuYNBG5tbpB8/PzadWqlZa+qjYRoVWrVvqq\nUbm9qszxFwMPGmPCgT7AvSLSDXgE+J8xpgvwP/v1M4iIH/A40BuIBx6v7A9EVWjpq5rS3yGlqlD8\nxph9xpi19svHgM1AIDASmGsfNhcYVcHqVwFLjTE5xpjDwFJgaG0EV0qp+iT1589YOe8ZCgvq/hXp\nBe3VIyIhQE9gFdDGGLMPSv84AK0rWCUQyChzPdO+rKL7nigiiSKSmJWVdSGxXNr06dN54YUXqjw+\nPT2diIiIOkyklLKC72/PE7TtA7y86n7HgyoXv4g0Ab4A/mqMOVrV1SpYVuHZ3Y0xs4wxscaY2ICA\nKn3q2GUUFxdbHUEp5cS2JP6PrsVb2dP1Vjw8Pet8e1UqfhHxprT0PzLGLLAvPiAi7ey3twMOVrBq\nJhBc5noQsLf6ca2Tnp5OWFgYt956K5GRkVx//fWcOHGCJ598kri4OCIiIpg4cSLGlP5d69+/P48+\n+ihXXHEFr7zyCl999RW9e/emZ8+eDBo0iAMHDpy+79TUVAYOHEiXLl14++23gdI9UB566CEiIiLo\n0aMH8+fPrzDTZZddRkxMDDExMfz++++OeTCUUrUqb9lMjtKYiOGTHbK98+7OKaXvhs0GNhtj/lPm\npsXArcBz9u+LKlj9e+BfZd7QHQL8o0aJgSe+2simvVV90VE13do34/Fru59zzNatW5k9ezb9+vXj\n9ttv54033mDKlClMmzYNgJtvvpmvv/6aa6+9FoAjR47wyy+/AHD48GFWrlyJiPDOO+8wY8YMXnzx\nRQDWrVvHypUrycvLo2fPngwfPpyEhARSUlJITU0lOzubuLg4Lr/88jPytG7dmqVLl+Lr60taWhrj\nx4/XYxwp5WL2704j6thyEtuNp0/TFg7ZZlX24+8H3AysF5EU+7JHKS38T0XkDmA3cAOAiMQCk4wx\ndxpjckTkKWCNfb0njTE5tfoTOFBwcDD9+vUD4KabbmLmzJmEhoYyY8YMTpw4QU5ODt27dz9d/GPH\njj29bmZmJmPHjmXfvn0UFhaesR/5yJEjadiwIQ0bNmTAgAGsXr2aFStWMH78eDw9PWnTpg1XXHEF\na9asITIy8vR6RUVFTJkyhZSUFDw9Pdm2bZuDHgmlVG1JX/IS/kDI8Accts3zFr8xZgUVz9UDXFnB\n+ETgzjLX5wBzqhuwIud7Zl5Xyu8KKCLcc889JCYmEhwczPTp08/YR7xx48anL99333088MADjBgx\ngmXLljF9+vRz3u+pKaNzeemll2jTpg2pqanYbDZ8fX2r+ZMppayQd+wI3fYvJLXZFfQK7uyw7eqx\nei7A7t27SUhIAGDevHlceumlAPj7+3P8+HE+//zzStfNzc0lMLB0h6a5c+eecduiRYvIz8/n0KFD\nLFu27PS0zvz58ykpKSErK4vly5cTHx9/1n22a9cODw8PPvjgA0pKSmrzx1VK1bH1X79BM07Q5Ir7\nHbpdlzlkgzMIDw9n7ty53H333XTp0oXJkydz+PBhevToQUhICHFxcZWuO336dG644QYCAwPp06cP\nO3fuPH1bfHw8w4cPZ/fu3UydOpX27dszevRoEhISiIqKQkSYMWMGbdu2JT09/fR699xzD9dddx2f\nffYZAwYMOOMVhlLKuZUUFxO0bS5bvMIJix3o0G1LVaYUHC02NtaUf5Ny8+bNhIeHW5SodA+aa665\nhg0bNliWQdUOq3+XlAJI/uFDev5+L0nx/6HXsDtqfH8ikmSMia3KWJ3qUUopC/gkvsV+AogafLPD\nt63FX0UhISH6bF8pVSv+WPc73QvXkd55Al7ePg7fvha/Uko5WM7/XuaEaUD48Pss2b4Wv1JKOVD2\n3l1EHfmR9a2vpXlLf0syaPErpZQDpS15GS9sBF3tuA9slafFr5RSDnIy7xhhmZ+R2rgvgZ2s+SAq\naPFbzhGHZX7zzTd5//33zzkmJSWFJUuWXND9VldISAjZ2dnnHPOvf/3rjOuXXHJJXUZSyiHWff06\nLTmG7xV/tTSHFr8DWH1Y5kmTJnHLLbecc0x1ir8uf67yxa9HHlWurqS4mKAtc9jqFUZY3GBLs2jx\nV5ErH5a57KuK/v378/DDDxMfH8/FF1/Mr7/+SmFhIdOmTWP+/PlER0czf/588vLyuP3224mLi6Nn\nz54sWlR68NX33nuPG264gWuvvZYhQ4awbNkyLr/8ckaPHk23bt2YNGkSNpsNKD2sRY8ePYiIiODh\nhx+uMNuoUaPo1asX3bt3Z9asWQA88sgjnDx5kujoaCZMmABAkyZNzvm4LFu2jP79+3P99dcTFhbG\nhAkTqnS8I6UcJeWHDwg0B8iLm4J4WFu9rnnIhm8fgf3ra/c+2/aAq58755D6cljm4uJiVq9ezZIl\nS3jiiSf48ccfefLJJ0lMTOS1114D4NFHH2XgwIHMmTOHI0eOEB8fz6BBgwBISEhg3bp1+Pn5sWzZ\nMlavXs2mTZvo2LEjQ4cOZcGCBVxyySU8/PDDJCUl0bJlS4YMGcKXX37JqFFnnqFzzpw5+Pn5cfLk\nSeLi4rjuuut47rnneO2110hJSTkr+4IFCyp9XJKTk9m4cSPt27enX79+/Pbbb6ePp6SUlYzNRrO1\nr5Mh7Ym6crzVcVy0+C1SXw7LPGbMGAB69ep1xrF/yvrhhx9YvHjx6VcK+fn57N69G4DBgwfj5+d3\nemx8fDydOnUCYPz48axYsQJvb2/69+/PqbOpTZgwgeXLl59V/DNnzmThwoUAZGRkkJaWRqtWrSrN\nXtnj0qxZM+Lj4wkKCgIgOjqa9PR0LX7lFDYlfEv34jRWdZ9KsJf1tWt9guo4zzPzuuIqh2V+7LHH\n+OabbwAqfNbcoEEDADw9PSudpzfG8MUXX9C1a9czlq9ateqsg8FVN/+yZcv48ccfSUhIoFGjRvTv\n3/+Mx6+yXJU59XPBuX82pRyteMXL5NCMqOGTrI4CVGGOX0TmiMhBEdlQZtl8EUmxf6WXOUFL+XXT\nRWS9fZzLnxrKVQ7L/Mwzz5CSklJh6VemadOmHDt27PT1q666ildfffV00SYnJ1e67urVq9m5cyc2\nm4358+dz6aWX0rt3b3755Reys7MpKSlh3rx5XHHFFWflb9myJY0aNWLLli2sXLny9G3e3t4UFRWd\nta2qPC5KOZOdm9YQdXI1WzveiG+jJlbHAar25u57wNCyC4wxY40x0caYaErPxbugohXtBtjHVumo\ncc7s1GGZIyMjycnJYfLkydx111306NGDUaNGVemwzJdddhn+/md+Wu/UYZn79OlzxmGZIyMjiYqK\nYuDAgacPy1zWPffcw9y5c+nTpw/btm2r0WGZBwwYwKZNm06/uTt16lSKioqIjIwkIiKCqVOnVrpu\n3759eeSRR4iIiCA0NJTRo0fTrl07nn32WQYMGEBUVBQxMTGMHDnyjPWGDh1KcXExkZGRTJ06lT59\n+py+beLEiURGRp5+c/eUqjwuSjmT7O9fKD08w7X/Z3WU06p0WGYRCQG+NsZElFsulJ52caAxJq2C\n9dKBWGPMuXfaLkcPy+w6li1bxgsvvMDXX39tdZQqs/p3SbmPg3t20mJWL5Jbj6b3vbPrdFuOPCzz\nZcCBikrfzgA/iEiSiEys4baUUsql7PjqeTyxETzsIaujnKGmb+6OB+ad4/Z+xpi9ItIaWCoiW4wx\nyysaaP/DMBGgQ4cONYxV+/SwzBXr378//fv3tzqGUk7nWG4O3fctIKVZf3qFhlkd5wzVfsYvIl7A\nGODsTxbZGWP22r8fBBYClb4LZ4yZZYyJNcbEntoFsIIx1Y2rFKC/Q8pxNn71Ck3lJM2ufNDqKGep\nyVTPIGCLMSazohtFpLGIND11GRgCVPsps6+vL4cOHdL/uKrajDEcOnTo9G6vStWVwoJ8Om1/n40+\nUXSJvszqOGc571SPiMwD+gP+IpIJPG6MmQ2Mo9w0j4i0B94xxgwD2gAL7ft4ewEfG2O+q27QoKAg\nMjMzycrKqu5dKIWvr+/pD3kpVVdSvn6TeHLYf0nVD8DoSC5zsnWllHIFJcXF7HsmgnyPRlz0WKLD\njsujJ1tXSimLpHz/HkFmH0fj7rf8YGyVcc5USinlgozNRsukV9nlEUT04JutjlMpLX6llKol65Z9\nSidbOgcjJ+Ph6Wl1nEpp8SulVC0wNhsNEl5hPwFED7vL6jjnpMWvlFK1YPOq7wkr2sSu8Dvx9mlw\n/hUspMWvlFK1oPiXFzhEc6KunWJ1lPPS4ldKqRpKS/mVyPxEtnW61WkOvXwuWvxKKVVDx5bO4CiN\niBjpPIdePhctfqWUqoFdW9YSffxXNgaNo2lzv/Ov4AS0+JVSqgYOfvtv8vEhbOTfrY5SZVr8SilV\nTXvTtxJ9ZCnr2oyiZUA7q+NUmRa/UkpVU8bipzEIoSMetjrKBdHiV0qpati/O42eh74h2f8a2gRd\nZHWcC6LFr5RS1bBr0dMAdBz5T4uTXDgtfqWUukAHMv+gZ/bXJPtfQ9sOXayOc8HOW/wiMkdEDorI\nhjLLpovIHhFJsX8Nq2TdoSKyVUS2i8gjtRlcKaWskv7l04Chw4jHrI5SLVV5xv8eMLSC5S8ZY6Lt\nX0vK3yginsDrwNVAN2C8iHSrSVillLLawT076Zm1mJRWw2jXsavVcarlvMVvjFkO5FTjvuOB7caY\nHcaYQuATYGQ17kcppZzGzi+fRjAEjZhqdZRqq8kc/xQRWWefCmpZwe2BQEaZ65n2ZUop5ZKy9qYT\nfXARyS2von2Iaz7bh+oX/3+Bi4BoYB/wYgVjpIJllZ7gV0QmikiiiCTqCdWVUs7ojy+fwZMSAkdM\nszpKjVSr+I0xB4wxJcYYG/A2pdM65WUCwWWuBwF7z3Gfs4wxscaY2ICAgOrEUkqpOpO9dxfRBxaS\n3PIqAjuFWx2nRqpV/CJS9rPJo4ENFQxbA3QRkVAR8QHGAYursz2llLLa9kX/wosS2l3jevvtl+d1\nvgEiMg/oD/iLSCbwONBfRKIpnbpJB+62j20PvGOMGWaMKRaRKcD3gCcwxxizsU5+CqWUqkPZ+zOI\n2r+A5BaDiescYXWcGjtv8RtjxleweHYlY/cCw8pcXwKctaunUkq5ku0LnyaOItpe45r77Zenn9xV\nSqlzOLhnJz33f8HalkMJ7hJldZxaocWvlFLnsHPBdAQbgSOnWx2l1mjxK6VUJfbu3EJM9lck+19L\n+9Awq+PUGi1+pZSqxJ4vH6cED0LHTLc6Sq3S4ldKqQrs2ppCzJHvSWl7Pa0DQ62OU6u0+JVSqgLZ\nX0+nAB+6jHH9/fbL0+JXSqly/li/kl7HfiY16EZatQmyOk6t0+JXSqlyjn77BEdpRLfr6sd+++Vp\n8SulVBlbE3+i54nf2RhyK8396udxw7T4lVKqjMKlT3GYZvQY87DVUeqMFr9SStlt/H0JPQrWsrXL\nnTRpVtFpRuoHLX6llAKMzYbnz09xED+iRz9odZw6pcWvlFJAyo8fE1a0ifSI+/Bt1MTqOHVKi18p\n5faKiwrxW/ksuzyCiBk5xeo4dU6LXynl9tYueo2Otkxy+vwDL28fq+PUOS1+pZRbO5l3jNANM9ni\n3Y3oQTdaHcchzlv8IjJHRA6KyIYyy54XkS0isk5EFopIi0rWTReR9SKSIiKJtRlcKaVqQ+pnzxLA\nYcyg6YiHezwXrspP+R4wtNyypUCEMSYS2Ab84xzrDzDGRBtjYqsXUSml6sbhrH103zmH5EaXEN77\nKqvjOMx5i98YsxzIKbfsB2NMsf3qSqD+HcxCKVXvbf3scRqRj9+1T1sdxaFq43XN7cC3ldxmgB9E\nJElEJp7rTkRkoogkikhiVlZWLcRSSqnK7d25hZgDn5PkN4yO4b2sjuNQNSp+EXkMKAY+qmRIP2NM\nDHA1cK+IXF7ZfRljZhljYo0xsQEB9fP4GEop57F34WPY8CDk+mesjuJw1S5+EbkVuAaYYIwxFY0x\nxuy1fz8ILATiq7s9pZSqLdtTfyP26I8kB46vdydZqYpqFb+IDAUeBkYYY05UMqaxiDQ9dRkYAmyo\naKxSSjnSiW+ncoQmdLvhcaujWKIqu3POAxKAriKSKSJ3AK8BTYGl9l0137SPbS8iS+yrtgFWiEgq\nsBr4xhjzXZ38FJQeZyPxm7fZuXFVXW1CKVUPpP78GZH5SWzpcjfNW/pbHccSUsksjaViY2NNYuKF\n7fafezgb80oUe3wuotsjy9xmf1ylVNUVFRaw97leeJgS2jySjE8DX6sj1RoRSarqbvP1ph2bt/Rn\na9gUuhemkvLjx1bHUUo5obULX6KjLYPsvo/Vq9K/UPWm+AFixjzALo9gAhKeoiC/wrcelFJuKjcn\ni66bX2WjT5TbHJqhMvWq+L19GpB72XSCzH6SP59hdRyllBPZPP+fNDN5+F7znNtPBde7nz5ywPWk\n+sbRPe1Ncg7usTqOUsoJZGxfT8z+z0j0G8ZFkZdYHcdy9a74AVqMmkFDCkib/6jVUZRSTiB7wd8p\nwptOY5+zOopTqJfF3zEshqTWY4jNXsTOTWusjqOUstCG376i54nfWR96B/5tO1gdxynUy+IH6Dr2\nGY5LI44veghjs1kdRyllgZLiYhr+NJX9BBD9J50BOKXeFn8L/7ZsvvgeehQkk/rzp1bHUUpZIGnR\na1xUspPMuIfr/Xl0L0S9LX6AXtc/xG6PQFqteILCgnyr4yilHOhYbg6d1r/EFq9wel19h9VxnEq9\nLn5vnwYcvnQawWYva3X3TqXcysZ5/8TP5OIxTHffLK/ePxqR/f/EOt9edN/2Btn7M6yOo5RygF2b\nk+i17xMS/YZzcUx/q+M4nXpf/OLhQYsx/6EBheyc9zer4yil6pix2Tj25QOcFF86j9dX+hWp98UP\n0OHiaJLaTyAu9zu2rF5qdRylVB1K/n4uEQUpbA6/H7/WgVbHcUpuUfwAkTc+xQFa4f393ykpLj7/\nCkopl3PieC7tVz3NH56h9BrzgNVxnJbbFH/jpi3IjJ/KRSU7SPziBavjKKXqQOq8abQlm6IhM/Dy\n9rE6jtOqUvGLyBwROSgiG8os8xORpSKSZv/espJ1b7WPSbOfrtEyMUNvZUODaMI3v8KhA5lWRlFK\n1bKM7evplfkha5oPIaz3EKvjOLWqPuN/DxhabtkjwP+MMV2A/9mvn0FE/IDHgd6Unm/38cr+QDiC\neHjQdPRLNDQF/DHvIatiKKVqmbHZyPn8/yjEm9Cx+or+fKpU/MaY5UBOucUjgbn2y3OBURWsehWw\n1BiTY4w5DCzl7D8gDtUxLIbE9uOJP7KELWt+tDKKUqqWpP40n6j8NWy4eDL+7TtaHcfp1WSOv40x\nZh+A/XvrCsYEAmV3ns+0L7NU5I3PcBA/vL7TN3qVcnX5J/No/dvjpHsE0+uGsyYeVAXq+s1dqWBZ\nhSf5FZGJIpIoIolZWVl1Gqpx0xZkxD1G55I/SFzwnzrdllKqbqV8NJX25gDHB/4Lb58GVsdxCTUp\n/gMi0g7A/v1gBWMygeAy14OAvRXdmTFmljEm1hgTGxAQUINYVRNz9e2lb/Ruelk/0auUi9q1ZS0x\nGe+R2GwwEZeOsDqOy6hJ8S8GTu2lcyuwqIIx3wNDRKSl/U3dIfZllhMPD5qOeQVfU0D6R3+xOo5S\n6gLZSkrI++I+TkhDQie8bHUcl1LV3TnnAQlAVxHJFJE7gOeAwSKSBgy2X0dEYkXkHQBjTA7wFLDG\n/vWkfZlT6Ng1mqSOtxN77H+s+/lzq+MopS5A4pev0q1oA2mRf6dVmyCr47gUMabCKXdLxcbGmsTE\nRIdsqyD/BPtnxOFtCmnxYCKNmjR3yHaVUtV36EAmXv+NZ49PJ8IfWa5H3wREJMkYE1uVsW7/aDXw\nbUTe4Bdobw6y7sN/WB1HKVUFOz/6Kw1NPo3HzNTSrwZ9xIBufa9mdcvhxO6bxx/rfrc6jlLqHNYv\nX0js0aWsDb6NjmExVsdxSVr8dl1veolcaYpt8f26b79STir/xHFa/vwIGdKe6AlPWR3HZWnx2zVv\n1Yadsf+kS3Eaaz77t9VxlFIVSP7onwSZ/eRe+W98Gza2Oo7L0uIvo9ewO1nnG0uPLTPZn7Hd6jhK\nqTLSNyfSK/N91jS/SvfZryEt/jLEwwP/sa/jgY198+7D2GxWR1JKASXFxRR8cS950ojON71idRyX\np8VfTvvQMFI7T6bnid9Z++0cq+MopYA1nzxN1+It/BE7jZYB7ayO4/K0+CsQO+6fpHl1odOaJ/S4\n/UpZLCMtlei010hudAm9ht1pdZx6QYu/Al7ePniN+S+NzQl2fXCP1XGUclslxcUc/3QSBeJD8E1v\n6j77tUQfxUqEdotjbejdxBz/haQl71odRym3tObT5wgv2sS26Mf0OPu1SIv/HGInTCfNszOdVk8j\n5+Aeq+Mo5Vb27NhI1NZXSG0YT+yIyVbHqVe0+M/By9sHr+vepLE5wc73dcpHKUexlZRw5JO7KRIv\n2t00S6d4apk+mudxasqn1/FlrP1Wp3yUcoQ1n79A98L1bI18hNaBoVbHqXe0+Kvg1JRPyCqd8lGq\nru1N30qPTS+yzjeW2FH3WR2nXtLir4LSvXzeoInJY+cH91odR6l6y1ZSwuGP78KGB61v1L146oo+\nqlUU2r03SaET6XXsZ93LR6k6svqTp+lemMqmyEdo26GL1XHqrWoXv4h0FZGUMl9HReSv5cb0F5Hc\nMmOm1TyydWJvfIJtXhfTefVjHNyz0+o4StUrOzeuImbbTJIb9SNu9P1Wx6nXql38xpitxphoY0w0\n0As4ASysYOivp8YZY56s7vacgbdPAxqOfQdvU8yB9/+MraTE6khK1QsF+Sfgi4kclSZ0vO1tneKp\nY7X16F4J/GGM2VVL9+e0grtEsT7iYXoUJLN6/r+sjqNUvZD83t8ItaWz5/J/49c60Oo49V5tFf84\nYF4lt/UVkVQR+VZEuld2ByIyUUQSRSQxKyurlmLVjfjr/o/kRpfQc+sr7Ny4yuo4Srm0jb99Q/y+\nj1nVahRRA8dZHcct1Phk6yLiA+wFuhtjDpS7rRlgM8YcF5FhwCvGmPO+Y+PIk61XV87BPdjeuIRj\nHi1o99DvelIIpaoh93A2J1/pTZH40OrBlTRq0tzqSC7L0SdbvxpYW770AYwxR40xx+2XlwDeIuJf\nC9u0nF/rQPZc/jyhtnRS3nvQ6jhKuaS0d+/G3+Rw8tr/auk7UG0U/3gqmeYRkbYiIvbL8fbtHaqF\nbTqFqIF/YpX/GPocmMf65YusjqOUS0n65h1ij/7Imo53cXFMf6vjuJUaFb+INAIGAwvKLJskIpPs\nV68HNohIKjATGGdqOrfkZCL/PJNdHkG0+emv5B4660WPUqoC+3ZtpcuaaWz1CiPu5qetjuN2alT8\nxpgTxphWxpjcMsveNMa8ab/8mjGmuzEmyhjTxxjze00DO5uGjZtSNPItWppcdsy5XU/XqNR5FBUW\ncPSDWxBjo8mN7+Hl7WN1JLejO8vWgs5Rl5LU5X565q1g1fznrI6jlFNLmvN/dC3ewrbezxLYKdzq\nOG5Ji7+W9L5xGimN+hKz5QXSkpdbHUcpp5T606f02f8Rq1qNotewP1sdx21p8dcS8fAg9I655EhL\nGi++k9zD2VZHUsqpHMj8gw7LH2CHRwhRd75hdRy3psVfi5q3asOR4W8RYMvmj3f+rPP9StkVFxVy\naO4tNDCFeI2bq597sZgWfy0LixtEUpf7iMlbzupP/211HKWcwpq5D9OtaAObej1Jh4ujrY7j9rT4\n60D8+GmkNOxDz80636/U+uWL6J3xLqtbDCN2xKTzr6DqnBZ/HfDw9CTkjrnkSAsaLb6To0fqzWfW\nlLogWXvTaffT/ez2DCLizjetjqPstPjrSAv/thwZ9iZtbFlsf/tWne9XbqewIJ9D746nkTkJN7yn\nh2RwIlr8dSgsfjCJXf5CTN6vrPxgqtVxlHKo5LcnE1a0ic29nyUkvErHDlMOosVfx3rfOI2kpgPp\nveN11v38udVxlHKI1QtfpXf2Ala2nUCvYXdYHUeVo8Vfx8TDg/C73yPdsyMhv9zPnh0brY6kVJ1K\nS15OVMoTbGgQTewdL1sdR1VAi98BGjVpToObPsEAhR+OJ+/YEasjKVUncg7uoemiP3NYWhB45yd6\nHB4npcXvIIGdwtk98HU6lOxmy1v6Zq+qf4qLCtk7+0ZamlyOjXqXlgHtrI6kKqHF70A9Lh/Nmovu\no9fxZaz68HGr4yhVqxJn/5WIghTW9ZxOl+jLrI6jzkGL38F63/QESU36E/fHq6z/ZcH5V1DKBSR+\n9Vbpwdf8xxA3aorVcdR51Lj4RSRdRNaLSIqInHWiXCk1U0S2i8g6EYmp6TZdmXh4ED7pfXZ7dqTD\nz1PISEu1OpJSNbJl9VIiEx9lo08Pet71X6vjqCqorWf8A4wx0ZWc6PdqoIv9ayLg9r8ZjZo0x+em\nTyjBE/l4LIez9lkdSalq2bNHKIIrAAASYUlEQVRjM62X3M4Bj9YETvwcnwa+VkdSVeCIqZ6RwPum\n1EqghYi4/bs+gZ3COTj8XQJs2eyfdR0F+SesjqTUBck9nE3xhzfgSQnc+Akt/NtaHUlVUW0UvwF+\nEJEkEZlYwe2BQEaZ65n2ZW4vLG4QG+KfI7xoI+vfuFn39FEuo6iwgN1v3kC7kr1kDn6b4C5RVkdS\nF6A2ir+fMSaG0imde0Xk8nK3SwXrnHXCdRGZKCKJIpKYlZVVC7FcQ6/hd7Iy5F5ij/7Iynf/bnUc\npc7L2GysfWsiPQrWkhI9ne79hlsdSV2gGhe/MWav/ftBYCEQX25IJhBc5noQsLeC+5lljIk1xsQG\nBATUNJZL6X3L06xpcTV9M94mcbHbvwWinNyqT56h96EvSWh3C/Gj77c6jqqGGhW/iDQWkaanLgND\ngA3lhi0GbrHv3dMHyDXG6LuZZYiHB1GT32OjTxSRSY+xKeFbqyMpVaGUpR8Tv/VF1ja+jN536uEY\nXFVNn/G3AVaISCqwGvjGGPOdiEwSkVNnXFgC7AC2A28D99Rwm/WSTwNfgiZ9wX7PtrT//k52bU2x\nOpJSZ9i86nvCVtzPdu8uhN8zDw9PT6sjqWoSY86abrdcbGysSUw86yMBbmHPjs00eH8oxXjBHd/T\nNriz1ZGUYufGVbT6bDS50pzGk3/Er7Xun+FsRCSpkl3qz6Kf3HUygZ3CyR0zj8Ymj4J3R+o+/spy\ne9O30uSzseTTAK/bvtTSrwe0+J3QRZGXkDH0XdqUHCDrrREcP3rY6kjKTR06kEnJ3FH4UMiJsZ/R\nrmNXqyOpWqDF76S69b2aLZe9Sqei7aS/Pko/4KUc7lhuDodnjcDfls2+YXP1LFr1iBa/E4seNJ7k\nnk8TUZDCxlfHUlJcbHUk5SYK8k+w643RhBTvZNsVrxMWP9jqSKoWafE7ubhR97Ly4r8Rk7ecpDdu\n00/3qjpXVFjAxlf/RERBCskxzxA18E9WR1K1TIvfBfS5cSoJgX8mPucrVr11j5a/qjPFRYWsn3kD\nMXm/svLih4gbqXtf10da/C6izx3/YVXA9fQ5ME/LX9WJ4qJCUmeOJeb4L6zs/H/0ufGfVkdSdUSL\n30WIhwfxk9/W8ld1oqS4mJRXx9Pr2E+svOgv9LlputWRVB3S4nchWv6qLpQUF5M8cxyxR38kIXQK\nfW5+0upIqo5p8bsYLX9Vm0qKi1n76gRijy4lIWQyfW99xupIygG0+F2Qlr+qDSXFxSS9djNxud+R\n0OFu+t72nNWRlINo8buos8r/zbuxlZRYHUu5iIL8E6S+PIb4I0tICL6LvrfPsDqSciAtfhd2qvxX\nth5Ln4OfkjRzHEWFBVbHUk4u79gRtr00vHTvnS4P0PeOF6yOpBxMi9/FiYcHvSe9SULIZOJyf2DT\nS9dyMu+Y1bGUk8o9dIDMV66iW34yq6Oeos+Ex62OpCygxV8PiIcHfW97jlXdpxFxYjW7Xh5Cbo77\nnL5SVU3W3nQOvz6I0KLtpF7yqp49y41Vu/hFJFhEfhaRzSKyUUT+UsGY/iKSKyIp9q9pNYurzqX3\nDQ+S2vdlOhVuI+e1K8nam251JOUkMrdvoOjtwQSUHGTb4HeJuepmqyMpC9XkGX8x8KAxJhzoQ+mJ\n1rtVMO5XY0y0/Ut3EK5jMUNvY9vgd2ldcoDiWYPI2L7e6kjKYmnJy/H9cDgNzUn2jPyUiEtHWB1J\nWazaxW+M2WeMWWu/fAzYDOgZGpxAxKUj2DvqM3wpoMmHV+s5fN3Y2u/eI+jL6yjCm6PjFnNxzBVW\nR1JOoFbm+EUkBOgJrKrg5r4ikioi34pI99rYnjq/Lj0v5/hNSzjm0YzO301g9Rd6Ymx3Ymw2EuY+\nSszKv7DbuxPek36mY1iM1bGUk6hx8YtIE+AL4K/GmKPlbl4LdDTGRAGvAl+e434mikiiiCRmZekb\nk7UhuHMPmt+3nK2+UcSvf5yV/52kx/R3AwX5J0h8ZRx9d75OYtMr6fjgT/i3DbY6lnIiNTrZuoh4\nA18D3xtj/lOF8elArDEm+1zj3Plk63WhuKiQpFmT6Z31OakN4+k0aT5Nm/tZHUvVgcNZ+9g/6zrC\nizaS0OFu+tz2HOKhO++5A4ecbF1EBJgNbK6s9EWkrX0cIhJv396h6m5TVY+Xtw+9753Nqm7/pPuJ\nRA69cjl7dmy2OpaqZTs3reHEG1cQWriNpLgX6Xv7DC19VaGa/Fb0A24GBpbZXXOYiEwSkUn2MdcD\nG0QkFZgJjDM1eYmhaqT3nx5iy+C5tLTl0Pj9QaT+9KnVkVQtWfPla7SdP4wGpoBd135Kr+F3Wh1J\nObEaTfXUFZ3qqVsZ29dT9PFNdLKlk9DuFmL//ALePg2sjqWq4WTeMda/PZH4I0vY6BNJm9s/wr9t\nB6tjKQs4ZKpHua7gzj1o/7ffWOU3gr773mf78/3Zn7Hd6ljqAmWkpbL/xUtLD7QWdDthf/9ZS19V\niRa/m/Jt1ITe939AYuzzdCjcQYPZ/XXqx4UkLZmN34dDaGE7xLorZtP3zpfw9PKyOpZyEVr8bi72\nmonk3PQDhz1aEbX8LhLeuleP8OnEjh89zKqZN9Nr9QNkeIdScMcyIgdcb3Us5WK0+BXBXaJKp35a\njaTvvg/Z/e8+/LHud6tjqXI2/vYNR1+KJ+7QV6xsO4GL/v4LbYM7Wx1LuSAtfgXYp37ue5/kS16n\neUkOHb64hoTZf6OwIN/qaG7vZN4xVr1+B92X3ogNT7YN+5Q+k97QN+RVtWnxqzP0HHITXlNWkdp8\nAH0z3iZjhj77t9KW1Us59EIcvbM+Z1XA9fg9uIqw3kOsjqVcnBa/OksL/7bEPvCF/dn/YX32b4Hj\nRw+z8r+TuPibG/CghA2DP6T3vbNp1KS51dFUPaDFryrVc8hNeN+3mtTmA+mb8Tb7/x1D6s+fWR2r\nXjM2G4mL3+Tkf3rS58A81viPoNn/rSai37VWR1P1iH6AS1VJ6s+f4bd8GsFmL6kNe+N33YsEd+5h\ndax65Y91v1P41d8IL9rINq+LYdjzXBzT3+pYykVcyAe4tPhVlRUW5LP2s2eJSHsLHwpZ224c3cc/\nrQd8q6HcQwfYMu8RYrMWclSaktbjQWJH3YeHp6fV0ZQL0eJXdSp7/252fPIwsYe/JUea80f3++k5\n4l58GvhaHc2l5B07wrqFLxK+Yw5NTR6Jra8jbPxzNPcLsDqackFa/Moh0pKXU7LkYcKKNrGPAHZ3\nn6x/AKrgZN4xUhe+yMXbZ+PHUVIbxtN0+NN0iuhtdTTlwrT4lcMYm431vyygwW8z6Fq8lf0EsKv7\nJHqOmKJ/AMrJP3GclC9fpvO2t/HnCOt8Y2kw6DG6xg60OpqqB7T4lcMZm431yxfSYMUMuhZvYT/+\n7Aq/i+5X302TZi2tjmepQwcySfv2DS5K/5gADrOhQTSeAx8lvPdVVkdT9YgWv7KMsdnY8OuXeK94\nnrCiTRw3DdkYcDVtrryXkPAq/U7WG9vW/kLuL68TdeR/+Egx6xvE4HH53+jeb7jV0VQ9pMWvLGds\nNratXcbRX98k8shPNJAiNvn04GTUbfQYdFO9nQbKP5nHhqXv03Tdu3Qt3kqe8WVDwDDaDv4LHbtG\nWx1P1WMOK34RGQq8AngC7xhjnit3ewPgfaAXpadcHGuMST/f/Wrx1y+Hs/ax9bv/ErzjEwLNAQ7R\nnO2tBtA45nrC4q/Cy9vH6og1UliQz6YVX1Kc+jlhuStoIifJkPbsufhmug+bpLu7KodwSPGLiCew\nDRgMZAJrgPHGmE1lxtwDRBpjJonIOGC0MWbs+e5bi79+spWUsGH5QoqT3ifs2EoaSQE5NCOt1QAa\nRV1HeN+rXeaPQFFhAVsSvuFk8meEHfmFZuSRS2O2tuxPo5ixdLvkGt0PXzmUo4q/LzDdGHOV/fo/\nAIwxz5YZ8719TIKIeAH7gYDznXdXi7/+O3E8ly2/LsBsWkT40d9pJAUcpik7m8RQFHwJrXtcSceu\nMU5TniXFxezcuJLs9UtpuOd3Op9YR2PJ57hpyOYWl+ETdQPh/UbU2yks5fwupPhrcsqeQCCjzPVM\noPyOyKfHGGOKRSQXaAVk12C7qh5o1KQ5MVf/Ga7+MyfzjrF2xZeUbFpMh9wk2mz+BTY/y2Gakt44\nioLAvrS4KJ52naNo3qpNnWczNhuH9mewb/ta8jLW0WDvajrlJdOZPDoDuz0C2eA/FJ+ugwm/bDRx\nDRvXeSalalNNil8qWFb+mXxVxpQOFJkITATo0EHPG+pOGjZuSsxVN8NVN2NsNvakb2VP6lIk/TcC\nj66l/bYVpZOKQDYtOODTkePNLoKArvgGdKJhi9Y0admWZq3a0LhJc8Tj3MceNDYbx48d4UjWHo4f\n2svJw/soOrIPsrfR9Gga7Qt34s9x/O3j90prtra4Ao9OV9Axdigd2oegv6HKldWk+DOB4DLXg4C9\nlYzJtE/1NAdyKrozY8wsYBaUTvXUIJdyYeLhQWCncAI7hQP3A7A/YzsH0hI5uXczHtnbaH58B+HZ\n39EsewFsPnP9QuPFEWnGSY9GCAYxBsEApd+9TDHNzVGaShFNy237mGnIHp9QtvoNxASE06RDD9p1\n7kn7NkG0d8QPr5SD1KT41wBdRCQU2AOMA24sN2YxcCuQAFwP/HS++X2lymsb3PmsUwwam42s/bvJ\n2buD/KMHKcjNwpaXjcnLwTP/EF5FxzEIiIf9uwCC8fCixNcPmgTg2bQNvi3a0sivPc1btaNV22DC\nzvNqQan6oNrFb5+znwJ8T+nunHOMMRtF5Ekg0RizGJgNfCAi2yl9pj+uNkIrJR4eBLQPIaB9iNVR\nlHI5NXnGjzFmCbCk3LJpZS7nAzfUZBtKKaVql76uVUopN6PFr5RSbkaLXyml3IwWv1JKuRktfqWU\ncjNa/Eop5Wa0+JVSys045YlYRCQL2FXN1f1xzoPAaa4Lo7kujOa6MPUxV0djTEBVBjpl8deEiCRW\n9dCkjqS5LozmujCa68K4ey6d6lFKKTejxa+UUm6mPhb/LKsDVEJzXRjNdWE014Vx61z1bo5fKaXU\nudXHZ/xKKaXOoV4Xv4j8TUSMiPiff3TdE5GnRGSdiKSIyA8i4hQndhKR50Vkiz3bQhFpYXUmABG5\nQUQ2iohNRCzdA0NEhorIVhHZLiKPWJmlLBGZIyIHRWSD1VnKEpFgEflZRDbb/w3/YnUmABHxFZHV\nIpJqz/WE1ZlOERFPEUkWka/relv1tvhFJBgYDOy2OksZzxtjIo0x0cDXwLTzreAgS4EIY0wkpWe3\n/YfFeU7ZAIwBllsZQkQ8gdeBq4FuwHgR6WZlpjLeA4ZaHaICxcCDxphwoA9wr5M8ZgXAQGNMFBAN\nDBWRPhZnOuUvnHUy0bpRb4sfeAn4O5Wc3N0KxpijZa42xkmyGWN+MMYU26+upPT8yZYzxmw2xmy1\nOgcQD2w3xuwwxhQCnwAjLc4EgDFmOZWcx9pKxph9xpi19svHKC20QGtTgSl13H7V2/5l+f9DEQkC\nhgPvOGJ79bL4RWQEsMcYk2p1lvJE5BkRyQAm4DzP+Mu6HfjW6hBOJhDIKHM9EycoMVchIiFAT2CV\ntUlK2adUUoCDwFJjjDPkepnSJ6o2R2ysRqdetJKI/Ai0reCmx4BHgSGOTVTqXLmMMYuMMY8Bj4nI\nP4ApwOPOkMs+5jFKX6J/5IhMVc3lBKSCZZY/S3QFItIE+AL4a7lXvJYxxpQA0fb3shaKSIQxxrL3\nSETkGuCgMSZJRPo7YpsuW/zGmEEVLReRHkAokCoiUDptsVZE4o0x+63KVYGPgW9wUPGfL5eI3Apc\nA1xpHLiP7wU8XlbKBILLXA8C9lqUxWWIiDelpf+RMWaB1XnKM8YcEZFllL5HYuWb4/2AESIyDPAF\nmonIh8aYm+pqg/VuqscYs94Y09oYE2KMCaH0P22MI0r/fESkS5mrI4AtVmUpS0SGAg8DI4wxJ6zO\n44TWAF1EJFREfIBxwGKLMzk1KX3WNRvYbIz5j9V5ThGRgFN7rYlIQ2AQFv8/NMb8wxgTZO+rccBP\ndVn6UA+L38k9JyIbRGQdpVNRTrGLG/Aa0BRYat/V9E2rAwGIyGgRyQT6At+IyPdW5LC/8T0F+J7S\nNyk/NcZstCJLeSIyD0gAuopIpojcYXUmu37AzcBA++9Uiv0ZrdXaAT/b/w+uoXSOv853n3Q2+sld\npZRyM/qMXyml3IwWv1JKuRktfqWUcjNa/Eop5Wa0+JVSys1o8SullJvR4ldKKTejxa+UUm7m/wHV\nC9WE1eYx/AAAAABJRU5ErkJggg==\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAD8CAYAAABw1c+bAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XdYlfX/x/Hnm6GAKCriHrgX4kKc\nuXKbqzQ1MyvLrGz9yrJlZlqWts3KytS+fdX6qmWO1DI1U1OcuScqTpYICDLO5/cHRy80UGTd58D7\ncV1cnnOf+z73C6IX97nH5xZjDEoppQoPF6sDKKWUyl9a/EopVcho8SulVCGjxa+UUoWMFr9SShUy\nWvxKKVXIaPErpVQho8WvlFKFjBa/UkoVMm5WB8hImTJljL+/v9UxlFLKaWzbti3CGOOXlXkdsvj9\n/f0JCQmxOoZSSjkNETmR1Xl1V49SShUyWvxKKVXIaPErpVQhc8t9/CJSBZgLlAdswExjzMciUhpY\nAPgDocC9xpjoDJYfAbxmfzrJGDMnO0GTk5MJCwsjMTExO4srBYCHhweVK1fG3d3d6ihKWSYrB3dT\ngOeNMdtFpDiwTURWAw8CvxtjpojIOGAc8FL6Be1/HN4AggBjX3ZJRn8gbiUsLIzixYvj7++PiNzu\n4kphjCEyMpKwsDCqV69udRylLHPLXT3GmLPGmO32x7HAfqAS0A+4uvU+B+ifweLdgdXGmCh72a8G\nemQnaGJiIr6+vlr6KttEBF9fX/3UqAq929rHLyL+QFPgb6CcMeYspP1xAMpmsEgl4FS652H2aRm9\n9ygRCRGRkPDw8MzWfztxlfoX/R1S6jaKX0S8gYXAs8aYS1ldLINpGd7r0Rgz0xgTZIwJ8vPL0jUI\nSilVcBxeDZu/gJSkPF9VlopfRNxJK/3vjTGL7JPPi0gF++sVgAsZLBoGVEn3vDJwJvtxC54JEyYw\nbdq0LM8fGhpKQEBAHiZSSlli7RTY8iW45P11tbcsfkn7bPwNsN8Y80G6l5YAI+yPRwA/Z7D4SqCb\niJQSkVJAN/u0QiUlJcXqCEopR3ZqC5wOgZaPg0ven2WflTW0BYYDnUVkp/2rFzAF6Coih4Gu9ueI\nSJCIfA1gjIkC3gK22r8m2qc5ndDQUOrVq8eIESMIDAxk4MCBXL58mYkTJ9KiRQsCAgIYNWoUxqTt\nyerYsSOvvPIKHTp04OOPP+aXX36hZcuWNG3alC5dunD+/Plr771r1y46d+5M7dq1+eqrr4C0M1DG\njh1LQEAAjRo1YsGCBRlmuuOOO2jWrBnNmjVj48aN+fPDUErlrs0zwMMHmtyXL6u75WcKY8wGMt5X\nD3BnBvOHAI+kez4LmJXdgBl585e97DuT1cMMWdOgYgne6NPwpvMcPHiQb775hrZt2/Lwww8zY8YM\nxowZw/jx4wEYPnw4S5cupU+fPgBcvHiRdevWARAdHc3mzZsREb7++mvee+893n//fQB2797N5s2b\niY+Pp2nTpvTu3ZtNmzaxc+dOdu3aRUREBC1atKB9+/bX5SlbtiyrV6/Gw8ODw4cPM3ToUB3jSCln\nc/EU7FsCrZ+Eot75skqHHKTNUVWpUoW2bdsCcP/99/PJJ59QvXp13nvvPS5fvkxUVBQNGza8VvyD\nBw++tmxYWBiDBw/m7NmzJCUlXXceeb9+/fD09MTT05NOnTqxZcsWNmzYwNChQ3F1daVcuXJ06NCB\nrVu3EhgYeG255ORkxowZw86dO3F1deXQoUP59JNQSuWaLV+m/dvysXxbpVMW/622zPPKjacCighP\nPPEEISEhVKlShQkTJlx3jnixYsWuPX7qqaf4v//7P/r27cvatWuZMGHCTd/36i6jm/nwww8pV64c\nu3btwmaz4eHhkc3vTClliStxsG0uNOjH3H0pbDm+nWmDGuPh7pqnq9Wxem7DyZMn2bRpEwDz5s2j\nXbt2AJQpU4a4uDj+97//ZbpsTEwMlSqlXcIwZ871o1b8/PPPJCYmEhkZydq1a6/t1lmwYAGpqamE\nh4ezfv16goOD//WeFSpUwMXFhe+++47U1NTc/HaVUnlt5/dwJYaUlo/z5bpjXLh0Jc9LH7T4b0v9\n+vWZM2cOgYGBREVF8fjjj/Poo4/SqFEj+vfvT4sWLTJddsKECQwaNIg77riDMmXKXPdacHAwvXv3\nplWrVrz++utUrFiRAQMGEBgYSOPGjencuTPvvfce5cuXv265J554gjlz5tCqVSsOHTp03ScMpZSD\ns6XC5s+hcjBLIipy+mICozvWyJdVS1Z2KeS3oKAgc+NByv3791O/fn2LEqWdQXPXXXexZ88eyzKo\n3GH175JSABxYBvPvwwz8lh6r0zYGf332jmxfXS4i24wxQVmZV7f4lVLKCptmgE8V1rq05OD5WB7r\nUCPfhhTR4s8if39/3dpXSuWOs7vgxAYIHsXn609S0ceDPo0r5tvqtfiVUiq/bZoB7sXY6deXLaFR\njLyjBu6u+VfHWvxKKZWfYs/BnoXQ9H5mbI7Ax9OdIS2q3Hq5XKTFr5RS+Wnr12BLIbT2A6zef54R\nratRrGj+XlKlxa+UUvkl6TJs/Qbq9mLGrlSKuLowoo1/vsfQ4rdYfgzL/MUXXzB37tybzrNz506W\nL19+W++bXf7+/kRERNx0nrfffvu6523atMnLSErlj53fQ0IUkY0fY/GO09wbVAVf76L5HkOLPx9Y\nPSzz6NGjeeCBB246T3aKPy+/rxuLX0ceVU4vNQU2fgqVW/DlcT9SbYZH78ifC7ZupMWfRc48LHP6\nTxUdO3bkpZdeIjg4mDp16vDnn3+SlJTE+PHjWbBgAU2aNGHBggXEx8fz8MMP06JFC5o2bcrPP6fd\nbmH27NkMGjSIPn360K1bN9auXUv79u0ZMGAADRo0YPTo0dhsNiBtWItGjRoREBDASy+9lGG2/v37\n07x5cxo2bMjMmTMBGDduHAkJCTRp0oRhw4YB4O3tfdOfy9q1a+nYsSMDBw6kXr16DBs2LEvjHSmV\nb/YvgYsniG8xhv9uOUXvwIpU9fWyJIpTDtLGinFw7p/cfc/yjaDnlJvOUlCGZU5JSWHLli0sX76c\nN998k99++42JEycSEhLC9OnTAXjllVfo3Lkzs2bN4uLFiwQHB9OlSxcANm3axO7duyldujRr165l\ny5Yt7Nu3j2rVqtGjRw8WLVpEmzZteOmll9i2bRulSpWiW7du/PTTT/Tv3/+6LLNmzaJ06dIkJCTQ\nokUL7rnnHqZMmcL06dPZuXPnv7IvWrQo05/Ljh072Lt3LxUrVqRt27b89ddf18ZTUspSxsDGT6B0\nTeZE1ifuyhEea2/N1j5kofhFZBZwF3DBGBNgn7YAqGufpSRw0RjTJINlQ4FYIBVIyerlxI6qoAzL\nfPfddwPQvHlzQkNDM5xn1apVLFmy5NonhcTERE6ePAlA165dKV269LV5g4ODqVEj7Zd46NChbNiw\nAXd3dzp27MjV+ycPGzaM9evX/6v4P/nkExYvXgzAqVOnOHz4ML6+vplmz+znUqJECYKDg6lcuTIA\nTZo0ITQ0VItfOYbQDXBmB8k9P2DW6lPcUbsMAZV8LIuTlS3+2cB04NrRQWPMtUYTkfeBmJss38kY\nc/MjebfrFlvmecVZhmV+9dVXWbZsGUCGW81Fi6YdTHJ1dc10P70xhoULF1K3bt3rpv/999//Ggwu\nu/nXrl3Lb7/9xqZNm/Dy8qJjx47X/fwyy5WZq98X3Px7Uyrf/fUxeJVhQVJbIuKO8mSnppbGueU+\nfmPMeiDD2yXa78d7LzAvl3M5JGcZlnny5Mns3Lkzw9LPTPHixYmNjb32vHv37nz66afXinbHjh2Z\nLrtlyxaOHz+OzWZjwYIFtGvXjpYtW7Ju3ToiIiJITU1l3rx5dOjQ4V/5S5UqhZeXFwcOHGDz5s3X\nXnN3dyc5Oflf68rKz0Uph3J+HxxZTUqLx/hsw2mCqpWiZfXSt14uD+X04O4dwHljzOFMXjfAKhHZ\nJiKjcrguyxXkYZk7derEvn37rh3cff3110lOTiYwMJCAgABef/31TJdt3bo148aNIyAggOrVqzNg\nwAAqVKjAO++8Q6dOnWjcuDHNmjWjX79+1y3Xo0cPUlJSCAwM5PXXX6dVq1bXXhs1ahSBgYHXDu5e\nlZWfi1IOZeOn4O7FL0V6cDYmkSc718q3wdgyk6VhmUXEH1h6dR9/uumfA0eMMe9nslxFY8wZESkL\nrAaesn+CyGjeUcAogKpVqzY/ceLEda9bPZSuDsucsbVr1zJt2jSWLl1qdZQss/p3SRUil87AR4HY\nmj9E53298PZw45cx7fKk+PNlWGYRcQPuBv59nqGdMeaM/d8LwGIg08/kxpiZxpggY0zQ1QOCSinl\n1DZ/DiaV30sOJDTyMk92tH5rH3K2q6cLcMAYE5bRiyJSTESKX30MdAOcdnNZh2XOWMeOHZ1qa1+p\nfJMYAyHfYhr0Z9qWK9Qq6033ho6xW/KWxS8i84BNQF0RCRORkfaXhnDDQV0RqSgiVy//LAdsEJFd\nwBZgmTHm15yE1QtyVE7p75DKN9tmQ1IsmysM4+D5WJ7sVBMXF+u39iELp3MaY4ZmMv3BDKadAXrZ\nHx8DGucw3zUeHh5ERkbi6+vrEB+VlPMxxhAZGXnttFel8kxKEmz+AlO9PVN2elC1tCt9AvPvRiu3\n4jRX7lauXJmwsDDCw8OtjqKcmIeHx7WLvJTKM7vnQ+wZ9gRNYteKGN4e0Ai3fLzRyq04TfG7u7tf\nd7WrUko5JFsqbPgQKjRh0v4KlC+RwD3NK1md6jqO8ydIKaUKgn0/QdQxjtR7jL9Do3m0fQ2Kurla\nneo6WvxKKZVbjIE/P4AydZh8tAalixVhaHD+3lYxK7T4lVIqtxxeBef3cLLhaP44FMnIdtXxKuJ4\ne9S1+JVSKjcYA+ungU9VJoU2oKSXOw+0rmZ1qgxp8SulVG448ReEbeF0w0dZdTCKR9pVp7iHu9Wp\nMqTFr5RSueHP96FYWSadboaPp7slN1HPKi1+pZTKqdPb4egazjYYyYqDMTx6h+Nu7YMWv1JK5dyG\nD8DDh8kXWjn81j5o8SulVM5cOAD7f+FC/QdZejDeofftX+V45xkppZQz+esjcPfi7cgO+HimMqKt\nv9WJbkm3+JVSKruiT8DuH4ioex8/HUpkZLvqlHDwrX3QLX6llMq+P98HF1fevdSFEh4uPOgEW/ug\nW/xKKZU9F0/Czu+JrDuEHw/ZeOSOGk6xtQ+6xa+UUtnz5weA8G5cT0p4uDrN1j5k7Q5cs0Tkgojs\nSTdtgoicFpGd9q9emSzbQ0QOisgRERmXm8GVUsoyF0/Bjv8QWXcwPxwyjGznPFv7kLVdPbOBHhlM\n/9AY08T+tfzGF0XEFfgM6Ak0AIaKSIOchFVKKYew4UMA3ontiY+nOw+187c2z226ZfEbY9YDUdl4\n72DgiDHmmDEmCZgP9MvG+yillOOIOQ07viO81kD+d0R4rINzbe1Dzg7ujhGR3fZdQaUyeL0ScCrd\n8zD7NKWUcl4bPgRjY+LFHpTxLsqDDn6VbkayW/yfAzWBJsBZ4P0M5snojugmszcUkVEiEiIiIXpf\nXaWUQ7p0BrbP4XyNu/nlpDtPdqrpkOPt30q2it8Yc94Yk2qMsQFfkbZb50ZhQPpbz1QGztzkPWca\nY4KMMUF+fn7ZiaWUUnlrw0cYY2N8dA8q+HgwNLiq1YmyJVvFLyIV0j0dAOzJYLatQG0RqS4iRYAh\nwJLsrE8ppSx36Sxsm83Zav1ZedqDp++sjYe7Y91LN6tu+RlFROYBHYEyIhIGvAF0FJEmpO26CQUe\ns89bEfjaGNPLGJMiImOAlYArMMsYszdPvgullMprf32MsaXwWmR3qvl6MbB5ZasTZdsti98YMzSD\nyd9kMu8ZoFe658uBf53qqZRSTiX2HGz7lrAqfVhzqBgfDq6Nu6vzDnzgvMmVUiq//PUxJjWJVyO7\nU7usN30bO/cJilr8Sil1MzGnYes3nKjcj/WRPjzfrQ6uLhmdtOg8tPiVUupm1k/FGBtjw3sQUKkE\n3RuWtzpRjmnxK6VUZqKOw47vOFT5brZeLM7z3eoi4txb+6DFr5RSmVv3LsbFjWdOdyHYvzQd6xSM\na4y0+JVSKiPhB2H3AnaUG8iB+GK81LNegdjaBy1+pZTK2B9vY9w8eSasI90blqN5tYyGJHNOWvxK\nKXWjs7th30+s9x3E6SQvxnavZ3WiXKXFr5RSN/pjMraiPjx3qh2DW1ShVllvqxPlKi1+pZRK79RW\nOPQry4sP4rKLN8/cWcfqRLlOi18ppdJb8xYpHr68GNaGh9tWp7yPh9WJcp0Wv1JKXXV8PRxfxwKP\ngRTxKs5jHWpanShPaPErpRSAMfD7RK54lmfiudaM6VQLH0/nuqViVmnxK6UUwIGlELaVmS73Uqak\nD/e3qmZ1ojyjxa+UUqkp8NubxBavyUeRLfi/rnWc9iYrWaHFr5RSO+ZC5GEmX7mX2uVL0r+pcw+7\nfCu3LH4RmSUiF0RkT7ppU0XkgIjsFpHFIlIyk2VDReQfEdkpIiG5GVwppXJFUjysncJZnybMvxTA\nq73rO/2wy7eSlS3+2UCPG6atBgKMMYHAIeDlmyzfyRjTxBgTlL2ISimVhzbNgLjzjL14D53qluWO\n2gVjILabuWXxG2PWA1E3TFtljEmxP90MWH7zyVSbYdH2MPacjrE6ilLKWcRHwF8fs8+nPZuSa/FK\nr/pWJ8oXubGP/2FgRSavGWCViGwTkVE3exMRGSUiISISEh4eftshLiel8NbSfUxZceC2l1VKFVLr\np2KS43kmvC/3BVeldrniVifKFzkqfhF5FUgBvs9klrbGmGZAT+BJEWmf2XsZY2YaY4KMMUF+frf/\nUau4hztPdqrFhiMRbDgccdvLK6UKmajjsPUb1hXrwTn3qjzbpbbVifJNtotfREYAdwHDjDEmo3mM\nMWfs/14AFgPB2V1fVtzfqhqVSnry7q8HyCSSUkqlWTOJVHHlxYjejOlcC1/volYnyjfZKn4R6QG8\nBPQ1xlzOZJ5iIlL86mOgG7Ano3lzi4e7K891rcM/p2NY/s+5vFyVUsqZndkJe/7HD259KFq6IiPa\n+FudKF9l5XTOecAmoK6IhInISGA6UBxYbT9V8wv7vBVFZLl90XLABhHZBWwBlhljfs2T7yKdAU0r\nUaecN9NWHSQ51ZbXq1NKORtjYPV4rriX5O2Y7ozrUb9AX6yVEbdbzWCMGZrB5G8ymfcM0Mv++BjQ\nOEfpbofNBv/8iGu5BoztXo9H54bwY0gY97Wsmm8RlFJO4NBKOL6OT10eok61SvRqVN7qRPmu4Fy5\nmxQLv46DFePoUs+PoGql+Oi3QyQkpVqdTCnlKFKTYdVrRHlU5YvLnXitd/0Ccx/d21Fwit/DBzq9\nAic2IAeX8VLPelyIvcK3G49bnUwp5Si2fgORh3k5fjC9m1SladWCcx/d21Fwih+g+UPgVw9WvUaL\nysXoXK8sX6w9SszlZKuTKaWsdjkK1r7Dfs9m/CnNebln4bhYKyMFq/hd3aD72xAdCn9/wYs96hJ7\nJYUZ645YnUwpZbV172GuXOK5i/fyZKfaBfLOWllVsIofoNadULs7rJtKPe9EBjSpxOy/Qjkbk2B1\nMqWUVSIOY7Z+xTK3riSUrscjd1S3OpGlCl7xA3SbBCkJ8MdknutaB5sxfPzbYatTKaWssup1kqUo\nE2L7M/6uBhR1K1ynb96oYBa/Xx1o8Shsn0uVpGMMb+XPDyGnOHDuktXJlFL57dhaOLSC6Sn9CKhb\ni871ylqdyHIFs/gBOryYdqbPyld4unNNinu4M3nZfh3KQanCxJYKK18lyr0836R0Z/xdDQrl6Zs3\nKrjF71UaOr4Cx9dR8tTvPH1nbf48HMHaQ7c/8qdSyknt+A7O7+G1+Hu5v11davh5W53IIRTc4gcI\negjK1IVVrzK8RQX8fb2YvGw/KTqUg1IFX+IlzJpJ7HVrSIhXe57qXHhG37yVgl38ru7QfTJEHaPI\ntq94uVd9jlyIY97WU1YnU0rltbVTID6CcfFDebl3fbyL3nKEmkKjYBc/QO2uUKsrrHuPblWhZfXS\nfLT6EJcS9aIupQqsC/sxf3/BYulCkarN6d+kYN88/XYV/OIH6PkupCQiq9/gtd4NiIxPYsYfR61O\npZTKC8bA8rEkuBRjcuI9vNm3oR7QvUHhKH7fmtDmKdg9n0ape7m7WSVmbTjOqagMbyWglHJmexdB\n6J9MThxI3zaBBFTysTqRwykcxQ9wx/NQojIse4GxXWvi4gLv/qr351WqQLkSh1n5Gkdca7LGqwf/\n17WO1YkcUpaKX0RmicgFEdmTblppEVktIoft/2Y4zJ2IjLDPc9h+u0ZrFCkGPd6GC3upcPB7RrWv\nydLdZ9l2ItqySEqpXPbnNCT2DC9eHs5rfQIp7uFudSKHlNUt/tlAjxumjQN+N8bUBn63P7+OiJQG\n3gBakna/3Tcy+wORL+r3hZqd4Y/JPNbcm7LFi/LW0n3YbHpRl1JOL+IwZuN0fjIdKF67baG8wUpW\nZan4jTHrgagbJvcD5tgfzwH6Z7Bod2C1MSbKGBMNrObff0Dyjwj0nArJCRRb9xZju9dl56mLLN5x\n2rJISqlcYAyseJFEivBe6lAm9tMDujeTk3385YwxZwHs/2Y0AEYlIP1J82H2adYpUwvajIFd/+We\nMmE0qVKSd1Yc0NM7lXJmB5bB0TW8d+VuhnYKoppvMasTObS8Prib0Z/cDPeriMgoEQkRkZDw8Dwe\nVqH9WChRGZcVY5nYpy6R8Vd09E6lnFVyAubXcRyTqvxZagCjOtSwOpHDy0nxnxeRCgD2fy9kME8Y\nUCXd88rAmYzezBgz0xgTZIwJ8vPzy0GsLChSLO2K3vP/EHh2EUNaVGX2xlAOnY/N2/UqpXLf+qlI\nzCleThzBxP6NC/2Qy1mRk+JfAlw9S2cE8HMG86wEuolIKftB3W72adZr0A9qdIQ1k3ixrQ/eRd2Y\nsGSvjt6plDM5vw/z18cssrWnYpMutKlVxupETiGrp3POAzYBdUUkTERGAlOAriJyGOhqf46IBInI\n1wDGmCjgLWCr/WuifZr1RKD3B5CSSKn143mhe102Ho1k+T/nrE6mlMoKmw3zy7PEGi8+dhnBK70K\n7z10b5c44hZuUFCQCQkJyZ+VrZsKf0widcgC+qwsRvTlJH5/vgNeRXRAJ6UcWsi3sPRZnk8aTet7\nnmJg88pWJ7KUiGwzxgRlZd7Cc+VuZto+A371cF3xApN6+XM2JpHP/tCbsyvl0GLPY1s1ni2mARdq\nDOCeZjoI2+3Q4ncrAnd9BDGnaHbsC+5uWomv1h8nNCLe6mRKqUyYlS+TmpTAG7ZHefvuQD1n/zZp\n8QNUaw3NH4LNM3itWRJF3FyYuHSf1amUUhk5/BuyZyGfJvdjUPdOVCntZXUip6PFf1WXCVDMj9Jr\nXuC5ztVZc+ACK/fqgV6lHErSZVKXPsdxKrKxwnBGtPG3OpFT0uK/yrMk9JgCZ3fxoNsq6pUvzhs/\n7yXuSorVyZRSV617F9eYk7yWMpK3BzXH1UV38WSHFn96DQdA7W64rp3MtG6lOB+byLSVB61OpZQC\nOL8X28bp/JDSgRYd+1KnXHGrEzktLf70RKD3+wAE7HiL4S2rMmdTKLtOXbQ2l1KFXWoKqYufIMZ4\nsaDUozzRsZbViZyaFv+NSlaFTq/C4ZWMq7KHssWL8vKif0hJtVmdTKnCa9OnuJ7byevJD/LaoHYU\ncdPqygn96WWk1eNQKQiv317m7a7l2Hf2Et/+FWp1KqUKp/BD2Na8zYrUFlRsM5SmVa27pUdBocWf\nERdX6D8Dki7T+egUutTz44PVh/QevUrlN1sqKYsfJ9ZWhFk+Y/i/bnWtTlQgaPFnxq8udHoFObCU\n9+ofRQTG/7xHB3FTKj9tnoHbmRDeSHmQ8UM64eGuI2/mBi3+m2k9Bio1p/TaV3i1vS9/HAzXQdyU\nyi8RR0j97S1WpzanWvsHaFTZx+pEBYYW/824ukH/zyEpnqERHxNQsTgTftlLTILerUupPGWzkbz4\nCeJtbszxfYYxd9a2OlGBosV/K351odPLuBz4hRmNTxAZd4V3lu+3OpVSBZrZ8iXup/9mcsoDvD6k\nM+6uWlW5SX+aWdH6KajUnKqbx/Ns61LM33qKdYfy+PaQShVWUcdIXf0mf6Q2pkaXR6hbXi/Uym1a\n/Fnh6gb9ZkBSHE9e/pxaZb0Zt3C33qBdqdxmSyVp0ZMkpMJ/yz3PI+1rWp2oQMp28YtIXRHZme7r\nkog8e8M8HUUkJt0843Me2SJl60HHl3E9sISvm53g/KVE3l6mu3yUyk22jdMpEraRt20P8uqQLjoW\nTx7JdvEbYw4aY5oYY5oAzYHLwOIMZv3z6nzGmInZXZ9DaPM0VG6B/+bXeL6lt+7yUSo3nd2N+X0i\ny1ODadhzNP5lilmdqMDKrV09dwJHjTEncun9HJOrGwz4ElJTGB09ldp+XrrLR6nckJxI4g8jibB5\ns6rGOIa1qmZ1ogItt4p/CDAvk9dai8guEVkhIg1zaX3W8a0JPd/F9cSfzK6/RXf5KJULkle9gUf0\nISa7j2H8vXfoHbXyWI6LX0SKAH2BHzN4eTtQzRjTGPgU+Okm7zNKREJEJCQ83MF3nzS9H+rdRaWQ\nqbzWPJX5W0+xXnf5KJU9R//AfesXzEntxuAhD1G6WBGrExV4ubHF3xPYbow5f+MLxphLxpg4++Pl\ngLuIlMnoTYwxM40xQcaYID8/v1yIlYdEoM8n4OXLg+cm0cDPXXf5KJUdl6NI/N9jHLFVJLzlq7St\nlWE9qFyWG8U/lEx284hIebF/ZhORYPv6InNhndYr5gv9P8Ml4iBzqizn3KVE3vpF79OrVJYZQ8JP\nz+KaEMH00i/xdI9AqxMVGjkqfhHxAroCi9JNGy0io+1PBwJ7RGQX8AkwxBSkUc5qdYGWo/Hb9y3v\nNQnnx21hrPjnrNWplHIKtt0/4HnoZz6zDeKZ+wfpGPv5SByxh4OCgkxISIjVMbImOQFmdsIkRDG8\nyIf8E+3Or8/eQQUfT6uTKeWWLYGVAAAW/ElEQVS4oo5z5bO27E6uRGifHxnUwt/qRE5PRLYZY4Ky\nMq/+ic0pd0+45yskIZovS3xLcmoqz/+wC5vN8f6gKuUQUpKI//4BElNgSc03GRikp27mNy3+3FC+\nEXSdSLHQ1XzfMISNRyP5esMxq1Mp5ZASVrxGscjdTPV4irGDu+qpmxbQ4s8tLUdDvbtocvAjHq8Z\nxdSVB9l7JsbqVEo5lNT9y/Dc9iVzbD0YOuIJSni4Wx2pUNLizy0i0G86UqIiL8S+i7/XFZ6Zv5OE\npFSrkynlGC6eInnhaP6x+ePZczINK+qNVayixZ+bPEvBwNm4xp1jfrn/cORCLG/r2P1KQWoyMf95\ngOTkZH6pM5lBrXTUTStp8ee2ys2h60R8w35jZq2/+W7zCX7f/69r25QqVOJWTMAnYjufej3Js/f2\n0P36FtPizwutHoe6vel65nP6+Z3lhR93ceZigtWplLJEysFVeIdM5wdzJ/c+9BxeRdysjlToafHn\nBRHo/xlSvALT+BCPlEs8NW8Hyak2q5Mplb9iTpP046McsFXBs+9UapX1tjqRQos/73iWgkGzcY8/\nz+KK37P9RCRTVx60OpVS+SflChdnD8GWnMivDabQp7nu13cUWvx5qXJz6DaJ8ufW8LX/WmauP8aq\nveesTqVUvoj+3zOUjN7NZyVf4PGBPa2Oo9LR4s9rLR+DwMF0PvcND/sd5Pkfd3Ey8rLVqZTKU/Eb\nv6bUgXl863I3D418iqJurlZHUulo8ec1EejzMVK+Ea9d+YBqnOHJ/27nSoqe368KppQTf1N01Uus\ntzWm6YhplC3hYXUkdQMt/vzg7glDvsfFrQjzi3/K8dNnmbRUz+9XBVDcBS7/ZxhnbKWI7jmDJtV8\nrU6kMqDFn19KVoVBs/GOC2Vh+bn8Z/Nxluw6Y3UqpXJPajLhs4bgnhTD8obT6Nc6wOpEKhNa/Pmp\nenvoNom6F9cz2XcV4xbu5uC5WKtTKZUrLix8Ab+obXxT+jkeGdjX6jjqJrT481urx6HRvQyN/45u\n7rt4dG4I0fFJVqdSKkdiNs2m7L7ZLHDtw32PvICbq1aLI8uNm62Hisg/IrJTRP519xRJ84mIHBGR\n3SLSLKfrdGrpDva+7/IpxWKOMGbedlL04i7lpBIOr8Nr5fNsMgE0euhjvVm6E8itP8udjDFNMrn7\nS0+gtv1rFPB5Lq3TeRXxgiH/xbWIJ/8r8SEHjxxj0jI92KucT2r4EVLnDeOErSzJ98ymQWU9mOsM\n8uPzWD9grkmzGSgpIhXyYb2OrWQVuG8+xZKj+Ml3OvM2HuKHraesTqVUlpnLUUR/3Z8rqfBPh69o\nH1jb6kgqi3Kj+A2wSkS2icioDF6vBKRvtDD7tOuIyCgRCRGRkPDw8FyI5QQqNYd7vqJS/D7mlprF\naz/tYtuJKKtTKXVrKUmc/WoQxRPP8ku9qQy4s53VidRtyI3ib2uMaUbaLp0nRaT9Da9nNP7qv25I\na4yZaYwJMsYE+fn55UIsJ1G/D9J1Ii0T1jPeaxGPfbedszE6kqdyYMYQ9p/HqBgdwvflXuSBwUOs\nTqRuU46L3xhzxv7vBWAxEHzDLGFAlXTPKwN6Ant6bZ6C5g9yf/JCeiavZtTcbXrnLuWwziybQuXQ\nRcz3uo+hj7yAi4uOre9sclT8IlJMRIpffQx0A/bcMNsS4AH72T2tgBhjzNmcrLfAEYFe06BGJ950\n+ZoSZ//imfk7SLX964ORUpaK+PsHKoZM4TfXdtw5+kM8i+gYPM4op1v85YANIrIL2AIsM8b8KiKj\nRWS0fZ7lwDHgCPAV8EQO11kwubrDvXNwKVObWV6fELo/hIm/7MUYLX/lGGL2/U6JFY+zg7pUHzkb\nPx2Dx2nl6FY4xphjQOMMpn+R7rEBnszJegoNDx8Y9gNFv+7KQplKz81FqVTKk1HtdRxzZa240BDc\nfxhGqCmPDJtPzYqF6DhcAaSX1zmaklVh+GK8XVNY5D2Vmcv/1jF9lKUSzx0ide7dRJtiRA6YT5M6\nNayOpHJIi98RlWuADPsRP6L50XsaE37YxOZjkVanUoVQ8sUzxH7dh5RUG4e6zaV1k0ZWR1K5QIvf\nUVUJRgZ/h7/tJN96vM9Tczdy+LwO6Kbyj+1yNBc+vwuv5Gi2tplJp7ZtrY6kcokWvyOr1QUZ8AWB\nqft4Xz5i5KzNnL+UaHUqVQiYpMuc/Kwffomh/N74A3p072V1JJWLtPgdXaOBSO9ptDchPJ/4CcO/\n2kRk3BWrU6kCzKRc4djng6gat5tltd6kz4BhVkdSuSxHZ/WofNLiEbgcRb8/JhMX48ED37jy31Gt\n8fF0tzqZKmBMyhWOzhhIregNLK78PP3vH4OIXqBV0GjxO4v2Y+FKLMM2foItAh6c5cJ3j7TCu6j+\nJ1S5w6QkcWTGvdSOWs9PFZ6j38jXtfQLKG0NZyECXScCMHzjJ5hz8MhsF2Y/3BIPd716UuWMSUni\n8IzB1Ilay5IKz9D30Td0KIYCTPfxO5Or5d/maR5wXUWvsA94bG4IV1J0XB+VfSY1mYOfD6FO1BqW\nVhjDXY++qaVfwGnxO5vryn81nY9P5en/bidZ7+ClssGkJnNgxlDqRf7OsgpP0uvRSVr6hYAWvzNK\nV/4j3FbT5tC7PDt/h5a/ui0mJYl9M4ZRP3I1K8o/Ts9HJ2vpFxJa/M7qhvJvvX8yT3y3hcRk3e2j\nbi31ymUOfNKfhpEr+bX8Y3Qf9Y6WfiGixe/MrpZ/u+e43+13+h19g9GzN3I5KcXqZMqBXYmP5uhH\nPagbs5GV/mPp/ti7WvqFjBa/sxOBLhOg2yTuct3MI6fGMeqrtVxKTLY6mXJAcdHnOPNRF6pf3sPa\nhpPp/uBrespmIaTFX1C0eQr6f04b1/2MPf8ij89cRXR8ktWplAOJPnOUi9PvpHzSSf5uOZ3O9+po\n6YVVtotfRKqIyB8isl9E9orIMxnM01FEYkRkp/1rfM7iqptqch8uQ74nwD2MtyJf4KkvlnAhVsf2\nUXDu6C6Sv+pKiZQo9t45m3a97rM6krJQTrb4U4DnjTH1gVak3Wi9QQbz/WmMaWL/mpiD9amsqNsT\n1wd+pmqRWKZdGsvYGT9wPCLe6lTKQse2/07R7+7CxaRwst+PBLXvbXUkZbFsF78x5qwxZrv9cSyw\nH6iUW8FUDlRrjdvIX/H1cuXThHG8+9nnhIRGWZ1KWWD38plU/vle4qQYF4f8QkCzdlZHUg4gV/bx\ni4g/0BT4O4OXW4vILhFZISINc2N9KgvKB+A+6nc8SlfhMzOZpd+8xS96J69Cw9hS2frt8wRuGcvB\nIvXxGL2GWvX+dZdUVUjluPhFxBtYCDxrjLl0w8vbgWrGmMbAp8BPN3mfUSISIiIh4eHhOY2lAEpV\no8hjv5FaswsTXGcR/ePTfLFmv97AvYC7khDHzg/vocWJr9nk04vaz6/Gr1xFq2MpB5Kj4hcRd9JK\n/3tjzKIbXzfGXDLGxNkfLwfcRaRMRu9ljJlpjAkyxgT5+emNnHNN0eIUGTaflFZP8YDbagL+GMnE\nHzfqVb4FVOT5k5x4vzONL61lQ/WnafXM93h4eFodSzmYnJzVI8A3wH5jzAeZzFPePh8iEmxfn948\nNr+5uOLWYxK2vp/R2u0gw/c8zCtfLSLmsp7rX5Ac3b2B5M87UTk5lO2tP6XdiLcQFz1jW/1bTn4r\n2gLDgc7pTtfsJSKjRWS0fZ6BwB4R2QV8Agwxup/BMi7N7sf1oWVU9Eji9bNP8e5H09hzOsbqWCqH\njM3Glh+nUmVhPwRD2IBFBPUYbnUs5cDEEXs4KCjIhISEWB2j4Io+Qfz391MsYjezbT3xvuttBgbX\nsDqVyoa42IscmDmSoNjf2OXRgioPz6V0Wd2fXxiJyDZjTFBW5tXPgYVRqWoUG/0bCc1G8aDLCmot\nvYf35v+qA7w5mWP7thD5QVuaXvqdTf5P0GjsSi19lSVa/IWVW1E8+04l9d7vqOd+gdH7H+KDj6dx\nKuqy1cnULRhj+HvxdCos6I23ieNAt//Q+sF3cHHVO7GprNHiL+RcG/TFY8xfGN+avBL3Nn9+8jCr\ndoVaHUtlIiYqnC0fDqblrlc5VrQeZvSfNGx7l9WxlJPR4ldQyh+fJ9Zwqcmj3McKqi/sxUez5xGT\noGf9OJLta/5H4ifBNI9Zzd9VH6Xei2soU76q1bGUE9LiV2ncilCi/zRShv5IeY9knjr+OEumPcrG\ng6etTlboxVyMYtNH99Ns/UgSXYpx4u6fafnwNFzd3K2OppyUFr+6jlvdbhT/vxAu1h3M8NTFlP2+\nC1/N+4GEJD3wa4Wd637m8kfBBEcvZUvF4VR4cQs1G7e3OpZyclr86t88fPC970uuDPkRv6KpPHxg\nFD9PHcm2IzrWT36JCj/Hxo9H0OSPB0h1ced434UEj5pOEQ8vq6OpAkCLX2WqaL1u+Dy/lfDa9zIk\neTFl57Zn9tefEH5Jx/jPKynJyfy1YBp8FkTLqJ/ZWn4IZV7YQq3md1odTRUgegGXypLEQ38Qu/h5\n/BKOspkAzrV6g7u6dsHNVbcdcsuev3+nyKoXqZN6hANFA/Dq9wFVG7S0OpZyErdzAZcWv8q61BTC\n132B54YpeKbGscyjF1XunkTTunrVb06cP3OSY/PH0vrSr4RTmjPBrxDYY6SOs6Nuixa/ylMmPpIT\nC1+jyrH5XDJe/FHuQZrd/Rz+5TMceFVlIiriAvsWTaHJ6f9ShCR2VR5Go6Fv4eFd0upoyglp8at8\nkRC2mws/PEe1SyGcNyXZXGE4ze9+jsplfa2O5tCioyLZs2gKjU/9hxJymV3FO1C2/yQq1Ay0Oppy\nYlr8Kl9d3LeGi8vfwj9uOxdMSbZWGk6zAc9RwU//AKQXczGK3YumEnhiDj4Sz27vtpTsNZ6qDVpZ\nHU0VAFr8yhKRe9cQs+ItasRtJ9z4sK3SMOr2fILqVapYHc1Sp08c4fivn9Lw7EJKEcs/Xq0o0Ws8\n1QLaWh1NFSBa/MpSF/asIWbFJGrHbyPRuPO3d2c824yiees7cXURq+PlC2Oz8c/G5SRt/JIm8Rtw\nwbDHuzXFu46jepMOVsdTBZAWv3IIUUe3cXr1dGqeW44Xiex3qc35uvfTtMfD+PiUsDpenoi5GMW+\nVbMod2AuNWwniMGbQxX749/jafyq1rU6nirA8q34RaQH8DHgCnxtjJlyw+tFgblAc9JuuTjYGBN6\nq/fV4i9YkuOjObjqa3z2zqVKykliTDH2lmiHW6MBBNzRDy9P574aNT42hn3rf8Rl7080jN+MhyRz\nzLU60QEPEdDjYYp6Frc6oioE8qX4RcQVOAR0BcKArcBQY8y+dPM8AQQaY0aLyBBggDFm8K3eW4u/\ngDKG0G2ruLhxFjWj1lOcy1wyXuzzaYd7w/40uGMAnl7O8UcgIT6O/RsWY/tnEQ1i/8JLrhBBSY6V\n7Uqp4KHUbt4ZpHDs1lKOIb+KvzUwwRjT3f78ZQBjzDvp5llpn2eTiLgB5wC/W913V4u/4EtNSuTw\n5qXE71xErah1+BBHnPHkiFdjEiq2wrdhZ2o0ao2bexGrowKQdCWRozvXcXHvGkqc20itK/spKslE\nU4LDvp0oHjSEui264eLmZnVUVUjdTvHn5Le0EnAq3fMw4Mbry6/NY4xJEZEYwBeIuPHNRGQUMAqg\nalUdY7ygcy3iQb32A6H9QFKSEtm3eTlxu36iQnQIVY5uhqMfEfezJ8c8A0io2IriNVpQvmZjSpev\nludb0saWytnQg4Qf3UHC6X/wOreVWgn/UF+uYDPCMbca7KgwCO8G3ajXujfBDvLHSamsyknxZ/R/\n341b8lmZJ22iMTOBmZC2xZ+DXMrJuBXxoEH7u6H93QBEnj1J6PZVpBz7k3LR2wg89ikcA36DWLw4\n616VWO8a2MrUwaNsDTx9ylKsZHmK+5almI8f4nbzIjapKcRGneNi+Gnio86SePEsyRfP4hJ5mJKx\nh6mYfJKKcoWrd68NdanCbr+7KFK7IzWDulPLtxy18vZHolSeyknxhwHpT9CuDNw4bu/VecLsu3p8\ngKgcrFMVAr4VquLb+xHgEQAizp/hzKEQ4sL2IREH8b50lKrRG/GLXg6H/738JYqRIGnHCgSbfevD\n4GIMrqRQwsRRQgw3nlcUgQ9nilRnV9m+SLkG+Pg3plLtpvj7lMY/775dpfJdTop/K1BbRKoDp4Eh\nwH03zLMEGAFsAgYCa261f1+pG5UpV5Ey5foCfa9NM8YQfuEckedCSbh4niuXIkiJjcDER+CSEIVr\nchxGBBBEBIOACEbcsHmVRoqVxd2nHJ6lKlCsdEVKlqmAr68fZfSArCoEsl389n32Y4CVpJ3OOcsY\ns1dEJgIhxpglwDfAdyJyhLQt/SG5EVopEcGvXAX8ylWwOopSTidHpyAYY5YDy2+YNj7d40RgUE7W\noZRSKnfpgN9KKVXIaPErpVQho8WvlFKFjBa/UkoVMlr8SilVyGjxK6VUIaPFr5RShYxD3ohFRMKB\nE9lcvAwZDALnADTX7dFct0dz3Z6CmKuaMcYvKzM6ZPHnhIiEZHVo0vykuW6P5ro9muv2FPZcuqtH\nKaUKGS1+pZQqZApi8c+0OkAmNNft0Vy3R3PdnkKdq8Dt41dKKXVzBXGLXyml1E0U6OIXkRdExIhI\nGauzAIjIWyKyW0R2isgqEal466XynohMFZED9myLRaSk1ZkARGSQiOwVEZuIWHoGhoj0EJGDInJE\nRMZZmSU9EZklIhdEZI/VWdITkSoi8oeI7Lf/N3zG6kwAIuIhIltEZJc915tWZ7pKRFxFZIeILM3r\ndRXY4heRKkBX4KTVWdKZaowJNMY0AZYC42+1QD5ZDQQYYwKBQ8DLFue5ag9wN7DeyhAi4gp8BvQE\nGgBDRaSBlZnSmQ30sDpEBlKA540x9YFWwJMO8jO7AnQ2xjQGmgA9RKSVxZmuegbYnx8rKrDFD3wI\nvEgmN3e3gjHmUrqnxXCQbMaYVcaYFPvTzaTdP9lyxpj9xpiDVucAgoEjxphjxpgkYD7Qz+JMABhj\n1uOA97E2xpw1xmy3P44lrdAqWZsKTJo4+1N3+5fl/x+KSGWgN/B1fqyvQBa/iPQFThtjdlmd5UYi\nMllETgHDcJwt/vQeBlZYHcLBVAJOpXsehgOUmLMQEX+gKfC3tUnS2Hep7AQuAKuNMY6Q6yPSNlRt\n+bGyHN160Uoi8htQPoOXXgVeAbrlb6I0N8tljPnZGPMq8KqIvAyMAd5whFz2eV4l7SP69/mRKau5\nHEBGd2C3fCvRGYiIN7AQePaGT7yWMcakAk3sx7IWi0iAMcayYyQichdwwRizTUQ65sc6nbb4jTFd\nMpouIo2A6sAuEYG03RbbRSTYGHPOqlwZ+C+wjHwq/lvlEpERwF3AnSYfz/G9jZ+XlcKAKumeVwbO\nWJTFaYiIO2ml/70xZpHVeW5kjLkoImtJO0Zi5cHxtkBfEekFeAAlROQ/xpj782qFBW5XjzHmH2NM\nWWOMvzHGn7T/aZvlR+nfiojUTve0L3DAqizpiUgP4CWgrzHmstV5HNBWoLaIVBeRIsAQYInFmRya\npG11fQPsN8Z8YHWeq0TE7+pZayLiCXTB4v8PjTEvG2Mq2/tqCLAmL0sfCmDxO7gpIrJHRHaTtivK\nIU5xA6YDxYHV9lNNv7A6EICIDBCRMKA1sExEVlqRw37gewywkrSDlD8YY/ZakeVGIjIP2ATUFZEw\nERlpdSa7tsBwoLP9d2qnfYvWahWAP+z/D24lbR9/np8+6Wj0yl2llCpkdItfKaUKGS1+pZQqZLT4\nlVKqkNHiV0qpQkaLXymlChktfqWUKmS0+JVSqpDR4ldKqULm/wFPVVV/5zfLaQAAAABJRU5ErkJg\ngg==\n",
"text/plain": [
- ""
+ "