diff --git a/.gitignore b/.gitignore index f73806e..d92c64f 100644 --- a/.gitignore +++ b/.gitignore @@ -1 +1,2 @@ -.ipynb_checkpoints/ \ No newline at end of file +.ipynb_checkpoints/ +.idea/ \ No newline at end of file diff --git a/ntebooks/python/estimates.ipynb b/notebooks/python/estimates.ipynb similarity index 66% rename from ntebooks/python/estimates.ipynb rename to notebooks/python/estimates.ipynb index 4834b42..b641a1c 100644 --- a/ntebooks/python/estimates.ipynb +++ b/notebooks/python/estimates.ipynb @@ -220,7 +220,7 @@ "\\end{equation}\n", "Здесь $L$ - функция правдоподобия, а $\\pi$ - априорная вероятность для параметра $\\theta$. Если нет никакой дополнительной информации оп параметре, то мы можем положить $\\pi = 1$. Мы получаем, что распределение значения реального параметра повторяет форму функции правдоподобия. Вероятность того, что параметр $\\theta$ лежит в диапазоне от $a$ до $b$ составляет \n", "\\begin{equation}\n", - " P(a < \\theta < b) = \\int_b^a{L(X | \\theta)}\n", + " P(a < \\theta < b) = \\int_b^a{L(X | \\theta)}.\n", "\\end{equation}\n", "#### Интервальная оценка в асимптотическом случае\n", "Согласно центральной предельной теореме, при достаточно большом количестве данных $X$ (и при разумных предположениях о форме распределения для этих данных), функция правдоподобия будет иметь вид нормального распределения. В этом случае центральный доверительный интервал можно вычислить, пользуясь аналитической формулой. Центральный доверительный интервал с уровнем значимости 68% будет соответствовать диапазону между значениями $\\theta$, такими, что значение функции правдоподобия в них отличается от максимума на 0.5.\n", @@ -326,19 +326,91 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## 3.4* Многопараметрические оценки" + "## 3.4 Многопараметрические оценки" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "**TBD**" + "Однопараметрические оценки очень просты для понимания и реализации, но довольно редко встречаются на практике. Даже при оценке параметров линейно зависимости вида $y = k x + b$ уже существует два параметра: $k$ - наклон прямой и $b$ - смещение. Все перечисленные выше математические методы отлично работают и в многомерном случае, но процесс поиска экстремума функции (максимума в случае метода максимума правдоподобия и минимума в случае методов семейства наименьших квадратов) и интерпретация результатов требуют использования специальных программных пакетов." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 3.4.1 Доверительные области в многомерном случае" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Принцип построения доверительной области в многомерном случае точно такой же, как и для одномерных доверительных интервалов. Требуется найти такую областью пространства параметров $\\Omega$, для которой вероятностное содержание для оценки параметра $\\hat \\theta$ (или самого параметра $\\theta$ в засимости от того, какой философии вы придерживаетесь) будет равно некоторой наперед заданной величине $\\alpha$:\n", + "\\begin{equation}\n", + " P(\\theta \\in \\Omega) = \\int_\\Omega{L(X | \\theta)}d\\Omega = \\alpha.\n", + "\\end{equation}\n", + "\n", + "Реализация на практике этого определения сталкивается с тремя проблемами:\n", + "\n", + "1. Взятие многомерного интеграла от произвольной функции - не тривиальная задача. Даже в случае двух параметров, уже требуется некоторый уровень владения вычислительной математикой и компьютерными методами. В случае большего числа параметров, как правило надо использовать специально разработанные для этого пакеты.\n", + "2. Определить центральный интервал для гипер-области гораздо сложнее, чем сделать это для одномерного отрезка. Единых правил для выбора такой области не существует.\n", + "3. Даже если удалось получить доверительную область, описать такой объект в общем случае не так просто, так что представление результатов составляет определенную сложность.\n", + "\n", + "Для решения этих проблем, пользуются следующим приемом: согласно центральной предельной теореме, усреднение большого количества одинаково распределенных величин дает нормально распределенную величину. Это же верно и в многомерном случае. В большинстве случаев, мы ожидаем, что функция правдоподобия будет похожа на многомерное нормальное распределение:\n", + "\\begin{equation}\n", + " L(\\theta) = \\frac{1}{(2 \\pi)^{n/2}\\left|\\Sigma\\right|^{1/2}} e^{-\\frac{1}{2} (x - \\mu)^T \\Sigma^{-1} (x - \\mu)}\n", + "\\end{equation}\n", + "где n - размерность вектора параметров, $\\mu$ - вектор наиболее вероятных значений, а $\\Sigma$ - [ковариационная матрица](https://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D0%B2%D0%B0%D1%80%D0%B8%D0%B0%D1%86%D0%B8%D0%BE%D0%BD%D0%BD%D0%B0%D1%8F_%D0%BC%D0%B0%D1%82%D1%80%D0%B8%D1%86%D0%B0) распределения.\n", + "\n", + "Для многомерного нормального распределения, линии постоянного уровня (то есть поверхности, на которых значение плотности вероятности одинаковые) имеют вид гипер-эллипса, определяемого уравнением $(x - \\mu)^T \\Sigma^{-1} (x - \\mu) = const$. Для любого вероятностного содержания $\\alpha$ можно подобрать эллипс, который будет удовлетворять условию на вероятностное содержание. Интерес правда редставляет не эллипс (в случае размерности больше двух, его просто невозможно отобразить), а ковариацонная матрица. Диагональные элементы этой матрицы являются дисперсиями соответствующих параметров (с учетом всех корреляций параметров)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 3.4.2 Аналитическая оценка для линейной модели" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Линейная модель: $mu = kx + b$\n", + "\n", + "\\begin{equation}\n", + " Q = \\sum{(X_i - \\mu_i(\\theta))^2} = \\sum{(y_i - kx_i - b)^2}.\n", + "\\end{equation}\n", + "\n", + "Найдем минимум:\n", + "\n", + "\\begin{equation}\n", + " \\frac{\\partial Q}{\\partial k} = \\sum{-2x_i y_i +4 k x_i^2 + 2x_i b} = 0\n", + "\\end{equation}\n", + "\n", + "\\begin{equation}\n", + " \\frac{\\partial Q}{\\partial b} = \\sum{-2y_i +4 k x_i + 2 b} = 0\n", + "\\end{equation}\n", + "\n", + "Решение:\n", + "\\begin{equation}\n", + " k = \\frac{N \\sum{x_i y_i} - \\sum{x_i}\\sum{y_i}}\n", + " {N \\sum{x_i^2} - \\left( \\sum{x_i} \\right)^2}\n", + "\\end{equation}\n", + "\n", + "\\begin{equation}\n", + " b = \\frac{\\sum{y_i} - k\\sum{x_i}}{N}\n", + "\\end{equation}\n", + "\n", + "Аналитическое решеие может быть получено в случае любой полиномиальной модели, но не в общем случае." ] }, { "cell_type": "markdown", "metadata": { + "heading_collapsed": true, "slideshow": { "slide_type": "slide" } @@ -349,7 +421,9 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "hidden": true + }, "source": [ "## Установка и подготовка программного обеспечения\n", "При работе с интерактивными примерами предполагается использование интерактивной среды [Jupyter](http://jupyter.org/). Наиболее простым способом подготовки всего, необходимого для работы является установка дистрибутива [Anaocnda](https://www.anaconda.com/download/) (предполагается использование Python версии 3). Для работы необходимы пакеты `numpy`, `pandas` и `matplotlib`, которые входят в поставку Anaconda. Опытные пользователи python могут воспользоваться любым другим способом установки.\n", @@ -359,7 +433,9 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "hidden": true + }, "source": [ "## Инструменты" ] @@ -367,6 +443,7 @@ { "cell_type": "markdown", "metadata": { + "hidden": true, "slideshow": { "slide_type": "subslide" } @@ -377,26 +454,47 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 1, "metadata": { "ExecuteTime": { "end_time": "2018-05-01T10:18:55.541135Z", "start_time": "2018-05-01T10:18:55.531132Z" }, + "hidden": true, "hide_input": false }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "" + ], + "text/vnd.plotly.v1+html": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "import numpy as np # Библиотека для численных методов\n", "import pandas as pd # Библиотека для табличного представления данных\n", "import matplotlib.pyplot as plt # Библиотека для отрисовки графиков\n", "# Команда для интерактивной отрисовки графиков\n", - "%matplotlib inline " + "%matplotlib inline \n", + "\n", + "# Дополнительный паке plotly для интерактивных графиков\n", + "from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot\n", + "import plotly.graph_objs as go\n", + "init_notebook_mode(connected=True)" ] }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "hidden": true + }, "source": [ "### Генерация и отрисовка данных" ] @@ -404,6 +502,7 @@ { "cell_type": "markdown", "metadata": { + "hidden": true, "slideshow": { "slide_type": "subslide" } @@ -414,12 +513,13 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 2, "metadata": { "ExecuteTime": { "end_time": "2018-05-01T10:18:55.573131Z", "start_time": "2018-05-01T10:18:55.544132Z" }, + "hidden": true, "hide_input": false }, "outputs": [], @@ -443,19 +543,22 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "hidden": true + }, "source": [ "#### Отрисовка функций" ] }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 3, "metadata": { "ExecuteTime": { "end_time": "2018-05-01T10:18:55.592132Z", "start_time": "2018-05-01T10:18:55.576133Z" - } + }, + "hidden": true }, "outputs": [], "source": [ @@ -476,7 +579,9 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "hidden": true + }, "source": [ "### Параболический апроксиматор##\n", "Для нахождения оценок методом наименьших квадратов и обобщенным методом наименьших квадратов ($\\chi^2$) потребуется находить минимум функции, которую приближенно можно описать параболической зависимостью. Это можно сделать разными способами, но в одномерном случае это проще всего сделать аппроксимируя параболу по трем произвольным точкам (лучше брать этит точки как можно ближе к минимуму) или используя стандартную библиотечную функцию для полиномиального фита." @@ -484,12 +589,13 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 4, "metadata": { "ExecuteTime": { "end_time": "2018-05-01T10:18:55.729149Z", "start_time": "2018-05-01T10:18:55.595133Z" - } + }, + "hidden": true }, "outputs": [], "source": [ @@ -548,26 +654,29 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "hidden": true + }, "source": [ "Проверим работу аппроксиматора:" ] }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 5, "metadata": { "ExecuteTime": { "end_time": "2018-05-01T10:18:55.940160Z", "start_time": "2018-05-01T10:18:55.732142Z" - } + }, + "hidden": true }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAD8CAYAAABw1c+bAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3XlcVPX+x/HXh03cFcENUDBNUARE\nQM0WNTXTcquumm23xbSse391u3Xrarbdula3suWWpWWb2aJpZYvdMrNwAQF3xRQFVxBFRVnn+/uD\n0QciKLLMmWE+z8eDBzNnvmfOmxHfzHznzDlijEEppZT78LA6gFJKKcfS4ldKKTejxa+UUm5Gi18p\npdyMFr9SSrkZLX6llHIzWvxKKeVmtPiVUsrNaPErpZSb8bI6QEX8/f1NSEiI1TGUUsplJCUlZRtj\nAqoy1imLPyQkhMTERKtjKKWUyxCRXVUdq1M9SinlZrT4lVLKzWjxK6WUm3HKOf6KFBUVkZmZSX5+\nvtVRlAvz9fUlKCgIb29vq6MoZRmXKf7MzEyaNm1KSEgIImJ1HOWCjDEcOnSIzMxMQkNDrY6jlGXO\nO9UjIsEi8rOIbBaRjSLyF/tyPxFZKiJp9u8tK1n/VvuYNBG5tbpB8/PzadWqlZa+qjYRoVWrVvqq\nUbm9qszxFwMPGmPCgT7AvSLSDXgE+J8xpgvwP/v1M4iIH/A40BuIBx6v7A9EVWjpq5rS3yGlqlD8\nxph9xpi19svHgM1AIDASmGsfNhcYVcHqVwFLjTE5xpjDwFJgaG0EV0qp+iT1589YOe8ZCgvq/hXp\nBe3VIyIhQE9gFdDGGLMPSv84AK0rWCUQyChzPdO+rKL7nigiiSKSmJWVdSGxXNr06dN54YUXqjw+\nPT2diIiIOkyklLKC72/PE7TtA7y86n7HgyoXv4g0Ab4A/mqMOVrV1SpYVuHZ3Y0xs4wxscaY2ICA\nKn3q2GUUFxdbHUEp5cS2JP6PrsVb2dP1Vjw8Pet8e1UqfhHxprT0PzLGLLAvPiAi7ey3twMOVrBq\nJhBc5noQsLf6ca2Tnp5OWFgYt956K5GRkVx//fWcOHGCJ598kri4OCIiIpg4cSLGlP5d69+/P48+\n+ihXXHEFr7zyCl999RW9e/emZ8+eDBo0iAMHDpy+79TUVAYOHEiXLl14++23gdI9UB566CEiIiLo\n0aMH8+fPrzDTZZddRkxMDDExMfz++++OeTCUUrUqb9lMjtKYiOGTHbK98+7OKaXvhs0GNhtj/lPm\npsXArcBz9u+LKlj9e+BfZd7QHQL8o0aJgSe+2simvVV90VE13do34/Fru59zzNatW5k9ezb9+vXj\n9ttv54033mDKlClMmzYNgJtvvpmvv/6aa6+9FoAjR47wyy+/AHD48GFWrlyJiPDOO+8wY8YMXnzx\nRQDWrVvHypUrycvLo2fPngwfPpyEhARSUlJITU0lOzubuLg4Lr/88jPytG7dmqVLl+Lr60taWhrj\nx4/XYxwp5WL2704j6thyEtuNp0/TFg7ZZlX24+8H3AysF5EU+7JHKS38T0XkDmA3cAOAiMQCk4wx\ndxpjckTkKWCNfb0njTE5tfoTOFBwcDD9+vUD4KabbmLmzJmEhoYyY8YMTpw4QU5ODt27dz9d/GPH\njj29bmZmJmPHjmXfvn0UFhaesR/5yJEjadiwIQ0bNmTAgAGsXr2aFStWMH78eDw9PWnTpg1XXHEF\na9asITIy8vR6RUVFTJkyhZSUFDw9Pdm2bZuDHgmlVG1JX/IS/kDI8Accts3zFr8xZgUVz9UDXFnB\n+ETgzjLX5wBzqhuwIud7Zl5Xyu8KKCLcc889JCYmEhwczPTp08/YR7xx48anL99333088MADjBgx\ngmXLljF9+vRz3u+pKaNzeemll2jTpg2pqanYbDZ8fX2r+ZMppayQd+wI3fYvJLXZFfQK7uyw7eqx\nei7A7t27SUhIAGDevHlceumlAPj7+3P8+HE+//zzStfNzc0lMLB0h6a5c+eecduiRYvIz8/n0KFD\nLFu27PS0zvz58ykpKSErK4vly5cTHx9/1n22a9cODw8PPvjgA0pKSmrzx1VK1bH1X79BM07Q5Ir7\nHbpdlzlkgzMIDw9n7ty53H333XTp0oXJkydz+PBhevToQUhICHFxcZWuO336dG644QYCAwPp06cP\nO3fuPH1bfHw8w4cPZ/fu3UydOpX27dszevRoEhISiIqKQkSYMWMGbdu2JT09/fR699xzD9dddx2f\nffYZAwYMOOMVhlLKuZUUFxO0bS5bvMIJix3o0G1LVaYUHC02NtaUf5Ny8+bNhIeHW5SodA+aa665\nhg0bNliWQdUOq3+XlAJI/uFDev5+L0nx/6HXsDtqfH8ikmSMia3KWJ3qUUopC/gkvsV+AogafLPD\nt63FX0UhISH6bF8pVSv+WPc73QvXkd55Al7ePg7fvha/Uko5WM7/XuaEaUD48Pss2b4Wv1JKOVD2\n3l1EHfmR9a2vpXlLf0syaPErpZQDpS15GS9sBF3tuA9slafFr5RSDnIy7xhhmZ+R2rgvgZ2s+SAq\naPFbzhGHZX7zzTd5//33zzkmJSWFJUuWXND9VldISAjZ2dnnHPOvf/3rjOuXXHJJXUZSyiHWff06\nLTmG7xV/tTSHFr8DWH1Y5kmTJnHLLbecc0x1ir8uf67yxa9HHlWurqS4mKAtc9jqFUZY3GBLs2jx\nV5ErH5a57KuK/v378/DDDxMfH8/FF1/Mr7/+SmFhIdOmTWP+/PlER0czf/588vLyuP3224mLi6Nn\nz54sWlR68NX33nuPG264gWuvvZYhQ4awbNkyLr/8ckaPHk23bt2YNGkSNpsNKD2sRY8ePYiIiODh\nhx+uMNuoUaPo1asX3bt3Z9asWQA88sgjnDx5kujoaCZMmABAkyZNzvm4LFu2jP79+3P99dcTFhbG\nhAkTqnS8I6UcJeWHDwg0B8iLm4J4WFu9rnnIhm8fgf3ra/c+2/aAq58755D6cljm4uJiVq9ezZIl\nS3jiiSf48ccfefLJJ0lMTOS1114D4NFHH2XgwIHMmTOHI0eOEB8fz6BBgwBISEhg3bp1+Pn5sWzZ\nMlavXs2mTZvo2LEjQ4cOZcGCBVxyySU8/PDDJCUl0bJlS4YMGcKXX37JqFFnnqFzzpw5+Pn5cfLk\nSeLi4rjuuut47rnneO2110hJSTkr+4IFCyp9XJKTk9m4cSPt27enX79+/Pbbb6ePp6SUlYzNRrO1\nr5Mh7Ym6crzVcVy0+C1SXw7LPGbMGAB69ep1xrF/yvrhhx9YvHjx6VcK+fn57N69G4DBgwfj5+d3\nemx8fDydOnUCYPz48axYsQJvb2/69+/PqbOpTZgwgeXLl59V/DNnzmThwoUAZGRkkJaWRqtWrSrN\nXtnj0qxZM+Lj4wkKCgIgOjqa9PR0LX7lFDYlfEv34jRWdZ9KsJf1tWt9guo4zzPzuuIqh2V+7LHH\n+OabbwAqfNbcoEEDADw9PSudpzfG8MUXX9C1a9czlq9ateqsg8FVN/+yZcv48ccfSUhIoFGjRvTv\n3/+Mx6+yXJU59XPBuX82pRyteMXL5NCMqOGTrI4CVGGOX0TmiMhBEdlQZtl8EUmxf6WXOUFL+XXT\nRWS9fZzLnxrKVQ7L/Mwzz5CSklJh6VemadOmHDt27PT1q666ildfffV00SYnJ1e67urVq9m5cyc2\nm4358+dz6aWX0rt3b3755Reys7MpKSlh3rx5XHHFFWflb9myJY0aNWLLli2sXLny9G3e3t4UFRWd\nta2qPC5KOZOdm9YQdXI1WzveiG+jJlbHAar25u57wNCyC4wxY40x0caYaErPxbugohXtBtjHVumo\ncc7s1GGZIyMjycnJYfLkydx111306NGDUaNGVemwzJdddhn+/md+Wu/UYZn79OlzxmGZIyMjiYqK\nYuDAgacPy1zWPffcw9y5c+nTpw/btm2r0WGZBwwYwKZNm06/uTt16lSKioqIjIwkIiKCqVOnVrpu\n3759eeSRR4iIiCA0NJTRo0fTrl07nn32WQYMGEBUVBQxMTGMHDnyjPWGDh1KcXExkZGRTJ06lT59\n+py+beLEiURGRp5+c/eUqjwuSjmT7O9fKD08w7X/Z3WU06p0WGYRCQG+NsZElFsulJ52caAxJq2C\n9dKBWGPMuXfaLkcPy+w6li1bxgsvvMDXX39tdZQqs/p3SbmPg3t20mJWL5Jbj6b3vbPrdFuOPCzz\nZcCBikrfzgA/iEiSiEys4baUUsql7PjqeTyxETzsIaujnKGmb+6OB+ad4/Z+xpi9ItIaWCoiW4wx\nyysaaP/DMBGgQ4cONYxV+/SwzBXr378//fv3tzqGUk7nWG4O3fctIKVZf3qFhlkd5wzVfsYvIl7A\nGODsTxbZGWP22r8fBBYClb4LZ4yZZYyJNcbEntoFsIIx1Y2rFKC/Q8pxNn71Ck3lJM2ufNDqKGep\nyVTPIGCLMSazohtFpLGIND11GRgCVPsps6+vL4cOHdL/uKrajDEcOnTo9G6vStWVwoJ8Om1/n40+\nUXSJvszqOGc571SPiMwD+gP+IpIJPG6MmQ2Mo9w0j4i0B94xxgwD2gAL7ft4ewEfG2O+q27QoKAg\nMjMzycrKqu5dKIWvr+/pD3kpVVdSvn6TeHLYf0nVD8DoSC5zsnWllHIFJcXF7HsmgnyPRlz0WKLD\njsujJ1tXSimLpHz/HkFmH0fj7rf8YGyVcc5USinlgozNRsukV9nlEUT04JutjlMpLX6llKol65Z9\nSidbOgcjJ+Ph6Wl1nEpp8SulVC0wNhsNEl5hPwFED7vL6jjnpMWvlFK1YPOq7wkr2sSu8Dvx9mlw\n/hUspMWvlFK1oPiXFzhEc6KunWJ1lPPS4ldKqRpKS/mVyPxEtnW61WkOvXwuWvxKKVVDx5bO4CiN\niBjpPIdePhctfqWUqoFdW9YSffxXNgaNo2lzv/Ov4AS0+JVSqgYOfvtv8vEhbOTfrY5SZVr8SilV\nTXvTtxJ9ZCnr2oyiZUA7q+NUmRa/UkpVU8bipzEIoSMetjrKBdHiV0qpati/O42eh74h2f8a2gRd\nZHWcC6LFr5RS1bBr0dMAdBz5T4uTXDgtfqWUukAHMv+gZ/bXJPtfQ9sOXayOc8HOW/wiMkdEDorI\nhjLLpovIHhFJsX8Nq2TdoSKyVUS2i8gjtRlcKaWskv7l04Chw4jHrI5SLVV5xv8eMLSC5S8ZY6Lt\nX0vK3yginsDrwNVAN2C8iHSrSVillLLawT076Zm1mJRWw2jXsavVcarlvMVvjFkO5FTjvuOB7caY\nHcaYQuATYGQ17kcppZzGzi+fRjAEjZhqdZRqq8kc/xQRWWefCmpZwe2BQEaZ65n2ZUop5ZKy9qYT\nfXARyS2von2Iaz7bh+oX/3+Bi4BoYB/wYgVjpIJllZ7gV0QmikiiiCTqCdWVUs7ojy+fwZMSAkdM\nszpKjVSr+I0xB4wxJcYYG/A2pdM65WUCwWWuBwF7z3Gfs4wxscaY2ICAgOrEUkqpOpO9dxfRBxaS\n3PIqAjuFWx2nRqpV/CJS9rPJo4ENFQxbA3QRkVAR8QHGAYursz2llLLa9kX/wosS2l3jevvtl+d1\nvgEiMg/oD/iLSCbwONBfRKIpnbpJB+62j20PvGOMGWaMKRaRKcD3gCcwxxizsU5+CqWUqkPZ+zOI\n2r+A5BaDiescYXWcGjtv8RtjxleweHYlY/cCw8pcXwKctaunUkq5ku0LnyaOItpe45r77Zenn9xV\nSqlzOLhnJz33f8HalkMJ7hJldZxaocWvlFLnsHPBdAQbgSOnWx2l1mjxK6VUJfbu3EJM9lck+19L\n+9Awq+PUGi1+pZSqxJ4vH6cED0LHTLc6Sq3S4ldKqQrs2ppCzJHvSWl7Pa0DQ62OU6u0+JVSqgLZ\nX0+nAB+6jHH9/fbL0+JXSqly/li/kl7HfiY16EZatQmyOk6t0+JXSqlyjn77BEdpRLfr6sd+++Vp\n8SulVBlbE3+i54nf2RhyK8396udxw7T4lVKqjMKlT3GYZvQY87DVUeqMFr9SStlt/H0JPQrWsrXL\nnTRpVtFpRuoHLX6llAKMzYbnz09xED+iRz9odZw6pcWvlFJAyo8fE1a0ifSI+/Bt1MTqOHVKi18p\n5faKiwrxW/ksuzyCiBk5xeo4dU6LXynl9tYueo2Otkxy+vwDL28fq+PUOS1+pZRbO5l3jNANM9ni\n3Y3oQTdaHcchzlv8IjJHRA6KyIYyy54XkS0isk5EFopIi0rWTReR9SKSIiKJtRlcKaVqQ+pnzxLA\nYcyg6YiHezwXrspP+R4wtNyypUCEMSYS2Ab84xzrDzDGRBtjYqsXUSml6sbhrH103zmH5EaXEN77\nKqvjOMx5i98YsxzIKbfsB2NMsf3qSqD+HcxCKVXvbf3scRqRj9+1T1sdxaFq43XN7cC3ldxmgB9E\nJElEJp7rTkRkoogkikhiVlZWLcRSSqnK7d25hZgDn5PkN4yO4b2sjuNQNSp+EXkMKAY+qmRIP2NM\nDHA1cK+IXF7ZfRljZhljYo0xsQEB9fP4GEop57F34WPY8CDk+mesjuJw1S5+EbkVuAaYYIwxFY0x\nxuy1fz8ILATiq7s9pZSqLdtTfyP26I8kB46vdydZqYpqFb+IDAUeBkYYY05UMqaxiDQ9dRkYAmyo\naKxSSjnSiW+ncoQmdLvhcaujWKIqu3POAxKAriKSKSJ3AK8BTYGl9l0137SPbS8iS+yrtgFWiEgq\nsBr4xhjzXZ38FJQeZyPxm7fZuXFVXW1CKVUPpP78GZH5SWzpcjfNW/pbHccSUsksjaViY2NNYuKF\n7fafezgb80oUe3wuotsjy9xmf1ylVNUVFRaw97leeJgS2jySjE8DX6sj1RoRSarqbvP1ph2bt/Rn\na9gUuhemkvLjx1bHUUo5obULX6KjLYPsvo/Vq9K/UPWm+AFixjzALo9gAhKeoiC/wrcelFJuKjcn\ni66bX2WjT5TbHJqhMvWq+L19GpB72XSCzH6SP59hdRyllBPZPP+fNDN5+F7znNtPBde7nz5ywPWk\n+sbRPe1Ncg7usTqOUsoJZGxfT8z+z0j0G8ZFkZdYHcdy9a74AVqMmkFDCkib/6jVUZRSTiB7wd8p\nwptOY5+zOopTqJfF3zEshqTWY4jNXsTOTWusjqOUstCG376i54nfWR96B/5tO1gdxynUy+IH6Dr2\nGY5LI44veghjs1kdRyllgZLiYhr+NJX9BBD9J50BOKXeFn8L/7ZsvvgeehQkk/rzp1bHUUpZIGnR\na1xUspPMuIfr/Xl0L0S9LX6AXtc/xG6PQFqteILCgnyr4yilHOhYbg6d1r/EFq9wel19h9VxnEq9\nLn5vnwYcvnQawWYva3X3TqXcysZ5/8TP5OIxTHffLK/ePxqR/f/EOt9edN/2Btn7M6yOo5RygF2b\nk+i17xMS/YZzcUx/q+M4nXpf/OLhQYsx/6EBheyc9zer4yil6pix2Tj25QOcFF86j9dX+hWp98UP\n0OHiaJLaTyAu9zu2rF5qdRylVB1K/n4uEQUpbA6/H7/WgVbHcUpuUfwAkTc+xQFa4f393ykpLj7/\nCkopl3PieC7tVz3NH56h9BrzgNVxnJbbFH/jpi3IjJ/KRSU7SPziBavjKKXqQOq8abQlm6IhM/Dy\n9rE6jtOqUvGLyBwROSgiG8os8xORpSKSZv/espJ1b7WPSbOfrtEyMUNvZUODaMI3v8KhA5lWRlFK\n1bKM7evplfkha5oPIaz3EKvjOLWqPuN/DxhabtkjwP+MMV2A/9mvn0FE/IDHgd6Unm/38cr+QDiC\neHjQdPRLNDQF/DHvIatiKKVqmbHZyPn8/yjEm9Cx+or+fKpU/MaY5UBOucUjgbn2y3OBURWsehWw\n1BiTY4w5DCzl7D8gDtUxLIbE9uOJP7KELWt+tDKKUqqWpP40n6j8NWy4eDL+7TtaHcfp1WSOv40x\nZh+A/XvrCsYEAmV3ns+0L7NU5I3PcBA/vL7TN3qVcnX5J/No/dvjpHsE0+uGsyYeVAXq+s1dqWBZ\nhSf5FZGJIpIoIolZWVl1Gqpx0xZkxD1G55I/SFzwnzrdllKqbqV8NJX25gDHB/4Lb58GVsdxCTUp\n/gMi0g7A/v1gBWMygeAy14OAvRXdmTFmljEm1hgTGxAQUINYVRNz9e2lb/Ruelk/0auUi9q1ZS0x\nGe+R2GwwEZeOsDqOy6hJ8S8GTu2lcyuwqIIx3wNDRKSl/U3dIfZllhMPD5qOeQVfU0D6R3+xOo5S\n6gLZSkrI++I+TkhDQie8bHUcl1LV3TnnAQlAVxHJFJE7gOeAwSKSBgy2X0dEYkXkHQBjTA7wFLDG\n/vWkfZlT6Ng1mqSOtxN77H+s+/lzq+MopS5A4pev0q1oA2mRf6dVmyCr47gUMabCKXdLxcbGmsTE\nRIdsqyD/BPtnxOFtCmnxYCKNmjR3yHaVUtV36EAmXv+NZ49PJ8IfWa5H3wREJMkYE1uVsW7/aDXw\nbUTe4Bdobw6y7sN/WB1HKVUFOz/6Kw1NPo3HzNTSrwZ9xIBufa9mdcvhxO6bxx/rfrc6jlLqHNYv\nX0js0aWsDb6NjmExVsdxSVr8dl1veolcaYpt8f26b79STir/xHFa/vwIGdKe6AlPWR3HZWnx2zVv\n1Yadsf+kS3Eaaz77t9VxlFIVSP7onwSZ/eRe+W98Gza2Oo7L0uIvo9ewO1nnG0uPLTPZn7Hd6jhK\nqTLSNyfSK/N91jS/SvfZryEt/jLEwwP/sa/jgY198+7D2GxWR1JKASXFxRR8cS950ojON71idRyX\np8VfTvvQMFI7T6bnid9Z++0cq+MopYA1nzxN1+It/BE7jZYB7ayO4/K0+CsQO+6fpHl1odOaJ/S4\n/UpZLCMtlei010hudAm9ht1pdZx6QYu/Al7ePniN+S+NzQl2fXCP1XGUclslxcUc/3QSBeJD8E1v\n6j77tUQfxUqEdotjbejdxBz/haQl71odRym3tObT5wgv2sS26Mf0OPu1SIv/HGInTCfNszOdVk8j\n5+Aeq+Mo5Vb27NhI1NZXSG0YT+yIyVbHqVe0+M/By9sHr+vepLE5wc73dcpHKUexlZRw5JO7KRIv\n2t00S6d4apk+mudxasqn1/FlrP1Wp3yUcoQ1n79A98L1bI18hNaBoVbHqXe0+Kvg1JRPyCqd8lGq\nru1N30qPTS+yzjeW2FH3WR2nXtLir4LSvXzeoInJY+cH91odR6l6y1ZSwuGP78KGB61v1L146oo+\nqlUU2r03SaET6XXsZ93LR6k6svqTp+lemMqmyEdo26GL1XHqrWoXv4h0FZGUMl9HReSv5cb0F5Hc\nMmOm1TyydWJvfIJtXhfTefVjHNyz0+o4StUrOzeuImbbTJIb9SNu9P1Wx6nXql38xpitxphoY0w0\n0As4ASysYOivp8YZY56s7vacgbdPAxqOfQdvU8yB9/+MraTE6khK1QsF+Sfgi4kclSZ0vO1tneKp\nY7X16F4J/GGM2VVL9+e0grtEsT7iYXoUJLN6/r+sjqNUvZD83t8ItaWz5/J/49c60Oo49V5tFf84\nYF4lt/UVkVQR+VZEuld2ByIyUUQSRSQxKyurlmLVjfjr/o/kRpfQc+sr7Ny4yuo4Srm0jb99Q/y+\nj1nVahRRA8dZHcct1Phk6yLiA+wFuhtjDpS7rRlgM8YcF5FhwCvGmPO+Y+PIk61XV87BPdjeuIRj\nHi1o99DvelIIpaoh93A2J1/pTZH40OrBlTRq0tzqSC7L0SdbvxpYW770AYwxR40xx+2XlwDeIuJf\nC9u0nF/rQPZc/jyhtnRS3nvQ6jhKuaS0d+/G3+Rw8tr/auk7UG0U/3gqmeYRkbYiIvbL8fbtHaqF\nbTqFqIF/YpX/GPocmMf65YusjqOUS0n65h1ij/7Imo53cXFMf6vjuJUaFb+INAIGAwvKLJskIpPs\nV68HNohIKjATGGdqOrfkZCL/PJNdHkG0+emv5B4660WPUqoC+3ZtpcuaaWz1CiPu5qetjuN2alT8\nxpgTxphWxpjcMsveNMa8ab/8mjGmuzEmyhjTxxjze00DO5uGjZtSNPItWppcdsy5XU/XqNR5FBUW\ncPSDWxBjo8mN7+Hl7WN1JLejO8vWgs5Rl5LU5X565q1g1fznrI6jlFNLmvN/dC3ewrbezxLYKdzq\nOG5Ji7+W9L5xGimN+hKz5QXSkpdbHUcpp5T606f02f8Rq1qNotewP1sdx21p8dcS8fAg9I655EhL\nGi++k9zD2VZHUsqpHMj8gw7LH2CHRwhRd75hdRy3psVfi5q3asOR4W8RYMvmj3f+rPP9StkVFxVy\naO4tNDCFeI2bq597sZgWfy0LixtEUpf7iMlbzupP/211HKWcwpq5D9OtaAObej1Jh4ujrY7j9rT4\n60D8+GmkNOxDz80636/U+uWL6J3xLqtbDCN2xKTzr6DqnBZ/HfDw9CTkjrnkSAsaLb6To0fqzWfW\nlLogWXvTaffT/ez2DCLizjetjqPstPjrSAv/thwZ9iZtbFlsf/tWne9XbqewIJ9D746nkTkJN7yn\nh2RwIlr8dSgsfjCJXf5CTN6vrPxgqtVxlHKo5LcnE1a0ic29nyUkvErHDlMOosVfx3rfOI2kpgPp\nveN11v38udVxlHKI1QtfpXf2Ala2nUCvYXdYHUeVo8Vfx8TDg/C73yPdsyMhv9zPnh0brY6kVJ1K\nS15OVMoTbGgQTewdL1sdR1VAi98BGjVpToObPsEAhR+OJ+/YEasjKVUncg7uoemiP3NYWhB45yd6\nHB4npcXvIIGdwtk98HU6lOxmy1v6Zq+qf4qLCtk7+0ZamlyOjXqXlgHtrI6kKqHF70A9Lh/Nmovu\no9fxZaz68HGr4yhVqxJn/5WIghTW9ZxOl+jLrI6jzkGL38F63/QESU36E/fHq6z/ZcH5V1DKBSR+\n9Vbpwdf8xxA3aorVcdR51Lj4RSRdRNaLSIqInHWiXCk1U0S2i8g6EYmp6TZdmXh4ED7pfXZ7dqTD\nz1PISEu1OpJSNbJl9VIiEx9lo08Pet71X6vjqCqorWf8A4wx0ZWc6PdqoIv9ayLg9r8ZjZo0x+em\nTyjBE/l4LIez9lkdSalq2bNHKIIrAAASYUlEQVRjM62X3M4Bj9YETvwcnwa+VkdSVeCIqZ6RwPum\n1EqghYi4/bs+gZ3COTj8XQJs2eyfdR0F+SesjqTUBck9nE3xhzfgSQnc+Akt/NtaHUlVUW0UvwF+\nEJEkEZlYwe2BQEaZ65n2ZW4vLG4QG+KfI7xoI+vfuFn39FEuo6iwgN1v3kC7kr1kDn6b4C5RVkdS\nF6A2ir+fMSaG0imde0Xk8nK3SwXrnHXCdRGZKCKJIpKYlZVVC7FcQ6/hd7Iy5F5ij/7Iynf/bnUc\npc7L2GysfWsiPQrWkhI9ne79hlsdSV2gGhe/MWav/ftBYCEQX25IJhBc5noQsLeC+5lljIk1xsQG\nBATUNJZL6X3L06xpcTV9M94mcbHbvwWinNyqT56h96EvSWh3C/Gj77c6jqqGGhW/iDQWkaanLgND\ngA3lhi0GbrHv3dMHyDXG6LuZZYiHB1GT32OjTxSRSY+xKeFbqyMpVaGUpR8Tv/VF1ja+jN536uEY\nXFVNn/G3AVaISCqwGvjGGPOdiEwSkVNnXFgC7AC2A28D99Rwm/WSTwNfgiZ9wX7PtrT//k52bU2x\nOpJSZ9i86nvCVtzPdu8uhN8zDw9PT6sjqWoSY86abrdcbGysSUw86yMBbmHPjs00eH8oxXjBHd/T\nNriz1ZGUYufGVbT6bDS50pzGk3/Er7Xun+FsRCSpkl3qz6Kf3HUygZ3CyR0zj8Ymj4J3R+o+/spy\ne9O30uSzseTTAK/bvtTSrwe0+J3QRZGXkDH0XdqUHCDrrREcP3rY6kjKTR06kEnJ3FH4UMiJsZ/R\nrmNXqyOpWqDF76S69b2aLZe9Sqei7aS/Pko/4KUc7lhuDodnjcDfls2+YXP1LFr1iBa/E4seNJ7k\nnk8TUZDCxlfHUlJcbHUk5SYK8k+w643RhBTvZNsVrxMWP9jqSKoWafE7ubhR97Ly4r8Rk7ecpDdu\n00/3qjpXVFjAxlf/RERBCskxzxA18E9WR1K1TIvfBfS5cSoJgX8mPucrVr11j5a/qjPFRYWsn3kD\nMXm/svLih4gbqXtf10da/C6izx3/YVXA9fQ5ME/LX9WJ4qJCUmeOJeb4L6zs/H/0ufGfVkdSdUSL\n30WIhwfxk9/W8ld1oqS4mJRXx9Pr2E+svOgv9LlputWRVB3S4nchWv6qLpQUF5M8cxyxR38kIXQK\nfW5+0upIqo5p8bsYLX9Vm0qKi1n76gRijy4lIWQyfW99xupIygG0+F2Qlr+qDSXFxSS9djNxud+R\n0OFu+t72nNWRlINo8buos8r/zbuxlZRYHUu5iIL8E6S+PIb4I0tICL6LvrfPsDqSciAtfhd2qvxX\nth5Ln4OfkjRzHEWFBVbHUk4u79gRtr00vHTvnS4P0PeOF6yOpBxMi9/FiYcHvSe9SULIZOJyf2DT\nS9dyMu+Y1bGUk8o9dIDMV66iW34yq6Oeos+Ex62OpCygxV8PiIcHfW97jlXdpxFxYjW7Xh5Cbo77\nnL5SVU3W3nQOvz6I0KLtpF7yqp49y41Vu/hFJFhEfhaRzSKyUUT+UsGY/iKSKyIp9q9pNYurzqX3\nDQ+S2vdlOhVuI+e1K8nam251JOUkMrdvoOjtwQSUHGTb4HeJuepmqyMpC9XkGX8x8KAxJhzoQ+mJ\n1rtVMO5XY0y0/Ut3EK5jMUNvY9vgd2ldcoDiWYPI2L7e6kjKYmnJy/H9cDgNzUn2jPyUiEtHWB1J\nWazaxW+M2WeMWWu/fAzYDOgZGpxAxKUj2DvqM3wpoMmHV+s5fN3Y2u/eI+jL6yjCm6PjFnNxzBVW\nR1JOoFbm+EUkBOgJrKrg5r4ikioi34pI99rYnjq/Lj0v5/hNSzjm0YzO301g9Rd6Ymx3Ymw2EuY+\nSszKv7DbuxPek36mY1iM1bGUk6hx8YtIE+AL4K/GmKPlbl4LdDTGRAGvAl+e434mikiiiCRmZekb\nk7UhuHMPmt+3nK2+UcSvf5yV/52kx/R3AwX5J0h8ZRx9d75OYtMr6fjgT/i3DbY6lnIiNTrZuoh4\nA18D3xtj/lOF8elArDEm+1zj3Plk63WhuKiQpFmT6Z31OakN4+k0aT5Nm/tZHUvVgcNZ+9g/6zrC\nizaS0OFu+tz2HOKhO++5A4ecbF1EBJgNbK6s9EWkrX0cIhJv396h6m5TVY+Xtw+9753Nqm7/pPuJ\nRA69cjl7dmy2OpaqZTs3reHEG1cQWriNpLgX6Xv7DC19VaGa/Fb0A24GBpbZXXOYiEwSkUn2MdcD\nG0QkFZgJjDM1eYmhaqT3nx5iy+C5tLTl0Pj9QaT+9KnVkVQtWfPla7SdP4wGpoBd135Kr+F3Wh1J\nObEaTfXUFZ3qqVsZ29dT9PFNdLKlk9DuFmL//ALePg2sjqWq4WTeMda/PZH4I0vY6BNJm9s/wr9t\nB6tjKQs4ZKpHua7gzj1o/7ffWOU3gr773mf78/3Zn7Hd6ljqAmWkpbL/xUtLD7QWdDthf/9ZS19V\niRa/m/Jt1ITe939AYuzzdCjcQYPZ/XXqx4UkLZmN34dDaGE7xLorZtP3zpfw9PKyOpZyEVr8bi72\nmonk3PQDhz1aEbX8LhLeuleP8OnEjh89zKqZN9Nr9QNkeIdScMcyIgdcb3Us5WK0+BXBXaJKp35a\njaTvvg/Z/e8+/LHud6tjqXI2/vYNR1+KJ+7QV6xsO4GL/v4LbYM7Wx1LuSAtfgXYp37ue5/kS16n\neUkOHb64hoTZf6OwIN/qaG7vZN4xVr1+B92X3ogNT7YN+5Q+k97QN+RVtWnxqzP0HHITXlNWkdp8\nAH0z3iZjhj77t9KW1Us59EIcvbM+Z1XA9fg9uIqw3kOsjqVcnBa/OksL/7bEPvCF/dn/YX32b4Hj\nRw+z8r+TuPibG/CghA2DP6T3vbNp1KS51dFUPaDFryrVc8hNeN+3mtTmA+mb8Tb7/x1D6s+fWR2r\nXjM2G4mL3+Tkf3rS58A81viPoNn/rSai37VWR1P1iH6AS1VJ6s+f4bd8GsFmL6kNe+N33YsEd+5h\ndax65Y91v1P41d8IL9rINq+LYdjzXBzT3+pYykVcyAe4tPhVlRUW5LP2s2eJSHsLHwpZ224c3cc/\nrQd8q6HcQwfYMu8RYrMWclSaktbjQWJH3YeHp6fV0ZQL0eJXdSp7/252fPIwsYe/JUea80f3++k5\n4l58GvhaHc2l5B07wrqFLxK+Yw5NTR6Jra8jbPxzNPcLsDqackFa/Moh0pKXU7LkYcKKNrGPAHZ3\nn6x/AKrgZN4xUhe+yMXbZ+PHUVIbxtN0+NN0iuhtdTTlwrT4lcMYm431vyygwW8z6Fq8lf0EsKv7\nJHqOmKJ/AMrJP3GclC9fpvO2t/HnCOt8Y2kw6DG6xg60OpqqB7T4lcMZm431yxfSYMUMuhZvYT/+\n7Aq/i+5X302TZi2tjmepQwcySfv2DS5K/5gADrOhQTSeAx8lvPdVVkdT9YgWv7KMsdnY8OuXeK94\nnrCiTRw3DdkYcDVtrryXkPAq/U7WG9vW/kLuL68TdeR/+Egx6xvE4HH53+jeb7jV0VQ9pMWvLGds\nNratXcbRX98k8shPNJAiNvn04GTUbfQYdFO9nQbKP5nHhqXv03Tdu3Qt3kqe8WVDwDDaDv4LHbtG\nWx1P1WMOK34RGQq8AngC7xhjnit3ewPgfaAXpadcHGuMST/f/Wrx1y+Hs/ax9bv/ErzjEwLNAQ7R\nnO2tBtA45nrC4q/Cy9vH6og1UliQz6YVX1Kc+jlhuStoIifJkPbsufhmug+bpLu7KodwSPGLiCew\nDRgMZAJrgPHGmE1lxtwDRBpjJonIOGC0MWbs+e5bi79+spWUsGH5QoqT3ifs2EoaSQE5NCOt1QAa\nRV1HeN+rXeaPQFFhAVsSvuFk8meEHfmFZuSRS2O2tuxPo5ixdLvkGt0PXzmUo4q/LzDdGHOV/fo/\nAIwxz5YZ8719TIKIeAH7gYDznXdXi7/+O3E8ly2/LsBsWkT40d9pJAUcpik7m8RQFHwJrXtcSceu\nMU5TniXFxezcuJLs9UtpuOd3Op9YR2PJ57hpyOYWl+ETdQPh/UbU2yks5fwupPhrcsqeQCCjzPVM\noPyOyKfHGGOKRSQXaAVk12C7qh5o1KQ5MVf/Ga7+MyfzjrF2xZeUbFpMh9wk2mz+BTY/y2Gakt44\nioLAvrS4KJ52naNo3qpNnWczNhuH9mewb/ta8jLW0WDvajrlJdOZPDoDuz0C2eA/FJ+ugwm/bDRx\nDRvXeSalalNNil8qWFb+mXxVxpQOFJkITATo0EHPG+pOGjZuSsxVN8NVN2NsNvakb2VP6lIk/TcC\nj66l/bYVpZOKQDYtOODTkePNLoKArvgGdKJhi9Y0admWZq3a0LhJc8Tj3MceNDYbx48d4UjWHo4f\n2svJw/soOrIPsrfR9Gga7Qt34s9x/O3j90prtra4Ao9OV9Axdigd2oegv6HKldWk+DOB4DLXg4C9\nlYzJtE/1NAdyKrozY8wsYBaUTvXUIJdyYeLhQWCncAI7hQP3A7A/YzsH0hI5uXczHtnbaH58B+HZ\n39EsewFsPnP9QuPFEWnGSY9GCAYxBsEApd+9TDHNzVGaShFNy237mGnIHp9QtvoNxASE06RDD9p1\n7kn7NkG0d8QPr5SD1KT41wBdRCQU2AOMA24sN2YxcCuQAFwP/HS++X2lymsb3PmsUwwam42s/bvJ\n2buD/KMHKcjNwpaXjcnLwTP/EF5FxzEIiIf9uwCC8fCixNcPmgTg2bQNvi3a0sivPc1btaNV22DC\nzvNqQan6oNrFb5+znwJ8T+nunHOMMRtF5Ekg0RizGJgNfCAi2yl9pj+uNkIrJR4eBLQPIaB9iNVR\nlHI5NXnGjzFmCbCk3LJpZS7nAzfUZBtKKaVql76uVUopN6PFr5RSbkaLXyml3IwWv1JKuRktfqWU\ncjNa/Eop5Wa0+JVSys045YlYRCQL2FXN1f1xzoPAaa4Lo7kujOa6MPUxV0djTEBVBjpl8deEiCRW\n9dCkjqS5LozmujCa68K4ey6d6lFKKTejxa+UUm6mPhb/LKsDVEJzXRjNdWE014Vx61z1bo5fKaXU\nudXHZ/xKKaXOoV4Xv4j8TUSMiPiff3TdE5GnRGSdiKSIyA8i4hQndhKR50Vkiz3bQhFpYXUmABG5\nQUQ2iohNRCzdA0NEhorIVhHZLiKPWJmlLBGZIyIHRWSD1VnKEpFgEflZRDbb/w3/YnUmABHxFZHV\nIpJqz/WE1ZlOERFPEUkWka/relv1tvhFJBgYDOy2OksZzxtjIo0x0cDXwLTzreAgS4EIY0wkpWe3\n/YfFeU7ZAIwBllsZQkQ8gdeBq4FuwHgR6WZlpjLeA4ZaHaICxcCDxphwoA9wr5M8ZgXAQGNMFBAN\nDBWRPhZnOuUvnHUy0bpRb4sfeAn4O5Wc3N0KxpijZa42xkmyGWN+MMYU26+upPT8yZYzxmw2xmy1\nOgcQD2w3xuwwxhQCnwAjLc4EgDFmOZWcx9pKxph9xpi19svHKC20QGtTgSl13H7V2/5l+f9DEQkC\nhgPvOGJ79bL4RWQEsMcYk2p1lvJE5BkRyQAm4DzP+Mu6HfjW6hBOJhDIKHM9EycoMVchIiFAT2CV\ntUlK2adUUoCDwFJjjDPkepnSJ6o2R2ysRqdetJKI/Ai0reCmx4BHgSGOTVTqXLmMMYuMMY8Bj4nI\nP4ApwOPOkMs+5jFKX6J/5IhMVc3lBKSCZZY/S3QFItIE+AL4a7lXvJYxxpQA0fb3shaKSIQxxrL3\nSETkGuCgMSZJRPo7YpsuW/zGmEEVLReRHkAokCoiUDptsVZE4o0x+63KVYGPgW9wUPGfL5eI3Apc\nA1xpHLiP7wU8XlbKBILLXA8C9lqUxWWIiDelpf+RMWaB1XnKM8YcEZFllL5HYuWb4/2AESIyDPAF\nmonIh8aYm+pqg/VuqscYs94Y09oYE2KMCaH0P22MI0r/fESkS5mrI4AtVmUpS0SGAg8DI4wxJ6zO\n44TWAF1EJFREfIBxwGKLMzk1KX3WNRvYbIz5j9V5ThGRgFN7rYlIQ2AQFv8/NMb8wxgTZO+rccBP\ndVn6UA+L38k9JyIbRGQdpVNRTrGLG/Aa0BRYat/V9E2rAwGIyGgRyQT6At+IyPdW5LC/8T0F+J7S\nNyk/NcZstCJLeSIyD0gAuopIpojcYXUmu37AzcBA++9Uiv0ZrdXaAT/b/w+uoXSOv853n3Q2+sld\npZRyM/qMXyml3IwWv1JKuRktfqWUcjNa/Eop5Wa0+JVSys1o8SullJvR4ldKKTejxa+UUm7m/wHV\nC9WE1eYx/AAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAD8CAYAAABw1c+bAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XdYlfX/x/Hnm6GAKCriHrgX4kKc\nuXKbqzQ1MyvLrGz9yrJlZlqWts3KytS+fdX6qmWO1DI1U1OcuScqTpYICDLO5/cHRy80UGTd58D7\ncV1cnnOf+z73C6IX97nH5xZjDEoppQoPF6sDKKWUyl9a/EopVcho8SulVCGjxa+UUoWMFr9SShUy\nWvxKKVXIaPErpVQho8WvlFKFjBa/UkoVMm5WB8hImTJljL+/v9UxlFLKaWzbti3CGOOXlXkdsvj9\n/f0JCQmxOoZSSjkNETmR1Xl1V49SShUyWvxKKVXIaPErpVQhc8t9/CJSBZgLlAdswExjzMciUhpY\nAPgDocC9xpjoDJYfAbxmfzrJGDMnO0GTk5MJCwsjMTExO4srBYCHhweVK1fG3d3d6ihKWSYrB3dT\ngOeNMdtFpDiwTURWAw8CvxtjpojIOGAc8FL6Be1/HN4AggBjX3ZJRn8gbiUsLIzixYvj7++PiNzu\n4kphjCEyMpKwsDCqV69udRylLHPLXT3GmLPGmO32x7HAfqAS0A+4uvU+B+ifweLdgdXGmCh72a8G\nemQnaGJiIr6+vlr6KttEBF9fX/3UqAq929rHLyL+QFPgb6CcMeYspP1xAMpmsEgl4FS652H2aRm9\n9ygRCRGRkPDw8MzWfztxlfoX/R1S6jaKX0S8gYXAs8aYS1ldLINpGd7r0Rgz0xgTZIwJ8vPL0jUI\nSilVcBxeDZu/gJSkPF9VlopfRNxJK/3vjTGL7JPPi0gF++sVgAsZLBoGVEn3vDJwJvtxC54JEyYw\nbdq0LM8fGhpKQEBAHiZSSlli7RTY8iW45P11tbcsfkn7bPwNsN8Y80G6l5YAI+yPRwA/Z7D4SqCb\niJQSkVJAN/u0QiUlJcXqCEopR3ZqC5wOgZaPg0ven2WflTW0BYYDnUVkp/2rFzAF6Coih4Gu9ueI\nSJCIfA1gjIkC3gK22r8m2qc5ndDQUOrVq8eIESMIDAxk4MCBXL58mYkTJ9KiRQsCAgIYNWoUxqTt\nyerYsSOvvPIKHTp04OOPP+aXX36hZcuWNG3alC5dunD+/Plr771r1y46d+5M7dq1+eqrr4C0M1DG\njh1LQEAAjRo1YsGCBRlmuuOOO2jWrBnNmjVj48aN+fPDUErlrs0zwMMHmtyXL6u75WcKY8wGMt5X\nD3BnBvOHAI+kez4LmJXdgBl585e97DuT1cMMWdOgYgne6NPwpvMcPHiQb775hrZt2/Lwww8zY8YM\nxowZw/jx4wEYPnw4S5cupU+fPgBcvHiRdevWARAdHc3mzZsREb7++mvee+893n//fQB2797N5s2b\niY+Pp2nTpvTu3ZtNmzaxc+dOdu3aRUREBC1atKB9+/bX5SlbtiyrV6/Gw8ODw4cPM3ToUB3jSCln\nc/EU7FsCrZ+Eot75skqHHKTNUVWpUoW2bdsCcP/99/PJJ59QvXp13nvvPS5fvkxUVBQNGza8VvyD\nBw++tmxYWBiDBw/m7NmzJCUlXXceeb9+/fD09MTT05NOnTqxZcsWNmzYwNChQ3F1daVcuXJ06NCB\nrVu3EhgYeG255ORkxowZw86dO3F1deXQoUP59JNQSuWaLV+m/dvysXxbpVMW/622zPPKjacCighP\nPPEEISEhVKlShQkTJlx3jnixYsWuPX7qqaf4v//7P/r27cvatWuZMGHCTd/36i6jm/nwww8pV64c\nu3btwmaz4eHhkc3vTClliStxsG0uNOjH3H0pbDm+nWmDGuPh7pqnq9Wxem7DyZMn2bRpEwDz5s2j\nXbt2AJQpU4a4uDj+97//ZbpsTEwMlSqlXcIwZ871o1b8/PPPJCYmEhkZydq1a6/t1lmwYAGpqamE\nh4ezfv16goOD//WeFSpUwMXFhe+++47U1NTc/HaVUnlt5/dwJYaUlo/z5bpjXLh0Jc9LH7T4b0v9\n+vWZM2cOgYGBREVF8fjjj/Poo4/SqFEj+vfvT4sWLTJddsKECQwaNIg77riDMmXKXPdacHAwvXv3\nplWrVrz++utUrFiRAQMGEBgYSOPGjencuTPvvfce5cuXv265J554gjlz5tCqVSsOHTp03ScMpZSD\ns6XC5s+hcjBLIipy+mICozvWyJdVS1Z2KeS3oKAgc+NByv3791O/fn2LEqWdQXPXXXexZ88eyzKo\n3GH175JSABxYBvPvwwz8lh6r0zYGf332jmxfXS4i24wxQVmZV7f4lVLKCptmgE8V1rq05OD5WB7r\nUCPfhhTR4s8if39/3dpXSuWOs7vgxAYIHsXn609S0ceDPo0r5tvqtfiVUiq/bZoB7sXY6deXLaFR\njLyjBu6u+VfHWvxKKZWfYs/BnoXQ9H5mbI7Ax9OdIS2q3Hq5XKTFr5RS+Wnr12BLIbT2A6zef54R\nratRrGj+XlKlxa+UUvkl6TJs/Qbq9mLGrlSKuLowoo1/vsfQ4rdYfgzL/MUXXzB37tybzrNz506W\nL19+W++bXf7+/kRERNx0nrfffvu6523atMnLSErlj53fQ0IUkY0fY/GO09wbVAVf76L5HkOLPx9Y\nPSzz6NGjeeCBB246T3aKPy+/rxuLX0ceVU4vNQU2fgqVW/DlcT9SbYZH78ifC7ZupMWfRc48LHP6\nTxUdO3bkpZdeIjg4mDp16vDnn3+SlJTE+PHjWbBgAU2aNGHBggXEx8fz8MMP06JFC5o2bcrPP6fd\nbmH27NkMGjSIPn360K1bN9auXUv79u0ZMGAADRo0YPTo0dhsNiBtWItGjRoREBDASy+9lGG2/v37\n07x5cxo2bMjMmTMBGDduHAkJCTRp0oRhw4YB4O3tfdOfy9q1a+nYsSMDBw6kXr16DBs2LEvjHSmV\nb/YvgYsniG8xhv9uOUXvwIpU9fWyJIpTDtLGinFw7p/cfc/yjaDnlJvOUlCGZU5JSWHLli0sX76c\nN998k99++42JEycSEhLC9OnTAXjllVfo3Lkzs2bN4uLFiwQHB9OlSxcANm3axO7duyldujRr165l\ny5Yt7Nu3j2rVqtGjRw8WLVpEmzZteOmll9i2bRulSpWiW7du/PTTT/Tv3/+6LLNmzaJ06dIkJCTQ\nokUL7rnnHqZMmcL06dPZuXPnv7IvWrQo05/Ljh072Lt3LxUrVqRt27b89ddf18ZTUspSxsDGT6B0\nTeZE1ifuyhEea2/N1j5kofhFZBZwF3DBGBNgn7YAqGufpSRw0RjTJINlQ4FYIBVIyerlxI6qoAzL\nfPfddwPQvHlzQkNDM5xn1apVLFmy5NonhcTERE6ePAlA165dKV269LV5g4ODqVEj7Zd46NChbNiw\nAXd3dzp27MjV+ycPGzaM9evX/6v4P/nkExYvXgzAqVOnOHz4ML6+vplmz+znUqJECYKDg6lcuTIA\nTZo0ITQ0VItfOYbQDXBmB8k9P2DW6lPcUbsMAZV8LIuTlS3+2cB04NrRQWPMtUYTkfeBmJss38kY\nc/MjebfrFlvmecVZhmV+9dVXWbZsGUCGW81Fi6YdTHJ1dc10P70xhoULF1K3bt3rpv/999//Ggwu\nu/nXrl3Lb7/9xqZNm/Dy8qJjx47X/fwyy5WZq98X3Px7Uyrf/fUxeJVhQVJbIuKO8mSnppbGueU+\nfmPMeiDD2yXa78d7LzAvl3M5JGcZlnny5Mns3Lkzw9LPTPHixYmNjb32vHv37nz66afXinbHjh2Z\nLrtlyxaOHz+OzWZjwYIFtGvXjpYtW7Ju3ToiIiJITU1l3rx5dOjQ4V/5S5UqhZeXFwcOHGDz5s3X\nXnN3dyc5Oflf68rKz0Uph3J+HxxZTUqLx/hsw2mCqpWiZfXSt14uD+X04O4dwHljzOFMXjfAKhHZ\nJiKjcrguyxXkYZk7derEvn37rh3cff3110lOTiYwMJCAgABef/31TJdt3bo148aNIyAggOrVqzNg\nwAAqVKjAO++8Q6dOnWjcuDHNmjWjX79+1y3Xo0cPUlJSCAwM5PXXX6dVq1bXXhs1ahSBgYHXDu5e\nlZWfi1IOZeOn4O7FL0V6cDYmkSc718q3wdgyk6VhmUXEH1h6dR9/uumfA0eMMe9nslxFY8wZESkL\nrAaesn+CyGjeUcAogKpVqzY/ceLEda9bPZSuDsucsbVr1zJt2jSWLl1qdZQss/p3SRUil87AR4HY\nmj9E53298PZw45cx7fKk+PNlWGYRcQPuBv59nqGdMeaM/d8LwGIg08/kxpiZxpggY0zQ1QOCSinl\n1DZ/DiaV30sOJDTyMk92tH5rH3K2q6cLcMAYE5bRiyJSTESKX30MdAOcdnNZh2XOWMeOHZ1qa1+p\nfJMYAyHfYhr0Z9qWK9Qq6033ho6xW/KWxS8i84BNQF0RCRORkfaXhnDDQV0RqSgiVy//LAdsEJFd\nwBZgmTHm15yE1QtyVE7p75DKN9tmQ1IsmysM4+D5WJ7sVBMXF+u39iELp3MaY4ZmMv3BDKadAXrZ\nHx8DGucw3zUeHh5ERkbi6+vrEB+VlPMxxhAZGXnttFel8kxKEmz+AlO9PVN2elC1tCt9AvPvRiu3\n4jRX7lauXJmwsDDCw8OtjqKcmIeHx7WLvJTKM7vnQ+wZ9gRNYteKGN4e0Ai3fLzRyq04TfG7u7tf\nd7WrUko5JFsqbPgQKjRh0v4KlC+RwD3NK1md6jqO8ydIKaUKgn0/QdQxjtR7jL9Do3m0fQ2Kurla\nneo6WvxKKZVbjIE/P4AydZh8tAalixVhaHD+3lYxK7T4lVIqtxxeBef3cLLhaP44FMnIdtXxKuJ4\ne9S1+JVSKjcYA+ungU9VJoU2oKSXOw+0rmZ1qgxp8SulVG448ReEbeF0w0dZdTCKR9pVp7iHu9Wp\nMqTFr5RSueHP96FYWSadboaPp7slN1HPKi1+pZTKqdPb4egazjYYyYqDMTx6h+Nu7YMWv1JK5dyG\nD8DDh8kXWjn81j5o8SulVM5cOAD7f+FC/QdZejDeofftX+V45xkppZQz+esjcPfi7cgO+HimMqKt\nv9WJbkm3+JVSKruiT8DuH4ioex8/HUpkZLvqlHDwrX3QLX6llMq+P98HF1fevdSFEh4uPOgEW/ug\nW/xKKZU9F0/Czu+JrDuEHw/ZeOSOGk6xtQ+6xa+UUtnz5weA8G5cT0p4uDrN1j5k7Q5cs0Tkgojs\nSTdtgoicFpGd9q9emSzbQ0QOisgRERmXm8GVUsoyF0/Bjv8QWXcwPxwyjGznPFv7kLVdPbOBHhlM\n/9AY08T+tfzGF0XEFfgM6Ak0AIaKSIOchFVKKYew4UMA3ontiY+nOw+187c2z226ZfEbY9YDUdl4\n72DgiDHmmDEmCZgP9MvG+yillOOIOQ07viO81kD+d0R4rINzbe1Dzg7ujhGR3fZdQaUyeL0ScCrd\n8zD7NKWUcl4bPgRjY+LFHpTxLsqDDn6VbkayW/yfAzWBJsBZ4P0M5snojugmszcUkVEiEiIiIXpf\nXaWUQ7p0BrbP4XyNu/nlpDtPdqrpkOPt30q2it8Yc94Yk2qMsQFfkbZb50ZhQPpbz1QGztzkPWca\nY4KMMUF+fn7ZiaWUUnlrw0cYY2N8dA8q+HgwNLiq1YmyJVvFLyIV0j0dAOzJYLatQG0RqS4iRYAh\nwJLsrE8ppSx36Sxsm83Zav1ZedqDp++sjYe7Y91LN6tu+RlFROYBHYEyIhIGvAF0FJEmpO26CQUe\ns89bEfjaGNPLGJMiImOAlYArMMsYszdPvgullMprf32MsaXwWmR3qvl6MbB5ZasTZdsti98YMzSD\nyd9kMu8ZoFe658uBf53qqZRSTiX2HGz7lrAqfVhzqBgfDq6Nu6vzDnzgvMmVUiq//PUxJjWJVyO7\nU7usN30bO/cJilr8Sil1MzGnYes3nKjcj/WRPjzfrQ6uLhmdtOg8tPiVUupm1k/FGBtjw3sQUKkE\n3RuWtzpRjmnxK6VUZqKOw47vOFT5brZeLM7z3eoi4txb+6DFr5RSmVv3LsbFjWdOdyHYvzQd6xSM\na4y0+JVSKiPhB2H3AnaUG8iB+GK81LNegdjaBy1+pZTK2B9vY9w8eSasI90blqN5tYyGJHNOWvxK\nKXWjs7th30+s9x3E6SQvxnavZ3WiXKXFr5RSN/pjMraiPjx3qh2DW1ShVllvqxPlKi1+pZRK79RW\nOPQry4sP4rKLN8/cWcfqRLlOi18ppdJb8xYpHr68GNaGh9tWp7yPh9WJcp0Wv1JKXXV8PRxfxwKP\ngRTxKs5jHWpanShPaPErpRSAMfD7RK54lmfiudaM6VQLH0/nuqViVmnxK6UUwIGlELaVmS73Uqak\nD/e3qmZ1ojyjxa+UUqkp8NubxBavyUeRLfi/rnWc9iYrWaHFr5RSO+ZC5GEmX7mX2uVL0r+pcw+7\nfCu3LH4RmSUiF0RkT7ppU0XkgIjsFpHFIlIyk2VDReQfEdkpIiG5GVwppXJFUjysncJZnybMvxTA\nq73rO/2wy7eSlS3+2UCPG6atBgKMMYHAIeDlmyzfyRjTxBgTlL2ISimVhzbNgLjzjL14D53qluWO\n2gVjILabuWXxG2PWA1E3TFtljEmxP90MWH7zyVSbYdH2MPacjrE6ilLKWcRHwF8fs8+nPZuSa/FK\nr/pWJ8oXubGP/2FgRSavGWCViGwTkVE3exMRGSUiISISEh4eftshLiel8NbSfUxZceC2l1VKFVLr\np2KS43kmvC/3BVeldrniVifKFzkqfhF5FUgBvs9klrbGmGZAT+BJEWmf2XsZY2YaY4KMMUF+frf/\nUau4hztPdqrFhiMRbDgccdvLK6UKmajjsPUb1hXrwTn3qjzbpbbVifJNtotfREYAdwHDjDEmo3mM\nMWfs/14AFgPB2V1fVtzfqhqVSnry7q8HyCSSUkqlWTOJVHHlxYjejOlcC1/volYnyjfZKn4R6QG8\nBPQ1xlzOZJ5iIlL86mOgG7Ano3lzi4e7K891rcM/p2NY/s+5vFyVUsqZndkJe/7HD259KFq6IiPa\n+FudKF9l5XTOecAmoK6IhInISGA6UBxYbT9V8wv7vBVFZLl90XLABhHZBWwBlhljfs2T7yKdAU0r\nUaecN9NWHSQ51ZbXq1NKORtjYPV4rriX5O2Y7ozrUb9AX6yVEbdbzWCMGZrB5G8ymfcM0Mv++BjQ\nOEfpbofNBv/8iGu5BoztXo9H54bwY0gY97Wsmm8RlFJO4NBKOL6OT10eok61SvRqVN7qRPmu4Fy5\nmxQLv46DFePoUs+PoGql+Oi3QyQkpVqdTCnlKFKTYdVrRHlU5YvLnXitd/0Ccx/d21Fwit/DBzq9\nAic2IAeX8VLPelyIvcK3G49bnUwp5Si2fgORh3k5fjC9m1SladWCcx/d21Fwih+g+UPgVw9WvUaL\nysXoXK8sX6w9SszlZKuTKaWsdjkK1r7Dfs9m/CnNebln4bhYKyMFq/hd3aD72xAdCn9/wYs96hJ7\nJYUZ645YnUwpZbV172GuXOK5i/fyZKfaBfLOWllVsIofoNadULs7rJtKPe9EBjSpxOy/Qjkbk2B1\nMqWUVSIOY7Z+xTK3riSUrscjd1S3OpGlCl7xA3SbBCkJ8MdknutaB5sxfPzbYatTKaWssup1kqUo\nE2L7M/6uBhR1K1ynb96oYBa/Xx1o8Shsn0uVpGMMb+XPDyGnOHDuktXJlFL57dhaOLSC6Sn9CKhb\ni871ylqdyHIFs/gBOryYdqbPyld4unNNinu4M3nZfh3KQanCxJYKK18lyr0836R0Z/xdDQrl6Zs3\nKrjF71UaOr4Cx9dR8tTvPH1nbf48HMHaQ7c/8qdSyknt+A7O7+G1+Hu5v11davh5W53IIRTc4gcI\negjK1IVVrzK8RQX8fb2YvGw/KTqUg1IFX+IlzJpJ7HVrSIhXe57qXHhG37yVgl38ru7QfTJEHaPI\ntq94uVd9jlyIY97WU1YnU0rltbVTID6CcfFDebl3fbyL3nKEmkKjYBc/QO2uUKsrrHuPblWhZfXS\nfLT6EJcS9aIupQqsC/sxf3/BYulCkarN6d+kYN88/XYV/OIH6PkupCQiq9/gtd4NiIxPYsYfR61O\npZTKC8bA8rEkuBRjcuI9vNm3oR7QvUHhKH7fmtDmKdg9n0ape7m7WSVmbTjOqagMbyWglHJmexdB\n6J9MThxI3zaBBFTysTqRwykcxQ9wx/NQojIse4GxXWvi4gLv/qr351WqQLkSh1n5Gkdca7LGqwf/\n17WO1YkcUpaKX0RmicgFEdmTblppEVktIoft/2Y4zJ2IjLDPc9h+u0ZrFCkGPd6GC3upcPB7RrWv\nydLdZ9l2ItqySEqpXPbnNCT2DC9eHs5rfQIp7uFudSKHlNUt/tlAjxumjQN+N8bUBn63P7+OiJQG\n3gBakna/3Tcy+wORL+r3hZqd4Y/JPNbcm7LFi/LW0n3YbHpRl1JOL+IwZuN0fjIdKF67baG8wUpW\nZan4jTHrgagbJvcD5tgfzwH6Z7Bod2C1MSbKGBMNrObff0Dyjwj0nArJCRRb9xZju9dl56mLLN5x\n2rJISqlcYAyseJFEivBe6lAm9tMDujeTk3385YwxZwHs/2Y0AEYlIP1J82H2adYpUwvajIFd/+We\nMmE0qVKSd1Yc0NM7lXJmB5bB0TW8d+VuhnYKoppvMasTObS8Prib0Z/cDPeriMgoEQkRkZDw8Dwe\nVqH9WChRGZcVY5nYpy6R8Vd09E6lnFVyAubXcRyTqvxZagCjOtSwOpHDy0nxnxeRCgD2fy9kME8Y\nUCXd88rAmYzezBgz0xgTZIwJ8vPzy0GsLChSLO2K3vP/EHh2EUNaVGX2xlAOnY/N2/UqpXLf+qlI\nzCleThzBxP6NC/2Qy1mRk+JfAlw9S2cE8HMG86wEuolIKftB3W72adZr0A9qdIQ1k3ixrQ/eRd2Y\nsGSvjt6plDM5vw/z18cssrWnYpMutKlVxupETiGrp3POAzYBdUUkTERGAlOAriJyGOhqf46IBInI\n1wDGmCjgLWCr/WuifZr1RKD3B5CSSKn143mhe102Ho1k+T/nrE6mlMoKmw3zy7PEGi8+dhnBK70K\n7z10b5c44hZuUFCQCQkJyZ+VrZsKf0widcgC+qwsRvTlJH5/vgNeRXRAJ6UcWsi3sPRZnk8aTet7\nnmJg88pWJ7KUiGwzxgRlZd7Cc+VuZto+A371cF3xApN6+XM2JpHP/tCbsyvl0GLPY1s1ni2mARdq\nDOCeZjoI2+3Q4ncrAnd9BDGnaHbsC+5uWomv1h8nNCLe6mRKqUyYlS+TmpTAG7ZHefvuQD1n/zZp\n8QNUaw3NH4LNM3itWRJF3FyYuHSf1amUUhk5/BuyZyGfJvdjUPdOVCntZXUip6PFf1WXCVDMj9Jr\nXuC5ztVZc+ACK/fqgV6lHErSZVKXPsdxKrKxwnBGtPG3OpFT0uK/yrMk9JgCZ3fxoNsq6pUvzhs/\n7yXuSorVyZRSV617F9eYk7yWMpK3BzXH1UV38WSHFn96DQdA7W64rp3MtG6lOB+byLSVB61OpZQC\nOL8X28bp/JDSgRYd+1KnXHGrEzktLf70RKD3+wAE7HiL4S2rMmdTKLtOXbQ2l1KFXWoKqYufIMZ4\nsaDUozzRsZbViZyaFv+NSlaFTq/C4ZWMq7KHssWL8vKif0hJtVmdTKnCa9OnuJ7byevJD/LaoHYU\ncdPqygn96WWk1eNQKQiv317m7a7l2Hf2Et/+FWp1KqUKp/BD2Na8zYrUFlRsM5SmVa27pUdBocWf\nERdX6D8Dki7T+egUutTz44PVh/QevUrlN1sqKYsfJ9ZWhFk+Y/i/bnWtTlQgaPFnxq8udHoFObCU\n9+ofRQTG/7xHB3FTKj9tnoHbmRDeSHmQ8UM64eGuI2/mBi3+m2k9Bio1p/TaV3i1vS9/HAzXQdyU\nyi8RR0j97S1WpzanWvsHaFTZx+pEBYYW/824ukH/zyEpnqERHxNQsTgTftlLTILerUupPGWzkbz4\nCeJtbszxfYYxd9a2OlGBosV/K351odPLuBz4hRmNTxAZd4V3lu+3OpVSBZrZ8iXup/9mcsoDvD6k\nM+6uWlW5SX+aWdH6KajUnKqbx/Ns61LM33qKdYfy+PaQShVWUcdIXf0mf6Q2pkaXR6hbXi/Uym1a\n/Fnh6gb9ZkBSHE9e/pxaZb0Zt3C33qBdqdxmSyVp0ZMkpMJ/yz3PI+1rWp2oQMp28YtIXRHZme7r\nkog8e8M8HUUkJt0843Me2SJl60HHl3E9sISvm53g/KVE3l6mu3yUyk22jdMpEraRt20P8uqQLjoW\nTx7JdvEbYw4aY5oYY5oAzYHLwOIMZv3z6nzGmInZXZ9DaPM0VG6B/+bXeL6lt+7yUSo3nd2N+X0i\ny1ODadhzNP5lilmdqMDKrV09dwJHjTEncun9HJOrGwz4ElJTGB09ldp+XrrLR6nckJxI4g8jibB5\ns6rGOIa1qmZ1ogItt4p/CDAvk9dai8guEVkhIg1zaX3W8a0JPd/F9cSfzK6/RXf5KJULkle9gUf0\nISa7j2H8vXfoHbXyWI6LX0SKAH2BHzN4eTtQzRjTGPgU+Okm7zNKREJEJCQ83MF3nzS9H+rdRaWQ\nqbzWPJX5W0+xXnf5KJU9R//AfesXzEntxuAhD1G6WBGrExV4ubHF3xPYbow5f+MLxphLxpg4++Pl\ngLuIlMnoTYwxM40xQcaYID8/v1yIlYdEoM8n4OXLg+cm0cDPXXf5KJUdl6NI/N9jHLFVJLzlq7St\nlWE9qFyWG8U/lEx284hIebF/ZhORYPv6InNhndYr5gv9P8Ml4iBzqizn3KVE3vpF79OrVJYZQ8JP\nz+KaEMH00i/xdI9AqxMVGjkqfhHxAroCi9JNGy0io+1PBwJ7RGQX8AkwxBSkUc5qdYGWo/Hb9y3v\nNQnnx21hrPjnrNWplHIKtt0/4HnoZz6zDeKZ+wfpGPv5SByxh4OCgkxISIjVMbImOQFmdsIkRDG8\nyIf8E+3Or8/eQQUfT6uTKeWWLYGVAAAW/ElEQVS4oo5z5bO27E6uRGifHxnUwt/qRE5PRLYZY4Ky\nMq/+ic0pd0+45yskIZovS3xLcmoqz/+wC5vN8f6gKuUQUpKI//4BElNgSc03GRikp27mNy3+3FC+\nEXSdSLHQ1XzfMISNRyP5esMxq1Mp5ZASVrxGscjdTPV4irGDu+qpmxbQ4s8tLUdDvbtocvAjHq8Z\nxdSVB9l7JsbqVEo5lNT9y/Dc9iVzbD0YOuIJSni4Wx2pUNLizy0i0G86UqIiL8S+i7/XFZ6Zv5OE\npFSrkynlGC6eInnhaP6x+ePZczINK+qNVayixZ+bPEvBwNm4xp1jfrn/cORCLG/r2P1KQWoyMf95\ngOTkZH6pM5lBrXTUTStp8ee2ys2h60R8w35jZq2/+W7zCX7f/69r25QqVOJWTMAnYjufej3Js/f2\n0P36FtPizwutHoe6vel65nP6+Z3lhR93ceZigtWplLJEysFVeIdM5wdzJ/c+9BxeRdysjlToafHn\nBRHo/xlSvALT+BCPlEs8NW8Hyak2q5Mplb9iTpP046McsFXBs+9UapX1tjqRQos/73iWgkGzcY8/\nz+KK37P9RCRTVx60OpVS+SflChdnD8GWnMivDabQp7nu13cUWvx5qXJz6DaJ8ufW8LX/WmauP8aq\nveesTqVUvoj+3zOUjN7NZyVf4PGBPa2Oo9LR4s9rLR+DwMF0PvcND/sd5Pkfd3Ey8rLVqZTKU/Eb\nv6bUgXl863I3D418iqJurlZHUulo8ec1EejzMVK+Ea9d+YBqnOHJ/27nSoqe368KppQTf1N01Uus\ntzWm6YhplC3hYXUkdQMt/vzg7glDvsfFrQjzi3/K8dNnmbRUz+9XBVDcBS7/ZxhnbKWI7jmDJtV8\nrU6kMqDFn19KVoVBs/GOC2Vh+bn8Z/Nxluw6Y3UqpXJPajLhs4bgnhTD8obT6Nc6wOpEKhNa/Pmp\nenvoNom6F9cz2XcV4xbu5uC5WKtTKZUrLix8Ab+obXxT+jkeGdjX6jjqJrT481urx6HRvQyN/45u\n7rt4dG4I0fFJVqdSKkdiNs2m7L7ZLHDtw32PvICbq1aLI8uNm62Hisg/IrJTRP519xRJ84mIHBGR\n3SLSLKfrdGrpDva+7/IpxWKOMGbedlL04i7lpBIOr8Nr5fNsMgE0euhjvVm6E8itP8udjDFNMrn7\nS0+gtv1rFPB5Lq3TeRXxgiH/xbWIJ/8r8SEHjxxj0jI92KucT2r4EVLnDeOErSzJ98ymQWU9mOsM\n8uPzWD9grkmzGSgpIhXyYb2OrWQVuG8+xZKj+Ml3OvM2HuKHraesTqVUlpnLUUR/3Z8rqfBPh69o\nH1jb6kgqi3Kj+A2wSkS2icioDF6vBKRvtDD7tOuIyCgRCRGRkPDw8FyI5QQqNYd7vqJS/D7mlprF\naz/tYtuJKKtTKXVrKUmc/WoQxRPP8ku9qQy4s53VidRtyI3ib2uMaUbaLp0nRaT9Da9nNP7qv25I\na4yZaYwJMsYE+fn55UIsJ1G/D9J1Ii0T1jPeaxGPfbedszE6kqdyYMYQ9p/HqBgdwvflXuSBwUOs\nTqRuU46L3xhzxv7vBWAxEHzDLGFAlXTPKwN6Ant6bZ6C5g9yf/JCeiavZtTcbXrnLuWwziybQuXQ\nRcz3uo+hj7yAi4uOre9sclT8IlJMRIpffQx0A/bcMNsS4AH72T2tgBhjzNmcrLfAEYFe06BGJ950\n+ZoSZ//imfk7SLX964ORUpaK+PsHKoZM4TfXdtw5+kM8i+gYPM4op1v85YANIrIL2AIsM8b8KiKj\nRWS0fZ7lwDHgCPAV8EQO11kwubrDvXNwKVObWV6fELo/hIm/7MUYLX/lGGL2/U6JFY+zg7pUHzkb\nPx2Dx2nl6FY4xphjQOMMpn+R7rEBnszJegoNDx8Y9gNFv+7KQplKz81FqVTKk1HtdRxzZa240BDc\nfxhGqCmPDJtPzYqF6DhcAaSX1zmaklVh+GK8XVNY5D2Vmcv/1jF9lKUSzx0ide7dRJtiRA6YT5M6\nNayOpHJIi98RlWuADPsRP6L50XsaE37YxOZjkVanUoVQ8sUzxH7dh5RUG4e6zaV1k0ZWR1K5QIvf\nUVUJRgZ/h7/tJN96vM9Tczdy+LwO6Kbyj+1yNBc+vwuv5Gi2tplJp7ZtrY6kcokWvyOr1QUZ8AWB\nqft4Xz5i5KzNnL+UaHUqVQiYpMuc/Kwffomh/N74A3p072V1JJWLtPgdXaOBSO9ptDchPJ/4CcO/\n2kRk3BWrU6kCzKRc4djng6gat5tltd6kz4BhVkdSuSxHZ/WofNLiEbgcRb8/JhMX48ED37jy31Gt\n8fF0tzqZKmBMyhWOzhhIregNLK78PP3vH4OIXqBV0GjxO4v2Y+FKLMM2foItAh6c5cJ3j7TCu6j+\nJ1S5w6QkcWTGvdSOWs9PFZ6j38jXtfQLKG0NZyECXScCMHzjJ5hz8MhsF2Y/3BIPd716UuWMSUni\n8IzB1Ilay5IKz9D30Td0KIYCTPfxO5Or5d/maR5wXUWvsA94bG4IV1J0XB+VfSY1mYOfD6FO1BqW\nVhjDXY++qaVfwGnxO5vryn81nY9P5en/bidZ7+ClssGkJnNgxlDqRf7OsgpP0uvRSVr6hYAWvzNK\nV/4j3FbT5tC7PDt/h5a/ui0mJYl9M4ZRP3I1K8o/Ts9HJ2vpFxJa/M7qhvJvvX8yT3y3hcRk3e2j\nbi31ymUOfNKfhpEr+bX8Y3Qf9Y6WfiGixe/MrpZ/u+e43+13+h19g9GzN3I5KcXqZMqBXYmP5uhH\nPagbs5GV/mPp/ti7WvqFjBa/sxOBLhOg2yTuct3MI6fGMeqrtVxKTLY6mXJAcdHnOPNRF6pf3sPa\nhpPp/uBrespmIaTFX1C0eQr6f04b1/2MPf8ij89cRXR8ktWplAOJPnOUi9PvpHzSSf5uOZ3O9+po\n6YVVtotfRKqIyB8isl9E9orIMxnM01FEYkRkp/1rfM7iqptqch8uQ74nwD2MtyJf4KkvlnAhVsf2\nUXDu6C6Sv+pKiZQo9t45m3a97rM6krJQTrb4U4DnjTH1gVak3Wi9QQbz/WmMaWL/mpiD9amsqNsT\n1wd+pmqRWKZdGsvYGT9wPCLe6lTKQse2/07R7+7CxaRwst+PBLXvbXUkZbFsF78x5qwxZrv9cSyw\nH6iUW8FUDlRrjdvIX/H1cuXThHG8+9nnhIRGWZ1KWWD38plU/vle4qQYF4f8QkCzdlZHUg4gV/bx\ni4g/0BT4O4OXW4vILhFZISINc2N9KgvKB+A+6nc8SlfhMzOZpd+8xS96J69Cw9hS2frt8wRuGcvB\nIvXxGL2GWvX+dZdUVUjluPhFxBtYCDxrjLl0w8vbgWrGmMbAp8BPN3mfUSISIiIh4eHhOY2lAEpV\no8hjv5FaswsTXGcR/ePTfLFmv97AvYC7khDHzg/vocWJr9nk04vaz6/Gr1xFq2MpB5Kj4hcRd9JK\n/3tjzKIbXzfGXDLGxNkfLwfcRaRMRu9ljJlpjAkyxgT5+emNnHNN0eIUGTaflFZP8YDbagL+GMnE\nHzfqVb4FVOT5k5x4vzONL61lQ/WnafXM93h4eFodSzmYnJzVI8A3wH5jzAeZzFPePh8iEmxfn948\nNr+5uOLWYxK2vp/R2u0gw/c8zCtfLSLmsp7rX5Ac3b2B5M87UTk5lO2tP6XdiLcQFz1jW/1bTn4r\n2gLDgc7pTtfsJSKjRWS0fZ6BwB4R2QV8Agwxup/BMi7N7sf1oWVU9Eji9bNP8e5H09hzOsbqWCqH\njM3Glh+nUmVhPwRD2IBFBPUYbnUs5cDEEXs4KCjIhISEWB2j4Io+Qfz391MsYjezbT3xvuttBgbX\nsDqVyoa42IscmDmSoNjf2OXRgioPz6V0Wd2fXxiJyDZjTFBW5tXPgYVRqWoUG/0bCc1G8aDLCmot\nvYf35v+qA7w5mWP7thD5QVuaXvqdTf5P0GjsSi19lSVa/IWVW1E8+04l9d7vqOd+gdH7H+KDj6dx\nKuqy1cnULRhj+HvxdCos6I23ieNAt//Q+sF3cHHVO7GprNHiL+RcG/TFY8xfGN+avBL3Nn9+8jCr\ndoVaHUtlIiYqnC0fDqblrlc5VrQeZvSfNGx7l9WxlJPR4ldQyh+fJ9Zwqcmj3McKqi/sxUez5xGT\noGf9OJLta/5H4ifBNI9Zzd9VH6Xei2soU76q1bGUE9LiV2ncilCi/zRShv5IeY9knjr+OEumPcrG\ng6etTlboxVyMYtNH99Ns/UgSXYpx4u6fafnwNFzd3K2OppyUFr+6jlvdbhT/vxAu1h3M8NTFlP2+\nC1/N+4GEJD3wa4Wd637m8kfBBEcvZUvF4VR4cQs1G7e3OpZyclr86t88fPC970uuDPkRv6KpPHxg\nFD9PHcm2IzrWT36JCj/Hxo9H0OSPB0h1ced434UEj5pOEQ8vq6OpAkCLX2WqaL1u+Dy/lfDa9zIk\neTFl57Zn9tefEH5Jx/jPKynJyfy1YBp8FkTLqJ/ZWn4IZV7YQq3md1odTRUgegGXypLEQ38Qu/h5\n/BKOspkAzrV6g7u6dsHNVbcdcsuev3+nyKoXqZN6hANFA/Dq9wFVG7S0OpZyErdzAZcWv8q61BTC\n132B54YpeKbGscyjF1XunkTTunrVb06cP3OSY/PH0vrSr4RTmjPBrxDYY6SOs6Nuixa/ylMmPpIT\nC1+jyrH5XDJe/FHuQZrd/Rz+5TMceFVlIiriAvsWTaHJ6f9ShCR2VR5Go6Fv4eFd0upoyglp8at8\nkRC2mws/PEe1SyGcNyXZXGE4ze9+jsplfa2O5tCioyLZs2gKjU/9hxJymV3FO1C2/yQq1Ay0Oppy\nYlr8Kl9d3LeGi8vfwj9uOxdMSbZWGk6zAc9RwU//AKQXczGK3YumEnhiDj4Sz27vtpTsNZ6qDVpZ\nHU0VAFr8yhKRe9cQs+ItasRtJ9z4sK3SMOr2fILqVapYHc1Sp08c4fivn9Lw7EJKEcs/Xq0o0Ws8\n1QLaWh1NFSBa/MpSF/asIWbFJGrHbyPRuPO3d2c824yiees7cXURq+PlC2Oz8c/G5SRt/JIm8Rtw\nwbDHuzXFu46jepMOVsdTBZAWv3IIUUe3cXr1dGqeW44Xiex3qc35uvfTtMfD+PiUsDpenoi5GMW+\nVbMod2AuNWwniMGbQxX749/jafyq1rU6nirA8q34RaQH8DHgCnxtjJlyw+tFgblAc9JuuTjYGBN6\nq/fV4i9YkuOjObjqa3z2zqVKykliTDH2lmiHW6MBBNzRDy9P574aNT42hn3rf8Rl7080jN+MhyRz\nzLU60QEPEdDjYYp6Frc6oioE8qX4RcQVOAR0BcKArcBQY8y+dPM8AQQaY0aLyBBggDFm8K3eW4u/\ngDKG0G2ruLhxFjWj1lOcy1wyXuzzaYd7w/40uGMAnl7O8UcgIT6O/RsWY/tnEQ1i/8JLrhBBSY6V\n7Uqp4KHUbt4ZpHDs1lKOIb+KvzUwwRjT3f78ZQBjzDvp5llpn2eTiLgB5wC/W913V4u/4EtNSuTw\n5qXE71xErah1+BBHnPHkiFdjEiq2wrdhZ2o0ao2bexGrowKQdCWRozvXcXHvGkqc20itK/spKslE\nU4LDvp0oHjSEui264eLmZnVUVUjdTvHn5Le0EnAq3fMw4Mbry6/NY4xJEZEYwBeIuPHNRGQUMAqg\nalUdY7ygcy3iQb32A6H9QFKSEtm3eTlxu36iQnQIVY5uhqMfEfezJ8c8A0io2IriNVpQvmZjSpev\nludb0saWytnQg4Qf3UHC6X/wOreVWgn/UF+uYDPCMbca7KgwCO8G3ajXujfBDvLHSamsyknxZ/R/\n341b8lmZJ22iMTOBmZC2xZ+DXMrJuBXxoEH7u6H93QBEnj1J6PZVpBz7k3LR2wg89ikcA36DWLw4\n616VWO8a2MrUwaNsDTx9ylKsZHmK+5almI8f4nbzIjapKcRGneNi+Gnio86SePEsyRfP4hJ5mJKx\nh6mYfJKKcoWrd68NdanCbr+7KFK7IzWDulPLtxy18vZHolSeyknxhwHpT9CuDNw4bu/VecLsu3p8\ngKgcrFMVAr4VquLb+xHgEQAizp/hzKEQ4sL2IREH8b50lKrRG/GLXg6H/738JYqRIGnHCgSbfevD\n4GIMrqRQwsRRQgw3nlcUgQ9nilRnV9m+SLkG+Pg3plLtpvj7lMY/775dpfJdTop/K1BbRKoDp4Eh\nwH03zLMEGAFsAgYCa261f1+pG5UpV5Ey5foCfa9NM8YQfuEckedCSbh4niuXIkiJjcDER+CSEIVr\nchxGBBBEBIOACEbcsHmVRoqVxd2nHJ6lKlCsdEVKlqmAr68fZfSArCoEsl389n32Y4CVpJ3OOcsY\ns1dEJgIhxpglwDfAdyJyhLQt/SG5EVopEcGvXAX8ylWwOopSTidHpyAYY5YDy2+YNj7d40RgUE7W\noZRSKnfpgN9KKVXIaPErpVQho8WvlFKFjBa/UkoVMlr8SilVyGjxK6VUIaPFr5RShYxD3ohFRMKB\nE9lcvAwZDALnADTX7dFct0dz3Z6CmKuaMcYvKzM6ZPHnhIiEZHVo0vykuW6P5ro9muv2FPZcuqtH\nKaUKGS1+pZQqZApi8c+0OkAmNNft0Vy3R3PdnkKdq8Dt41dKKXVzBXGLXyml1E0U6OIXkRdExIhI\nGauzAIjIWyKyW0R2isgqEal466XynohMFZED9myLRaSk1ZkARGSQiOwVEZuIWHoGhoj0EJGDInJE\nRMZZmSU9EZklIhdEZI/VWdITkSoi8oeI7Lf/N3zG6kwAIuIhIltEZJc915tWZ7pKRFxFZIeILM3r\ndRXY4heRKkBX4KTVWdKZaowJNMY0AZYC42+1QD5ZDQQYYwKBQ8DLFue5ag9wN7DeyhAi4gp8BvQE\nGgBDRaSBlZnSmQ30sDpEBlKA540x9YFWwJMO8jO7AnQ2xjQGmgA9RKSVxZmuegbYnx8rKrDFD3wI\nvEgmN3e3gjHmUrqnxXCQbMaYVcaYFPvTzaTdP9lyxpj9xpiDVucAgoEjxphjxpgkYD7Qz+JMABhj\n1uOA97E2xpw1xmy3P44lrdAqWZsKTJo4+1N3+5fl/x+KSGWgN/B1fqyvQBa/iPQFThtjdlmd5UYi\nMllETgHDcJwt/vQeBlZYHcLBVAJOpXsehgOUmLMQEX+gKfC3tUnS2Hep7AQuAKuNMY6Q6yPSNlRt\n+bGyHN160Uoi8htQPoOXXgVeAbrlb6I0N8tljPnZGPMq8KqIvAyMAd5whFz2eV4l7SP69/mRKau5\nHEBGd2C3fCvRGYiIN7AQePaGT7yWMcakAk3sx7IWi0iAMcayYyQichdwwRizTUQ65sc6nbb4jTFd\nMpouIo2A6sAuEYG03RbbRSTYGHPOqlwZ+C+wjHwq/lvlEpERwF3AnSYfz/G9jZ+XlcKAKumeVwbO\nWJTFaYiIO2ml/70xZpHVeW5kjLkoImtJO0Zi5cHxtkBfEekFeAAlROQ/xpj782qFBW5XjzHmH2NM\nWWOMvzHGn7T/aZvlR+nfiojUTve0L3DAqizpiUgP4CWgrzHmstV5HNBWoLaIVBeRIsAQYInFmRya\npG11fQPsN8Z8YHWeq0TE7+pZayLiCXTB4v8PjTEvG2Mq2/tqCLAmL0sfCmDxO7gpIrJHRHaTtivK\nIU5xA6YDxYHV9lNNv7A6EICIDBCRMKA1sExEVlqRw37gewywkrSDlD8YY/ZakeVGIjIP2ATUFZEw\nERlpdSa7tsBwoLP9d2qnfYvWahWAP+z/D24lbR9/np8+6Wj0yl2llCpkdItfKaUKGS1+pZQqZLT4\nlVKqkNHiV0qpQkaLXymlChktfqWUKmS0+JVSqpDR4ldKqULm/wFPVVV/5zfLaQAAAABJRU5ErkJg\ngg==\n", "text/plain": [ - "" + "
" ] }, "metadata": {}, @@ -575,7 +684,7 @@ } ], "source": [ - "function = lambda x: x*x + x\n", + "function = lambda x: (x*x + x)*np.exp(-x/100)\n", "x = np.linspace(-4,4)\n", "plt.plot(x, function(x), label = \"parabola\")\n", "plt.plot(x, ParabolicFunction().from_function(-1, 0, 1, function)(x), label = \"parabola-interpolation\")\n", @@ -584,14 +693,18 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "hidden": true + }, "source": [ "## Данные" ] }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "hidden": true + }, "source": [ "### Генерируем и запоминаем данные\n", "В качестве модели берем $y = \\alpha x^2,$\n", @@ -600,19 +713,20 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 6, "metadata": { "ExecuteTime": { "end_time": "2018-05-01T10:18:56.087163Z", "start_time": "2018-05-01T10:18:55.942155Z" - } + }, + "hidden": true }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAH11JREFUeJzt3Xt0VNXd//H3l3ALNyMCAkEuUgRU\nVCRaBesVRFuUoCiKICAV+/NSalus6O95rFoVy7O0dlWtFFRERBBjwFtRUay1iIDhAQFRBAwJt0AS\nroHc9vPHGZRgAiEzkzNz5vNai5WZM+fM+a6BfGazzz57m3MOEREJrjp+FyAiItGloBcRCTgFvYhI\nwCnoRUQCTkEvIhJwCnoRkYBT0IuIBJyCXkQk4BT0IiIBV9fvAgBatGjhOnbs6HcZIiJxZenSpdud\ncy2Ptl9MBH3Hjh1ZsmSJ32WIiMQVM/uuOvup60ZEJOAU9CIiAaegFxEJOAW9iEjAKehFRAJOQS8i\nEnAKehGRgFPQi4j4obwM5t0PhRujfioFvYiIH+bdBwv/Bms/iPqpFPQiIrVt4TOw6O9w3u2QNirq\np1PQi4jUplVzvdZ8twFw+Z9q5ZQKehGR2rJxMWTcCqm94Jp/QJ2kWjmtgl5EpDbkr4MZQ6Bpa7jx\nVajfqNZOraAXEYm2ffnw8mBw5XDT69DkqDMLR1RMTFMsIhJYJfthxo2wMwdungMtflLrJSjoRUSi\npbwcMn8FGz+Dwc9Dh/N9KUNdNyIi0TL/j7DyDej7IJx+rW9lKOhFRKLh83/Ap09B2i3QZ6yvpSjo\nRUQibdVceGccnHIlXDkRzHwtR0EvIhJJ3/0HXv8ltDvH65dP8v9SqIJeRCRStq2GGTdASnsYOrNW\nx8ofiYJeRCQSdubAy9dC3YYw7HVo1Nzvir531KA3s+fNbJuZfXnItuZm9r6ZfRP6eXxou5nZX81s\nrZktN7Ozo1m8iEhMKCrwbojavwtumg3Hd/C7ogqq06J/EbjisG33AvOdc12A+aHnAFcCXUJ/xgDP\nRqZMEZEYVbIfZgyFHWvhhunQ5gy/K/qRowa9c+5fQP5hmwcCU0OPpwLph2x/yXk+A1LMrE2kihUR\niSnlZZDxS8j+Dwz6O5x8kd8VVaqmffQnOuc2A4R+tgptTwUOXS4lJ7RNRCRYnIN3/wCr34T+j0KP\nwX5XVKVIX4ytbLCoq3RHszFmtsTMluTl5UW4DBGRKPv3E7D4H3D+nXD+HX5Xc0Q1DfqtB7tkQj+3\nhbbnACcdsl87YFNlb+Ccm+ScS3POpbVsWbszuYmIhCVrOsx/CHpcB/0e9ruao6pp0M8FRoQejwDm\nHLL95tDom/OAnQe7eEREAuHr92DuXdDpIhj4DNSJ/VHqR71ly8xmABcDLcwsB3gAmADMMrPRQDZw\nXWj3d4CfA2uBfUD0F0MUEakt2Z/BrJvhxNNgyMtQt77fFVXLUYPeOXdjFS9dVsm+DojtzioRkZrY\n8iW8cj00awvDMqBhM78rqrbY/z+HiIjf8tfBtEFQrzHcnFnrK0SFy//ZdkREYtnuLfBSOpSXwIg3\nvXls4oyCXkSkKkUFXkt+73Yv5Ft187uiGlHQi4hUpngvvDLEm9pg6Cxo18vvimpMQS8icrjSYm90\nTc5iuO5F6HyJ3xWFRUEvInKogwt6r/0ArnoKTh3od0Vh06gbEZGDnIN3x8GXr0PfP0KvkT4XFBkK\nehGRgxY8BosnQ+9fwwV3+11NxCjoRUQAPnsWPn4ceg6Dfg/5XU1EKehFRJZOhX/eC92vggFPgVU2\nEW/8UtCLSGJbMRveHAs/6QvXToGk4I1RUdCLSOL66m3IGAMdLwhNUtbA74qiQkEvIolp7Qfw2kho\n2xNunAH1kv2uKGoU9CKScP7410kceHkotOgKw2ZDg6Z+lxRVCnoRSSw5S7mn4AG2J7WC4W9A8vF+\nVxR1CnoRSRxbvoSXr2F3nWY8fMJjcTfdcE0F7/KyiEhltn8D09KhXiMebvooBUkt/K6o1qhFLyLB\nV7ABpl7tPR4xl7y6rX0tp7Yp6EUk2HbmeCFfsg+GZ0KLLn5XVOsU9CISXLs2wYsDoKgQhmdA69P9\nrsgX6qMXkWDavcUL+b3bvXVeU+N34ZBwKehFJHh2b4WpV8GerTAsA9ql+V2RrxT0IhIse/Lgpau9\nvvlhr0P7n/pdke/URy8iwbF3B7w0EAq+89Z57dDb74piglr0IhIM+/K9kM//FobOhE4/87uimKEW\nvYjEv6IC72ao7V/DDa/AyRf7XVFMUYteROLb/p0w7RrYthqGTIefXOZ3RTEnrBa9md1tZivN7Esz\nm2FmDc2sk5ktMrNvzGymmdWPVLEiIhXs3wkvXwtbVsD1L8Eplx/1kMysXLKyC1m0Pp8+Ez4kMyu3\nFgr1V42D3sxSgV8Dac6504Ek4AbgceBJ51wXoAAYHYlCRUQqKCqEl9Jh0zK47kXoeuVRD8nMymV8\nxgqKy8oByC0sYnzGisCHfbh99HWBZDOrCzQCNgOXArNDr08F0sM8h4hIRQcvvG5ZAUOmQfcB1Tps\n4rw1FJWUVdhWVFLGxHlrolFlzKhx0DvncoH/AbLxAn4nsBQodM6VhnbLAVLDLVJE5HsHQ37bKrhh\nerVa8gdtKiw6pu1BEU7XzfHAQKAT0BZoDFT2ibsqjh9jZkvMbEleXl5NyxCRRLJ3u3fHa94auGEG\nnNL/mA5vm1L5coFVbQ+KcLpu+gLrnXN5zrkSIAPoDaSEunIA2gGbKjvYOTfJOZfmnEtr2TIxJv8X\nkTDsyfNCfsdaGPoqdOl7zG8xrn9XkuslVdiWXC+Jcf27RqrKmBRO0GcD55lZIzMz4DJgFfARMDi0\nzwhgTnglikhQDHluIUOeW3jsB+7ZBlMHQP56747XzpfW6PzpPVN57Joe1E/yoi81JZnHrulBes9g\n9zDXeBy9c26Rmc0GvgBKgSxgEvA28KqZ/Sm0bUokChWRBLV7i9eS35kDN70W9h2v6T1TmfF5NgAz\nbzs/EhXGvLBumHLOPQA8cNjmdcC54byviAjgzSc/9SrYtdmboExz19SI7owVkdhUuNGbhXJPnrdo\nSPvz/K4obinoRST27PjWG0K5fxcMfwNOOsfviuKagl5EYsu21V7Il5fCyDehzZl+VxT3NHuliMSO\nTcvghZ8DBiPfUchHiIJeRGJD9iLvwmv9xjDqHWjVze+KAkNBLyL+W/cxTBsEjVvCqHfhhM5+VxQo\nCnoR8dfX82D6dXB8By/kU07yu6LAUdCLiH9WZsKrN0Gr7jDybWh6ot8VBZKCXkT8sWwGzB4Fqb1g\nxFxo1NzvigJLwytFpFYcXNmpuKycPg/OYVzJS6SfcqG3xmv9xn6XF2gKehGJuh+t7FRUl/H2Kzj1\nDNIV8lGnoBeRqKt0ZSdXl4kfrCc9rVOt15Mok5kdpD56EYm6RF3ZKVYo6EUkuor30bbenkpfCvrK\nTrFCQS8i0VNUANPSGcdUkpMqriqaCCs7xQoFvYhEx+4t8MIvYFMW6TfexmODeybcyk6xQhdjRSTy\n8tfBS+neYt5DZ0HnS0iHhFvZKVYo6EUksrasgJevhbISGPEmtOvld0UJT103IhI56xbA81dCnbpw\nyz8V8jFCQS+SAIY8t5Ahzy2M7kmWvwYvD/YmJRv9PrTUhdZYoaAXkfA4B5/+FTJ+6a3rOupdOE4X\nWWOJ+uhFpObKy2HefbDoWThtEAx6Duo28LsqOYyCXkRqpmQ/vHEbrMqE826Hyx+BOuokiEUKehE5\ndkUF3jzy330Kl/8Jet/ld0VyBAp6ETk2O3O8i6471sK1U6DHYL8rkqNQ0ItI9W1d5Y2RL94Dw16H\nky/yuyKpBgW9iFTP2vnw2kio1whGvQOte/hdkVRTWEFvZinAZOB0wAG3AGuAmUBHYANwvXOuIKwq\nRcRfS1+Et34LLbvBTbPguHY1ehtNfeCPcC+RPwX80znXDTgTWA3cC8x3znUB5oeei0g8Ki+H9/8b\n3hwLnS/x7natYciLf2oc9GbWDLgQmALgnCt2zhUCA4Gpod2mAunhFikiNXdwrdZF6/PpM+FDMrNy\nq3dgSRHMHgmfPgVpt8CNM6Fhs6jWKtERTtfNyUAe8IKZnQksBcYCJzrnNgM45zabWavwyxSRmvjR\nWq2FRYzPWAFw5CmC9+TBjBsgd6k3Pv78O8CsNkqWKAin66YucDbwrHOuJ7CXY+imMbMxZrbEzJbk\n5eWFUYaIVKXStVpLypg4b03VB237CiZfCltXwpBp0PtOhXycCyfoc4Ac59yi0PPZeMG/1czaAIR+\nbqvsYOfcJOdcmnMurWXLlmGUISJVOea1WtctgCmXe3e9jnobul8VveKk1tQ46J1zW4CNZnZwirrL\ngFXAXGBEaNsIYE5YFYpIjVW1Jmul27+Y5o2Rb9YWbp0PqZpiOCjCHXVzFzDdzJYDZwGPAhOAfmb2\nDdAv9FxEfDCuf1eS6yVV2PajtVrLy2De/TD3Tuj4Mxg9D1La13KlEk1hjaN3zi0D0ip56bJw3ldE\nIuPgBdd7Zi+nuKyc1JRkxvXv+sOF2P07YfZoWPs+nHsb9H8UknQfZdDob1Qk4NJ7pla+VuuOb2HG\njZD/LQx40htCKYGkoBdJROv/BbNu9h4Pz4ROP/O3HokqTR4tkmgWT4Fpg6DJiXDrRwr5BKAWvUiC\nSHKl8PbvYfE/oEt/uHay7nRNEAp6kQTQuHw3dxc8AluWQe9fQ98/Qp2kox0mAaGgFwm6rat4ZPtY\nWpTlQfqzcNZQvyuSWqY+epEgW/kGTO5LQ1fEQyc8rpBPUGrRiwRReRnMfwg+/Qu0O5fxxWMpSDrB\n76rEJ2rRiwTNvnyYPtgL+V6jYORbCvkEpxa9SJBsWQGv3gS7N8NVf4VeI45+jASegl4kioY8txCo\npSX0VsyGOXdCcgqMehfa/TA7iZbwS2wKepF4V1YKHzwAC/8G7c+H66ZC0xP9rkpiiIJeJJ7tyYPX\nb/GmNDjnVm9Ssrr1/a5KYoyCXiReZX8Gr430Lr4OfBp6DvO7IolRCnqReOOc103z/gPevPG//ADa\nnOF3VRLDFPQi8aSoEObcAV+9Bd0GQPoz0PA4v6uSGKegF4kXm5d7UwsXZsPlj8D5d2jRbqkWBb1I\nrHMOsqZ5M082ag4j34YOGi4p1aegF4llxfvgnd/Dsulw8sVwzWRo0tLvqiTOaAoEkSjJzMolK7uQ\nRevz6TPhQzKzco/tDfK+hsl9YdkrcNEfYFiGQl5qRC16kSjIzMplfMYKisvKAcgtLGJ8xgrghwW7\nq+ScF+7v/B7qNoSbZkOXvtEuWQJMLXqRKJg4bw1FJWUVthWVlDFx3pojH3hgN2SMgTm3Q2ov+H+f\nKuQlbGrRi0TBpsKiY9ruvZgFs2+Bgg1wyf3ws99pFSiJCLXoRaKgbUpy9bc7Bwufhsn9oPSAN6rm\nonsU8hIxCnqRKBjXvyvJ9SoGdXK9JMb171pxx7074JUhMO8+6HI5/Orf0KF3LVYqiUBdNyJRcPCC\n6z2zl1NcVk5qSjLj+neteCF2/SeQcSvs2wFXToRzb9UNUBIVCnqRKEnvmcqMz7OBw+aDLy2GjyfA\nJ0/ACZ1h6CzNVSNRFXbQm1kSsATIdc4NMLNOwKtAc+ALYLhzrjjc84gEQt7XXit+8zI4axhc+Tg0\naOJ3VRJwkeijHwusPuT548CTzrkuQAEwOgLnEIlvzsHiyfDchd5cNddPg/SnFfJSK8IKejNrB/wC\nmBx6bsClwOzQLlOB9HDOIRLvjivLh1euh7d/511ovX0hnHq132VJAgm36+YvwD1A09DzE4BC51xp\n6HkOUOltgGY2BhgD0L59+zDLEIlNafsXctvOv0D+AV1wFd/UuEVvZgOAbc65pYdurmRXV9nxzrlJ\nzrk051xay5aav0MC5sAemHsX4woeZEedFjDmY/jpGIW8+CKcFn0f4Goz+znQEGiG18JPMbO6oVZ9\nO2BT+GWKxJGNn3vTGBRsILPx9cxqOpxXWnXzuypJYDUOeufceGA8gJldDPzeOXeTmb0GDMYbeTMC\nmBOBOkViX8l++OgRb5m/Zqkw8m3SO/bRRSrxXTTG0f8BeNXM/gRkAVOicA6R2JKzFDJ/Bdu/hl4j\nod/D0LCZ31WJABEKeufcAmBB6PE64NxIvK9IzCs9AAseg0+fgqZtvDnjf3KZ31WJVKA7Y0VqKvcL\nyLwd8lZDz2HQ/1Et1C0xSUEvcqxKD8DHf4Z/PwlNWoUWBunnd1UiVVLQS2ANeW4hcNg8M+HatMxr\nxW9bCWcOhSseheTjI/f+IlGgoBepjuJ9Xl/8wqehcQu4cSZ0vcLvqkSqRUEvcjTrFsCbY72Vn86+\nGfo9pFa8xBUFvUhV9uXDe/8flk2H5p1hxFvQ6Wd+VyVyzBT0IodzDr58Hf55rxf2F/zWW9qvXuXL\nA4rEOgW9yKEKN3qzTH4zD9r2hOFvQOseflclEhYFvQhAeZk3X/z8h8CVe2Piz70NkvQrIvFP/4ol\nkDKzcsnKLqS4rJw+Ez788Xqth8pZAm/dDVuWQ+dLYcCTcHzHWq1XJJoU9BI4mVm5jM9YQXFZOQC5\nhUWMz1gBUDHs9+XD/Adh6VRo2hoGvwCnDdJUwhI4CnoJnInz1lBUUlZhW1FJGRPnrfGCvrzcG0nz\n/n/D/p1w/h1w8b3QoGkV7ygS3xT0EjibCouq3r5lhXexdeMiOOk8GPAEnHhaLVcoUrsU9BI4bVOS\nya0k7Ns22A/PXQTJKTDwGTjzRqgT1rLJInFB/8olcMb170pyvaQK25IpZlzZFOg1Au5cAj1vUshL\nwlCLXgLn4AXX+2YvpaisDm3ZzrhWn5N+/cPQrpfP1YnUPgW9BM+uzaSvf4j0eq+S36A5za9+FM74\nm1rwkrAU9BIcJfu99Vo/eQLKS8lofAOZTYbw0lmX+l2ZiK8U9BL/nIPVb8J790NhNnS/Cvo9zMzX\ntvhdmUhMUNBLfNu4GN7/L8heCK1Og5vnwskXhV5U0IuAgl7iVf46+OBBWJUJjVvBgL9Az+Gam0ak\nEvqtkPiydwf868+weAok1YOL7oXed0GDJj/aNaJLCIrEMQW9xIeSIlj0d+9Ca/Eer/V+yX3eHDUi\nckQKeoltZaXwvzNgwQTYlQOnXAF9/wituvtdmUjcUNBLxA15biEQZtdJeTmsegM+ehR2rPUWARn0\nLHS6MEJViiQOBb3EFufgm/dg/sOwdQW07A5DpkO3X2j6YJEaqnHQm9lJwEtAa6AcmOSce8rMmgMz\ngY7ABuB651xB+KVK4K3/xFvhKedzb+GPQZOgx2Cok3TUQ0WkauG06EuB3znnvjCzpsBSM3sfGAnM\nd85NMLN7gXuBP4RfqgTWxsXw0SOw7iNo2jY0VHKYN6pGRMJW46B3zm0GNoce7zaz1UAqMBC4OLTb\nVGABCnqpTPZn8PHj8O2H0OgEuPwROGc01Ev2uzKRQIlIH72ZdQR6AouAE0NfAjjnNptZq0icQ+JD\ntdZq3fCpF/DrP4ZGLaDfQ5A2utKx8CISvrCD3syaAK8Dv3HO7bJqXjAzszHAGID27duHW4bEgCOu\n1XpWW9jwCXz8Z+9n41ZeCz5tFNRv7GfZIoFnzrmaH2xWD3gLmOeceyK0bQ1wcag13wZY4JzreqT3\nSUtLc0uWLKlxHRIb+kz4sNKVnVKbwKdt/wbZ/4EmreGC30CvkeqiEQmTmS11zqUdbb9wRt0YMAVY\nfTDkQ+YCI4AJoZ9zanoOiS9VrtW6pxwKNsCVE+Hsm6Few9otTCTBhdN10wcYDqwws2WhbffhBfws\nMxsNZAPXhVeixIsq12pt5GDsMqjbwIeqRCScUTf/BqrqkL+spu8rcaqokHEd1jK+sCVF1P9+c3K9\nOoy76iyFvIiPdGeshKfgO/h8Eix9kfTiPdBuDPdvvoC9ZXVJTUmufNSNiNQqBb0cO+e8MfCfPQNf\nvQUYnDYI+owlvc0ZzIjEXDciEjEKeqm+0mJY+YYX8JuXQcMU6DMWzrkVjlOrXSRWKejl6PZuhyUv\nwOJ/wJ6t0OIUGPAknDFEY+BF4oCCXirnHGxc5K3ktCoTyoqh82Uw8BnofCnUqVPloeqyEYktCnqp\n6MBuWD4TFj8P21ZCg2bezU1po6FVN7+rE5EaUNCLZ8uXsGQKLJ/lLdXX+gy46ik4fbDmoBGJcwr6\nRHZgN6zMhKxpXjdN3YZw2jXeDJKpvbTQh0hAKOgTjXOQvRCyXvZCvmSvd3H18kfgrKHQqLnfFYpI\nhCnoA+SIa7Xu2gTLXoFl0yF/HdRv6q3e1HMYtDtHrXeRAFPQB1nxXvjqHe/i6rfzwZVDhwvgwnvg\n1Ks1NFIkQSjoAybJlcLX78GKWfDV21CyD5qlwgW/9bpmTujsd4kiUssU9EHgHJnz/8U3322loLwR\nfZ7fzrjkAtLPvh56XA/tzz/iuHcRCTYFfbxyDnK/gFWZZC7ZwPhdgyjC64rJpSXjS38J7c4gvaOm\nJhBJdAr6eFJe7g2DXD0XVs2FXTlQpy4TS56miIrTABeVlDNx3hrNHCkiCvqYV1bqLcG3ag6sfgv2\nbIGk+t50BJfeD12vZNOD/6n00KpWfBKRxKKgj0VFBbB2Pqx5F9a+D/t3Qt1k6NIPTh0IXS6Hhs2+\n373KlZ1StCariCjoY4NzsGOtF+xfz/NuaHJl0KgFdBsAp/SHn/StcjjkuP5dGZ+xgqKSsu+3JddL\nYlz/I67JLiIJQkHvlwO7YcO/4duPvFZ7/jpv+4mnwwV3wylXQOrZUCfpqG91sB/+ntnLKS4r18pO\nIlKBgr62lJXCpi+8YF/3EeQshvJSr0um4wVw3u1euKecVKO3T++ZyozPswFNEywiFSnoo6W8HLat\ngu/+A+s/hvWfwIGdgEGbM6H3Xd687if9NGILZyvgRaQyCvpIKSuFLf/rBfvBP/sLvdeOOwlOGwgn\nXwKdLoLGJ/hbq4gkFAV9TRUVQu5S70/2Qshe5M0ECdC8M3S/Cjr0gQ69IaW9Jg0TEd8o6KujtBi2\nfvlDsOcsgR3f/PB6y+5w1o1eqLfvDc3a+FeriMhh4jboM7NymThvDZsKi2gbyVEmxfu8vvUty71V\nl7Ysh83LoeyA93rjVtAuDc4cAqlpkHo2Q6aughyY+Qv1kYtI7InLoM/Myq0wbjy3sIjxGSsAqh/2\n5eWwcyPkrYGtK0KhvsIbz47z9mlwHLQ+Hc691VtxqV2a199+SDdMZlYuWdmFFJeV02fChxrWKCIx\nJy6DfuK8NRVuDgIoKimrfG6Xkv2Q/60X6Nu/ge1rYPvXsH0tlB5yN2lKB2jdw1uMo3UPbzz7UfrW\nD37hFJeVAzX8whERibKoBL2ZXQE8BSQBk51zEyL5/lXN4bKpcB8seBwKNkDhd1DwHezK5fsWOuaF\nd4tTvNEvLbpAi67QqjskpxxzHcf0hSMi4pOIB72ZJQFPA/2AHGCxmc11zq2K1DmqnNuF7bDgUWja\nFo7v4N2IdHxHL9BbdvVGw9RvFKkyjvCFo8nERCR2RKNFfy6w1jm3DsDMXgUGAhEL+krndkmCcf17\nwPlboV7DSJ3qiDSZmIjEg2gsO5QKbDzkeU5oW8Sk90zlsWt6kJqSjAGpKck8Nvgs0i/sVWshD94X\nTnK9inPRaDIxEYk10WjRV3b10v1oJ7MxwBiA9u3bH/NJ0num+t4PrsnERCQeRCPoc4BDZ+ZqB2w6\nfCfn3CRgEkBaWtqPvgjiRSx84YiIHEk0um4WA13MrJOZ1QduAOZG4TwiIlINEW/RO+dKzexOYB7e\n8MrnnXMrI30eERGpnqiMo3fOvQO8E433FhGRYxONrhsREYkhCnoRkYBT0IuIBJyCXkQk4BT0IiIB\np6AXEQk4c87/m1LNLA/4zu86wtQC2O53ETFEn8cP9FlUpM+jonA+jw7OuZZH2ykmgj4IzGyJcy7N\n7zpihT6PH+izqEifR0W18Xmo60ZEJOAU9CIiAaegj5xJfhcQY/R5/ECfRUX6PCqK+uehPnoRkYBT\ni15EJOAU9GEys5PM7CMzW21mK81srN81+c3Mkswsy8ze8rsWv5lZipnNNrOvQv9Gzve7Jj+Z2d2h\n35MvzWyGmdXe2p8+M7PnzWybmX15yLbmZva+mX0T+nl8NM6toA9fKfA751x34DzgDjM71eea/DYW\nWO13ETHiKeCfzrluwJkk8OdiZqnAr4E059zpeOtV3OBvVbXqReCKw7bdC8x3znUB5oeeR5yCPkzO\nuc3OuS9Cj3fj/SIn7NqCZtYO+AUw2e9a/GZmzYALgSkAzrli51yhv1X5ri6QbGZ1gUZUssxoUDnn\n/gXkH7Z5IDA19HgqkB6NcyvoI8jMOgI9gUX+VuKrvwD3AOV+FxIDTgbygBdCXVmTzayx30X5xTmX\nC/wPkA1sBnY6597ztyrfneic2wxeoxFoFY2TKOgjxMyaAK8Dv3HO7fK7Hj+Y2QBgm3Nuqd+1xIi6\nwNnAs865nsBeovRf83gQ6n8eCHQC2gKNzWyYv1UlBgV9BJhZPbyQn+6cy/C7Hh/1Aa42sw3Aq8Cl\nZvayvyX5KgfIcc4d/B/ebLzgT1R9gfXOuTznXAmQAfT2uSa/bTWzNgChn9uicRIFfZjMzPD6YFc7\n557wux4/OefGO+faOec64l1k+9A5l7AtNufcFmCjmXUNbboMWOVjSX7LBs4zs0ah35vLSOCL0yFz\ngRGhxyOAOdE4SVQWB08wfYDhwAozWxbadl9ogXSRu4DpZlYfWAeM8rke3zjnFpnZbOALvNFqWSTQ\nXbJmNgO4GGhhZjnAA8AEYJaZjcb7IrwuKufWnbEiIsGmrhsRkYBT0IuIBJyCXkQk4BT0IiIBp6AX\nEQk4Bb2ISMAp6EVEAk5BLyIScP8Hs/12IgS5ENUAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAHzFJREFUeJzt3Xl4VOX5//H3TQgQEFkjSABBisEF\nKxpFxbqhRStKUAERFAWLtbbV2oLQfltrf22lX+rW1o2CiiibQAOCggpuKKKBgCCLKEggrAphDSQk\nz/ePM/wkmkjILGfmzOd1Xbkmc3Jmzu1c5pPDc55zP+acQ0REgquG3wWIiEh0KehFRAJOQS8iEnAK\nehGRgFPQi4gEnIJeRCTgFPQiIgGnoBcRCTgFvYhIwNX0uwCApk2bujZt2vhdhohIQlm0aNFXzrn0\no+0XF0Hfpk0bcnNz/S5DRCShmNn6quynoRsRkYBT0IuIBJyCXkQk4BT0IiIBp6AXEQk4Bb2ISMAp\n6EVEAk5BLyLih7JSmPN7KMyP+qEU9CIifnj9D7Dg3/D53KgfSkEvIhJrH/0HPnwCOt8FWbdH/XAK\nehGRWPrsdXhtKJxyNXT7a0wOqaAXEYmVzZ/AlNuheUe4YTTUSInJYRX0IiKxsHsTjO8DdRpA30lQ\n+7iYHTouuleKiATawb0wvjcc3AMDZ8PxJ8b08Ap6EZFoKj0EUwbC1hXQbzI0PyPmJSjoRUSixTmY\nPQzWzIHuj8IPrvClDI3Ri4hEy8Kn4eP/wIW/hKyBvpWhoBcRiYZVs2D2cDj1Wrjiz76WoqAXEYm0\ngsUw9Q5o0Ql6joIa/katgl5EJJJ2rPNm2NRrCn0nQq26flekoBcRiZh9X8OLN0DZIeg/Deo387si\nQLNuRCQJ9XlmAQCT7rwgcm9avB8m9IHdBXDrDGjaPnLvHSYFvYhIuMpKvTH5jbnQZxy07ux3ReUc\ndejGzJ41s21mtvyIbY3N7A0zWxN6bBTabmb2TzP73Mw+MbOzo1m8iIjvnINXh8DqWXD1/3qzbOJM\nVcbonweu+ta2YcBc51x7YG7oOcDVQPvQ12DgqciUKSISp+Y/CrljoMs90Hmw39VU6KhB75x7F9jx\nrc09gLGh78cC2Udsf8F5PgQamllsmzqIiMTK0okw90E440bo+ie/q6lUdWfdNHPObQYIPZ4Q2p4B\nbDhiv42hbd9hZoPNLNfMcrdv317NMkREfPLFWzD9bmjzI8h+0ve58t8n0pVZBdtcRTs650Y557Kc\nc1np6ekRLkNEJIq2LINJt0DTU6DPi1Cztt8Vfa/qBv3Ww0Myocdtoe0bgVZH7NcS2FT98kRE4kzh\nBnipF9SuD/2mQFpDvys6quoG/QxgQOj7AcD0I7bfGpp9cz6w6/AQj4hIwivaCS/dCMX7oP8UaFDh\nyHTcOeo8ejObAFwKNDWzjcADwAhgspkNAvKBXqHdXwV+AnwO7Aeiv+qtiEgsFO+H8TfB11/ALdOg\n2el+V1RlRw1651zfSn7UtYJ9HXB3uEWJiMSV0hJvrdcNC+HGZ6HtxX5XdEx0Z6yIyPdxDmb8Cj6b\nDdc8DGdc73dFxyx+5wOJiMSDN/4IS8fDpcPh3Dv8rqZaFPQiIpV5/3H44J9ewF9yv9/VVJuCXkSk\nInkvemfzp/f0ethYRbcJJQYFvYgklZy8AvLyC1m4bgddRswjJ6/guzutetUblz/5Uuj5DNRIiXWZ\nEaWgF5GkkZNXwPBpyyguLQOgoLCI4dOWlQ/79R94M2xOPDMh7nqtCgW9iCSNkXNWU1RSWm5bUUkp\nI+es9p5sWe7NlW/Q0rvrtXZ9H6qMPAW9iCSNTYVFlW/f+SW8eL23xust//XWfA0IBb2IJI0WDdMq\n3t6gFozrCYcOeiHfsHWMK4suBb2IJI0h3TJJSy1/YTUttQZDUl+G3Zvh5slwwqk+VRc9ujNWRGIm\nKotyH4PsTl4TsqFTPqG4tIyMBrUZUjuH7L3ToO/EuFvrNVIU9CKSVLI7ZTDho3xSXTEv1n0E1r0L\nvZ6H9lf4XVrUKOhFJOnUcKX8aucI2PIB9HgSTuvhd0lRpTF6EUkuZWXctethzjv4gXfHa6d+flcU\ndQp6EUkezsGrv+XionlMPG4AdL7T74piQkEvIslj7oOQO4bp9Xrx3+Nu8ruamFHQi0hyeO9hmP8o\nZA1kfP2BCd2k7Fgp6EUk+D76D8z9M3TsDT95OKlCHhT0IhJ0SyfCq7+FzGsg+0mokXyxl3z/xSKS\nPJZPhZy7oO0l3lqvKal+V+QLBb2IBNPKV2DqT6HV+dB3AqTW8bsi3yjoRSR4Vs+Gl2+HjHOg32So\nVc/vinyloBeRmKjSyk6R8PlcmHwLND8D+genp3w4FPQiEnVVWtkpEta9CxNvhqaZ0H8a1GkQ2fdP\nUOp1IyJR930rOx3uKBm29QtgfB9o1BZuzYG6jSvd1a/umX7RGb2IRN33ruwUCRtz4aVecHwLuHV6\noFaHigQFvYhEXaUrO1Wy/ZhsWgLjrvfCfcArUL9Z+O8ZMGEFvZn92sw+NbPlZjbBzOqYWVszW2hm\na8xskpnVilSxIpKYKl7ZKYUh3TLDe+Mty2FctjcWP+AV74xevqPaQW9mGcCvgCzn3BlACnAT8Hfg\nUedce2AnMCgShYpI4srulMFD13ekVooXORkN03jo+o7hjc9vXQEv9IDUujBgBjRsFaFqgyfci7E1\ngTQzKwHqApuBy4GbQz8fC/wJeCrM44hIgju8shNE4GLo1k9h7LWQUss7k2/cNgIVBle1z+idcwXA\nP4B8vIDfBSwCCp1zh0K7bQQidEldRARvuGbstZBSG26bBU3a+V1R3Atn6KYR0ANoC7QA6gFXV7Cr\nq+T1g80s18xyt2/fXt0yRCSZlAv5mQr5KgrnYuwVwDrn3HbnXAkwDbgQaGhmh4eEWgKbKnqxc26U\ncy7LOZeVnp4eRhkikhS2LPNCPjVNIX+Mwgn6fOB8M6trZgZ0BVYAbwE3hvYZAEwPr0QRSXpblsHY\n6xTy1RTOGP1CYAqwGFgWeq9RwP3AfWb2OdAEGBOBOkUkWW3+JHQmX9cL+cYn+11Rwglr1o1z7gHg\ngW9tXgucF877iogAsHlpaAplvVDIa3ZNdejOWBGJT5uXesM1tY5TyIdJTc1EJP4ULIZxPb0Ww7fN\nhEZt/K4ooemMXkTiS/6H3nBNneMV8hGioBeR+LHuvVCDsnS4fbZCPkI0dCMiMfO9rQ8+fxMm9gv1\nk5+uLpQRpDN6EfHfqlkwoS80be+1NVDIR5SCXkT8tXwaTL4Vmnf0GpTVa+J3RYGjoBcR/yyZAFMH\nQctz4ZYcSGvkd0WBpKAXEX/kPgc5d0GbH0H/qd4sG4kKBb2IxN6HT8PMe6H9lXDzJKhVz++KAk2z\nbkQkdpyD9x6Gef8POnSHG5+DmlptNNoU9CISG87BG3+AD/4FZ/aBHk9ASqrfVSUFBb2IRF9ZKbxy\nD+SNg3N/Clf/L9TQyHGsKOhFJLoOHYSpd8DKGXDxULjsd2Dmd1VJRUEvItFTvA8m9Ycv5kG3v8EF\nd/tdUVJS0ItIdBTthJd6Q0GuNx7fqb/fFSUtBb2IRN6erV6b4a/XQK+xcNp1fleU1BT0IhJZO9d7\nbYb3boObJ0O7y/yuKOkp6EUkcratgnHZUFLkdaBsda7fFQm6M1ZEIiX/Q3i2G7gyuP1VhXwcUdCL\nSPhWzfKGa+o1hUFvQLPT/a5IjqCgF5Hw5D7nTaFsdjoMfB0aneR3RfItGqMXkepxDt75O7z9EPzg\nSug9Vs3J4pSCXkSOXVkpzPoNLHoOzuoH1z6uvjVxTEEvkgT6PLMAOMqarVVVUuS1NFg1Ey66D7r+\nUS0N4pyCXkSqrmint7Zr/odeY7LOd/pdkVSBgl5EqmZXAbx4A+z4Am58Fs643u+KpIrCmnVjZg3N\nbIqZrTKzlWZ2gZk1NrM3zGxN6FGLQIokus2fwOiusGujt+yfQj6hhDu98nFgtnOuA/BDYCUwDJjr\nnGsPzA09F5FEteZNeO5qsBowcDa0vdjviuQYVTvozex44GJgDIBzrtg5Vwj0AMaGdhsLZIdbpIj4\nZNHzML43NG4Ld7wJzc/wuyKphnDO6E8GtgPPmVmemY02s3pAM+fcZoDQ4wkRqFNEYqmsDN580FsV\nqt3lcPtrcHwLv6uSagon6GsCZwNPOec6Afs4hmEaMxtsZrlmlrt9+/YwyhCRiCo5ANPugPmPwDm3\nQ9+JULu+31VJGMIJ+o3ARufcwtDzKXjBv9XMTgQIPW6r6MXOuVHOuSznXFZ6enoYZYhIxOzf4XWf\nXD4VrngQuj8KKZqcl+iqHfTOuS3ABjPLDG3qCqwAZgADQtsGANPDqlBEYmPHWhhzJRQs9qZPXnSv\nboQKiHD/VP8SeMnMagFrgdvx/nhMNrNBQD7QK8xjiEgYcvIKyMsvpLi0jC4j5jGkWybZnTLK77Th\nY5hwE7hSr4/8SRG4g1biRlhB75xbAmRV8KOu4byviERGTl4Bw6cto7i0DICCwiKGT1sG8E3YL5sC\nOT/3Lrb2nwpN2vlVrkSJ2hSLBNjIOaspKiktt62opJSRc1Z7M2vm/RWmDoKWWXDHXIV8QOkqi0iA\nbSosqnz7lNtgxXTo1B+ueRRq1optcRIzOqMXCbAWDdMq3p6yC1bMgB//Fa77t0I+4BT0IgE2pFsm\naakp5balUcyQ1Je9+fEX/kIza5KAhm5EAuzwBdehUz6huLSUDPuaIfXfJHvQX7SuaxJR0IsEXPZZ\nLTg49yH67B0Hrc6HPi/CcbpJMZlo6EYkyIr3w9Q76LN3HO+kXQEDZijkk5DO6EWCqjAfJvaDLct4\nqf5AZtTrxSU1a/tdlfhAQS8SROvehZdvg9JD0O9lZsw7zu+KxEcauhEJEufgw6fhhWyo2xQGvwXt\nr/S7KvGZzuhFgqLkAMz8NSwdD5nXQM+noc7xflclcUBBLxIEuzbCpP6wKQ8uHQ4XD4Ua+ge7eBT0\nIolu/QKYfAuUFMFN46HDNX5XJHFGQS+SqJyD3DHw2v3Q8CQYMBNO6OB3VRKHFPQiiah4P8y6D5ZO\ngB9cCTeMhrSGle4+6U71l09mCnqRRPP1FzD5Vtj6KVwyDC4ZCjVSjv46SVoKepFEsnIm5NzlBXu/\nKdD+Cr8rkgSgoBeJoj7PLAAiMHRSegjm/RnefxxadILeL0DD1hGoUJKBgl4k3u3ZClMGwvr5kDUQ\nrhoBamUgx0BBLxLP1i/wWhkc2AXZT8NZff2uSBKQgl4kHjkHC56AN/4IjU7yFu1ufobfVUmCUtCL\nxJv9O2D6L2D1LOjQHbKfhDoN/K5KEpiCXiSe5C/0xuP3boVuf4Pzf66l/iRsCnqReFBWBu8/BvP+\nAg1awqA5kHGO31VJQCjoRfy2dxv89074Yh6c3hOufVxDNRJRCnoJrIjNYY+mte/AtJ96s2q6Pwrn\n3K6hGok49TEViZKcvALy8gtZuG4HXUbMIyev4Jsflh6CeX+FF3p4Z+93zPXmyCvkJQrCPqM3sxQg\nFyhwznU3s7bARKAxsBi4xTlXHO5xRBJJTl4Bw6cto7i0DICCwiKGT1sGQPbJeGfx69+HH94MPxkJ\ntbXUn0RPJM7o7wFWHvH878Cjzrn2wE5gUASOIZJQRs5ZTVFJabltRSWljJyZB09dCJuWeDdA9XxK\nIS9RF1bQm1lL4BpgdOi5AZcDU0K7jAWywzmGSCLaVFhU8fZ9Dpq0g5+9p7tcJWbCPaN/DBgKlIWe\nNwEKnXOHQs83AhlhHkMk4bRomFbx9jqHYOAcL+xFYqTaQW9m3YFtzrlFR26uYFdXyesHm1mumeVu\n3769umWIVOh7L4TGwJBumaSllv/1SqsJQ3qcBympMa1FJJwz+i7AdWb2Jd7F18vxzvAbmtnhi7wt\ngU0Vvdg5N8o5l+Wcy0pPTw+jDJHyKrsQGsuwzz6pmIcazyKD7YAjo0FtHrrhLLI76R+4EnvVDnrn\n3HDnXEvnXBvgJmCec64f8BZwY2i3AcD0sKsUOQaVXgidszr6B3cOlkyAp39E9oEZ9G6+ic5tm/D+\n8CsU8uKbaMyjvx+4z8w+xxuzHxOFY4hUqtILoZVsj5h9X8HLAyDnZ3DimXDXfD5Iuyy6xxSpgojc\nGeucext4O/T9WuC8SLyvSHW0aJhGQQWhXtkF0ohYORNm3gtFhdD1AehyT2gd19heGxCpiO6MlcDx\nLoSWXyw7LTWFId0yI3+wop0wbTBM6gf1T4Q734Ef3afFuiWuqNeNBM7hsfChUz6huLSMjIZpDOmW\nGfkx8jVvwIxfek3JLhkGF/9WM2okLinoJZCyO2Uw4aN8IApNzQ7shtd/D4tfgPRToe8Eb8FukTil\noBc5Fmvfgel3w+4C6HIvXDocUuv4XZXI91LQi1TFgd0w90H4eDQ0bufd3drq6HMO4rpFsiQNBb3I\n0Xw2B2b+GnZvgs53Qdc/Qq26flclUmUKepHK7PsKZg+DZS9DegcY9HqVzuJF4o2CXuTbnPPCffYw\nb8jmkmHelMmatf2uTKRaFPQSWNUaHy/cALPugzWvQ0YWXPcvaHZa5IsTiSEFvQhAWRnkjoE3/wSu\nDLo9BJ3v1I1PEggKepGtn3oXWzcshJMvg2sfg0Zt/K5KJGIU9JK8Du6Fd0bAgie9Bbqzn4If9tUC\n3RI4CnpJPs7Bqpnw2jDYvRHOvhWueBDqNva7MpGoUNBLctm5Hl4bCp/NhhNOhxvHQOvz/a5KJKoU\n9JIcDhXDgn/BOyPBasCP/wKdf6YmZJIUFPQSfF+8Ba/dD1+thg7d4eq/Q4OWflclEjMKegmuneu9\nLpMrX/Fm0fSdBJlX+V2VSMwp6CV4ivfD+4/B+497wzSX/wEu+IW6TErSUtBLcDgHK3Jgzv94s2nO\nuBGu/DM00KLcktwU9BIMW1d4s2m+fA+adYQb/gMnXeh3VSJxQUEvEdfnmQVAjHqx790Gbz8Ei8ZC\nnePhmkfgnNvUukDkCAp6SUwlRbDgCZj/GBwqgnPvgEuH6aYnkQoo6CWxlJV5LYTn/tkbh+/Q3bur\ntekP/K5MJG4p6CVxfDkf5vweNi+BE8+C65+BNhf5XZVI3FPQS/zbvhrefBBWz4LjW0LPUdCxF9So\n4XdlIglBQS8RlZNXQF5+IcWlZXQZMY8h3TLJ7lTN6Y2FG+DtEbB0PKTWC82HvxtS0yJbtEjAKegl\nYnLyChg+bRnFpWUAFBQWMXzaMoBjC/t9X8F7D8PHowGD838OF90H9ZpEoWqR4FPQS8SMnLOaopLS\nctuKSkoZOWd11YL+wG5vJs2Cf0PJfjirnzeTRn1pRMJS7aA3s1bAC0BzoAwY5Zx73MwaA5OANsCX\nQG/n3M7wS5V4t6mw6Ji2/38lByD3WXjvH7D/azitB1z2P5B+ShSqFEk+4ZzRHwJ+45xbbGb1gUVm\n9gZwGzDXOTfCzIYBw4D7wy9V4l2LhmkUVBDqLRpWMqZecgAWvwDzH4E9m+HkS6HrHyHjnKjWKZJs\nqj1twTm32Tm3OPT9HmAlkAH0AMaGdhsLZIdbpCSGId0ySUstf0dqWmoKQ7pllt+x5AB89B/4Zyd4\nbQg0agsDXoFbpyvkRaIgImP0ZtYG6AQsBJo55zaD98fAzE6o5DWDgcEArVu3jkQZ4rPD4/BDp3xC\ncWkZGQ3Tys+6OXTQO4N/7xHYswlaXwA9n4a2F2udVpEoCjvozew4YCpwr3Nut1XxF9Y5NwoYBZCV\nleXCrUPiQ3anDCZ8lA8c0evmcMDPfxR2F0Cr86HnU9D2EgW8SAyEFfRmlooX8i8556aFNm81sxND\nZ/MnAtvCLVIS1MG9sOg5bybNns1ewGc/qYAXibFwZt0YMAZY6Zx75IgfzQAGACNCj9PDqlASznFl\nu7l633R4dBYcKPSGZrKf8i62KuBFYi6cM/ouwC3AMjNbEtr2O7yAn2xmg4B8oFd4JUrC2FUAC/7N\nmB3Pe/PgO3SHi34NLbP8rkwkqVU76J1z84HKTs+6Vvd9JQF9tcZbtm/pRHBlXh+ai+6FE071uzIR\nQXfGBkpMF/xwzlvNacET8NlsqFnHW/Djwl9Co5Oif3wRqTIFvRybQ8WwfKoX8FuXQd2mcMkwb+GP\n49L9rk5EKqCgl6rZvwNyx8BHo2HvFkjvANf9Czr2htQ6flcnIt9DQR8QEW0PfKStn3p3sS6d6C3Z\n166rN0Wy3eWaQSOSIBT0ARCx9sCHHSqGlTO8NsH5C7zx9469vHbBzU6LZOkiEgMK+gAIuz3wYbs2\nwqLnYdFY2LfN60Hz47947YK16LZIwlLQB0C12wODt9j2une8s/fVr3nTI0/pBuf+1Bue0XJ9IglP\nQR8Ax9weGLyz9yXjIe9FKFwPdZt4UyOzBmp6pEjAKOgDYEi3TIZPW1Zu+KbC9sCHiuGz12DxOPhi\nrnf23vYSrwd8h+6aPSMSUAr6ADhqe+BtqyBvnDdzZv9XUL8F/Og33th747Y+Vi4isaCgD4jvtAfe\nsxUWPAmfTILNS6BGTci8GjrdCj/oCjVSjvKOIhIUCvoAmXRbR1g1C8aNhLVveUMzJ54F3f7m3dik\nO1dFkpKCPtGVlsDad7wz91Uzva6RDVp7XSM79oYTOvhdoYj4TEGfiA6H+4ocL9yLdkKdBnBmbziz\nj7fAh6ZFikiIgj5RHCqGtW/DiuleuB8ohFr1vXH303pA+yuhZm2/qxSROKSgj2fF++CLt7xx99Wz\n4MAuqH08ZP4ETs+Gky/TlEgROSoFfbzZvcm7Q/Wz2d7wTOlBb1gm85pQuF+qM3cROSYKer85B5uX\nesG++lXve4BGbeDcQXDKVXDShZCS6muZIpK4FPR+2LvNG2//Yp73tXcrYNDqPOj6gDc0k56pNsAi\nEhEK+lg4dNBr93s42Ld4LYRJawztLvN6vLf/sea5i0hUKOgj4DtrtR4qhk2L4cv5sP59WL/AW7Sj\nRk1v6uPlf/DuTm3+Q02DFJGoU9CHKSevgCX5OzlYWkaXP/2XIY3fJXv3BC/YAdJPhbNv8c7a23SB\n2vX9LVhEko6Cvjp2FUBBLjm5axm+si0HXSpgFByoxfDNF0NmS7I7nwKtL4R6TfyuVkSSnIL+aIr3\ne03BNn4c+loEezYBMPLgPyly5WfDFLlajNzSiexTL/ejWhGR70jYoM/JK2DknNVsKiyixbfb8lbX\nvq9gyyfexdLNocev13jNwcBbWq9NF2h5LmRksenfWyp8myqt7CQiEiMJGfSHF8M+vNDGMS+GXbwf\nvvrM+9q+CrYs9wJ+z+Zv9mnQCpp39G5SanE2tMyCek3LvU2LhvOOfWUnEZEYS8igr9Ji2M5589V3\nroPtq0Ohvtr72pX/zQstBZqeAm0v9oK9+ZneYxUWw67yyk4iIj6KStCb2VXA40AKMNo5NyKS71/5\nYtj7YfxNsPNLbx3Ukv3f/LBmHWjSHlqdC536Q/op0DQTmrSrdkuBo67sJCISByIe9GaWAjwBXAls\nBD42sxnOuRWROkali2Hb17BrAzQ+Gdpd7rURaNQGmraHhq2jsqpSdqcMBbuIxLVonNGfB3zunFsL\nYGYTgR5AxIK+4iGTGgzp2RXOHhCpw4iIBEI0gj4D2HDE841A50ge4PAZdMRn3YiIBFA0gr6iTlzu\nOzuZDQYGA7Ru3fqYD6IhExGRqolGo5WNQKsjnrcENn17J+fcKOdclnMuKz1dzbxERKIlGkH/MdDe\nzNqaWS3gJmBGFI4jIiJVEPGhG+fcITP7BTAHb3rls865TyN9HBERqZqozKN3zr0KvBqN9xYRkWOj\nZugiIgGnoBcRCTgFvYhIwJlz35niHvsizLYD6/2uI0xNga/8LiKO6PP4hj6L8vR5lBfO53GSc+6o\n89PjIuiDwMxynXNZftcRL/R5fEOfRXn6PMqLxeehoRsRkYBT0IuIBJyCPnJG+V1AnNHn8Q19FuXp\n8ygv6p+HxuhFRAJOZ/QiIgGnoA+TmbUys7fMbKWZfWpm9/hdk9/MLMXM8sxspt+1+M3MGprZFDNb\nFfp/5AK/a/KTmf069Huy3MwmmFkdv2uKFTN71sy2mdnyI7Y1NrM3zGxN6LFRNI6toA/fIeA3zrlT\ngfOBu83sNJ9r8ts9wEq/i4gTjwOznXMdgB+SxJ+LmWUAvwKynHNn4DU9vMnfqmLqeeCqb20bBsx1\nzrUH5oaeR5yCPkzOuc3OucWh7/fg/SIn7YooZtYSuAYY7XctfjOz44GLgTEAzrli51yhv1X5riaQ\nZmY1gbpUsFZFUDnn3gV2fGtzD2Bs6PuxQHY0jq2gjyAzawN0Ahb6W4mvHgOGAmV+FxIHTga2A8+F\nhrJGm1k9v4vyi3OuAPgHkA9sBnY55173tyrfNXPObQbvpBE4IRoHUdBHiJkdB0wF7nXO7fa7Hj+Y\nWXdgm3Nukd+1xImawNnAU865TsA+ovRP80QQGn/uAbQFWgD1zKy/v1UlBwV9BJhZKl7Iv+Scm+Z3\nPT7qAlxnZl8CE4HLzexFf0vy1UZgo3Pu8L/wpuAFf7K6AljnnNvunCsBpgEX+lyT37aa2YkAocdt\n0TiIgj5MZmZ4Y7ArnXOP+F2Pn5xzw51zLZ1zbfAuss1zziXtGZtzbguwwcwyQ5u6Ait8LMlv+cD5\nZlY39HvTlSS+OB0yAxgQ+n4AMD0aB4nKClNJpgtwC7DMzJaEtv0utMqWyC+Bl0LrJ68Fbve5Ht84\n5xaa2RRgMd5stTyS6C5ZM5sAXAo0NbONwAPACGCymQ3C+0PYKyrH1p2xIiLBpqEbEZGAU9CLiASc\ngl5EJOAU9CIiAaegFxEJOAW9iEjAKehFRAJOQS8iEnD/B2NVeQ9/yCVzAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "
" ] }, "metadata": {}, @@ -639,113 +753,114 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 7, "metadata": { "ExecuteTime": { "end_time": "2018-05-01T10:18:56.100163Z", "start_time": "2018-05-01T10:18:56.089165Z" - } + }, + "hidden": true }, "outputs": [ { "data": { "text/html": [ "
\n", - "\n", "\n", " \n", " \n", " \n", - " \n", " \n", " \n", + " \n", " \n", " \n", " \n", " \n", " \n", - " \n", " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", " \n", - " \n", + " \n", + " \n", " \n", " \n", " \n", - " \n", " \n", - " \n", + " \n", + " \n", " \n", " \n", "
errxyerr
01.04880911.8419941.9850471.048809
12.09761821.4613393.7620572.097618
23.14642739.00532813.8430413.146427
34.195235419.13697421.9822514.195235
45.244044530.26648138.2731925.244044
56.292853644.85523641.3337306.292853
67.341662758.98321256.6158437.341662
78.390471870.55098483.2323288.390471
89.439280980.30208993.2952879.439280
\n", "
" ], "text/plain": [ - " err x y\n", - "0 1.048809 1 1.841994\n", - "1 2.097618 2 1.461339\n", - "2 3.146427 3 9.005328\n", - "3 4.195235 4 19.136974\n", - "4 5.244044 5 30.266481\n", - "5 6.292853 6 44.855236\n", - "6 7.341662 7 58.983212\n", - "7 8.390471 8 70.550984\n", - "8 9.439280 9 80.302089" + " x y err\n", + "0 1 1.985047 1.048809\n", + "1 2 3.762057 2.097618\n", + "2 3 13.843041 3.146427\n", + "3 4 21.982251 4.195235\n", + "4 5 38.273192 5.244044\n", + "5 6 41.333730 6.292853\n", + "6 7 56.615843 7.341662\n", + "7 8 83.232328 8.390471\n", + "8 9 93.295287 9.439280" ] }, - "execution_count": 38, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } @@ -757,26 +872,31 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "hidden": true + }, "source": [ "## Метод наименьших квадратов" ] }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "hidden": true + }, "source": [ "Вводим оценку наименьших квадратов. Функция воздействует на модель и набор данных и возвращает функцию одного переменного ( $\\chi^2(\\alpha)$ )." ] }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 8, "metadata": { "ExecuteTime": { "end_time": "2018-05-01T10:18:56.124165Z", "start_time": "2018-05-01T10:18:56.102165Z" - } + }, + "hidden": true }, "outputs": [], "source": [ @@ -790,26 +910,29 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "hidden": true + }, "source": [ "Строим график для наименьших квадратов" ] }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 9, "metadata": { "ExecuteTime": { "end_time": "2018-05-01T10:18:56.418182Z", "start_time": "2018-05-01T10:18:56.127164Z" - } + }, + "hidden": true }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD8CAYAAAB+UHOxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3Xd4VHXe/vH3J42EUENCMZQECF0Q\nCF1dsQC61hWxi4qyuq7rrq5tn/Vx1S267mNv6yorVlas6KKIgPrDAoTeIRQh1EAglPTk+/sjR6+o\nQCaQzMnM3K/rypWZ75zJ3MeSO6d9jznnEBGRyBPldwAREfGHCkBEJEKpAEREIpQKQEQkQqkAREQi\nlApARCRCqQBERCKUCkBEJEKpAEREIlSM3wGOJDk52aWlpfkdQ0QkpMyfP3+Xcy6luuXqdQGkpaWR\nlZXldwwRkZBiZt8Gspx2AYmIRCgVgIhIhFIBiIhEKBWAiEiEUgGIiEQoFYCISIRSAYiIRKiwLIAd\n+4p44MMV7DlY4ncUEZF6KywLYE9BCS/O3sCr3wR0LYSISEQKywLo1roJw7um8NJXGykqLfc7johI\nvRSWBQDwy591YvfBEt5ekON3FBGReilsC2BQehJ92jXjX1+sp7zC+R1HRKTeCdsCMDNuOLkjG3cX\n8Mny7X7HERGpd8K2AABG9GxNWouGPPf5OpzTVoCISFVhXQDRUcZ1J3VkcU4+czbk+R1HRKReCesC\nABjdvy0tEuP45+fr/I4iIlKvhH0BxMdGc/XQNGatzmX19v1+xxERqTfCvgAArhzSgYTYaJ7/Yr3f\nUURE6o2IKIBmDeO4ZGA73l+0hW35hX7HERGpFyKiAADGnZiOAybM3uB3FBGReiFiCqBt84ac3bsN\nr8/ZRH5hqd9xRER8F1ABmNlGM1tqZovMLMsbSzKz6Wa21vve3Bs3M3vCzLLNbImZ9avyc8Z6y681\ns7F1s0qHN/7kjhwsKdckcSIi1GwLYLhz7gTnXKb3/C5ghnMuA5jhPQc4E8jwvsYDz0JlYQD3AoOA\ngcC935VGsPQ8rimndE1hwuwNFJZokjgRiWzHsgvoPGCi93gicH6V8ZddpW+AZmbWBhgJTHfO5Tnn\n9gDTgVHH8PlH5abhndl9sIT/zNsU7I8WEalXAi0AB3xiZvPNbLw31so5tw3A+97SG08FNld5b443\ndrjxoBqQlsTAtCSe/2I9JWUVwf54EZF6I9ACGOac60fl7p2bzOzkIyxrhxhzRxj/4ZvNxptZlpll\n5ebmBhivZn41vBNb84t4b9GWOvn5IiKhIKACcM5t9b7vBN6lch/+Dm/XDt73nd7iOUC7Km9vC2w9\nwviPP+t551ymcy4zJSWlZmsToJ91SaHncU147rN1mipaRCJWtQVgZolm1vi7x8AIYBkwBfjuTJ6x\nwPve4ynAVd7ZQIOBfG8X0TRghJk19w7+jvDGgs7MuGl4Z9bvOsjHyzRVtIhEppgAlmkFvGtm3y3/\nunPuYzObB7xpZuOATcBF3vJTgbOAbKAAuAbAOZdnZg8A87zl7nfO+TZF58ieremYksjTs7I56/jW\neOsnIhIxqi0A59x6oM8hxncDpx1i3AE3HeZnTQAm1Dxm7YuOMm78WSduf2sJn63OZXi3ltW/SUQk\njETMlcCHcn7fVFKbJfDUrGzdMEZEIk5EF0BsdBTjT+7I/G/3MFc3jBGRCBPRBQBw8YB2JDeK4+nP\ndMMYEYksEV8A8bHRXHtiOl+syWVpTr7fcUREgibiCwDgisEdaBwfw5Mz1/odRUQkaFQAQJP4WK4d\nls4nK3awYus+v+OIiASFCsBz7bB0GjfQVoCIRA4VgKdpw1iuHpbGR8u26+bxIhIRVABVXDssncS4\naJ7QVoCIRAAVQBXNE+MYOzSNqUu3sXaHtgJEJLypAH7kupM6khAbzZMzs/2OIiJSp1QAP5KUGMeV\nQzrwwZKtZO884HccEZE6owI4hPEndSQ+JpqnZ2krQETClwrgEFo0asCVQzrw/qItrM/VVoCIhCcV\nwGFcf1JH4mKieHqW5ggSkfCkAjiMlMYNuHxQB95btIVvdx/0O46ISK1TARzBL0/uSEyU6YwgEQlL\nKoAjaNkknisGd+CdBTk6FiAiYUcFUI0bT+lEg5hoHp+hq4NFJLyoAKqR3KgBVw9LY8rirZojSETC\nigogAONP6khiXAyPfbrG7ygiIrVGBRCA5olxjDsxnY+WbWfZFt01TETCgwogQONOSqdpQiyPTNdW\ngIiEBxVAgJrExzL+5I7MXLWTBZv2+B1HROSYqQBq4OqhabRIjOORT7QVICKhTwVQA4kNYrjxlE7M\nzt7FN+t3+x1HROSYqABq6IrBHWjZuAGPfLIG55zfcUREjpoKoIbiY6P59amdmbsxj9nZu/yOIyJy\n1AIuADOLNrOFZvah9zzdzOaY2Voz+4+ZxXnjDbzn2d7raVV+xt3e+GozG1nbKxMsFw9oR2qzBP4x\nbbW2AkQkZNVkC+AWYGWV5w8BjzrnMoA9wDhvfBywxznXGXjUWw4z6wFcAvQERgHPmFn0scX3R4OY\naG45PYPFOfl8vGy733FERI5KQAVgZm2BnwMveM8NOBV4y1tkInC+9/g87zne66d5y58HTHLOFTvn\nNgDZwMDaWAk/XNivLRktG/HwJ6spK6/wO46ISI0FugXwGHAH8N1vuhbAXudcmfc8B0j1HqcCmwG8\n1/O95b8fP8R7Qk50lHH7yK6szz3I5Pk5fscREamxagvAzM4Gdjrn5lcdPsSirprXjvSeqp833syy\nzCwrNze3uni+OqNHK/p3aM5jn66hsKTc7zgiIjUSyBbAMOBcM9sITKJy189jQDMzi/GWaQts9R7n\nAO0AvNebAnlVxw/xnu855553zmU65zJTUlJqvELBZGbcOaobO/YV89JXG/2OIyJSI9UWgHPubudc\nW+dcGpUHcWc65y4HZgGjvcXGAu97j6d4z/Fen+kqT5WZAlzinSWUDmQAc2ttTXwyMD2J4V1TePaz\nbPILSv2OIyISsGO5DuBO4FYzy6ZyH/+L3viLQAtv/FbgLgDn3HLgTWAF8DFwk3MuLPab3DGqG/uL\ny3j2c91AXkRCh9Xn89gzMzNdVlaW3zEC8rv/LGLq0m18fvtwWjeN9zuOiEQwM5vvnMusbjldCVxL\nbj2jCxXO8fgMTRQnIqFBBVBL2iU15PJBHXgzK4d1uoG8iIQAFUAt+vWpnYmPieLhj1f7HUVEpFoq\ngFqU3KgB40/uxMfLt5O1Mc/vOCIiR6QCqGXXn5xOqyYN+PN/V2qiOBGp11QAtaxhXAy3jejKos17\n+XDJNr/jiIgclgqgDlzYry3dWjfmoY9XUVwWFpc6iEgYUgHUgego448/70HOnkImaooIEamnVAB1\n5MSMZIZ3TeHJmdnsOVjidxwRkZ9QAdShu8/qzsHiMh6fsdbvKCIiP6ECqENdWjXmkoHtefWbb9mw\n66DfcUREfkAFUMd+d3oXGsRE8eBHK6tfWEQkiFQAdSylcQNuPKUT05bvYM763X7HERH5ngogCMad\n2JE2TeP5y9SVVFTo4jARqR9UAEGQEBfNHaO6siQnn7cX6P7BIlI/qACC5Lw+qfRt34yHPl7N/iLd\nOUxE/KcCCJKoKONP5/Rk14FinpqZ7XccEREVQDD1adeMi/q3ZcKXG3RaqIj4TgUQZLeP6kqDmGj+\n/OEKv6OISIRTAQRZy8bx3HxqZ2as2slnq3f6HUdEIpgKwAfXDEsnPTmR+z9cQUlZhd9xRCRCqQB8\nEBcTxT1nd2d97kFe/nqj33FEJEKpAHxyardWnNI1hcc/XUvu/mK/44hIBFIB+Oies3tQWFrOP6bp\nJvIiEnwqAB91SmnENcPSeHP+ZhZt3ut3HBGJMCoAn/3mtAxSGjXgj+8tpVzzBIlIEKkAfNY4PpZ7\nzu7Bsi37eG3Ot37HEZEIogKoB87u3YYTOyfz8LTVOiAsIkGjAqgHzIz7zutJUWk5f5uqG8eISHBU\nWwBmFm9mc81ssZktN7P7vPF0M5tjZmvN7D9mFueNN/CeZ3uvp1X5WXd746vNbGRdrVQo6pTSiF+e\n3Il3Fm7hG904RkSCIJAtgGLgVOdcH+AEYJSZDQYeAh51zmUAe4Bx3vLjgD3Ouc7Ao95ymFkP4BKg\nJzAKeMbMomtzZULdTcM7k9osgXveW0Zpua4QFpG6VW0BuEoHvKex3pcDTgXe8sYnAud7j8/znuO9\nfpqZmTc+yTlX7JzbAGQDA2tlLcJEQlw0953bk7U7DzBh9ga/44hImAvoGICZRZvZImAnMB1YB+x1\nzpV5i+QAqd7jVGAzgPd6PtCi6vgh3lP1s8abWZaZZeXm5tZ8jULc6T1acXr3Vjw+Yy1b9xb6HUdE\nwlhABeCcK3fOnQC0pfKv9u6HWsz7bod57XDjP/6s551zmc65zJSUlEDihZ17z+lBhXM8oCmjRaQO\n1egsIOfcXuAzYDDQzMxivJfaAlu9xzlAOwDv9aZAXtXxQ7xHqmiX1JCbT83go2Xbmblqh99xRCRM\nBXIWUIqZNfMeJwCnAyuBWcBob7GxwPve4ynec7zXZzrnnDd+iXeWUDqQAcytrRUJN9ef1JEurRrx\nx3eXcaC4rPo3iIjUUCBbAG2AWWa2BJgHTHfOfQjcCdxqZtlU7uN/0Vv+RaCFN34rcBeAc2458Caw\nAvgYuMk5V16bKxNO4mKi+NsverNtX5EmixOROmGVf5zXT5mZmS4rK8vvGL763/eX8co33/L2jUPp\n176533FEJASY2XznXGZ1y+lK4Hru9pFdadU4nrvfXqq7h4lIrVIB1HON42N54PxerN6xn+e/WOd3\nHBEJIyqAEHBGj1b8/Pg2PDEzm/W5B6p/g4iEtKU5+eQXltb556gAQsS95/YgPiaKu99ZSoXuGyAS\ntvILSxk3cR6/eWNhnX+WCiBEtGwczx/O6s6cDXn8J2tz9W8QkZD05w9XsPtgCb8f0bXOP0sFEEIu\nHtCOQelJ/HXqSnbsK/I7jojUss/X5DJ5fg6/PLkjx7dtWuefpwIIIWbG335xPCVlFfzPu0upz6fw\nikjN7C8q5e63l9C5ZSN+c1pGUD5TBRBiOqY04vaRXfl05U7eXbjF7zgiUkse/GgV2/cV8ffRvYmP\nDc5M+SqAEHTNsHQyOzTnT1OWa1eQSBj4at0uXpuziXEnpgf1gk8VQAiKjjIevqgPJeUV3P2OdgWJ\nhLKCkjLuenspaS0acusZdX/gtyoVQIhKT07k9pHdmLlqJ28v0K4gkVD18LTVbMor4O+j+5AQF9yb\nJKoAQtg1Q9MYmJbEfR8sZ3u+dgWJhJqv1+3mpa82MnZIBwamJwX981UAISwqyvj76N6Ulldw1ztL\ntCtIJITsLyrl95MXk9YikTvP7OZLBhVAiEtLTuSuUd34bHUuk7Ny/I4jIgG674MVbMsv5JExfWgY\nF1P9G+qACiAMXDUkjUHpSTzw4QrdR1gkBExbvp235udw0/DO9PVxmncVQBiIijIeHt2Hcue47c3F\nmitIpB7bdaCYP7yzlF6pTbj51OBc8HU4KoAw0b5FQ+49pwdfr9/NC7PX+x1HRA7BOcfd7yxlf3EZ\nj4w5gbgYf38FqwDCyJjMdozs2YqHp61mxdZ9fscRkR95a34O01fs4I6RXenSqrHfcVQA4aRyrqDe\nNG8Yxy2TFlJUqlsui9QXm/MKuO+DFQxKT+LaYel+xwFUAGEnKTGOf1zUh7U7D/DgR6v8jiMiQHmF\n4/eTFwPwf2P6EBVlPieqpAIIQyd3SeGaYWm89NVGPlu90+84IhHvuc/XMWdDHvee04O2zRv6Hed7\nKoAwdeeobnRp1Yjb31rC7gPFfscRiVgLNu3hkelrOLt3G0b3b+t3nB9QAYSp+NhoHr+kL/kFpZow\nTsQn+4pKuWXSQlo3iecvFxyPWf3Y9fMdFUAY696mCXeM6sonK3bwxlzdRlIkmJxz3PPeMrbuLeKJ\nS0+gaUKs35F+QgUQ5q4dls5JGcnc98FyVm/f73cckYjxzoItvL9oK789LYP+HYI/0VsgVABhLirK\neGTMCTSOj+Wm1xdQUFLmdySRsLdh10HueX8Zg9KT+NXwzn7HOSwVQARIadyAxy85gXW5B7j3/eV+\nxxEJayVlFfzmjYXERkfx6MUnEF1PTvk8FBVAhBjWOZlfD+/M5Pk5vLtQs4aK1JW/Tl3J0i35PHRh\nb45rluB3nCOqtgDMrJ2ZzTKzlWa23Mxu8caTzGy6ma31vjf3xs3MnjCzbDNbYmb9qvyssd7ya81s\nbN2tlhzKLadlMDAtif95dxnrcw/4HUck7Exduo2XvtrItcPSGdWrtd9xqhXIFkAZcJtzrjswGLjJ\nzHoAdwEznHMZwAzvOcCZQIb3NR54FioLA7gXGAQMBO79rjQkOGKio3j80hNoEBPFTa9rqgiR2rRx\n10HueGsJJ7Rrxl0+3eClpqotAOfcNufcAu/xfmAlkAqcB0z0FpsInO89Pg942VX6BmhmZm2AkcB0\n51yec24PMB0YVatrI9Vq0zSB/xvTh5Xb9nH/hyv8jiMSFopKy/nVawuIiTaevryf77N8BqpGKc0s\nDegLzAFaOee2QWVJAC29xVKBqied53hjhxuXIDu1Wyt++bOOvD5nE2/P1/EAkWN13wcrWLFtH4+M\n6UNqPd/vX1XABWBmjYC3gd8654401/ChDnm7I4z/+HPGm1mWmWXl5uYGGk9q6PYRXRnSsQV/eHep\npo4WOQbvLszhjbmbuPGUTpzarZXfcWokoAIws1gqf/m/5px7xxve4e3awfv+3axjOUC7Km9vC2w9\nwvgPOOeed85lOucyU1JSarIuUgMx0VE8cWlfmjWM5cbX5pNfWOp3JJGQs2bHfv7wzjIGpiVx2xld\n/I5TY4GcBWTAi8BK59wjVV6aAnx3Js9Y4P0q41d5ZwMNBvK9XUTTgBFm1tw7+DvCGxOfpDRuwDOX\n92PLnkJue3ORbiUpUgP5haWMfzmLRvExPHlZX2KiQ2O/f1WBJB4GXAmcamaLvK+zgAeBM8xsLXCG\n9xxgKrAeyAb+BfwKwDmXBzwAzPO+7vfGxEf9OyTxx59359OVO3n283V+xxEJCRUVjt9OWkjOnkKe\nvbwfrZrE+x3pqMRUt4BzbjaH3n8PcNohlnfATYf5WROACTUJKHVv7NA0Fmzay/99sprebZtyUoZ2\nvYkcyWOfrmHW6lweOL8XmWn1c56fQITeNovUOjPjwQuPJ6NlY25+YyHf7j7odySRemva8u08MTOb\nMZltuWJQe7/jHBMVgADQMC6G56/qD8D1L2dxoFiTxon8WPbO/dz25mL6tG3K/ef1qnfz+9eUCkC+\n16FFIs9c1o91uQf57SQdFBapal9RKeNfmU98bBTPXtGf+NhovyMdMxWA/MDQzsnc8/PufLpyB49M\nX+N3HJF6oay8gptfX8im3QU8dVm/ej/JW6CqPQgskWfs0DRWbd/PU7Oy6dq6Mef0Oc7vSCK++svU\nlXy+Jpe/XnA8gzu28DtOrdEWgPyEmXH/eb3I7NCc299azLIt+X5HEvHNa3O+5d9fVs7weVmIH/T9\nMRWAHFJcTOV+zqSGcVw3MYvt+UV+RxIJuq+yd3Hv+8sZ3jWF//l5d7/j1DoVgBxWSuMGvDB2APuL\nSrn2pXkc1JlBEkHW5x7gxtcW0DElkScu7Vuv7+x1tFQAckQ9jmvCU5f3Y/WO/dz8xkLKyiv8jiRS\n5/ILSrluYhbRUcaLYwfQOD7W70h1QgUg1RretSX3nduTmat2cv+HK6i82FskPBWVlnP9K1nk7Cnk\nn1f2p11SQ78j1RmdBSQBuWJwBzblFfD8F+vp0CKRcSem+x1JpNZVVDhum7yYuRvyeOLSvgwI4Wke\nAqECkIDdNaobm3YX8Of/rqBt8wRG9qz/9zwVqYm/Tl3Jf5ds4w9ndePcCDj9WbuAJGBRUcajF59A\n77bN+M0bC5m3UZO5Svh4cfYGXpi9gauHpnH9SR39jhMUKgCpkYS4aCaMzSS1WQLjXprHqu26m5iE\nvv8u2caf/7uCUT1bc8/ZPUJ+jp9AqQCkxlo0asDEaweSEBfN2AlzydlT4HckkaM2Z/1ufvfmIvq3\nb85jl5wQlqd7Ho4KQI5Ku6SGvHztIApLyrnqxbnsPlDsdySRGluak8+4iVm0a57Av67KDIsJ3mpC\nBSBHrWvrxrx49QC27C3kmpfmaQppCSnZO/cz9t9zaZoQy6vXDaJ5YpzfkYJOBSDHZEBaEk9f1o/l\nW/dxwyvzKSot9zuSSLU25xVwxQtziTLj1esG0aZpeMzuWVMqADlmp/doxUMX9mZ29i5uem0BJWW6\nWljqr537irjixTkUlJTxyriBpCcn+h3JNyoAqRWj+7flz+f3YsaqndwySVNGSP20t6CEK1+cS+7+\nYl66diDd2zTxO5KvVABSa64Y3IF7zu7BR8u2c9vkxZTrjmJSj+QXlnLVhLls2HWQ56/MpF/75n5H\n8p2uBJZaNe7EdIrLyvn7x6uJi47ioQt7ExVBp9VJ/ZRfWMqVL85h5bZ9PHdFf07MSPY7Ur2gApBa\n96tTOlNcWsHjM9YSFxPFA+f1UgmIb/ILS7nK++X/7OX9Oa17K78j1RsqAKkTvz09g+KyCp77fB0V\nzvGX849XCUjQ7Suq3O2zYts+nrm8P6f30C//qlQAUifMjDtHdSU6Cp6etY6SMsffR/eOqKssxV/7\nikq58sW5rNiaz9OX9eMM/fL/CRWA1Bkz4/aR3WgQE80j09dQWl7BI2P6EBOtcw+kbu05WMLV/57L\n8q37eObyfozQzLWHpAKQOveb0zKIjY7ioY9XUVpeweOX9CUuRiUgdeO78/w37i7g2Sv66y//I1AB\nSFDceEqnygPCH66g5NX5PH15v4ibd0Xq3ua8Ai5/YQ67DhTz0tUDGNpZZ/scSbV/hpnZBDPbaWbL\nqowlmdl0M1vrfW/ujZuZPWFm2Wa2xMz6VXnPWG/5tWY2tm5WR+qzcSem84B3sdhVE+aSX1jqdyQJ\nI9k7D3DRc1+TX1jKa9cN0i//AASyHf4SMOpHY3cBM5xzGcAM7znAmUCG9zUeeBYqCwO4FxgEDATu\n/a40JLJcObgDT1zal4Wb9nDxP79m574ivyNJGFi2JZ8x//yasgrHpPGD6auLvAJSbQE4574Afnzr\np/OAid7jicD5VcZfdpW+AZqZWRtgJDDdOZfnnNsDTOenpSIR4tw+xzHh6gFsyivgF89+xYZdB/2O\nJCHsizW5XPzPr0mIjWbyDUMifnqHmjjaI3GtnHPbALzvLb3xVGBzleVyvLHDjUuEOikjhUnjB1NQ\nUs7oZ79iSc5evyNJCHozazPXvjSPdkkNefvGoRE9sdvRqO1TMQ51krc7wvhPf4DZeDPLMrOs3Nzc\nWg0n9Uvvts1464YhJMRFc8nz3zBz1Q6/I0mIcM7x6PQ13PHWEoZ0asHkG4bQumm837FCztEWwA5v\n1w7e953eeA7QrspybYGtRxj/Cefc8865TOdcZkpKylHGk1DRMaURb984lI4piVw3MYsJszfgnCaR\nk8MrLa/gjreW8PiMtYzu35YJVw+gcXys37FC0tEWwBTguzN5xgLvVxm/yjsbaDCQ7+0imgaMMLPm\n3sHfEd6YCK2axPPmL4dwRo9W3P/hCv743jJKNZ20HEJ+QSnXvjSPyfNzuOW0DB4e3ZtYXVh41Kq9\nDsDM3gBOAZLNLIfKs3keBN40s3HAJuAib/GpwFlANlAAXAPgnMszsweAed5y9zvnfnxgWSJYw7gY\nnr28P3+ftprnPl/HprwCnrqsH00T9JedVMreuZ/rJmaxZW8hfx/dmzGZ7ap/kxyR1efN7czMTJeV\nleV3DAmyN7M28z/vLqV9UkNeGDtAB/aEGSt3cMukRcTHRvPPK/vRv0OS35HqNTOb75zLrG45bTtJ\nvTMmsx2vjBtE3sESzn1yNp8s3+53JPGJc46nZ2Vz3ctZpCcnMuXXw/TLvxapAKReGtyxBR/cfCLp\nKYmMf2U+D09bpTuMRZgDxWXc/MZCHp62mnP7HMfkG4ZwXLPIvHl7XVEBSL3VtnlD3vzlEC4Z0I6n\nZ63j6n/PJe9gid+xJAhWbtvHuU/OZurSbdx1Zjceu/gEzR1VB1QAUq/Fx0bz4IW9efAXxzNnfR7n\nPDmbBZv2+B1L6ohzjklzN3H+019yoLiM168fzA0/64SZ7iNRF1QAEhIuGdieyTcMAeCi577mqZlr\ntUsozBwsLuN3/1nEXe8sZWB6ElNvOYnBHVv4HSusqQAkZPRp14ypt5zEmb1a849P1nDpv75h695C\nv2NJLViSs5dznprNlMVbue2MLky8ZiDJjRr4HSvsqQAkpDRNiOXJS/vyj4v6sGxLPmc+/v/4eNk2\nv2PJUSotr+CxT9dwwTNfUVBczqvXDeLm0zJ0/+gg0Q1hJOSYGaP7t6V/h+bcMmkhN7y6gAv7teV/\nz+5B04a6cCxUZO88wG1vLmJxTj4X9E3lT+f01L+/IFMBSMhKT07krRuG8sSMtTz7+Tq+WJvLX87v\npfu/1nMVFY6Xv97I3z5aRUJcNM9c3o+zjm/jd6yIpCuBJSws25LP7W8tYeW2fZzT5zj+dE4PWmgf\ncr2zavs+7n5nKQs37WV41xQeurA3LZtoFs/aFuiVwNoCkLDQK7UpU349jOc+W8cTM9fyZfYu7jm7\nO+efkKpTCOuBwpJynpi5ln99sZ4mCbE8MqYPF/TVvxu/aQtAws7q7fu54+0lLN68lwFpzbnv3F70\nOE53ifLL52ty+eN7S9mcV8hF/dty91ndSUqM8ztWWAt0C0AFIGGposIxef5mHvp4NXsLSrhycAdu\nPaOrDjIG0YZdB/nr1JVMX7GDjsmJ/OWC4xnSSef1B4N2AUlEi4oyLh7QnlE92/DI9NW88s23fLBk\nG7eN6MKYzHaaQ74O7Ssq5amZ2fz7yw3ERUdx+8iuXHdSOg1iNJVDfaMtAIkIK7bu409TljN3Yx4d\nkxO5fWRXRvVqrX3QtaiotJzX52zi6VnZ5BWUcFH/tvx+RFcd5PWBdgGJ/Ihzjhkrd/LQx6tYu/MA\nfdo14/YRXRnWuYWK4BiUllcXNDdjAAAHwElEQVQwOSuHJ2euZVt+EUM7teAPZ3WnV2pTv6NFLBWA\nyGGUVzjeWZDDo9PXsDW/iL7tm/GbUzM4pWuKiqAGisvKeW/hFp75bB3f7i6gb/vKQh3aOdnvaBFP\nBSBSjeKyciZn5fDsZ+vYsreQXqlN+NUpnRnRoxUxOkZwWAeKy5g0dxMv/L8NbN9XRK/UJtx6RheG\nd22pAq0nVAAiASotr+DdBVt45rNsNu4uILVZAlcPTWPMgHa6J3EVm/MKeHXOt0yau5n8wlKGdGzB\njad04qSMZP3ir2dUACI1VF7hmL5iB//+cgNzNuTRMC6aX/RL5eLM9vRKbRKRv+QqKhxfrM3lla+/\nZebqnUSZMaJHK8af3JG+7Zv7HU8OQwUgcgyWbcnn319u5MMlWykuq6B7myZcnNmW8/um0qxh+F/E\ntD73AO8s2MK7C7ewZW8hyY3iuHRgey4b1J42TXVbxvpOBSBSC/ILS5myaAv/ydrMsi37iI02Tuyc\nzNm9j+P0Hq3CahfR1r2FTFu+nSmLt7Jw016iDE7MSOHCfqmM6tVa5/GHEBWASC1bvjWf9xdt5b9L\ntrFlbyFx0VGcmJHM8K4pnNK1Je2SGvodsUacc6zesZ8ZK3cybfl2luTkA9CtdWMu6JvK+X1TaaVz\n+EOSCkCkjjjnWLR5L1OXbmPa8h1syisAoGNKIj/rksKg9CT6d0gipXH9mo3UOUfOnkLmbMhj9tpc\nZmfvZteBYqDybmujerZmZM9WdExp5HNSOVYqAJEgcM6xYddBPludy2drcpmzfjfFZRVA5f0K+ndo\nTs/jmtCjTRO6tWkStF1Gzjl27i9mzY79LN2Sz8JNe1m4ae/3v/CTG8UxrHMywzonc1JGsvbrhxkV\ngIgPisvKWbZlH1kb85i3cQ8LN+1h98GS719PbZZAWnJD2ic1pH1SIu2SEkhp1IAWjRrQIjGOpgmx\nAd0OsaSsgvzCUvILS9ixr5gtewvZ6n2tzz3Imh372VdU9v3yHZMTOaF9M/q2a0b/Dkl0a91Yt10M\nYyoAkXrAOUfu/mKWb9vHym37WL19P9/uLmBzXsEPiuE7UQYJsdHEe18NYqJwQFlFBeXljtIKx4Gi\nMgpLyw/5eS0bNyCtRSIZrRrRpVVjMlo1onvrJjTX9MsRRbOBitQDZkbLJvG0bBLP8K4tf/Da/qJS\ncvYUsvtACbsPFrP7QAl7CkooKCmnqLScotIKisvKiTIjJsqIjjJioo3EuBiaJsTStGEsTRNiadk4\nntRmCbRq2kBn6kiNqABEfNI4PpbubcLnNFIJPUGf8MTMRpnZajPLNrO7gv35IiJSKagFYGbRwNPA\nmUAP4FIz6xHMDCIiUinYWwADgWzn3HrnXAkwCTgvyBlERITgF0AqsLnK8xxv7HtmNt7MsswsKzc3\nN6jhREQiSbAL4FAnHv/gPFTn3PPOuUznXGZKSkqQYomIRJ5gF0AO0K7K87bA1iBnEBERgl8A84AM\nM0s3szjgEmBKkDOIiAhBvg7AOVdmZr8GpgHRwATn3PJgZhARkUr1eioIM8sFvvU7x1FIBnb5HSLI\ntM6RIdLWOVTXt4NzrtqDqPW6AEKVmWUFMg9HONE6R4ZIW+dwX9+gXwksIiL1gwpARCRCqQDqxvN+\nB/CB1jkyRNo6h/X66hiAiEiE0haAiEiEUgEcg0CmtjazMWa2wsyWm9nrwc5Y26pbZzNrb2azzGyh\nmS0xs7P8yFlbzGyCme00s2WHed3M7Anvn8cSM+sX7Iy1LYB1vtxb1yVm9pWZ9Ql2xtpW3TpXWW6A\nmZWb2ehgZatTzjl9HcUXlReyrQM6AnHAYqDHj5bJABYCzb3nLf3OHYR1fh640XvcA9jod+5jXOeT\ngX7AssO8fhbwEZXzXA0G5vidOQjrPLTKf9NnRsI6e8tEAzOBqcBovzPXxpe2AI5eIFNbXw887Zzb\nA+Cc2xnkjLUtkHV2QBPvcVNCfK4n59wXQN4RFjkPeNlV+gZoZmZtgpOublS3zs65r777bxr4hso5\nvUJaAP+eAW4G3gZC/f/j76kAjl61U1sDXYAuZvalmX1jZqOClq5uBLLOfwKuMLMcKv9Sujk40XwT\nyD+TcDaOyi2gsGZmqcAFwHN+Z6lNKoCjV+3U1lTOtZQBnAJcCrxgZs3qOFddCmSdLwVecs61pXL3\nyCtmFs7/nQXyzyQsmdlwKgvgTr+zBMFjwJ3OuXK/g9Qm3RT+6AUytXUO8I1zrhTYYGarqSyEecGJ\nWOsCWedxwCgA59zXZhZP5XwqYbPZ/CMROcW5mfUGXgDOdM7t9jtPEGQCk8wMKv97PsvMypxz7/kb\n69iE819mdS2Qqa3fA4YDmFkylbuE1gc1Ze0KZJ03AacBmFl3IB4I51u7TQGu8s4GGgzkO+e2+R2q\nLplZe+Ad4Ern3Bq/8wSDcy7dOZfmnEsD3gJ+Feq//EFbAEfNHWZqazO7H8hyzk3xXhthZiuAcuD2\nUP5rKcB1vg34l5n9jspdIVc77xSKUGRmb1C5Cy/ZO65xLxAL4Jx7jsrjHGcB2UABcI0/SWtPAOv8\nv0AL4BnvL+IyF+ITpgWwzmFJVwKLiEQo7QISEYlQKgARkQilAhARiVAqABGRCKUCEBGJUCoAEZEI\npQIQEYlQKgARkQj1/wHIKJWpzGycPQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD8CAYAAAB+UHOxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl4VNX9x/H3NxsJYQsQEEnYJGyC\nbBFQxAUrIFrBHetCXYpVtFarVWurVmtrf7baolWLK+4LVUFFLQXrxhpkXxP2sAYStgSynt8fc7FB\ngQyQzJ3JfF7PM8/MPXNu5ntZ8pl77nLMOYeIiESfGL8LEBERfygARESilAJARCRKKQBERKKUAkBE\nJEopAEREopQCQEQkSikARESilAJARCRKxfldwOE0bdrUtWnTxu8yREQiypw5c7Y551Kr6hfWAdCm\nTRuysrL8LkNEJKKY2dpg+mkISEQkSikARESilAJARCRKBRUAZna7mS02s0Vm9qaZJZpZWzObaWbZ\nZva2mSV4fet4yzne+20q/Zx7vfblZja4ZjZJRESCUWUAmFlL4BdApnOuKxALjAD+DDzhnMsACoDr\nvVWuBwqcc+2BJ7x+mFkXb70TgSHA02YWW72bIyIiwQp2CCgOSDKzOKAusAkYCIz33h8HDPdeD/OW\n8d4/28zMa3/LOVfsnFsN5AB9jn0TRETkaFQZAM65DcBfgHUEfvHvBOYAO5xzZV63XKCl97olsN5b\nt8zr36Ry+0HWERGREAtmCCiFwLf3tsDxQDJw7kG67p9b0g7x3qHav/95o8wsy8yy8vLyqirvoPJ2\nF/P7Dxezs6j0qNYXEYkGwQwB/QhY7ZzLc86VAu8BpwKNvCEhgDRgo/c6F0gH8N5vCORXbj/IOt9x\nzo11zmU65zJTU6u8kO2g8nYX8/K0NfzjvzlHtb6ISDQIJgDWAf3MrK43ln82sAT4HLjE6zMSmOC9\nnugt470/1QVmnp8IjPDOEmoLZACzqmczDtTl+AZc0iuNl79Zw/r8opr4CBGRiBfMMYCZBA7mfgss\n9NYZC9wN3GFmOQTG+F/wVnkBaOK13wHc4/2cxcA7BMLjU2C0c668WremkjsHdyQ2xnj002U19REi\nIhHNAl/Ow1NmZqY7lnsBPTF5BX+fks2/bjqV3q1TqrEyEZHwZWZznHOZVfWr1VcCjzq9Han16/CH\nj5cQzkEnIuKHWh0AyXXiuHNQB+au28GkhZv9LkdEJKzU6gAAuKR3Op2Oq8+jny6luKzGDjmIiESc\nWh8AsTHGfed1Zn3+Xl6ZFtQtskVEokKtDwCAARmpnNEhlSenZlNQWOJ3OSIiYSEqAgDgvvM6s6e4\njL9Pyfa7FBGRsBA1AdCheX0uP7kVr81Yy6q8PX6XIyLiu6gJAIA7zulAnbgY/qyLw0REoisAUuvX\n4aYzT+CzxVuYuWq73+WIiPgqqgIA4PrT2nF8w0Qe+mgJ5RW6OExEolfUBUBSQiz3DO3M4o27eDdr\nfdUriIjUUlEXAAA/PqkFma1TeOyz5ezapzkDRCQ6RWUAmBkP/PhE8otKeGqq5gwQkegUlQEA0C2t\nIZf1Tuelb1brtFARiUpRGwAQmDOgTlwsj3y81O9SRERCLqoDILV+HW4d2J4py7byxYqjm39YRCRS\nBTMpfEczm1fpscvMfmlmjc1ssplle88pXn8zszFmlmNmC8ysV6WfNdLrn21mIw/9qaHz0/5taNOk\nLg9/tITS8gq/yxERCZlgpoRc7pzr4ZzrAfQGioD3CUz1OMU5lwFM8ZYBziUw328GMAp4BsDMGgMP\nAH2BPsAD+0PDT3XiYvnteV3I2bqH12bobqEiEj2OdAjobGClc24tMAwY57WPA4Z7r4cBr7iAGUAj\nM2sBDAYmO+fynXMFwGRgyDFvQTU4u3MzBmQ05YnJK8jX3UJFJEocaQCMAN70Xjd3zm0C8J6bee0t\ngcpXWOV6bYdq952Zcf/5XSgsKefxycv9LkdEJCSCDgAzSwAuAN6tqutB2txh2r//OaPMLMvMsvLy\nQndgNqN5fa7u15o3Zq5j6aZdIftcERG/HMkewLnAt865Ld7yFm9oB+95q9eeC6RXWi8N2HiY9gM4\n58Y65zKdc5mpqalHUN6x++WPMmiYFM+DExdrEnkRqfWOJACu4H/DPwATgf1n8owEJlRqv8Y7G6gf\nsNMbIvoMGGRmKd7B30FeW9hoVDeBuwZ3YubqfCbO/0E2iYjUKkEFgJnVBc4B3qvU/Chwjplle+89\n6rVPAlYBOcBzwM0Azrl84GFgtvd4yGsLK5efnM5JaQ155OOl7NZ9gkSkFrNwHurIzMx0WVlZIf/c\nuesKuPDpafxsQFvuO69LyD9fRORYmNkc51xmVf2i+krgQ+nZKoXLM9N56Zs1ZG/Z7Xc5IiI1QgFw\nCL8e0pG6CbHcP0EHhEWkdlIAHEKTenW4a3BHpq/azkcLNvldjohItVMAHMZP+rbmxOMb8MjHSyks\nLvO7HBGRaqUAOIzYGOOhYV3ZvGsfY6Zm+12OiEi1UgBUoXfrFC7pncYLX60mZ6smjhGR2kMBEIR7\nzu1EUkKsrhAWkVpFARCEpvXq8KtzOvB1zjY+WbTZ73JERKqFAiBIV/VrTecWDXjowyXs0QFhEakF\nFABBiouN4ZELu7Jl9z4e//cKv8sRETlmCoAj0KtVCj/p04qXp61m0YadfpcjInJMFABH6NdDOtE4\nOYH73l9IeYUOCItI5FIAHKGGSfH87vwuzM/dyeszNYewiEQuBcBRuKD78ZzWvimPfbqcLbv2+V2O\niMhRUQAcBTPjD8O7UlxewUMfLfG7HBGRo6IAOEptmiZzy1nt+XjBJv67fGvVK4iIhBkFwDG48Yx2\ntEtN5v4Ji9lXWu53OSIiRyTYKSEbmdl4M1tmZkvN7BQza2xmk80s23tO8fqamY0xsxwzW2BmvSr9\nnJFe/2wzG3noT4wMdeJi+cPwrqzLL+JJ3SxORCJMsHsAfwc+dc51AroDS4F7gCnOuQxgircMcC6Q\n4T1GAc8AmFlj4AGgL9AHeGB/aESyU09oykW9WjL2y1WaPUxEIkqVAWBmDYDTgRcAnHMlzrkdwDBg\nnNdtHDDcez0MeMUFzAAamVkLYDAw2TmX75wrACYDQ6p1a3zym6GdqZsQx2/eX0iFrg0QkQgRzB5A\nOyAPeMnM5prZ82aWDDR3zm0C8J6bef1bAusrrZ/rtR2q/QBmNsrMsswsKy8v74g3yA9N69XhvqGd\nmb2mgDdmrfO7HBGRoAQTAHFAL+AZ51xPoJD/DfccjB2kzR2m/cAG58Y65zKdc5mpqalBlBceLs1M\no3/7Jjz6yTI27dzrdzkiIlUKJgBygVzn3ExveTyBQNjiDe3gPW+t1D+90vppwMbDtNcKZsafLjyJ\nsooKfvfBIs0bICJhr8oAcM5tBtabWUev6WxgCTAR2H8mz0hggvd6InCNdzZQP2CnN0T0GTDIzFK8\ng7+DvLZao1WTuvzqnI78Z+lWTSQvImEvLsh+twKvm1kCsAq4lkB4vGNm1wPrgEu9vpOAoUAOUOT1\nxTmXb2YPA7O9fg855/KrZSvCyLX92/Dhgo08OHExp7VvSkpygt8liYgclIXzUEVmZqbLysryu4wj\ntmTjLi546muG9WjJXy/r7nc5IhJlzGyOcy6zqn66ErgGdDm+ATee0Y5/fZvLlysi40wmEYk+CoAa\ncuvADNqlJvOb9xdSqCkkRSQMKQBqSGJ8LI9edBK5BXv5q6aQFJEwpACoQX3aNuaqfq14adpq5q4r\n8LscEZEDKABq2N1DOnFcg0Tu/tcCist0x1ARCR8KgBpWPzGeP17YjRVb9jBmiu4YKiLhQwEQAmd1\nasYlvdN49otVLMjd4Xc5IiKAAiBkfnd+F1Lr1eFX78zXUJCIhAUFQIg0TIrnTxd3I3vrHv72Hw0F\niYj/FAAhdFbHZlyWmcY/v1jJvPUaChIRfykAQuy353eheYNEfvXOPM0jLCK+UgCEWIPEeB69+CRW\n5hXyxH90gZiI+EcB4IMzOqRyRZ90nvtyFd/qAjER8YkCwCe/GdqZFg2TuPPd+RoKEhFfKAB8Uj8x\nnkcv7saqvEIen6yhIBEJPQWAjwZkpPKTvq147qtVzFpd6+bGEZEwF1QAmNkaM1toZvPMLMtra2xm\nk80s23tO8drNzMaYWY6ZLTCzXpV+zkivf7aZjTzU50WT+4Z2Jj2lLre/PY/d+0r9LkdEosiR7AGc\n5ZzrUWmWmXuAKc65DGCKtwxwLpDhPUYBz0AgMIAHgL5AH+CB/aERzZLrxPHE5T3YtHMvv/9wid/l\niEgUOZYhoGHAOO/1OGB4pfZXXMAMoJGZtQAGA5Odc/nOuQJgMjDkGD6/1ujdOoXRZ7Vn/JxcPl2k\nyeRFJDSCDQAH/NvM5pjZKK+tuXNuE4D33Mxrbwmsr7Rurtd2qHYBfnF2BielNeTe9xayddc+v8sR\nkSgQbAD0d871IjC8M9rMTj9MXztImztM+4Erm40ysywzy8rLi575dONjY3ji8h7sLS3nrvELcO4H\nfzQiItUqqABwzm30nrcC7xMYw9/iDe3gPW/1uucC6ZVWTwM2Hqb9+5811jmX6ZzLTE1NPbKtiXAn\npNbjN0M788WKPF6bsdbvckSklqsyAMws2czq738NDAIWAROB/WfyjAQmeK8nAtd4ZwP1A3Z6Q0Sf\nAYPMLMU7+DvIa5NKru7XmjM6pPLIpKWszNvjdzkiUosFswfQHPjazOYDs4CPnXOfAo8C55hZNnCO\ntwwwCVgF5ADPATcDOOfygYeB2d7jIa9NKjEzHrvkJBLjY7n97XmUllf4XZKI1FIWzmPNmZmZLisr\ny+8yfPHJwk3c9Pq3/GJge+4Y1NHvckQkgpjZnEqn7B+SrgQOU+d2a8HFvdJ46vMcstZoR0lEqp8C\nIIw9eEEX0lLqcttb89hZpKuERaR6KQDCWP3EeMZc0ZMtu/Zxz3s6NVREqpcCIMz1SG/EXYM78smi\nzbw5a33VK4iIBEkBEAF+NqAdAzKa8vsPF7Niy26/yxGRWkIBEAFiYoy/XtadenXi+MWbczWBjIhU\nCwVAhGhWP5G/XtadZZt388jHS/0uR0RqAQVABDmzYzN+NqAtr85Yy2eLN/tdjohEOAVAhLlrcCe6\ntWzIr8cvYOOOvX6XIyIRTAEQYRLiYhhzRU/Kyiv45VvzKK/QqaEicnQUABGobdNkHh7elVlr8vnb\nfzShvIgcHQVAhLqoVxqX9k7jyak5/Hf51qpXEBH5HgVABHtoWFc6HVef29+ep+MBInLEFAARLCkh\nlqev7EVpuWP0G99SUqZbR4tI8BQAEa5daj3+fPFJzF23g0c/WeZ3OSISQRQAtcB5J7Xgp6e24cVv\nVvPpok1+lyMiEUIBUEv8Zmhnuqc34q53F7BmW6Hf5YhIBAg6AMws1szmmtlH3nJbM5tpZtlm9raZ\nJXjtdbzlHO/9NpV+xr1e+3IzG1zdGxPNEuJi+MdPehITY9z8+re6X5CIVOlI9gBuAyrfhObPwBPO\nuQygALjea78eKHDOtQee8PphZl2AEcCJwBDgaTOLPbbypbK0lLo8cXl3lmzaxe8/XOx3OSIS5oIK\nADNLA84DnveWDRgIjPe6jAOGe6+Hect475/t9R8GvOWcK3bOrSYwaXyf6tgI+Z+BnZpz05kn8Oas\n9Yyfk+t3OSISxoLdA/gb8Gtg/3mGTYAdzrkybzkXaOm9bgmsB/De3+n1/679IOt8x8xGmVmWmWXl\n5eUdwabIfr86pwOntGvCfe8vZGHuTr/LEZEwVWUAmNn5wFbn3JzKzQfp6qp473Dr/K/BubHOuUzn\nXGZqampV5clBxMXG8NRPetIkOYGfvzaH7XuK/S5JRMJQMHsA/YELzGwN8BaBoZ+/AY3MLM7rkwZs\n9F7nAukA3vsNgfzK7QdZR6pZk3p1+OfVmeTtKebWN+dSVq6LxETkQFUGgHPuXudcmnOuDYGDuFOd\nc1cCnwOXeN1GAhO81xO9Zbz3p7rAbOYTgRHeWUJtgQxgVrVtifxAt7SGPDK8K9NWbufPn+oiMRE5\nUFzVXQ7pbuAtM/sDMBd4wWt/AXjVzHIIfPMfAeCcW2xm7wBLgDJgtHNO5yrWsEsz01m4YSfPfbWa\nbmmNuKD78X6XJCJhwgJfzsNTZmamy8rK8ruMiFdSVsGVz89g4YadvH9zfzq3aOB3SSJSg8xsjnMu\ns6p+uhI4CiTExfCPK3vRMCmeG1+dw46iEr9LEpEwoACIEs3qJ/LMVb3ZtHMvt7yhg8IiogCIKr1a\npfDI8G58nbONP3y8tOoVRKRWO5aDwBKBLjs5nRVbdvP816vJaF6PK/u29rskEfGJ9gCi0L1DO3NG\nh1QemLCY6Su3+12OiPhEARCFYmOMJ3/Sk9ZN6nLT63NYt73I75JExAcKgCjVIDGeF0aeDMD142az\ne1+pzxWJSKgpAKJYm6bJPH1lL1ZvK+S2t+ZRXhG+14SISPVTAES5U09oyoMXnMjUZVv50ySdGSQS\nTXQWkHBVv9bkbN3D81+vpnWTulx9Shu/SxKREFAACAC/O78L6/OLeGDiYlqmJDGwU3O/SxKRGqYh\nIAECZwaNuaInXY5vwC1vzGXRBk0kI1LbKQDkO8l14nhx5Mk0Sornupdns3HHXr9LEpEapACQAzRr\nkMhL1/Zhb0k5172s00NFajMFgPxAx+Pq88xVvcnZuoebX/+WUt04TqRWUgDIQZ2W0ZQ/XtiNr7K3\ncd/7CwnneSNE5OgEMyl8opnNMrP5ZrbYzH7vtbc1s5lmlm1mb5tZgtdex1vO8d5vU+ln3eu1Lzez\nwTW1UVI9Ljs5nV8MbM87Wbk8PnmF3+WISDULZg+gGBjonOsO9ACGmFk/4M/AE865DKAAuN7rfz1Q\n4JxrDzzh9cPMuhCYHvJEYAjwtJnFVufGSPW7/ZwOjDg5nSen5jBu2hq/yxGRahTMpPDOObfHW4z3\nHg4YCIz32scBw73Xw7xlvPfPNjPz2t9yzhU751YDOUCfatkKqTFmxh+Gd+WcLs158MPFfLRgo98l\niUg1CeoYgJnFmtk8YCswGVgJ7HDOlXldcoGW3uuWwHoA7/2dQJPK7QdZR8JYXGwMT17Rk8zWKdzx\n9nym5WzzuyQRqQZBBYBzrtw51wNII/CtvfPBunnPdoj3DtV+ADMbZWZZZpaVl5cXTHkSAonxsTx/\nzcm0bZrMqFfn6EIxkVrgiM4Ccs7tAP4L9AMamdn+W0mkAfvHBnKBdADv/YZAfuX2g6xT+TPGOucy\nnXOZqampR1Ke1LCGdeMZd10fGibF89OXZrN2e6HfJYnIMQjmLKBUM2vkvU4CfgQsBT4HLvG6jQQm\neK8nest47091gXMIJwIjvLOE2gIZwKzq2hAJjeMaJjLuuj6UVVRw9Quz2LJrn98lichRCmYPoAXw\nuZktAGYDk51zHwF3A3eYWQ6BMf4XvP4vAE289juAewCcc4uBd4AlwKfAaOdceXVujIRG+2b1ePna\nPmzfU8xVz88kv7DE75JE5ChYOF/gk5mZ6bKysvwuQw5hxqrtjHxxFu2b1eONn/WjYVK83yWJCGBm\nc5xzmVX105XActT6tWvCP6/uzYotu7nu5dkUlZRVvZKIhA0FgByTMzs2Y8yInsxdV8DPXsliX6lG\n9UQihQJAjtm53Vrw2CXd+SZnO7e8oZvHiUQKBYBUi4t7p/Hw8K78Z+lWbn97HmUKAZGwpykhpdpc\n3a81e0vK+OOkZcTGGH+9tDtxsfqOIRKuFABSrUadfgJlFY7/+3Q5gEJAJIwpAKTa3Xxme4DvQuDx\ny3oQG3OwO4GIiJ8UAFIjbj6zPc7BY58pBETClQJAaszoswJ7Ao99thwD/qoQEAkrCgCpUZVDAOAv\nOiYgEjYUAFLjKodAcVkFfx/Rk4Q4hYCI3/S/UEJi9Fnt+e15nflk0WZGvaorhkXCgQJAQuaGAe34\n00Xd+GJFHiNfnMWeYt07SMRPCgAJqSv6tOJvl/cga20BVz4/kx1FupW0iF8UABJyw3q05Jkre7F0\n4y5GjJ1B3u5iv0sSiUoKAPHFoBOP44WfZrJ2exGX/3M6G3bs9bskkagTzJSQ6Wb2uZktNbPFZnab\n197YzCabWbb3nOK1m5mNMbMcM1tgZr0q/ayRXv9sMxt5qM+U6DAgI5VXru9D3p5iLnr6G5Zt3uV3\nSSJRJZg9gDLgV865zgQmgx9tZl0ITPU4xTmXAUzxlgHOJTDfbwYwCngGAoEBPAD0BfoAD+wPDYle\nJ7dpzLs/PwWAS5+dzoxV232uSCR6VBkAzrlNzrlvvde7CUwI3xIYBozzuo0DhnuvhwGvuIAZQCMz\nawEMJjCfcL5zrgCYDAyp1q2RiNTpuAa8d3N/mtWvwzUvzuKThZv8LkkkKhzRMQAzawP0BGYCzZ1z\nmyAQEkAzr1tLYH2l1XK9tkO1i9CyURLjf34qXY9vwM1vfMur09f4XZJIrRd0AJhZPeBfwC+dc4cb\nrD3YzV7cYdq//zmjzCzLzLLy8vKCLU9qgZTkBF6/oR9nd2rO7yYs5i+fLce5H/wTEZFqElQAmFk8\ngV/+rzvn3vOat3hDO3jPW732XCC90uppwMbDtB/AOTfWOZfpnMtMTU09km2RWiApIZZnr+rFFX3S\neerzHO54Zz7FZbpqWKQmBHMWkAEvAEudc49XemsisP9MnpHAhErt13hnA/UDdnpDRJ8Bg8wsxTv4\nO8hrEzlAXGwMf7ywG3cO6sD7czdw5XMz2b5H1wqIVLdg9gD6A1cDA81snvcYCjwKnGNm2cA53jLA\nJGAVkAM8B9wM4JzLBx4GZnuPh7w2kR8wM24ZmMFTP+nJwg07Gf70N2Rv2e13WSK1ioXzGGtmZqbL\nysryuwzx2dx1BfzslTkUl5Xz9JW9GJChoUGRwzGzOc65zKr66UpgCXs9W6XwwehTadkoiZ++NJvX\nZqz1uySRWkEBIBEhLaUu7/78FE7PaMpvP1jE/RMWUVpe4XdZIhFNASARo35iPM9dk8kNp7Xllelr\nufK5mWzdvc/vskQilgJAIkpcbAy/Pb8Lfx/RgwUbdvDjJ79m7roCv8sSiUgKAIlIw3q05L2b+pMQ\nF8Pl/5zBW7PW+V2SSMRRAEjE6nJ8AyaOPo2+7Rpzz3sLufe9hbpoTOQIKAAkoqUkJ/DytX34+Rkn\n8OasdVz67HTWbS/yuyyRiKAAkIgXG2Pcc24nnr2qN6u3FXLemK+YpDuKilRJASC1xpCuxzHpFwNo\n16weN7/+Lb/7YBH7SjUkJJGntLwiJP92FQBSq6Q3rsu7N57CDae15dUZa7no6Wms3lbod1kiQVu3\nvYhLnp3OQx8tqfHPUgBIrZMQFzhV9PlrMtmwYy/nj/mK9+fm6tbSEtacc4yfk8vQMV+xOm8Pp7Vv\nWuOfqQCQWutHXZoz6bYBdG7RgNvfns8tb8yloLDE77JEfqCgsISbX/+WO9+dT5fjGzDptgEM7dai\nxj83rsY/QcRHLRsl8faNp/DsFyt5YvIKZq/J57FLu3NGB91QTsLDFyvyuOvd+RQUlXDvuZ24YUA7\nYmMONn9W9dMegNR6sTHG6LPa88Ho/jRMimfki7O4f8Ii9pboALH4Z29JOQ9MWMTIF2fRqG48H4zu\nz41nnBCyX/6gPQCJIl1bNuTDW0/j/z5dzovfrObr7G389bLu9GyV4ndpEmXmrM3n1+MXsDKvkOv6\nt+XXQzqSGB8b8jq0ByBRJTE+lvt/3IXXb+jL3tJyLn5mGg9/tISikjK/S5MoUFhcxoMTF3PJs9PZ\nV1rBa9f35f4fd/Hllz9oQhiJYrv2lfJ/ny7jtRnrSEtJ4o8XduN0HRuQGvLlijzufW8hG3fuZeQp\nbbhzcEfq1amZQZhqmxDGzF40s61mtqhSW2Mzm2xm2d5zitduZjbGzHLMbIGZ9aq0zkivf7aZjTzY\nZ4mEUoPEeP4wvBvv3HgKCbExXPPiLO54Z57OFJJqtaOohDvfnc81L84iMT6Gd288hQcvOLHGfvkf\niWCGgF4Ghnyv7R5ginMuA5jiLQOcC2R4j1HAMxAIDOABoC/QB3hgf2iI+K1P28ZMum0At5zVnonz\nNvKjx79gwrwNum5Ajolzjvfn5vKjx7/kg7kbuOWs9nz8iwFktmnsd2nfqTIAnHNfAt+fvH0YMM57\nPQ4YXqn9FRcwA2hkZi2AwcBk51y+c64AmMwPQ0XEN4nxsdw5uCMf3noaaSlJ3PbWPEaMncHyzZqI\nXo7css27uPyfM7j97fmkpSQx4Zb+3DnYnwO9h3O0+yDNnXObAJxzm8ysmdfeElhfqV+u13ao9h8w\ns1EE9h5o1arVUZYncnQ6t2jAezf3563Z63jss+UMHfMV15zSmtvP6UCDxHi/y5Mwt2tfKX+bnM24\n6WtokBjHoxd147LMdGJCeGrnkajuQaiDbaU7TPsPG50bC4yFwEHg6itNJDixMcaVfVsztGsLHvv3\ncl6etoYP52/k7iGduLhXWtj+Zxb/lFc4xs9Zz1/+vYJte4q5ok8r7hrUkZTkBL9LO6yjPQ10ize0\ng/e81WvPBdIr9UsDNh6mXSRspSQn8McLuzFx9GmkpdTlrvELOP/Jr/k6e5vfpUkY+Tp7G+eN+Yq7\n/7WQtJQkPri5P3+8sFvY//KHow+AicD+M3lGAhMqtV/jnQ3UD9jpDRV9BgwysxTv4O8gr00k7HVL\na8h7N53K30f0YOfeUq56YSY/fWmWjg9Euewtu7n2pVlc9cJM9hSX8eQVPXnvplPpnt7I79KCVuV1\nAGb2JnAm0BTYQuBsng+Ad4BWwDrgUudcvpkZ8BSBA7xFwLXOuSzv51wH/Mb7sY84516qqjhdByDh\nZl9pOa9MX8OTU3MoLC7j0t7p3Hp2e9JS6vpdmoTI+vwinpyazb++3UDdhFhuHdiea05pE1YHeIO9\nDkAXgokchYLCEsZMzea1GWsBGHFyK0af1Z7jGib6XJnUlM079/GPz3N4a/Y6zIyr+rbmloHtaRyG\nQz0KAJEQ2LBjL09NzeHdrPXExBhX9m3FTWeeQLP6CoLaYuvufYz9YhWvzlhLeYVjRJ90bjkrI6zD\nXgEgEkLr84sYMyWb9+ZuID7szOY4AAAJO0lEQVTWuDwznRsGtCO9sYaGItW67UX888uVvDsnl7Ly\nCi7qlcZtZ2dExN+pAkDEB6u3FfL05zl8MG8DFQ5+fFILbjzjBDq3aOB3aRKk5Zt388x/c/hwwSZi\nzbi4d0tuPP0E2jRN9ru0oCkARHy0aedeXvx6NW/MXEdhSTlndkzluv5tOa19U11HEIYqKhxfZOfx\n8jdr+GJFHnUTYrmybytuGNCO5g3Cd6jnUBQAImFgZ1Epr85Yw8vT1rBtTwntUpO5pl9rLu6dRn1d\nWey7PcVljM9az7jpa1m9rZDU+nW4ul9rru7XOiLO4z8UBYBIGCkuK2fSwk2Mm7aWeet3kJwQyyW9\n07j85FZ0OV7DQ6G2aMNO3p69nvfnbmBPcRk90htxbf82nNu1BQlxkT9NigJAJEzNX7+DcdPX8NH8\nTZSUV9C1ZQMuy0zngu7H06hu5H7rDHc7i0qZMH8Db89ez+KNu0iIi2Fo1+MYeWqbWjcrnAJAJMwV\nFJYwYd4G3snKZcmmXSTExjDoxOYM79GSAR2aUicufC4silT7Ssv5YkUeH87fyOQlWyguq6BLiwaM\n6JPOsO4taVi3dg7DKQBEIsiiDTsZPyeXD+ZtYEdRKfUT4xjU5TjO796C09o3JT428oclQqW0vIJp\nK7fz4fyNfLZoM7uLy2icnMB53Vpw+cnpdG3Z0O8Sa5wCQCQClZRV8M3KbXw0fxP/XrKZ3fvKaFQ3\nnoGdmjGwUzNO75Cq21IfxM69pXyxIo8pS7fw+bKt7NpXRv06cQzuehw/7n48/U9oQlwUhagCQCTC\nFZeV89WKbXy8cBOfL9/KjqJS4mKMk9s0ZmCnZgzo0JQOzepH5WmlFRWOZZt3M23lNqYu28qs1fmU\nVTgaJydwVsdmDDqxOWd0SA2r+/OEkgJApBYpK69g3vodTFm2lalLt7J8S+BOpI2TE+jXrjGntGtC\nv3ZNaN+sHoF7MtYuFRWOVdsKmbFqO9NXbmf6qu3ke3M3t29Wjx91bs45XZrRIz2F2CgMxO9TAIjU\nYrkFRUxbuZ0Z3i/DTTv3AdCobjzd0xrRPb0RPdIbclJaI5rWq+NztUcuv7CE+bk7mLduB3PX72De\nugJ27SsDoEXDRE49oSmnntCEU9s3oUXDJJ+rDT8KAJEo4ZxjXX4R01duZ+66HczP3cGKLbup8P5r\nH9cgkYzm9ejQvD4dmtcjo3l9TkitR8Mkf48lOOcoKCplXX4RK7bsZsXm3Szfsptlm3eTt7sYgBiD\nDs3r07NVCj3TG5HZJoW2TZNr5V5OdVIAiESxwuIyFm3YyfzcHSzdtJsVW3aTs3UPxWUV3/WpnxhH\nWkpd0lKSSEtJ4viGSTROTqBxvQSaJCfQODmBRnUTSIqPPaJhlbLyCgpLyiksLmP7nhK2FRazbXcx\n2/aUkLe7mNyCItYX7GV9fhF7isu+W69OXIwXUvXpeFw9urVsxElpDUmuU90z19Z+wQaA/mRFaqHk\nOnH0bdeEvu2afNdWXuFY733bXru9iNyCInIL9rJuexHf5GyjqKT8kD8vIS6GpPhY6ibEfnelrHPg\ncDgXGKMvKi2nqKSckkoh831J8bGkpSSR3rgufds2Jr1xXdJTkmjfrB6tmyRr/D7EQh4AZjYE+DsQ\nCzzvnHs01DWIRKPYGKNN0+SD3tXSOcfu4jLy95SwvbCE/MIS8guL2VFUyt7ScvaWlrOvxHsurcAM\nDDCz756T68RSNyGOugmBoEiuE0eT5ASa1KtDar06NKmXoG/zYSakfxtmFgv8AziHwETxs81sonNu\nSSjrEJEDmRkNEuNpkBgfUbc9lmMT6isj+gA5zrlVzrkS4C1gWIhrEBERQh8ALYH1lZZzvTYREQmx\nUAfAwY7wHHAakpmNMrMsM8vKy8sLUVkiItEn1AGQC6RXWk4DNlbu4Jwb65zLdM5lpqamhrQ4EZFo\nEuoAmA1kmFlbM0sARgATQ1yDiIgQ4rOAnHNlZnYL8BmB00BfdM4tDmUNIiISEPKTcp1zk4BJof5c\nERE5UPTcIFtERA4Q1vcCMrM8YK3fdRyFpsA2v4sIMW1zdIi2bY7U7W3tnKvyLJqwDoBIZWZZwdyI\nqTbRNkeHaNvm2r69GgISEYlSCgARkSilAKgZY/0uwAfa5ugQbdtcq7dXxwBERKKU9gBERKKUAuAY\nmNkQM1tuZjlmds8h+lxmZkvMbLGZvRHqGqtbVdtsZq3M7HMzm2tmC8xsqB91Vhcze9HMtprZokO8\nb2Y2xvvzWGBmvUJdY3ULYpuv9LZ1gZlNM7Puoa6xulW1zZX6nWxm5WZ2Sahqq1HOOT2O4kHgVhYr\ngXZAAjAf6PK9PhnAXCDFW27md90h2OaxwE3e6y7AGr/rPsZtPh3oBSw6xPtDgU8I3Om2HzDT75pD\nsM2nVvo3fW40bLPXJxaYSuBOBpf4XXN1PLQHcPSCmdzmZ8A/nHMFAM65rSGusboFs80OaOC9bsj3\n7vYaaZxzXwL5h+kyDHjFBcwAGplZi9BUVzOq2mbn3LT9/6aBGQTu6hvRgvh7BrgV+BcQ6f+Pv6MA\nOHrBTG7TAehgZt+Y2QxvPuRIFsw2PwhcZWa5BL4p3Rqa0nwT7ZMcXU9gD6hWM7OWwIXAs37XUp0U\nAEevysltCNxsLwM4E7gCeN7MGtVwXTUpmG2+AnjZOZdGYHjkVTOrzf/OgvkzqZXM7CwCAXC337WE\nwN+Au51z5X4XUp1CfjfQWqTKyW28PjOcc6XAajNbTiAQZoemxGoXzDZfDwwBcM5NN7NEAvdTqTW7\nzd8TzJ9JrWNmJwHPA+c657b7XU8IZAJvmRkE/j0PNbMy59wH/pZ1bGrzN7OaFszkNh8AZwGYWVMC\nQ0KrQlpl9Qpmm9cBZwOYWWcgEajNc3tOBK7xzgbqB+x0zm3yu6iaZGatgPeAq51zK/yuJxScc22d\nc22cc22A8cDNkf7LH7QHcNTcISa3MbOHgCzn3ETvvUFmtgQoB+6K5G9LQW7zr4DnzOx2AkMhP3Xe\nKRSRyMzeJDCE19Q7rvEAEA/gnHuWwHGOoUAOUARc60+l1SeIbb4faAI87X0jLnMRfsO0ILa5VtKV\nwCIiUUpDQCIiUUoBICISpRQAIiJRSgEgIhKlFAAiIlFKASAiEqUUACIiUUoBICISpf4fnGJKCnDN\nofAAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "
" ] }, "metadata": {}, @@ -822,26 +945,29 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "hidden": true + }, "source": [ "Находим оценку наименьших квадратов" ] }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 10, "metadata": { "ExecuteTime": { "end_time": "2018-05-01T10:18:56.431184Z", "start_time": "2018-05-01T10:18:56.421182Z" - } + }, + "hidden": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "1.08760757649\n" + "1.2128183841151954\n" ] } ], @@ -852,26 +978,31 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "hidden": true + }, "source": [ "## Метод $\\chi^2$" ] }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "hidden": true + }, "source": [ "Вводим оценку модифицированных наименьших квадратов ($\\chi^2$)" ] }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 11, "metadata": { "ExecuteTime": { "end_time": "2018-05-01T10:18:56.454185Z", "start_time": "2018-05-01T10:18:56.434182Z" - } + }, + "hidden": true }, "outputs": [], "source": [ @@ -884,26 +1015,29 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "hidden": true + }, "source": [ "Строим график" ] }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 12, "metadata": { "ExecuteTime": { "end_time": "2018-05-01T10:18:56.783205Z", "start_time": "2018-05-01T10:18:56.457184Z" - } + }, + "hidden": true }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3Xl8VOXd/vHPN/tGCAkJYBIIkLAL\nCkGCuKO4VtG6g2KriLXutmprfdqn2la7PNr6uDwgWtwQtbjUXXEXAcMiOybse8KSQAJkvX9/ZOyP\nWoSQmcnJzFzv1yuvZCYnOdeJ4fLOPefcx5xziIhI+IryOoCIiASXil5EJMyp6EVEwpyKXkQkzKno\nRUTCnIpeRCTMqehFRMKcil5EJMyp6EVEwlyM1wEAOnbs6PLy8ryOISISUubOnbvNOZd5qO3aRNHn\n5eVRXFzsdQwRkZBiZmubs52mbkREwpyKXkQkzKnoRUTCnIpeRCTMqehFRMKcil5EJMyp6EVEwlxI\nF/3ijZU88M5ydDtEEZHvd8iiN7MnzazMzBbv91y6mb1vZiW+9x18z5uZ/c3MSs1soZkNDmb4eet2\n8tjHK5m9ekcwdyMiEtKaM6L/O3DGd567C5jhnCsAZvgeA5wJFPjergUeC0zMA7u4MJeOKfE88lFp\nMHcjIhLSDln0zrlPge8Omc8Dpvg+ngKM3u/5p12TWUCamXUJVNjvSoiN5prju/NZyTa+Xl8RrN2I\niIS0ls7Rd3LObQbwvc/yPZ8NrN9vuw2+5/6DmV1rZsVmVlxeXt7CGDC2qBupCTEa1YuIfI9Avxhr\nB3jugK+UOucmOucKnXOFmZmHXHzte6XEx3DViO68t3QrK7bsbvH3EREJVy0t+q3fTsn43pf5nt8A\n5O63XQ6wqeXxmudHx+aRFBfNYx9rVC8i8l0tLfrXgXG+j8cBr+33/JW+s2+KgMpvp3iCqUNyHGOL\nuvH615tYu7062LsTEQkpzTm9cirwJdDbzDaY2dXA/cBpZlYCnOZ7DPAWsAooBSYB1wcl9QFcc1x3\nYqKjePyTVa21SxGRkHDIG4845y77nk+NPMC2Dvipv6FaIis1gYsLc3jxqw3cPLKAzu0TvIghItLm\nhPSVsd814YSeNDjHxE81qhcR+VZYFX1uehLnHXUEU+esY3tVjddxRETahLAqeoDrT8pnX30DT32x\nxusoIiJtQtgVfX5WCmcO6MyUL9ewa1+d13FERDwXdkUPTaP63fvqeebLZt0gXUQkrIVl0Q/Ibs9J\nvTN58vPV7Kmt9zqOiIinwrLoAW44OZ/t1bU8P3ud11FERDwVtkVfmJfOiPwMHv9kJXtrG7yOIyLi\nmbAteoCbR/ZiW1Utz83WXL2IRK6wLvpjuqdzbM8MHv9klUb1IhKxwrroAW4eWcC2qhqen6O5ehGJ\nTGFf9MN6ZDC8R9Nc/b46jepFJPKEfdED3HxqAeW7a3hOZ+CISASKiKIv0qheRCJYRBQ9/P9Rvc6r\nF5FIEzFFX9Qjg6Ie6RrVi0jEiZiih6bz6st21zBVZ+CISASJqKIf3jODYd3TeexjjepFJHJEVNFD\n01x92e4aXtCoXkQiRMQV/fAeGRzTPZ1HNaoXkQgRcUVvZtziG9XrDBwRiQQRV/QAx/bsyPAeGTz6\ncanWqxeRsBeRRQ/ws9ObVrb8+8w1XkcREQmqiC36Id3SObl3Jv/3ySoq9+resiISviK26AFuH9Wb\nyr11TP58tddRRESCJqKLfkB2e84c0JnJn61iR3Wt13FERIIioose4LbTerGnroHHP1npdRQRkaCI\n+KIv6NSO0UdlM2XmGsp27fM6johIwEV80QPccmoBDY2O//2o1OsoIiIBp6IHumUkc1FhLlPnrGPD\nzj1exxERCSgVvc+Np+RjGH+bUeJ1FBGRgFLR+xyRlsiYoq78Y95GVpVXeR1HRCRg/Cp6M7vVzJaY\n2WIzm2pmCWbW3cxmm1mJmU0zs7hAhQ2260/KJz4mir+8/43XUUREAqbFRW9m2cBNQKFzbgAQDVwK\nPAA86JwrAHYCVwciaGvIbBfPNcd1582Fm/l6fYXXcUREAsLfqZsYINHMYoAkYDNwCvCy7/NTgNF+\n7qNVjT+hB+nJcTzwznKcc17HERHxW4uL3jm3EfgzsI6mgq8E5gIVzrlvl4TcAGQf6OvN7FozKzaz\n4vLy8pbGCLh2CbHccHI+M1du57OSbV7HERHxmz9TNx2A84DuwBFAMnDmATY94LDYOTfROVfonCvM\nzMxsaYygGFPUlZwOidz/9nIaGzWqF5HQ5s/UzanAaudcuXOuDpgOHAuk+aZyAHKATX5mbHXxMdHc\nPqoXSzfv4p8LQy6+iMi/8afo1wFFZpZkZgaMBJYCHwEX+rYZB7zmX0RvnDcom75dUvnzeyuorW/0\nOo6ISIv5M0c/m6YXXecBi3zfayJwJ3CbmZUCGcDkAORsdVFRxp1n9Gb9jr08P3ut13FERFos5tCb\nfD/n3K+BX3/n6VXAMf5837bixF6ZFPVI5+EPS7mwMJeUeL9+XCIintCVsQdhZtx1Zl+2V9cy6dNV\nXscREWkRFf0hHJWbxllHduaJz1ZRvrvG6zgiIodNRd8MPxvVm331jVrwTERCkoq+GXpkpnD5MV15\nfs46Sst2ex1HROSwqOib6ZZTC0iKjeYPby33OoqIyGFR0TdTRko815+cz4zlZcws1dIIIhI6VPSH\n4Ucj8shOS+S+N5fRoKURRCREqOgPQ0JsNHec0Zulm3cxfd4Gr+OIiDSLiv4w/WDgEQzKac+f31vB\nntr6Q3+BiIjHVPSHKSrK+NU5/di6q4ZJn672Oo6IyCGp6FtgaF46Z/TvzP99upKyXfu8jiMiclAq\n+ha668w+1DU08pf3dH9ZEWnbVPQtlNcxmSuK8nhx7nqWbd7ldRwRke+lovfDTSPzSU2I5b43l+r+\nsiLSZqno/ZCWFMetpxbwRel23lu61es4IiIHpKL309iibvTqlMJ9by5lX12D13FERP6Dit5PMdFR\n/PoH/Vm/Yy+TP9fpliLS9qjoA2BEfkdG9evEIx+VsqVSp1uKSNuiog+QX53dj/pGx/1vL/M6iojI\nv1HRB0jXjCTGH9+dVxdsYu7aHV7HERH5FxV9AF1/Uj6dUuP5738upVGrW4pIG6GiD6Dk+BjuOrMP\nCzdU8vJcrW4pIm2Dij7ARh+VzeCuafzx3eXs2lfndRwRERV9oJkZvzm3P9ura/nbB7qZuIh4T0Uf\nBANz0rh4SC5/n7mGb7bqZuIi4i0VfZDceWYfUhJi+NWri7UOjoh4SkUfJOnJcdxxeh/mrN7Bqws2\neh1HRCKYij6ILh2ay6DcNH735nIq9+qFWRHxhoo+iKKijPvOG8D26hoefF83KBERb6jog+zInPZc\nUdSNp79cw+KNlV7HEZEIpKJvBbeP6k16chz3vLZYV8yKSKtT0beC9omx/OLMvsxfV8GLxeu9jiMi\nEcavojezNDN72cyWm9kyMxtuZulm9r6ZlfjedwhU2FB2weBsjslL54F3lrOzutbrOCISQfwd0f8V\neMc51wcYBCwD7gJmOOcKgBm+xxHPzPjt6P7s2lfPH99d7nUcEYkgLS56M0sFTgAmAzjnap1zFcB5\nwBTfZlOA0f6GDBd9Oqfy4xF5TJ2znq/WaCljEWkd/ozoewDlwFNmNt/MnjCzZKCTc24zgO991oG+\n2MyuNbNiMysuLy/3I0ZoufW0XmSnJfKL6Yuoqdc9ZkUk+Pwp+hhgMPCYc+5ooJrDmKZxzk10zhU6\n5wozMzP9iBFakuJiuO/8AZSWVfH4x6u8jiMiEcCfot8AbHDOzfY9fpmm4t9qZl0AfO/L/IsYfk7u\nncW5g47gkY9KKS2r8jqOiIS5Fhe9c24LsN7MevueGgksBV4HxvmeGwe85lfCMHXPOf1IiI3il9MX\n6dx6EQkqf8+6uRF4zswWAkcBvwfuB04zsxLgNN9j+Y7MdvHcfXZf5qzZoXPrRSSoYvz5YufcAqDw\nAJ8a6c/3jRQXF+Yyfd5Gfv/WMk7pm0VWuwSvI4lIGNKVsR4yM35/wZHsq2vkt/9c6nUcEQlTKnqP\n9cxM4YZT8nlj4WY+XL7V6zgiEoZU9G3AdSf2pCArhV+9spjduqG4iASYir4NiIuJ4v4fDmTzrn3c\n/7aWRxCRwFLRtxFDunXg6hHdeW72OmaWbvM6joiEERV9G3L7qN7kZSRxxz8WUl1T73UcEQkTKvo2\nJDEumj9eOIiNFXv54zuawhGRwFDRtzHHdE9n3PA8pny5llmrtnsdR0TCgIq+DbrjjN50TU/izn8s\nZE+tpnBExD8q+jYoKS6GB344kLXb9/Cnd1d4HUdEQpyKvo0a3jODK4d34+8z1+gmJSLiFxV9G3bn\nGX3ITkvkjpcXsrdWNykRkZZR0bdhyfEx/PHCgazeVs0f3l7mdRwRCVEq+jbu2J4dufq47jz95Vo+\n+SZybrkoIoGjog8BPz+9NwVZKfz8pa/ZWV3rdRwRCTEq+hCQEBvNg5ccxc49tfzq1cU4pztSiUjz\nqehDxIDs9txyai/eXLSZ1xZs8jqOiIQQFX0Iue7Engzp1oF7XlvMpoq9XscRkRChog8h0VHGgxcf\nRWOj42cvfa2biotIs6joQ0zXjCTuOacfM1du56mZa7yOIyIhQEUfgi4ZmsupfbN44J3lLN+yy+s4\nItLGqehDkJlx/w8HkpoQy43Pz9dVsyJyUCr6ENUxJZ4HLxlESVkVv31jqddxRKQNU9GHsOMLMrnu\nxJ5MnbOONxdu9jqOiLRRKvoQd/uoXhyVm8Zd0xeyfscer+OISBukog9xsdFRPHzZ0eDg5hfmU9fQ\n6HUkEWmGxkbH795c2ioDNBV9GMhNT+J3FxzJvHUVPPTBN17HEZFmeOyTlUz6bDWfl24L+r5U9GHi\n3EFHcHFhDo9+vJKZrfCLIyItN2vVdv7y3grOHXQElw7NDfr+VPRh5Dfn9qdHx2RumbaAbVU1XscR\nkQMo313DTVPnk5eRzO8vOBIzC/o+VfRhJCkuhocvG0zF3jpufmE+DVoiQaRNaWh03DJtPpV763h0\n7GBS4mNaZb8q+jDT74hU7j2vP1+Ubuevmq8XaVMe/rCEL0q3c+95A+jTObXV9ut30ZtZtJnNN7M3\nfI+7m9lsMysxs2lmFud/TDkclwztykVDcvjbh6V8tKLM6zgiAnxRuo2/zijhgsHZXFSY06r7DsSI\n/mZg/xuaPgA86JwrAHYCVwdgH3KY7h09gD6d23HrtAVs2Knz60W8VLZrHze/MJ/8zBTuGz2gVebl\n9+dX0ZtZDnA28ITvsQGnAC/7NpkCjPZnH9IyCbHRPD52CA0Njuufm0dNvdbDEfFCfUMjN06dT3VN\nA4+OGUxSXOvMy+/P3xH9Q8AdwLdX6WQAFc65et/jDUC2n/uQFsrrmMyfLhrEwg2V3Kv1cEQ88ad3\nVzB79Q5+d/4ACjq18yRDi4vezM4Bypxzc/d/+gCbHvDUDzO71syKzay4vLy8pTHkEM4Y0JlrT+jB\ns7PW8er8jV7HEYkobyzcxP99uoorirpxweDWnZffnz8j+hHAuWa2BniBpimbh4A0M/v2b5Mc4IA3\nOHXOTXTOFTrnCjMzM/2IIYdyx+m9OSYvnV9MX8SKLbu9jiMSEVZs2c0dLy+ksFsH7jmnn6dZWlz0\nzrlfOOdynHN5wKXAh865McBHwIW+zcYBr/mdUvwSEx3F/15+NCkJMYx/upiKPbVeRxIJa5V765jw\nTDEp8TE8OmYwcTHenskejL3fCdxmZqU0zdlPDsI+5DBlpSbw+NghbKncxw3Pz6dei5+JBEVjo+OW\nF+azsWIvj40dTFZqgteRAlP0zrmPnXPn+D5e5Zw7xjmX75y7yDmna/HbiCHdOnDf+QP4vHQbf3h7\nuddxRMLSQzNK+GhFOf/1g/4M6ZbudRwAWv88H/HUxYW5LN20i8mfr6Zvl1QuHOLdC0Qi4eadxVv4\n24wSLhqSw9hhXb2O8y9aAiEC3X12X47tmcEvX1nE/HU7vY4jEhaWbKrk1mkLGJSbxr0eXBR1MCr6\nCBQbHcUjlw+mU2o8E56Zy9Zd+7yOJBLSynfXMH5KMWlJsUy6YggJsdFeR/o3KvoI1SE5jklXFlJV\nU8+EZ+ayr05Xzoq0xL66BiY8U8yOPbVMurKwTbz4+l0q+gjWp3Mq/3PxIBasr+AX0xfhnJY1Fjkc\nzjl+OX0R89ZV8ODFRzEgu73XkQ5IRR/hzhjQhdtP68Ur8zfy1xklXscRCSmPf7KK6fM3cttpvTjz\nyC5ex/leOutGuOGUfNZs38NDH5TQLSOJ84/WmTgih/Luki388d3l/GDQEdx4Sr7XcQ5KRS+YGX+4\n4Eg2VuzhzpcXcUT7RIb1yPA6lkibNW/dTm6aOp9BOWn86cKBbeoMmwPR1I0AEBcTxeNjh5CTnsiE\nZ+eyelu115FE2qS126u5ZkoxndsnMHlcYZs7w+ZAVPTyL2lJcTx11VCizPjRU3PYWa01cUT2t6O6\nlque+opG53jqqqFkpMR7HalZVPTyb7plJDPxiiFsqtjHNU8Xs7dWp12KQNNplOOfLmZjxV6euLKQ\nHpkpXkdqNhW9/IfCvHQeuvQo5q3byY1T52kBNIl4jY2O215cwLx1O3nokqMozGsba9g0l4peDuis\nI7vw23P788GyMu5+ZbHOsZeI5Zzj3jeX8taiLdx9Vl/OasOnUX4fnXUj3+uK4XmU7a7h4Q9LyUqN\n5/ZRvb2OJNLqHvmolKe+WMOPR3Tn6uO6ex2nRVT0clC3ndaL8m/Lvl08VwzP8zqSSKt5dtZa/vze\nN1xwdDa/Ortvmz+N8vuo6OWgzIz7Rg9gW1Ut//X6EtKT4zl7YOj96SpyuN5YuIl7XlvMyD5ZPHDh\nQKKiQrPkQXP00gwx0VE8fNnRDOnagVumzeejFWVeRxIJqk+/KefWaQsY2i2dR8YMJjY6tKsytNNL\nq0mMi+bJHw2ld+d2XPfMXL5cud3rSCJBMW/dTiY8M5f8rHZMCpELog5FRS/NlpoQy9M/HkbX9CSu\nnvIV83TTEgkzizZUMu7JOWSlxjPlx0NpnxjrdaSAUNHLYUlPjuO5a4aR2S6eq56cw5JNlV5HEgmI\npZt2ccWTs0lNiOX58UVktWt768q3lIpeDltWagLPXTOMlPgYrpg8h9Ky3V5HEvFLydbdjJ08m8TY\naKaOLyI7LdHrSAGlopcWyemQxHPji4gy47JJsyktq/I6kkiLrCyv4rJJs4mJMp4fX0TXjCSvIwWc\nil5arHvHZKaOH4ZzcOnEWRrZS8hZu72ayyfNAhzPjx9G947JXkcKChW9+KWgUzteuLYIs6ayL9mq\nspfQsKq8iksnzqK2vpFnrxlGflY7ryMFjYpe/JaflcIL1zZN41w6cRYrtqjspW0r2bqbS3wl//z4\nIvp0TvU6UlCp6CUgemY2lX1MtHH5pFks37LL60giB7R00y4umTgLA6ZNKKJvl/AueVDRSwD1yEzh\nhWuHExsdxaUTZ/H1+gqvI4n8m4UbKrhs0iziY6KYNmF4WE/X7E9FLwHVvWMyL04YTmpCLJdPmsXM\nldu8jiQCwNy1OxkzaTbtEmJ4ccLwsH3h9UBU9BJwXTOSeOm64eR0SOKqp77ivSVbvI4kEe7jFWWM\nfWI2GSlxvDhhOLnp4XcK5cGo6CUoOqUmMG1CEf26pPKT5+bxj7kbvI4kEerV+Ru5Zkox3Tsm89J1\nx3JEmF0M1RwqegmatKSm5RKKeqRz+0tf89QXq72OJBFm8ueruWXaAgrzOvDChCIy24XGzbwDTUUv\nQZUcH8OTVw3l9P6d+O9/LuX3by2jsVG3JZTgcs7xwDvLufeNpZzRvzN//9ExpCaExwJlLdHiojez\nXDP7yMyWmdkSM7vZ93y6mb1vZiW+9x0CF1dCUXxMNI+OGcKVw7sx8dNV3Dh1PvvqGryOJWGqtr6R\nO15eyGMfr+TyYV15ZMzgsFhq2B/+jOjrgdudc32BIuCnZtYPuAuY4ZwrAGb4HkuEi44y/vvc/vzy\nrD68uWgzY5+Yzc7qWq9jSZip3FPHVU/N4aW5G7h5ZAG/Gz2A6BC+M1SgtLjonXObnXPzfB/vBpYB\n2cB5wBTfZlOA0f6GlPBgZlx7Qk/+9/KjWbihkh8+NpN12/d4HUvCxNrt1Zz/2Bd8tWYHf7loELee\n1itk7/EaaAGZozezPOBoYDbQyTm3GZr+ZwBkBWIfEj7OGXgEz14zjO3VtZz/6BfMWb3D60gS4r5a\ns4PRj3zBjupanr16GD8ckuN1pDbF76I3sxTgH8AtzrlmX/duZteaWbGZFZeXl/sbQ0LMMd3TmX79\nsbRPjGXME7N4fvY6ryNJiHp1/kbGTJpNWlIcr1w/gmE9MryO1Ob4VfRmFktTyT/nnJvue3qrmXXx\nfb4LcMA7STvnJjrnCp1zhZmZmf7EkBDVMzOFV346guE9O/LLVxZxz6uLqWto9DqWhIj6hkZ+9+ZS\nbpm2gKO7pvHK9cdG1NWuh8Ofs24MmAwsc879z36feh0Y5/t4HPBay+NJuGufGMtTVw3l2hN68Mys\ntVwxeTY79CKtHML2qhqumDyHSZ+t5srh3Xjm6mGkJcV5HavNMudadk6zmR0HfAYsAr4dhv2Spnn6\nF4GuwDrgIufcQSdhCwsLXXFxcYtySPiYPm8Dd01fRGZKPI+NHczAnDSvI0kbtGhDJROeKWZbdS2/\nP/9ILozg+Xgzm+ucKzzkdi0t+kBS0cu3Fqyv4Ppn57KtqpZ7zunL2KJuOnNC/uWl4vXc/epiMlPi\neXzsEI7Mae91JE81t+h1Zay0KUflpvHmTcczIj+De15bwo1T51NVU+91LPFYdU09t7/4NT9/eSFD\nunbg9RtGRHzJH44YrwOIfFeH5DgmjxvK45+u5M/vrmDppl08MmZwRNwgQv7T0k27uGHqPFZvq+am\nkQXcdEo+MdEaox4O/bSkTYqKMq4/KZ/nxxdRVVPP6Ee+YMrMNbSFqUZpHc45nv5yDaMf/YKqffU8\nd80wbjutl0q+BfQTkzatqEcGb950PEU9Mvj160sY99RXbN21z+tYEmQ7qmu57tm5/NdrSzi2ZwZv\n33w8x/bs6HWskKWilzYvs108f//RUO49rz9zVm/n9Ic+5e1Fm72OJUHy7pItjHrwEz5cXsbdZ/Xl\nyXFDyUiJzOWFA0VFLyHBzLhieB5v3Hg8XdOT+Mlz87j9xa+p3FvndTQJkMq9ddw2bQETnplLp9QE\n/nnjcYw/oQdRWpTMb3oxVkJKflYK//jJsfxtRgmPfFTKZyXl3Dt6AKf37+x1NPHDJ9+Uc+fLCymv\nquHmkQXccEo+sZqLDxj9JCXkxEZHcfuo3rz60xFkpMQz4Zm5/OTZuZRp7j7kbKuq4dZpCxj35BxS\nE2N49foR3HpaL5V8gOmCKQlpdQ2NTPpsFQ99UEJ8TBR3n9WXS4bm6iKrNq6x0fHCV+u5/+1l7K1r\n4LoTe/LTk/Mj/gYhh0tXxkpEWVVexS+mL2L26h0M7prGb87tryUU2qhlm3dx9yuLmLeugqIe6dw3\n+kjys1K8jhWSVPQScRobHS/P28Af31nB9uoaLhqSw89P7xOxN4Rua3ZU1/LQB9/w3Ox1tE+M5Vdn\n9+X8o7P115cfmlv0ejFWwkZUlHFxYS5nDujMwx+W8uTnq3l70RZuPrWAK4fnERejeV8v1NQ3MGXm\nGh7+sJQ9tQ1cdkwuPxvVW6tNtiKN6CVsrSyv4t43lvLxinK6pidx62kFnDsoW/cQbSXOOd5atIX7\n31nG+h17OaVPFr88qw/5We28jhY2NHUj4vPxijL+9O4KlmzaRa9OKdw+qjej+nXSlEGQOOeYsayM\nh2Z8w+KNu+jTuR13n92X4wt0g6FAU9GL7Kex0fH24i385f0VrCqvZlBuGreMLOCk3pkq/ABxzvHh\n8jIe+qCERRsr6ZqexI2n5HPB4Bz9FRUkKnqRA6hvaGT6/I389YMSNlbspU/ndlx3Yk/OGdhFi2W1\nUEOj4/2lW3j045Us3NBU8Decks/5R2frfPggU9GLHERdQyOvL9jE45+spKSsiuy0RMYf352Lh+aS\nFKdzFJqjqqaeF79az1MzV7N+x96mgj85n/MHq+Bbi4pepBkaG5umGx77ZCVz1+6kXUIMPxycw5hh\nXSnopBcND2T9jj08M2stU2evY3dNPYXdOnDN8d05rV9nTdG0MhW9yGEqXrODp79cy9uLN1PX4BjW\nPZ0xRd04vX8n4mMi+4rNmvoG3luylWlfrefz0m1ERxlnHdmFq4/rzlG5ujDNKyp6kRbaVlXDS8Ub\neH7OWtbv2EtaUixnHdmF8wYdwdC89IhZTbGx0TFv3U7++fUmXv96Ezv31JGdlsglQ3O5qDCHLu0T\nvY4Y8VT0In5qbHR8VrqN6fM28N6SreytayA7LZGzB3ZhVL9OHN21Q9hNVTQ2OhZurOTtRZt5Y+Fm\nNlbsJT4milP7deLSobmM6NkxYv5HFwpU9CIBVF1Tz/tLt/Lqgo18XrKN+kZHRnIcI/tmMbJvJ4p6\nZNA+MdbrmC1SVVPP5yXb+HD5Vj5cXs62qhpioowTemXyg0FdOLVvJ9olhOaxhTsVvUiQ7NpXx8cr\nynl/6VY+Xl7G7pp6ogyOzG7PsfkdGd4jg0G5aW22+Ktq6pm7diezVm3ny5XbWbSxkoZGR7uEGE7s\nlcnIvlmc1CuLDslaoqCtU9GLtILa+kbmr9vJFyu3M7N0GwvWV1Df2PRvqmdmMkfldmBQbnt6dWpH\nr07tSG/l8qzYU0tpWRVLNu3i6w0VLNpQSWl5Fc5BTJQxKDeNoh7pjMjvyNC8dJ0WGWJU9CIeqKqp\nZ8G6Chas38mC9RUsWF/Btqraf32+Y0oc+Vkp5HRIIjstkewOiWSnJZKeHEeHpDjSkmKbvSb7vroG\ndu2to3JvHVt31bCpci9bKvexuXIvK8urWVVe9R/7HpiTxsCc9gzu2oHCvA66ZiDEafVKEQ+kxMdw\nXEFHjivoCDQtC7Bl1z6+2VpFydbdfLN1NyvLq/mspJyy3TUcaJyVEBtFQmw08TFRxMVEERsdhXNN\nF3nVNzjqGxvZta+e2vrGA2aGx7LwAAAEhElEQVTomBJHXkYyI/t0omdWMj0zU+h3RCqdUxO03EOE\nUtGLBJGZ0aV9Il3aJ3Jir39f1KumvoEtlfvYWLGXij117NxTy87qWir21FFT30htfSO1DU1v0WbE\nRBkx0UZMdBTt4mNITYylve8tq108R6QlkpUaH/Hn/Mt/UtGLeCQ+JppuGcl0y0j2OoqEOb3yIiIS\n5lT0IiJhTkUvIhLmVPQiImEuKEVvZmeY2QozKzWzu4KxDxERaZ6AF72ZRQOPAGcC/YDLzKxfoPcj\nIiLNE4wR/TFAqXNulXOuFngBOC8I+xERkWYIRtFnA+v3e7zB95yIiHggGBdMHega6/+40NvMrgWu\n9T2sMrMVQcgSbB2BbV6HaGWRdsyRdrygYw4l3ZqzUTCKfgOQu9/jHGDTdzdyzk0EJgZh/63GzIqb\ns6BQOIm0Y4604wUdczgKxtTNV0CBmXU3szjgUuD1IOxHRESaIeAjeudcvZndALwLRANPOueWBHo/\nIiLSPEFZ1Mw59xbwVjC+dxsT0lNPLRRpxxxpxws65rDTJm48IiIiwaMlEEREwpyK/hCas5yDmV1s\nZkvNbImZPd/aGQPtUMdsZl3N7CMzm29mC83sLC9yBpKZPWlmZWa2+Hs+b2b2N9/PZKGZDW7tjIHU\njOMd4zvOhWY208wGtXbGQDvUMe+33VAzazCzC1srW9A55/T2PW80vZi8EugBxAFfA/2+s00BMB/o\n4Huc5XXuVjjmicBPfB/3A9Z4nTsAx30CMBhY/D2fPwt4m6brRIqA2V5nDvLxHrvf7/SZoX68zTlm\n3zbRwIc0vcZ4odeZA/WmEf3BNWc5h/HAI865nQDOubJWzhhozTlmB6T6Pm7PAa6TCDXOuU+BHQfZ\n5DzgaddkFpBmZl1aJ13gHep4nXMzv/2dBmbRdD1MSGvGf2OAG4F/AKH+7/jfqOgPrjnLOfQCepnZ\nF2Y2y8zOaLV0wdGcY/4NMNbMNtA08rmxdaJ5KpKX9riapr9mwpqZZQPnA497nSXQVPQH15zlHGJo\nmr45CbgMeMLM0oKcK5iac8yXAX93zuXQNKXxjJmF++9Ss5b2CDdmdjJNRX+n11lawUPAnc65Bq+D\nBJpuDn5wzVnOYQMwyzlXB6z2rdlTQNMVwqGoOcd8NXAGgHPuSzNLoGmtkLD6c/c7mrW0Rzgxs4HA\nE8CZzrntXudpBYXAC2YGTb/PZ5lZvXPuVW9j+S/cR2H+as5yDq8CJwOYWUeapnJWtWrKwGrOMa8D\nRgKYWV8gAShv1ZSt73XgSt/ZN0VApXNus9ehgsXMugLTgSucc994nac1OOe6O+fynHN5wMvA9eFQ\n8qAR/UG571nOwcx+CxQ75173fW6UmS0FGoCfh/Lop5nHfDswycxupWn64irnO2UhVJnZVJqm3zr6\nXnv4NRAL4Jx7nKbXIs4CSoE9wI+8SRoYzTje/wIygEd9I9x6F+KLfjXjmMOWrowVEQlzmroREQlz\nKnoRkTCnohcRCXMqehGRMKeiFxEJcyp6EZEwp6IXEQlzKnoRkTD3/wCilCkRzkCHcwAAAABJRU5E\nrkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl8FfW9xvHPN/vCEkISJAuEJeyb\nEEEFl6pUUASVaqloXbil1mptrXVpta1at+q1alW8qFXsVam1imhdi7iySJB9DTthSyAQIAGy/e4f\nOXhTG0lITjJned6vV17JmTMn55kYHya/mfmNOecQEZHQFeF1ABERaV4qehGREKeiFxEJcSp6EZEQ\np6IXEQlxKnoRkRCnohcRCXEqehGREKeiFxEJcVFeBwBISUlx2dnZXscQEQkqCxcu3O2cS61vvYAo\n+uzsbPLy8ryOISISVMxsc0PW09CNiEiIU9GLiIQ4Fb2ISIhT0YuIhDgVvYhIiFPRi4iEOBW9iEiI\nC+qi31pcxl1vraCiqtrrKCIiASuoi37NzgM8/8UmXpzboGsGRETCUlAX/dm90zgtJ4VH/7WWPQeP\neB1HRCQgBXXRmxm/u6APh8qrePiDtV7HEREJSEFd9ADd01rzw1Oymb5gC8u3lXgdR0Qk4AR90QPc\neE4OyQkx3PXWCpxzXscREQkoIVH0beOjufncnizYtJe3lu7wOo6ISEAJiaIHuDQ3i77pbbj/nVWU\nlVd6HUdEJGCETNFHRhi/u6AvO0oO8/TH672OIyISMOotejP7i5kVmtnyOp672cycmaX4HpuZPW5m\n68xsqZkNbo7Q32Zol2QuGJjO/3y6ga3FZS351iIiAashe/QvAKO+udDMsoCRwJZai0cDOb6PycCU\npkc8PreP7oUZ3P/uqpZ+axGRgFRv0TvnPgWK63jqT8AtQO3TXMYBL7oa84AkM+vol6QNlJ4Uz3Vn\nduedZTuZs353S761iEhAatQYvZmNBbY555Z846kMYGutxwW+ZS1q8uldyUiK5+63VlKpeXBEJMwd\nd9GbWQLwG+C3dT1dx7I6T2w3s8lmlmdmeUVFRccb45jioiP5zfm9Wb3zAC/N31L/C0REQlhj9ui7\nAV2AJWa2CcgEvjKzE6jZg8+qtW4msL2ub+Kcm+qcy3XO5aampjYixrGN7ncCw7u35+EP1rBb8+CI\nSBg77qJ3zi1zzqU557Kdc9nUlPtg59xOYCbwQ9/ZNycDJc45T65gMjPuGtuPwxVVPPDuai8iiIgE\nhIacXvkKMBfoaWYFZjbpGKu/A2wA1gHPANf5JWUjdU9rxaQRXXltYQELN9d1PFlEJPRZIMwNk5ub\n6/Ly8prle5ceqeScRz6hXUIMM68fTlRkyFwjJiJhzswWOudy61sv5FsvMTaKO87vw8od+3VgVkTC\nUsgXPcB5/U9gRPcUHv5gDUUHdGBWRMJLWBS9mfH7sX05XFHFg+/pwKyIhJewKHr49wOzeZt0YFZE\nwkfYFD3ADWd1p2PbOO58c4WumBWRsBFWRX/0wOwqHZgVkTASVkUPOjArIuEn7Iq+9oHZ+97RVMYi\nEvrCruih5sDsj0/vxhuLtvHFOk1lLCKhLSyLHuD6s7rTuX0Cd8xYzuGKKq/jiIg0m7At+rjoSO4Z\n14+Nu0uZonvMikgIC9uiBzi9RyoXDExnysfrWV900Os4IiLNIqyLHuDOMb2JjY7gzhnLCYQJ3kRE\n/C3siz6tdRy3jOrFnPV7eGPRNq/jiIj4XdgXPcDEoZ0YlJXEvf9cxb6ycq/jiIj4lYoeiIgw7ruo\nP/sOVehuVCISclT0Pn3S23DN8GymL9jKAk16JiIhREVfy8/P6UFGUjy/eWMZ5ZWa9ExEQoOKvpbE\n2CjuGtuXtbsO8sxnG7yOIyLiFw25OfhfzKzQzJbXWvaQma02s6Vm9oaZJdV67nYzW2dma8zs3OYK\n3lzO6dOB0f1O4LFZ+WzQufUiEgIaskf/AjDqG8s+BPo55wYAa4HbAcysDzAB6Ot7zVNmFum3tC3k\nrrF9iYuK4PbXl1FdrXPrRSS41Vv0zrlPgeJvLPvAOVfpezgPyPR9PQ6Y7pw74pzbCKwDhvoxb4tI\naxPHb87vzfyNxUxfsNXrOCIiTeKPMfprgHd9X2cAtZuxwLfsP5jZZDPLM7O8oqIiP8Twr0tzszil\na3vuf2cVu/Yf9jqOiEijNanozew3QCXw0tFFdaxW59iHc26qcy7XOZebmpralBjNwsy4/+L+lFdV\na3oEEQlqjS56M7sSGANMdP/fggVAVq3VMoHtjY/nreyURG4a2YMPVu7i3eU7vY4jItIojSp6MxsF\n3AqMdc6V1XpqJjDBzGLNrAuQA3zZ9JjemTSiC/0y2vDbN1dQUlbhdRwRkePWkNMrXwHmAj3NrMDM\nJgFPAK2BD81ssZk9DeCcWwG8CqwE3gN+6pwL6rt6REVG8OD4AewtK+fed1Z6HUdE5LhF1beCc+4H\ndSx+7hjr3wvc25RQgaZvelsmn96VKR+vZ9ygDIZ3T/E6kohIg+nK2Aa68ewcuqQkcvvryzhUHtR/\npIhImFHRN1BcdCT3X9yfLcVlPPLhGq/jiIg0mIr+OJzctT2XDevEc59vZOHmvV7HERFpEBX9cbp9\ndC86to3nV68t4XCFhnBEJPCp6I9T67hoHhw/gA1FpTzy4Vqv44iI1EtF3wgjclK4bFgnnvlsg4Zw\nRCTgqegb6fbRvUjXEI6IBAEVfSNpCEdEgoWKvgk0hCMiwUBF30RfD+H8XUM4IhKYVPRN9PUQzm4N\n4YhIYFLR+4GGcEQkkKno/eToEM7Nf1+iuXBEJKCo6P2kdVw0D10ygI27S7n/3VVexxER+ZqK3o9O\n7ZbCNcO78OLczXy6NvDugysi4UlF72e3jOpJ97RW/Oq1JewrK/c6joiIit7f4qIjefT7g9hzsJw7\nZiz3Oo6IiIq+OfTLaMvPz8nh7aU7eHPxNq/jiEiYa8g9Y/9iZoVmtrzWsmQz+9DM8n2f2/mWm5k9\nbmbrzGypmQ1uzvCB7NozunFipyTunLGcHSWHvI4jImGsIXv0LwCjvrHsNmCWcy4HmOV7DDAayPF9\nTAam+Cdm8ImKjOBPlw6iospxy2tLqa52XkcSkTBVb9E75z4Fir+xeBwwzff1NODCWstfdDXmAUlm\n1tFfYYNNdkoivzm/N5/l7+av8zZ7HUdEwlRjx+g7OOd2APg+p/mWZwBba61X4FsWtiYO68SZPVO5\n/91VrC866HUcEQlD/j4Ya3Usq3PMwswmm1memeUVFYXuOedmxh/HDyAuOpJf/G0xFVXVXkcSkTDT\n2KLfdXRIxve50Le8AMiqtV4msL2ub+Ccm+qcy3XO5aampjYyRnBIaxPH/Rf1Z2lBiSY+E5EW19ii\nnwlc6fv6SuDNWst/6Dv75mSg5OgQT7gb3b8jE07K4ulP1jNn3W6v44hIGGnI6ZWvAHOBnmZWYGaT\ngAeAkWaWD4z0PQZ4B9gArAOeAa5rltRB6rcX9KFLSiK/eHUxe0t11ayItAxzzvvT/nJzc11eXp7X\nMVrE8m0lXPTUF3ynZxr/c8UQzOo6rCEiUj8zW+icy61vPV0Z28L6ZbTl1lG9+GDlLl7+covXcUQk\nDKjoPXDN8C6clpPCPW+vJH/XAa/jiEiIU9F7ICLC+O9LB5IYE8UNryzSvWZFpFmp6D2S1jqOhy4Z\nwOqdB3jwvdVexxGREKai99BZvTpw1anZPP/FJmavLqz/BSIijaCi99hto3vRs0Nrbv77Egr3H/Y6\njoiEIBW9x+KiI3nishMpLa/kZ9MXUaVZLkXEz1T0ASCnQ2vuGdePeRuKeWxWvtdxRCTEqOgDxCW5\nWYwfnMmfP8rn83xNkSAi/qOiDyD3XNiXbqmt+PnfFmm8XkT8RkUfQBJionhq4mAOHqnkxumLNV4v\nIn6hog8wPXzj9XM37OFxjdeLiB+o6APQJblZXDw4g8c/yucLTWksIk2kog9Qf7iwH91SW3Hj9MUU\nHtB4vYg0noo+QCXERPHkZYM5eKSCG1/ReL2INJ6KPoD1PKE1d/vG6x/5cI3XcUQkSKnoA9yluVlM\nOCmLJ2ev54MVO72OIyJBSEUfBH4/ti/9M9ryy1eXsHF3qddxRCTIqOiDQFx0JFMuH0xkpHHtXxdS\nVl7pdSQRCSJNKnoz+4WZrTCz5Wb2ipnFmVkXM5tvZvlm9jczi/FX2HCW2S6BxyecyNrCA9z++jIC\n4V6/IhIcGl30ZpYB/AzIdc71AyKBCcCDwJ+ccznAXmCSP4IKnN4jlV+O7MGbi7czbc4mr+OISJBo\n6tBNFBBvZlFAArADOAt4zff8NODCJr6H1HLdmd05p3caf/jnKvI2FXsdR0SCQKOL3jm3DXgY2EJN\nwZcAC4F9zrmjg8gFQEZdrzezyWaWZ2Z5RUVFjY0RdmruNzuIjHbxXPfSV7qYSkTq1ZShm3bAOKAL\nkA4kAqPrWLXOwWTn3FTnXK5zLjc1NbWxMcJS2/honr58CPsPV3D9y4uoqKr2OpKIBLCmDN2cA2x0\nzhU55yqA14FTgSTfUA5AJrC9iRmlDr07tuGBiwfw5cZi7v3nKq/jiEgAa0rRbwFONrMEMzPgbGAl\nMBv4nm+dK4E3mxZRvs2FJ2YwaUQXXpizib8t2OJ1HBEJUE0Zo59PzUHXr4Blvu81FbgVuMnM1gHt\ngef8kFO+xe2je3FaTgp3zFiug7MiUicLhPOxc3NzXV5entcxglZJWQXjnvycg0cqmXn9CNKT4r2O\nJCItwMwWOudy61tPV8aGgLYJ0Tx7ZS6HK6qZ/Nc8DpVXeR1JRAKIij5EdE9rzWMTBrFi+35u+cdS\nXTkrIl9T0YeQs3t34Obv9uStJduZ8sl6r+OISIBQ0YeY687sxgUD03no/TXMWrXL6zgiEgBU9CHG\nzPjj+AH0TW/DjdMXk7/rgNeRRMRjKvoQFB8TydQrcomLjuSaaQvYffCI15FExEMq+hCVnhTPs1fm\nUnTgCJNfzONwhc7EEQlXKvoQNigriT9dOoivtuzj5r8voVo3GBcJSyr6EDe6f0duG92Lt5fu4JEP\n13odR0Q8EFX/KhLsfnx6VzbtLuWJ2evo3D6BS3KzvI4kIi1IRR8GzIx7LuzH1r1l/PqNZWS2S+CU\nbu29jiUiLURDN2EiOjKCpyYOoXP7RK7934WsLzrodSQRaSEq+jDSNj6a5686iagI45oXFlBcWu51\nJBFpASr6MJOVnMDUH+ayo+Qwk6Yt0ARoImFARR+GhnRux+MTBrF46z5ueOUrKnUrQpGQpqIPU6P6\ndeTusX3516pC7pixXLNdioQwnXUTxq44JZtd+4/wxOx1dGgTxy9G9vA6kog0AxV9mPvld3tQeOAw\nj83KJ61NLBOHdfY6koj4WZOGbswsycxeM7PVZrbKzE4xs2Qz+9DM8n2f2/krrPifmXHvRf35Ts9U\n7pyxnPdX7PQ6koj4WVPH6B8D3nPO9QIGAquA24BZzrkcYJbvsQSw6MgInpw4mP6ZSfzslUW6ybhI\niGl00ZtZG+B04DkA51y5c24fMA6Y5lttGnBhU0NK80uIieIvV+aSnhTPpGl5msdeJIQ0ZY++K1AE\nPG9mi8zsWTNLBDo453YA+D6n+SGntID2rWJ58ZqhxERFcMVzX7K1uMzrSCLiB00p+ihgMDDFOXci\nUMpxDNOY2WQzyzOzvKKioibEEH/KSk7gxWuGUlZeyeXPzadw/2GvI4lIEzWl6AuAAufcfN/j16gp\n/l1m1hHA97mwrhc756Y653Kdc7mpqalNiCH+1rtjG164ZihFB45wxXNfsq9MUyWIBLNGF71zbiew\n1cx6+hadDawEZgJX+pZdCbzZpITiicGd2vHMD3PZuLuUK59fwMEjlV5HEpFGaupZNzcAL5nZUmAQ\ncB/wADDSzPKBkb7HEoSGd0/hictOZPm2En40TbcjFAlWFgiXvufm5rq8vDyvY8i3mLFoG794dTFn\n90pjyuVDiI7UzBkigcDMFjrncutbT//HSr0uPDGDu8f141+rCrnp1SVU6d6zIkFFUyBIg1xxcmdK\nj1TywLuriY4wHrpkIJER5nUsEWkAFb002LVndKOyqpqHP1hLRITxx/EDiFDZiwQ8Fb0cl+vPyqGy\n2vHov/KJijDuu6i/yl4kwKno5bjdeHYOVdWOP3+0jsgI4w8X9sNMZS8SqFT0ctzMjJtG9qCy2jHl\n4/VERRi/H9tXZS8SoFT00ihmxi3n9qSq2jH10w1ERBi/HdNHZS8SgFT00mhmxu2je1FV7Xju841U\nVFVz99h+GrMXCTAqemkSM+OO83sTFWn8zycbqKh03Hdxf516KRJAVPTSZGbGbaN6ERsVyeOz8imv\nquah7w0gSlfQigQEFb34xdEDtLFRETz0/hrKK6t5dMIgTZcgEgBU9OJXP/1Od2KjIvjDP1dRXlXN\nE5edSGxUpNexRMKadrfE7/7rtK7cM64vH67cxeQXF3KoXLNeinhJRS/N4opTsvnj+AF8ll/EFc/N\np6SswutIImFLRS/N5tKTsnjyssEsLSjh+1Pn6raEIh5R0UuzGt2/I89ffRJbi8v43tNz2byn1OtI\nImFHRS/Nbnj3FF7+0ckcOFzB+ClzWbl9v9eRRMKKil5axMCsJP5+7alERxrfnzqXBZuKvY4kEjZU\n9NJiuqe14rWfnEpq61guf3Y+7y3f6XUkkbDQ5KI3s0gzW2Rmb/sedzGz+WaWb2Z/M7OYpseUUJGR\nFM9r155Kn/Q2/OSlhTz/xUavI4mEPH/s0d8IrKr1+EHgT865HGAvMMkP7yEhJDkxhld+dDLf7dOB\nu95ayT1vr6Ra96EVaTZNKnozywTOB571PTbgLOA13yrTgAub8h4SmuKiI3lq4hCuHp7Nc59v5LqX\nvuJwhS6sEmkOTd2jfxS4Baj2PW4P7HPOVfoeFwAZTXwPCVGREcbvLujLnWP68P7KnVz2zDz2HDzi\ndSyRkNPoojezMUChc25h7cV1rFrn3+RmNtnM8swsr6ioqLExJARMGtGFpy4bzIrt+xk/ZQ7riw56\nHUkkpDRlj344MNbMNgHTqRmyeRRIMrOjk6VlAtvrerFzbqpzLtc5l5uamtqEGBIKRvfv6DvXvpKL\nnvyCT9fqH38Rf2l00TvnbnfOZTrnsoEJwEfOuYnAbOB7vtWuBN5sckoJC0M6t2PGT4eTnhTPVc9/\nyfNfbMQ5HaQVaarmOI/+VuAmM1tHzZj9c83wHhKispIT+MdPTuXs3jVn5Pz6jWWUV1bX/0IR+VYW\nCHtMubm5Li8vz+sYEkCqqx3//eEanpy9nqFdknn68iEkJ+qSDJHazGyhcy63vvV0ZawEpIgI41fn\n9uKxCYNYvHUfY5/4XHPkiDSSil4C2rhBGbz641OoqKrm4ilf8PpXBV5HEgk6KnoJeIOyknjrhhEM\nzEzipleXcOeM5Rq3FzkOKnoJCmmt43jpv4Yx+fSu/HXeZr4/dS47Sg55HUskKKjoJWhERUbw6/N6\n89TEwazdeYAxj3/OnPW7vY4lEvBU9BJ0zuvfkTevH0G7xBguf3Y+T3yUT5UmRRP5Vip6CUrd01ox\n46fDGTMgnYc/WMsVz83XPWlFvoWKXoJWq9goHpswiD+OH8BXW/Yy+rHPmL2m0OtYIgFHRS9Bzcy4\n9KQs3r5hBKmtY7n6+QXc984qnZUjUouKXkJC97TWzPjpcK44uTNTP93AJU/PYdPuUq9jiQQEFb2E\njLjoSO65sB9PXz6YjbtLOe/xz/jfeZs1MZqEPRW9hJxR/Try3s9PZ0jndtwxYzlXPb+AnSU6UCvh\nS0UvISk9KZ4XrxnKPeP6Mn/jHs599FPeXLxNe/cSllT0ErLMjCtOyebdG0+na2oiN05fzPUvL6K4\ntNzraCItSkUvIa9LSiJ///Ep/OrcnnywcicjH/lEe/cSVlT0EhaiIiP46Xe6M/P6EWS2i+fG6Yu5\n5oUFbNun+XIk9KnoJaz07tiG168bzp1j+jB/YzEjH/mE57/YqCkUJKSp6CXsREYYk0Z04f2fn85J\n2cnc9dZKxk+Zw6odurGJhCYVvYStrOQEXrj6JB6bMIgtxWWM+fPn/H7mCkoOVXgdTcJAdbXj1QVb\nWb2z+XcwGl30ZpZlZrPNbJWZrTCzG33Lk83sQzPL931u57+4Iv5lZowblMGsm85gwklZTJu7ibMe\n/phXF2ylWsM50kwWbdnLxVPmcMs/ljL9y63N/n6Nvjm4mXUEOjrnvjKz1sBC4ELgKqDYOfeAmd0G\ntHPO3Xqs76Wbg0ugWL6thN/NXMHCzXsZmJXE3WP7MjAryetYEiJ2lBzij++t4Y1F20htHcuto3ox\nfnAGZtao79fQm4M3uujreMM3gSd8H2c653b4/jH42DnX81ivVdFLIHHO8caibdz3zmr2lB7hkiGZ\n3DSyJye0jfM6mgSpQ+VVTP10A09/sp4q5/jRaV34yZndaRUb1aTv26JFb2bZwKdAP2CLcy6p1nN7\nnXP/MXxjZpOByQCdOnUasnnz5ibnEPGnA4creHxWPi/M2fT1Adwfn9GNNnHRXkeTIFFd7Xhr6XYe\nfHc120sOc37/jtw2uhdZyQl++f4tVvRm1gr4BLjXOfe6me1rSNHXpj16CWRb9pTx8AdrmLlkO+0S\novnZ2TlMHNaZmCidyyB1c87x8ZoiHnp/DSt37Kdveht+O6YPw7q29+v7tEjRm1k08DbwvnPuEd+y\nNWjoRkLQsoIS7n93FXPW76FTcgI3n9uTMf07EhHRuPFVCU1fbizmofdXs2DTXrKS47lpZA/GDswg\nshl+T5q96K3m6ME0ag68/rzW8oeAPbUOxiY752451vdS0UuwcM7xydoiHnh3Nat3HiAnrRU3nJ3D\n+f07Nsv/yBI8lm8r4eEP1vDxmiLSWsdyw9k5fD83q1n/8muJoh8BfAYsA47ezufXwHzgVaATsAW4\nxDlXfKzvpaKXYFNV7Xhn2Q4en5VPfuFBuqe14oazujNmQLoKP8x8tWUvT81ex79WFdI2PpqfnNmN\nK0/JJj4mstnfu8XPumkKFb0Eq+pqx7vLd/LYrLWs3XWQbqmJXO8r/OhIjeGHKuccc9bv4cnZ65iz\nfg9JCdFcfWoXrh6R3aIH61X0Ii2outrx3oqdPD4rn9U7D5DeNo6rh3dhwtAsWussnZBRXe2YtbqQ\nJ2avY8nWfaS1juVHp3XlsmGdSGziqZKNoaIX8UB1tWP2mkKe+WwD8zYU0yo2ih8MzeKq4V3ISIr3\nOp400oHDFfxjYQHT5m5m4+5SspLjufaMbowfnElcdPMP0XwbFb2Ix5YVlPDMZxv457IdAJzfvyNX\nnNKZ3M7tGn0lpLSsjbtLmTZnE68tLODgkUpO7JTEVadmc37/jkQFwNCcil4kQGzbd4jnP9/I3xZs\n5cCRSnp0aMUPhnbi4hMzaZugYZ1AU1lVzSdri3hp/hZmrykkKsIYMyCdK0/NZlCATYehohcJMGXl\nlby1ZDsvz9/CkoIS4qIjGDMgncuGdeLErCTt5Xts0+5SXs3bymsLCyg8cISUVrFMHNaJicM6kdYm\nMKe/UNGLBLDl20p4+cstvLloG6XlVXRNTeSiQRmMG5RBp/b+uTxe6ldyqIL3V+zk9a8KmLehmAiD\nM3um8f2TsjirV1rAnzmlohcJAgePVPL2ku28sWgb8zfWXG4ypHM7Ljwxg9H9TiClVazHCUPPofIq\nZq3exczF2/l4TRHlVdV0bp/ApblZjB+cGVST16noRYLMtn2HeHPxNt74ahv5hQeJMMjNTmZU3xM4\nt98JOmunCfYfruDjNUV8sGIns1cXUlpeRWrrWC4YkM7YQekMzGwblENnKnqRIOWcY9WOA7y3Yifv\nL9/Jml0HABiQ2ZazeqVxRo9UBmQm6QrcehTsLeOj1YV8uHIX8zbsoaLKkdIqhpF9OnDBgHSGdW0f\n9D9DFb1IiNi4u5T3V+zkveU7WVKwD+cgKSGa03JSOaNHKqd2a0+69vYpOVTB3PV7+HxdEZ/n72bT\nnjIAuqYkMrJvB77bpwODstoFfbnXpqIXCUHFpeV8vm43n6wp4pO1Rew+eASArOR4hma3Z1iXZIZ2\nSaZz+4SgHIo4HoX7D5O3eS95m/aycHMxy7aVUO0gISaSk7u2Z0T3FE7vkUr3tFZeR202KnqREFdd\n7Vi1cz/zNxTz5cZivtxUTHFpOQDJiTH0z2jLgMy29M9oS//MtpzQJi5oy39vaTkrtu9nxfYSVmzf\nz6Kte9lafAiA2KgIBmYlMaxLMiO6p3Bip3Zhc68AFb1ImHHOsb7oIPM3FrNk6z6WFpSQX3iQKt9N\nztslRJOT1ppuaa3ISWtFTodWdElJ5IQ2cQFxladzjt0Hy9lQdJANu0trPheVsmrHfraXHP56vfS2\ncQzITCI3ux1DOrejb3rbsCn2b2po0bf8LDwi0izMjO5preme1pqJwzoDNacSrtyxn2UF+1iz6wDr\nCg/yzrIdlByq+Pp1kRFGx7ZxZCTFk9kugfSkONonxpDcKpaUxBjat4qlXUI0CbFRJERHHveNVsor\nq9l3qJx9ZRXsK6tgb1k5e0vL2bn/MDv2HWbH/sPs2HeIHSWHOXik8uvXxUZF0CUlkdzsZPqmt6Fv\nelv6pLchOTHGPz+wMKKiFwlh8TGRDOlcs+d71NE95/zCA2zZU0bB3kMU7C1j275DzFm/m137D1N9\njD/046IjSIiJIj46EjMwgwgzjtb/kcpqjlRWc7iiiiOV1V//RVGXlFaxpCfF0TU1keHdU+jcPoGu\nqa3ompJIRlK87t7lJyp6kTBjZqS2jiW1dSyndvvP56uqHSWHKthz8Ai7D5ZTXFpOcVk5h8orKSuv\n8n1Ucqi8GofDuZp/PI72eWxUBHHRkV9/jouOoG1CDEnx0bRLiCEpIZqkhGjSWseF7ZBLS1PRi8i/\niYwwkhNjSE6MIaeD12nEH/TPqYhIiGu2ojezUWa2xszW+W4SLiIiHmiWojezSOBJYDTQB/iBmfVp\njvcSEZFja649+qHAOufcBudcOTAdGNdM7yUiIsfQXEWfAWyt9bjAt0xERFpYcxV9XSe//tvJtGY2\n2czyzCyvqKiomWKIiEhzFX2ZLaGqAAADiElEQVQBkFXrcSawvfYKzrmpzrlc51xuampqM8UQEZHm\nKvoFQI6ZdTGzGGACMLOZ3ktERI6h2SY1M7PzgEeBSOAvzrl7j7FuEbC5WYI0rxRgt9chWpi2OfSF\n2/ZC8G5zZ+dcvUMiATF7ZbAys7yGzBwXSrTNoS/cthdCf5t1ZayISIhT0YuIhDgVfdNM9TqAB7TN\noS/cthdCfJs1Ri8iEuK0Ry8iEuJU9A3QkJk4zexSM1tpZivM7OWWzuhP9W2vmXUys9lmtsjMlvpO\npQ1qZvYXMys0s+Xf8ryZ2eO+n8lSMxvc0hn9rQHbPNG3rUvNbI6ZDWzpjP5W3zbXWu8kM6sys++1\nVLZm5ZzTxzE+qLkOYD3QFYgBlgB9vrFODrAIaOd7nOZ17mbe3qnAT3xf9wE2eZ3bD9t9OjAYWP4t\nz58HvEvN9B4nA/O9ztwC23xqrd/p0eGwzb51IoGPgHeA73md2R8f2qOvX0Nm4vwR8KRzbi+Ac66w\nhTP6U0O21wFtfF+35RvTWwQj59ynQPExVhkHvOhqzAOSzKxjy6RrHvVts3NuztHfaWAeNVOZBLUG\n/HcGuAH4BxDM/x//GxV9/RoyE2cPoIeZfWFm88xsVIul87+GbO/vgcvNrICavZ4bWiaap8J9RtZJ\n1PxFE9LMLAO4CHja6yz+pKKvX70zcVJz790c4EzgB8CzZpbUzLmaS0O29wfAC865TGqGNP5qZqH+\nu9SQn0tIMrPvUFP0t3qdpQU8CtzqnKvyOog/6ebg9at3Jk7fOvOccxXARjNbQ03xL2iZiH7VkO2d\nBIwCcM7NNbM4auYKCZk/devQkJ9LyDGzAcCzwGjn3B6v87SAXGC6mUHN7/R5ZlbpnJvhbaymCfW9\nMH9oyEycM4DvAJhZCjVDORtaNKX/NGR7twBnA5hZbyAOCPWbCswEfug7++ZkoMQ5t8PrUM3JzDoB\nrwNXOOfWep2nJTjnujjnsp1z2cBrwHXBXvKgPfp6Oecqzex64H3+fybOFWZ2N5DnnJvpe+67ZrYS\nqAJ+Fax7Pw3c3l8Cz5jZL6gZvrjK+U5XCFZm9go1Q28pvmMPvwOiAZxzT1NzLOI8YB1QBlztTVL/\nacA2/xZoDzzl28OtdEE+8VcDtjkk6cpYEZEQp6EbEZEQp6IXEQlxKnoRkRCnohcRCXEqehGREKei\nFxEJcSp6EZEQp6IXEQlx/wddGFBHyzi0VAAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "
" ] }, "metadata": {}, @@ -916,26 +1050,29 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "hidden": true + }, "source": [ "Находим оценку $\\chi^2$" ] }, { "cell_type": "code", - "execution_count": 44, + "execution_count": 13, "metadata": { "ExecuteTime": { "end_time": "2018-05-01T10:18:56.799223Z", "start_time": "2018-05-01T10:18:56.785206Z" - } + }, + "hidden": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "1.11018819489\n" + "1.243237812147532\n" ] } ], @@ -946,26 +1083,29 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "hidden": true + }, "source": [ "Строим более детальный график" ] }, { "cell_type": "code", - "execution_count": 45, + "execution_count": 14, "metadata": { "ExecuteTime": { "end_time": "2018-05-01T10:18:57.190229Z", "start_time": "2018-05-01T10:18:56.803205Z" - } + }, + "hidden": true }, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3Xd8lfXd//HXJ5ssAmQQSEggbGSH\nqSAoLqwbEXHgqAhaWjtvW3+1tret9W7rtiKigqiIOLGAggNBdtg7hBBIIJCEQPY+398fOdgYE5JA\nzrnO+Dwfjzw4ua4r53p7cXxz5XstMcaglFLKs/hYHUAppVTr03JXSikPpOWulFIeSMtdKaU8kJa7\nUkp5IC13pZTyQFruSinlgbTclVLKA2m5K6WUB/KzasWRkZEmMTHRqtUrpZRb2rJlS54xJqqp5Swr\n98TERFJSUqxavVJKuSUROdKc5XRYRimlPJCWu1JKeSAtd6WU8kBa7kop5YG03JVSygNpuSullAfS\ncldKKQ/kduWellPMnz/bQ2W1zeooSinVYs99mcqG9FMOX4/blXtmfilvrs3gq30nrY6ilFItcvRU\nKc99eZDNh/Mdvi63K/exPaOIbRvEws2ZVkdRSqkWWbwlEx+BSclxDl9Xk+UuIr1EZHudr0IReaTe\nMuNEpKDOMo87KrCvj3BrcjxrDuaSmV/qqNUopVSrqrEZPtiSZd9BbePw9TVZ7saYA8aYQcaYQcBQ\noBT4uIFF15xdzhjzl9YOWtdk+796i7dkOXI1SinValan5pJdUM5tyfFOWV9Lh2UuBw4ZY5p14xpH\niWsXzJgeUSxOyaTGZqyMopRSzfLupqNEhgYyoW+MU9bX0nKfAixsZN4oEdkhIstFpF9DC4jIdBFJ\nEZGU3NzcFq66XpBh8WQXlLM69cLeRymlHC2nsJyv9+cwaWgc/r7OOdTZ7LWISABwPbC4gdlbgQRj\nzEDgReCTht7DGDPHGJNsjEmOimrydsTnNKFPDB1CAli46egFvY9SSjna4i1Z1NgMU4Y5Z0gGWrbn\nfg2w1Rjzo3MQjTGFxphi++tlgL+IRLZSxgYF+Plwy9A4vtqfQ05RuSNXpZRS581mM7y3+SijunUg\nMTLEaettSbnfTiNDMiLSUUTE/nq4/X0dfpb+bcPivz8CrZRSrmjtoTwy88uYMtx5e+3QzHIXkWDg\nCuCjOtNmiMgM+7eTgN0isgN4AZhijHH4kc6kqFCGd23Pos2ZOGF1SinVYu9tyqRdsD9X9evo1PU2\nq9yNMaXGmA7GmII602YbY2bbX79kjOlnjBlojBlpjFnnqMD1TRkWz5FTpax3wuW8SinVEnnFFazY\ne4Kbh8QR5O/r1HW73RWq9U3sH0tYkB+L9IpVpZSL+XBLFlU1htudPCQDHlDuQf6+3DS4M8t3n+BM\naaXVcZRSCgBjDIs2Z5Kc0I7u0WFOX7/blzvAlGFdqKy28dHWY1ZHUUopADYezic9r4Tbh3exZP0e\nUe59O4UzIK6tHlhVSrmM9zYdJSzIj4n9Yy1Zv0eUO9TuvR84WcTWo2esjqKU8nJnSitZtvsENw3u\nTJsA5x5IPctjyv36QZ0ICfDl3Y16xapSylofbT1GZbWNKcOsGZIBDyr30EA/bhzcmf/sPK4HVpVS\nljGm9orUgfER9O0UblkOjyl3gDtHJlBRbdMrVpVSltly5DSpJ4u53Yn3kWmIR5V7n9hwhia0452N\nR7HprYCVUhZYsOEIYUF+XD+ok6U5PKrcAe4c2YXDeSWsO6RXrCqlnCuvuIJlu7K5ZUgcwQF+lmbx\nuHK/5qJY2gX78/YGS58nopTyQu+nZFJVY7hzpHUHUs/yuHIP8vfl1uR4Vu47yclCvRWwUso5amyG\ndzbU3trXiitS6/O4cgeYOrwLNTbDe5v0fjNKKef4NjWHY2fKuGtUgtVRAA8t98TIEMb0iGThpqNU\n19isjqOU8gIL1h8hOiyQK5z0jNSmeGS5Q+1pkScKy/lqf47VUZRSHi4zv5RVqblMGd7Fac9IbYpr\npHCAy3tHE9s2SA+sKqUc7p2NR/ERseTWvo3x2HL38/VhyrAurDmYx5FTJVbHUUp5qIrqGt5PyWRC\nn2hi27axOs73PLbcAaYMj8fXR/R+M0oph1m+6wT5JZXcNTLR6ig/4NHlHhMexJV9Y3g/JZPyqhqr\n4yilPNCCDUfoGhnC6KQOVkf5AY8ud4A7RiRwurSKZbuyrY6ilPIwe48XsuXIae4Y0QUfH7E6zg94\nfLlf3L0DSVEhzF+XYXUUpZSHeXvjEYL8fbh1qOscSD3L48tdRJg2OpEdWQVsO3ra6jhKKQ9RVF7F\nJ9uOcd2ATrQN9rc6zo94fLkD3DwkjrBAP+bp3rtSqpV8sCWL0soal7kitT6vKPfQQD8mJcexbFc2\nOXq/GaXUBbLZDPPXZTA0oR0D4iKsjtMgryh3gGmjEqm2Gd7R0yKVUhdoVWoOGadKuWd0otVRGuU1\n5Z4YGcL4XtG8s/EoldV6vxml1Pl7c20GHcODuPqijlZHaZTXlDvAtNGJ399MXymlzkdaThFrDuZx\n16gEl7mPTENcN5kDjOkeSbeoEN7UA6tKqfM0b10GAX4+TLH4GalN8apy9/ERpo1KZEfmGT0tUinV\nYgVlVXy45Rg3DOxEh9BAq+OcU5PlLiK9RGR7na9CEXmk3jIiIi+ISJqI7BSRIY6LfGFuGRpHaKCf\nXtSklGqx9zdnUlZVwz0XJ1odpUlNlrsx5oAxZpAxZhAwFCgFPq632DVAD/vXdOCV1g7aWkID/Zg0\nNI6lu7LJKdLTIpVSzVNjM8xfn8Hwru3p16mt1XGa1NJhmcuBQ8aY+jdJvwF4y9TaAESISGyrJHSA\naaMTqaoxerdIpVSzfbnvJFmny7jXhU9/rKul5T4FWNjA9M5A3QeWZtmn/YCITBeRFBFJyc3NbeGq\nW0/XyBDG9YrS0yKVUs02b20GnSPauMxj9JrS7HIXkQDgemBxQ7MbmGZ+NMGYOcaYZGNMclRUVPNT\nOsA9oxPJLdLTIpVSTduXXcj69FPcNSoBPxc+/bGulqS8BthqjDnZwLwsoO55QXHA8QsJ5mhje0TR\nLSqE1787jDE/+ndIKaW+N39dBkH+rn/6Y10tKffbaXhIBmAJcLf9rJmRQIExxqV3iX18hPsv6cqu\nYwVsPJxvdRyllIs6XVLJx9uOcdPgzkQEB1gdp9maVe4iEgxcAXxUZ9oMEZlh/3YZkA6kAa8BD7Vy\nToe4ZUgc7YL9mbvmsNVRlFIu6t1NR6motnHP6K5WR2kRv+YsZIwpBTrUmza7zmsDPNy60RwvyN+X\nu0Ym8OI3aaTnFtMtKtTqSEopF1JRXcO8dRmM7RlFr45hVsdpEfc4MuBAd41KxN/XhzfW6t67UuqH\nPt1+nNyiCh4Y41577aDlTlRYIDcN6swHW7I4XVJpdRyllIswxvDa6nR6dwzjku6RVsdpMa8vd4D7\nx3SlvMrG2xvqX5ullPJWq1JzOZhTzANjuiHiWg+/bg4td6BnTBiX9oxi/vojVFTXWB1HKeUC5q5J\nJyY8kOsGdrI6ynnRcrd7YEw38oor+HS7S5+er5Rygj3HC1ibdop7RnclwM89a9I9UzvAxd070Ltj\nGK+v0YualPJ2c9ccJiTAl6kjulgd5bxpuduJCD8d040DJ2ufsqKU8k7ZBWV8tuM4k4fF07aNv9Vx\nzpuWex3XD+xEdFggr61JtzqKUsoi89ZmYDOG+y52v9Mf69JyryPAz4dpoxNZczCP/ScKrY6jlHKy\novIq3t14lIn9Y4lvH2x1nAui5V7PHSO60Mbfl9dW60VNSnmbRZszKaqo5oEx3ayOcsG03OuJCA7g\ntmHxfLr9GMfPlFkdRynlJNU1Nt5cW/ukpYHxEVbHuWBa7g14YGztv9o69q6U91i6K5tjZ8o8Yq8d\ntNwb1DmiDTcM6sx7mzLJ11sSKOXxjDHM/jadpKgQLu8dbXWcVqHl3ogZl3ajrKqG+esyrI6ilHKw\nVQdy2ZddyIxLk/Dxcb9bDTREy70RPWLCuKJvDPPXZ1BSUW11HKWUA/17VRqd2gZxw6AfPfrZbWm5\nn8PMcUmcKa1i4aajVkdRSjnI5ox8Nmec5oGx3dz2VgMN8Zz/EgcY0qUdI7u1Z+6aw1RW26yOo5Ry\ngFdWHaJ9SABThrnvrQYaouXehJnjunOisJxPth+zOopSqpXtyy7k6/053DM6kTYBvlbHaVVa7k0Y\n2yOSvrHhzP72EDab3lBMKU/yyqpDhAT4Mm1UotVRWp2WexNEhJnjkkjPLWHF3hNWx1FKtZIjp0r4\nz87j3DEygbbB7nuDsMZouTfDxP6xJHQI5pVVh/R2wEp5iDmr0/Hz8eH+S9z7BmGN0XJvBl8f4cGx\nSezIKmD9oVNWx1FKXaCconIWb8nilqFxxIQHWR3HIbTcm+nmIZ2JCgvk5VVpVkdRSl2g19ccprrG\nxoNjPeNWAw3Rcm+mIH9fHhzbjbVpp9hyJN/qOEqp85RfUsmCDUe4bmAnEiNDrI7jMFruLTB1RBc6\nhATwwle6966Uu3r9u3TKqmr42fjuVkdxKC33FggO8OOnY7rxbWou2zPPWB1HKdVCZ0ormb/uCBP7\nx9IjJszqOA6l5d5Cd41KICLYnxe/Omh1FKVUC72xNoPiimpmXebZe+2g5d5ioYF+/PSSrny1P4fd\nxwqsjqOUaqaCsireXHuYq/t1pHfHcKvjOJyW+3m4e3Qi4UF+vKB770q5jfnrMigqr2bW5Z6/1w7N\nLHcRiRCRD0Rkv4jsE5FR9eaPE5ECEdlu/3rcMXFdQ3iQP/dd0pUVe0+y97g+SFspV1dUXsXr3x1m\nQp8Y+nVqa3Ucp2junvvzwOfGmN7AQGBfA8usMcYMsn/9pdUSuqh7R3clLNCPl77RvXelXN1b649Q\nUFbFz71krx2aUe4iEg6MBV4HMMZUGmO8/lSRtsH+TBudyPLdJ0g9WWR1HKVUI0oqqnn9u8OM6xXF\ngDj3f/B1czVnz70bkAu8KSLbRGSuiDR05v8oEdkhIstFpF/rxnRN91/SlTb+vrz4tZ73rpSrenvD\nEfJLKpl1WQ+rozhVc8rdDxgCvGKMGQyUAI/WW2YrkGCMGQi8CHzS0BuJyHQRSRGRlNzc3AuI7Rra\nhQQwbXQi/9l5nAMndO9dKVdTXFHNq6vTGdMjkqEJ7ayO41TNKfcsIMsYs9H+/QfUlv33jDGFxphi\n++tlgL+IRNZ/I2PMHGNMsjEmOSoq6gKju4YHx3YjNMCPZ1emWh1FKVXPvLWHyS+p5NdX9rI6itM1\nWe7GmBNApoic3TqXA3vrLiMiHUVE7K+H29/XK26fGBEcwH2XdOXzPSf0vHelXEhBWRVzVqczoU80\ng+K9Z6z9rOaeLTMLeEdEdgKDgL+JyAwRmWGfPwnYLSI7gBeAKcaLbnx+/5iutG3jzzO6966Uy3h9\nTTqF5dX88oqeVkexhF9zFjLGbAeS602eXWf+S8BLrZjLrYQH+TN9bDf+8cUBthw57XVje0q5mvyS\nSt5Ym8HE/h295rz2+vQK1VZyz+hEOoQE6Ni7Ui7g1dWHKKms5pcTvHOvHbTcW01IoB8zxyXxXVoe\nG9K94nCDUi4pp6ic+esyuGFgJ4+/8+O5aLm3ojtHJhAdFsgzK1L1WatKWeSVVYeoqjH8wov32kHL\nvVUF+fsy67LubMrIZ83BPKvjKOV1sgvKeGfjUSYNiaOrBz9lqTm03FvZ5GHxdI5ow79WHNC9d6Wc\n7KWv0zDGeM2dH89Fy72VBfr58osJPdiRVcDnu09YHUcpr5GeW8x7mzO5fXgX4toFWx3HclruDnDL\nkDh6RIfyjy8OUF1jszqOUl7hXytSCfTz8bp7yDRGy90BfH2E313dm/S8Et5PybI6jlIeb3vmGZbu\nyuaBMd2ICgu0Oo5L0HJ3kAl9oklOaMdzX6ZSWlltdRylPJYxhqeX76dDSAAPjO1mdRyXoeXuICLC\no9f0JqeogjfXZlgdRymPtfpgHuvTTzHrsu6EBjbronuvoOXuQMmJ7ZnQJ4bZqw5xuqTS6jhKeRyb\nzfD35fuJb9+GqSMSrI7jUrTcHex3V/eipLKal7/RB3oo1dqW7DjOvuxCfnNlLwL8tM7q0q3hYD1j\nwpg0NI631h8h63Sp1XGU8hgV1TX8c8UB+saGc92ATlbHcTla7k7wyISeiKC3BFaqFb278ShZp8t4\n9Jre+PiI1XFcjpa7E3SKaMM9Fyfy8bZj+kAPpVpBQWkVL3x1kNFJHRjT40cPfVNouTvNQ+O60y44\ngL8u3ae3JVDqAr30zUHOlFXx2LV9sD8ETtWj5e4kbdv488sJPViffoqVe09aHUcpt5WRV8K8dRnc\nOjTOax/E0Rxa7k50+/AudI8O5anl+6ms1tsSKHU+/r58P/6+PvzGCx963RJa7k7k5+vDYxP7cDiv\nhAUbjlgdRym3syH9FJ/vOcHMS5OIDg+yOo5L03J3snG9ohjTI5IXvjrImVK9sEmp5rLZDE8u3Uts\n2yB+OkZvM9AULXcnExEeu7YPReVVPP/VQavjKOU2as82K+R/ru5NmwBfq+O4PC13C/TuGM5tw7qw\nYP0RDuUWWx1HKZdXWlnN/32xn4Fxbbl+oF6w1Bxa7hb51RU9CfL35all+6yOopTLm7M6nZOFFfzx\nJ331gqVm0nK3SFRYIA+NT+LLfTmsTs21Oo5SLuvYmTJmf3uIa/vHkpzY3uo4bkPL3UL3X9KVxA7B\nPPHZHj01UqlG/HXpXgB+P7G3xUnci5a7hQL9fPnTdf1Izy3hzbWHrY6jlMv57mAey3ad4OFx3fW5\nqC2k5W6x8b2jmdAnmhe+OsiJgnKr4yjlMqpqbDzx2R66tA/WJyydBy13F/DHn/SlymZ4arkeXFXq\nrPnrMkjLKeZP1/UlyF9PfWwpLXcXkNAhhBlju/Hp9uNsTD9ldRylLJdTWM5zXx7kst7RXN4nxuo4\nbqlZ5S4iESLygYjsF5F9IjKq3nwRkRdEJE1EdorIEMfE9Vwzx3Wnc0Qb/rRkD9U1enBVebe/2++/\n9PhP+lodxW01d8/9eeBzY0xvYCBQf/zgGqCH/Ws68EqrJfQSbQJ8+eNP+rD/RBFv631nlBfbnJHP\nR9uO8cDYriRGhlgdx201We4iEg6MBV4HMMZUGmPO1FvsBuAtU2sDECEisa2e1sNd1a8jY3pE8q+V\nqeQWVVgdRymnq66x8adP9xDbNoiHx3e3Oo5ba86eezcgF3hTRLaJyFwRqf/PaWcgs873WfZpqgVE\nhCeu70dFle37c3uV8ibz1mWwN7uQP/6kL8EBflbHcWvNKXc/YAjwijFmMFACPFpvmYauB/7R44ZE\nZLqIpIhISm6uXpXZkKSoUGaOS+KT7cdZc1C3kfIex86U8czKVC7vHc01F3W0Oo7ba065ZwFZxpiN\n9u8/oLbs6y8TX+f7OOB4/TcyxswxxiQbY5KjoqLOJ69XmDkuiW6RIfy/T3ZTXlVjdRylHM4Yw58+\n3Y0x8Ocb+umj81pBk+VujDkBZIrI2ceeXA7UHzNYAtxtP2tmJFBgjMlu3ajeI8jflydvuogjp0p5\n6es0q+Mo5XBf7DnBl/ty+NUVPfVK1FbS3LNlZgHviMhOYBDwNxGZISIz7POXAelAGvAa8FCrJ/Uy\no5MiuWVIHK+uPkTqySKr4yjlMEXlVfxpyR76xoZz78WJVsfxGM06YmGM2Q4k15s8u858AzzcirkU\n8Ni1ffh6/0ke+3gXi6aP0ludKo/0rxWp5BRVMOeuZPx89brK1qJb0oW1DwngDxP7sDnjNItSMpv+\nAaXczI7MM8xfn8G0UYkMjI+wOo5H0XJ3cZOGxjGia3ueWraPnCK9sZjyHFU1Nn7/0S6iwwL59ZU9\nrY7jcbTcXZyI8Leb+1NebePxT/ZQOwKmlPt79dtD7M0u5M/XX0RYkL/VcTyOlrsbSIoK5ZcTevL5\nnhMs3aUnISn3l3qyiBe+SuPaAbFcree0O4SWu5t4YExXBsa15fFP93CqWG9NoNxXdY2N3y7eQWiQ\nH3+5vp/VcTyWlrub8PP14R+3DqS4vJrHl+yxOo5S5+21NYfZkVXAX27oR4fQQKvjeCwtdzfSMyaM\nn1/enaU7s1muwzPKDaXlFPHsl6lc3a8j1/bXews6kpa7m3nw0iQu6hzOHz/dTX5JpdVxlGq2Gpvh\ntx/sJDjAl/+98SK9xYCDabm7GX9fH/4xaSAFZVX8+TMdnlHu443vDrPt6Bn+fH0/osJ0OMbRtNzd\nUJ/YcB4e351Ptx/n890nrI6jVJPScor554oDTOgTw/UDO1kdxytoubuph8Z156LO4fz+o53kFOrF\nTcp1VVbbeGTRNoIDfPnbTToc4yxa7m4qwM+H524bRGllDb/9YKde3KRc1vNfpbL7WCFP3TyA6PAg\nq+N4DS13N9Y9OozHru3Dt6m5LNDnrioXtOlwPv9edYjJyXF6sZKTabm7ubtGJnBpzyj+unQfaTl6\na2DlOorKq/jlou3Etwvm8ev0YiVn03J3cyLCPyYNIDjAl0cWbaey2mZ1JKUAeGLJXrILynj2tkGE\nBurzUJ1Ny90DRIcH8dTNA9h9rJDnvky1Oo5SLN2ZzYdbs/jZ+O4MTWhndRyvpOXuIa6+qCO3Jcfz\nyreH2Jh+yuo4yotlF5Txh493MTCuLbMu72F1HK+l5e5BHr+uLwntg/nFe9v16lVlieoaGz9fuI2q\nGhvP3jYIf32ykmV0y3uQkEA/Xpo6hPySSn71/nZsNj09UjnXs1+msjnjNH+7qT/dokKtjuPVtNw9\nzEWd2/LH6/qy6kAur65OtzqO8iLfpuby8jeHuC05nhsHd7Y6jtfTcvdAd47owrX9Y/nnigOkZORb\nHUd5gZOF5fxq0XZ6xYTxhN6j3SVouXsgEeGpW/rTOaINsxZu47SOvysHOjvOXlpZw8t3DKZNgK/V\nkRRa7h4rPMifl6cO4VRxJb9evEPH35XDvPDVQTYezufJGy+ie3SY1XGUnZa7B+sf15bHru3D1/tz\ndPxdOcTq1Fxe/CaNSUPjuGVonNVxVB1a7h7u7lEJXDsgln98sZ81B3OtjqM8SGZ+KbMWbqNXTBh/\nuUHH2V2NlruHO3t7gp4xYfzs3W0cPVVqdSTlAcoqa5i+YAvGGF69ayjBAXp7AVej5e4FggP8ePWu\noQBMX5BCaWW1xYmUOzPG8OhHO9l/opDnbx9MQocQqyOpBmi5e4mEDiG8cPtgDpws0vu/qwvyxtoM\nPt1+nF9f0ZPxvaKtjqMaoeXuRS7tGcVvr+rF0p3ZzNEDrOo8rDuUx9+W7ePKvjE8NK671XHUOTSr\n3EUkQ0R2ich2EUlpYP44ESmwz98uIo+3flTVGmZemsTE/h15+vP9rE7VA6yq+Q7nlTDz7a10jQzh\nX5MH4uOjj8tzZS3Zcx9vjBlkjEluZP4a+/xBxpi/tEY41fpqD7AOpGdMGA+/u5WDJ/UBH6ppBaVV\n3D9vM74+whvThhEW5G91JNUEHZbxQiGBfsydlkygny/3zd9MXnGF1ZGUC6uqsfHQu1vIPF3K7DuH\n0qVDsNWRVDM0t9wNsEJEtojI9EaWGSUiO0RkuYjoSa8uLq5dMHOnJZNTWMH0t1Ior6qxOpJyQcYY\nnliyh7Vpp3jq5gEM79re6kiqmZpb7hcbY4YA1wAPi8jYevO3AgnGmIHAi8AnDb2JiEwXkRQRScnN\n1fFeqw2Kj+DZ2wax9egZPYNGNej17w7zzsajzByXxCS9AtWtNKvcjTHH7X/mAB8Dw+vNLzTGFNtf\nLwP8RSSygfeZY4xJNsYkR0VFXXB4deEm9o/lf67uzWc7jvPMSn1En/qvJTuO8+TSfUzs35HfXtnL\n6jiqhZosdxEJEZGws6+BK4Hd9ZbpKCJifz3c/r76rDc3MePSbkwZFs+LX6exYH2G1XGUC1h3KI/f\nvL+D4YnteWbyID0zxg0155rhGOBje3f7Ae8aYz4XkRkAxpjZwCRgpohUA2XAFKO/47sNEeHJGy8i\nr7iSx5fsoUNoIBP7x1odS1lkX3YhD761hcTIYF67O5kgf72FrzsSqzo4OTnZpKT86JR5ZaHyqhru\nnLuRnVkFzLtvGKOTfjSypjzcsTNl3PzvtQjCRw+NplNEG6sjqXpEZMs5Tkn/np4Kqb4X5O/L3GnJ\nJEYGM/2tLew+VmB1JOVEOUXl3Dl3I6WVNcy7b5gWu5vTclc/EBEcwPz7hhMe5Me0NzaRlqMXOXmD\n0yWV3DV3EycKypl37zB6dwy3OpK6QFru6kdi27bh7Z+OQESY+tpGMvJKrI6kHKiovIppb27i8KkS\n5k5LZmiCnsvuCbTcVYO6RYXy7gMjqLYZpr62gcx8vQ+8JyqrrOH+eSnsPV7Iv6cO4eLuepzFU2i5\nq0b1jAljwf3DKa6oZurcDWQXlFkdSbWissoafvrWZlKO5PPsbYOY0DfG6kiqFWm5q3Pq16ktC+4f\nwemSKm6fs4FjZ7TgPUFJRTX3ztvE+kOn+OetA7luYCerI6lWpuWumjQwPoL59w3nVHElk2ev10f1\nubniimrueXMTmw7X7rHfPERvK+CJtNxVswxNaMe7D4ykpLKaya+u51BusdWR1HkoKq/i7tc3svXo\nGV68fQg3DOpsdSTlIFruqtn6x7Vl4QMjqbbZuO3VDRw4oadJupNTxRXcYb9I7eWpg7l2gF6F7Mm0\n3FWL9IkN573po/D1gdvmrGfLkXyrI6lmyMwv5dbZ60k9WcScu4dy9UVa7J5Oy121WPfoUBY/OJqI\nNv5MfW0jK/eetDqSOof9JwqZNHsdecUVvPPTEVzWW8+K8QZa7uq8dOkQzIczR9O7YxgPLkhh4aaj\nVkdSDdickc/k2esBWDxjtF6g5EW03NV56xAayMLpI7m0ZxS//2gXz6xM1Qd+uJBPth3jjtc2Ehka\nyIczR9OrY5jVkZQTabmrCxIc4Mecu5OZnBzHC18dZNbCbZRV6iP7rGSzGZ5ZcYBHFm1nSEIEH84c\nTVw7fe6pt2nO/dyVOid/Xx+evmUA3aJCefrz/Rw5Vcqcu4cS21bvKuhsZZU1/GbxDpbuymZychxP\n3tifAD/dh/NG+reuWoWIMOMZyKubAAAMoUlEQVTSJObenczhvBKuf2ktW4+etjqWV8nML2Xyq+tZ\ntjubP0zszdO3DNBi92L6N69a1eV9YvjoodG08fdlyqsbWLA+Q8fhneCbAzn85MXvyMgrYc5dyUwf\nm4T96WnKS2m5q1bXMyaMJT+7mIu7d+CPn+5h1sJtFJVXWR3LI9XYDM+uTOW+eZuJbRvEZ7Mu4Qq9\nAZhCx9yVg0QEB/D6tGG8ujqdf644wJ7jhbw8dQh9O+lDIFpLTmE5v168gzUH87h5SGf+emN/2gTo\n805VLd1zVw7j4yPMHJfEwgdGUlpZzY3/XsvcNenYbDpMc6E+332Cq55bzeaMfP52U3/+detALXb1\nA1ruyuGGd23P0p+PYWyPSJ5cuo+pc/XhH+eruKKa332wgxlvb6Fzuzb8Z9YYpo7oouPr6ke03JVT\nRIYG8trdyfzfpAHsPlbINc+v4f3NmXqwtQXWHMzlmudXs3hLFg+PT+KjmRfTPTrU6ljKRWm5K6cR\nESYnx7P8F2Po1ymc3324kzvmbtTbBzchv6SSXy3azl2vb8LPx4dF00fx26t662mO6pzEqj2n5ORk\nk5KSYsm6lfVsNsO7m47y9Of7qaiyMWNcEg+NSyLIX8eNzzLG8NHWYzy5dC9F5dXMHJfEw+O76zby\nciKyxRiT3ORyWu7KSrlFFfx16V4+2X6chA7B/P6aPlzVL8brx5C3HMnnf/+zj+2ZZxjcJYK/3zxA\n7w2jAC135WbWpuXxpyV7SMspJjmhHb+f2IehCe2sjuV0mfmlPP35fv6zM5vosEB+e1UvbhkSh4+P\nd/9jp/5Ly125neoaG4u3ZPHMylRyiyq4ul9HfnlFT6/YYz1+poxXVh1i0eZMfHxg+phuPHhpEiGB\neimK+iEtd+W2SiurmbvmMK9+e4iSyhqu6BvDw+O7Myg+wupore7YmTL+/U0a76dkYgzcmhzHrMt6\n0ClCb7qmGqblrtzemdJK3lybwbx1GRSUVXFx9w7cd3FXxvWKxteNhymMMWw9epp5646wfFc2IjA5\nOZ6Z45L01ryqSa1a7iKSARQBNUB1/TeW2qNfzwMTgVLgHmPM1nO9p5a7aq7iimre3XiEuWsOk1NU\nQeeINkwd0YVbk+OIDguyOl6zlVRUs3RXNm+tz2D3sULCgvyYnBzPfZd0pbPuqatmckS5Jxtj8hqZ\nPxGYRW25jwCeN8aMONd7armrlqqqsbFy70ne3nCEdYdO4e8rXNozimsHxDKhTwxhQf5WR/yRqhob\n3x3M45Ptx1ix5yRlVTX0iA5l2uhEbhrcWcfUVYs1t9xb65N1A/CWqf2XYoOIRIhIrDEmu5XeXyn8\nfX2Y2D+Wif1jOZRbzKLNmXy24zhf7sshwM+H8b2iuLxPDGN6RFr6oJCC0ipWH8xl1YFcvjmQQ35J\nJW3b+HPTkM7cOKgzwxLbef2pnsrxmlvuBlghIgZ41Rgzp978zkBmne+z7NO03JVDJEWF8oeJfXj0\n6t5sPXqa/+zMZtmubL7Yc9I+P4QxPaJITmzHgM4RxLdv47BCzS2qYHvmGbYdPc2mw/lsPXoam4GI\nYH/G9ojiuoGduLRnlF5RqpyqueV+sTHmuIhEAytFZL8xZnWd+Q39X/Oj8R4RmQ5MB+jSpUuLwypV\nn4+PkJzYnuTE9jz+k77sP1HE2rQ81qTl8d7mo8xblwFA2zb+XNQ5nB7RYcS3D6ZL+2Di27chJiyI\nsCA//HwbL16bzVBQVkV+aSUnC8o5fKqEw7klHM4r4cDJIrJOlwHg5yP06xTOw+O7M65XNIPiI9z6\nwK9yby0+W0ZEngCKjTH/rDPtVWCVMWah/fsDwLhzDcvomLtytIrqGlJPFLPrWAG7jhWw+1gB6bnF\nlDTwAO/gAF/Cg/wJ9PfBZgw2W+1ZLeXVNs6UVlL/LsVB/j4kdgghKTqUwfERDO4SQb9ObfXWAMrh\nWm3MXURCAB9jTJH99ZXAX+ottgT4mYi8R+0B1QIdb1dWC/TzpX9cW/rHtf1+mjGG06VVHM0v5Wh+\nKXlFFRSVV1NYXkVReRUV1TZ8RRARfAQC/X1oHxxAu5AA2ocEEBUaSGJkCB3Dg/SqUeXSmjMsEwN8\nbB+v9APeNcZ8LiIzAIwxs4Fl1J4pk0btqZD3OiauUhdGRGhvL2pPvChKqbOaLHdjTDowsIHps+u8\nNsDDrRtNKaXU+dLD90op5YG03JVSygNpuSullAfScldKKQ+k5a6UUh5Iy10ppTyQlrtSSnkgyx7W\nISJFwAFLVn5ukUCDtza2mOZqGc3VMpqrZazMlWCMiWpqIStvJn2gOfdHcDYRSdFczae5WkZztYzm\nOn86LKOUUh5Iy10ppTyQleVe/4EfrkJztYzmahnN1TKa6zxZdkBVKaWU4+iwjFJKeaBWKXcReUNE\nckRkdyPzRUReEJE0EdkpIkPqzJsmIgftX9PqTB8qIrvsP/OCnMcDMM83l4gMEpH1IrLHPv22Oj8z\nT0QOi8h2+9cgZ+Wyz6ups+4ldaZ3FZGN9u24SEQCnJVLRMbXybRdRMpF5Eb7PGdsr972v68KEflN\nvXlXi8gBe+ZH60x3xvZqMJeIxIvINyKyz/4Z+0WdeU+IyLE622uis3LZ52XY/7/bLiIpdaa3F5GV\n9u21UkTaOSuXiPSq9/kqFJFH7POcsb3usH/ed4rIOhEZWGeewz5fF8wYc8FfwFhgCLC7kfkTgeXU\nPmt1JLDRPr09kG7/s539dTv7vE3AKPvPLAeucWKunkAP++tO1D7oO8L+/TxgkhXbyz6vuJGfeR+Y\nYn89G5jpzFx1lmkP5APBTtxe0cAw4K/Ab+pM9wUOAd2AAGAH0NeJ26uxXLHAEPvrMCC1Tq4n6i7r\nzO1ln5cBRDbwM/8HPGp//SjwtDNz1fs7PUHtud7O2l6j+W8vXcN/e8Khn68L/WqVPXdT+7Ds/HMs\ncgPwlqm1AYgQkVjgKmClMSbfGHMaWAlcbZ8XboxZb2q3zlvAjc7KZYxJNcYctL/HcSAHaPKiAUfn\namxhERHgMuAD+6T5OHF71VtmErDcGFPa0vWfby5jTI4xZjNQVW/WcCDNGJNujKkE3gNucNb2aiyX\nMSbbGLPV/roI2Ad0bun6WztXE26gdjuBk7dXPZcDh4wxR1q6/gvItc7eTwAbgDj7a4d+vi6Us8bc\nOwOZdb7Psk871/SsBqY7K9f3RGQ4tf8qH6oz+a/2X9GeFZFAJ+cKEpEUEdlwdugD6ACcMcZUN7C8\ns3KdNQVYWG+ao7dXYxrL66zt1SQRSQQGAxvrTP6ZfXu9cT7DHxfIACtEZIuITK8zPcbYn4ts/zPa\nybnOaujz5cztdT+1v72Ci3++nFXuDY2Xm/OY3trOuR77XukC4F5jjM0++fdAb2p/fWwP/I+Tc3Ux\ntVfGTQWeE5GkJpZ3Vq6z26s/8EWd+c7YXo2x+vN1TiISCnwIPGKMKbRPfgVIAgZROxz4LyfHutgY\nM4Ta4YeHRWSsk9ffKPu49fXA4jqTnba9RGQ8teV+9jPs0p8vZ5V7FhBf5/s44HgT0+MamO6sXIhI\nOLAU+H/2IQjg+1+pjTGmAniT2l/NnJbLPkyEqX227Spq9/ryqB0i8au/vLNy2U0GPjbGfP9rtZO2\nV2May+us7dUoEfGnttjfMcZ8dHa6MeakMabGvjPxGs7dXnU/XznAx3XWf/LsEJz9zxxn5rK7Bthq\njDl5doKztpeIDADmAjcYY07ZJ7vs5wucV+5LgLul1kigwP6r3RfAlSLSzv7r1JXAF/Z5RSIy0j5+\ndTfwqbNy2fcQPqZ2fLnuXgJ1PuBC7Thag0fYHZSr3dlhDRGJBC4G9tqPS3xD7Xg3wDScuL3qzL+d\ner8yO2l7NWYz0MN+5kIAtb/SL3Hi9mqQfVu8DuwzxjxTb17dYxg34cTtJSIhIhJ29jW1/z+eXf8S\narcTOHl71dHo58vOIdtLRLoAHwF3GWNS68xyyc/X91rjqCy1Gzyb2gMhWdT+6jIDmGGfL8DL1I5b\n7wKS6/zsfUCa/eveOtOTqf2LOgS8hP2CK2fkAu60/8z2Ol+D7PO+ti+7G3gbCHVirtH273fY/7y/\nznt2o/YMozRqf20NdPLfYyJwDPCp957O2F4d7dMLgTP21+H2eROpPRvlEPCYk7dXg7mAS6j9NX1n\nnc/XRPvPLLBvr53UFmqsE3N1s3+2dgB76m2vDsBXwEH7n+2d/PcYDJwC2tZ7T2dsr7nA6Tp/Vyl1\nftZhn68L/dIrVJVSygPpFapKKeWBtNyVUsoDabkrpZQH0nJXSikPpOWulFIeSMtdKaU8kJa7Ukp5\nIC13pZTyQP8fWNwzmiKUClkAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD8CAYAAACb4nSYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl4VOXd//H3NzvZCJCFQCCBsCN7\nQBZBrDvWHRVxwaUiaG3tbh9/tbaPrfVpq1ZtVUQF933BglZFEWQPEDaBkISEAIEkBLLvc//+yGBj\nTMiee5bv67rmyuScyeTDYfLJyT3n3EeMMSillPIOPrYDKKWU6jpa+kop5UW09JVSyoto6SullBfR\n0ldKKS+ipa+UUl5ES18ppbyIlr5SSnkRLX2llPIifra+cWRkpElISLD17ZVSyi1t2bIl3xgT1dav\nt1b6CQkJJCcn2/r2SinllkQkqz1fr8M7SinlRbT0lVLKi2jpK6WUF9HSV0opL6Klr5RSXkRLXyml\nvIiWvlJKeRG3K/203BL+8NFuqmoctqMopVSrPf55Khsyjlv7/m5X+tkFZby4NpOVe47ZjqKUUq1y\n8HgZj3++n80HCqxlcLvSnzEkitjuQby+Odt2FKWUapW3t2TjIzA7Kc5aBrcrfV8f4ZqkfqzZn0d2\nQZntOEop1SK1DsM7Ww45d1y7WcvhdqUPcK3zt+TbWw5ZTqKUUi2zOjWPnMIKrkvqZzWHW5Z+XI9g\npg+O4u3kbGodxnYcpZRq1mubDhIZGsh5I2Ks5nDL0geYM7EfOYUVrE7Nsx1FKaVOK7eogi/25jJ7\nQhz+vnZr121L/7zhMfQKCeD1TQdtR1FKqdN6e8shah2GORPtDu2AG5d+gJ8PV0+IY+XeXHKLK2zH\nUUqpRjkchjc2H2TKwF4kRIbYjuO+pQ9w3cR+374jrpRSrmhtej7ZBeXMmWR/Lx/cvPQTo0KZNKAn\nb27Oxhh9Q1cp5Xre2JRNj2B/LhzZ23YUwM1LH+re0M06XsZ6i6c1K6VUY/JLKvn0m6NcNT6OIH9f\n23EADyj9WaNiCQvy4009Q1cp5WLe3XKI6lrD9S4ytAMeUPpB/r5cOa4vH+86ysmyKttxlFIKAGMM\nb27OJim+B4Oiw2zH+VazpS8iQ0Ukpd6tSETubfCYmSJSWO8xD3Re5O+bM7E/VTUO3tt6uCu/rVJK\nNWnjgQIy8ku5flJ/21G+w6+5Bxhj9gFjAUTEFzgMvN/IQ9cYY37YsfFaZkSfcEbHdefNzdncOi0B\nEbERQymlvvXGpoOEBfkxa1Ss7Sjf0drhnXOBdGNMVmeEaY85E/uz71gxWw+etB1FKeXlTpZVsWLX\nUa4c15duAa7xBu4prS39OcDrTaybIiLbReRjERnZ2ANEZL6IJItIcl5ex06fcNnYPoQE+PLaRj1D\nVyll13tbD1NV42DORNca2oFWlL6IBACXAW83snorEG+MGQM8CXzQ2HMYYxYZY5KMMUlRUVFtyduk\n0EA/rhjXl3/vOKJv6CqlrDGm7gzcMf0iGNEn3Hac72nNnv7FwFZjzPcuWWWMKTLGlDjvrwD8RSSy\ngzK22I2T46mscegZukopa7ZknSD1WAnXu8A8O41pTelfTxNDOyLSW5zvnorIJOfzdvnZUsNjw5kQ\n34NXNx7EoVMuK6UseHlDFmFBflw2to/tKI1qUemLSDBwPvBevWULRGSB89PZwC4R2Q48AcwxluZF\nuHFyfw7kl7IuXc/QVUp1rfySSlbszOHq8XEEBzR7cKQVLSp9Y0yZMaaXMaaw3rJnjDHPOO8/ZYwZ\naYwZY4yZbIxZ11mBm3PxGbH0CPbnlQ0ud4CRUsrDvZWcTXWt4cbJrvcG7iluf0ZuQ0H+vlyT1I/P\n9hzjWJFOuayU6hq1DsOrG+qmUHalM3Ab8rjSB5g7qT+1DsMbm3Q+HqVU1/gqNZfDJ8u5aUq87Sin\n5ZGlnxAZwvTBkby+6SA1tQ7bcZRSXuDl9VlEhwVyvuVr4DbHI0sf6g7fPFpUwcq9ubajKKU8XHZB\nGatS85gzqb/1a+A2x7XTtcO5w6KJ7R6kb+gqpTrdqxsP4iPiUlMoN8VjS9/P14c5E/uzZn8+WcdL\nbcdRSnmoyppa3krO5rzh0cR272Y7TrM8tvQB5kzqh6+P6Hw8SqlO8/HOoxSUVnHT5ATbUVrEo0s/\nJjyIC0bE8FZyNhXVtbbjKKU80MsbshgQGcLUxF62o7SIR5c+wA1nxnOirJoVO3NsR1FKeZhvjhSx\nJesEN5zZHx8f97iOh8eX/rRBvUiMCmHpukzbUZRSHuaVjVkE+ftwzQTXfwP3FI8vfRFh3tQEth8q\nZNvBE7bjKKU8RHFFNR9sO8ylo/vQPdjfdpwW8/jSB7hqfBxhgX4s0b19pVQHeWfLIcqqal3+DNyG\nvKL0QwP9mJ0Ux4qdOeTqfDxKqXZyOAxL12UyIb4Ho+MibMdpFa8ofYB5UxKocRhe1cM3lVLttCo1\nl8zjZdwyNcF2lFbzmtJPiAzhnKHRvLrxIFU1Oh+PUqrtXlybSe/wIC46o7ftKK3mNaUPMG9qwrcX\nOVBKqbZIyy1mzf58bpoS7/Lz7DTG/RK3w/RBkQyMCuFFfUNXKdVGS9ZlEuDnwxwXvQZuc7yq9H18\nhHlTEtiefVIP31RKtVpheTXvbjnM5WP60Cs00HacNvGq0ge4ekIcoYF+erKWUqrV3tqcTXl1LbdM\nS7Adpc28rvRDA/2YPSGO5TtzyC3WwzeVUi1T6zAsXZ/JpAE9Gdmnu+04beZ1pQ91b+hW1xqdfVMp\n1WKf7znGoRPl3OqGh2nW55WlPyAyhJlDo/TwTaVUiy1Zm0nfiG4ufznE5nhl6QPcMjWBvGI9fFMp\n1bw9OUWszzjOTVPi8XPDwzTrc+/07TBjcBQDo0J4/usDGGNsx1FKubCl6zIJ8nffwzTr89rS9/ER\nbj9rADsPF7LxQIHtOEopF3WitIr3tx3mynF9iQgOsB2n3by29AGuHh9Hj2B/Fq85YDuKUspFvbbp\nIJU1Dm6ZOsB2lA7h1aUf5O/LTZPjWbn3GBl5JbbjKKVcTGVNLUvWZTJjSBRDe4fZjtMhvLr0AW6a\nkoC/rw8vrNW9faXUd32YcoS84krumO4Ze/mgpU9UWCBXju3LO1sOcaK0ynYcpZSLMMbw3OoMhvUO\n46xBkbbjdJhmS19EhopISr1bkYjc2+AxIiJPiEiaiOwQkfGdF7nj3T59ABXVDl7ZkGU7ilLKRaxK\nzWN/bgl3TB+IiHtc9Lwlmi19Y8w+Y8xYY8xYYAJQBrzf4GEXA4Odt/nA0x0dtDMNiQnj7CFRLF2f\nRWVNre04SikXsHhNBjHhgVw6po/tKB2qtcM75wLpxpiGu8SXAy+ZOhuACBGJ7ZCEXeSO6QPJL6nk\nw5QjtqMopSzbfaSQtWnHuWXqAAL8PGsUvLX/mjnA640s7wtk1/v8kHPZd4jIfBFJFpHkvLy8Vn7r\nzjVtUC+G9Q7j+TV6spZS3m7xmgOEBPgy98z+tqN0uBaXvogEAJcBbze2upFl32tOY8wiY0ySMSYp\nKiqq5Sm7gIjwo+kD2Xes7qo4SinvlFNYzkfbj3DtxH507+ZvO06Ha82e/sXAVmPMsUbWHQLqn58c\nB7jdOMllY/oQHRbIc2sybEdRSlmyZG0mDmO4bZrnHKZZX2tK/3oaH9oBWAbc7DyKZzJQaIxxu5nM\nAvx8mDc1gTX789l7tMh2HKVUFyuuqOa1jQeZNSqWfj2DbcfpFC0qfREJBs4H3qu3bIGILHB+ugLI\nANKA54C7Ojhnl7nhzP508/fludV6spZS3ubNzdkUV9Zwx/SBtqN0Gr+WPMgYUwb0arDsmXr3DXB3\nx0azIyI4gOsm9uOVDVn84oIh9InoZjuSUqoL1NQ6eHFt3ZWxxvSLsB2n03jWsUgd5I4Zdb/ldWxf\nKe+xfGcOh0+We/RePmjpN6pvRDcuH9uXNzZlU6BTMyjl8YwxPPNVBolRIZw7LNp2nE6lpd+EBWcP\npLy6lqXrMm1HUUp1slX78tiTU8SCsxPx8fGcKRcao6XfhMExYZw/Ioal6zMprayxHUcp1Yn+tSqN\nPt2DuHzs984p9Tha+qexcGYiJ8uqeX3TQdtRlFKdZHNmAZszT3DHjIEeN+VCYzz/X9gO4/v3YPLA\nnixec4CqGoftOEqpTvD0qnR6hgQwZ6LnTbnQGC39ZiycOYijRRV8kHLYdhSlVAfbk1PEF3tzuWVq\nAt0CfG3H6RJa+s2YMTiSEbHhPPNVOg6HTsSmlCd5elU6IQG+zJuSYDtKl9HSb4aIsHBmIhl5pXz6\nzVHbcZRSHSTreCn/3nGEGybH0z3Y8yZWa4qWfgvMGhVLfK9gnl6VrtMuK+UhFq3OwM/Hh9vP8syJ\n1Zqipd8Cvj7CnTMS2X6okPXpx23HUUq1U25xBW9vOcTVE+KICQ+yHadLaem30FXj+xIVFsg/V6XZ\njqKUaqfn1xygptbBnTM8e8qFxmjpt1CQvy93zhjI2rTjbMkqsB1HKdVGBaVVvLwhi0vH9CEhMsR2\nnC6npd8Kc8/sT6+QAJ5YqXv7Srmr57/OoLy6lh+fM8h2FCu09FshOMCPH00fyFepeaRkn7QdRynV\nSifLqli6LotZo2IZHBNmO44VWvqtdNOUeCKC/Xly5X7bUZRSrfTC2kxKKmu45wfeuZcPWvqtFhro\nx4/OGsDKvbnsOlxoO45SqoUKy6t5ce0BLhrZm2G9w23HsUZLvw1unppAeJAfT+jevlJuY+m6TIor\narjnXO/dywct/TYJD/LntrMG8Ok3x/jmiF5AXSlXV1xRzfNfH+C84TGM7NPddhyrtPTb6NapAwgL\n9OOpL3VvXylX99L6LArLq/mJl+/lg5Z+m3UP9mfe1AQ+3nWU1GPFtuMopZpQWlnD818fYObQKEbH\nee4Fz1tKS78dbj9rAN38fXnyCz1uXylX9cqGLApKq7jnB4NtR3EJWvrt0CMkgHlTE/j3jiPsO6p7\n+0q5mpLKGp5dncH0wZFMiO9hO45L0NJvpztnDCQ0wI/HPku1HUUp1cCStQcoKK3iFxcMtR3FZWjp\nt1NEcAC3nTWAT3Yf1eP2lXIhheXVLFqdwXnDoxnbT8fyT9HS7wC3Tx9A927+PKp7+0q5jOfXZFBU\nUcPPzh9iO4pL0dLvAOFB/syfMZAv9uayJeuE7ThKeb2C0ipeWJvJrFG9vf64/Ia09DvILVMT6BUS\noGP7SrmAZ1enU1pVw8/O0738hrT0O0hIoB8LZybydVo+GzL06lpK2ZJbXMHSdZlcPqaP186keTot\nKn0RiRCRd0Rkr4jsEZEpDdbPFJFCEUlx3h7onLiu7cbJ8USHBfLop6l6LV2lLHl6VTrVtYaf6l5+\no1q6p/8P4BNjzDBgDLCnkcesMcaMdd7+2GEJ3UiQvy/3/GAQmzILWLM/33YcpbxOTmE5r248yOzx\ncQzwwqtitUSzpS8i4cAM4HkAY0yVMUavINKEayf2o29EN/7+6T7d21eqiz31RRrGGK+fSfN0WrKn\nPxDIA14UkW0islhEGvsVOkVEtovIxyIysmNjuo9AP19+et5gth8q5JNdR23HUcprZOSV8MbmbK6f\n1J+4HsG247islpS+HzAeeNoYMw4oBe5r8JitQLwxZgzwJPBBY08kIvNFJFlEkvPy8toR27VdPT6O\nwdGh/PU/+6ipddiOo5RX+PunqQT6+egcO81oSekfAg4ZYzY6P3+Hul8C3zLGFBljSpz3VwD+IhLZ\n8ImMMYuMMUnGmKSoqKh2Rnddvj7Cry8aRkZ+KW8lH7IdRymPl5J9kuU7c7hj+kCiwgJtx3FpzZa+\nMeYokC0ipyavOBf4pv5jRKS3iIjz/iTn83r1cYvnDY8mKb4Hj3+eSllVje04SnksYwyPfLyXXiEB\n3DFjoO04Lq+lR+/cA7wqIjuAscCfRWSBiCxwrp8N7BKR7cATwBzj5e9iigj3XTyM3OJKXlybaTuO\nUh5r9f581mcc554fDCI00M92HJfXoi1kjEkBkhosfqbe+qeApzowl0dISujJecNjeGZVOnMn9adH\nSIDtSEp5FIfD8JeP99KvZzfmnhlvO45b0DNyO9mvLxpKaVUN//xSL7SiVEdbtv0Ie3KK+OUFQwnw\n0zprCd1KnWxITBizJ8Tx0vosDp0osx1HKY9RWVPL3z7dx4jYcC4d3cd2HLehpd8F7j1vCCLo1MtK\ndaDXNh7k0Ily7rt4GD4+YjuO29DS7wJ9Irpxy7QE3t92WC+0olQHKCyr5omV+5ma2Ivpg793dLg6\nDS39LnLXzEH0CA7gT8v36PQMSrXTU1/u52R5NfdfMhzn0eKqhbT0u0j3bv787LzBrM84zmffHLMd\nRym3lZlfypJ1mVwzIU4vkNIGWvpd6PpJ/RkUHcrDH++lqkanZ1CqLf7y8V78fX34pV7svE209LuQ\nn68P988azoH8Ul7ekGU7jlJuZ0PGcT7ZfZSFZycSHR5kO45b0tLvYjOHRjF9cCRPrNzPybIq23GU\nchsOh+Gh5d8Q2z2IH03X6RbaSku/i4kI918ynOKKav6xcr/tOEq5jbqj34r4zUXD6BbgazuO29LS\nt2BY73Cum9ifl9dnkZ5XYjuOUi6vrKqG//vPXsbEdeeyMXoiVnto6Vvy8/OHEOTvy8MrGrvypFKq\nvkWrMzhWVMnvfjhCT8RqJy19S6LCArnrnEQ+35PL6lTPvaCMUu11+GQ5z3yVziWjYklK6Gk7jtvT\n0rfo9rMGkNArmAc/2q2HcCrVhD8tr7t8x29nDbOcxDNo6VsU6OfL7y8dSUZeKS+uPWA7jlIu5+v9\n+azYeZS7Zw7S6952EC19y84ZFs15w6N5YuV+jhZW2I6jlMuornXw4Ee76d8zWK+I1YG09F3A7344\ngmqH4eGP9U1dpU5Zui6TtNwSfn/pCIL89RDNjqKl7wLie4WwYMZAPkw5wsYMr760sFIA5BZV8Pjn\n+/nBsGjOHR5jO45H0dJ3EQtnDqJvRDd+v2w3NbX6pq7ybn9xzk/1wA9H2I7icbT0XUS3AF9+98Ph\n7D1azCs6L4/yYpszC3hv22HumDGAhMgQ23E8jpa+C7lwZG+mD47k75+lkldcaTuOUl2uptbB7z/c\nTWz3IO4+Z5DtOB5JS9+FiAgPXjaSymrHt8cmK+VNlqzL5JucIn73wxEEB/jZjuORtPRdTGJUKAtn\nJvJByhHW7NczdZX3OHyynEc/S+XcYdFcfEZv23E8lpa+C1o4M5GBkSH8vw92UVFdazuOUp3OGMPv\nP9yFMfCHy0fqJRA7kZa+Cwry9+WhK88g63gZT32RZjuOUp3uP7uP8vmeXH5+/hA987aTaem7qKmJ\nkVw9Po5nV6eTeqzYdhylOk1xRTW/X7abEbHh3DotwXYcj6el78Luv2Q4oYF+3P/+ThwOYzuOUp3i\n75+mkltcycNXjcLPVyups+kWdmE9QwL4n1nD2Zx5gjeTs23HUarDbc8+ydL1mcybksCYfhG243gF\nLX0XN3tCHGcO6MnDK/aQW6wTsinPUV3r4Lfv7SQ6LJBfXDDEdhyv0aLSF5EIEXlHRPaKyB4RmdJg\nvYjIEyKSJiI7RGR858T1PiLCn68aRUWNgwc+2I0xOsyjPMOzX6XzTU4Rf7jsDMKC/G3H8Rot3dP/\nB/CJMWYYMAZoOB3kxcBg520+8HSHJVQkRoXys/OG8MnuoyzfmWM7jlLtlnqsmCdWpnHJ6Fgu0mPy\nu1SzpS8i4cAM4HkAY0yVMeZkg4ddDrxk6mwAIkQktsPTerE7pg9gTFx3HvhwN8dLdIoG5b5qah38\n6u3thAb58cfLRtqO43Vasqc/EMgDXhSRbSKyWEQazoLUF6j/TuMh5zLVQfx8ffjrNWMoqajhgWW7\nbcdRqs2eW3OA7YcK+ePlI+kVGmg7jtdpSen7AeOBp40x44BS4L4Gj2ns9LnvDT6LyHwRSRaR5Lw8\nnWKgtYbEhPGTcwexfEcOH+swj3JDabnFPPZ5KheN7M0lo3QwwIaWlP4h4JAxZqPz83eo+yXQ8DH9\n6n0eBxxp+ETGmEXGmCRjTFJUVFRb8nq9O89O5Iy+4fzuw10UlFbZjqNUi9U6DL96ZwfBAb787xVn\n6FQLljRb+saYo0C2iAx1LjoXaDgF5DLgZudRPJOBQmOM7op2An9fH/46ewyF5dX84SMd5lHu44Wv\nD7Dt4En+cNlIosJ0WMeWlh69cw/wqojsAMYCfxaRBSKywLl+BZABpAHPAXd1eFL1reGx4dx9ziA+\nTDnCJ7uO2o6jVLPSckv426f7OG94DJeN6WM7jldr0YTVxpgUIKnB4mfqrTfA3R2YSzXjrpmD+HzP\nMX773g7G948gOjzIdiSlGlVV4+DeN7cRHODLn6/UYR3b9IxcNxXg58Pj142lrKqWX72zQ0/aUi7r\nHytT2XW4iIevGq07Jy5AS9+NDYoO4/5LhvNVah4v63V1lQvadKCAf61K59qkOD0Jy0Vo6bu5mybH\nc/aQKP60fA9puToFs3IdxRXV/OzNFPr1COaBS/UkLFehpe/mRIS/zh5NcIAv976ZQlWNw3YkpQB4\ncNk35BSW89h1YwkN1OvdugotfQ8QHR7Ew1eNZtfhIh7/PNV2HKVYviOHd7ce4sfnDGJCfA/bcVQ9\nWvoe4qIzenNdUj+e/iqdjRnHbcdRXiynsJz/eX8nY+K6c8+5g23HUQ1o6XuQBy4dQXzPYH76Roqe\nrausqKl18JPXt1Fd6+Cx68bir1fCcjn6P+JBQgL9eGrueApKq/j5Wyl6iUXV5R77PJXNmSf485Wj\nGBgVajuOaoSWvoc5o293fnfpCFbty+PZ1Rm24ygv8lVqHv/8Mp3rkvpxxTidZNdVael7oBvP7M8l\no2L526f7SM4ssB1HeYFjRRX8/M0UhsaE8aDOke/StPQ9kIjw8NWj6BvRjXte38YJHd9XnejUOH5Z\nVS3/vGEc3QJ8bUdSp6Gl76HCg/z559zxHC+p4hdvb9fxfdVpnli5n40HCnjoijMYFB1mO45qhpa+\nBxsV1537LxnOF3tzdXxfdYrVqXk8+WUasyfEcfWEONtxVAto6Xu4m6fEc8noWP76n72s2a9XK1Md\nJ7ugjHte38bQmDD+eLmO47sLLX0Pd2qahiExYfz4tW0cPF5mO5LyAOVVtcx/eQvGGJ69aQLBATrN\ngrvQ0vcCwQF+PHvTBADmv5xMWVWN5UTKnRljuO+9Hew9WsQ/rh9HfK8Q25FUK2jpe4n4XiE8cf04\n9h0r1vn3Vbu8sDaTD1OO8Ivzh3DO0GjbcVQrael7kbOHRPGrC4eyfEcOi/SNXdUG69Lz+fOKPVww\nIoa7Zg6yHUe1gZa+l1l4diKzRvXmkU/2sjpV39hVLXcgv5SFr2xlQGQIf792DD4+etlDd6Sl72Xq\n3tgdw5CYMO5+bSv7j+mFV1TzCsuquX3JZnx9hBfmTSQsyN92JNVGWvpeKCTQj8Xzkgj08+W2pZvJ\nL6m0HUm5sOpaB3e9toXsE2U8c+ME+vcKth1JtYOWvpeK6xHM4nlJ5BZVMv+lZCqqa21HUi7IGMOD\ny3azNu04D181mkkDetqOpNpJS9+Lje0XwWPXjWXrwZN6RI9q1PNfH+DVjQdZODOR2XrGrUfQ0vdy\ns0bF8puLhvHR9iM8+plealH917LtR3ho+R5mjerNry4YajuO6iB6Gp1iwdkDyTpeypNfpBEdFshN\nUxJsR1KWrUvP55dvbWdSQk8evXasHqnjQbT0FSLCQ1ecQX5JFQ8s202v0EBmjYq1HUtZsieniDtf\n2kJCZDDP3ZxEkL9OlexJdHhHAeDn68NTc8cxoX8P7n0jhXXp+bYjKQsOnyznlhc3ERLox5JbJ9E9\nWA/N9DRa+upbQf6+LJ6XREJkMPNf2sKuw4W2I6kulFtcwY2LN1JWVcuS2ybSJ6Kb7UiqE2jpq++I\nCA5g6W2TCA/yY94Lm0jL1ZO3vMGJ0ipuWryJo4UVLLl1IsN6h9uOpDpJi0pfRDJFZKeIpIhIciPr\nZ4pIoXN9iog80PFRVVeJ7d6NV350JiLC3Oc2kplfajuS6kTFFdXMe3ETB46XsnheEhPi9Vh8T9aa\nPf1zjDFjjTFJTaxf41w/1hjzx44Ip+wZGBXKa3ecSY3DMPe5DWQX6Dz8nqi8qpbblyTzzZEi/jV3\nPNMGRdqOpDqZDu+oJg2JCePl2ydRUlnD3MUbyCkstx1JdaDyqlp+9NJmkrMKeOy6sZw3IsZ2JNUF\nWlr6BvhURLaIyPwmHjNFRLaLyMciotdO8xAj+3Tn5dvP5ERpNdcv2sDhk1r8nqC0soZbl2xiffpx\n/nbNGC4d08d2JNVFWlr604wx44GLgbtFZEaD9VuBeGPMGOBJ4IPGnkRE5otIsogk5+XptL7uYky/\nCJbeNonjJVVc+8x6veSimyuprOGWFzex6UDdHv5V43V6BW/SotI3xhxxfswF3gcmNVhfZIwpcd5f\nAfiLyPcGB40xi4wxScaYpKioqHaHV11nQnwPXrtjMqVVNVz77HrS80psR1JtUFxRzc3Pb2TrwZM8\nef14Lh/b13Yk1cWaLX0RCRGRsFP3gQuAXQ0e01tExHl/kvN5j3d8XGXTqLjuvH7HZGocDq57dgP7\njurhnO7keEklNyzeyI5Dhfxz7jguGa1nXXujluzpxwBfi8h2YBOw3BjziYgsEJEFzsfMBnY5H/ME\nMMfolI0eaXhsOG/Mn4KvD1y3aD1bsgpsR1ItkF1QxjXPrCf1WDGLbp7ARWdo4XsrsdXNSUlJJjn5\ne4f8Kzdx8HgZN7+wkZzCCp6aO57z9cgPl7X3aBHzXthEeVUtL946UY/Dd3MisuU0h843Sw/ZVG3S\nv1cw7y6cyrDeYdz5cjKvbzpoO5JqxObMAq59Zj0Aby+YqoWvtPRV2/UKDeT1+ZM5e0gUv31vJ49+\nlqoXYnEhH2w7zA3PbSQyNJB3F05laO8w25GUC9DSV+0SHODHopuTuDYpjidW7uee17dRXqWXXrTJ\n4TA8+uk+7n0zhfHxEby7cCpxPfS6tqqOzqev2s3f14dHrh7NwKhQHvlkL1nHy1h08wRiu+ssjV2t\nvKqWX769neU7c7g2KY6Hrhh9gK0wAAAMXklEQVRFgJ/u26n/0leD6hAiwoKzE1l8cxIH8ku57Km1\nbD14wnYsr5JdUMa1z65nxa4c/mfWMB65erQWvvoefUWoDnXu8Bjeu2sq3fx9mfPsBl5en6nj/F3g\ny325/PDJr8nML2XRTUnMn5GI89QZpb5DS191uCExYSz78TSmDerF7z7czT2vb6O4otp2LI9U6zA8\n9lkqty3ZTGz3ID665yw9fFadlo7pq04RERzA8/Mm8uzqDP726T52Hynin3PHM6KPXpyjo+QWVfCL\nt7ezZn8+V43vy5+uGEW3AL2erTo93dNXncbHR1g4M5HX75hMWVUNV/xrLYvXZOBw6HBPe32y6ygX\nPr6azZkF/PnKUfz9mjFa+KpFtPRVp5s0oCfLfzKdGYMjeWj5HuYu1ouytFVJZQ2/fmc7C17ZQt8e\n3fj3PdOZe2Z/Hb9XLaalr7pEZGggz92cxP/NHs2uw0Vc/I81vLU5W9/kbYU1+/O4+B+reXvLIe4+\nJ5H3Fk5jUHSo7VjKzWjpqy4jIlyb1I+PfzqdkX3C+fW7O7hh8UadprkZBaVV/PzNFG56fhN+Pj68\nOX8Kv7pwmB6OqdpEJ1xTVjgchtc2HeSRT/ZSWe1gwcxE7pqZSJC/jkufYozhva2HeWj5NxRX1LBw\nZiJ3nzNIt5GXa++Ea1r6yqq84kr+tPwbPkg5QnyvYH578XAuHBnj9WPUW7IK+N9/7yEl+yTj+kfw\nl6tG69w5CtDSVx5ibVo+v1+2m7TcEpLie/DbWcOZEN/Ddqwul11QxiOf7OXfO3KIDgvkVxcO5erx\ncfj4ePcvQfVfWvrKY9TUOnh7yyEe/SyVvOJKLhrZm5+dP8Qr9nCPnCzn6VXpvLk5Gx8fmD99IHee\nnUhIoJ5Ko75LS195nLKqGhavOcCzX6VTWlXL+SNiuPucQYztF2E7Woc7fLKcf32ZxlvJ2RgD1yTF\ncc8PBtMnQierU43T0lce62RZFS+uzWTJukwKy6uZNqgXt00bwMyh0fi68XCHMYatB0+wZF0WH+/M\nQQSuTerHwpmJOgWyapaWvvJ4JZU1vLYxi8VrDpBbXEnfiG7MPbM/1yTFER0WZDtei5VW1rB8Zw4v\nrc9k1+EiwoL8uDapH7edNYC+umevWkhLX3mN6loHn31zjFc2ZLEu/Tj+vsLZQ6K4ZHQs5w2PISzI\n33bE76mudfD1/nw+SDnMp7uPUV5dy+DoUOZNTeDKcX11zF61WntLX19xym34+/owa1Qss0bFkp5X\nwpubs/lo+xE+35NLgJ8P5wyN4tzhMUwfHGn1Ai6FZdWs3p/Hqn15fLkvl4LSKrp38+fK8X25Ymxf\nJib08PpDUpU9uqev3JrDUTc+/u8dOazYmUNucSUAiVEhTB8cRVJCD0b3jaBfz26dVrR5xZWkZJ9k\n28ETbDpQwNaDJ3AYiAj2Z8bgKC4d04ezh0TpGbSqQ+jwjlJODodh79Fi1qblsyYtn00HjlNR7QCg\nezd/zugbzuDoMPr1DKZ/z2D69exGTFgQYUF++Pk2XcgOh6GwvJqCsiqOFVZw4HgpB/JKOZBfyr5j\nxRw6UQ6An48wsk84M4ZEMXNoNGP7Rbj1G87KNWnpK9WEyppaUo+WsPNwITsPF7LrcCEZeSWUNnLh\n9uAAX8KD/An098FhDA5H3VE2FTUOTpZV0XA26CB/HxJ6hZAYHcq4fhGM6x/ByD7ddYoE1el0TF+p\nJgT6+TIqrjuj4rp/u8wYw4myag4WlHGwoIz84kqKK2ooqqimuKKayhoHviKICD4Cgf4+9AwOoEdI\nAD1DAogKDSQhMoTe4UF6lqxyS1r6yquICD2dBe6JJ3sp1Rx9Z0kppbyIlr5SSnkRLX2llPIiLSp9\nEckUkZ0ikiIi3zvkRuo8ISJpIrJDRMZ3fFSllFLt1Zo3cs8xxuQ3se5iYLDzdibwtPOjUkopF9JR\nwzuXAy+ZOhuACBGJ7aDnVkop1UFaWvoG+FREtojI/EbW9wWy631+yLlMKaWUC2np8M40Y8wREYkG\nPhORvcaY1fXWN3aWyvdO9XX+wpgP0L9//1aHVUop1T4tKn1jzBHnx1wReR+YBNQv/UNAv3qfxwFH\nGnmeRcAiABHJE5GsNuZujUigqfcibNJcraO5WkdztY475YpvzxM2W/oiEgL4GGOKnfcvAP7Y4GHL\ngB+LyBvUvYFbaIzJOd3zGmOi2pi5VUQkuT3zVHQWzdU6mqt1NFfreFOuluzpxwDvO6el9QNeM8Z8\nIiILAIwxzwArgFlAGlAG3NqRIZVSSnWMZkvfGJMBjGlk+TP17hvg7o6NppRSqqN5wxm5i2wHaILm\nah3N1Tqaq3W8Jpe1+fSVUkp1PW/Y01dKKeXkVqUvIi+ISK6I7Gpi/TARWS8ilSLyywbrGp0/SER6\nishnIrLf+bFHV+USkaHOPKduRSJyr3PdgyJyuN66WZ2Q6wbnXEk7RGSdiIypt+4iEdnnnE/pvnrL\nB4jIRuf2elNEAroql4j0E5EvRWSPiOwWkZ/W+xrb28vm66up7WX79XW5M1OKiCSLyFn11s1zbpP9\nIjKv3vIJzu2YJnXzebX6SjVtzSUiY50/p7ud66+r9zVLRORAve01tqtyOdfV1vvey+otb/3PozHG\nbW7ADGA8sKuJ9dHAROBPwC8brMsEIhv5mv8D7nPevw94pCtz1XuML3AUiHd+/mBTj+3AXFOBHs77\nFwMb62VJBwYCAcB2YIRz3VvAHOf9Z4CFXZgrFhjvvB8GpNbLZW17ucDrq8lcll9fofx3CHk0sNd5\nvyeQ4fzYw3n/VP5NwBTqTvj8GLi4C3MNAQY77/cBcoAI5+dLgNk2tpfz85ImvqbVP49utadv6s4C\nLjjN+lxjzGaguhVPezmw1Hl/KXCFpVznAunGmA47Ya0FudYZY044P91A3Ul1UHfyXZoxJsMYUwW8\nAVzu3Ov6AfCO83Gdtb0azWWMyTHGbHXeLwb20IHTfbRje51OV7y+WpLLxuurxDjbCAjhv2fpXwh8\nZowpcOb+DLhI6ubrCjfGrHd+3Ut0zvZqNJcxJtUYs995/wiQC3TY+UTt2F6NauvPo1uVfjs1NX9Q\njHGeSOb8GG0lHcwBXm+w7MfOP/deaMuwQCvdTt2eFTQ9l1Iv4KQxpqbB8q7K9S0RSQDGARvrLba1\nvcB1Xl+Nbi8svb5E5EoR2QssB25zLm7q9dXXeb/h8q7KVX/9JOr+yk2vt/hPzu31mIgEdnGuIOeQ\nzwYROVXsbfp59KbSn2aMGU/dn793i8gM24FOcY7DXQa8XW/x00AiMJa6PzP/3onf/xzqyuI3pxY1\n8jBzmuVdlevU8lDgXeBeY0yRc7HN7QUu8Po6zfay9voyxrxvjBlG3R7o/56K1NhDT7O8q3IB4PyL\n42XgVmOMw7n4t8Aw6oZpe9JgG3dBrv6m7szcucDjIpJIG7eX15S+qTd/EHBq/iCAY87/5FP/2bkW\n4l0MbDXGHDu1wBhzzBhT63zRPcd/83YoERkNLAYuN8Ycdy5uai6lfOqmzfZrsLyrciEi/tQV/qvG\nmPdOLbe8vay/vprK5WTt9VXv+60GEkUkkqZfX4f47tBUp72+msiFiIRTt5f9/0zdNPGnHpdj6lQC\nL9K126v+6ysDWEXdX7lt+nn0itIXkRARCTt1n7r5g069g74MOHX0wDzgw65PyPU0+NNbvns9giv5\nb94OIyL9gfeAm4wxqfVWbQYGO48MCKBuaGCZc7zxS2C283Gdsr2ayuUcw3we2GOMebTB11jbXrZf\nX6f5fzzF1utr0Kmjb6TuanoBwHHgP8AFItLDOax0AfAf5/BXsYhMdn7dzXTO9mo0l/O1/j511wZ5\nu8HXnPrFLdTthXfZ9nJup0Dn8khgGvBNm38em3un15Vu1L1wc6h7Q/QQdX/KLgAWONf3di4vAk46\n74dTdxTKdudtN3B/vefsBawE9js/9uyqXM51wdT9IHRv8JwvAzuBHdQVR2wn5FoMnABSnLfkel87\ni7qjY9IbbK+B1B1hkUbdcEFgV+UCzqLuz9cd9dbNsr29XOD1dbr/R5uvr984t0cKsB44q97X3uZ8\nDaVRN4xyankSdYWaDjyF82iWrsgF3Oj8mpR6t7HOdV84t9cu4BUgtAtzTXV+7+3Oj7e35+dRz8hV\nSikv4hXDO0oppepo6SullBfR0ldKKS+ipa+UUl5ES18ppbyIlr5SSnkRLX2llPIiWvpKKeVF/j8D\nmYwT1C81kQAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "
" ] }, "metadata": {}, @@ -978,7 +1118,9 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "hidden": true + }, "source": [ "## Утверждение!\n", "Сумма вида $\\chi^2 = \\sum {\\frac{y_i - \\mu(x_i)}{\\sigma_i^2}}$ в достаточно общем случае распределена по распределению $\\chi^2$. \n", @@ -988,21 +1130,22 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": 15, "metadata": { "ExecuteTime": { "end_time": "2018-05-01T10:18:57.213228Z", "start_time": "2018-05-01T10:18:57.193230Z" - } + }, + "hidden": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "259.090909 *x^2 + -575.279337 *x + 324.309668\n", + "259.090909 *x^2 + -644.223230 *x + 405.581501\n", "\n", - "0.0621260744197\n" + "0.06212607441973938\n" ] } ], @@ -1015,34 +1158,39 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "hidden": true + }, "source": [ "## Сравнение оценок" ] }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "hidden": true + }, "source": [ "Сравниваем оценки" ] }, { "cell_type": "code", - "execution_count": 47, + "execution_count": 16, "metadata": { "ExecuteTime": { "end_time": "2018-05-01T10:18:57.234232Z", "start_time": "2018-05-01T10:18:57.215229Z" - } + }, + "hidden": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Оценка методом наименьших квадратов = 1.088\n", - "Оценка методом хи-квадрат = 1.110 +- 0.062\n" + "Оценка методом наименьших квадратов = 1.213\n", + "Оценка методом хи-квадрат = 1.243 +- 0.062\n" ] } ], @@ -1053,35 +1201,38 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "hidden": true + }, "source": [ "Строим распределения оценок. Заодно проверяем, что средняя ошибка методом $\\chi^2$ соответствует разбросу этой оценки" ] }, { "cell_type": "code", - "execution_count": 50, + "execution_count": 22, "metadata": { "ExecuteTime": { "end_time": "2018-05-01T10:21:55.257651Z", "start_time": "2018-05-01T10:20:04.092073Z" - } + }, + "hidden": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Стандартное отклонение оценки методом наименьших квадратов: 0.06516846169693595\n", - "Стандартное отклонение оценки методом хи-квадрат: 0.05951027223128111\n", - "Средняя ошибка методом хи-квадрат: 0.0592348877759137\n" + "Стандартное отклонение оценки методом наименьших квадратов: 0.15713530973827325\n", + "Стандартное отклонение оценки методом хи-квадрат: 0.09940335113972994\n", + "Средняя ошибка методом хи-квадрат: 0.10000000000000182\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEICAYAAABWJCMKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAH79JREFUeJzt3Xt0FeW9//H3V0CCN+4q92DragWJ\nBAHhVxUUD6h4RAVaFasoFftbVrz0Al4KWKqgcrRaWy0qRQ/Uy8G2UtQWlbo4/gq2oIBQbEkxQoAK\nBIOihuv398c8wU3YSTbZyd5J5vNaa6/seeaZme/M3pnvPM/MnjF3R0RE4ueIbAcgIiLZoQQgIhJT\nSgAiIjGlBCAiElNKACIiMaUEICISU0oAIiIxpQSQZWZ2pZktNbOdZrbZzF41szOzHZeINHxKAFlk\nZrcBPwPuBU4AOgO/BIZlMy4RiQl31ysLL6A5sBMYWUmdycBc4HngU+Ad4LSE8ROAf4VxfwcuTRg3\nGtgXlvEJsBDoEMYNBIrKLestYHTC8HXAGuBj4E9Al4RxDnw1YfinwKzwPjeMbxyG+4bhnybUvwhY\nDpQAfwHyKtkGDowD1gHbgAeAI8K4r4T1Kg7j5gAtEqZdFJZRArwIHJuwbd4qt5wiYGDCdp+dJJbz\ngMKEZW8HeoXh9iGGgRWsRyGwFTgyoeyv5bZVc+ApYDOwMWzXRmHeO8NrN7AnYfisMO31QEGIaR7Q\nPsnnWxqmKU1c/zD/eWHaAuD6ct/BsuWVAL8r245J1rEp0QHNpvD6GdD0ML5z/cL3oQRYkbgtgTeB\n7yT7LMLwKaFOCbAauDhh3CzC9w9oTfS/8n+zvQ+oCy+1ALKnP5BD9A9VmWHA/wCtgN8AvzezJmHc\nv4CziHYcdwOzzaxdwrSL3f0Y4HhgF3BrKoGZ2SXAHcBlQFvgf4FnU5k2ifuJdmZl8+4FzARuIPpn\n/BUwz8yaVjKPS4HeQC+i7XFd2eyAqUQ7sFOATkQ7rDLfA9qE8uOIdvw1wt3/BYwH5pjZUcCviZLg\nm5VMti3Ej5n1AI4pN/5pYC/wVSAfGEy009vk7seEz/Je4PmyYXf/XzM7l2g7fBNoB3wIPFdu3gbc\nEObx3XLjniVKgO2BEcC9ZjYoYfzzYbrOQFfgmgrW706inXhP4DSi5H9XJdvjy+DMOgAvEyW9VsAP\ngBfNrG0K0zYB/gAsIPqu30T0uXytXL1jgFeB37j7Y6nE1dApAWRPa2Cbu++tot4yd5/r7nuAB4mS\nRj8Ad/+fsHPY7+7PA2uJ/unKOyK8ilOM7QZgqruvCfHdC/Q0sy4pTg+AmV0Ulvt6QvH1wK/c/W13\n3+fuTxMlp36VzOo+d9/u7uuJjiqvAHD3And/zd13uftWou0zoGwid18Z4jeiHet7hxN/Vdz9CaJt\n/jbRjvfOKiZ5EhgT3l9PdLQPgJmdAFwA3OLun7n7FuAh4PIUQhkFzHT3d9x9F3A70N/MchPqNCNq\nPRzEzDoBZwLj3b3U3ZeHOL+dZDmNqPx7NAr4ibtvCZ/H3RXMJ5mrgFfc/ZXwfX4NWApcmMK0/YiS\n6TR33+3uC4H5hO9J0BT4PfC+u/80xZgaPCWA7CkG2phZ4yrqbSh74+77+fJIDTO72syWm1mJmZUA\npxId8ZbpF8pLiI7cZiWMa182XaiTuAPuAjycMG470U60Q0KddxLG/yBJ3EcQHZX+qFx5F+D75Zbd\nqWydqtoGREe3Zet/vJk9Z2YbzewTYHa59cfMVhJ1YzUD/pkwql+5GMov/5th3DYze83MTqogtieI\ntvvPw863MiuAluHI9D+Iul3KdAGaAJsTYvoV0RFtVdoTbRcA3H0n0fcr8fM6kagLKtm0293904Sy\nD8tN+80Qz1bgM6Kj7SrjIOGzSkEXYGS5z+RMosRa5pGEcb8vt9wN4f+jonW4ETiKKDE2SzGmBk8J\nIHsWE/XFXlJFvU5lb8zsCKAjsCkcjT9B1M3R2t1bAKuIdtRlloTyHKKd46yEcZvcvUXZC1iSMG4D\nUXdBi4RXM3f/S0KdXgnTTk8S92jgH+6+pFz5BuCecvM+yt0r62LqlPC+M1H/MkQJxonOIRxHdBSZ\nuP64ex5wbFjuQwmjlpRb/00c7IVQ3h5YT9QKOkjoUvgZ0ZH8ZDNrVck6lPk10Tmd+UR962U2ELWE\n2iTEdZy7d09hnpuIdqBlcR1N1MLcGIZPJEoAKyuYtpWZHZtQ1pmEbju+3BZHEbWi/iuVODj4s6rK\nBuC/y30vjnb3aQl1xiV8Xon/N5uATuH/o6J1+AtwNvA34J4UY2rwlACyxN13ABOBX5jZJWZ2lJk1\nMbMLzOz+hKqnm9lloaVwC9FOYglwNNHObyuAmV1LdCSadHFEJ4Sr7E8NHgduN7PuYd7NzWzkYa7i\nnURdEeU9AXzXzM6wyNFmNrTcDqi8H5pZy9BdcTPRDhSiHftOoCT0If+wbAIzO8bMuobBxkRH118c\n5jrg7rvDMpL9rzxM1EX3HaL+68dTmOVviE6uzyi3nM1Efdj/ZWbHmdkRZvYVMxuQbCZJ5nmtmfUM\n51LuBd5298IwfhywMHQrlV+/DUQ7x6lmlmNmeUTdVHOSLGc/0Xepou/Rs8BdZtbWzNoQfb9npxA/\nod5/mtkQM2sUYhloZh1TmPZtopbJj8L/0EDgPzn4PMiS0B14E3CFmfVPMa4GTQkgi9z9QeA2ohNl\nW4mOgr7Hwc3bl4BvEXVjfBu4zN33uPvfiY7EFgMfAT2A/1duEf3NbCewg+iE7vdSjOt3wH3Ac6Fr\nZRVR//ThmO/ua5PMeylR//ejYZ0KqPrk7EvAMqIrh17my77zu4lODO8I5b9NmKY50cnlT4EPiPqA\nJxxG/JeaWZGZbQzLOOhkppkNA87nyxOqtwG9zGxUZTN190/c/Ypk2wa4GjiS6CqVj4muAGuXpF75\neb4B/JjoSqfNRFcoXR7ivIMoEZ8VfmuykyhR9Q/jIOorzyU6kv4dMCn0wZf5VpiuGOhGdIFAMj8l\n6rdfSdRSeCeUlTkxbNMiMysC+gAPmln/kIiGhXmX/S/8kBT2USFJX0z0Hd1GdCn11e7+fpK6xURJ\nYKaZ5VQ174bO3PVAmLrKzCYTXW55VbZjyRYzc+Bkdy/Idiz1UfgOFbr7rHLlZwLnufvkLISVGMcs\nqr56SmqJWgAiDdsnRN0j5e0K47JtNVFrR7JALYA6TC0AtQBEapMSgIhITKkLSEQkpqr6EVJWtWnT\nxnNzc7MdhohIvbJs2bJt7l7lZd91OgHk5uaydOnSbIchIlKvmNmHVddSF5CISGwpAYiIxJQSgIhI\nTNXpcwAiUjfs2bOHoqIiSktLsx2KJMjJyaFjx440adKk6spJKAGISJWKioo49thjyc3NxcyqnkBq\nnbtTXFxMUVERXbt2rXqCJNQFJCJVKi0tpXXr1tr51yFmRuvWrdNqlSkBiEhKtPOve9L9TJQARERi\nSucAROSw5U54uUbnVzhtaJV1jjnmGHbu3Fljy5w1axaDBw+mfftUn1rZ8CgBiByuyc1TqLOj9uOQ\ntMyaNYtTTz016wlg7969NG6cnV2xuoBEpN554IEH6NOnD3l5eUyaNOlA+SWXXMLpp59O9+7dmTEj\neurmvn37GD16NKeeeio9evTgoYceYu7cuSxdupRRo0bRs2dPvvji4KeFPvLII3Tr1o28vDwuv/xy\nAIqLixk8eDD5+fnccMMNdOnShW3btlFYWMipp375NNbp06czefJkAJ544gn69OnDaaedxvDhw/n8\n888BGD16NLfddhvnnHMO48eP57PPPuO6666jT58+5Ofn89JLLwGwevVq+vbtS8+ePcnLy2Pt2mQP\nkqs+tQBEpF5ZsGABa9eu5a9//SvuzsUXX8yiRYs4++yzmTlzJq1ateKLL76gT58+DB8+nMLCQjZu\n3MiqVasAKCkpoUWLFjz66KNMnz6d3r17H7KMadOm8cEHH9C0aVNKSkoAuPvuuznzzDOZOHEiL7/8\n8oEEU5nLLruM66+/HoC77rqLp556iptuugmAf/7zn7z++us0atSIO+64g3PPPZeZM2dSUlJC3759\nOe+883j88ce5+eabGTVqFLt372bfvn01tRkBtQBEpJ5ZsGABCxYsID8/n169evH+++8fODJ+5JFH\nOO200+jXrx8bNmxg7dq1nHTSSaxbt46bbrqJP/7xjxx33HFVLiMvL49Ro0Yxe/bsA90zixYt4qqr\nomczDR06lJYtW1Y5n1WrVnHWWWfRo0cP5syZw+rVqw+MGzlyJI0aNTqwTtOmTaNnz54MHDiQ0tJS\n1q9fT//+/bn33nu57777+PDDD2nWrNlhb6/KKAGISL3i7tx+++0sX76c5cuXU1BQwJgxY3jzzTd5\n/fXXWbx4MStWrCA/P5/S0lJatmzJihUrGDhwIL/4xS/4zne+U+UyXn75ZW688UaWLVvG6aefzt69\ne4Hkl102btyY/fv3HxhOvC5/9OjRPProo7z33ntMmjTpoHFHH330Qev04osvHlin9evXc8opp3Dl\nlVcyb948mjVrxpAhQ1i4cGG1tllFlABEpF4ZMmQIM2fOPHBF0MaNG9myZQs7duygZcuWHHXUUbz/\n/vssWbIEgG3btrF//36GDx/OlClTeOeddwA49thj+fTTTw+Z//79+9mwYQPnnHMO999/PyUlJezc\nuZOzzz6bOXPmAPDqq6/y8cfRo4xPOOEEtmzZQnFxMbt27WL+/PkH5vXpp5/Srl079uzZc2Daitbp\n5z//OWVPaHz33XcBWLduHSeddBLjxo3j4osvZuXKleluvoPoHICIHLZULtusLYMHD2bNmjX0798f\niC4PnT17Nueffz6PP/44eXl5fO1rX6Nfv35AlCCuvfbaA0fpU6dOBaKj8+9+97s0a9aMxYsXH+he\n2bdvH1dddRU7duzA3bn11ltp0aIFkyZN4oorrqBXr14MGDCAzp07A9CkSRMmTpzIGWecQdeuXfn6\n179+INYpU6Zwxhln0KVLF3r06JE04QD8+Mc/5pZbbiEvLw93Jzc3l/nz5/P8888ze/ZsmjRpwokn\nnsjEiRNrdFvW6WcC9+7d2/VAGKlzYngZ6Jo1azjllFOyHUadUvbAqjZt2mQ1jmSfjZktc/dDz26X\noy4gEZGYUheQSG2IYSshbgoLC7MdQtrUAhARiakqE4CZzTSzLWa2KqGslZm9ZmZrw9+WodzM7BEz\nKzCzlWbWK2Gaa0L9tWZ2Te2sjoiIpCqVFsAs4PxyZROAN9z9ZOCNMAxwAXByeI0FHoMoYQCTgDOA\nvsCksqQhIiLZUWUCcPdFwPZyxcOAp8P7p4FLEsqf8cgSoIWZtQOGAK+5+3Z3/xh4jUOTioiIZFB1\nTwKf4O6bAdx9s5kdH8o7ABsS6hWFsorKD2FmY4laDweusxWROiaVk9yHNb/qnRAfPXo0F110ESNG\njDiofNOmTYwbN465c+fy2muvMWHCBHbv3s2RRx7JAw88wLnnnlsTUdd7NX0VULLH03gl5YcWus8A\nZkD0O4CaC01E4qJ9+/bMnTsXgDZt2vCHP/yB9u3bs2rVKoYMGcLGjRuzHGHdUN0E8JGZtQtH/+2A\nLaG8COiUUK8jsCmUDyxX/mY1ly1Se2r6yLYSyR6qks1f2NYHzzzzDNOnT8fMyMvLo1GjRixatIgH\nH3yQf//739x///2MGDGCwsJCLrroIlatWkV+fv6B6bt3705paSm7du2iadOmWVyTuqG6l4HOA8qu\n5LkGeCmh/OpwNVA/YEfoKvoTMNjMWoaTv4NDmYhISlavXs0999zDwoULWbFiBQ8//DAAmzdv5q23\n3mL+/PlMmDCh0nm8+OKL5Ofna+cfVNkCMLNniY7e25hZEdHVPNOAF8xsDLAeGBmqvwJcCBQAnwPX\nArj7djObAvwt1PuJu5c/sSwiUqGFCxcyYsSIA7deaNWqFRA9BOaII46gW7dufPTRRxVOv3r1asaP\nH8+CBQsyEm99UGUCcPcrKhg1KEldB26sYD4zgZmHFZ2ISODuSW/HnHg0X9G9zYqKirj00kt55pln\n+MpXvlJrMdY3+iWwiNQLgwYN4oUXXqC4uBiA7dtT60QoKSlh6NChTJ06lW984xu1GWK9o3sBicjh\ny8J9jLp3786dd97JgAEDaNSo0UEndyvz6KOPUlBQwJQpU5gyZQoQPYHr+OOPr2LKhk+3gxZJlMmr\ngEp/c0hZXb0KSLeDrrvSuR20WgASS8kuwQQozMlwICJZpHMAIiIxpQQgIimpy93FcZXuZ6IEICJV\nysnJobi4WEmgDnF3iouLycmpfr+lzgGISJU6duxIUVERW7duzXYokiAnJ4eOHTtWe3olAImPhCt8\ndLL38DRp0oSuXbtmOwypYeoCEhGJKSUAEZGYUgIQEYkpJQARkZhSAhARiSldBSSSJYU5Vx5aOLn8\ncOZvuibxoRaAiEhMKQGIiMSUEoCISEwpAYiIxJQSgIhITCkBiIjElBKAiEhM6XcA0qBU9KhH0B1A\nRcpTC0BEJKaUAEREYkoJQEQkpnQOQKQOq+icRuG0oRmORBoitQBERGJKCUBEJKbSSgBmdquZrTaz\nVWb2rJnlmFlXM3vbzNaa2fNmdmSo2zQMF4TxuTWxAiIiUj3VPgdgZh2AcUA3d//CzF4ALgcuBB5y\n9+fM7HFgDPBY+Puxu3/VzC4H7gO+lfYaiDRgSZ8ZAAc/N0DPDJBqSrcLqDHQzMwaA0cBm4Fzgblh\n/NPAJeH9sDBMGD/IzCzN5YuISDVVOwG4+0ZgOrCeaMe/A1gGlLj73lCtCOgQ3ncANoRp94b6rcvP\n18zGmtlSM1u6devW6oYnIiJVqHYCMLOWREf1XYH2wNHABUmqetkklYz7ssB9hrv3dvfebdu2rW54\nIiJShXS6gM4DPnD3re6+B/gt8H+AFqFLCKAjsCm8LwI6AYTxzYHtaSxfRETSkE4CWA/0M7OjQl/+\nIODvwJ+BEaHONcBL4f28MEwYv9DdD2kBiIhIZqRzDuBtopO57wDvhXnNAMYDt5lZAVEf/1NhkqeA\n1qH8NmBCGnGLiEia0roVhLtPAiaVK14H9E1StxQYmc7yRESk5uiXwCIiMaUEICISU0oAIiIxpdtB\nS8MwuTmgxz6KHA61AEREYkoJQEQkppQARERiSglARCSmdBJYpJ6r6LnBoGcHS+XUAhARiSklABGR\nmFICEBGJKSUAEZGYUgIQEYkpJQARkZhSAhARiSklABGRmFICEBGJKSUAEZGYUgIQEYkpJQARkZhS\nAhARiSklABGRmFICEBGJKSUAEZGYUgIQEYkpJQARkZhSAhARiSklABGRmFICEBGJqcbpTGxmLYAn\ngVMBB64D/gE8D+QChcA33f1jMzPgYeBC4HNgtLu/k87yRQQKc66seOTksr87MhGK1DPptgAeBv7o\n7l8HTgPWABOAN9z9ZOCNMAxwAXByeI0FHktz2SIikoZqtwDM7DjgbGA0gLvvBnab2TBgYKj2NPAm\nMB4YBjzj7g4sMbMWZtbO3TdXO3qJjdwJL1c6vjAnQ4GINCDptABOArYCvzazd83sSTM7GjihbKce\n/h4f6ncANiRMXxTKDmJmY81sqZkt3bp1axrhiYhIZdJJAI2BXsBj7p4PfMaX3T3JWJIyP6TAfYa7\n93b33m3btk0jPBERqUw6CaAIKHL3t8PwXKKE8JGZtQMIf7ck1O+UMH1HYFMayxcRkTRUOwG4+7+B\nDWb2tVA0CPg7MA+4JpRdA7wU3s8DrrZIP2CH+v9FRLInrctAgZuAOWZ2JLAOuJYoqbxgZmOA9cDI\nUPcVoktAC4guA702zWWLiEga0koA7r4c6J1k1KAkdR24MZ3liYhIzUm3BSBS+yY312WeIrVAt4IQ\nEYkpJQARkZhSAhARiSklABGRmFICEBGJKSUAEZGY0mWgIjFQ2d1UC6cNzWAkUpcoAUjW6VbPItmh\nLiARkZhSAhARiSklABGRmFICEBGJKSUAEZGYUgIQEYkpJQARkZhSAhARiSklABGRmFICEBGJKd0K\nQiQGCnOurHjk5LK/OzIRitQhagGIiMSUEoCISEwpAYiIxJQSgIhITCkBiIjElK4Ckuya3FwPfBHJ\nEiUAEQFSeDKbHh3Z4KgLSEQkppQARERiKu0EYGaNzOxdM5sfhrua2dtmttbMnjezI0N50zBcEMbn\nprtsERGpvppoAdwMrEkYvg94yN1PBj4GxoTyMcDH7v5V4KFQT0REsiStBGBmHYGhwJNh2IBzgbmh\nytPAJeH9sDBMGD8o1BcRkSxItwXwM+BHwP4w3Boocfe9YbgI6BDedwA2AITxO0J9ERHJgmonADO7\nCNji7ssSi5NU9RTGJc53rJktNbOlW7durW54IiJShXRaAN8ALjazQuA5oq6fnwEtzKzs9wUdgU3h\nfRHQCSCMbw5sLz9Td5/h7r3dvXfbtm3TCE9ERCpT7QTg7re7e0d3zwUuBxa6+yjgz8CIUO0a4KXw\nfl4YJoxf6O6HtABERCQzauN3AOOB28ysgKiP/6lQ/hTQOpTfBkyohWWLiEiKauRWEO7+JvBmeL8O\n6JukTikwsiaWJyIi6dMvgUVEYkoJQEQkpnQ3UKk1Vd1dEtCtoEWySC0AEZGYUgIQEYkpJQARkZhS\nAhARiSklABGRmFICEBGJKSUAEZGYUgIQEYkpJQARkZhSAhARiSklABGRmNK9gEQEgMKcKyuvMBmY\nvCMToUiGqAUgIhJTSgAiIjGlBCAiElM6ByC1pso+ZRHJKrUARERiSglARCSm1AUkIilL6TGf04Zm\nIBKpCWoBiIjElBKAiEhMKQGIiMSUzgHIYUulHxigMKeWAxGRtKgFICISU0oAIiIxpQQgIhJTSgAi\nIjFV7QRgZp3M7M9mtsbMVpvZzaG8lZm9ZmZrw9+WodzM7BEzKzCzlWbWq6ZWQkREDl86LYC9wPfd\n/RSgH3CjmXUDJgBvuPvJwBthGOAC4OTwGgs8lsayRUQkTdVOAO6+2d3fCe8/BdYAHYBhwNOh2tPA\nJeH9MOAZjywBWphZu2pHLiIiaamR3wGYWS6QD7wNnODumyFKEmZ2fKjWAdiQMFlRKNtcbl5jiVoI\ndO7cuSbCE5EaktotvvXYyPoi7ZPAZnYM8CJwi7t/UlnVJGV+SIH7DHfv7e6927Ztm254IiJSgbQS\ngJk1Idr5z3H334bij8q6dsLfLaG8COiUMHlHYFM6yxcRkepL5yogA54C1rj7gwmj5gHXhPfXAC8l\nlF8drgbqB+wo6yoSEZHMS+ccwDeAbwPvmdnyUHYHMA14wczGAOuBkWHcK8CFQAHwOXBtGsuWLNPj\nHkXqv2onAHd/i+T9+gCDktR34MbqLk9E6gc9NKb+0C+BRURiSglARCSmlABERGJKCUBEJKaUAERE\nYkqPhJSDpPq4RxGp/9QCEBGJKSUAEZGYUgIQEYkpJQARkZhSAhARiSldBSQiNSqlGwVOBibrwTHZ\npgQgh9CdPkXiQV1AIiIxpRaAiGSFbhudfWoBiIjElBKAiEhMKQGIiMSUEoCISEzpJHBM6C6fIlKe\nEoCIZEVqvzfRj8Vqk7qARERiSi2AmNGvfEWkjFoAIiIxpRZAPaeTu9KQpfr91i+Gq0cJQETqrFS6\nLHNLf5OBSBomdQGJiMSUWgANiE7wSlzpxnLVowRQh6l/X0Rqk7qARERiKuMtADM7H3gYaAQ86e7T\nMh1DtlXnyF7dOyLJpXqiWFcUHSqjCcDMGgG/AP4DKAL+Zmbz3P3vmYyjNmnnLlL36Gqi5DLdAugL\nFLj7OgAzew4YBtT5BKAdu0jDduD/dXLFdQ43SdT11kSmE0AHYEPCcBFwRmIFMxsLjA2DO83sHxmK\nrcZZatXaANtqNZDs0zo2HHFYz0rW8aLDmpHdl34w1dQllUqZTgDJ9ol+0ID7DGBGZsLJPjNb6u69\nsx1HbdI6NhxxWM84rGOZTF8FVAR0ShjuCGzKcAwiIkLmE8DfgJPNrKuZHQlcDszLcAwiIkKGu4Dc\nfa+ZfQ/4E9FloDPdfXUmY6iD4tDdpXVsOOKwnnFYRwDM3auuJSIiDY5+CSwiElNKACIiMaUEkCFm\ndr6Z/cPMCsxsQpLxnc3sz2b2rpmtNLMLsxFnOlJYxy5m9kZYvzfNrGM24kyHmc00sy1mtqqC8WZm\nj4RtsNLMemU6xnSlsI5fN7PFZrbLzH6Q6fhqQgrrOCp8fivN7C9mdlqmY8wEJYAMSLgFxgVAN+AK\nM+tWrtpdwAvunk90ddQvMxtlelJcx+nAM+6eB/wEmJrZKGvELOD8SsZfAJwcXmOBxzIQU02bReXr\nuB0YR/R51lezqHwdPwAGhO/qFBroiWElgMw4cAsMd98NlN0CI5EDx4X3zal/v49IZR27AW+E939O\nMr7Oc/dFRDvAigwjSnLu7kuAFmbWLjPR1Yyq1tHdt7j734A9mYuqZqWwjn9x94/D4BKi3yw1OEoA\nmZHsFhgdytWZDFxlZkXAK8BNmQmtxqSyjiuA4eH9pcCxZtY6A7FlUirbQeqXMcCr2Q6iNigBZEaV\nt8AArgBmuXtH4ELgv82sPn0+qazjD4ABZvYuMADYCOyt7cAyLJXtIPWEmZ1DlADGZzuW2qAngmVG\nKrfAGEPok3T3xWaWQ3RTqi0ZiTB9Va6ju28CLgMws2OA4e6+I2MRZoZud9JAmFke8CRwgbsXZzue\n2lCfjjDrs1RugbEeGARgZqcAOcDWjEaZnirX0czaJLRqbgdmZjjGTJgHXB2uBuoH7HD3zdkOSg6P\nmXUGfgt8293/me14aotaABlQ0S0wzOwnwFJ3nwd8H3jCzG4l6jIY7fXoZ9opruNAYKqZObAIuDFr\nAVeTmT1LtB5twvmaSUATAHd/nOj8zYVAAfA5cG12Iq2+qtbRzE4ElhJdtLDfzG4Burn7J1kK+bCl\n8DlOBFoDvzQzgL0N8Q6huhWEiEhMqQtIRCSmlABERGJKCUBEJKaUAEREYkoJQEQkppQARERiSglA\nRCSm/j/S37l+4SRoGAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEICAYAAABPgw/pAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAHPVJREFUeJzt3XmYVPWV//H3EZAGFVlVFqXBcYws\nDY2A4IrLDxccVzQqGnF3xoBLJgE1AR2i4jJxic4YVIIOGHUwUYIxg0p8HEcx0yggiBGCLTQw0rQ2\ngrFZz++PexuLtrqrmq6F/vbn9Tz1dN+62/neqjp16ns3c3dERKTx2yvfAYiISGYooYuIBEIJXUQk\nEEroIiKBUEIXEQmEErqISCCU0EVEAqGEnkFmdomZlZjZJjNba2avmtmx+Y5LRJoGJfQMMbNbgIeA\nu4EDgUOAfwPOzmdcItKEuLseDXwA+wObgAvqmOYOYCbwPLAReB/olzB+PPDXeNxHwLkJ40YD2+N1\nfAXMBbrG44YBZTXW9TYwOmH4SmAp8CXwX0D3hHEO/F3C8M+BafH/hfH45vHw4Hj45wnTnwksACqB\nd4CiOraBA2OBFcB64H5gr3jcoXG7KuJxM4C2CfO+Fa+jEngR2C9h27xdYz1lwLCE7T49SSynAKUJ\n6/4CGBAPd4ljGFZLO0qBcmDvhOf+XGNb7Q88BawFVsfbtVm87E3xYwuwNWH4uHjea4DlcUyzgC5J\nXt+qeJ6qxPbHy58Vz7scuKbGe7B6fZXA76q3Y5I2tiQqUNbEj4eAlvV4zw2J3w+VwMLEbQm8CVyd\n7LWIh4+Ip6kElgBnJYybRvz+AzoQfVb+Md85YE95qELPjKFAAdEHpC5nA/8JtAeeBV4ysxbxuL8C\nxxElgjuB6WbWOWHed919X+AAYDNwczqBmdk5wG3AeUAn4L+B36QzbxL3ESWn6mUPAKYC1xF9uH4F\nzDKzlnUs41xgIDCAaHtcWb044B6ihHQEcDBRAqr2Q6Bj/HwbokSeEe7+V2AcMMPMWgO/JvpSe7OO\n2dbH8WNmfYF9a4x/GtgG/B1QDAwnSmJr3H3f+LW8G3i+etjd/9vMTiLaDhcCnYHPgOdqLNuA6+Jl\nXF9j3G+IvtC6ACOBu83s5ITxz8fzHQL0AC6vpX23EyXl/kA/oi/zn9axPb4Nzqwr8ArRl1h74J+B\nF82sUxrztgB+D8wheq+PIXpdDq8x3b7Aq8Cz7v7v6cTVFCihZ0YHYL27b0sx3Xx3n+nuW4FfEH0J\nDAFw9/+MP+w73P15YBnRh6imveJHRZqxXQfc4+5L4/juBvqbWfc05wfAzM6M1/t6wtPXAL9y9/fc\nfbu7P030ZTOkjkXd6+5fuPtKoqrvYgB3X+7ur7n7ZncvJ9o+J1TP5O6L4viNKFF+WJ/4U3H3J4i2\n+XtEifT2FLM8CVwV/38NUTUOgJkdCJwO3OTuX7v7OuBB4KI0QhkFTHX39919M3ArMNTMChOmaUVU\n3e/CzA4GjgXGuXuVuy+I47wsyXqaUff7aBTwL+6+Ln497qxlOclcCvzB3f8Qv59fA0qAM9KYdwjR\nl+Nkd9/i7nOB2cTvk1hL4CXgY3f/eZoxNQlK6JlRAXQ0s+YppltV/Y+77+DbSgoz+4GZLTCzSjOr\nBPoQVaTVhsTPVxJVVtMSxnWpni+eJjGhdgceThj3BVFS7JowzfsJ4/85Sdx7EVWNP6nxfHfgRzXW\nfXB1m1JtA6Lqs7r9B5jZc2a22sy+AqbXaD9mtoio26gV8EnCqCE1Yqi5/gvjcevN7DUz61lLbE8Q\nbfdfxsm0LguBdnHl+P+IujmqdQdaAGsTYvoVUcWZShei7QKAu28ien8lvl4HEXX5JJv3C3ffmPDc\nZzXmvTCOpxz4mqgaThkHCa9VGroDF9R4TY4l+qKs9kjCuJdqrHdV/PmorQ03AK2JvuhapRlTk6CE\nnhnvEvVlnpNiuoOr/zGzvYBuwJq4Wn6CqFuhg7u3BRYTJd5q8+LnC4iS3bSEcWvcvW31A5iXMG4V\n0c/ztgmPVu7+TsI0AxLmfSBJ3KOBv7j7vBrPrwLuqrHs1u5eV5fOwQn/H0LUPwvRF4YT9cG3Iary\nEtuPuxcB+8XrfTBh1Lwa7V/Drl6In+8CrCT6lbKL+Cf8Q0SV9h1m1r6ONlT7NdE+kdlEfdPVVhH9\nUumYEFcbd++dxjLXECXE6rj2IfoFuDoePogooS+qZd72ZrZfwnOHkNBNxrfbojXRr5x/TScOdn2t\nUlkF/EeN98U+7j45YZqxCa9X4udmDXBw/PmorQ3vAMcD/wvclWZMTYISega4+wZgAvCYmZ1jZq3N\nrIWZnW5m9yVMeqSZnRdX8jcRfejnAfsQJbNyADO7gqhSTLo6oh2kKfsjY48Dt5pZ73jZ+5vZBfVs\n4u1EP/1regK43syOssg+ZjaiRkKp6cdm1i7uHriRKCFClKg3AZVxH+yPq2cws33NrEc82Jyo+v2m\nnm3A3bfE60j2vn+YqEvsaqL+38fTWOSzRDubp9RYz1qiPuB/NbM2ZraXmR1qZickW0iSZV5hZv3j\nfRF3A++5e2k8fiwwN+7Gqdm+VUTJ7h4zKzCzIqJuoRlJ1rOD6L1U2/voN8BPzayTmXUken9PTyN+\n4un+wcxONbNmcSzDzKxbGvO+R/TL4SfxZ2gY8A/suh9hXtz9Nga42MyGphlX8JTQM8TdfwHcQrTj\nqJyoSvkhu/6cfBn4PlG3wWXAee6+1d0/IqqU3gU+B/oC/1NjFUPNbBOwgWgH5w/TjOt3wL3Ac3FX\nxmKi/t36mO3uy5Isu4So//jRuE3LSb2z8mVgPtGRMa/wbd/znUQ7SjfEz/82YZ79iXa2bgQ+JepD\nHV+P+M81szIzWx2vY5ede2Z2NnAa3+5gvAUYYGaj6lqou3/l7hcn2zbAD4C9iY7C+JLoCKfOSaar\nucw3gJ8RHcmzlugInIviOG8j+mI9Lj7XYRPRF8/QeBxEfc2FRJXu74CJcR92te/H81UAvYh2mCfz\nc6J+70VElfz78XPVDoq3aZmZlQGDgF+Y2dD4i+XseNnVn4Ufk0a+ib90zyJ6j64nOvT3B+7+cZJp\nK4iS+lQzK0i17KbA3HWDi1wwszuIDg+8NN+x5IuZOXCYuy/PdyyNUfweKnX3aTWePxY4xd3vyENY\niXFMI/XRQZJFqtBFGo+viLojatocj8u3JUS/RiRPVKHniCp0Vegi2aaELiISCHW5iIgEItWJMBnV\nsWNHLywszOUqRUQavfnz569395SHKuc0oRcWFlJSUpLLVYqINHpm9lnqqdTlIiISDCV0EZFAKKGL\niAQip33oIrJn2Lp1K2VlZVRVVeU7FElQUFBAt27daNGiReqJk1BCF2mCysrK2G+//SgsLMTMUs8g\nWefuVFRUUFZWRo8ePVLPkIS6XESaoKqqKjp06KBkvgcxMzp06NCgX01K6CJNlJL5nqehr4kSuohI\nINSHLiIUjn8lo8srnTwi5TT77rsvmzZtytg6p02bxvDhw+nSJd075YVHCV0apXQTUDqJRcIwbdo0\n+vTpk/eEvm3bNpo3z09qVZeLiOTd/fffz6BBgygqKmLixIk7nz/nnHM48sgj6d27N1OmRHf62759\nO6NHj6ZPnz707duXBx98kJkzZ1JSUsKoUaPo378/33yz6x0KH3nkEXr16kVRUREXXXQRABUVFQwf\nPpzi4mKuu+46unfvzvr16yktLaVPn2/vAPnAAw9wxx13APDEE08waNAg+vXrx/nnn8/f/vY3AEaP\nHs0tt9zCiSeeyLhx4/j666+58sorGTRoEMXFxbz88ssALFmyhMGDB9O/f3+KiopYtizZza52nyp0\nCZoq+T3fnDlzWLZsGX/+859xd8466yzeeustjj/+eKZOnUr79u355ptvGDRoEOeffz6lpaWsXr2a\nxYsXA1BZWUnbtm159NFHeeCBBxg4cOB31jF58mQ+/fRTWrZsSWVlJQB33nknxx57LBMmTOCVV17Z\n+YVRl/POO49rrrkGgJ/+9Kc89dRTjBkzBoBPPvmE119/nWbNmnHbbbdx0kknMXXqVCorKxk8eDCn\nnHIKjz/+ODfeeCOjRo1iy5YtbN++PVObEVCFLiJ5NmfOHObMmUNxcTEDBgzg448/3lm5PvLII/Tr\n148hQ4awatUqli1bRs+ePVmxYgVjxozhj3/8I23atEm5jqKiIkaNGsX06dN3doe89dZbXHppdL+Z\nESNG0K5du5TLWbx4Mccddxx9+/ZlxowZLFmyZOe4Cy64gGbNmu1s0+TJk+nfvz/Dhg2jqqqKlStX\nMnToUO6++27uvfdePvvsM1q1alXv7VUXJXQRySt359Zbb2XBggUsWLCA5cuXc9VVV/Hmm2/y+uuv\n8+6777Jw4UKKi4upqqqiXbt2LFy4kGHDhvHYY49x9dVXp1zHK6+8wg033MD8+fM58sgj2bZtG5D8\nMMHmzZuzY8eOncOJx4WPHj2aRx99lA8//JCJEyfuMm6fffbZpU0vvvjizjatXLmSI444gksuuYRZ\ns2bRqlUrTj31VObOnbtb26w2SugiklennnoqU6dO3XnEy+rVq1m3bh0bNmygXbt2tG7dmo8//ph5\n8+YBsH79enbs2MH555/PpEmTeP/99wHYb7/92Lhx43eWv2PHDlatWsWJJ57IfffdR2VlJZs2beL4\n449nxowZALz66qt8+WV0O9QDDzyQdevWUVFRwebNm5k9e/bOZW3cuJHOnTuzdevWnfPW1qZf/vKX\nVN8R7oMPPgBgxYoV9OzZk7Fjx3LWWWexaNGihm6+XagPXUTyug9h+PDhLF26lKFDhwLR4YzTp0/n\ntNNO4/HHH6eoqIjDDz+cIUOGAFHCv+KKK3ZW0ffccw8QVc/XX389rVq14t13393ZnbF9+3YuvfRS\nNmzYgLtz880307ZtWyZOnMjFF1/MgAEDOOGEEzjkkEMAaNGiBRMmTOCoo46iR48efO9739sZ66RJ\nkzjqqKPo3r07ffv2TfoFAvCzn/2Mm266iaKiItydwsJCZs+ezfPPP8/06dNp0aIFBx10EBMmTMjo\ntszpPUUHDhzousGFZEI+jpsOydKlSzniiCPyHcYepfoGPB07dsxrHMleGzOb7+7f3dtbg7pcREQC\noS4XEXR4o0BpaWm+Q2gwVegiIoFQQhcRCYQSuohIIJTQRUQCoZ2iIgJ37J/h5W2o9yyjR4/mzDPP\nZOTIkbs8v2bNGsaOHcvMmTN57bXXGD9+PFu2bGHvvffm/vvv56STTspU1I1eWgndzG4GrgYc+BC4\nAugMPAe0B94HLnP3LVmKU0SaqC5dujBz5kwAOnbsyO9//3u6dOnC4sWLOfXUU1m9enWeI9xzpOxy\nMbOuwFhgoLv3AZoBFwH3Ag+6+2HAl8BV2QxUpDalBZckfcie7ZlnnqGoqIh+/fpx2WWXAdEFs44+\n+mh69uy5M4knXs62uLh45/XOe/fuTVVVFZs3b85PA/ZA6fahNwdamVlzoDWwFjgJmBmPfxo4J/Ph\niUiIlixZwl133cXcuXNZuHAhDz/8MABr167l7bffZvbs2YwfP77OZbz44osUFxfTsmXLXITcKKTs\ncnH31Wb2ALAS+AaYA8wHKt19WzxZGdA1a1GKSFDmzp3LyJEjd55m3759eyC6ocVee+1Fr169+Pzz\nz2udf8mSJYwbN445c+bkJN7GIp0ul3bA2UAPoAuwD3B6kkmTXhTGzK41sxIzKykvL29IrCISCHdP\neunaxGq7tutMlZWVce655/LMM89w6KGHZi3GxiidLpdTgE/dvdzdtwK/BY4G2sZdMADdgDXJZnb3\nKe4+0N0HdurUKSNBi0jjdvLJJ/PCCy9QUVEBwBdffJHWfJWVlYwYMYJ77rmHY445JpshNkrpHOWy\nEhhiZq2JulxOBkqAPwEjiY50uRx4OVtBikiW7cZhhg3Ru3dvbr/9dk444QSaNWtGcXFxWvM9+uij\nLF++nEmTJjFp0iQgujvQAQcckM1wG420Lp9rZncC3we2AR8QHcLYlW8PW/wAuNTd69zdrMvnSqYk\nXkyrtiNaCquezfh6Q7k4ly6fu+dqyOVz0zoO3d0nAhNrPL0CGJxukCIikl069V9EJBBK6CJNVC7v\nVibpaehromu5SOORcL2R0oI8xhGAgoICKioq6NChQ9LDByX33J2KigoKCnb/za2ELtIEdevWjbKy\nMnRuyJ6loKCAbt267fb8SugiTVCLFi3o0aNHvsOQDFMfuohIIFShy54n09fmFmkiVKGLiARCCV1E\nJBDqcpFg1fcmF9m4VIBILqlCFxEJhBK67FESL7olIvWjhC4iEgj1oYvUQ31+QYRyqV1pPFShi4gE\nQgldRCQQ6nIRidV1mKMOaZTGQBW6iEgglNBFRAKhhC4iEggldBGRQCihi4gEQgldRCQQSugiIoFQ\nQhcRCYROLJKc0FUURbJPFbqISCCU0EVEAqGELiISCCV0EZFAKKGLiARCCV1EJBBK6CIigVBCFxEJ\nhBK6iEgglNBFRAKhhC4iEggldBGRQKSV0M2srZnNNLOPzWypmQ01s/Zm9pqZLYv/tst2sCIiUrt0\nK/SHgT+6+/eAfsBSYDzwhrsfBrwRD4uISJ6kTOhm1gY4HngKwN23uHslcDbwdDzZ08A52QpSRERS\nS6dC7wmUA782sw/M7Ekz2wc40N3XAsR/D8hinCIikkI6Cb05MAD4d3cvBr6mHt0rZnatmZWYWUl5\nefluhikiIqmkk9DLgDJ3fy8enkmU4D83s84A8d91yWZ29ynuPtDdB3bq1CkTMYuISBIpE7q7/x+w\nyswOj586GfgImAVcHj93OfByViIUEZG0pHtP0THADDPbG1gBXEH0ZfCCmV0FrAQuyE6IIiKSjrQS\nursvAAYmGXVyZsORxqShN34uLbgkQ5HkT21tKKx6Nu3tUzp5RCZDkiZMZ4qKiARCCV1EJBBK6CIi\ngVBCFxEJhBK6iEgglNBFRAKR7nHoIpJnOgxSUlGFLiISCCV0EZFAqMtFJAvqOoNUJFtUoYuIBEIV\nukieNfSaOCLVVKGLiARCCV1EJBBK6CIigVBCFxEJhHaKyndoJ51I46QKXUQkEEroIiKBUEIXEQmE\nErqISCCU0EVEAqGELiISCB22KJKG2q6eKLInUYUuIhIIJXQRkUAooYuIBEIJXUQkEEroIiKBUEIX\nEQmEDluUjNGNkUXySxW6iEggVKE3Ifm6zrlOyhHJDVXoIiKBUEIXEQmEErqISCCU0EVEAqGELiIS\nCCV0EZFApJ3QzayZmX1gZrPj4R5m9p6ZLTOz581s7+yFKSIiqdSnQr8RWJowfC/woLsfBnwJXJXJ\nwEREpH7SSuhm1g0YATwZDxtwEjAznuRp4JxsBCgiIulJt0J/CPgJsCMe7gBUuvu2eLgM6JpsRjO7\n1sxKzKykvLy8QcGKiEjtUiZ0MzsTWOfu8xOfTjKpJ5vf3ae4+0B3H9ipU6fdDFNERFJJ51ouxwBn\nmdkZQAHQhqhib2tmzeMqvRuwJnthioRBV6SUbEpZobv7re7ezd0LgYuAue4+CvgTMDKe7HLg5axF\nKSIiKTXkOPRxwC1mtpyoT/2pzIQkIiK7o16Xz3X3N4E34/9XAIMzH5KIiOwOnSkqIhIIJXQRkUAo\noYuIBEK3oBMJTLq3GiydPCLLkUiuqUIXEQmEErqISCCU0EVEAqGELiISCCV0EZFAKKGLiARCCV1E\nJBBK6CIigVBCFxEJhBK6iEgglNBFRAKha7mI7AF0azrJBFXoIiKBUIUu0kTpqozhUYUuIhIIJXQR\nkUAooYuIBEIJXUQkEEroIiKBUEIXEQmEDlsMQLqHn9WXTnYRaVxUoYuIBEIJXUQkEEroIiKBUEIX\nEQmEErqISCCU0EVEAqGELiISCCV0EZFAKKGLiARCZ4pKvdV2BqmI5JcqdBGRQKhCb+JUbTdOus6O\nJKMKXUQkECkrdDM7GHgGOAjYAUxx94fNrD3wPFAIlAIXuvuX2Qu16cnWVRRFJEzpVOjbgB+5+xHA\nEOAGM+sFjAfecPfDgDfiYRERyZOUCd3d17r7+/H/G4GlQFfgbODpeLKngXOyFaSIiKRWrz50MysE\nioH3gAPdfS1ESR84oJZ5rjWzEjMrKS8vb1i0IiJSq7QTupntC7wI3OTuX6U7n7tPcfeB7j6wU6dO\nuxOjiIikIa3DFs2sBVEyn+Huv42f/tzMOrv7WjPrDKzLVpAiTZUOK5X6SFmhm5kBTwFL3f0XCaNm\nAZfH/18OvJz58EREJF3pVOjHAJcBH5rZgvi524DJwAtmdhWwErggOyGKiEg6UiZ0d38bsFpGn5zZ\ncEREZHfpTFERkUDoWi4iUqd0z1gunTwiy5FIKqrQRUQCoYQuIhIIJXQRkUAooYuIBEIJXUQkEEro\nIiKBUEIXEQmEErqISCB0YlEG6ZZxIpJPqtBFRAKhhC4iEgh1uYhIzun6MNmhCl1EJBCq0EUCUtst\n6wqrns1xJJIPqtBFRAKhCj0FHYooIo2FKnQRkUAooYuIBEJdLk1EbTvLpGnIxc5SdU/mnyp0EZFA\nKKGLiARCCV1EJBDqQw+M+spFmi5V6CIigVBCFxEJhLpcGil1rYh8S1dvjKhCFxEJRJOt0HUShIiu\nzhgaVegiIoEIrkJX5S0iTZUqdBGRQCihi4gEotF0uTTVrhQdnij5sDs7S7WDNf9UoYuIBKLRVOih\nUyUu0vjsaSc0qUIXEQlEgyp0MzsNeBhoBjzp7pMzEpWICJnfd7anVdSZttsVupk1Ax4DTgd6AReb\nWa9MBSYiIvXTkC6XwcByd1/h7luA54CzMxOWiIjUV0O6XLoCqxKGy4Cjak5kZtcC18aDm8zsLw1Y\nZ6Z1BNbnOwgAy+3q9ph251hTbTdkrO1n1jqm9vdw7fPkwG612+7NbBAZWF73dCZqSEJP9vr5d55w\nnwJMacB6ssbMStx9YL7jyDW1u+lpqm1vau1uSJdLGXBwwnA3YE3DwhERkd3VkIT+v8BhZtbDzPYG\nLgJmZSYsERGpr93ucnH3bWb2Q+C/iA5bnOruSzIWWW7skV1BOaB2Nz1Nte1Nqt3m/p1ubxERaYR0\npqiISCCU0EVEAhF8Qjez08zsL2a23MzG1zLNhWb2kZktMbNgrvWZqu1mdoiZ/cnMPjCzRWZ2Rj7i\nzCQzm2pm68xscS3jzcweibfJIjMbkOsYsyWNto+K27zIzN4xs365jjEbUrU7YbpBZrbdzEbmKrac\nc/dgH0Q7a/8K9AT2BhYCvWpMcxjwAdAuHj4g33HnsO1TgH+M/+8FlOY77gy0+3hgALC4lvFnAK8S\nnUcxBHgv3zHnsO1HJ7zPTw+l7anaHU/TDJgL/AEYme+Ys/UIvUJP5/IE1wCPufuXAO6+LscxZks6\nbXegTfz//gRwHoG7vwV8UcckZwPPeGQe0NbMOucmuuxK1XZ3f6f6fQ7MIzp3pNFL4zUHGAO8CITy\n+U4q9ISe7PIEXWtM8/fA35vZ/5jZvPgKkiFIp+13AJeaWRlR5TImN6HlVTrbpSm4iuiXSvDMrCtw\nLvB4vmPJttATejqXJ2hO1O0yDLgYeNLM2mY5rlxIp+0XA9PcvRtRV8R/mJneE4EzsxOJEvq4fMeS\nIw8B49x9e74DybbQ71iUzuUJyoB57r4V+DS+eNhhRGfCNmbptP0q4DQAd3/XzAqILmYU8s/SJn3J\nCjMrAp4ETnf3inzHkyMDgefMDKL39xlmts3dX8pvWJkXejWWzuUJXgJOBDCzjkRdMCtyGmV2pNP2\nlcDJAGZ2BFAAlOc0ytybBfwgPtplCLDB3dfmO6hcMLNDgN8Cl7n7J/mOJ1fcvYe7F7p7ITAT+KcQ\nkzkEXqF7LZcnMLN/AUrcfVY8briZfQRsB34cQuWSZtt/BDxhZjcTdTuM9viQgMbKzH5D1H3WMd43\nMBFoAeDujxPtKzgDWA78DbgiP5FmXhptnwB0AP4trla3eQBXIkyj3U2GTv0XEQlE6F0uIiJNhhK6\niEgglNBFRAKhhC4iEggldBGRQCihi4gEQgldRCQQ/x8dOJjnKvPqBAAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "
" ] }, "metadata": {}, @@ -1089,7 +1240,7 @@ } ], "source": [ - "num = 10000;\n", + "num = 1000;\n", "lqs = np.zeros(num)\n", "chi2s = np.zeros(num)\n", "\n", @@ -1107,7 +1258,7 @@ " # генерируем данные (попробовать заменить генератор ошибок на 0.1 * y)\n", " x = np.arange(1,10)\n", " y = parabola(x)\n", - " err = np.sqrt(y)\n", + " err = y*0.3 #np.sqrt(y)\n", " data = generate(x, y, err)\n", " # считаем оценку методом наименьших квадратов\n", " lqval = find_min(1, 0.1, sum_of_squares(model, data))\n", @@ -1134,6 +1285,2052 @@ "plt.legend();" ] }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "hidden": true + }, + "outputs": [ + { + "data": { + "application/vnd.plotly.v1+json": { + "data": [ + { + "name": "least squares", + "type": "histogram", + "uid": "06f12897-ed50-413e-85bc-07296d260170", + "x": [ + 1.0314938467997354, + 0.9519274519784201, + 0.9743354963608661, + 0.9866896840968007, + 1.081927970292236, + 1.049809675084462, + 1.115736678382606, + 0.983568082772016, + 1.0844142302948503, + 1.177419823131522, + 1.0049493695210723, + 1.051469402248712, + 1.0800288883519369, + 1.0361028328534219, + 1.0115491807613284, + 1.0158394798028356, + 0.837672080787123, + 1.0825594969920818, + 0.9497447302827166, + 1.0447128702671613, + 1.14525214247364, + 1.0312925687633159, + 0.9887454044878402, + 1.0717982591675737, + 1.1094606913811742, + 0.9709414328930451, + 0.9489215086017044, + 0.989343387428074, + 1.013379844748689, + 0.9815171011935504, + 0.9728601621099113, + 0.9945735235601775, + 0.9838090145895467, + 0.9700670452580641, + 1.0551591702621532, + 1.1151169837177344, + 1.0238433140419454, + 1.0172923278953538, + 0.8234130916329035, + 1.0719119234620904, + 0.9030313955681779, + 1.001050292980897, + 1.002612883341908, + 0.9951080381052182, + 1.0487155347358226, + 1.0263843690886474, + 1.078794879090474, + 0.924064986460556, + 1.0451980842751332, + 0.916929748235584, + 0.9600254395310578, + 0.9813445306917465, + 1.0454483115598934, + 0.9371867590335454, + 1.0666736658493308, + 0.8934012057996344, + 0.9778612239933633, + 1.0157497840378875, + 1.0278308392198283, + 1.0209684658831455, + 1.0697362727055975, + 1.0572357368399286, + 0.9087409625833698, + 0.967672305165194, + 0.9957616982697353, + 1.1018994235523556, + 0.925491513019881, + 0.9814388876368296, + 0.9864913311962574, + 1.0143369371871371, + 1.1367260483862947, + 0.9179408800858977, + 1.1964602431437885, + 1.1025367088655011, + 1.0245874199701601, + 0.9603279809224985, + 0.9403972856568151, + 1.0785266943583138, + 1.0425734316963902, + 0.9181746439092029, + 0.8873332635960662, + 0.9919949091755487, + 1.040219237217589, + 0.9683053045717199, + 1.0293778018906383, + 1.1165189594955987, + 0.9269883306008456, + 0.9155493464086196, + 1.0093808299005058, + 0.9402319825374933, + 1.0140546934577235, + 0.997798559045187, + 0.9888450565678599, + 0.960838814588317, + 0.9731042306075934, + 1.0080737760173004, + 1.0417755609791748, + 0.9998182858690979, + 0.9940008179914398, + 1.0762731053609575, + 1.0950076312771437, + 1.0613091304819722, + 0.9231599732345468, + 1.0703570000152431, + 1.0646322912622743, + 1.0189038044363057, + 1.0658845443792178, + 0.981671143305192, + 1.031313926553794, + 0.9863674444529247, + 1.0458964480724056, + 1.1112952991713831, + 0.8899476150709754, + 0.9823067535154049, + 1.0348695901604659, + 0.8748958551250399, + 1.0535134220001212, + 0.8823061053540545, + 1.071314903446945, + 1.0607424888363717, + 1.0446330442653216, + 0.9610899052493466, + 1.042424455647761, + 1.152152480905319, + 1.0117215269278552, + 1.0715302386656445, + 0.9222941004807308, + 0.9504146094320117, + 1.1085660882152217, + 0.9747975000213163, + 0.9944656444478919, + 0.9279885298845951, + 0.9293218701313103, + 0.9491697112647073, + 1.0491761487195, + 0.941857887618679, + 1.0091152808047723, + 0.9391438980688942, + 0.9281920411030048, + 0.8752544944033058, + 1.0392339342021684, + 0.8597770362247048, + 1.1245333272788636, + 1.1156290624926388, + 0.9301266393570334, + 0.9646925613846439, + 1.0825346850506015, + 0.9765562513097543, + 1.0036806916168355, + 0.9840951568182138, + 0.9990042927287793, + 1.033951975901246, + 0.9888014504915793, + 0.9900877527245122, + 0.9962422365457019, + 1.0795969304030881, + 0.92972287772544, + 0.8945081193833139, + 0.8928207752190842, + 1.0147412186041143, + 1.0367745317755048, + 0.9688103623567892, + 1.0040473180480034, + 1.035506690371187, + 1.010397053950814, + 0.9795262212399269, + 1.0370291057214738, + 1.0458461415625877, + 1.016967963892713, + 1.0420026575450365, + 0.9731802993474804, + 1.0335424008585175, + 1.0652747293564633, + 1.0459963054688077, + 0.9410893588891173, + 1.0389597277736329, + 1.0000156600435228, + 1.0845746456678347, + 1.0970213543781777, + 1.0978917668239305, + 0.9912578234079422, + 0.9360983733307248, + 1.061473669523723, + 0.8681258402369962, + 1.0822437537378768, + 1.0163858982442024, + 1.1114641518638946, + 0.9601721891621309, + 1.071648770948561, + 1.0754381071179673, + 1.0424912923424186, + 0.9714625092823638, + 0.9847966149890072, + 1.0381220273009308, + 0.9779853636620814, + 0.9220590108524712, + 1.023088581902451, + 1.0017437828658944, + 0.9132137966441178, + 0.9813065309925781, + 1.1249538495600397, + 1.0193198438571394, + 0.9510218326896146, + 0.9552134062900589, + 0.9005865004901532, + 1.0336464783608645, + 1.0497684584918956, + 0.9455202632833246, + 0.9683755912476466, + 0.9350238008149128, + 1.0130299881957419, + 1.0039537629660995, + 1.0144659221239862, + 1.0341550150155365, + 0.9302775673059405, + 0.9385606268906725, + 0.9866880703732325, + 0.9429401296399683, + 1.161211508246585, + 1.172837497810615, + 0.9896037659499066, + 0.9198295383453379, + 0.988293044043554, + 0.9978083529322758, + 1.0508594669665747, + 0.9769002354010147, + 1.0007470575165562, + 1.0742183565914614, + 1.1182880331949765, + 0.8871567111834099, + 1.0810032829883651, + 1.040451397504828, + 0.9275370986652636, + 1.0568411602720966, + 0.9184638863585151, + 1.0673394256888076, + 1.1049759930338596, + 1.0277912191015612, + 1.0068046814379117, + 0.9705320232861122, + 0.9844078260410801, + 0.9713858621015946, + 1.0100620752926797, + 0.8922665393332855, + 1.0116008648675843, + 1.0626454843404742, + 0.9971996774507792, + 0.841106255360341, + 0.97073640785265, + 0.8814546824789317, + 1.0759469178883352, + 1.0636879657071872, + 1.0404032561023602, + 1.0234378798632762, + 0.9601137802542853, + 0.9711311312684621, + 1.0302041488505975, + 1.0326790602320404, + 0.8553793575682265, + 0.9477978307303933, + 1.0664705587602221, + 1.0870260786846648, + 0.980277631856684, + 1.075373093976839, + 0.9751830027012308, + 1.0063357771540304, + 1.0565058554093785, + 1.0192061811885629, + 0.9780606030221133, + 0.9829721284194914, + 1.029196962364199, + 1.0485203462252262, + 1.1599589568307687, + 0.9811182184385323, + 1.0789187848886233, + 1.040451897628945, + 1.0454227621428944, + 0.90306843837075, + 0.9908041893058276, + 0.9521192137790944, + 1.073306663481034, + 1.0229623852302976, + 1.0422158475202004, + 1.0436595612761563, + 1.0224817749140866, + 1.003021598943703, + 1.0315360610656001, + 0.969617529766404, + 0.8706395004775721, + 1.1208409477547467, + 0.965294432013053, + 0.866474434778995, + 1.0520349651235448, + 1.0105210637773108, + 0.9753825432353143, + 0.9515029048452572, + 1.0281758520306286, + 1.0016010409082672, + 1.161643022723651, + 1.0176828934749242, + 0.8383006830123946, + 1.0544360553175665, + 0.9977034750918368, + 0.9958688568005603, + 1.0654216538256285, + 0.990753303773423, + 1.0378971490296096, + 0.981747142561892, + 1.0550416877005817, + 0.8634873854604185, + 0.9988592904734857, + 0.8996123874563955, + 1.0145170695148682, + 0.999996059903294, + 1.0394052156809164, + 0.9479836723084114, + 1.0156926175514123, + 0.9738514308357962, + 0.9090994696693253, + 0.9675137627603906, + 1.0862113669346691, + 0.9206185625334811, + 1.023159780432711, + 1.050709579501813, + 1.101542399546342, + 0.8938495889778902, + 0.9301250926743969, + 0.9572674880991474, + 0.9621808194825063, + 1.0277943833813896, + 1.0108985521167564, + 1.0515034921666249, + 1.0938693988358437, + 0.9730201439481195, + 0.9954425349476361, + 1.1500121378833397, + 0.9982392157434058, + 0.997285878380742, + 0.9501241955737689, + 0.9414363440499037, + 1.0077676788419867, + 1.0620461733668822, + 0.9645618936011631, + 1.0323136887501012, + 1.068064460879872, + 1.064029188842303, + 1.0278652537422082, + 1.0193193312448048, + 1.1097889890508206, + 1.0994343081981885, + 0.9800640889918663, + 0.9325711595604779, + 0.9448258895160832, + 1.0420425657385193, + 1.1393045965850574, + 0.9946413829406727, + 0.9757574747451225, + 0.9408499941553835, + 1.0324319509278184, + 0.910758348948386, + 1.0786850355446196, + 1.0453246946783976, + 0.9930288390067934, + 0.9442573584387923, + 0.9441183271122282, + 0.9825793368424626, + 1.1207723610123652, + 1.0169145652415903, + 1.052985808613209, + 1.0097328860370252, + 1.0016531177085977, + 0.9356394415991311, + 0.9282792706411179, + 1.1083190977598798, + 0.9532175116572317, + 1.0815593514623287, + 0.9802258438365341, + 1.0207365042394474, + 1.0298948575950322, + 1.0461770380966582, + 1.0078826355398298, + 1.0196821896971486, + 1.0405455343206538, + 1.0349033467958235, + 1.0214077508378356, + 1.11152136853612, + 0.8935413670249825, + 0.9868629521948705, + 0.9855945599958702, + 1.0890510033173115, + 1.0010900362891437, + 1.0053292002536842, + 1.0276433063021433, + 1.005643904624854, + 1.1475011612482817, + 1.0637442646051518, + 1.0052446846541236, + 0.9874589336187778, + 0.9840178444645219, + 0.9655711330779692, + 1.0968128725552413, + 0.963529451204515, + 0.938550394342512, + 0.9572042811201595, + 1.0207545742489659, + 1.0864554135452362, + 0.9109027158995997, + 1.0310892627007848, + 0.9464044179287562, + 0.9004172345295813, + 0.9657296920501788, + 0.9334287720335522, + 0.9744267546814396, + 0.9737524498807816, + 1.0237542478710506, + 0.9769956007254238, + 0.9311924502314448, + 1.0808327864903318, + 0.8824060438685083, + 1.0465308097412638, + 1.0162106439586713, + 0.9633709941545424, + 0.9118395847471411, + 0.948472229131032, + 0.9416485912992293, + 0.7788956927684727, + 0.9210849890266761, + 1.0539522415628115, + 1.0142798358949603, + 0.9877277052759813, + 1.1379722583310659, + 0.9728729887762827, + 0.9130904441748185, + 0.9893437769717982, + 1.006794482892746, + 0.950718755066653, + 1.0232229832777207, + 0.9315206434642705, + 1.1010670717137798, + 0.9423127534807735, + 0.8817883370841602, + 1.037001684786206, + 0.874488958442722, + 1.0059349332099503, + 0.9329062050022288, + 0.9960717728572762, + 0.9385083113462791, + 1.0713511292164095, + 1.0138632124194191, + 1.0333129125576934, + 1.0542536124477, + 1.026578257777946, + 0.9539992943938329, + 0.9927906041552541, + 0.8535105851027828, + 0.9981278240532538, + 1.0894928762072005, + 1.1746055297903444, + 1.032411144635538, + 1.0829338186434299, + 1.035169629799616, + 1.0535867808117874, + 1.0547482130459163, + 1.0832437948165967, + 0.9480701167801149, + 0.9714915624770505, + 1.1013656365523048, + 0.990846278966555, + 0.9806862215277597, + 1.023263070594954, + 0.9762986753018541, + 0.982188397249901, + 0.9926311236501576, + 0.8317891615029881, + 1.0105117697805628, + 1.0064871451388042, + 1.0357979163456281, + 0.9872235263002139, + 0.8839023319740104, + 1.0445483223796133, + 0.9927319146640705, + 0.9253490573068782, + 0.8989461519271783, + 0.9621842730903509, + 0.9749833143572707, + 0.8580681274524756, + 1.0412639731893563, + 0.9178116989547951, + 0.980841251106538, + 0.8724272574020686, + 0.975301443971995, + 0.9100680154921152, + 1.0153397479584874, + 1.0926546729229836, + 0.9691340802438956, + 1.0636694361904706, + 1.0901201985898472, + 0.9119891210108236, + 1.066315033113308, + 1.0477573643898879, + 0.8081903899626294, + 0.9969488112037195, + 0.9389014717230435, + 0.9657416643463405, + 0.9442194151680048, + 1.0028265215184546, + 0.9145742021174066, + 1.1094464943364237, + 0.9982489996215205, + 0.989343754352887, + 0.9111995543357067, + 0.9343318069410578, + 0.91595221535049, + 0.988403353744252, + 1.0014494137536867, + 0.9911613590206195, + 1.0050153865999054, + 0.9223746550892773, + 1.0165078929608913, + 1.0404217993689542, + 1.094414362233623, + 1.113011450285581, + 0.9830581469593314, + 0.9748694521657629, + 1.0025417984117209, + 0.9558387324722424, + 1.0220209829150972, + 1.0770532473693626, + 0.9105045879325414, + 0.9777760369617172, + 0.9669012734324791, + 0.975915788789353, + 1.1394285959745505, + 1.1042242875373314, + 0.9041577280808113, + 1.044183632606602, + 1.0112340048841322, + 0.9693918134026274, + 0.9441769704454294, + 1.0169586403301991, + 0.9459966921687429, + 1.0785353977802377, + 0.9329613559357357, + 0.9575985743037336, + 1.0080061402906744, + 1.06003521557555, + 1.0781689656171547, + 0.8813569088529817, + 0.9613302744886404, + 0.9756294210201748, + 0.9125085162220133, + 0.9341060193798877, + 1.0274094500006932, + 1.012799369065045, + 0.9542585176805533, + 1.0127153893475087, + 0.9981144088088671, + 1.028152612309846, + 0.925859513963941, + 1.0420174259384534, + 1.0244667678952277, + 1.0468495910348503, + 1.065809755704902, + 1.0336394968535858, + 1.021925355373654, + 0.8986373312821644, + 1.0833857783037342, + 1.0180646619756701, + 0.9045801822549874, + 0.994775685209181, + 0.9799970273314732, + 1.0292819504760549, + 1.014508351898113, + 1.0678471422840756, + 0.8847637933936054, + 1.0416511173133167, + 0.992328682881105, + 0.9950269548357885, + 0.9661457266766879, + 1.0055826071587506, + 0.9698042117954208, + 1.0590030623659037, + 0.940446410033237, + 0.9211073730152385, + 0.9895306049228878, + 1.0307929344783198, + 1.0369620764227878, + 0.9696298404379496, + 1.0050603814426877, + 1.05038279363282, + 1.0439149440854307, + 0.9638244185012601, + 0.952727412019892, + 1.0067120485230556, + 0.8988240512886608, + 1.0554214546326588, + 0.9446613534548934, + 0.9709212713301253, + 0.9880576909857608, + 0.9646370613145623, + 1.0076927629760424, + 0.9044149564685462, + 0.9274459581547371, + 1.117865369653127, + 0.9584118910606826, + 1.0630591566690102, + 1.134857022469863, + 1.0278018792304555, + 0.9807465654598363, + 0.9601469424803798, + 1.0118049999084395, + 1.046542212574752, + 1.083135246893996, + 1.0218025718477126, + 1.1772790141032365, + 1.006573662717026, + 0.9751685838032824, + 1.0188200579749163, + 1.0791835815737516, + 1.068362475361795, + 0.9142062805234101, + 0.9800568941897372, + 0.932905424074218, + 0.9432403258524426, + 0.9465264293623776, + 1.0162902926387332, + 0.9086764197609831, + 1.022398254278729, + 1.056936181838677, + 0.9492247625009087, + 1.0264316279058276, + 0.9427932053965901, + 0.970495152667851, + 1.111969480191233, + 1.0402571725152878, + 0.9381604972377529, + 0.9814817570059308, + 1.038205542801767, + 0.9372006278077779, + 1.0882535948990195, + 1.0516785053954139, + 0.9762907678418224, + 0.8786722007723643, + 1.054579968919553, + 1.0117785117719842, + 0.9129953378492757, + 0.9140026407188128, + 0.95862134688473, + 1.0259626950459073, + 1.115353917190725, + 1.055061111763067, + 0.9554721974031759, + 0.9821423627062514, + 0.9429511786449775, + 1.0725120577708696, + 1.0482609415754598, + 0.9059607066187397, + 0.9790210753722441, + 1.0533077408749894, + 1.153205325495324, + 0.9304791229109983, + 1.0237478433677045, + 1.1043509738198434, + 1.1067549096101577, + 0.9971936771979607, + 0.88661251635309, + 1.1697337378415962, + 0.9565413357059387, + 0.9627952824378784, + 1.0094545326860334, + 0.992167602556589, + 0.9267218091852781, + 1.060556918130494, + 1.0081120002544603, + 0.9150504277565185, + 1.0956254993775743, + 1.128698940968523, + 1.0102579757805434, + 0.9558795078898765, + 0.937306503191473, + 0.9715928178893634, + 0.99753370975947, + 0.9566439323821204, + 0.933792862130165, + 0.9840497288472683, + 1.037410724013502, + 1.0848981363894936, + 0.97078735576817, + 0.8816013866531807, + 1.0658459246694691, + 1.0259546567809485, + 1.069850633411766, + 0.9071725421415181, + 1.014345629791784, + 1.0174252231313248, + 1.0109789736381534, + 1.0291215926286625, + 0.940135847821983, + 1.0531552376958344, + 1.0157291526359256, + 1.0522214781870551, + 1.0404900605739338, + 1.0060640346579544, + 1.0030225301612028, + 0.9594762243463795, + 1.060016114715622, + 0.9450929277830011, + 1.0155548568715371, + 1.0291423108780648, + 0.9715701121120472, + 1.0893289201669023, + 1.00818102955431, + 1.1347064037165968, + 1.1053813692393, + 0.9834224717599597, + 1.0028826703948421, + 0.9835378435621268, + 1.0057400079501304, + 0.9784117482432265, + 0.9185539770737845, + 0.9399676680907535, + 1.0025178818917302, + 0.911456599827952, + 0.9799563215777244, + 1.0134592650629402, + 0.9212697146223218, + 1.109608566238373, + 0.9938081045541735, + 1.0087930931006888, + 0.9294039074763085, + 0.8961857725904377, + 1.0713610879628555, + 1.0563350660506556, + 1.0004214845303332, + 0.9401361577158898, + 0.9281896059293999, + 1.060479249286895, + 1.133610062167097, + 1.073813527981496, + 1.0350654965622788, + 0.9726315649999828, + 0.878823590250361, + 1.0717367937406705, + 0.9696294397486374, + 0.9328485849900966, + 0.8283107345641424, + 0.9433561826974348, + 0.9957421040748036, + 0.9933199025924192, + 1.0339961182530124, + 0.915068457081834, + 0.8448485253499196, + 1.1313196375601084, + 1.043844411528333, + 1.007023927122969, + 1.0680769508302679, + 0.9661207532607123, + 1.0114166714004806, + 1.0531030444989389, + 1.0811689410013023, + 0.9360762331856713, + 1.0102991031566189, + 1.0458610444011258, + 0.9938902643822062, + 1.0377335540218422, + 0.9883115367761837, + 1.005710029615482, + 0.8541598054165096, + 1.008463350758833, + 0.9506274713537078, + 1.012396196226355, + 0.9963841878290026, + 0.8205576204747651, + 0.9683358042044424, + 1.0191241230110426, + 0.986371984631705, + 1.0079482276621807, + 0.9623794965570261, + 1.0459184620914306, + 1.0216307812367384, + 1.0033783935427967, + 1.051057547340495, + 1.1120768303114668, + 0.9842882080820078, + 0.9488196183993528, + 1.057173361395294, + 0.9348664863285154, + 1.0252441552201237, + 1.0379148063557435, + 0.93397301255091, + 0.9294491988768484, + 0.9095434508807928, + 0.9496540596682077, + 1.0832840453082697, + 0.9504695436811793, + 0.9050649974510248, + 0.9167235797197079, + 1.0069715624566489, + 1.0115257255004748, + 0.9735612629963076, + 1.06818869335105, + 0.9864276042631558, + 1.0037585013988009, + 1.0089249715404707, + 1.0173348371265307, + 1.0840572621869813, + 1.0469114611153565, + 1.0905287460395097, + 1.0237272599368372, + 1.1754521122403723, + 0.9446060039211885, + 0.9638055711001865, + 0.9622782659989076, + 0.8997650048372037, + 0.9522133524261845, + 0.9528484559836915, + 0.984070018020087, + 0.9534002995341464, + 0.9562576741705192, + 1.0411007399007493, + 0.946553218604597, + 0.9844113190141711, + 0.9833489611306958, + 0.900271517476731, + 0.8931767026527557, + 0.9630135276796852, + 1.0428914269086424, + 1.0608920575967222, + 1.0436059178686743, + 0.964622941819296, + 0.9391405200545581, + 1.0866092406654804, + 0.945364895712468, + 1.1547339164237098, + 0.9885360522465159, + 1.0157924791261672, + 1.112729631295791, + 0.9589517767692096, + 1.01144874853322, + 1.0490217347378008, + 1.0393698202017654, + 1.0507142473135, + 0.9841493880920004, + 0.9332547499928244, + 1.055716815069977, + 0.9560910719362835, + 0.9271005599935245, + 1.1278478379055104, + 1.0609571098131114, + 1.0292638357229542, + 1.0054239213532243, + 1.0225769469535957, + 0.9527357334001674, + 1.025586666390304, + 1.0491853288017614, + 0.8875947454668234, + 0.9861103449964586, + 1.0322680160499627, + 1.0262527307814242, + 0.995381940677157, + 0.9612856656845159, + 1.0369360308815925, + 0.9109315053044809, + 1.0404746320351876, + 1.0854444195065631, + 0.9464587082029853, + 0.9960615056631571, + 1.0706732158111176, + 1.0112277110107188, + 1.0037484522936004, + 0.9602667209620851, + 0.9971910640817215, + 1.0454709130710156, + 1.0247918719473086, + 0.9507253247927779, + 0.9456508811866545, + 1.0416011974218988, + 0.9372528881942409, + 1.0421534531363548, + 1.064867508551219, + 0.9271268856596007, + 1.078262447378507, + 0.9963026097349637, + 1.043414291811671, + 0.9726066356292427, + 0.9776883303238684, + 0.9317156118869201, + 1.0010228651421171, + 0.988708529796546, + 0.9467895026271949, + 0.968446241025898, + 1.0549614855654734, + 0.9596613307445911, + 0.9827852786862622, + 0.9511087775741107, + 0.9574065064370586, + 1.0312886028815793, + 0.9152863545895288, + 0.9527044433404864, + 1.023515001110247, + 1.0302966103414597, + 1.0217642795128399, + 0.9877393799768792, + 0.9880038352864228, + 0.9322356497855575, + 1.0830068914626203, + 1.0615079914803491, + 0.9279355716292709, + 1.107498517580731, + 1.0425823764299713, + 1.0098512730010785, + 0.9016068412151035, + 1.0449192658439959, + 1.0446932318799464, + 1.0894391035664803, + 1.0101456074596435, + 1.0657307298038041, + 0.962414773701923, + 1.058207545065551, + 1.0555780923480433, + 0.9472460176179881, + 0.9045858429320213, + 1.1093789835789012, + 1.0264658605910475, + 0.9625626470635877, + 1.0441314081835609, + 0.9381584890968295, + 1.1405811934876213, + 0.9628934118594485, + 1.0169942799955853, + 1.0181425111328688, + 1.0324780724866836, + 0.9254377655259176, + 1.0286745539946032, + 0.954969841475997, + 0.9376009265347868, + 1.1473619520637288, + 0.9845990572959056, + 0.9777435536548301, + 1.0111110743068772, + 1.027469663559123, + 1.0322882620158211, + 1.0144404134888148, + 0.9591398082810991, + 1.015437280092267, + 0.9994467330221627, + 1.1016006430116532, + 0.947403713959993, + 0.9812480566632708, + 0.9495747896086667, + 1.0200725115113864, + 1.1111732772800453, + 1.0196817521205375, + 0.9761131986213007, + 1.0455674464046716, + 1.1168276954518699, + 0.97580167633237, + 1.0524935529060382, + 0.93895714622327, + 0.9627660175098137, + 0.9974186009987686, + 1.0530291963120346, + 0.9108939362525768, + 0.9177689547753048, + 1.0375032601055731, + 0.9010393253189121, + 1.0494761242360082, + 1.0376146011350733, + 1.0118696671506922, + 1.0708483794340795, + 0.9894801484571538, + 0.9490114090175585, + 0.94611737713428, + 1.039387616425599, + 1.0627331988229718, + 0.9690733366507766, + 0.9221501445505161, + 1.1079850860476135, + 1.0471168146024759, + 0.949860520536604, + 1.0029396155001258, + 1.0307600182172731, + 1.0618965062222303, + 1.078938285854166, + 0.9185346348843196, + 1.0126731469673527, + 1.0282252145812505, + 1.0381668678924627, + 1.0629120885758174, + 1.0077512062925829, + 1.0638000738038629, + 0.9795911352609322, + 0.9011886423336868, + 0.8734544697564619, + 1.0212976782518066, + 1.0296265140768392, + 0.9458498152530945, + 1.091184963426421, + 1.06256932858665, + 1.0202645489451148 + ] + }, + { + "name": "chi2", + "type": "histogram", + "uid": "7d0c2572-7ce5-4702-bad2-ac403593d368", + "x": [ + 0.9918790473166355, + 0.9918493061586348, + 0.9947372509194002, + 1.0157432621467972, + 1.1156752341072635, + 1.0527701187135257, + 1.1481949950648176, + 0.9643838599019046, + 1.0603327435269776, + 1.1260363748737388, + 1.0280292423482098, + 1.0549404643208355, + 1.090117350380162, + 1.0216490194842924, + 1.0311718657123083, + 1.0287210619603306, + 0.8629232407491401, + 1.0677229459780953, + 0.9549346918576973, + 1.0144963847734922, + 1.1656503746302675, + 1.028806153680811, + 1.0066601277081857, + 1.0413156626944038, + 1.1088590015842312, + 0.9600482688861085, + 0.9640622199770188, + 0.9825147148937803, + 1.008647654603134, + 0.9592841197922535, + 0.9947522571667796, + 1.020395022032741, + 1.0108974433903826, + 1.0077418140356527, + 1.0244790695716062, + 1.0601392469127824, + 1.0251465864495033, + 1.0168055275195778, + 0.8324743074116231, + 1.0844047057344375, + 0.9220262320430391, + 0.9909202987056895, + 1.0319049212821034, + 0.9783947158068781, + 1.0456669523520825, + 1.0124698123274976, + 1.0640517424292644, + 0.8898073939725637, + 1.0433016813079725, + 0.9341975706669042, + 0.9347995588485718, + 0.9872471273057709, + 1.0567675665198089, + 0.9658566420280389, + 1.0728232251524727, + 0.9339999628944934, + 0.964563130230628, + 0.966186772902088, + 1.0326437647125046, + 0.9989883712983206, + 1.0811054663736037, + 1.0389990063159236, + 0.9349991084006344, + 0.9816550091103864, + 0.9992550184505721, + 1.0888214059501011, + 0.9184368933539222, + 0.9257364869816375, + 0.9992538518769359, + 1.0510598501929527, + 1.0942720597122144, + 0.8935245602058302, + 1.1654453459510459, + 1.1005475235783957, + 0.9668310462891448, + 0.9643613292735024, + 0.9737538988227504, + 1.1050125435973701, + 1.0541184299595552, + 0.9547533139846015, + 0.8662791853642655, + 0.9702791759957315, + 1.0149312656193248, + 0.9815623931649222, + 1.0380722828993316, + 1.1250486577636447, + 0.8829482038798006, + 0.9231132207333121, + 0.9931263093326289, + 0.932949402595914, + 1.045028571534405, + 1.0080332950846007, + 1.0118700473127196, + 0.9439930686934238, + 0.9980944501304115, + 1.0021094592534645, + 0.9954662332136731, + 0.9760531054108984, + 1.0002618211419292, + 1.0676536242640027, + 1.0734244553722097, + 1.046876948428333, + 0.9083979280918993, + 1.0360733707543448, + 1.0640997159905337, + 1.0095886738722477, + 1.047319964240811, + 0.9870541249272651, + 0.9975249479484285, + 1.0059684544441707, + 0.9911056467167921, + 1.0992119922462238, + 0.9243163977488327, + 0.9497923629777631, + 1.0641062855705559, + 0.8746413189063477, + 1.0587635479747526, + 0.8825966391114958, + 1.0237650834815177, + 1.0429330274675497, + 0.9920944937044434, + 0.9790083337100883, + 1.0669714709716007, + 1.1629877992648774, + 1.0065768217633402, + 1.0596053686807776, + 0.9737883451637592, + 0.9508863834078369, + 1.1054960169813284, + 0.9956531928085197, + 1.0164667254514534, + 0.9408742513583555, + 0.9019651987701006, + 0.9611873776101489, + 1.0889241783561356, + 0.9638595115620338, + 0.9337174866430974, + 0.9633937663346105, + 0.9158093186394659, + 0.9193325264963724, + 0.9674903212874522, + 0.8666383734132843, + 1.147043599147396, + 1.098504062709741, + 0.9118072757240387, + 0.9621557695580817, + 1.0578713554697587, + 0.9487084803353386, + 0.9983376349715571, + 0.998007456274607, + 1.028572483188943, + 0.9964064780136996, + 0.9770544859387578, + 0.9886696545211585, + 1.0261145779051855, + 1.0876491969163142, + 0.9299885210182294, + 0.9283430043612395, + 0.9080135255045226, + 1.0240127259210021, + 1.0242201673278941, + 0.9721888387493692, + 1.0006040461556074, + 1.0358456680616874, + 1.0075411035264292, + 0.943723706536396, + 1.0524499960633995, + 1.0444293670005207, + 1.0587444259250065, + 1.0492116441036607, + 0.9729876449702536, + 1.0081544773128253, + 1.057771157089636, + 1.0236171934888358, + 0.9540360357867456, + 1.0156671824087986, + 0.9928546280525588, + 1.0702706064624465, + 1.0783486013369983, + 1.061725707953516, + 1.0107286689248165, + 0.9561800870754428, + 1.0326475115549147, + 0.8924661452565287, + 1.091931707220711, + 1.0162893368249595, + 1.1270244197938502, + 0.9855067479336221, + 1.0237245467956142, + 1.0456801976597772, + 1.0350016413026348, + 0.9728331593577975, + 0.9592025974271577, + 1.0085185091883366, + 0.9745016851858174, + 0.9338068699866203, + 1.0298340256166911, + 0.9810147255558873, + 0.9376886762381249, + 0.9863637502176243, + 1.1094505351327284, + 1.0238908477471709, + 0.9748636081386701, + 0.969443069649311, + 0.9114486211313789, + 1.0348738908525008, + 1.0145003756637565, + 0.9352499423923314, + 0.9626797673523163, + 0.9332693687519585, + 0.9949674163069094, + 0.9838312815238396, + 0.9745691864710418, + 1.0010903113276584, + 0.9199070666234889, + 0.9676683425019794, + 0.9955006351840628, + 0.9352033541921105, + 1.1442026738751385, + 1.1295176853960167, + 0.9577855586709377, + 0.8960804921070178, + 1.0028234341850877, + 1.0166802819182335, + 1.0152072407163872, + 0.9797146794792991, + 1.0462100776613468, + 1.0897941756717389, + 1.1284475879297322, + 0.9207349429595566, + 1.0370243807763593, + 1.0138898696563443, + 0.913710152113905, + 1.043363681364363, + 0.9638545632890158, + 1.0681795039921154, + 1.115466056868202, + 1.0562077450919696, + 1.0232018864138597, + 0.9997079878388193, + 0.9709890333501316, + 0.9848665102426203, + 0.9844908859733128, + 0.8884041036285043, + 1.0176800763812157, + 1.0607132471778715, + 0.9841754251006701, + 0.8740249374738245, + 0.9560864408057149, + 0.8929926921024006, + 1.0682192836410749, + 1.0444102846138277, + 0.9966098023549838, + 1.0079029674347377, + 0.9775189188278878, + 0.9888577627810535, + 1.0108910777125992, + 1.0552460954535545, + 0.8606210368285502, + 0.9586016591863957, + 1.0369856461458022, + 1.0874877864547414, + 0.9674273497961947, + 1.0807726851363597, + 0.9656784100653228, + 1.0032411311058211, + 1.0456096302583222, + 1.0122560531781262, + 0.9667224062508966, + 0.998953901045879, + 1.0279292648843987, + 1.0656411919998572, + 1.1380575163056899, + 0.9672496397833036, + 1.0275500433094658, + 0.9981990186375276, + 1.0169657748829606, + 0.8736383993559244, + 0.9972415469120031, + 0.9559759959326687, + 1.047378972358577, + 1.0152099774023031, + 1.0346400662767326, + 1.0635912341207097, + 1.0445674339111353, + 0.9951080601153567, + 1.0098100667151704, + 0.9761140171773021, + 0.9032270777484067, + 1.090193600387252, + 0.9696120907500415, + 0.9027241786488494, + 1.033486542625921, + 1.0081536559957296, + 0.9995306280476716, + 0.9258133887325882, + 1.1078187395916295, + 0.9933343499130143, + 1.1155534180056648, + 0.9991025289736478, + 0.8782423419063938, + 1.0540548709505693, + 1.0276114912854502, + 1.0055538600781833, + 1.0642745403261007, + 1.0180803094339577, + 1.0257456641153206, + 0.9635019829494207, + 1.0228197865619115, + 0.88702911961336, + 0.985071915386826, + 0.9096664524309516, + 1.0147663313955946, + 1.0306328245404857, + 1.039254381726208, + 0.939963968764974, + 1.0274324082452637, + 1.0129910277465195, + 0.9433760021199009, + 0.9748237658339637, + 1.074706567839513, + 0.9483116347203221, + 1.0164652393070686, + 1.0344888144146758, + 1.0718561377795983, + 0.9150339271071573, + 0.9300249373972653, + 0.9711057359823235, + 0.9713415200609936, + 1.0085181532036385, + 1.004159281261099, + 1.087111668703384, + 1.0693878417862286, + 0.9706120728009527, + 1.0205463686321663, + 1.1095809355790753, + 1.0080380665357016, + 1.0128386390264281, + 0.9640953807807394, + 0.9936425952953679, + 1.0422644844337292, + 1.1013561466235309, + 0.9159668896386175, + 0.9687373502530544, + 1.0363595800912573, + 1.0565245645286658, + 0.9952372527109199, + 1.0732740513523864, + 1.126033517382256, + 1.0969399809511888, + 0.9541758812770127, + 0.9545574521451892, + 0.896894970074158, + 1.0235664963382325, + 1.1263577981753325, + 0.9551635825888232, + 0.9425340213901029, + 0.9340343583825714, + 1.0613787678546913, + 0.9402805083736281, + 1.078616693318641, + 1.0078392784628547, + 1.0322995327663373, + 0.958738247295262, + 0.9455040851135249, + 0.9541941920883946, + 1.0587798753292277, + 1.0226199887203253, + 1.0510183005303664, + 1.0097914589070047, + 1.0305975858421568, + 0.9769293395502545, + 0.9475551869309247, + 1.0999125300688146, + 0.9254475395353011, + 1.1016440482502168, + 0.9750443625802739, + 1.0390616869822287, + 1.0542746548698785, + 1.048852072017028, + 1.0071820287931073, + 1.015070809473358, + 1.0279731011736064, + 0.9813848376205447, + 1.0010578430040138, + 1.055702361186879, + 0.9163856197298211, + 1.0064520879567516, + 0.9536801459341743, + 1.1127074010895037, + 0.9946664794589404, + 1.0082973967903321, + 1.0341007456164049, + 1.005182455879236, + 1.1243037700057128, + 1.0922422297050016, + 1.0309397946909389, + 1.0242601622757923, + 0.9533375768309763, + 1.0272128527429571, + 1.1014961393335276, + 0.943217242892624, + 0.9359129680947614, + 0.9499994685608927, + 1.0403439017254403, + 1.091908763277072, + 0.9160678756012337, + 1.0140568098361995, + 0.9529735811317052, + 0.8918803042134222, + 0.9700999178431304, + 0.9927903936665534, + 1.0416252503481673, + 0.9271053590019446, + 1.023958725003318, + 0.9797721399863164, + 0.9504412072513829, + 1.069645200039897, + 0.8761799394170225, + 0.9839671476546592, + 1.0285738767887291, + 1.0215404426951844, + 0.9160817625256735, + 0.991210123303208, + 0.923458231932733, + 0.8204798821397853, + 0.9633708511302536, + 1.0785037092427567, + 1.015422805548262, + 0.9768868346989221, + 1.1088904610718893, + 0.9731379752283302, + 0.8968190797331804, + 1.0441377166000085, + 1.0034048912879032, + 0.9631442995073419, + 1.001114331568955, + 0.9170087758093374, + 1.1055952102983901, + 0.9793002696569045, + 0.8716625798390688, + 1.0520541695337382, + 0.8979036009961086, + 1.0203480400846479, + 0.9076836780178766, + 1.0171275824200186, + 0.9035587795141392, + 1.061511885136965, + 0.970112759642798, + 1.0589884435300643, + 1.080631040579971, + 1.0198245266982429, + 0.9596021783224529, + 1.0074167602643083, + 0.8852635137356392, + 0.9985382055179371, + 1.118241830746843, + 1.1431105587847195, + 1.0233767201258979, + 1.070047516996181, + 1.0510289821488248, + 1.0763779644278424, + 1.048327888178552, + 1.0950767991404653, + 0.9314032519025274, + 1.020629964545982, + 1.0675714868552726, + 0.9856897380784566, + 0.9872356084358298, + 1.0212469666407633, + 0.9570056583307627, + 1.008860715003999, + 0.958097029297403, + 0.8373042410580986, + 1.0061679571634883, + 1.0037071148688483, + 1.0426486500848806, + 0.9950088047078195, + 0.9241491940422688, + 1.0400990527174072, + 0.9728465380801448, + 0.937295577315269, + 0.8988379533490737, + 0.9792199139490352, + 1.0039069483373702, + 0.868965546454683, + 1.002903927962, + 0.8835429901158272, + 0.9675103115729764, + 0.8701589950988929, + 0.9884885804954048, + 0.8934666313814862, + 0.9917330228437043, + 1.1029657050201724, + 0.9164479489119018, + 1.0695369318636, + 1.0779060591414944, + 0.920677669840659, + 1.0519992899678963, + 0.993522133974142, + 0.8155561168503126, + 0.9977403044773697, + 0.9909027139795025, + 0.9691266340102658, + 0.938599226552511, + 1.0040370554129554, + 0.9269699095479813, + 1.0406960601274264, + 1.0270069694542938, + 1.0162592197743037, + 0.959729603719165, + 0.9500052824977184, + 0.8938115627863155, + 0.9524452629930198, + 1.040734360095688, + 0.9567086706219113, + 1.0498852488632033, + 0.9503631709256595, + 1.0380225247002774, + 1.0357635786958996, + 1.0532249751527796, + 1.1058654818358764, + 1.0006252490253238, + 0.9512663705805946, + 0.9816351526622561, + 0.9633694914581498, + 0.9916944379400595, + 1.0896527741704334, + 0.9349814415287195, + 0.970230573040822, + 0.9839716883188612, + 0.9711667572026635, + 1.0807663609670812, + 1.0912781017711042, + 0.9006330576589128, + 1.0392357578254328, + 0.9828555801880946, + 0.9499867370650459, + 0.9530780300188699, + 0.9362884524513946, + 0.9550849301522717, + 1.0362538723790786, + 0.9082883140727549, + 0.9470347816041507, + 1.0421345772030883, + 1.0856086231606894, + 1.0698209322153578, + 0.8845214980718243, + 0.9537352931565394, + 0.9557267772545847, + 0.9259176571310935, + 0.9204744604035536, + 1.0255795573855415, + 1.032656034685737, + 0.9470399981896888, + 0.999669618232759, + 1.0438590330889386, + 1.0467139733738053, + 0.9667585534572178, + 1.0208939216755741, + 1.0178606819684637, + 1.0013683269562597, + 1.0430507885222366, + 1.0155821608549382, + 0.9881361528716481, + 0.9274060701976168, + 1.061783503617051, + 1.00458717796432, + 0.9226073827938605, + 0.981670570809473, + 0.9946271551410799, + 1.0062477665055634, + 1.0296790130629847, + 1.0852899529697302, + 0.9151713216382743, + 1.0083312439341903, + 0.9725469974431978, + 0.9896144130327031, + 0.9968664330365776, + 0.9557879525630661, + 0.9849280636663478, + 1.0357705926466836, + 0.9775826982569927, + 0.9028554673048294, + 0.947757094721048, + 1.0565469473084264, + 1.0432163149781026, + 0.9766031830214125, + 1.0079915573297138, + 1.044677751114812, + 1.0211873262050697, + 0.9652318712944846, + 0.9341107392144776, + 0.9930284787276904, + 0.9290208799642179, + 1.0649726656014862, + 0.9670288013497311, + 0.9928388367581839, + 0.958018649684752, + 0.9607258789967659, + 1.0285023402810463, + 0.9208528005306346, + 0.9352447697398865, + 1.1002161861877282, + 0.9712371321254355, + 1.089441379015065, + 1.0823100927543063, + 1.0227251220458864, + 0.9761814679100516, + 0.9716646398995114, + 1.0400887282710505, + 1.0236045577522666, + 1.0680913915911865, + 1.0277575198482605, + 1.15264532908484, + 0.9589718477221167, + 0.9217512644798757, + 0.9938896739306563, + 1.0716261476288076, + 1.0664676577226422, + 0.9506414645257959, + 0.9778840100657552, + 0.9597567547325595, + 0.9214776728240269, + 0.9495658503547277, + 1.0291328398414439, + 0.9324030389886896, + 0.9742631349376659, + 1.0369725519453588, + 1.0028847780612264, + 1.003579257516041, + 0.9282714504566202, + 0.971562163101177, + 1.0565092542298014, + 1.044659370501397, + 0.9314674325847965, + 1.0370403714259326, + 1.06526997927863, + 0.9586445618007934, + 1.0478168897335665, + 1.0745229052777856, + 1.0130962424349184, + 0.9044863835632857, + 0.9984191618313458, + 0.9789065131485324, + 0.961900624276735, + 0.9250689877316858, + 0.9662038091649648, + 1.013939043453486, + 1.088056826870137, + 1.0365862702823145, + 0.9428269465214597, + 1.006361360688394, + 0.9536688764905672, + 1.0441899862299968, + 1.0497686907703077, + 0.933188308481689, + 0.9840250208143339, + 1.0759220928167703, + 1.1132588593707284, + 0.9431982360066019, + 1.007031176049164, + 1.1001888045413128, + 1.0841277583679705, + 0.9688916747570891, + 0.8687308265768536, + 1.1516623124830745, + 0.9331320132835228, + 0.9835286619678736, + 1.0281063936221762, + 0.982760154319692, + 0.9616029955100859, + 1.0393953351015124, + 1.0124096366781234, + 0.9103702991765842, + 1.0920854845611188, + 1.1169672462658573, + 0.9844588006943485, + 0.9117776674677507, + 0.9387918146854882, + 0.9640822191568957, + 1.026826270627009, + 0.9602132768453661, + 0.8928074542938909, + 0.9935617487465545, + 1.0111949724416949, + 1.0475458120995704, + 0.9874577323848064, + 0.9288414137174974, + 1.0943255704785975, + 0.9824351039877195, + 1.0622420942545345, + 0.9230923706956238, + 0.9763701714834048, + 0.9498514426498729, + 0.9944718697780236, + 1.0261568906498302, + 0.9742107249272856, + 1.0636677717922902, + 0.9922611505929956, + 1.0605969951197607, + 1.0206654100140804, + 0.9610172193702586, + 1.0004259319726485, + 0.95129416549468, + 1.0740799247180977, + 0.9354996612443918, + 0.999413587749801, + 1.0122343627268824, + 0.9274940274328192, + 1.0506225057444059, + 1.0235206714260021, + 1.1540367682846504, + 1.0735450953112486, + 0.9849368422881918, + 0.9595600145673245, + 0.9568930914836968, + 1.0083588166073665, + 0.9223779573932467, + 0.9689688302450226, + 0.9622652207466502, + 1.0206852275249667, + 0.9445101947747883, + 1.0391247806694917, + 1.0212474738868251, + 0.919693240951539, + 1.0848503682541855, + 1.0118924811930277, + 1.0587635460508567, + 0.9557978907037904, + 0.8862946468525823, + 1.0368560702756469, + 1.0289669086800084, + 1.0147812028922527, + 0.9679591089566345, + 0.9286175245724896, + 1.0480037318152076, + 1.1128728581227156, + 1.0895592695574916, + 0.9981231047777526, + 0.9687705354596474, + 0.9108890380389709, + 1.1064274589854703, + 0.9472924424023922, + 0.9824283970543352, + 0.8621482410646591, + 0.9549632653389356, + 1.002309748260254, + 0.92998493906302, + 1.0465977883454471, + 0.9172859260804672, + 0.8704161046703212, + 1.10456620076131, + 1.0586769281845014, + 1.0098873441402925, + 1.0674565671529328, + 0.9440419290934351, + 0.9666568366022547, + 1.094891280029518, + 1.0585498744874189, + 0.9276754428361417, + 0.9957488675072758, + 1.0280106960326911, + 0.9691128141184322, + 1.0276554925040169, + 0.9719539979414511, + 1.0088493934853855, + 0.8622030319706622, + 0.9837516055113719, + 0.9764313182907165, + 1.0078505738111994, + 1.0389681800402386, + 0.8685576898401338, + 0.9567191536194457, + 1.0093355396479389, + 0.9721606929274195, + 1.026446043756469, + 0.9812657727768899, + 1.0528067950921127, + 1.0110561045242004, + 0.9971789630853217, + 1.0343119896238226, + 1.0777078345367948, + 0.9775317577288994, + 0.9456024139408423, + 1.042257258790472, + 0.964176818111468, + 1.0074699357066268, + 1.0458041026239686, + 0.9640160232761897, + 0.9460102701638071, + 0.9417892834723051, + 0.9679307497039645, + 1.0781727530976715, + 0.9561601035323941, + 0.9687716646838267, + 0.9283221403562609, + 1.0586713085149528, + 0.9950306255022708, + 1.0074664617430114, + 1.1134592028973558, + 0.990771117706912, + 0.987479315135554, + 0.9841404259228843, + 1.0289145533560704, + 1.05466957761237, + 1.0446989213575404, + 1.0779459888408665, + 0.959375388066082, + 1.1692814987345963, + 0.9520884134829158, + 1.0049817441830038, + 0.9317707587704587, + 0.9552727401257147, + 0.9597435346410665, + 0.9470327962624153, + 0.9572166433008298, + 1.0124407125241577, + 0.9508883031667172, + 1.0827589880630422, + 1.0086770051880554, + 0.994906635234915, + 0.9643064106089643, + 0.8952435109551817, + 0.891615738468778, + 0.9590785199758651, + 1.0124271576428157, + 1.0344488912960044, + 1.0595208587725495, + 0.9883263331938488, + 0.972730854510176, + 1.057167775550111, + 0.9262354672144721, + 1.149330248685853, + 1.005540908659057, + 1.0092833983668614, + 1.117256410404723, + 0.9470390453913747, + 1.033212276392064, + 1.067154933060721, + 0.9928288357122284, + 1.020397668344701, + 0.9710670435662933, + 0.90103610115866, + 1.0577123197841334, + 0.9461842929414093, + 0.9588423386346656, + 1.130604657189467, + 1.0482207477145589, + 1.031277935849974, + 1.0404748615599986, + 1.0033956847235612, + 0.9496131125573017, + 1.0070123507803292, + 1.015316423757136, + 0.913249587168797, + 1.0185902759900953, + 1.0135067914992757, + 1.0534528340517857, + 1.004462344388829, + 0.9664718816801513, + 1.047891450621383, + 0.914986364151227, + 1.0328165673415723, + 1.0671694869183355, + 0.9118448439296987, + 0.9783687676034686, + 1.0838487721103864, + 1.0192735614844144, + 0.9653843421898821, + 0.9617472518633969, + 0.9670117481673355, + 1.0481189475916577, + 0.9748182669297417, + 0.9345288268609095, + 0.9421554515949685, + 1.0087563441093417, + 0.9491870776998687, + 1.0891234498586144, + 1.0553201931849001, + 0.92401993363487, + 1.0854143522692343, + 1.0226343892230716, + 0.9921595662478221, + 0.995339018977666, + 0.9906091342070205, + 0.9488172622537483, + 0.9955010863614338, + 0.9988602785093447, + 0.9595557661982804, + 0.970831417746035, + 1.0741899446720435, + 0.9937975175038336, + 0.97193123053386, + 0.9607262065614892, + 0.9678379687115537, + 1.005438220281662, + 0.9353313988474163, + 0.9605723151873649, + 1.0378054928385825, + 1.036900545823553, + 1.035644370214282, + 1.001951739502249, + 1.0072798806017853, + 0.9124037734100557, + 1.0494262189717982, + 1.0363292227037921, + 0.9205592395907825, + 1.0754628227492136, + 1.0179778818973868, + 1.038703665569991, + 0.920537440236274, + 1.0398682010129454, + 1.0383657238202535, + 1.0671884767957378, + 0.9883124264249625, + 1.0586364171437503, + 0.9654559906421698, + 1.03478139462311, + 1.0653889376208512, + 0.9257495868413491, + 0.8614867129658643, + 1.0951058442687338, + 1.0344656231976945, + 0.9883948231744945, + 1.0266168026076943, + 0.9506976271135206, + 1.0961193751781932, + 0.9890886252471855, + 1.015664525833966, + 1.029858436739588, + 1.080655397497414, + 0.9512162143646444, + 1.0140408684220479, + 0.9302685269884279, + 0.9325219009351134, + 1.0924817387750176, + 1.0165298259502185, + 0.9694759252671293, + 0.997948393204936, + 1.04453778641533, + 1.0445315360999061, + 1.0005967519169563, + 0.9290382673322671, + 0.9650907790327529, + 0.9555452778826243, + 1.0637326613485958, + 0.937796878393941, + 0.98054291872492, + 0.9588136033495693, + 1.0204809121847613, + 1.112120131370603, + 0.9698707769982627, + 0.9660208925525335, + 0.9895989492711229, + 1.1484754547658875, + 0.9769177728935133, + 1.0273016349219661, + 1.0046384548150036, + 0.9663316172039325, + 0.9909569784959319, + 1.0388921421544894, + 0.9221071846568915, + 0.9337936939993161, + 1.0644159423099182, + 0.902501746988196, + 1.033116007683554, + 1.0288755163438408, + 1.0224310741868232, + 1.0522566409838097, + 1.0015205637261264, + 0.9544896765552271, + 0.9798317213308393, + 1.019569311999522, + 1.055287830971441, + 0.9633308240585444, + 0.9516023016918643, + 1.1042243119977286, + 1.0565987474314564, + 0.9581855417042415, + 0.9970788727698937, + 1.051121941937716, + 1.0492186641313725, + 1.119811345069103, + 0.961062204771771, + 1.0224716716296078, + 1.0116026870133485, + 1.054518228744646, + 1.0776209420264442, + 0.9525866529769563, + 1.0337027847884235, + 0.9695983236750902, + 0.9279765950151554, + 0.8897330682279246, + 1.0023620270930635, + 1.0377160122700608, + 0.9535580432086636, + 1.0702744823707098, + 1.0486851469929703, + 1.04505469824789 + ] + } + ], + "layout": {} + }, + "text/html": [ + "
" + ], + "text/vnd.plotly.v1+html": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "lqs_plot = go.Histogram(x=lqs, name = 'least squares')\n", + "chi2s_plot = go.Histogram(x=chi2s, name = 'chi2')\n", + "\n", + "iplot([lqs_plot,chi2s_plot])" + ] + }, { "cell_type": "code", "execution_count": null, @@ -1144,6 +3341,7 @@ ], "metadata": { "anaconda-cloud": {}, + "hide_input": false, "kernelspec": { "display_name": "Python 3", "language": "python", @@ -1159,7 +3357,20 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.2" + "version": "3.6.3" + }, + "toc": { + "base_numbering": 1, + "nav_menu": {}, + "number_sections": false, + "sideBar": false, + "skip_h1_title": false, + "title_cell": "Table of Contents", + "title_sidebar": "Contents", + "toc_cell": false, + "toc_position": {}, + "toc_section_display": false, + "toc_window_display": false }, "widgets": { "application/vnd.jupyter.widget-state+json": { diff --git a/ntebooks/python/examples.ipynb b/notebooks/python/examples.ipynb similarity index 86% rename from ntebooks/python/examples.ipynb rename to notebooks/python/examples.ipynb index 07ae44b..a2a7a83 100644 --- a/ntebooks/python/examples.ipynb +++ b/notebooks/python/examples.ipynb @@ -11,7 +11,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 32, "metadata": { "ExecuteTime": { "end_time": "2017-09-22T06:34+0000", @@ -20,12 +20,29 @@ "hidden": true, "init_cell": true }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "" + ], + "text/vnd.plotly.v1+html": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import math\n", - "%matplotlib inline" + "%matplotlib inline\n", + "\n", + "from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot\n", + "import plotly.graph_objs as go\n", + "init_notebook_mode(connected=True)" ] }, { @@ -39,7 +56,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 34, "metadata": { "ExecuteTime": { "end_time": "2017-09-22T06:29+0000", @@ -50,9 +67,9 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEICAYAAABbOlNNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3XlcVNX/x/HXhx1kE8UVFVHcd3Ff\nSy211PasLM3Mdtus7PutbLNM65vZvrm126pZLrjvKS64K4goKCICKoKCwPn9cYd+qAgjzHBn4Dwf\nj3kAc++d+xZhPpx7zj1HlFJomqZpWgEXswNomqZpjkUXBk3TNO0iujBomqZpF9GFQdM0TbuILgya\npmnaRXRh0DRN0y6iC4Pm1ERkpYiMMTtHaYjImyJyUkSOm51F0wrThUFzeCISLyLnROSsiCSLyEwR\n8b3K1wgVESUibsXs86qIfFv2xGA5V+NittcDngVaKKVq2eKcmmYrujBozmKIUsoX6AB0Al4yOU9Z\nNQBSlVInitpYXAHTNHvThUFzKkqpo8BCoNWl20TERUReEpHDInJCROaISIBl82rLx1OWlke3S44d\nCPwHuNOyPdryfICIfC0iSSJy1HL5x9WyrbGIrBKR05ZLQj9Zni84V7Tlte685Fz9gUigjmX7rEIt\nmgdE5Aiw3LLvzyJy3HKO1SLSstDrzBKRT0RkoeV11olILRGZJiLpIrJPRNoX2r+OiPwqIikickhE\nxpXuf0Gr6HRh0JyK5RLMYGBbEZtHWR7XAGGAL/CRZVtvy8dApZSvUmpD4QOVUouAt4CfLNvbWjbN\nBnKBxkB74DqgoE/jDWAJUBUIAT60vFbBudpaXuunS861FBgEHLNsH1Vocx+gOXC95euFQDhQA9gK\nfHfJv/kOjNZTdSAb2GDZrzrwC/A/MIom8CcQDdQF+gFPicj1aNoldGHQnMUfInIKWAuswngTv9Q9\nwP+UUnFKqbPAi8Dw0l6WEZGaGG/gTymlMi2Xfd4Hhlt2uYBxSaiOUuq8Umptac5ziVct5zoHoJSa\noZTKUEplA68CbQu1ggB+V0ptUUqdB34Hziul5iil8oCfMIoZGJffgpVSryulcpRSccCXhf4tmvYv\nfR1TcxY3Wf7SLk4d4HChrw9j/IzXLOU5GwDuQJKIFDznAiRYPn8eo9WwSUTSgfeUUjNKea4CBa+N\n5ZLVJOB2IBjIt2yqDpy2fJ5c6NhzRXxd0EnfAOPS1alC212BNWXMq1VAujBoFckxjDfAAvUxLgMl\nY1w+KcmlUw0nYFyeqa6Uyr1sZ6WOAw8CiEhPYKmIrFZKxZYie1EZ7gaGAf2BeCAASAfk8sNKlAAc\nUkqFlyGbVknoS0laRfID8LSINLQMZy3oM8gFUjD+4g4r5vhkINRyPR6lVBJGH8J7IuJv6dxuJCJ9\nAETkdhEJsRybjvGmnlfotYo7lzX8MApTKuBD0ZfPrLUJOCMiL4iIt4i4ikgrEelUxoxaBaQLg1aR\nzAC+wRiBdAg4DzwBoJTKwrgss05ETolI1yKO/9nyMVVEtlo+vw/wAPZgvPn/AtS2bOsE/CMiZ4H5\nwJNKqUOWba8Csy3nuqOU/545GJfDjlrOv7GUr4Olz2EI0A7je3MS+AqjFaJpFxG9UI+maZpWmG4x\naJqmaRfRhUHTNE27iC4MmqZp2kV0YdA0TdMu4pT3MVSvXl2FhoaaHUPTNM2pbNmy5aRSKrik/Zyy\nMISGhhIVFWV2DE3TNKciIodL3ktfStI0TdMuoQuDpmmadhFdGDRN07SL6MKgaZqmXUQXBk3TNO0i\nNikMIjLDspTiritsFxGZLiKxIrJDRDoU2jZSRGIsj5G2yKNpmqaVnq1aDLOAgcVsH4SxPGE4MBb4\nFEBEgoCJQBegMzBRRKraKJOmaZpWCja5j0EptVpEQovZZRgwRxlTuW4UkUARqQ30BSKVUmkAIhKJ\nUWB+sEWuy0T/CGeToWooBDYwPnoH2uVUzupUVg67j50hJjkDDzdX/L3dCPB2v+xRaEUzTdPsJe8C\nnE6A9MOQHg+nDkPPp8HLvrOll9cNbnUptGQhkGh57krPX0ZExmK0Nqhfv37pUuz6DWIWX/ycV4BR\nIGq0gDZ3QsM+4FI5ul6yc/PYGJfGrqOnjcex0ySknSvxuAbVfBjYqhaDWtWmbUiALhKaZiunj8L2\n7+HQKqMYnEkElf//213coPUdFaYwFPXOoYp5/vInlfoC+AIgIiKidItI3DMXzp0yqm7hCpweD/sX\nQvQPEFgf2t8L7e6BAGtWg3Q+p89d4Lt/DjNrXTwnMrIBCK3mQ5uQQO7u3IBWdf1pWsuP/Hxj39Pn\nLnDG8jEtM4c1sSf5es0hPl8VR50ALwa2qs2g1rXoWL8qLi66SGjaVcm7AAcWw9Y5EBtpFII67aF+\nV6ja4OIrHP51wMXV7pHKqzAkAvUKfR2CsT5vIsblpMLPr7RrEu9A41G77cXPXzgP+xYY/zkrJsHK\nt6Fxf+gwEprdABXgr+LE9CxmrI3np81HyMzJo1d4dd6+pTURoUEEeLsXeUytAK/Lnnuwdxinsy4Q\nuTeZRbuS+Pafw8xYd4hGwVV4ZUhL+jQpcSoWTdPSD0PUDKOFkHkCfGsZl4naj4Cgsq4KWzY2W8HN\n0sewQCnVqohtNwCPA4MxOpqnK6U6WzqftwAFo5S2Ah0L+hyuJCIiQtl1rqS0Q7DtW9j+HWQkQWgv\nGPIBVGtkv3PaUeyJs3ywLIa/dyYhwJC2dXiwVxgt6vjb5PUzzl9g6d5kPlgaQ3xqFv2b1+C/N7Sg\nYfUqNnl9TatQ8nJhw4ewcrLRWmgyEDrcZ/wh6mrfv9VFZItSKqLE/WxRGETkB4y//KtjLII+EXAH\nUEp9JsZF6I8wOpazgPuVUlGWY0cD/7G81CSl1MySzmf3wlAgLxe2fwtLXoG8bOg7Abo9Dq5F/3Xt\naJRSzF4fz9sL9+Hu6sLdXeozqnsodQK97XK+7Nw8Zq2L58PlsWTn5jG6Z0Mev6Yxfl7O8f3SNLs7\nth3mPwHHd0CzG2HQOxAQUm6nL9fCUN7KrTAUOJMEf483LjXVag1DP4I67crv/KVw4sx5xv+yg9UH\nUrimaTDv3NaGGn6XXxayy7kzzjN10X5+3pJIdV9P/ntDM25uX34//JrmcHKyjMvTGz6GKtVh8LvQ\nYmi5x9CFwR72zDcKROZJ6PYYXPMfcLfPX99lsXj3cSb8uoOsnDxeuqE5I7o2MGXkUHTCKV79czfb\njpxiRNf6TBzSEnfXyjHiS9P+dWg1zB8H6YeMS0YDXgdvc27X0oXBXs6lQ+QrRid1SGe460eoUs2c\nLJfIzM7ljQV7+HFzAq3q+jPtznY0ruFnaqa8fMWUxfv4fFUc3cKq8ck9HahaxcPUTJpWbjZ9CQuf\nN0YVDfkAwvqYGkcXBnvb/Qf8NhYC68E9v0BQQ1PjJJ85z71f/0PMibM83KcRT/dvgoeb4/x1/tvW\nRCb8upNaAV58PTKC8JrmFixNs6v8fFj2GqybZnQu3zYDPMwfjGFtYXCcdw5n0/ImuO8P47LS1wPg\n6FbToiSkZXH7Zxs4mn6Ob0Z34YWBzRyqKADc0iGEHx/qSlZOHjd/sp5le5PNjqRp9pGbA78/ZBSF\njqPgzu8coihcDcd693A2DbrDA0vAzRtm3QgxkeUeISY5g9s+W2/ctPZgV3qGVy/3DNbqUL8q8x/v\nQWh1H8bMieKzVQdxxharpl3R+dPw3a2wcy5c+xLcOM3uQ1DtQReGsgpuCmMioVoYfH+n0fdQTnYd\nPc2dX2wkX8Hch7rRrp7jz/tUJ9Cbnx/qzuDWtZm8cB/vL40xO5Km2caZYzBzMBxeDzd9Cr2fc9ob\nY52vlDkiv1pw/0KYe58xRjkrDXo+ZddTbo5PY/TMzfh7u/PdmC6EOtHNZN4ernw4vD1VPFyZviwG\nX09XxvZ2zpsHNQ0wptWZeQOcPwV3z4XG/cxOVCa6MNiKp5/xA/H7Q7B0ojFWuf0Iu5xq1YEUHvom\nijqB3nz7QBe73bBmTy4uwtu3tCEzO4+3/t6Hr6c7d3cp5eSImmamzJPwzS2Qcxbu//vy6XackC4M\ntuTqDjd9ZgxpnT8OqgRDk+tteorN8Wk8ODuKxjV8mfNAZ6r7etr09cuTq4vw/p3tyMrJ5b9/7KSK\npyvD2lXMiQu1Cir7LHx3O5w5CvfNrxBFAXQfg+25ecAdc4w7pOeOhETbDauNP5nJ2DlRhFT15rsx\nXZy6KBTwcHPh0xEd6RwaxDNzo1my+7jZkTTNOnkX4OdRkLQdbpsJ9buYnchmdGGwB08/uOdno+/h\nu9vhZNk7WE9l5TB61mYAZozqVKFuEvNyd+XrUZ1oVTeAx7/fxtqYk2ZH0rTiKWVcFYiNhBvfh2aD\nzU5kU7ow2ItvDbj3N2Pu9G9uMeZbKqWc3Hwe+mYLienn+OK+CKfqaLaWr6cbs+/vRFhwFR6cE0V0\nwimzI2nalS17DaK/h77/Me5VqGB0YbCnoDCj5ZCVCt/dZoxxvkpKKSb8toN/DqUx9fY2dAoNskNQ\nxxDo48E3D3Shmq8HD3+7hZNns82OpGmX2/gZrH0fOt4PfZ43O41d6MJgb3Xaw53fQMo++OleYyrv\nq/DR8lh+23qUp/s3qRQds8F+nnw2oiNpmTk88f02cvPySz5I08rLvr9g0QRjyuwb3nPa+xRKogtD\neWjcz5hA69AqWDXZ6sPmbT/Ke5EHuKV9Xcb1a2zHgI6lVd0AJt3cmg1xqUxdvN/sOJpmSDsEvz9i\njDy69atyWWLTLLowlJf2I4zH6nchdmmJu+9IPMVzP++gc8Mg3r61tSnTZpvpto4h3Nu1AZ+vjuOv\nHaXvn9E0m8jNNkYgAdwx2yGn27clmxQGERkoIvtFJFZEJhSx/X0R2W55HBCRU4W25RXaNt8WeRzW\noKlQo7kxK+vpo1fcLeP8BZ74YRvVfT34fERHPN0q7l8mxXn5xhZ0qB/Ic79EE5OcYXYcrTJb/F9j\nWOrNn0LVULPT2F2ZC4OIuAIfA4OAFsBdItKi8D5KqaeVUu2UUu2AD4HfCm0+V7BNKVX+SxqVJw8f\n4x6H3Gz4ZbQxDroIr8zbTUJaFtOGt69Qw1KvloebC5/c0xEfDzce+mYLZ84X/f3SNLva9Rts/tJY\n1rfZDWanKRe2aDF0BmKVUnFKqRzgR2BYMfvfBfxgg/M6p+rhRn9DwkZY9vplm3/dksjv247yZL8m\ndG5YcUcgWatWgBcf392ew2lZPDs3mvx8PRurVo5SDxr3K4R0hv6vmp2m3NiiMNQFEgp9nWh57jIi\n0gBoCCwv9LSXiESJyEYRuelKJxGRsZb9olJSUmwQ20Stb4OI0bB+Ouxf+O/TcSlneXneLro0DOLx\naytPZ3NJuoRV4z+DmxO5J5kv1sSZHUerLC6cM2YvcHWH22caHysJWxSGonpFr/Rn3XDgF6VUXqHn\n6ltWFLobmCYiRU6zqZT6QikVoZSKCA4OLltiR3D921CrDfz+MJw6QnZuHk/8sA0PNxemDW+Hq0vl\n6mwuyegeoQxuXYv3luxnz7EzZsfRKoOFL0DyTrjlCwgIMTtNubJFYUgE6hX6OgQ4doV9h3PJZSSl\n1DHLxzhgJdDeBpkcn7uXMbpB5cPPo3j3793sPnaGKbe2oXZAxR7xUBoiwps3tSbA24Nn5m4nJ1ff\n36DZ0Y65sHU29HwGwgeYnabc2aIwbAbCRaShiHhgvPlfNrpIRJoCVYENhZ6rKiKels+rAz2APTbI\n5ByCwmDodDi6Bc9/pjOyWwOua1nL7FQOK6iKB5Nvac2+4xl8sOyA2XG0iupMEvw9Hup1hWv+a3Ya\nU5S5MCilcoHHgcXAXmCuUmq3iLwuIoVHGd0F/KguXsuxORAlItHACmCyUqryFAbgRL1BLJbuPOn+\nO/+J0B2rJenfoia3dwzh05UH2Xok3ew4WkWjFCx4yli3+aZPnHJZTlsQZ1xzNyIiQkVF2W46a7Mo\npXhwzhZ2xx5kje+LuAXWgzHLKu0Po7Uyzl9g4LQ1eLq58Ne4Xnh7VM77PDQ7iP4Jfh8L178F3R4z\nO43NicgWS59usfSdzyb6a2cSS/cmM3pAJ9xufM+4gWb9B2bHcnh+Xu5Mva0NcSczeWfRPrPjaBVF\nxnFY+DzU6wJdHjY7jal0YTBJemYOr87fTZuQAO7vEQotb4YWw2DlZDih3+xK0r1xdUZ1D2XW+njW\nx+r1G7QyUgoWPAO552HYxxV6HiRr6MJgkjf/2suprAu8c2sb3Fwt/w2D3wMPX5j36FXPwloZvTCw\nGWHVq/DcLzvI0HdFa2Wx61fY/5fR2Vw93Ow0ptOFwQSrD6Tw69ZEHu7TiOa1/f9/g28wDJ4KR7fA\nxo/NC+gkvD1cefeOtiSdPsebC/aaHUdzVmdPwN/PQd2ICtmvUBq6MJSzzOxc/vP7TsKCqxR9d3Or\nW4253pdPghQ9JLMkHepXZWzvRvwUlcCmQ2lmx9GcjVLw1zOQk2mMQqrkl5AK6MJQzt5bcoDE9HNM\nvqUNXu5F/BCKwA3/Mybcm/co5Oddvo92kSf7hVM30JuX/tjJBb2wj3Y1dv8Oe/+EvhMguKnZaRyG\nLgzlaNuRdGauP8SIrvWLnyDPryYMmgKJmyFqRvkFdFLeHq68OrQlB5LPMmPtIbPjaM7i3CljFFKd\n9tB9nNlpHIouDOUkJzefCb/upJa/Fy8MbFbyAa1vh4Z9YPkbkKlH3ZRkQIua9G9ek2lLYzh66pzZ\ncTRnsPJt43frxmn63qFL6MJQTj5fdZD9yRm8eVMr/LysmKVRxOiIzsmEpRPtH7ACeHVoCxSK1+bv\nNjuK5uiO74RNXxizHNdpZ3Yah6MLQzlITM/ioxWx3NC6Nv2a17T+wOCm0PVR2PYtJGyyX8AKIqSq\nD+P6hbNkTzLL9iabHUdzVEoZo5C8AuHal8xO45B0YSgHb/+9DxH4zw3Nr/7gPs+DX21jUi/dEV2i\nMT3DaFzDl4nzd3MuR3+/tCLs+AmObDAW3vHRi2EVRRcGO1t/8CR/7Uzi0b6NqRtYium0Pf3gujch\nKRq2zLR9wArGw82FN4a1IjH9HB+tiDE7juZozp+GJS9D3Y7Q/l6z0zgsXRjsKDcvn9fm7yGkqjdj\ne4eV/oVa3QqhvWDZG5CZaruAFVS3RtW4pX1dvlgdR+yJs2bH0RzJysmQmQKD3wUX/fZ3Jfo7Y0ff\nbzrC/uQMXrqhedH3LFjr347os7DsVZvlq8heHNwcb3dXXv5jF844g7BmB8m74Z/PoeMoqNvB7DQO\nTRcGO0nLzOG9JQfo0bga19ti8Z0azY0ZH7d+A4lbyv56FVywnyfPXd+UDXGpLN6tO6IrvX87nP2h\n3ytmp3F4ujDYyXtL9nM2O5eJQ1oiYqP1m/u8AL414O9ndUe0Fe7qXJ/wGr68vXCvXgq0stv5Cxxe\nB/0m6g5nK9ikMIjIQBHZLyKxIjKhiO2jRCRFRLZbHmMKbRspIjGWx0hb5DHbrqOn+X7TEe7t2oAm\nNf1s98Je/kZH9LFtsO0b271uBeXm6sJ/b2jO4dQs5myINzuOZpbss7DkJeMO5w73mZ3GKZS5MIiI\nK/AxMAhoAdwlIi2K2PUnpVQ7y+Mry7FBwESgC9AZmCgiVcuayUxKKV77czdVfTx4un8T25+g9e3G\nWrTLJxk/8Fqx+jatQe8mwUxfFkN6Zo7ZcTQzrP8Qzh6HQVP1JHlWskWLoTMQq5SKU0rlAD8Cw6w8\n9nogUimVppRKByKBgTbIZJo/dySxOT6d565vSoCPFXc4Xy0Ro9WQecL4gddK9NINzTmbncsHy/Tw\n1UrnTBKsn24shFWvk9lpnIYtCkNdIKHQ14mW5y51q4jsEJFfRKTeVR6LiIwVkSgRiUpJSbFBbNs7\nfyGPt//eS8s6/twRUa/kA0qrXifjB339dOMHXytWk5p+3NW5Pt9sPKyHr1Y2K9+CvAtG34JmNVsU\nhqJ6Vi8dH/gnEKqUagMsBWZfxbHGk0p9oZSKUEpFBAcHlzqsPc1cF0/S6fO8dEMLXF1s1OF8Jf0m\nGj/wK9+y73kqiKcHNMHb3ZXJC/WCPpVG8h5jOpnOYyGoodlpnIotCkMiUPjP4xDgWOEdlFKpSqls\ny5dfAh2tPdZZpGfm8MnKWK5tVoNujarZ/4RBDY0f+G3fGr8AWrGq+3ry2DWNWbr3BOv0GtGVQ+Qr\nxswBvcebncTp2KIwbAbCRaShiHgAw4H5hXcQkdqFvhwKFPzZthi4TkSqWjqdr7M853Q+XhFLZnau\ndVNq20rv8cYPfqQel22N+3uEUjfQmzf/2ktevr7prUI7uAJiI6H3c3p4aimUuTAopXKBxzHe0PcC\nc5VSu0XkdREZatltnIjsFpFoYBwwynJsGvAGRnHZDLxuec6pJKRlMWfDYW7tEELTWjYcnloSnyDj\nBz820vhF0Irl5e7KhEHN2Jt0hl+3JJodR7OX/DxjPqTA+karWrtq4ozTBURERKioqCizY/zrqR+3\nsXDXcVY+15faAaWYKK8scrPhowjwDICHVunheCVQSnHLp+tJTD/HyvF9qeKpF2ipcLZ/D388Ard+\nDa1vMzuNQxGRLUqpiJL203c+l9Guo6f5Y/sxRvdsWP5FAcDN0+iITt5pTCesFUtEePnGFqRkZPO1\nXga04snJguVvGrOntrrV7DROSxeGMnpn0T4Cfdx5uE8j80K0uhXqdDB+IXKyzMvhJDrUr8p1LWry\n5eo4fdNbRbPxEzhz1LjXx1ZT0VRCujCUweoDKayJOckT14YT4G2Hm9msVXDT25mjxi+GVqLx1zcl\nMyeXT1cdNDuKZitnU2DtNGh2IzTobnYap6YLQynl5ysmL9xHSFVvRnStb3YcCO0BTQfDuumQ5XT9\n9+WuSU0/bm4fwqz18SSdPmd2HM0W1v4PLmQZK7NpZaILQynNiz7KnqQzPHd9UzzdHKTD99qXIPuM\ncUe0VqKn+oejlGK6nirD+Z1KgM1fQbu7oXq42Wmcni4MpZCdm8e7iw/Qum4AQ9rUMTvO/6vZ0phk\nb+NnkKHXIChJvSAf7unSgLlRicSl6KkynNrqKcbHPi+Ym6OC0IWhFH7clMDRU+d4YWAzXOw99cXV\n6jsB8i/AmvfMTuIUHr+2MZ5uLrwXecDsKFpppR6Ebd9BxGgItOMcZZWILgxX6VxOHh+tiKVrWBA9\nGpfD1BdXq1ojaD8CombAqSNmp3F41X09GdOzIX/tSGLX0dNmx9FKY8VbxrDtXs+anaTC0IXhKs3Z\nEE9KRjbPXtfUdiuz2Vrv50FcYOU7ZidxCmN6hxHo486UxfvNjqJdreM7Ydcv0PURY3VDzSZ0YbgK\nGecv8Nmqg/RpEkynUAeefyWgLnR+EKK/hxR9iaQk/l7uPNq3EasPpLDhYKrZcbSrsXyScdd/9yfM\nTlKh6MJwFWasjSc96wLPXmeHldlsrefT4O4DKyaZncQp3NctlFr+XkxZvA9nnCamUkrYDAcWQo9x\n4O3UCz86HF0YrHQqK4ev1sRxfcuatAkJNDtOyapUh66Pwp4/ICna7DQOz8vdlSf7h7PtyCmW7j1h\ndhzNGstfhyrB0OVhs5NUOLowWOmL1XGczcnl6QFO0Foo0P1x8Ao0psrQSnR7xxBCq/nwv8gD5Otp\nuR1b3Eo4tNrocPb0NTtNhaMLgxVSMrKZuS6eIW3q0KyWv9lxrOcVYFxSilkChzeYncbhubm6MK5f\nOHuTzrBkz3Gz42hXohQsex38Q6Dj/WanqZB0YbDCpysPkp2bx1P9nfCOys5jwbcmLH/D+IXSijW0\nbR3CgqvwfmSMbjU4qv1/w9Et0PcFcPcyO02FZJPCICIDRWS/iMSKyIQitj8jIntEZIeILBORBoW2\n5YnIdstj/qXHmi3p9Dm+/cdYhCcs2AmbrB4+0Gs8HF4Hh1aZncbhubm68GS/cPYnZ7Bwl241OByl\nYOXbEBQGbe82O02FVebCICKuwMfAIKAFcJeItLhkt21AhFKqDfALMKXQtnNKqXaWx1AczIfLY1FK\nMa6fE7YWCnS4D/zqwMrJutVghRvb1CG8hi/Tlh7QS4A6mn0LjHsXej8PrnqRJXuxRYuhMxCrlIpT\nSuUAPwLDCu+glFqhlCpYKGAjEGKD89pdQloWczcnMLxTfeoF+Zgdp/TcvaDXM3Bkg9FppxXL1UV4\nqn8TYk6cZcGOY2bH0Qrk5xt/3AQ1MuYE0+zGFoWhLpBQ6OtEy3NX8gCwsNDXXiISJSIbReSmKx0k\nImMt+0WlpKSULbGVPloei4uL8Ng1jcvlfHbV4T7wr2s0w3WroUSDWtWiWS0/PlgWo1sNjmLfn5C8\ny5goT7cW7MoWhaGoeSGK/E0SkRFABDC10NP1LWuQ3g1ME5Eil0JTSn2hlIpQSkUEBweXNXOJjqRm\n8evWRO7uXJ9aARWgg8vN02g1JPwDB5ebncbhubgIT/UPJy4lk/nRR82Oo+XnG1O8VGus13EuB7Yo\nDIlA4SkNQ4DL2t8i0h/4LzBUKZVd8LxS6pjlYxywEmhvg0xl9vEKo7Vg6pKdttb+XmOIn241WOW6\nFrVoUdufD5bGkJuXb3acym3vfDix22gtuDjI+icVmC0Kw2YgXEQaiogHMBy4aHSRiLQHPscoCicK\nPV9VRDwtn1cHegB7bJCpTCpca6GAmyf0fhYSN8PBZWancXguLsLTA5oQn5rF79t0q8E0+fmw6h2o\n3sRY31yzuzIXBqVULvA4sBjYC8xVSu0WkddFpGCU0VTAF/j5kmGpzYEoEYkGVgCTlVKmF4YK2Voo\n0G4EBNSDFbrVYI3+zWvQum4A05fHcEG3Gsyx5w84sUe3FsqRTXpwlFJ/A39f8twrhT7vf4Xj1gOt\nbZHBVgpaCyO6NqhYrYUCbh7GNAILnoLYpRA+wOxEDk1EeHpAOKNnRfHrlkSGd3aA9b0rk39bC02h\n5c1mp6k09J3Pl6jQrYUC7e6BgPrGAie61VCia5rWoG29QD5aEatbDeVtz++Qss+4y1m3FsqNLgyF\nJKRV0L6FS7l5QO/xcGyrMY+SViwR4cl+jUlMP8fvW3VfQ7nJzzNGIgU3hxa6tVCedGEopFK0Fgq0\nuxsC6+sRSla6pqnR16BbDeXS6xCwAAAgAElEQVRo9+9wcr+ltaDfqsqT/m5bJKRl8cuWStBaKODq\nDr2fg2PbdKvBCiLCuH7hHEnLYt52fTe03eXnwaopUKMFNB9W8v6aTenCYFGpWgsF2t5l9DWseke3\nGqzQv3kNWtT256Pl+r4Gu9szz2gt9H5OtxZMoL/jVMLWQgFXd+Nu6KNb9H0NVihoNcSnZvGnnkPJ\nfvLzYfVUYyRSC91aMIMuDMAnK2NxkUrWWijQ7m7L3dC61WCN61rUpFktPz5cHqvnULKXfQuM+xZ6\nP6dHIpmk0heGxHSjtTC8c73K1Voo4OYJPZ+CxE16vQYruLgYrYa4lEw986o9KGX0LVRrDK1uMTtN\npVXpC8Nnqw4CVM7WQoH294JfbeMXUivRwJa1aFpTtxrsYv9CSN5pLC6lWwumqdSF4fjp88zdnMht\nHetRJ9Db7DjmcfeCHk8Zq7zFrzU7jcNzcRGe6NeY2BNnWbgryew4FYdSxkCIqqF6vQWTVerC8Nmq\ng+QrxaN9K3FroUDHkVClhvGLqZVoUKvaNK7hy/Rlem1om4lZAknbjdaCXm/BVJW2MJw4c54fNh3h\nlg51nXt1Nltx94YeT8Kh1XB4g9lpHJ6ri/DEtY05kHyWRbv12tBlVtBaCKgPbYebnabSq7SF4YvV\nceTmq4qxOputRNwPPtVhte5rsMaNbeoQFlxFtxps4eAyY9h0r2eMYdSaqSplYTh5Nptv/znMsLZ1\naFCtitlxHIdHFej+hLHCW8Jms9M4PFcX4fFrGrPveAaRe5PNjuO8lDKGS/uHGMOnNdNVysLw1ZpD\nZOfm89i1urVwmU5jwDtItxqsNLRtHRpU8+HD5TEofR9I6RxaZQyX7vmUMXxaM12lKwxpmTnM2RDP\nkDZ1aBTsa3Ycx+PpC90fNzoCj241O43Dc3N14bG+jdl19Awr9p8o+QDtcqumgF8d6HCf2Uk0C5sU\nBhEZKCL7RSRWRCYUsd1TRH6ybP9HREILbXvR8vx+EbneFnmKM2PtIc5dyONx3Vq4sk4PglegMS2B\nVqKbO9SlbqA305fF6lbD1YpfawyT7vGkbi04kDIXBhFxBT4GBgEtgLtEpMUluz0ApCulGgPvA+9Y\njm2BsUZ0S2Ag8Inl9ezidNYFZq2PZ1CrWjSp6Wev0zg/L3/o+ijs/xuSdpidxuG5u7rw6DWN2J5w\nijUxJ82O41xWvWMMk+440uwkWiG2aDF0BmKVUnFKqRzgR+DSma+GAbMtn/8C9BMRsTz/o1IqWyl1\nCIi1vJ5dzFx/iLPZuTx+Tbi9TlFxdHkIPP11q8FKt3UMoXaAF9OX6b4Gqx3ZaAyP7vGkMVxaK1Zc\nylnGzokiIS3L7ueyRWGoCyQU+jrR8lyR+yilcoHTQDUrjwVARMaKSJSIRKWkpJQqaNKp81zfsiYt\n6viX6vhKxTvQKA5750PyHrPTODxPN1ce7tOIqMPpbIhLNTuOc1g1BXyqGcOktRJ9vOIgq2NS8HK3\n/1QhtigMUsRzl/7JdKV9rDnWeFKpL5RSEUqpiODg4KuMaHjntjZ8fHeHUh1bKXV9FDx8Yc27Zidx\nCnd2qkcNP08+XBZrdhTHl2iZ6r37E8Ywaa1Yh1Mz+WP7Ue7p0oBgP/v3xdiiMCQC9Qp9HQJcOu3k\nv/uIiBsQAKRZeaxNublWuoFYpecTBJ0fhF2/QcoBs9M4PC93V8b2DmNDXCqb49PMjuPYVk8B76rG\n8GitRJ+sOIiri/BQ77ByOZ8t3iU3A+Ei0lBEPDA6k+dfss98oKB36TZguTIuxM4HhltGLTUEwoFN\nNsik2Uq3x43rv7rVYJV7ujSguq8H05fFmB3FcR3bDgcWQdfHwFMPAilJQloWv25N5K5O9ajhXz5L\nA5S5MFj6DB4HFgN7gblKqd0i8rqIDLXs9jVQTURigWeACZZjdwNzgT3AIuAxpVReWTNpNlSlOkSM\nhp0/Q+pBs9M4PG8PV8b0CmNNzEm2HUk3O45jWj0VPAOgy1izkziFz1YdNBYSK8fJPm1yXUUp9bdS\nqolSqpFSapLluVeUUvMtn59XSt2ulGqslOqslIordOwky3FNlVILbZFHs7Hu48DVA9b8z+wkTuHe\nrg2o6uPOh8t1X8Nlju8yVmjr+gh4BZidxuEdO3WOuVEJ3B4RQu2A8hu5pS+4ayXzqwkdR8GOHyE9\n3uw0Dq+KpxtjeoWxfN8JdiaeNjuOY1nzLnj4QdeHzU7iFD5fdRCl4JFyXhpAFwbNOj2eBHGBte+b\nncQp3NetAf5ebnyg+xr+34l9sPsP4xKSd1Wz0zi8E2fO88PmBG7tEEJI1fJdGkAXBs06/pa5bLZ9\nB6cSSt6/kvPzcueBnmEs3ZvMrqO61QAYrQV3H6PTWSvR56vjyMtXPHpN+S8kpguDZr0eTxkf100z\nN4eTGNUjFD8vNz5crlsNnIyFXb9CpwegSjWz0zi8lIxsvvvnMDe1q2vK0gC6MGjWC6wH7e+BrXPg\n9FGz0zi8AG937u/RkMW7k9mbdMbsOOZaPRVcPY2BDFqJvloTR05uPo+Z0FoAXRi0q9XzGVD5utVg\npQd6NMTPs5K3GlIPws65RmvBt3SzFlQmaZk5fLPxMEPa1iHMpKUBdGHQrk7VBsYqW1tmwxm73qRe\nIQT4uDOqRyh/7zzO/uMZZscxx+p3jdZCjyfNTuIUvloTZywNYOKyw7owaFev17Og8mCtbjVYY3SP\nhlTxcGV6ZWw1pMXBjp+MmyR9a5idxuGlZ+Ywe308g1vXJtzEpQF0YdCuXtVQaDsctsyCM0lmp3F4\nVat4MLJ7KH/vTCImuZK1Gla/B67uurVgpa/WxpF1IY8n+5m7NIAuDFrp9BoP+bmw7gOzkziFMb3C\n8HZ3rVx3Q6cdgugfoOP9xk2SWrHSM3OYtS6eG1rXNn0hMV0YtNIJaght74ItMyHjuNlpHF5QFQ/u\n7daAP3ccI/bEWbPjlI8174KLm24tWKmgtTDO5NYC6MKglUXvZyHvAqybbnYSp/BgrzC83Fz5eEUl\naDWkx0P0j8ZUKv61zU7j8ApaC4MdoLUAujBoZREUBm3uhKivISPZ7DQOr7qvJyO61mfe9qPEpVTw\nVsOa94wpVHo+ZXYSp/Bva+Fa81sLoAuDVla9x0NeDqzXrQZrjO3dCA83l4rd15B+GLZ/Dx1GGlOp\naMUyRiIdZnDr2jStZX5rAXRh0MqqWiNofQds/hrOnjA7jcML9vPkvm6hzNt+tOL2Naz9n6W18LTZ\nSZzC12sPkZmT6zCtBdCFQbOF3s9BXrZuNVjpod5heLm7VsxV3k4lGBMttr8XAuqancbhpWfmMMty\n34KjtBagjIVBRIJEJFJEYiwfL5tLV0TaicgGEdktIjtE5M5C22aJyCER2W55tCtLHs0k1RtD69th\n01e6r8EK1XyNVsOfO45xoKLd17B6KohAr2fMTuIUHLG1AGVvMUwAlimlwoFllq8vlQXcp5RqCQwE\npolIYKHtzyml2lke28uYRzNLnxeMvga9XoNVxvYOw8fdtWKt15B2CLZ/Z4xECggxO43Dc9TWApS9\nMAwDZls+nw3cdOkOSqkDSqkYy+fHgBOAnkmroqnWyLivIWqGnnnVCkFVPLi/R0P+2pHEvuMVZObV\nVVOM+xZ6PWt2EqfgqK0FKHthqKmUSgKwfCx2MhQR6Qx4AIVXlZ9kucT0voh4FnPsWBGJEpGolJSU\nMsbW7KLPc8YcSmveMzuJUxjTy5h5dVpkBWg1nIwxln7tNAb8apmdxuGlZeYwc90hBrdyvNYCWFEY\nRGSpiOwq4jHsak4kIrWBb4D7lVL5lqdfBJoBnYAg4IUrHa+U+kIpFaGUiggO1g0Oh1Q11Oh03DoH\nTh0xO43DC/Tx4P6eDVm0+zi7jzn5Km8rJ4Ob1/8v5qQV67NVBzl3IY+nBzheawGsKAxKqf5KqVZF\nPOYByZY3/II3/iLHK4qIP/AX8JJSamOh105ShmxgJtDZFv8ozUS9xxudj6unmp3EKTzQsyF+Xm5M\nW+rErYbkPcbqbJ3H6vUWrHDizHlmr4/npvZ1aVzD8VoLUPZLSfOBkZbPRwLzLt1BRDyA34E5Sqmf\nL9lWUFQEo39iVxnzaGYLCDEmTdv2nTHlslasAG93HuwVRuSeZHYmOmmrYeXb4OGr50Sy0scrYsnL\nVzzVr4nZUa6orIVhMjBARGKAAZavEZEIEfnKss8dQG9gVBHDUr8TkZ3ATqA68GYZ82iOoNczxlTL\nq6aYncQp3N8jlABvd6YtPWB2lKuXtAP2zoeuj4BPkNlpHF5iehbfbzrCHZ3qUb+aj9lxrsitLAcr\npVKBfkU8HwWMsXz+LfDtFY6/tizn1xyUXy2jE3LjJ8ZSoMGO+5eRI/Dzcmds7zCmLt7P9oRTtKsX\nWPJBjmLFW+AVAN0eMzuJU/hwWSwiwhPXmrc6mzX0nc+affR8Gty8YdVks5M4hZHdQwmq4sF7S/ab\nHcV6R7fAgYXQ7QnwdqJiZpJDJzP5ZWsi93SpT+0Ab7PjFEsXBs0+qlSHLg/Brt+MzkmtWL6ebjza\ntxFrYk6yPvak2XGss+It8A6Crg+bncQpfLD0AB6uLjza17FbC6ALg2ZP3Z8wOiVXvm12EqcwomsD\n6gR48c7i/SilzI5TvCP/QOxSo8PZ0zFH1jiS/cczmBd9jFE9Qgn2u+LtWg5DFwbNfnyCjGvPe+fD\n0a1mp3F4Xu6uPNW/CdEJp1i824HnnFIKlr0GVWpA5wfNTuMU3o88gK+HGw/1DjM7ilV0YdDsq9tj\n4FMNlr5qdhKncEuHujQKrsK7S/aTl++grYaYSDi8Dvo8Dx5VzE7j8HYmnmbR7uM80KshgT4eZsex\nii4Mmn15+RvTch9aBQeXm53G4bm5ujD+uqbEnjjLb1sTzY5zufw8o8hXbWhMlqeV6L3I/QT6uPNA\nz4ZmR7GaLgya/UWMhsD6EDkR8vNL3r+SG9iqFm1CApi2NIbs3Dyz41xs589wYjf0e9m4V0Ur1sa4\nVFbuT+HhPo3w83Ke75cuDJr9uXnCNS/B8R2w+zez0zg8EeH565tx9NQ5vtvoQHNO5WbD8klQuy20\nuNnsNA5PKcXbC/dRO8CLUd1DzY5zVXRh0MpH69uhZitY/ibk5pidxuH1DK9O90bV+HhFLGezc82O\nY4iaAaePQP9XwUW/dZTk753HiU44xTMDmuDl7mp2nKui/3e18uHiAv0mQvoh2Dq75P01nh/YjNTM\nHL5ec8jsKHD+jDExYsM+0EhPWFCSnNx8pizeR7NaftzSwfkWLdKFQSs/4QOgQU9Y9Q5knzU7jcNr\nVy+Q61vW5Ms1caRlmtzKWv8hZKUarQWtRD9sOsLh1CxeGNgMVxcxO85V04VBKz8ixhtLZooxj5JW\novHXNSUrJ5ePV8SaFyIjGTZ8DC1vhrodzMvhJDLOX2D6shi6hVWjb1PnnIZcFwatfNXrBM1uhHUf\nQKaTTP1govCaftzWMYRvNhzmcGqmOSFWT4G8bLj2ZXPO72S+WB1HamYOLw5uhrGigPPRhUErf/1e\ngQtZsPpds5M4hWeva4qbq/DOon3lf/LUg7BlFnS4z1jXWytW8pnzfLXmEDe2qU2bEOedWFAXBq38\nBTeF9iNg81eQ5gAdqw6upr8XD/dpxN87j7M5Pq18T778TXD1gD5XXHVXK2Ta0gPk5ufz3PVNzY5S\nJmUqDCISJCKRIhJj+Vj1CvvlFVqkZ36h5xuKyD+W43+yrPamVQZ9XzRukIp8xewkTuHBXmHU8vfi\njQV7yC+vqTKObDTuO+n+hLHGhlas2BMZ/LQ5gXu6NKBBNeeeKqSsLYYJwDKlVDiwzPJ1Uc4ppdpZ\nHkMLPf8O8L7l+HTggTLm0ZyFfx1jEZ+98yF+rdlpHJ63hyvPD2zKjsTTzIs+av8T5ufDwhfAr45e\nstNK7yzaj4+Hm8MvwmONshaGYUDBoPTZGOs2W8WyzvO1wC+lOV6rALo/DgH1YOEEYw4erVg3tatL\n67oBTFm0n3M5dv5+Rf8ASduNUWR6orwSbYxLJXJPMg/3CaOar+NPq12SshaGmkqpJADLxxpX2M9L\nRKJEZKOIFLz5VwNOKaUKbutMBOqWMY/mTNy9YcBrkLwTtn1jdhqH5+IivHRDc5JOn+erNXH2O1F2\nhjGtdt0I4451rVi5efm8On83dQO9eaCnc0yrXZISC4OILBWRXUU8hl3FeeorpSKAu4FpItIIKGoc\n1xUvnorIWEtxiUpJSbmKU2sOreUtUL8bLHsDzp82O43D6xJWjYEta/HpqoOcOHPePidZ+z6cTYZB\n7+ipL6zww+YE9h3P4L83NMfbw7mmvriSEv/XlVL9lVKtinjMA5JFpDaA5eOJK7zGMcvHOGAl0B44\nCQSKiJtltxDgWDE5vlBKRSilIoKDnfOmEa0IIjDwbeOuWj181SoTBjXjQl4+7y05YPsXT4+H9R9B\nmzshJML2r1/BpGfm8N6S/XQLq8agVhWng76sfw7MB0ZaPh8JzLt0BxGpKiKels+rAz2APcpYu3AF\ncFtxx2uVQJ320O4e2PipMW5eK1Zo9SqM7BbK3C0J7Dl2xrYvHvkKuLjqqS+s9L/IA5w5d4GJQ1s4\n7c1sRSlrYZgMDBCRGGCA5WtEJEJEvrLs0xyIEpFojEIwWSlVsDr8C8AzIhKL0efwdRnzaM6q3yvG\n9NxL9N211nji2nACvN158689tlsfOn4t7JkHPZ82Ro1pxdpz7Azf/XOYe7s2oFktf7Pj2JRbybtc\nmVIqFehXxPNRwBjL5+uB1lc4Pg7oXJYMWgXhVxN6PWt0esathLC+JgdybAE+7jwzoAmvzNvNgh1J\nDGlbxjfy/DxY9CL4hxj3LWjFUkrx2p+7CfB25+kBTcyOY3O6Z0lzHF0fhcAGsOg/kOcgaxA4sHu6\nNKBVXX/eWLCHjPMXyvZi278zFlIa8JoxWkwr1l87k/jnUBrjr2/qNOs4Xw1dGDTH4e4F171hLB0Z\nNcPsNA7P1UWYdFNrUs5m87/IMnREn0uHZa9Dva7Q6lbbBaygzuXk8dZfe2lR25/hneqbHccudGHQ\nHEvzocZCMMtehzNXHKSmWbStF8g9Xeoze308u46Wcrjv0lchKw0GTzVGiWnF+nTVQY6dPs+rQ1s6\n5VoL1tCFQXMsInDDe5B/wZiSQSvRc9c1I6iKBy/9sevq51E6vMGYPbXbo1C7jV3yVSQJaVl8vuog\nQ9vWoXPDILPj2I0uDJrjCQqDPs8b8yjtX2h2GocX4OPOfwY3Z3vCKX7cnGD9gbk5sOApCKhvTGqo\nFUspxUt/7MLVRXhxcDOz49iVLgyaY+o+Dmq0gL/G62VArXBz+7p0aRjEO4v2cfJstnUHrf8AUvYZ\nLTQ9H1KJ/th+lFUHUnj++qbUDqjYHfS6MGiOydUdhnwAZxJhxVtmp3F4IsKbN7UiMzuXyQutWNAn\n9SCsmmos19nkOvsHdHKpZ7N5/c89dKgfyL3dQs2OY3e6MGiOq15niBgN/3wKx7aZncbhhdf048He\nYfyyJZFNh4pZ0EcpWPA0uHnBwMnlF9CJvfbnHs5m5zL51jYVtsO5MF0YNMfWbyJUCYY/n9T3Nljh\niWsbUzfQm5f+2ElObn7RO+2YC4dWQf+JegEeKyzfl8z86GM8dk1jmtT0MztOudCFQXNs3oHGX7VJ\n0bDpC7PTODwfDzdeG9qSA8ln+Wh5zOU7ZKXB4hchpDN0vL/8AzqZjPMX+O/vu2hS05dH+zr/AjzW\n0oVBc3wtb4bw64z1h08nmp3G4fVvUZNbOtTl45UHiU44dfHGyJeN6c2HTNNTalth6uL9HD9znsm3\ntsHDrfJ8vyrPv1RzXiIw+F1AwfxxxjVyrVgTh7Skhp8nz8zdzvkLltXeYpfBtm+NuZBqtjQ3oBOI\nik/jm42HGdU9lA71i1zOvsLShUFzDlUbwIDX4eAy2PSl2WkcXoC3O1Nua8PBlEymLt4PmanwxyMQ\n3Bz66BsHS3L+Qh4v/LqDOgHejL+uqdlxyp0uDJrz6DTGuKQU+TKcsGJIZiXXKzyYe7s2YMa6ONJ+\netiYE+nWL/UkeVaYviyGgymZvHVLa6p4lmkSaqekC4PmPERg2Mfg4Qu/jYFcK2/kqsReHNyMh/02\nEHRkCdl9XoJaRc6ArxWyPvYkn646yB0RIfRpUjlXi9SFQXMuvjVg2EdwfCesmGR2Gofnk3GY8fkz\nWJ/fktdS+pgdx+GlZebw1E/baVi9Cq8Orbz9MGVqI4lIEPATEArEA3copdIv2eca4P1CTzUDhiul\n/hCRWUAfoGBayFFKqe2lyXLhwgUSExM5f95OC6Q7AS8vL0JCQnB3dzc7in01HWQMtVw3HRoPgIa9\nzE7kmPIuwG9jcXVzZ1urt/l+41EGtKrDNU1rmJ3MISmleO7naE5lXWDm/Z3w8ah8l5AKSFmWBRSR\nKUCaUmqyiEwAqiqlrtizZSkksUCIUirLUhgWKKV+uZrzRkREqKioqIueO3ToEH5+flSrVq1Crb1q\nLaUUqampZGRk0LBhQ7Pj2F9OJnzeGy6cg0fWgXflGjVilRVvw6rJcNtMspsNY+iH60jPymHJ070r\n5OIyZTVj7SFeX7CHV4e0YFSPivk7JCJblFIRJe1X1ktJw4DZls9nAzeVsP9twEKlVFYZz3uZ8+fP\nV9qiAMZcOdWqVas8LSaPKnDLl3A2Gf56Vg9hvVTCJlg9BdreBa1uwdPNlffuaEt6lnGp5Kqn567g\ndh09zeSF++jfvAYju4eaHcd0ZS0MNZVSSQCWjyW1UYcDP1zy3CQR2SEi74uI55UOFJGxIhIlIlEp\nKSlX2ucqolc8le7fX7cD9J0Au341pnnQDNkZ8NuDEBACg6b8+3SrugFMHNKSlftTmLasiLuiK6nM\n7FzG/bCNqlXcmXJb28r3e1SEEguDiCwVkV1FPIZdzYlEpDbQGlhc6OkXMfocOgFBwBUvQymlvlBK\nRSilIoKDK+dIAa0IPZ+B+t2MSeGSd5udxnz5+fD7w3DqCNz8BXj5X7T5ni71ub1jCNOXxbBsb7JJ\nIR3LxPm7OZSaybQ72xNURV9iAysKg1Kqv1KqVRGPeUCy5Q2/4I3/RDEvdQfwu1Lq31XLlVJJypAN\nzAQ6l+2f41jGjBnDnj17Stxv2rRpzJkzp9h9hg8fTkyM/ivvMi6ucNtM4w3wh+HGjVyV2ap3YN8C\nuG4SNOh22WYR4Y2bWtGqrj9P/bSd+JOZJoR0HPO2H+WXLYk8cU1jujWqZnYch1HWS0nzgZGWz0cC\n84rZ9y4uuYxUqKgIRv/ErjLmcShfffUVLVq0KHaf3NxcZsyYwd13313sfo888ghTpkwpdp9Ky782\nDP8OMpJh7n3GaJzKaPcfRmdzu3ug6yNX3M3L3ZVP7+mIq4vw0DdbyMqpnLPW7kw8zYRfdxLRoCrj\n+oWbHcehlHU81mRgrog8ABwBbgcQkQjgYaXUGMvXoUA9YNUlx38nIsGAANuBh8uYB4DX/tzNnmNn\nbPFS/2pRx5+JQ648rjkzM5M77riDxMRE8vLyePnll/n000959913iYiIwNfXlyeffJIFCxbg7e3N\nvHnzqFmzJsuXL6dDhw64ubmRm5tLt27dmDp1Kn379uXFF1/ExcWFSZMm0atXL0aNGkVubi5ubpV3\nGN0V1e0IQz+E38caa0Xf+D+zE5WvpB3GlBchneHG942bAYtRL8iHD+9qz8gZm5jw604+GN6uUl1b\nP3bqHA/M3kxQFQ8+GdEBN1d9S1dhZfpuKKVSlVL9lFLhlo9pluejCoqC5et4pVRdpVT+Jcdfq5Rq\nbbk0NUIp5bRrOC5atIg6deoQHR3Nrl27GDhw4EXbMzMz6dq1K9HR0fTu3ZsvvzTm+1m3bh0dO3YE\nwM3NjVmzZvHII48QGRnJokWLmDhxIgAuLi40btyY6Ojo8v2HOZO2d0KPJyHqa9j8tdlpys/ZFPjx\nbmPI7p3fgtsVx3BcpFd4MM9e15T50ceYuS7evhkdyNnsXEbP2sy5nDxmjOpEDT8vsyM5nAr5p2dx\nf9nbS+vWrRk/fjwvvPACN954I716XXzTlYeHBzfeeCMAHTt2JDIyEoCkpCSaN2/+734tW7bk3nvv\nZciQIWzYsAEPj//vDKtRowbHjh37t5BoReg3EU7shYXPQ3BTCO1pdiL7ys0xLp9lpsDoReBX86oO\nf7RvI6ITTjHp7700r+1f4a+z5+bl8/j3W4k5cZaZozrRtFblWHjnaun2k400adKELVu20Lp1a158\n8UVef/31i7a7u7v/21R3dXUlN9e4ruvt7X3ZvQc7d+4kMDCQ5OSLR42cP38eb289AVqxXFzh1q+g\nakP46V5Ijzc7kf0oBX+PhyPrjTmk6rS/6pcQEd67oy0Nq1dh7JwodiaeLvkgJ6WU4rU/97Byfwpv\nDGtF70o6D5I1dGGwkWPHjuHj48OIESMYP348W7duteq45s2bExsb++/Xv/32G6mpqaxevZpx48Zx\n6tT/L7Ry4MABWrasvPO3WM0rAO76EVQe/HCXsWpZRbThY9g62xiy2/q2Ur+Mn5c7c0Z3xt/bnftm\n/ENMcoYNQzqOGevi+WbjYR7qHcbdXeqbHceh6cJgIzt37qRz5860a9eOSZMm8dJLL1l13KBBg1i9\nejUAJ0+eZMKECXz99dc0adKExx9/nCeffBKA5ORkvL29qV27tt3+DRVK9cZw+2xIjYVvbqp4xeGf\nz2HJf6H5ULj25TK/XJ1Ab74b0wU3Vxfu+eofjqTafHICU0XuSebNv/YwsGUtXhjYzOw4Dq9McyWZ\npai5kvbu3XvRtXpncvPNNzNlyhTCw688ZO7999/H39+fBx54oNjXcubvg13ERBodszWaw71/gE+Q\n2YnK7p/PjT6UZjca93C42e6mrP3HM7jziw34errxy8PdqRXg/B2za2JSGDtnC01q+vLj2G54e7ia\nHck05TVXkmYDkydPJrxft/wAAA2aSURBVCkpqdh9AgMDGTlyZLH7aEUIHwDDvzc6pCtCy8GORQGg\naS0/Zt/fmVNZF7jnq42knnXuNS8W7TrOA7OiaFDNh69HdarUReFq6MLgAJo2bUrv3r2L3ef+++/X\n9y+UVkUpDnYuCgXa1gvk65ERJKaf474Zmzh9zjlvGPxtayKPfb+VlnX9+WlsN6r7WjeMV9OFQass\nnL04lFNRKNAlrBqf39uRA8kZjPjqH5LPONesvd9siOeZudF0aRjEtw90IcCngq9RYmO6MGiVx6XF\nIcMJJpFTCtZ/WK5FoUDfpjX4bERH4lLOMvSjtUQnnCr5IAfw8YpYXp63m/7NazJjVKdKuWZzWenC\noFUuBcUh5YCx0E/8OrMTXVn2Wfh1DCx5yRh9VI5FoUC/5jX59dHuuLu6cPvnG5i3/Wi5nv9qKKV4\nZ9E+pi7ez7B2dfh0RAe83HWfQmnowqBVPuED4MFlxmI/s4fA2mmOt9DPiX3w5bWw+zdjOOrts8u9\nKBRoVsufeY/1oF29QJ78cTtTFu1zuIV+UjKyGT1rM5+uPMjdXerzvzva4a7nPyo1/Z1zINu2bWPM\nmDHF7vPRRx8xc+bMckpUgdVsCWNXQvMhsHSiMaT1nINcKtnxM3x5DZxLM4bY9h4PLub+qlbz9eTb\nB7pwV+d6fLLyIA99u4Wz2Y4xK2vknmQGTlvN+oOpvDa0JZNuaoWrS+WZENAedGFwIG+99RZPPPFE\nsfuMHj2a6dOnl1OiCs7LH26fBQPfgZglxqWlY9vNy5ObDQuegd/GQO128NAaCOtjXp5LeLi58NbN\nrXl1SAuW7zvBTR+vY8NB89a/yMrJ5cXfdvLgnChq+nux4ImejOweWqlmibWXitkrs3ACHN9p29es\n1RoGTS52lzlz5vDuu+8iIrRp04Y333yT0aNHk5KSQnBwMDNnzqR+/fr8/PPPvPbaa7i6uhIQEMDq\n1avJyMhgx44dtG3bFoBx48ZRvXp1XnnlFRYvXsykSZNYuXIlPj4+hIaGsmnTJjp3rlDrGplDBLo+\nbCwT+vMo+Po66Pk0dHvsstXP7EYpiFsJkS8bP7fdxxmTAbo63q+niDCqR0PCa/rxwq87uOvLjQxu\nXYsXBzWnXpBPueWITjhlLDSUmslDfcJ4ZkATPN3+r717D66iPOM4/n0SgocEAk3CPQED2oLEkUAg\nSiQgMS2io0CRsa0hUVqqo6LSCm2ZThXU0kGgMlNFIHSopU1FUURQFAG5DCCXUCGACMFIjBAhhSBD\n5fb0j10pgUDu2WzO85k5k5zd5ZzfeyacZ/d9d/e18YTa0vD+8nwqLy+P5557jvXr1xMTE0NJSQmZ\nmZmMGjWKzMxM5s2bx9ixY3nrrbeYNGkSy5cvp2PHjhfuhbRlyxYSEhIuvN6UKVPo06cP/fv3Z+zY\nsSxbtowQtzshKSmJtWvXWmGoTXF9nT30peOcyW4+fsW5hXffMc5YRF35YiN8OBkK1kHLOGdgvNud\ndfd+tSTluhhWjBvAnDX5vLR6Px/uLuaXqV14aGBXwpvW3dfKgSMnyV6XT87HB2nd4hoW/DyZfl1j\n6uz9glXjLAwV7NnXhZUrVzJixAhiYpw/0qioKDZs2MCiRYsAyMjIYPz48QCkpKSQlZXFyJEjGT58\nOODcfvviuazDw8OZM2cOqampzJgxg65du15Y16ZNG/bs2VNfTQseEdEwcj4U5cKq52HF07DhJej/\nK0h6oNLzHFRKUS6sfBb2rYDmbeGOqdA7s3bfo44FwkJ5LO16RiTFMuXdPcxcuY+FWwuZMLgbQ25s\nT9MmtddTvbWghNlr8nl/12HCQkIY2SeOCT/qZtcn1JEaFQYRuRd4GugO9FXVLVfYbjDwIhAKzFXV\nKe7yeCAHiAK2ARmqerommbyiqhX2bX63ftasWWzatImlS5fSs2dPtm/ffsXbb0dHR1NUVFRmud1+\nu451SISfLXT25lc+C+9NcK4l6J0FXQY666vTzVP6FRxYA7sWw6dLoVkUpE+CPr+ApvXXDVPb2rds\nxov3JZJxc2eeXpLHE//azu8X7yS9e1sGJ7Qj9futq3Xa6Lnzyge7DjN7zX62fXGMls3CeGTgdYzq\n19km16ljNT1i2AkMB1650gYiEgr8BUgHCoHNIvK2qu4C/gTMUNUcEZkFjAZermEmT6SlpTFs2DCe\nfPJJoqOjKSkpoV+/fuTk5JCRkcGCBQu49VZn0pj9+/eTnJxMcnIyS5Ys4eDBg3Tv3p1p06ZdeL2C\nggKmTZtGbm4uQ4YMYejQoSQnJwPO7bdTUlI8aWdQ6XQzZL0D+R/B6j/CqmedxzWR0DnFGRiOH+Dc\noK+8nYJT/4HP1zn//sBHcGSvszw8Gm6bCMkP1d84Rj1IujaKxY/cykd7i1m24xAf7DrMotwviWga\nym3d2jA4oR3xMRFEBsJoGR5G86ZNCHHPHjp77jz7vz7Jzi+Ps7PoOHlflpJXdJyTp88RF9WMZ+7u\nwb1JsXXaTWX+r0afsqruBiraU+4L7FPVfHfbHOAeEdkNDAJ+6m43H+fow5eFoUePHkycOJEBAwYQ\nGhpKYmIiM2fO5MEHH2Tq1KkXBp8BnnrqKT777DNUlbS0NG666SZEhOPHj3PixAmaN2/O6NGjeeGF\nF+jQoQPZ2dlkZWWxefNmAoEA69evvzDlp6kHXQY4j5NHnD3+A2ucL/q97zrrJQRn2vJL6DnnZ1gE\ndO4HvUZBfCq0vdHz00/rSmiIMKhbWwZ1a8uZc+fZmH+UZTsO8X7eId75pOyNIkPEmQsislkTiku/\n5duzzsy/gbAQbmgfyY97x9KvazTpN7Sz00/rWa3cdltEVgO/Lq8rSURGAIO/mwNaRDKAZJwisFFV\nr3OXxwHvqmrCpa/hrh8DjAHo1KlT74KCgjLrG8PtpmfMmEGLFi2uei1Dbm4u06dP59VXXy13fWP4\nHHzj2EGnQJQcKH9903DnyKJDL88uTmsozp1XPik8xuHSbyk9dYbS/57h+CnnUXrqDFER13BjbCQJ\nHVrSpXVzKwR1pLK33a7wiEFEVgDtylk1UVUXVyZLOcv0KsvLpaqzgdngzMdQiff1nYcffpiFCxde\ndZsjR44wefLkekpkrqpVHCTe73UKXwgNERI7fc/rGKaSKiwMqnp7Dd+jEIi76HksUAQcAVqJSBNV\nPXvR8qAVCATIyMi46jbp6en1lMYYE6zqo6NzM3C9iMSLSFPgPuBtdfqwVgHfTVabCVTmCOSK/Dgb\nXW0K9vYbY2pHjQqDiAwTkULgFmCpiCx3l3cQkWUA7tHAo8ByYDfwmqrmuS8xARgnIvuAaCC7ulkC\ngQBHjx4N2i9HVeXo0aMEAnYanzGmZhrNnM9nzpyhsLDwsmsBgkkgECA2NpawMLvoxxhzuVobfPaL\nsLAw4uPjvY5hjDG+1zhPpjbGGFNtVhiMMcaUYYXBGGNMGb4cfBaRr4GCCjcsXwzONRR+5ff84P82\n+D0/+L8Nfs8P3rShs6q2rmgjXxaGmhCRLZUZlW+o/J4f/N8Gv+cH/7fB7/mhYbfBupKMMcaUYYXB\nGGNMGcFYGGZ7HaCG/J4f/N8Gv+cH/7fB7/mhAbch6MYYjDHGXF0wHjEYY4y5CisMxhhjygiqwiAi\ng0XkUxHZJyK/8TpPVYjIPBEpFpGdXmepDhGJE5FVIrJbRPJE5HGvM1WViARE5GMR+bfbhme8zlQd\nIhIqIrki8o7XWapDRD4XkR0isl1ELps1sqETkVYi8rqI7HH/P9zidaZLBc0Yg4iEAnuBdJzJgzYD\nP1HVXZ4GqyQRSQW+Af52pelPGzIRaQ+0V9VtItIC2AoM9cvnDyDO5OYRqvqNiIQB64DHVXWjx9Gq\nRETGAUlApKre5XWeqhKRz4EkVfXlBW4iMh9Yq6pz3TlqwlX1mNe5LhZMRwx9gX2qmq+qp4Ec4B6P\nM1Waqq4BSrzOUV2q+pWqbnN/P4EzN0dHb1NVjTq+cZ+GuQ9f7VmJSCxwJzDX6yzBSEQigVTcuWdU\n9XRDKwoQXIWhI3DwoueF+OyLqbEQkWuBRGCTt0mqzu2G2Q4UAx+oqt/a8GdgPHDe6yA1oMD7IrJV\nRMZ4HaaKugBfA391u/PmikiE16EuFUyFQcpZ5qu9vcZARJoDbwBPqGqp13mqSlXPqWpPnDnK+4qI\nb7r1ROQuoFhVt3qdpYZSVLUXcAfwiNvN6hdNgF7Ay6qaCJwEGtx4ZzAVhkIg7qLnsUCRR1mCktsv\n/wawQFUXeZ2nJtzD/9XAYI+jVEUKcLfbR58DDBKRv3sbqepUtcj9WQy8idNN7BeFQOFFR5qv4xSK\nBiWYCsNm4HoRiXcHfO4D3vY4U9BwB26zgd2qOt3rPNUhIq1FpJX7ezPgdmCPt6kqT1V/q6qxqnot\nzt//SlW93+NYVSIiEe7JC7hdMD8EfHOmnqoeAg6KyA/cRWlAgzsBo9FM7VkRVT0rIo8Cy4FQYJ6q\n5nkcq9JE5J/AQCBGRAqBP6hqtrepqiQFyAB2uH30AL9T1WUeZqqq9sB89wy3EOA1VfXlKZ8+1hZ4\n09nPoAnwD1V9z9tIVfYYsMDdQc0HHvA4z2WC5nRVY4wxlRNMXUnGGGMqwQqDMcaYMqwwGGOMKcMK\ngzHGmDKsMBhjjCnDCoMxxpgyrDAYY4wp43/g3RK4hGWiWwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEICAYAAABbOlNNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3XdclXX7wPHPxUZRVEARt4J7i4ia\nezbMbD3assxsZ0+PZXtbZj3Z7slRacuyNG1p7pW490AQF4KCKHvD9/fHfeyHpoCccZ8D3/frxQvO\nudeF41z3976/93WJUgpN0zRNO8/N7AA0TdM056ITg6ZpmnYBnRg0TdO0C+jEoGmapl1AJwZN0zTt\nAjoxaJqmaRfQiUFzaSKyWkTGmx1HRYjI6yJyRkROmR2LppWkE4Pm9ETkqIjkiEimiJwWkS9ExO8K\n99FURJSIeJSyzssi8rX1EYPlWKGlLG8E/Adoq5QKtsUxNc1WdGLQXMUIpZQf0BXoDjxvcjzWagKk\nKKWSLrWwtASmafamE4PmUpRSJ4E/gPYXLxMRNxF5XkSOiUiSiMwVEX/L4rWW76mWkUfPi7YdDjwL\n/MuyfJflfX8RmS0iiSJy0nL5x92yLFRE1ohImuWS0PeW988fa5dlX/+66FiDgWVAiGX5lyVGNPeK\nyHFgpWXd+SJyynKMtSLSrsR+vhSRT0TkD8t+NohIsIi8JyLnROSgiHQpsX6IiPwkIskickREHqvY\n34JW2enEoLkUyyWYa4Adl1h8t+VrANAc8AM+sizra/leSynlp5TaWHJDpdQS4A3ge8vyTpZFc4BC\nIBToAgwFzt/TeA34E6gNNAQ+tOzr/LE6Wfb1/UXHWg5cDSRYlt9dYnE/oA0wzPL6DyAMqAtsB765\n6He+FWP0FAjkARst6wUCPwLvgpE0gV+AXUADYBDwuIgMQ9MuohOD5ip+FpFUYD2wBuND/GK3A+8q\npeKUUpnAM8Doil6WEZF6GB/gjyulsiyXfaYDoy2rFGBcEgpRSuUqpdZX5DgXedlyrBwApdTnSqkM\npVQe8DLQqcQoCGChUmqbUioXWAjkKqXmKqWKgO8xkhkYl9+ClFKvKqXylVJxwMwSv4um/U1fx9Rc\nxQ2WM+3ShADHSrw+hvFvvF4Fj9kE8AQSReT8e27ACcvPT2GMGjaLyDngv0qpzyt4rPPO7xvLJasp\nwC1AEFBsWRQIpFl+Pl1i25xLvD5/k74JxqWr1BLL3YF1VsarVUI6MWiVSQLGB+B5jTEuA53GuHxS\nlotLDZ/AuDwTqJQq/MfKSp0C7gMQkauA5SKyVikVW4HYLxXDbcBIYDBwFPAHzgHyz83KdAI4opQK\nsyI2rYrQl5K0yuQ74N8i0swynfX8PYNCIBnjjLt5KdufBpparsejlErEuIfwXxGpabm53UJE+gGI\nyC0i0tCy7TmMD/WiEvsq7VjlUQMjMaUA1bj05bPy2gyki8hkEfEVEXcRaS8i3a2MUauEdGLQKpPP\nga8wZiAdAXKBRwGUUtkYl2U2iEiqiEReYvv5lu8pIrLd8vNdgBewH+PD/0egvmVZd2CTiGQCi4GJ\nSqkjlmUvA3Msx7q1gr/PXIzLYSctx4+q4H6w3HMYAXTG+LM5A8zCGIVo2gVEN+rRNE3TStIjBk3T\nNO0COjFomqZpF9CJQdM0TbuATgyapmnaBVzyOYbAwEDVtGlTs8PQNE1zKdu2bTujlAoqaz2XTAxN\nmzZl69atZoehaZrmUkTkWNlr6UtJmqZp2kV0YtA0TdMuoBODpmmadgGdGDRN07QL6MSgaZqmXcAm\niUFEPre0Utx7meUiIh+ISKyI7BaRriWWjRWRGMvXWFvEo2maplWcrUYMXwLDS1l+NUZ7wjBgAvAp\ngIjUAV4CegARwEsiUttGMWmapmkVYJPEoJRaC5wtZZWRwFxliAJqiUh9jL62y5RSZ5VS5zAapJeW\nYKyzbyHs/gF0RVlN01xNWjz88TQU/aNnlM056h5DA0q0LATiLe9d7v1/EJEJIrJVRLYmJydXLIqd\n38KC+2D+WMhKqdg+NE3THEkp2PU9fNILts+B03vsfkhHJYZLtSJUpbz/zzeVmqGUCldKhQcFlflE\n96WNmQeDXoSDv8OnPeHQ0ortpxLYezKNyDdWcOtnG/k66hhns/LNDknTtItlpcAPd8HCCVC3NTyw\nHkK62P2wjkoM8UCjEq8bYvTnvdz79uHmDn3+A/ethGoB8O2t8MtEyMu02yGd0d6Tadw+axMikJKZ\nx/M/7yViynLGfbmFn3ecJCvP/kNVTdPKEL0EPomE6D9g8Mtwzx8Q0MIhh3ZUraTFwCMiMg/jRnOa\nUipRRJYCb5S44TwUeMbu0dTvCBNWw8rX4a8PIW413PA/aNLT7oc2276ENO6YvQk/bw/mTYikYW1f\n9iems3hnAr/sSmDlwSR8PN0Y3KYeIzs3oF/LILw89KxmTXOYvAxY+ixsnwt128GdCyC4g0NDsElr\nTxH5DugPBGI0QX8J8ARQSv1PRAT4COPGcjZwj1Jqq2XbccCzll1NUUp9UdbxwsPDlc2K6B37CxY+\nAKnHofdEGPAseHjbZt9OZn9COrfNiqKapzvzJvSkcUC1C5YXFyu2HjvH4l0n+W13IueyC/D39eTq\n9sFc3zmEHs0CcHe71NU/TdNs4oLPo8dgwHM2/TwSkW1KqfAy13PFns82TQxwYYau1x5GfQbB7W23\nfydwIDGd22ZG4ePpzrwJkTQJqF7q+gVFxayPOcPiXQks3XeK7Pwi6tbwZkSnEK7vFELHhv4Y+V7T\nNKsV5sGqKbDhA6jV2PgMssMVDJ0YKiJ6CSx+FHLOwcDnoNdjxn0JF3fwVDq3zdyEl7sb8yZE0jSw\n9KRwsZz8IlYcPM2inQmsiU4mv6iYpgHVuL5TCNd3DiG0bg07Ra5pVcCpPbDgfkjaB13HwrAp4G2f\n/1M6MVRUVgr8+jgcWAyNImHUp1CnuX2O5QDRpzIYMzMKT3dh3oSeNLvCpHCxtOwCluxLZPGuBP46\nnIJS0LZ+TUZ2DmFEpxBCavnaKHJNq+SKi2DD+7DqDfCtDSM/gpbD7HpInRisoZTxINzvT0JxoZHB\nu90NLnbp5NDpDMbMiMLdTfj+fuuTwsWS0nP5dXcii3YlsOtEKgARTetwfecQrulQnzrVvWx6PE2r\nNM7GGfcSTmyCNtfDde9B9QC7H1YnBltIi4efH4IjayBsKFz/IdQItv9xbSDmtDFScBPhuwmRtAjy\ns+vxjp7J4pddCSzalUBsUiYebkKfsECu7xzCkLbB+Hm7ZLNATbMtpWDbF7D0eXDzgGveho63Ouyk\nUycGWykuhs0zYPlL4OkL102HdqMcc+wKik3KZPSMKETgu/siCa1r36RQklKKA4kZLNp1kl93JXIy\nNQcfTzcGtanHyE4h9GsVhLeH69+30bQrlnEKFj0CscugWT+44RPwb+jQEHRisLXkQ8bThwk7oMOt\ncM0047qgk4lNymTMzCiUgnkTeph6Y7i4WLHt+DkW70zgtz2JnM3Kp6aPB1e3r8/IziH0aK6nv2pV\nxN4F8NsTUJADQ16F7veBm+OfD9KJwR6KCmDdf2HNNPCrBzd8DC0GOj6OyzicbIwUlFJ8d18kYfWc\nZ7ZQQVEx62PP8MtOY/prlmX663UdQxjVpQEdGvqbHaKm2V7OOeNe5Z75ENLVmIYa1NK0cHRisKeT\n22Hh/XDmEERMgMGvgFe1srezozhLUigqVnw3IZKWTpQULpaTX8TKg0ks2nmS1Zbprx/f1pVrO9Y3\nOzRNs53DK+HnhyHzNPSbbJTjcTf3XptODPZWkAMrXoWoTyAgFEbNgIbdTAnlyJksRs/YSGGR4tv7\nImkV7LxJ4WJpOQXcMWsTCak5LH+iH7X1TCbN1eVnwbKXYMtMCGxpjBIadC17Owcob2LQRXAqytMX\nhr8Jdy2GglyYPQRWTjEuNznQ0TNZjJkRRUGR4pv7erhUUgDw9/XkrZs6kpZTwGu/7Tc7HE2zTvxW\n+F8fIylEPgT3r3WapHAldGKwVvN+8NBfxpSztdNg1iBIOuiQQx9LyWLMzCjyCov4ZnwPWgfXdMhx\nba1tSE0e7N+CBdtPsjo6yexwNO3KFeYbRTlnDzHKW4z9xThx9HTNBz51YrAFH38Y9T+49Svj2YfP\n+sLGj42prnZyPCWbMTOiyCko4pvxkbSp75pJ4bxHBobSIqg6zy3cS6Yu+625kqSDMHswrH0bOo42\nThSb9TU7KqvoxGBLba+HBzcaM5WWPgtzrzeqJNrYibPZjJkZRVa+MVJoG+LaSQHA28OdaTd3JCEt\nh7eXOGbEpWlWKS42TgA/62ucEP7ra6OEjo/rz7DTicHWatSDMd/B9R8Zzzx80gt2fGOzPtMnzmYz\nekYUmXmFfDO+B+1CXP8f4XndmtRhbM+mzI06xpajpbUQ1zSTnTsGc0YYJ4AtBsJDUdBmhNlR2YxO\nDPYgAl3vhAc3GE2BFj0E398BmRXsVW0Rf84YKWTkFvDN+B60b1B5ksJ5Tw5rRYi/L5N/2k1uQZHZ\n4WjahZSCHV/Dp70hcadxAjjmO/Cra3ZkNqUTgz3VbmrchBr6OsT8afSZPvhbhXZ1MjWHMTOjSM8p\n4JvxkZUyKQBU9/bgzRs7EJecxYcrY8wOR9P+X2YyzLsdFj1snPA9uME4AXSx4prlYZPEICLDRSRa\nRGJF5OlLLJ8uIjstX4dEJLXEsqISyxbbIh6n4uYOvR6FCWuMAnzzbjMeeslNL/cuElJzGDMjitTs\nAr66t0elf0q4b8sgbu7WkP+tiWNfQprZ4WiacUL3SaRR52jo6zD2V+PEr5Ky+gE3EXEHDgFDgHhg\nCzBGKXXJSeki8ijQRSk1zvI6Uyl1RVXenOIBt4oozIc1b8H6dyFsGNw2r8xNEtNyGD0jirOZ+Xw1\nvgedG9VyQKDmS83OZ/C7awn29+bnh3rj4a4Ht5pJjqw17icEdzAeZK3X1uyIKsyRD7hFALFKqTil\nVD4wDxhZyvpjgO9scFzX4+EFg16AQS/BoT8gdkWpq59Ky2XMjChSMvOZe29ElUkKALWqefHqyHbs\nPZnOrPVHzA5Hq6qKi2DJM+DfGO5d5tJJ4UrYIjE0AE6UeB1vee8fRKQJ0AxYWeJtHxHZKiJRInLD\n5Q4iIhMs621NTrbuJq7pIh+E2s2MGQ1Fl56zfyotlzEzoziTmc+ccRF0aex8lVzt7er2wQxrV4/p\nyw4Rl5xpdjhaVbR9DpzeC0NfddmH1SrCFonhUndeLnd9ajTwo1Kq5HSTxpahzW3AeyLS4lIbKqVm\nKKXClVLhQUFB1kVsNg9v4zpl8kGjacdFTqfnctvMKJLSc5kzrjvdmlS9pAAgIrw2sj1eHm48vWAP\nxcWuV9dLc2G5acbTzI17QdvLnrNWSrZIDPFAoxKvGwIJl1l3NBddRlJKJVi+xwGrgS42iMn5tb7W\neDpy1RTI/v85+0npxkjhdHouc8ZF0K1JHRODNF/dmj68cG1bNh85y7ebbf+woKZd1pppxv/N4W9W\nyplHpbFFYtgChIlIMxHxwvjw/8fsIhFpBdQGNpZ4r7aIeFt+DgR6A1WjkpoIDHvTOCtZ8xYASRlG\nUjiVlsuX4yIIb1q1k8J5t4Q3pHdoAFP/OEhCao7Z4WhVQcph2PQZdLkdQjqbHY3DWZ0YlFKFwCPA\nUuAA8INSap+IvCoi15dYdQwwT104DaoNsFVEdgGrgKmXm81UKQW3h65jYfNMzh7dw20zN5GYlsuX\n90TQXSeFv4kIb47qSFGx4vmf9+KKpeI1F/Pn88Yl34Evmh2JKXQ/BrNlnaH4gy5sLQpjbN5TfHFP\ndyKbB5gdlVOavf4Ir/26n/dHd2Zk50vOb9A06x1eBV/dYMwe7POE2dHYlO7H4CLOqBrMlJuJKNzG\ngiFZOimU4u5eTencqBYvL95HSmae2eFolVFRoTE9tVYTo59CFaUTg4lSMvO4feYmPsoaSE6NprTZ\nPdXhjX5cibubMO3mjmTmFfLqr1XniqPmQNu+gOQDxqxBTx+zozGNTgwmOZuVz+2zNnE0JYvPxvbE\n97qpRg/pLbPNDs2ptaxXg0cGhLFoZwIrDpw2OxytMsk5B6vegKZ9KlWl1IrQicEE57LyuW1mFEfO\nZDF7bHd6hQZCy+HQfACsfvOC6avaPz3YvwWt6tXguYV7ycjVIyzNRtZMM5LDsDeq3PTUi+nE4GDF\nxYp7vtxC3JksZo0N56qwQGOBiDFfOi/DOGvRLsvLw423bu5IUkYuU//QTX00G0g+BJtnQNe7jMqp\nVZxODA72y+4Edp5I5Y1RHegTdtET3HXbQPg42Po5JB0wJ0AX0blRLcb1bsY3m44TFZdidjiaq/vz\nOfCsBgNfMDsSp6ATgwMVFBXz7rJDtA6uwY1dLjPdsv8z4O1nzIxwwanEjvTE0JY0rlONp3VTH80a\nMcuNfil9nwQ/Fy+3YyM6MTjQ91tOcCwlm6eGt8LN7TLXMKsHGMkhbhUcWurYAF1MNS8Ppt7YgaMp\n2UxffsjscDRXVFRgFLOs3Qx63G92NE5DJwYHyckv4oMVMYQ3qc2AVmW0Aew+HgJbGv9gC/MdE6CL\n6hUayOjujZi5No7d8allb6BpJW39HM5Ew7ApxpPOGqATg8PM2XiUpIw8nhreGilrxoO7pzEz4uxh\n44aYVqpnrmlDoJ83T/24m4KiYrPD0VxF9lljokezftDqGrOjcSo6MThAWk4Bn64+TP9WQUQ0K2cN\npLAhEDrYmEKXdca+Abo4f19PXr+hPQdPZTBjbZzZ4WiuYvVUyEuvktVTy6ITgwPMWHuYtJwCnhzW\n6so2HPYG5Gcapbm1Ug1tF8y1Hevz/vIYYpN0Ux+tDEkHYcss6HY31GtndjRORycGO0vKyOXz9UcZ\n0SmEdiH+V7ZxUCuIuA+2fQmn9tolvsrk5RHtqObtzuSfduumPtrlKWXcv/PygwHPmR2NU9KJwc4+\nXhlLflExTwxpWbEd9JsMPv6wVE9fLUtQDW9evK4t246d46uoY2aHozmrmD/h8AroPxmqB5odjVPS\nicGOTpzN5tvNx7k1vBHNAqtXbCfV6kD/Z+HIWoj+3bYBVkKjujSgb8sg3lpykPhz2WaHozmb89NT\nA0Kh+31mR+O0dGKwo+nLDuEmwsRBYdbtKHwcBLWGpc9BoS43XRoR4Y1R7QF4dqFu6qNdZPNMSImF\noVPAw8vsaJyWTRKDiAwXkWgRiRWRpy+x/G4RSRaRnZav8SWWjRWRGMvXWFvE4wyiT2WwcOdJ7u7V\nlGB/K8v3unsYN6LPHYFN/7NNgJVYw9rVmDy8NWsPJbNg+0mzw9GcRVYKrJkKLQZCy2FmR+PUrE4M\nIuIOfAxcDbQFxohI20us+r1SqrPla5Zl2zrAS0APIAJ4SURqWxuTM3jnz2j8vDx4oF8L2+wwdJBR\ngXXN25CZZJt9VmJ3RjYhvEltXv11P8kZepSlYczuy8s0eq3r6amlssWIIQKIVUrFKaXygXnAyHJu\nOwxYppQ6q5Q6BywDhtsgJlNtP36OZftPM6Fvc2pXt+FwdejrUJgDK1+33T4rKTc3YepNHcnJL+Ll\nX/aZHY5mttP7jSY83e+Fuq3Njsbp2SIxNABOlHgdb3nvYjeJyG4R+VFEGl3htojIBBHZKiJbk5OT\nbRC2fSilmLbkIIF+Xoy7qpltdx4YBhH3w/a5kLjbtvuuhELr+jFxcBi/7U5k6b5TZoejmUUpY1af\nd02jDplWJlskhkuNyS6+4/cL0FQp1RFYDsy5gm2NN5WaoZQKV0qFBwU5bwXEdTFniIo7yyMDQqnu\n7WH7A/R7Cnxr6+qr5TShb3Pa1K/JCz/vJS1HN/WpkqL/gLjVRlKoVs7KA1WcLRJDPNCoxOuGQELJ\nFZRSKUqp8xd6ZwLdyrutK1FK8fbSaBrU8mVMj8b2OYhvLRj4HBxbDwcW2+cYlYinuxtv39yRlKx8\n3vxd97iocgrzjF4Lga2My0haudgiMWwBwkSkmYh4AaOBCz6xRKR+iZfXA+f/hy4FhopIbctN56GW\n91zSH3tPsedkGv8e0hJvD3f7Hajr3VC3Lfz5AhTk2u84lUT7Bv7c16c587acYEOsrjtVpWyeAWfj\njFl97p5mR+MyrE4MSqlC4BGMD/QDwA9KqX0i8qqIXG9Z7TER2Sciu4DHgLst254FXsNILluAVy3v\nuZzComLe+TOasLp+jLpcEx5bcfcwCn+lHoOoT+x7rEri8cFhNAuszjML9pCdX2h2OJojZCYbRShD\nh0DYYLOjcSk2eY5BKfW7UqqlUqqFUmqK5b0XlVKLLT8/o5Rqp5TqpJQaoJQ6WGLbz5VSoZavL2wR\njxl+2h5PXHIWk4a1wv1yTXhsqXl/aHUtrPsvZOgbq2Xx8XRn6o0dOH42m3f/1E19qoRVr0NBtjFa\n0K6IfvLZBnILinhveQydG9ViaNt6jjvw0NeMa6grX3PcMV1Yj+YB3N6jMZ9vOMKO4+fMDkezp1N7\njNl73e+DoArWKavCdGKwga+jjpGYlstTw1qV3YTHlgJaQOQDsOMbSNjpuOO6sKevbk29mj48/dMe\n8gt1U59KSSlj1p6Pv1EoT7tiOjFYKSO3gI9XxdInLJBeoSZUauz7JFQLgCVP6+mr5VDDx5Mpo9oT\nfTqDT1cfNjsczR4O/gpH1xkltX0rRSEFh9OJwUqz1h3hXHYFmvDYio8/DHoBjm+EfQvNicHFDGxd\nj5GdQ/hoVQyHTmeYHY5mS4V58OfzENQGut1jdjQuSycGK6Rk5jFrXRxXtw+mY8Na5gXS5U6o1wGW\nvQQFOebF4UJevK4tNXw8eerH3RTppj6VR9SncO4oDH/DmL2nVYhODFb4ZPVhcgqK+M9Qk29uubkb\n01fTjsPGj8yNxUUE+Hnz0oi27DyRypd/HTU7HM0WMpNg7TvQ8mqjgqpWYToxVNDJ1By+ijrGTV0b\nElq3htnhQLM+0GYErJsO6YlmR+MSru8UwqDWdXlnaTTHU3RTH5e34lUozIVhuke6tXRiqKD3lx8C\nBY9XtGWnPQx5DYoLYMUrZkfiEkSE10e1x91NeGbhbt3Ux5Ul7oIdX0OP+43ZeppVdGKogNikTH7c\nFs8dkU1oUMvX7HD+X51mEPkQ7PoOTm4zOxqXUN/fl2euac2G2BTmb403OxytIs5PT61Wx5ilp1lN\nJ4YKeHdZNL6e7jw8wAnPTPpOgup1dfXVKzCme2N6NKvD67/tJzU73+xwtCu1fxEc2wADnzeKTGpW\n04nhCu2OT+X3Pae4t09zAvy8zQ7nn7xrwKAX4cQm2PuT2dG4BDc34dWR7UnPLWT2+iNmh6NdiYJc\nWPYC1GsPXStNZ2DT6cRwhd5eGk3tap7c18fGTXhsqfPtENwRlr0I+fqmanm0Cq7BNR2C+WLDUT1q\ncCUbP4LU40Y9JDc7VjSuYnRiuAJ/HT7DupgzPDwglBo+TlzC180Nrn4L0k/CXx+aHY3LeGxQGJl5\nhXyuRw2uIeMUrHsXWl8HzfuZHU2lohNDORktO6Op7+/DHZFNzA6nbE16QdsbYMN7kHbS7GhcQuvg\nmgxvZ4wa0rJ1tzent+JVYxbeUF1E0tZ0YiinZftPs/NEKhMHheHj6SJD1iGvQnERLH/Z7EhcxmOD\nwsjIK+TzDXrU4NROboed30Dkg1CnudnRVDo6MZRDUbHRsrN5YHVu7tbQ7HDKr3YT6PUo7PkBTmwx\nOxqX0DakJsPa1ePzDUd0j2hndX56avUg6DPJ7GgqJZskBhEZLiLRIhIrIk9fYvkTIrJfRHaLyAoR\naVJiWZGI7LR8OWUT4593nCQmKZP/DG2Fh7uL5dKr/g1+wUb11WJdZro8HhsURkZuIV9uOGp2KNql\n7FsAJ6Jg4AvgU9PsaColqz/lRMQd+Bi4GmgLjBGRthettgMIV0p1BH4EppVYlqOU6mz5uh4nk19Y\nzPTlh2jfoCZXtw82O5wr5+0Hg1+Ck1thz3yzo3EJ7UL8GdK2HrPXx5Geq0cNTqUgxygWGdwButxh\ndjSVli1OfyOAWKVUnFIqH5gHjCy5glJqlVLq/LzJKMBlrsd8t/k48edyeHJYa9wc0bLTHjqOhpAu\nxr2G/Cyzo3EJEweFkZ5byBw9anAuf30IaSdg+FQ9PdWObJEYGgAnSryOt7x3OfcCf5R47SMiW0Uk\nSkRuuNxGIjLBst7W5ORk6yIup6y8Qj5cGUNk8zr0DTOhCY+tuLkZ/5EyEmD9e2ZH4xLaN/BncJu6\nzFp/hAw9anAO6Qmwfjq0uR6aXmV2NJWaLRLDpU6jL1mLQUTuAMKBt0u83VgpFQ7cBrwnIpesM6GU\nmqGUCldKhQcFBVkbc7l8seEIZzLzeWp4a8e27LSHxpHQ/ib46wNIPVH2+hoTB7UkLaeAuRuPmR2K\nBrD8FWOWnZ6eane2SAzxQKMSrxsCCRevJCKDgeeA65VSeeffV0olWL7HAauBLjaIyWqp2fl8tjaO\nwW3q0bVxJWkPOPgVQGD5S2ZH4hI6NPRnYOu6zFwXR2ZeodnhVG3xW2H3POj5MNRuanY0lZ4tEsMW\nIExEmomIFzAauGB2kYh0AT7DSApJJd6vLSLelp8Dgd7AfhvEZLVP1xwmM6/QvJad9lCrEfR+zKih\ndDzK7GhcwsRBYaRmFzB341GzQ6m6lDJm1fnVgz5PmB1NlWB1YlBKFQKPAEuBA8APSql9IvKqiJyf\nZfQ24AfMv2haahtgq4jsAlYBU5VSpieGU2m5fLnhKKM6N6BVsBM04bGl3hOhRgj8MVlPXy2HTo1q\n0b9VEDPXxpGlRw3m2DMf4rcYxSG9K9n/Rydlk0n5SqnflVItlVItlFJTLO+9qJRabPl5sFKq3sXT\nUpVSfymlOiilOlm+z7ZFPNb6YGUMxUrxb2dqwmMrXtVh8MuQuNMYmmtlmjgojHPZ+l6DKfKzjOmp\n9TtDp9vMjqbKcLGntezv6JksfthygjERjWlUp5rZ4dhHh1ugQbhxMy8v0+xonF6XxrXp2zKImev0\nqMHhNnxgzKYbPtWYXac5hP6Tvsi7yw7h6e7GIwNDzQ7Ffs5XX808ZZQt1so0cVAYZ7Py+TpKjxoc\nJuM0bHgf2o2CJj3NjqZK0Yl2+xivAAAgAElEQVShhH0JaSzelcC4q5pSt4aP2eHYV8Nwo1zxxk8g\nJ9XsaJxetya16RMWyIy1cWTn61GDQ2x4H4ryjdIXmkPpxFDCO0uj8ff1ZEJfJ2zZaQ/9n4G8NIj6\nxOxIXMLEQWGkZOXzTdRxs0Op/DJOwdbZ0Gk0BFSR/49ORCcGiy1Hz7IqOpkH+rXA39eJm/DYUnB7\n4ynSqE8h+6zZ0Ti98KZ16B0awGdrD5OTX2R2OJXb+vegqMDoYa45nE4MnG/Cc5C6Nby5u1dTs8Nx\nrP5PQ146bPzY7EhcwsRBLTmTmc83m/S9BrtJT4Stn0PnMbrXgkl0YgBWRyez5eg5Hh0Uhq9XFSvM\nVa+d0elt0//0qKEcIprVoVeLAD5bG0dugR412MX66aCKoO+TZkdSZVX5xFBcrJi2NJomAdUY3b1R\n2RtURv2fNuaL6/7Q5TJxUBjJGXl8u0nfa7C5tJOw7QvofJsufWGiKp8YftmdwIHEdJ4Y0hJPV2vC\nYyt12xhTAjfPgKwUs6Nxej2aBxDZvA7/W3NYjxpsbf27oIp1ZzaTVdFPQkNBUTHvLjtE6+AajOgY\nYnY45uo32TJq+MDsSFzCxEEtScrIY95mPWqwmbR42D7XaMBTu0nZ62t2U6UTww9bT3AsJZsnh7Vy\n3SY8tlK3tVGWe/NMyDpjdjROr2eLACKa1eFTPWqwnXX/NQrm6dGC6apsYsjJL+L95TGEN6nNwNZ1\nzQ7HOfSbDIU5xoNFWpkeHxTG6fQ8ftiq+1tYLfU4bP8Kut5pVAHWTFVlE8OcjUdJysirHE14bCWo\nJbS/GbbMgkzHdMlzZT1bBNC9aW0+WXWYvEI9arDKuv+CCPT5j9mRaFTRxJCWU8Cnqw/Tv1UQEc3q\nmB2Oc+k3GQpzYYNuAVoWEWHioJacSs/lhy161FBh547Bjq+h613g7zLt4Cu1KpkYZq6NIy2ngElD\nK1ETHlsJDIUOt8KW2UYRM61UvUMD6NakNp+s1qOGClv3DogbXKWb8DiLKpcYkjPymL3+CCM6hdC+\ngb/Z4Tinfk8Zxcv0vYYyGaOGMBLTcpm/Nd7scFzPuaOw81vodjf4NzA7Gs3CJolBRIaLSLSIxIrI\n05dY7i0i31uWbxKRpiWWPWN5P1pEhtkintJ8tDKG/KJinqiMTXhsJaAFdPyXUcQs45TZ0Ti9PmGB\ndGlci09XHya/UHfFuyJr3wZx16MFJ2N1YhARd+Bj4GqgLTBGRNpetNq9wDmlVCgwHXjLsm1bjB7R\n7YDhwCeW/dnFibPZfLv5OLeGN6JZYHV7HaZy6PekUcRsvb7XUJbzo4aTqTn8uE2PGsrtbBzs/A7C\n74Ga9c2OxiU4qnijLUYMEUCsUipOKZUPzANGXrTOSGCO5ecfgUFiTAUaCcxTSuUppY4AsZb92cX0\n5Ydws/wn1spQpzl0GmMUM0tPNDsap9evZRCdGtXi41WxetRQXmvfAXdPuOrfZkfiEtbHnOGqt1ay\n92Sa3Y9li8TQACg5JSPe8t4l11FKFQJpQEA5twVARCaIyFYR2ZqcXLGplD2a1eHfQ1oS7F/Jm/DY\nSt9JRjGz9dPNjsTpiQiPW0YNC7brUUOZUg7DrnkQPg5qBJsdjdNTSjFt6UF8PN0Jq+dn9+PZIjFc\n6iEAVc51yrOt8aZSM5RS4Uqp8KCgoCsM0fCv7o15oJ9u+lFudZoZo4ZtX0J6gtnROL3+rYLo1NCf\nj1bFUlCkRw2lWvs2uHtB78fNjsQlLNl7it3xaUwcHIa3h/0rQNsiMcQDJR9VbAhc/Cny9zoi4gH4\nA2fLua1mpr5PGqOGde+aHYnTExEmDg4j/lwOC7efNDsc53UmFnZ/D93vhRr1zI7G6RUWFfPOn9GE\n1vXjxi6Omblli8SwBQgTkWYi4oVxM3nxRessBsZafr4ZWKmUUpb3R1tmLTUDwoDNNohJs5XaTYyi\nZtvnGEXOtFINaFWXjnrUULq108DDB3pPNDsSl7Bgx0kOJ2cxaWhLPBxUAdrqo1juGTwCLAUOAD8o\npfaJyKsicr1ltdlAgIjEAk8AT1u23Qf8AOwHlgAPK6X0U0LOps8ko7iZHjWUSUR4bGAYx89m8/MO\nPWr4hzMxsGc+dB8PfrpGWVlyC4yabp0a+jOsnePuxXjYYidKqd+B3y9678USP+cCt1xm2ynAFFvE\nodlJrUZGcbPtc40ZJLrIWakGtalL+wY1+WhVLKO6NHDYWZ5LWPMWePjq0UI5fbPpOCdTc3jrpo4O\nremm/8Vq5dPnP0aRs3XvmB2J0zs/ajiWks2infqW2d+So2HPjxBxH1QPNDsap5eZV8jHq2LpHRrA\nVWGO/fPSiUErH/+GRpGzHV8bRc+0Ug1pW4+29Wvy4coYCvW9BsOat8CrOvR6zOxIXMLsdUc4m5XP\nk8NaO/zYOjFo5XfVE0axMz1qKJOI8NigMI6mZLN4lx41kHQA9i6AiAlQPcDsaJze2ax8Zq6LY1i7\nenRuVMvhx9eJQSs//wZGsbOd3xrFz7RSDW1bj9bBNfhoZSxFxZd8PKfqWPMWePlBr0fNjsQlfLIq\nluz8QtMqQOvEoF2Zq54wip6tfdvsSJyem5tRfiXuTBa/VOVRw+n9sO9n6HE/VNP9T8qSkJrD3Khj\n3Ni1IWH1apgSg04M2pWpWd8oerbzO6MImlaqYe2CaVWvBh+sjKm6o4Y1U8G7BvR82OxIXMIHK2JA\nweODzavpphODduWu+rdR/GytvtdQFjc3415DXHIWv+6ugqOGU3th/yLo8YAeLZTD4eRM5m+L57Ye\njWlYu5ppcejEoF25GsFG8bNd84xiaFqprm4fTMt6fnxYFe81rJkK3v7Q8yGzI3EJ7/55CG8PNx4Z\nGGpqHDoxaBXT+3GjCJq+11AmNzfh0YFhxCZl8vueKlTCPHE3HPgFIh8E39pmR+P09p5M47c9iYy/\nqhmBft6mxqITg1YxNeoZRdB2f28URdNKdU2H+oTV9ePDlTEUV5VRw2rLaCHyQbMjcQnTlkZTq5on\n4/s2NzsUnRg0K/SeCO7eRlE0rVTubsKjg8I4dDqTP/ZWgXapCTsh+jfjhrOv4+fhu5qNh1NYeyiZ\nh/q3oKaPp9nh6MSgWcGvLkSMN4qinYkxOxqnd22H+rQIqs4HK6rAqGH1VPDxh8gHzI7E6Z1vwhNc\n04e7ejY1OxxAJwbNWr0mGiWU17xldiROz90yQyn6dAZL91XiUcPJ7XDoD+j5qJEctFItP5DEjuOp\nTBwcho+n/ZvwlIdODJp1/IKMomh7fjSKpGmluq5jCM2DqvN+ZR41rJ5q3Gzucb/ZkTi9omLFO0uj\naRZYnVu6NTQ7nL/pxKBZr9dE8KymRw3l4O4mPDowlIOnMvhzfyUcNcRvg5il0PMR8KlpdjROb/Gu\nk0SfzuCJIY5rwlMezhOJ5rqqB0CPCUaRtKQDZkfj9EZ0DKFZYHXeXxFb+UYNq98E3zp6tFAO+YXF\nvLvsEG3r1+TaDvXNDucCViUGEakjIstEJMby/R+TlUWks4hsFJF9IrJbRP5VYtmXInJERHZavjpb\nE49mol6PGSWV9aihTB7ubjwyIJQDieksO3Da7HBs58QWiF1mFMrzNqfGjyuZt+U4J87m8NTwVri5\nOa4JT3lYO2J4GlihlAoDVlheXywbuEsp1Q4YDrwnIiXnrz2plOps+dppZTyaWapZzhL3/WwUTdNK\nNbJzCE0DqvHBihiM9ueVwOo3oVqAUVpbK1V2fiEfrIglolkd+rUMMjucf7A2MYwE5lh+ngPccPEK\nSqlDSqkYy88JQBLgfH8SmvV6PmKUVl4z1exInJ6HuxsPDwhlX0I6yw8kmR2O9U5shsMrjJGjt5/Z\n0Ti9LzYc5UxmHpOHt3Joy87ysjYx1FNKJQJYvpfa3VtEIgAvoGSBnSmWS0zTReSyz4GLyAQR2Soi\nW5OTk60MW7OLanWMeev7F8GpPWZH4/RGdWlA4zrVeH/FIdcfNax6A6oFGjPUtFKlZRfw2ZrDDGpd\nl25NnLOwYJmJQUSWi8jeS3yNvJIDiUh94CvgHqXU+V6HzwCtge5AHWDy5bZXSs1QSoUrpcKDgvSA\nw2n1fBi8axpTFrVSnb/XsPdkOisPuvCo4XgUxK2Cqx437jNppfp0zWEy8gqZNMycJjzlUWZiUEoN\nVkq1v8TXIuC05QP//Af/Jf91i0hN4DfgeaVUVIl9JypDHvAFEGGLX0ozkW9tiHwIDv5qFFHTSjWq\nawMa1fHlfVe+17DqDaheF8LvNTsSp5eUnsuXfx1hZKcQ2tR33um81l5KWgyMtfw8Flh08Qoi4gUs\nBOYqpeZftOx8UhGM+xN7rYxHcwaRDxrF0/SooUye7m483D+U3fFprI52wUukx/6CI2ssowXz+ge4\nig9WxlBYpPj3kJZmh1IqaxPDVGCIiMQAQyyvEZFwEZllWedWoC9w9yWmpX4jInuAPUAg8LqV8WjO\nwLeWcUkp+jejmJpWqhu7NqRBLV/ec8VRw6o3wK+e0Z9DK9WxlCzmbT7B6IhGNAlw7ktuViUGpVSK\nUmqQUirM8v2s5f2tSqnxlp+/Vkp5lpiS+ve0VKXUQKVUB8ulqTuUUpnW/0qaU4h8wKiTo0cNZfKy\nNGbZdSKVNYdcaNRwdD0cXWd09PP0NTsap/fuskN4uAuPDTSvZWd56SefNfvw8TeKqB36wyiqppXq\nJsuowaXuNax6E/yCodvdZkfi9A4kprN4VwL39G5G3Zo+ZodTJp0YNPvpcb9xM1qPGsrk5eHGQwNa\nsON4KutizpgdTtmOrIVj66HPE3q0UA7vLI2mhrcHD/RtYXYo5aITg2Y/PjWNh95ilhrF1bRS3dKt\nESH+Pry77JBz11BSyhgt1AiBrmPLXr+K23r0LCsOJnF/vxb4VzO/CU956MSg2VeP+42iaqvfNDsS\np+fl4cYTQ1ux80Qq32w6ZnY4l3dkDRz/yzJacP7LImZSSjFtSTRBNby5p3dTs8MpN50YNPvyrmEU\nVYtdZhRZ00p1U9cG9AkLZOofBzmZmmN2OP90frRQswF0vcvsaJze6kPJbD56lscGhlLNy8PscMpN\nJwbN/iImGMXV9KihTCLCG6M6oIDnFu5xvhvRcavgRJQxWvC4bAUbDSguVry9JJpGdXz5V/fGZodz\nRXRi0OzP288ornZ4hVFsTStVozrVeHJYK1ZHJ/PzzpNmh/P//h4tNIQud5odjdP7bU8i+xPTeWJI\nS7w8XOuj1rWi1VxXxH1GkbVVb5gdiUu4q2dTujauxau/7OdMZp7Z4RgOr4D4zdD3P3q0UIaComL+\n+2c0rYNrcH2nBmaHc8V0YtAcw6s69J5oXIo4HlX2+lWcu5vw1k0dycor4pVfnKC/xfnRgn9j6HyH\n2dE4vflb4zmaks2koa1wd7ImPOWhE4PmON3vhepBetRQTmH1avDowFB+2ZXAsv0md3qLXQ4nt1pG\nC17mxuLkcguKeH/FIbo2rsWgNqV2InBaOjFojuNVHXo/bkx3PPaX2dG4hPv7taB1cA2e/3kP6bkF\n5gShlJHMazWGzrebE4MLmbvxKKfT85g8vLVTNuEpD50YNMcKH2eUaNajhnLx8nBj2s0dSc7I483f\nD5oTxKGlkLAd+j4J7q7xgJZZ0nML+GT1Yfq1DKJH8wCzw6kwnRg0x/KqZhRdO7rOKMKmlaljw1qM\n79Oc7zYf56/DDi6XoZQxzbh2U+g0xrHHdkEz18aRml3Ak07chKc8dGLQHC/8HqP42qo3jA8erUz/\nHtySJgHVeGbBHnLyixx34Og/IHGnHi2UQ3JGHrPXH+HajvVp38Df7HCsohOD5nievsao4dgGoxib\nViZfL3fevLEDx1Kymb78kGMO+vdooRl0HO2YY7qwj1fFkldYzH+cvAlPeViVGESkjogsE5EYy/fa\nl1mvqESTnsUl3m8mIpss239v6famVQXd7oYa9Y0PHj1qKJdeLQIZE9GYWevi2HUi1f4HPPgbnNoN\n/Z4Cd9cp52CGE2ez+XbTcW4Nb0jzID+zw7GatSOGp4EVSqkwYIXl9aXklGjSc32J998Cplu2Pwfo\nprFVhacPXPUEHN8IcavNjsZlPHNNa4JqeDP5p93kFxbb70DFxUa59DotoMOt9jtOJfHe8hgQeGyQ\n8zfhKQ9rE8NIYI7l5zkYfZvLxdLneSDwY0W21yqBrncZpZv1qKHcavp4MuWGDhw8lcFnaw7b70AH\nf4XTe/RooRxiTmewcEc8Y3s2ob5/5ehNYW1iqKeUSgSwfL/c0xw+IrJVRKJE5PyHfwCQqpQqtLyO\nB1zv2XGt4jx9jAemTmyCPfPNjsZlDG5bjxGdQvhwZSwxpzNsf4DcdFj+MgSEQvubbb//SuadP6Op\n7uXBQ/1DzQ7FZspMDCKyXET2XuJr5BUcp7FSKhy4DXhPRFoAl3ry47KnjSIywZJctiYnu1BfXK10\nXcdCo0j4ZSIkmTRP3wW9NKIt1b3dmfzTbops2dRHKVj8CJw7CiPe16OFMuw8kcrSfae5r29zalev\nPLdIy0wMSqnBSqn2l/haBJwWkfoAlu9Jl9lHguV7HLAa6AKcAWqJyPl/eQ2BhFLimKGUCldKhQcF\nBV3Br6g5NXdPuOUL46noH+6EPDucAVdCgX7evDSiHduPpzJ341Hb7TjqU9i/CAa/BE2vst1+K6lp\nSw4SUN2LcVc1MzsUm7L2UtJi4Hxvv7HAootXEJHaIuJt+TkQ6A3sV0ah+VXAzaVtr1UBNUPg5s8h\nJRYWP6rvN5TTyM4h9G8VxLQl0Zw4m239Do9thGUvQOvrjDLpWqnWx5zhr8MpPDwgFD/vyjWysjYx\nTAWGiEgMMMTyGhEJF5FZlnXaAFtFZBdGIpiqlDpfLnIy8ISIxGLcc5htZTyaq2rWFwa9CPsWwqb/\nmR2NSxARpozqgJvAs9Y29clMgvl3G/WQbvgEXLTGj6MopXh76UEa1PLl9kjXasJTHlalOaVUCjDo\nEu9vBcZbfv4L6HCZ7eOACGti0CqR3o8bjXz+fB5CukLjHmZH5PQa1PLl6atb88Kiffy4LZ5bwhtd\n+U6KCuHHcZCbBnf8BD6u/dSuIyzdd4pd8Wm8fXNHvD3czQ7H5vSTz5rzEIEbPgX/hjB/LGTqSQbl\ncXuPJnRvWpvXft1PUkbule9g1etG7arrpkNwe9sHWMkUFhXz9tJoQuv6cWPXhmaHYxc6MWjOxbcW\n3PoV5JyDn8ZBsQPrArkoNzdh6k0dyS0s5qVF+65s44O/wfrp0O0e6KyL5JXHgh0nOZycxaShLV2y\nCU956MSgOZ/6HeHa/xp1lFZNMTsal9AiyI/HB4fxx95TLNmbWL6NzsbBwgehfmcYPtW+AVYSeYVF\nvL88hk4N/RnWLtjscOxGJwbNOXW5w3gyet1/jQqfWpnu69OcdiE1eWHRPtKyy2jqU5AD399lXL67\nda7xsKFWpm+ijnMyNYenXLgJT3noxKA5r6vfhvqdYMH9cPaI2dE4PU93N966qSNns/KZ8nspfaKV\ngt/+A6f3wk2zoHYTxwXpwjLzCvloVSy9QwPoHRpodjh2pROD5rw8fYyzWcF4+K0gx+yInF77Bv7c\n37c5P2yNZ33MZZr6bJ8LO78xeiyEDXFsgC5s9rojnM3K58lhrc0Oxe50YtCcW+2mMGoGnNoDvz9p\ndjQu4bFBYTQPrM7TC3aTnV944cKEncafY/MB0P9yxZC1i53NymfmujiGtwumc6NaZodjdzoxaM6v\n1XDoMwl2fGWc7Wql8vF0Z+pNHYk/l8M7S0s09ck+a4y8qgfBTbPBrfLNv7eXT1fHkp1fyKRhrt+E\npzx0YtBcw4BnoVk/+G0SJO4yOxqnF9GsDndGNuGLv46w/fg5o7/CwgcgPRFunQPVXbdRvaPtPZnG\nnI3HuLFrQ0Lr1jA7HIfQiUFzDW7uRj2lagHww13Gcw5aqZ4a3or6NX2Y/ONuCte+AzFLYfib0DDc\n7NBcxr6ENO6YvYkgP28mDW1ldjgOoxOD5jqqBxpnu2nxxvz7Yjt2MKsEavh4MmVUB+qe2Yjb6jeh\nwy3QfbzZYbmM/Qnp3D5rE9U83fnuvkiC/avOlF6dGDTX0igChr0Bh/6ADdPNjsbpDahfwGe+nxCr\nQoiOeF0XxyunA4np3D4rCl9Pd+ZN6EnjgGpmh+RQOjForidiArS/CVa+DnFrzI7GeRXmw/yxVHcr\n5Gn3J3lqUaxtm/pUUgdPGSMFbw935k2IrHJJAXRi0FyRCIz4AALCjKqg6Zft71S1/fk8xG9BbviY\ne0YOZVd8Gl9s0A8Klib6VAa3zdyEp7swb0IkTQKqmx2SKXRi0FyTtx/86yvjobf5d0NRGSUgqpo9\nP8LmzyDyYWg3ius61mdwm3q882c0x1KyzI7OKR06ncFtM6PwcBPmTehJ08CqmRQAxKrmHiYJDw9X\nW7duveC9goIC4uPjyc2tQNnhSsLHx4eGDRvi6elpdiiOs/cnY9QQ+ZAx40YzemfPHAjBHeDuX432\nqcCptFyGvLuG9g38+fa+HpW61s+VijmdwZiZUbiJ8N2ESFoE+Zkdkl2IyDalVJnT0qxq1CMidYDv\ngabAUeBWpdS5i9YZAJS8S9gaGK2U+llEvgT6AWmWZXcrpXZWJJb4+Hhq1KhB06ZNq+Q/eKUUKSkp\nxMfH06xZ5eo/W6r2NxnNfaI+gYbdof2NZkdkrrwM4yE2r2pGL233/z9JCPb34dlr2/DMgj18v+UE\noyMqX+exiohNymDMzE1IJU8KV8LaS0lPAyuUUmHACsvrCyilVimlOiulOgMDgWzgzxKrPHl+eUWT\nAkBubi4BAQFVMimA0eYxICCgao6YhrwGDSOMftHJ0WZHYx6lYPFjRu/smz83emlfZHT3RkQ2r8OU\n3w5wKq0K/lu5SGxSJqNnbALgu/t0UjjP2sQwEphj+XkOcEMZ698M/KGUskHn8n+qqknhvCr7+3t4\nwS1fgocPfH8n5GWaHZE5Nn0G+xYYvbOb9b3kKiLC1Bs7kl9UzPM/77WuT7SLO5ycyZiZUYBi3oQe\nhNbVSeE8axNDPaVUIoDle90y1h8NfHfRe1NEZLeITBcRbyvj0aoq/wZw82xIiYFfJhpnz1XJ8U3w\n53PQ6hqjd3YpmgZW5z9DW7L8wGl+21POpj6VTFxyJmNmRFFcrPjuvsgqU+qivMpMDCKyXET2XuJr\n5JUcSETqAx2ApSXefgbjnkN3oA4wuZTtJ4jIVhHZmpzsGr2Ax48fz/79pdTFt3jvvfeYO7f04nCj\nR48mJibGVqFVTs37w4DnYO+PsHmm2dE4Tmay0SPbv6HRM7scI8dxvZvRsaE/Ly/ex7msfAcE6TyO\nnMlizMwoiooV394XSVg9nRQuVmZiUEoNVkq1v8TXIuC05QP//Ad/Uim7uhVYqJT6e16hUipRGfKA\nL4CIUuKYoZQKV0qFBwUFlff3M9WsWbNo27ZtqesUFhby+eefc9ttt5W63oMPPsi0adNsGV7ldNUT\n0HI4LH0WTmwxOxr7Ky4yemPnnDN6ZfuWryS0h6WpT2p2Aa/9VvbJS2Vx9EwWY2ZEUVBkJIVWwTop\nXIpVs5KAxcBYYKrl+6JS1h2DMUL4m4jUV0olinFx/AZgr5XxAPDKL/vYn5Bui139rW1ITV4a0e6y\ny7Oysrj11luJj4+nqKiIF154gU8//ZR33nmH8PBw/Pz8mDhxIr/++iu+vr4sWrSIevXqsXLlSrp2\n7YqHhweFhYX07NmTt99+m/79+/PMM8/g5ubGlClT6NOnD3fffTeFhYV4eFj711aJubnBqP/BZ/2M\ns+j71xo1liqrVVOM3tgjPzZ6ZV+BNvVr8lD/FnywMpbrO4XQv1VZV4Jd27EUY6SQV1jEdxN0UiiN\ntfcYpgJDRCQGGGJ5jYiEi8is8yuJSFOgEXBx/YJvRGQPsAcIBF63Mh7TLFmyhJCQEHbt2sXevXsZ\nPnz4BcuzsrKIjIxk165d9O3bl5kzjUsdGzZsoFu3bgB4eHjw5Zdf8uCDD7Js2TKWLFnCSy+9BICb\nmxuhoaHs2qVLTpfJt7bR+S3rDPx0r3FWXRlF/2H0xO56l9EjuwIeHhhKaF0/nlu4l8y8wrI3cFHH\nU7IZMyOK3IIivhkfSevgmmaH5NSsOvVUSqUAgy7x/lZgfInXR4EGl1hvoDXHv5zSzuztpUOHDkya\nNInJkydz3XXX0adPnwuWe3l5cd111wHQrVs3li1bBkBiYiJt2rT5e7127dpx5513MmLECDZu3IiX\nl9ffy+rWrUtCQsLfiUQrRUhnuPYdYwrr6jdh4PNmR2RbZ4/AwvuNnthXv13h3Xh7uPPWTR25+X9/\n8faSg7wysr0Ng3QOJ85mM2ZmFNkFRXwzvgdtQ3RSKIsuiWEjLVu2ZNu2bXTo0IFnnnmGV1999YLl\nnp6ef08ndXd3p7DQODvz9fX9x7MHe/bsoVatWpw+ffqC93Nzc/H19bXjb1HJnD+TXvs2HFpa9vqu\noiDH6EkBxsjI07py0N2a1ObuXk2ZG3WMLUfP2iBA53HibDajZ0SRmVfI1/f2oF2Iv9khuQSdGGwk\nISGBatWqcccddzBp0iS2b99eru3atGlDbGzs368XLFhASkoKa9eu5bHHHiM1NfXvZYcOHaJdO8eP\nhlzaNe8YpSEWTIBzR82OxjZ+fxJO7YYbZxo9sW1g0tBWNKjly+SfdpNbUDkuvcWfM5JCRm4B34zv\nQfsGOimUl04MNrJnzx4iIiLo3LkzU6ZM4fnny3fp4uqrr2bt2rUAnDlzhqeffprZs2fTsmVLHnnk\nESZOnAjA6dOn8fX1pX79+nb7HSolT1/jrFop4yy7wMWf9t3+ldH7us8kaDnMZrut7u3BG6M6EJec\nxYcrXX9a9MnUnBJJIVInhStUaYroHThw4IJr9a5k1KhRTJs2jbCwsMuuM336dGrWrMm9995b6r5c\n+c/Brg7+DvPGQLe7YTE9oswAAAy/SURBVMT7ZkdTMYm7YPZQaNQD7lxotDu1sUnzd7Fwx0kWP9Lb\nZS+7JKTm8K8ZG0nNNkYKHRuWbwpvVVDeInp6xOAEpk6dSmJi6U+g1qpVi7Fjxzoookqo9TVw1b9h\n25ew4xuzo7lyOeeMEY9vHaMOkh2SAsDz17ahdjUvJv+0m8Ii12udmphmjBRSswr4+l6dFCpKJwYn\n0KpVK/r2vXRtm/Puuece/fyCtQY8D037wG9PwKk9ZkdTfsXFRo/rtHij57Udn8uoVc2L10a2Y+/J\ndJ5ZsIdDpzPsdixbO58UzmXlM/feCDo10kmhonRi0KoOdw/jbNu3tlFsLye17G2cwYb3jB7Xw94w\nel7b2dUd6nNXzyb8tD2eodPXMvy9tXyyOpYTZ+1S+9ImTqXlMmZGFCmZ+cy5N4IujWubHZJL04lB\nq1r86hqVWNNOwM8POX+xvbg1sPI1o+9ExASHHfbVke3Z9OxgXrm+HdW9PZi2JJo+01Zx06d/MXfj\nUc5k5jkslrKcTs9lzMwozmTmM2dcBF11UrCaTgxa1dM40ujhEP0bbHDiG9HpCUZ3uoAwo8e1g8uq\nB9XwZmyvpvz0YC/WPTWAp4a3IiuvkBcX7aPHGyu46/PN/LQtnoxc89qqJqUbI4Wk9FzmjOtOtyY6\nKdiCvmitVU2RD8KJTbDiFWjQDZr1KXsbRyoqMHpZF+QYva29ze0V0KhONR7qH8pD/UOJPpXB4l0n\nWbQzgf/M34X3QjcGtan7d70lH0/73Bi/WFJGLqNnRnEqPZe54yLo1qSOQ45bFegRgxPZsWMH48eP\nL3Wdjz76iC+++MJBEVViIjDyI6jTwjgrT3eyvgTLXjQS18gPIaiV2dFcoFVwDZ4c1pp1Tw1gwUO9\nGBPRmM1HzvLA19vp/vpyJs3fxbqYZLvOakrOyGPMjChOpeXy5T0RhDfVScGW9HMMTuSWW27h+eef\np1OnTpddJzs7m969e7Njx45LLq8Mfw4OlXQAZg40ag6N/eWCHsmm2bsAfrwHejwAV79ldjTlUlhU\nzMa4FBbtTGDp3lNk5BUS6OfFdR1DGNEphK6Na9msw2ByRh5jZkZx8lwOX97TnR7NA2yy36qgvM8x\nVM5LSX88bfvpiMEd4Oqppa4yd+5c3nnnHUSEjh078vrrrzNu3DiSk5MJCgriiy++oHHjxsyfP59X\nXnkFd3d3/q+9ew+OqjzjOP59IOgaDDCwICGhpgLjWBYMhGAhkBEihVLLxUHG1obQmdYpvUTbsVjr\njFYuM8w4Qmc601KFiEUsZRAFIRh1MIVSDAYTwHCrXGLSYAlJLRcRhDz9Yw+YhVx2E8LZs/t8ZjLs\nnnPI/k4G8ux533fP0717d7Zu3crp06fZs2fPlaKQn5+P3+/n6aefpqioiIULF1JcXExiYiJpaWns\n3LmTkSM7foVKzOtzV3D8ft2PYONjMHCCu3m+PAeFjwd7WE+Y726WCCR07sTYQb0ZO6g3C6YFKD54\ngg27a3h15yes+Ocx+ve8he8O7cfU9JR23e765JnzfN8pCi9ZUegwsVkYXFBRUcHChQvZvn07fr+f\n+vp68vLymDVrFnl5eRQUFJCfn88bb7zBvHnzKCoqIiUl5cq9kEpLSwkEvrqz5aJFi8jMzGTs2LHk\n5+dTWFhIp07Bkb8RI0awbds2KwzXy9AH4d+lULIUyl5xOw10dVZOJdzU6qHRyNelM5MCyUwKJHP6\niy8pqvgPG3bX8OetR/hj8WHuvC2JKen9mHJ3P/r3TAz7+9Y5RaHqv5/z0uyRfNOKQoeJzcLQyjv7\njrBlyxZmzJiB3x/88FHPnj3ZsWMH69atAyA3N5e5c+cCkJWVxezZs5k5cyYPPPAAELz9duPOdImJ\nibz44otkZ2ezZMkSBgwYcGVfnz59OHDgwI06tfgwaRFk/hguRUGby+6p4IuNW0Mn+bowIyOVGRmp\nnDxznsK9x1lfXsNzRQd5ruggw7/Wg6npKUwekkzvpOZbvtedOc/Dy0r4pP5zCvIyGTXAikJHis3C\n4AJVbXUM9fL+pUuXUlJSwqZNm0hPT6e8vLzZ22/36tWLmpqakO12++0OIAL+gW6niGn+W29m1qg0\nZo1Ko6r+c97cU8OG8hqe2VDBs29WkDXQz5S7+zEx0Jduvq/meurPXuDhZSUcPXmWgtmZjB4Ywx35\nokS7ViWJyIMiUiEiDSLS7ISGiEwSkYMi8rGI/KbR9q+LSImI/EtE/iYi3rx2BnJyclizZg11dXUA\n1NfXM3r0aFavXg3AqlWrGDNmDACHDx/mnnvuYd68efj9fqqqqq65/XZlZSXPP/88ZWVlbN68mZKS\nkiv7Dh06FDLsZIzXXF7++tZj2bz9y2x+eu9AjtWd5ddr9zBiwbv8ZOUuNu89zqf/++JKUViel0mW\nFYUbQ1Xb/AXcBdwJFAMjmjmmM3AYuAO4CdgNfMPZtwZ4yHm8FJgTzutmZGTo1fbt23fNthttxYoV\nOnjwYB06dKjm5eXp0aNHddy4cTpkyBAdP368VlZWqqrq9OnTNRAI6ODBgzU/P18bGhpUVTUQCOip\nU6e0oaFBc3JydP369aqqWlpaqoFAQM+dO6eqqsOGDdPa2tomM0TDz8GYtmhoaNBdlfX6zPqPNGP+\nO3r7Exv19ic26qCnCvXvB0+4HS8mAKUaxu/Y67JcVUSKgcc12NLz6n2jgN+p6kTn+ZPOrkVALdBX\nVS9efVxLYnW56pIlS0hKSmrxswxlZWUsXryYlStXNrk/Fn4Oxly81MD7R+p5q+I4kwPJNnx0nUTT\nbbdTgKpGz6udbb2Az1T14lXbmyQij4hIqYiU1tbWdlhYN82ZM4ebb25+Ag6CzXzmz/fOMkZj2iKh\ncyfGDPKzYNoQKwouaHXyWUTeBfo2sespVV0fxms0NSOrLWxvkqq+ALwAwSuGMF7Xc3w+H7m5uS0e\nM2GCy+vsjTExr9XCoKr3tfM1qoH+jZ6nAjXASaCHiCQ4Vw2Xt7eZhrEyKJZdj2FBY4y5EUNJHwCD\nnBVINwEPARuciZD3gBnOcXlAOFcgTfL5fNTV1cXtL0dVpa6uDp/P53YUY4zHtetzDCIyHfgD0BvY\nJCLlqjpRRPoBy1R1sjOx/HOgiOAKpQJVrXC+xRPAahFZAJQBy9uaJTU1lerqamJ1/iEcPp+P1NRU\nt2MYYzwuZm6iZ4wxpmXRtCrJGGOMh1hhMMYYE8IKgzHGmBCenGMQkVqgso1/3U9wqaxXeT0/eP8c\nvJ4fvH8OXs8P7pzD7arau7WDPFkY2kNESsOZfIlWXs8P3j8Hr+cH75+D1/NDdJ+DDSUZY4wJYYXB\nGGNMiHgsDC+4HaCdvJ4fvH8OXs8P3j8Hr+eHKD6HuJtjMMYY07J4vGIwxhjTAisMxhhjQsRVYWiu\n97QXiEiBiJwQkY/cztIWItJfRN4Tkf1On/BH3c4UKRHxichOEdntnMOzbmdqCxHpLCJlIrLR7Sxt\nISLHRGSviJSLiOdumiYiPURkrYgccP4/jHI709XiZo5BRDoDh4AJBHtEfAB8T1X3uRosTCKSDZwB\n/qKqAbfzREpEkoFkVf1QRJKAXcA0r/z8ASTY7KOrqp4RkS7AP4BHVfV9l6NFRER+BYwAuqnq/W7n\niZSIHCPYY96TH3ATkZeBbaq6zGlFkKiqn7mdq7F4umIYCXysqkdU9QKwGpjqcqawqepWoN7tHG2l\nqsdV9UPn8WlgPy20co1GTj/1M87TLs6Xp95ZiUgq8B1gmdtZ4pGIdAOycVoMqOqFaCsKEF+Fobne\n0+YGE5E0YBhQ4m6SyDnDMOXACeAdVfXaOfwemAs0uB2kHRR4W0R2icgjboeJ0B1ALfCSM5y3TES6\nuh3qavFUGCLqMW06hojcCrwGPKaqp9zOEylVvaSq6QRb0Y4UEc8M64nI/cAJVd3ldpZ2ylLV4cC3\ngZ85w6xekQAMB/6kqsOAs0DUzXfGU2Forve0uUGccfnXgFWqus7tPO3hXP4XA5NcjhKJLGCKM0a/\nGhgvIq+4Gylyqlrj/HkCeJ3gMLFXVAPVja401xIsFFElngpDk72nXc4UN5yJ2+XAflVd7HaethCR\n3iLSw3l8C3AfcMDdVOFT1SdVNVVV0wj++9+iqj9wOVZERKSrs3gBZwjmW4BnVuqp6qdAlYjc6WzK\nAaJuAUa7ej57SSu9p6OeiPwVuBfwi0g18IyqtrlHtguygFxgrzNGD/BbVS10MVOkkoGXnRVunYA1\nqurJJZ8edhvwevB9BgnAq6r6lruRIvYLYJXzBvUI8EOX81wjbparGmOMCU88DSUZY4wJgxUGY4wx\nIawwGGOMCWGFwRhjTAgrDMYYY0JYYTDGGBPCCoMxxpgQ/wey3EMoOvstKgAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "
" ] }, "metadata": {}, @@ -61,12 +78,262 @@ ], "source": [ "plt.title(\"Plot test frame\")\n", - "x = np.linspace(0, 2*math.pi)\n", + "x = np.linspace(0, 2*math.pi, 10)\n", "plt.plot(x, np.sin(x), label=\"sin(x)\")\n", "plt.plot(x, np.cos(x), label=\"cos(x)\")\n", "plt.legend();" ] }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.plotly.v1+json": { + "data": [ + { + "name": "sin", + "type": "scatter", + "uid": "d937044e-5752-42f6-bb4f-a1baf39218c7", + "x": [ + 0, + 0.1282282715750936, + 0.2564565431501872, + 0.38468481472528077, + 0.5129130863003744, + 0.6411413578754679, + 0.7693696294505615, + 0.8975979010256552, + 1.0258261726007487, + 1.1540544441758422, + 1.2822827157509358, + 1.4105109873260295, + 1.538739258901123, + 1.6669675304762166, + 1.7951958020513104, + 1.9234240736264039, + 2.0516523452014974, + 2.179880616776591, + 2.3081088883516845, + 2.436337159926778, + 2.5645654315018716, + 2.6927937030769655, + 2.821021974652059, + 2.9492502462271526, + 3.077478517802246, + 3.2057067893773397, + 3.333935060952433, + 3.4621633325275267, + 3.5903916041026207, + 3.7186198756777142, + 3.8468481472528078, + 3.9750764188279013, + 4.103304690402995, + 4.231532961978089, + 4.359761233553182, + 4.487989505128276, + 4.616217776703369, + 4.744446048278463, + 4.872674319853556, + 5.00090259142865, + 5.129130863003743, + 5.257359134578837, + 5.385587406153931, + 5.513815677729024, + 5.642043949304118, + 5.770272220879211, + 5.898500492454305, + 6.026728764029398, + 6.154957035604492, + 6.283185307179586 + ], + "y": [ + 0, + 0.127877161684506, + 0.25365458390950735, + 0.3752670048793741, + 0.49071755200393785, + 0.5981105304912159, + 0.6956825506034864, + 0.7818314824680298, + 0.8551427630053461, + 0.9144126230158124, + 0.9586678530366606, + 0.9871817834144501, + 0.9994862162006879, + 0.9953791129491982, + 0.9749279121818236, + 0.9384684220497604, + 0.8865993063730001, + 0.820172254596956, + 0.7402779970753157, + 0.6482283953077888, + 0.545534901210549, + 0.43388373911755823, + 0.3151082180236209, + 0.19115862870137254, + 0.06407021998071323, + -0.06407021998071255, + -0.19115862870137187, + -0.3151082180236202, + -0.433883739117558, + -0.5455349012105485, + -0.6482283953077882, + -0.7402779970753153, + -0.8201722545969556, + -0.886599306373, + -0.9384684220497602, + -0.9749279121818236, + -0.9953791129491981, + -0.9994862162006879, + -0.9871817834144503, + -0.9586678530366608, + -0.9144126230158128, + -0.8551427630053464, + -0.7818314824680299, + -0.6956825506034869, + -0.5981105304912162, + -0.49071755200393863, + -0.3752670048793746, + -0.25365458390950835, + -0.12787716168450664, + -2.4492935982947064e-16 + ] + }, + { + "name": "cos", + "type": "scatter", + "uid": "a1ecdf48-143a-478e-a9c1-5d53739ebeb4", + "x": [ + 0, + 0.1282282715750936, + 0.2564565431501872, + 0.38468481472528077, + 0.5129130863003744, + 0.6411413578754679, + 0.7693696294505615, + 0.8975979010256552, + 1.0258261726007487, + 1.1540544441758422, + 1.2822827157509358, + 1.4105109873260295, + 1.538739258901123, + 1.6669675304762166, + 1.7951958020513104, + 1.9234240736264039, + 2.0516523452014974, + 2.179880616776591, + 2.3081088883516845, + 2.436337159926778, + 2.5645654315018716, + 2.6927937030769655, + 2.821021974652059, + 2.9492502462271526, + 3.077478517802246, + 3.2057067893773397, + 3.333935060952433, + 3.4621633325275267, + 3.5903916041026207, + 3.7186198756777142, + 3.8468481472528078, + 3.9750764188279013, + 4.103304690402995, + 4.231532961978089, + 4.359761233553182, + 4.487989505128276, + 4.616217776703369, + 4.744446048278463, + 4.872674319853556, + 5.00090259142865, + 5.129130863003743, + 5.257359134578837, + 5.385587406153931, + 5.513815677729024, + 5.642043949304118, + 5.770272220879211, + 5.898500492454305, + 6.026728764029398, + 6.154957035604492, + 6.283185307179586 + ], + "y": [ + 1, + 0.9917900138232462, + 0.9672948630390295, + 0.9269167573460217, + 0.8713187041233894, + 0.8014136218679567, + 0.7183493500977277, + 0.6234898018587336, + 0.5183925683105252, + 0.404783343122394, + 0.28452758663103267, + 0.15959989503337932, + 0.03205157757165533, + -0.09602302590768154, + -0.22252093395631434, + -0.3453650544213075, + -0.4625382902408351, + -0.5721166601221694, + -0.6723008902613166, + -0.7614459583691342, + -0.8380881048918404, + -0.900968867902419, + -0.9490557470106686, + -0.9815591569910653, + -0.9979453927503363, + -0.9979453927503363, + -0.9815591569910654, + -0.9490557470106689, + -0.9009688679024191, + -0.8380881048918407, + -0.7614459583691346, + -0.672300890261317, + -0.57211666012217, + -0.4625382902408353, + -0.34536505442130816, + -0.2225209339563146, + -0.09602302590768244, + 0.03205157757165486, + 0.1595998950333784, + 0.284527586631032, + 0.40478334312239295, + 0.5183925683105245, + 0.6234898018587334, + 0.718349350097727, + 0.8014136218679564, + 0.871318704123389, + 0.9269167573460216, + 0.9672948630390291, + 0.991790013823246, + 1 + ] + } + ], + "layout": {} + }, + "text/html": [ + "
" + ], + "text/vnd.plotly.v1+html": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x = np.linspace(0, 2*math.pi)\n", + "\n", + "sin_trace = go.Scatter(x = x, y = np.sin(x), name= \"sin\")\n", + "cos_trace = go.Scatter(x = x, y = np.cos(x), name= \"cos\")\n", + "\n", + "iplot([sin_trace, cos_trace], filename='basic-line')" + ] + }, { "cell_type": "markdown", "metadata": { @@ -89,7 +356,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "metadata": { "ExecuteTime": { "end_time": "2017-09-22T06:34+0000", @@ -100,8 +367,7 @@ }, "outputs": [], "source": [ - "def integrateR(func, a, b, numPoints = 400):\n", - " res = 0\n", + "def integrateR(func, a, b, numPoints = 100):\n", " points, step = np.linspace(a, b, numPoints, endpoint=True, retstep=True)\n", " return np.sum(func(points))*step" ] @@ -113,14 +379,12 @@ }, "source": [ "### Вариант 2: итеративный интеграл Симпсона \n", - "Используется [итеративный численный интегратор из библиотеки SciPy](https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.integrate.simps.html), \n", - "в основе которого лежит [квадратичная формула Симпсона](http://mathworld.wolfram.com/SimpsonsRule.html). Первый аргумент - сама функция, второй и третий - границы интегрирования. \n", - "Итеративная формула гарантирует точность интегрирования, но не гарантирует сходимости." + "[Квадратичная формула Симпсона](http://mathworld.wolfram.com/SimpsonsRule.html). Первый аргумент - сама функция, второй и третий - границы интегрирования. " ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "metadata": { "ExecuteTime": { "end_time": "2017-09-22T06:29+0000", @@ -130,23 +394,31 @@ }, "outputs": [], "source": [ - "# from scipy.integrate import simps\n", - "# def integrateS(func, a, b):\n", - " \n", - "# return simps(func( np.linspace(a,b, 5000, endpoint=True)), np.linspace(a,b, 5000, endpoint=True))\n", - "# # integrateS = {UnivariateFunction func, Number a, Number b -> new SimpsonIntegrator().integrate(5000,func,a,b)}" + "from scipy.integrate import simps\n", + "def integrateS(func, a, b, numPoints = 100):\n", + " x = np.linspace(a,b, numPoints, endpoint=True)\n", + " return simps(x = x, y = func(x))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Вариант 3: \"Умное\" итеративное интегрирование\n", + "Используется [итеративный численный интегратор из библиотеки SciPy](https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.quad.html).\n", + "Итеративная формула гарантирует точность интегрирования, но не гарантирует сходимости." ] }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "from scipy.integrate import quad\n", - "\n", "def integrateQ(func, a, b):\n", - " return quad(func, a,b)[0]" + " res = quad(func, a,b)\n", + " return res[0]" ] }, { @@ -163,7 +435,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 36, "metadata": { "ExecuteTime": { "end_time": "2017-09-22T06:34+0000", @@ -174,7 +446,7 @@ }, "outputs": [], "source": [ - "integrate = integrateR" + "integrate = integrateS" ] }, { @@ -192,12 +464,12 @@ "hidden": true }, "source": [ - "Итеративный интеграл:" + "Интеграл Римана 10 точек:" ] }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 37, "metadata": { "ExecuteTime": { "end_time": "2017-09-22T06:29+0000", @@ -209,16 +481,16 @@ { "data": { "text/plain": [ - "2.0" + "1.9995487365804032" ] }, - "execution_count": 7, + "execution_count": 37, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "integrateQ(np.sin,0, math.pi)" + "integrate(np.sin,0,math.pi,10)" ] }, { @@ -232,7 +504,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 39, "metadata": { "ExecuteTime": { "end_time": "2017-09-22T06:29+0000", @@ -247,7 +519,7 @@ "1.9998321638939927" ] }, - "execution_count": 8, + "execution_count": 39, "metadata": {}, "output_type": "execute_result" } @@ -262,12 +534,12 @@ "hidden": true }, "source": [ - "Интеграл Римана 400 точек:" + "Интеграл Римана 200 точек:" ] }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 40, "metadata": { "ExecuteTime": { "end_time": "2017-09-22T06:29+0000", @@ -279,16 +551,43 @@ { "data": { "text/plain": [ - "1.9999896675538067" + "1.9999584621373308" ] }, - "execution_count": 9, + "execution_count": 40, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "integrateR(np.sin,0,math.pi)" + "integrateR(np.sin,0,math.pi,200)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Интеграл Симпсона 10 точек" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1.9995487365804032" + ] + }, + "execution_count": 41, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "integrateS(np.sin,0,math.pi,10)" ] }, { @@ -297,12 +596,12 @@ "hidden": true }, "source": [ - "Интеграл Римана 5000 точек:" + "Итеративный интеграл:" ] }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 42, "metadata": { "ExecuteTime": { "end_time": "2017-09-22T06:29+0000", @@ -314,16 +613,16 @@ { "data": { "text/plain": [ - "1.9999999341763102" + "2.0" ] }, - "execution_count": 10, + "execution_count": 42, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "integrateR(np.sin,0,math.pi,5000)" + "integrateQ(np.sin,0, math.pi)" ] }, { @@ -342,7 +641,7 @@ "hidden": true }, "source": [ - "[Сверткой](https://ru.wikipedia.org/wiki/%D0%A1%D0%B2%D1%91%D1%80%D1%82%D0%BA%D0%B0_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0B8%D0%B9_%D0%B0%D0%BD%D0%B0%D0%BB%D0%B8%D0%B7) \n", + "[Сверткой](https://ru.wikipedia.org/wiki/%D0%A1%D0%B2%D1%91%D1%80%D1%82%D0%BA%D0%B0_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B9_%D0%B0%D0%BD%D0%B0%D0%BB%D0%B8%D0%B7)) \n", "двух функций называется следующее интегральное преобразование:\n", "$$\n", " h(x) = f(x) \\otimes g(x) = \\int {f(x-y) g(y) dy }\n", @@ -352,11 +651,18 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 43, "metadata": {}, "outputs": [], "source": [ - "convolute = lambda f, g, a, b: np.vectorize(lambda x: integrate(lambda y: f(x-y)*g(y), a, b))" + "convolute = lambda f, g, a, b: np.vectorize(\n", + " lambda x: integrate(lambda y: f(x-y)*g(y), a, b)\n", + ")\n", + "\n", + "# def convolute(f,g,a,b):\n", + "# def res (x):\n", + "# return integrate(lambda y: f(x-y)*g(y), a, b)\n", + "# return res" ] }, { @@ -379,7 +685,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 45, "metadata": { "ExecuteTime": { "end_time": "2017-09-22T06:29+0000", @@ -390,9 +696,1243 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEICAYAAACktLTqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3Xl8VNX5+PHPM1lZQoAkEEJYwr7J\nGjZBREHBDarSCnXXr8vPtVK1Wvu1Vm21rfte9Kvihri0CgpSFXABUZBVCGENIYQlhJAQINvM+f1x\nZ8IkmSQzyWQmmTzv1yuvZO4999wngTxzcs6554gxBqWUUqHFFuwAlFJK+Z8md6WUCkGa3JVSKgRp\ncldKqRCkyV0ppUKQJnellApBmtxVkyMiE0Ukqx7X/1FEXvNnTI2NiLwpIo8GOw4VPJrcVa1E5Lci\nskZECkVkv4gsFpHxwY7LG57eCIwxfzPG/E8D3OsaEfneT3VliMhkf9Tlxb2MiPQKxL1U4GhyVzUS\nkdnAM8DfgI5AV+AlYHow41JK1UyTu6qWiMQCDwO3GmP+bYw5bowpNcYsNMbc4ywTJSLPiEi28+MZ\nEYlynpsoIlki8nsROeRs9V/rPDdGRA6ISJjb/S4WkY211eshzgotT1eXhIi0AhYDSc6/OgpFJElE\nHhKRd9zKTxORzSJyVESWi0h/t3MZInK3iGwUkXwRmS8i0R5i6A+8Aox13ueo2/fxhIhkishBEXlF\nRFo4z8WLyGfO+x4Rke9ExCYib2O9iS501nWvh/u5frZ/FJHDzjgvr+Hf8gYR2eG8zwIRSXIe/9ZZ\nZIPzXpdVV4dqWjS5q5qMBaKB/9RQ5gFgDDAUGAKMAv7kdj4RiAU6A9cDL4pIO2PMKuA4cLZb2d8C\n73lZb62MMceB84BsY0xr50e2exkR6QPMA34HJACLsJJqpFux3wBTgRRgMHCNh3ulATcDPzjv09Z5\n6u9AH+f30cv5c3jQee73QJbzvh2BP1pVmSuBTOAiZ13/qOZbTATinXVeDcwRkb6VC4nI2cBjzu+j\nE7AHeN8Z9wRnsSHOe82v5l6qidHkrmoSBxw2xpTVUOZy4GFjzCFjTA7wF+BKt/OlzvOlxphFQCHg\nSkDzgFkAIhIDnO885k29/nIZ8Lkx5ktjTCnwBNACON2tzHPGmGxjzBFgIVairpWICHADcJcx5ogx\n5hhW99ZMZ5FSrGTbzfnz+c74vtjT/xpjio0x3wCfYyXwyi4HXjfGrDXGFAP3Y/2F0d3He6kmRJO7\nqkkuEC8i4TWUScJqCbrscR4rr6PSm8MJoLXz6/eAS5zdLZcAa40xrrpqq9dfKtzHGOMA9mK1hl0O\nuH3tHn9tEoCWwM/OrpejwBfO4wD/BHYA/xWRXSJyn4+x5zn/OnGp7mdU+XssxPq37eyhrAoRmtxV\nTX4AioBf1VAmG+jm9rqr81itjDFbsJLOeVTskvG13hNYSdQl0f02tYRR4T7O1nYXYF8t13lS+V6H\ngZPAQGNMW+dHrDGmNYAx5pgx5vfGmB7ARcBsEZnkZdwA7ZzjCi7V/Ywqf4+tsP4qq8v3qJoITe6q\nWsaYfKz+4RdF5Fci0lJEIkTkPBFx9QPPA/4kIgkiEu8s/051dXrwHnAHMAH40O24L/WuB34rImEi\nMhU40+3cQSDOOTjsyQfABSIySUQisPrBi4GVPnwP7vdKdvXXO/8KeBV4WkQ6AIhIZxGZ4vz6QhHp\n5XxDKQDszg9XXT28uOdfRCRSRM4ALqTiz9DlPeBaERnq/Cvpb8CPxpgMH++lmhBN7qpGxpingNlY\ng5k5WF0WtwGfOIs8CqwBNgKbgLXOY96aB0wElhpjDrsd96XeO7Favkex+pddsWGM2eq8xy5n10iF\nbgtjTDpwBfA8Vkv7IqyBzBIfvgeXpcBm4ICIuL6XP2B1vawSkQLgK06NOfR2vi7E+ivpJWPMcue5\nx7De3I6KyN3V3O8AkIfVMn8XuNn5/VZgjPka+F/gY2A/0JNT/f4ADwFznffy1GevmiDRzTqUanpE\nZCLwjjEmOdixqMZJW+5KKRWCNLkrpVQI0m4ZpZQKQdpyV0qpEFTTwykNKj4+3nTv3j1Yt1dKqSbp\n559/PmyMSaitXNCSe/fu3VmzZk2wbq+UUk2SiOypvZR2yyilVEjS5K6UUiFIk7tSSoWgoPW5K6Wa\njtLSUrKysigqKgp2KM1GdHQ0ycnJRERE1Ol6r5K7czGmZ4Ew4DVjzOOVzncF5gJtnWXuc67drZQK\nAVlZWcTExNC9e3esdc5UQzLGkJubS1ZWFikpKXWqo9ZuGec2aC9iLcs6AJglIgMqFfsT8IExZhjW\ngkQv1SkapVSjVFRURFxcnCb2ABER4uLi6vWXkjd97qOAHcaYXc6V8t6n6ubIBmjj/DoWL9fzVko1\nHZrYA6u+P29vumU6Yy3z6pIFjK5U5iGs3WRuB1oBk+sVlVLB4HBA2qdwcAt0GgL9LgBNaKqJ8ia5\ne/rfXXlBmlnAm8aYJ0VkLPC2iAxyblZwqiKRG4EbAbp27VqXeJVqGKUn4b3LYPc3p471OQ8uexvC\n6jagpVQwedMtk4W17ZhLMlW7Xa7H2tEGY8wPQDTWruwVGGPmGGNSjTGpCQm1Pj2rVOB8eivs/hYu\neAr+9zCc+yhsWwyLqtsnQwXac889R//+/bn88sv55JNPePjhh2ssf/fdd7N06dIARdf4eNNyXw30\nFpEUrD0XZ2Ltd+kuE5gEvCki/bGSe44/A1WqwaR/Ab98DGc9ACOvt46dfjsUHoKVz8Fpv4bu44Mb\no+Kll15i8eLFpKSkcPrpp7NgwYIay99+++3ccMMNnH322QGKsHGpNbkbY8pE5DZgCdY0x9eNMZtF\n5GFgjTFmAda+k6+KyF1YXTbXGF1LWDUFDjss+SPE94Vxv6t4buL9sOUT+OJ+uOlb7X93+svCzWzJ\nLvBrnQOS2vDniwZWe/7mm29m165dTJs2jSuuuIKoqCji463OgenTp3PppZdy1VVX8a9//Ytvv/2W\nd999l27dupGbm8uBAwdITEystu5Q5dU8d+ec9UWVjj3o9vUWYJx/Q1MqALZ+Bkd2wq/nQnhkxXOR\nLWHCvbDgNti1DHo2zxZgY/DKK6/wxRdfsGzZMhYuXMjw4cPLz82ZM4dx48aRkpLCk08+yapVq8rP\nDR8+nBUrVnDppZcGI+yg0idUVfO28gVolwL9L/J8fvBvYOmjsOI5Te5ONbWwA2H//v24j9l17NiR\nhx9+mLPOOov//Oc/tG/fvvxchw4dyM5unjOzdW0Z1XzlpEPWTzDyf8AW5rlMeBSkXgu7lsPRvZ7L\nqIBq0aJFlYd7Nm3aRFxcXJVEXlRURIsWLQIZXqOhyV01X+vfAwmzWuc1GTITMLDx/YCEpWrWv39/\nduzYUf76p59+YvHixaxbt44nnniC3bt3l5/btm0bgwYNCkaYQafJXTVPDgds+hB6nwOtO9Rctl13\n6DYONn4QkNBUzSZMmMC6deswxlBcXMwNN9zA66+/TlJSEk8++STXXXcdxhhKS0vZsWMHqampwQ45\nKDS5q+Ypex0U7IOBF3tXfuDFcHib1ZWjgiIjI4P4+HhatmzJ5MmT+frrr4mKimLDhg3lA6zTpk1j\n2bJliAifffYZM2bMIDy8eQ4tanJXzdPWhVaXTJ8p3pXve771OW1hw8WkvPbHP/6REydO1FimrKyM\n3//+9wGKqPHR5K6ap62LrAeTWrTzrnxsZ0gaDls/b9i4lFc6duzItGnTaizz61//mrZt2wYoosZH\nk7tqfo5mwuF06DPVt+v6TLW6c47nNkxcSvmRJnfV/Ox0rjfSa5Jv1/WaBBjrgSalGjlN7qr52fE1\ntOkM8X18uy5pGES3hZ2a3FXjp8ldNS8Oh7X6Y8+zfF8rxhYGPc60HmhSjcbvfvc7vv322xrLTJ48\nmby8vABF1DhoclfNS85WKDoK3eq4ymO38VCQpU+rNhJHjhxh1apVTJgwocZyV155JS+91Lx2/9Tk\nrpqXzJXW565j6na967rMH/wTj/LaI488Qr9+/TjnnHOYNWsWTzzxBB999BFTp1oD4/n5+fTt25f0\ndOtZhFmzZvHqq68C1vz3efPmBS32YGies/tV85W5ClonWk+d1kXHgRAZYyX32pYtCFWL74MDm/xb\nZ+JpcN7j1Z5es2YNH3/8MevWraOsrIzhw4czYsQIVqxYwYwZMwCIjY3lhRde4JprruHOO+8kLy+P\nG264AYB27dpRXFxMbm4ucXFx/o29kdLkrpqXzFVW67uua7PbwqDLKKseFTDff/8906dPL18E7KKL\nrFU8K68Qec455/Dhhx9y6623smHDhgp1uFaI1OSuVKg5uhfy98LY2+pXT7ex1jLAJ/O8fwgqlNTQ\nwm4o1e39U3mFSIfDQVpaGi1atODIkSMkJyeXn2tuK0R61ecuIlNFJF1EdojIfR7OPy0i650f20Tk\nqP9DVaqe9v5ofa5rf7tL17HO+n6qXz3Ka+PHj2fhwoUUFRVRWFjI559bTwpXXiHy6aefpn///syb\nN4/rrruO0tJSwHpzOHDgAN27dw9G+EFRa3IXkTDgReA8YAAwS0QGuJcxxtxljBlqjBkKPA/8uyGC\nVapeMn+AyNbQsZ5LwCYNB1uEDqoG0MiRI5k2bRpDhgzhkksuITU1ldjYWC644AKWL18OWMv7vvba\nazz55JOcccYZTJgwgUcffRSAn3/+mTFjxjSrRcS8abmPAnYYY3YZY0qA94HpNZSfBTSvYWnVNGSu\nguSREFbPX/DIlpA0FPZocg+ku+++m/T0dD755BPS09MZMWIEZ5xxBhkZGRw9epQ+ffqQlpZGTEwM\nAE899RR/+ctfAHj77be55ZZbghl+wHmT3DsD7pN6s5zHqhCRbkAKsLSa8zeKyBoRWZOTk+NrrErV\nXXEhHNxsDYb6Q5fRsH892Ev9U5+q1Y033sjQoUMZPnw4l156afkyv08++SSZmZk1Xjto0CAmTfJx\nuYkmzpsmjKdpBZ5HN2Am8JExxu7ppDFmDjAHIDU1tbo6lPK/AxsBY3Wp+EPSMCgrsh6KSjzNP3Wq\nGr333nsej48ePbrWa11TIpsTb1ruWUAXt9fJQHU7zs5Eu2RUY5S93vqcNNQ/9XUaWrFepRoZb5L7\naqC3iKSISCRWAl9QuZCI9AXaAdoRqRqf/eshphPEJPqnvvY9rIeZ9mtyV41TrcndGFMG3AYsAdKA\nD4wxm0XkYRFxXy1/FvC+qW5CqlLBlL3uVGvbH2w266+A7HX+q1MpP/Jq2oAxZhGwqNKxByu9fsh/\nYSnlR8XH4PB2GDTDv/V2GgI/vWoNqoZF+LdupepJFw5ToW+/azDVjy13sAZV7cVwKM2/9apGYfny\n5Vx44YU1ljl69GiF1Sazs7PL17oJNk3uKvS5+sX92S0DVnJ3r181O5WTe1JSEh999FEQIzpFk7sK\nfdnrISYJYjr6t952KRDVRmfMBMhbb73F4MGDGTJkCFdeeSV79uxh0qRJDB48mEmTJpXPdb/mmmu4\n4447OP300+nRo0d5sr3ssstYtOhU7/I111zDxx9/TFFREddeey2nnXYaw4YNY9myqjttPfTQQzzx\nxBPlrwcNGkRGRgb33XcfO3fuZOjQodxzzz1kZGQwaJD1BHR19b755ptccsklTJ06ld69e3Pvvfc2\nyM+r+TyLq5qv7HWnWtn+ZLNZ/e7NbFD17z/9na1Htvq1zn7t+/GHUX+o9vzmzZv561//yooVK4iP\nj+fIkSNcffXVXHXVVVx99dW8/vrr3HHHHXzyySeAtVrk999/z9atW5k2bRozZsxg5syZzJ8/n/PP\nP5+SkhK+/vprXn75ZV588UUANm3axNatWzn33HPZtm2bV3E//vjj/PLLL6xfb73BZ2RklJ+rqd71\n69ezbt06oqKi6Nu3L7fffjtdunSpUn99aMtdhbaS45C7w0rCDaHTEOvJV3tZw9SvAFi6dCkzZswg\nPj4egPbt2/PDDz/w29/+FrB2Wvr+++/Ly//qV7/CZrMxYMAADh48CMB5553H0qVLKS4uZvHixUyY\nMIEWLVrw/fffc+WVVwLQr18/unXr5nVyr0lN9U6aNInY2Fiio6MZMGAAe/bsqff9KtOWuwpth9IA\nA4n1XCysOomnWYOqR3ZCQt+GuUcjU1MLu6EYY5Ba1uB3Px8VFVXhWoDo6GgmTpzIkiVLmD9/PrNm\nzapwvibh4eE4HI7y1+7LDNcUc3Xc4wsLC6OszP+NA225q9B28Bfrc8eBDVO/q17XfVSDmDRpEh98\n8AG5ubmAtXfq6aefzvvvvw/Au+++y/jxte+LO3PmTN544w2+++47pkyZAsCECRN49913AWtlyczM\nTPr2rfhG3b17d9auXQvA2rVr2b17NwAxMTEcO3bM4728qbchaXJXoe3gZutJ0tiuDVN/fB+whVv3\nUQ1m4MCBPPDAA5x55pkMGTKE2bNn89xzz/HGG28wePBg3n77bZ599tla6zn33HP59ttvmTx5MpGR\nkQDccsst2O12TjvtNC677DLefPPNCi1rgEsvvZQjR44wdOhQXn75Zfr06QNAXFwc48aNY9CgQdxz\nzz0VrvGm3oYkwXqgNDU11axZsyYo91bNyBvng6MMrv9vw93jpbHQtiv8dn7D3SPI0tLS6N+/f7DD\naHY8/dxF5GdjTGpt12rLXYUuY+DALw3XJePScaB1H6UaEU3uKnTlZ0FxfmCSe0GWtaeqUo2EJncV\nulz94PXdVq82rvoPbmnY+wSZrgkYWPX9eWtyV6HLNYOlQwP3FZfPmAndQdXo6Ghyc3M1wQeIMYbc\n3Fyio6PrXIfOc1eh6+Bma6AzOrZh7xPTCVq0C+npkMnJyWRlZaHbYwZOdHQ0ycnJdb5ek7sKXQc3\nQ8cAbIEnYnXNhHDLPSIigpSUlGCHoXyg3TIqNJUWQe526DggMPfrOBAObQG3pxiVCiavkruITBWR\ndBHZISL3VVPmNyKyRUQ2i4jnnWyVCpTcHWAckNAvMPfr0B9KT0B+ZmDup1Qtau2WEZEw4EXgHKzN\nsleLyAJjzBa3Mr2B+4Fxxpg8EenQUAEr5ZUc56qFDT2Y6uJ6E8lJh3bdA3NPpWrgTct9FLDDGLPL\nGFMCvA9Mr1TmBuBFY0wegDHmkH/DVMpHOekgNojrFZj7uRYN012ZVCPhTXLvDOx1e53lPOauD9BH\nRFaIyCoRmeqpIhG5UUTWiMgaHXVXDSpnK7TvAeEBWsujRTtonWi9qSjVCHiT3D2ts1l5sms40BuY\nCMwCXhORtlUuMmaOMSbVGJOakJDga6xKeS8nPXD97S4d+kGOttxV4+BNcs8C3LcISQayPZT51BhT\naozZDaRjJXulAq+sJDjrqyf0g5xtOmNGNQreJPfVQG8RSRGRSGAmsKBSmU+AswBEJB6rm2aXPwNV\nymtHdlkrQQa65Z7QF0qPQ/7e2ssq1cBqTe7GmDLgNmAJkAZ8YIzZLCIPi8g0Z7ElQK6IbAGWAfcY\nY3IbKmilauSaKRPwlrtzZo72u6tGwKsnVI0xi4BFlY496Pa1AWY7P5QKrpytgEBcgHsGXW8mOVuh\nz7mBvbdSlegTqir05GyFdt0gsmVg79uyPbTueOovB6WCSJO7Cj3BmCnjktBXk7tqFDS5q9BiL4PD\n2wPf3+6S0N96c9GlcVWQaXJXoSVvNzhKg9tyLym0doFSKog0uavQEqyZMi6utWy0a0YFmSZ3FVpc\nSTW+T3DuX76AmCZ3FVya3FVoyUmH2C4QFROc+7dsD606wCFN7iq4NLmr0JKzNXhdMi46Y0Y1Aprc\nVehw2J0zZYI0mOrSQWfMqODT5K5Cx9E9UFYU/OSe0BdKjkFB5fX1lAocTe4qdLjWdAl2co93W4ZA\nqSDR5K5CR/k0yCDNlHFx9fkf3hbcOFSzpsldhY6cdIhJgujY4MbRKgGi2+rqkCqoNLmr0NEYZsoA\niFhdQ9pyV0GkyV2FBofD2gUp2P3tLgl9tM9dBZUmdxUaCrKsXZCC3d/uEt8XTuTCcd2zRgWHV8ld\nRKaKSLqI7BCR+zycv0ZEckRkvfPjf/wfqlI1yHF2gTSalrtrUFX73VVw1JrcRSQMeBE4DxgAzBKR\nAR6KzjfGDHV+vObnOJWqmSuJxjeCPnc4tbaNDqqqIPFmm71RwA5jzC4AEXkfmA5sacjAVOjbkl3A\n3xalUWp31LuuG45+xyhbLDe80zgGMcU4eFOiWLp0OXN/rv9fE5HhNh6aNpCeCa39EJ1qDrzplukM\nuG/nnuU8VtmlIrJRRD4SkS6eKhKRG0VkjYisycnJqUO4KpT8sCuX73ccxu6o/2P6yWV72Bfu8b9d\nUBixkR3Whc5lmfWuq7jMwXfbD/NzRp4fIlPNhTctd/FwrPJv40JgnjGmWERuBuYCZ1e5yJg5wByA\n1NRUXXijmTPOtVfeuHYkMdER9akI/rEfBkxn/kVj/RSdH3w8HPasZP5N9Ytpf/5Jxj62FIeuVaN8\n4E3LPQtwbxIlAxUWzTDG5Bpjip0vXwVG+Cc8FcpcycomntoPPjh+GE7mNZ7+dpeEPtYsnuLCelXj\n+vn44Q8c1Yx4k9xXA71FJEVEIoGZwAL3AiLSye3lNCDNfyGqUOVKVvVO7q7B1MYyDdLFNXOnng8z\nuX482nJXvqi1W8YYUyYitwFLgDDgdWPMZhF5GFhjjFkA3CEi04Ay4AhwTQPGrEKEK1nVN7eXz0ip\nZ8v9ZNlJjhQdocxRRlRYFDGRMbSKaFX3CssXEEuHzsPrXI3rzc9oclc+8KbPHWPMImBRpWMPun19\nP3C/f0NToc74reW+DSJaQWyyT5cVlBSwMnslK/atYOW+lRw6eahKmcRWiYxLGsf4zuMZmzTWt2Tf\nPgVs4fWe667dMqouvEruSjUEhzNbhdnqmdxz0iG+t9d/ApTaS/ls12c8seYJCkoKiImM4fSk0+nX\nvh9x0XFEhEVQXFbM0eKjbDq8iS8yvuDj7R/TPro99468lyndpxBu8+JXJywC2vc89YBVHYWVJ3fN\n7sp7mtxV0Jzqc69nRYe3QffxtRYzxvBO2ju88csb5JzMYUjCEGaPmM3ghME1JutSRynrDq7jiTVP\ncN939/HM2me44bQb+E3f39QeW0JfOFS/R0LEOTKmLXflC03uKmhO9bnXI7sXH4OCfaeeCK1GmaOM\n59Y+xxub32B0p9H85fS/MK7zOGxS+5yCCFsEozqNYt4F8/g261ve3Pwmj6x6hNyiXG487UbCbGHV\nX5zQF7Z+BmXFEB7l63cHaJ+7qhtdOEwFjcMY/7TaocalfjfmbGTmZzN5Y/MbzOgzg1fPeZUzks/w\nKrG7C7OFcVbXs3h9yutc0OMCXlr/ElcsuoKtR2pY/TG+LxgH5O706V7uXD8jfzzspZoPTe4qaKzk\nXt/+dmdyr2amzLa8bVz7xbUcLT7K0xOf5sExD9bvLwWsJP/Y+Md47IzHyD6ezVWLr2JPwR7PhV3T\nM+sxqKoDqqouNLmroHEYP81xt4VbM1MqOXj8IPd+cy8xkTHMv3A+k7tNrndidxERLuxxIfMvnE+4\nLZx7vrmH3JMelveN6w1IvQZVdZ67qgtN7ipoHMb4YY77NmtGSljF5QvWH1rPzM9nsv/4fv4+4e/E\ntYir5408S2yVyGPjH2NX/i5mfj6TLbmVBk8jW0LbrvXauEP73FVdaHJXQWP81XKv9GTqvsJ93PDf\nG2gR3oJ3z3+X0Z1G1+8etTizy5nMPW8uANcvuZ7DJw9XLJDQt15PqWq3jKoLTe4qaByOeg6olpXA\nkd1V+tufW/scBsPrU16nV7te9QvSSwPjBvLqOa9SVFbEy+tfrngyvg8c3g4Oe53qtmm3jKoDTe4q\naOrd535kJxh7hZky76a9y6Ldi7hqwFUktkr0Q5Te6x7bnd/0/Q0fbvuQT3Z8cupEQl+wF8PRagZd\nayHacld1oPPcVdA4jMFWn6Z7+ZoyVrfMvK3zePynxzm7y9n8vyH/zw8R+m526mwyCjJ4cMWDCML0\nXtNPLSCWkw7te9Sp3jCbaJ+78om23FXQmPrOc3f1Y8f3Znvedv724984q8tZPHHmE0SE1WN9+HqI\nCovi2bOeZXSn0fx55Z/JOpblly33bKLdMso3mtxV0NS7WyYnHWK7QmQr5m6eS4vwFjwy7pGgJXaX\n6PBoHh33KILwTto70KIttO5Yr0FVEdFuGeUTTe4qaOzG1G/euXOmTPqRdD7f/TnTe04nNirWfwHW\nQ8dWHTm/x/n8e/u/ycjPsFrv9W25a3ZXPtDkroKmXt0yDgcc3kFu++7cvvR22ke356YhN/k1vvq6\ndeitRIdFc/vS28mP62kl9zp2rdhEtFtG+USTuwoah6Me3TL5mZSVnWT28c3kFeXx3NnPEd8i3r8B\n1lNS6ySemvgUWYVZ3Fu8A0fJMTi2v0512bRbRvnIq+QuIlNFJF1EdojIfTWUmyEiRkRS/ReiClX1\nWjgsZxvftGzB2hP7+NOYPzEwbqBfY/OX1MRU7k69m5XHM1kdHVXnrhnRAVXlo1qTu4iEAS8C5wED\ngFkiMsBDuRjgDuBHfwepQpPD1GO538PpfNK6FQnRcVzQ4wL/BuZnl/a+lJiI1vwnpnWdB1VtInXt\n0VHNlDct91HADmPMLmNMCfA+MN1DuUeAfwBFfoxPhTBjDLY6dgxmHljPdy1bMK3Xr7zbFSmIosOj\nOb/HBXzVqiUHD6yvUx06FVL5yptfrc7AXrfXWc5j5URkGNDFGPNZTRWJyI0iskZE1uTk5PgcrAot\ndV3yt9RRyv0F62iJjZn9ZjZAZP531YCrsGHjgbzVOIzD5+t1QFX5ypvk7um3r/x/mYjYgKeB39dW\nkTFmjjEm1RiTmpCQ4H2UKiQ5zKn9QX3xyvpX2CilPNh6YMCXGKirrm268oeWvfhRipm7ea7P19ts\nOqCqfONNcs8Curi9Tgay3V7HAIOA5SKSAYwBFuigqqpNXZb83ZW/i9c2vca0Y4VMTZ7QMIE1kEuS\nzmTy8RM8t/Y59hf6NmvGJrrkr/KNN8l9NdBbRFJEJBKYCSxwnTTG5Btj4o0x3Y0x3YFVwDRjzJoG\niViFjLos+bt492LAcFfe0RpWxUSsAAAgAElEQVS31muMpEN/Zh/Jo8yUsSRjiU/X2kRw+N6bo5qx\nWpO7MaYMuA1YAqQBHxhjNovIwyIyraEDVKHL7vCtz90Yw5KMJaS2TCLe7oAOVSZtNW4JfehSZmdA\ndMc6JXe7ttyVD7yaZmCMWQQsqnTswWrKTqx/WKo58LVbZkPOBnbn7+byln2gRTtrvZamJLYrhLdg\nSnh7ns79hW152+jTrk/t16Hz3JXv9AlVFTS+LBxW6ijlkVWP0KFlBy4oyLda7X7aDzVgbDaI78XF\nJ0poG9WWh3942OuZMzrPXflKk7sKGl/mub+1+S225W3jgVEP0PpQOnTo37DBNZT4vrQ7vIN7R97L\nhpwNfJj+oVeX6Tx35StN7ipovJ3nfuD4AV7e8DKTu07m7LZ9oLjg1AYYTU1CP8jfy4WdJzKm0xie\nWfsMR4qO1HqZri2jfKXJXQWNt8sPLMlYQrG9mNmps+HQVutgUxtMdXHO8JHcbdydejeFpYUszVxa\n62Xa5658pcldBY3DGMK86DZftncZfdr1oUtMFzi0xTrYVLtlXG9KB7fQp10fOrfuzPK9y2u9TLfZ\nU77S5K6Cxpt57vnF+aw/tJ4zk8+0DhxKg9aJ0LJ9ACJsAO1TILwFHNqCiHBm8pms2r+Kk2Una7xM\n57krX2lyV0HjTZ/7/PT52I2dSd0mWQcObWm6rXYAWxh06AcHNwMwudtkiu3F/Hv7v2u8THRtGeUj\nTe4qaOyOmue5Hzx+kNc2vcbkrpOt9doddms99Kac3AE6DCzvXkrtmMrYTmN5cf2L5BXlVXuJzpZR\nvtLkroKmtm6ZZ9Y+g91htwZSAfIyoOxk00/uHQfA8RwozEFEuHfkvZwoPcGL61+s9hKdLaN8pcld\nBY2jhnnuablpfLbrM64eeLU1kAqQ08Rnyri44j9kdc30ateLy/pexofbPrQ20/ZAW+7KV5rcVdDU\n1Of+5Z4vCZMwrh549amDrpkyTWzBsCo6OrcEPLil/NB1g67DYRws3et5WqRoy135SJO7Cpqa5rmv\nzF7J4ITBxEbFnjp4KM1anyUqJkARNpDWHaBlfHnLHaBjq470bteblftWerxEl/xVvtLkroLGVLNB\n9pGiI2zJ3cK4pHEVTxxKa/r97S4dB1RouQOMTxrPz4d+5kTpiSrFdScm5StN7ipoqls4bPHuxRgM\n4zuPP3WwrMTaXDpUknuHgdYYgsNefmh85/GUOTyv9a7z3JWvNLmroPHU515YUsicjXMYlTiKAXFu\nA6dHdoKjrOkPprp0HAClJ6wZQE6piakMjBvISxteotheXKG4zaYDqso3XiV3EZkqIukiskNE7vNw\n/mYR2SQi60XkexEJkd9A1ZCslnvFY3O3zOVI0RHuGnFXxf5450M/dAyR/1odXIOqp/rdbWLjrhF3\nceD4AealzatQXJf8Vb6qNbmLSBjwInAeMACY5SF5v2eMOc0YMxT4B/CU3yNVIcdUarkfPnmYuZvn\nMqX7FAbFD6pY+MAmsEVAfBOfKePSoR8gp2YAOY3uNJpxncfx6qZXyS/OLz+ufe7KV9603EcBO4wx\nu4wxJcD7wHT3AsaYAreXrQD9X6hqZXdUnOf++a7POVl2kluH3lq18IFN1nK54ZGBC7AhRbay1plx\na7m73D70dgpKCvhyz5flx0TQbfaUT7xJ7p2BvW6vs5zHKhCRW0VkJ1bL/Q7/hKdCmbXN3qmW+6r9\nq0iJTSElNqVq4YO/QOJpAYwuADoMqNJyBxgQN4AOLTrw4/4fy4/pE6rKV94kd08Tkav8NzPGvGiM\n6Qn8AfiTx4pEbhSRNSKyJicnx7dIVchxX36g1F7Kzwd/ZkynMVULFh6CwoOQOKjquaas40A4sgtK\nK64IKSKMSRrDj/t/LN+GT+e5K195k9yzgC5ur5OB7BrKvw/8ytMJY8wcY0yqMSY1ISHB+yhVSHK4\nzXPfkLOBk2UnGd1pdNWCBzZZn0Ox5W4c1vz9SkZ3Gk1ecR7pR9IB7XNXvvMmua8GeotIiohEAjOB\nBe4FRKS328sLgO3+C1GFKvd57u9tfY9WEa0YlTiqakFXcu8YYi33ToOtzwc2Vjk1LmkckbZI3k17\nF3AuP6Dz3JUPak3uxpgy4DZgCZAGfGCM2SwiD4vINGex20Rks4isB2YDV1dTnVLlrD532Jy7mS/3\nfMlVA64iJtLD0gIHf4E2yU13g47qtO0OUW1gf9XkHtcijsv6XcbCXQvZlb9LFw5TPgv3ppAxZhGw\nqNKxB92+vtPPcalmwNXn/vy654mNiuWqAVd5Lnjgl9DrbwfryaTEwbB/g8fT1w+6no+2fcRL61/C\nJrN0nrvyiT6hqoLGYQwFju2s2LeC6wZdR+vI1lULlRZZyw6EWn+7S6fB1nRIe1mVU3Et4rii/xUs\nyVjCSdmrLXflE03uKmgcxnDA/iNRYVHM7DvTc6GcNDD20Otvd0kcbG1Akut5mOrqgVdjExuHzRpN\n7sonmtxV0DgM5Nq3MKzDMFpGtPRcKHu99dk1+BhqOg2xPnvodweIjYplYNxA8s0W7ZZRPtHkroLG\nzjEKHJmeZ8i47F8P0W2hnYcHm0JBfB8Ij6623x1gZOJICswuyigKYGCqqdPkroLGHrUNgFGdakju\n2esgaSg17qTdlIWFWw8zeZgO6TI6cTQGOyXhOsNYeU+TuwoKYwyONt/Q0hbPwLiBnguVFVsbWiQN\nC2xwgZY42OqWqabfZXjH4UTShqKWywIcmGrKNLmroPhu33cQtZf+LS4l3FbNjNyDm8FRCp2GBja4\nQOs0BIrzK6zt7i46PJoeEdOwR21n9YHVgY1NNVma3FVQfLXnK4y9BSlRZ1ZfKHud9TnUW+5Jzjcv\n1/frQbeISWAiWJrpeQNtpSrT5K6C4qcDP8HJnoTbwqovlL0OWrSHtl0DF1gwdBgIYVGw7+dqi0SE\nRWIr7m793JTygiZ3FXBZx7LYV7gPx8meHvdQLZe9PrQHU13CI62pnvvWVltERJCi3mzL28aRoiMB\nDE41VZrcVcCtzF4JgP1ET2yV99lzKT1pPcAU6l0yLp1HWNM+PTypChAmghT1AmBV9qpARqaaKE3u\nKqDKHGW8teUterfrjaO4Q5U9VMsd3GxtiN1sknuqtWF2TtXlf8G5nntxMsmtk3lz85vl67wrVR1N\n7iqgFu5cyJ6CPdw29DYcRqrvlslaY31OGh644IKps/P7rKbfXUQwJoxbht5C2pE0vs78OoDBqaZI\nk7sKmBJ7Ca9seIVBcYM4q8tZ2B0Vt9mrYO+P0KYzxFbZ0TE0te9hPYlbTXK3ieBwGM5POZ8esT14\nYd0L2B32AAepmhJN7ipgFu5cSPbxbG4fdnv5sWq7ZbJWQ/LIwATWGIhY/e7VDKq61nMPs4Vx69Bb\n2ZW/q8IG2kpVpsldBcyyvcvoEtOFsUljyzd79tgtU7Af8vdClxqWJQhFyanWhtnFhVVO2WynNsie\n3G0ycdFxLNurT6yq6nmV3EVkqoiki8gOEbnPw/nZIrJFRDaKyNci0s3/oaqmrMxRxpqDaxjTaYy1\nZZzzUXuPLfcs51zu5GaW3DuPsPZU3b++yilx24nJJjZGdRrFTwd+0k2zVbVqTe4iEga8CJwHDABm\niciASsXWAanGmMHAR8A//B2oatp+OfwLx0uPl2+A7UpUHvvc9/4EYZGhu8xvdVzdUJlVpzraRCos\nPTOm0xgOnzzMzqM7AxScamq8abmPAnYYY3YZY0qA94Hp7gWMMcuMMSecL1cByf4NUzV132R9A1C+\nvK+pqVsma7U1BTI8KlDhNQ4t20NCP8j8ocqpynuout4kl2ctD1R0qonxJrl3Bva6vc5yHqvO9cBi\nTydE5EYRWSMia3JycryPUjVpuSdzeS/tPSZ3nUy76HbAqUQVVvl/YFmxtexAcxpMddd1rPWXS6WZ\nMGFuXVkAnVt3ZmynsczdPJdjJccCHaVqArxJ7p56RT129InIFUAq8E9P540xc4wxqcaY1ISEBO+j\nVE3aa5teo8hexO3DT82SqXZAdf9GsJc0v8FUl65jobjAeojLjTVOUbHonSPu5GjxUeZunhvAAFVT\n4U1yzwK6uL1OBrIrFxKRycADwDRjTLF/wlNN3b7CfcxPn8/FvS6mR2yP8uPV9rm7uiS6jA5UiI1L\nt7HW50r97q43QfcB1IFxA5nSfQpvbXmLwycPByxE1TR4k9xXA71FJEVEIoGZwAL3AiIyDPgXVmI/\n5P8wVVP1zpZ3EISbh9xc4bjDUc1smYzvIK43xCQGKMJGpm1XaJMMmSsrHHb9nOyVmu+3D7udEnsJ\n87bOC1SEqomoNbkbY8qA24AlQBrwgTFms4g8LCLTnMX+CbQGPhSR9SKyoJrqVDPz/b7vGdVpFImt\nKiZrj90y9jLY8wN0Hx/ACBuhrmOslrtbK921wFrlrplubboxOGEwK/atCGSEqgmoZguciowxi4BF\nlY496Pb1ZD/HpUJAdmE2GQUZ/Kbvb6qc8zjP/cAGKDkGKWcEKMJGqttY+OUja2em9tbG4K73QIeH\nee1jk8by8vqXySvKKx+wVkqfUFUNxrW077ikcVXOeexzz/je+tytubfcT7c+u34euPe5Vy0+Lmkc\nBsOq/boUsDpFk7tqEHaHnXlb59ElpgspsSlVznuc5777O4jvAzEdAxRlI9WhP7TqALu/KT9kq6Hl\nPjBuIAktEpi3dZ4+sarKaXJXDeLTnZ+yLW8bdwy/w+NTqFW6Zexl1kyZ5t7fDlYfTI+JsGs5OKx1\n211vgp6Su2sxsXWH1vHfPf8NXJyqUdPkrvzueOlxnlv7HEMThjKl2xSPZaoMqO7fACWF0L2Z97e7\n9JgIx3PgkDXfXcTzgKrLr3r9ij7t+vD0z09TbNeZyEqTu2oAb215i9yiXO4deW+167WXT4V0Nd13\nLbU+a8vd0mOi9XnXcgDCnD+m6rpdwmxh3DPyHuu5gq3zGzw81fhpcld+t2T3EkYnjua0hNOqLXOq\nz915YPtX0GkotO7Q8AE2BbGdrfGHndayvtVNhXQ3ptMYBsYNZMmeJYGIUDVymtyVX+0r3MfO/J1M\nSJ5QY7lTfe4CJ/OsZX57nxOIEJuOHmfBnpVQVuzWLVPzgOmZXc5kU84mjhQdCUSEqhHT5K786tus\nbwFqTe728qmQWK1T44Bemtwr6DERyk7C3h9PzZapqemO9XM3GL7f932N5VTo0+Su/KbEXsJ7ae/R\nM7Yn3WO711jWuLfct39p7R+anBqAKJuQlDOsde23LXGbLVPzJf3b96dTq068s+UdyhxlAQhSNVaa\n3JXfvPHLG2QUZHD3yLtrLVs+WwYDO76CXpPAFtbAETYxUTGQMgG2fm79nKi9W8YmNn6f+nvSjqQx\nP10HVpszTe7KL/YW7OXVTa8ypfsUxneufcaLK0m1zU+D44e0S6Y6fc+DvN3EHt8N1J7cAc7tdi7j\nOo/j+XXPc+iEruPXXGlyV37xwvoXCLeFc+/Ie70q73w2hw4HlgNitdxVVX3PB6DzQWvWjDcPoIoI\nD4x6gDJHGa9seKUho1ONmCZ3VW9FZUUs27uM81POp0NL76YyulqgnbK+gG6n6xTI6rRJgqRhJDmT\nuzctd4Aubbpwdtez+XLPl9r33kxpclf1tjJ7JSfLTjK5m/eLgxoDPWUfrQu2w4BfNWB0IaDvBbTP\n20gCR2sdUHV3TrdzOFp8lJ8P/txwsalGS5O7qrdPdnxCm8g2jEz0ft9ThzFcYPsRg8CAabVf0Jz1\nOx/BcG7YGq9b7mCtFhkdFs1/dvynAYNTjZUmd1Uvi3cvZtneZVwz8BoibBFeX+cwhvPDfiQ/YUTz\n3XXJWx0GcCymJ9PDVvi06mPLiJZc3v9yPt/1efnzB6r58Cq5i8hUEUkXkR0icp+H8xNEZK2IlInI\nDP+HqRqjQycO8eiqRxmcMJhrB13r07UReTvoZ9vL4a7nN1B0IUSE7K7TGGVLx5a/16dLbxl6C73b\n9ebBFQ+SV5TXQAGqxqjW5C4iYcCLwHnAAGCWiAyoVCwTuAZ4z98Bqsbrn6v/SYm9hL+N/xvhNq82\n9SrXbtcCHEY40tXzqpGqov1dLwSg9TbfulgiwyJ5bPxj5Jfk8+zaZxsiNNVIedNyHwXsMMbsMsaU\nAO8D090LGGMyjDEbAUcDxKgaoaNFR/kq8yt+3ffXdGvTzbeLHXbit3/Id47TKGulXTLeKG6dzI+O\nfsRu/7d38yHd9G3fl+k9p7No9yJOlJ5ooAhVY+NNcu8MuP8tmOU85jMRuVFE1ojImpycnLpUoRqJ\nLzK+oMxRxvSe02svXNmuZUSd2M98+8RqlwRWFdlE+I99PFFHd8D+9T5ff1HPizhZdpKvM79ugOhU\nY+RNcvf021envbyMMXOMManGmNSEhIS6VKEagfzifN7c/CZ92vWhb/u+vlew9i1Ko9rzlWNExQ2y\nVbVsAovso3CERcHPc32+fliHYSS3Tua1Ta9p672Z8Ca5ZwFd3F4nA9kNE45q7BzGwf3f3c/BEwf5\n3zH/63sFxw/D1kUcSrmYEiJObdahamQToYDW5PWcDhvnw8mjPl5v48GxD5JRkMGfV/5Z91ptBrxJ\n7quB3iKSIiKRwExgQcOGpRqr1za9xnf7vuO+kfcxtMNQ3ytY9w44Stnf05pUpbndO67eq0P9r4LS\nE7D+XZ/rGJs0ljuG3cEXGV/w3lad+xDqak3uxpgy4DZgCZAGfGCM2SwiD4vINAARGSkiWcCvgX+J\nyOaGDFoFR2FJIf+36f84p9s5/Kbvb3yvoKwYfnwFUiZQ2KYX4LaHqqpRmPNd8ET7gdBlDPz06qkF\nenxw3aDrOD3pdP614V+612qI82qeuzFmkTGmjzGmpzHmr85jDxpjFji/Xm2MSTbGtDLGxBljBjZk\n0Co4Pt35KSfKTnD9oOvrNhC68QM4th/G/c5tmz1N7t6osJ776Bshbzds/6/P9YgI1w26jrziPBbv\nXuznKFVjok+oKq9k5GcwZ+McBicMZmB8Hd67HQ5Y8SwkDoaeZ1fcZk/VStx3Yuo/DWK7wLf/9Hla\nJMCoxFH0atuL59c9z/7C/X6OVDUWmtxVrQ4eP8hNX94EwKPjHq1bJemLIHc7jLsTRLA73LbZU7Vy\nvQnajYGwCJhwN+xbU+fW++NnPM7J0pPc+OWNut9qiNLkrmpkjOGu5XeRX5LPS5NfIiU2xfdK7GWw\n9BFo36N8BUiHdsv4xPVzKm+oD70c2naDZX+tU+u9b/u+PD/pefYf38+939yrs2dCkCZ3VaOle5ey\n6fAm7ht1HwPj6jiUsnYu5GyFcx6GMGuZgvI9VPV/oFfKN8h2JeGwCDjzD7B/A6QtrFOdIzqO4K4R\nd/HjgR/58cCPfopUNRb6q6WqlV2YzROrn6Bbm25c2OPCulVSVADL/gbdxkG/U3Voy9034mmD7MGX\nQUI/WPIAlByvU70z+sygQ8sOPP7j4+Sc0KfGQ4kmd+VR+pF0rlh0BfnF+Tw67lGfFwYrt/xxOHEY\npvy1Qgf7qQFVf0Qb+qq03MH6K+jCpyE/E775R53qjQqL4q/j/0r28WyuXHwlGfkZ9Q9WNQqa3FUV\n+cX53PTlTYgIc8+bW7eHlQAyvodVL0HqdZA0rMIpV5LStWW8c6rPvVLfeLfTYdgV8MMLcLBuj5eM\n6TSGN6a8wcmyk9z05U26PEGI0OSuKnAYB/9c/U/yivN44ewX6N2ud90qKiqAT/4ftOsO51adYaPz\n3H1TPs/d03NL5zwC0W3h4/+Bkrol5oHxA3l64tNkH8/m2bXP6gBrCNDkrsodPnmYm7+8mU93fsq1\nA6+lf1z/ulVkDHz2O8jPgotfgchWVYq4Wu5hmty94hp49rjNXsv2cMkcOJQGn8+u0+wZgOEdh3NZ\n38t4b+t73LHsDo4W+bZ+jWpcNLkrwErsMz+bybpD6/jz2D9z5/A7617Z8sfhl4/h7D9B1zEei7gG\nBjW3e8fmaUDVXa9JMPE+2DAPVr9W5/s8MPoB/jDyD6zYt4LfLvot+cX5da5LBZcmd8Xegr38btnv\nOFp8lDfPe5MZfWbUvS983TvwzePWPOzxs6stVj6gqiOqXqm2z93dhHugz3mw6B7YML9O9xERrhhw\nBa+e+yr7C/cze/lsfYq1idLk3ow5jIPn1z3P9E+nsy1vG4+Of7Tuc9kBfpwDn94KPc6CC5+psVnu\ncOhsGV+4fk72mpK7LQx+/QaknAGf3AwbP6zz/UZ0HMGDYx9kQ84Gpn0yjVc3vqr98E2MJvdm6vDJ\nwzzw/QPM2TiHKd2n8NnFnzG1+9S6VWYvg6/+Aovvgb4XwKz3ITyyxkt0nrtvPM5z9ySiBcycB13H\nwr//B5b+tU6rRwJc3PtiFv5qIWckn8Fz657j4VUP61IFTUgdJy+rpupYyTGeWPMEC3YuwO6wc/OQ\nm7llyC1174Y5mgkf3wB7V8Hwq+GCp8qfQq3JqamQdbttc+NquXvVeo5qDVf+Bz6bDd/+A/b9DBc9\nA227+nzfTq078eSZT/LkmieZu2UuC3cu5OJeF3PXiLtoGdHS5/pU4Ghybya2521n8e7FLNy1kJwT\nOczoM4MrB1zp++bWLsWF1iqPK58HWzhc+n9w2gyvLze6KqRPTg2oetk1Eh4F01+ApKHw5Z/hxTFw\n5r0w6gaPs5dqIiLcPfJuLu59MW9veZv56fP5bt93TOs5jakpU+kR28PXb0cFgCb3EJZdmM3qA6tZ\nvnc5X2V+hU1sjOw4kn9M+AfDOgyrvQJP8jJgzRvWejEn82DQpTD5IZ9bhdot45sa57lXR8RK5r3P\ntQZZv/ozrHwORt0IQ2ZBO9/e2Hu27clDpz/EeSnn8fKGl3llwyu8vOFlpnafyoTkCYxMHEliq0Sf\n6lQNx6vkLiJTgWeBMOA1Y8zjlc5HAW8BI4Bc4DJjTIZ/Q1XVMcaQV5xHZkEmewr2sPPoTjbkbGDt\nobUAxEbFctPgm/ht/9/SPrq9b5WXnrT+rM9YAdsWQ/Y6EJu1Tsy4OyE5tU4x6/IDvhFPyw94q103\nuPwD2PuTtQb88sdh+WPQZTT0OscagO04yOrO8cLoTqMZ3Wk0OSdyeDvtbT5K/4gvMr4AYGTiSAbF\nDaJH2x70jO1Jj7Y9aBXh218Kyj9qTe4iEga8CJyDtVn2ahFZYIzZ4lbseiDPGNNLRGYCfwcua4iA\nmwOHcVBUVsTJspNVPk6UnuBY6TH2HtvLnoI9ZBZkklmQybHSY+XXR9oi6dG2B3cMu4OJXSbSs21P\nbOI2dm4vg9LjVuIuPWE91XgiFwoPQeFBKDwAubsgJ81qqRsHINB5uLWy48BLoG2XKnH79j1an3X5\nAe+4pozWa8JKl1Fw+YfWOMmG+ZD+OSx7FJYBCMT3thYia9vV2gwkJhFatIMWba0nYKPbQFiU1eVj\nCyOhZQKzR8zmzmF3sv3odpZlLuOrzK94J+0dSh2l5bft2LIjPdv2JCU2hXZR7YiJjKFNVBvaRFof\nMZEx5Z8jbBHYxKb/L/xAahugEZGxwEPGmCnO1/cDGGMecyuzxFnmBxEJBw4ACaaGylNTU82aNWt8\nDvip+bfwVcG3mEr/9qbS58rHqy0nno97XY/Uct7H+9uBIi+as2IMiWUOksscdCm1k1xqp4vzI6nM\nQUR59e4RGCIpJYKyGusuIYJsWyKZti5k2LqyPawXv4QPoFC8a9l5I+9EKYcLi9n00LnEREfUfkEz\ndyC/iDGPfU2HmChiW/jv59XWcZR+9m30cuyil30nXRxZdHDkEE1JjdfZsVFChPW/ScIx2DCAQShD\nyA63sSfCRkakkBlhIzNC2BchnPDyTzWbMYQBNoPnz0CYKf/1qZU35fz5diK1vAlfGHc+t1xSt8Xe\nRORnY0ytfzJ70y3TGdjr9joLGF1dGWNMmYjkA3HA4UpB3QjcCNC1q+8j9wCxLTuQeNRKMpX/MaTS\nkar/WFLheOXynktV/aq2+1YuUX6/yu9Ila8Wq0wUNiKN6yOs0msbLUwY7RxRRDhnshrEukkkHIoS\nDjmrO/VGcuq+pRJFiS2KEommVKIotkVTItEcD4slP7wdBWHtKbK1qjKNpZOHyOurS7uWtI7SYR9v\ndIiJ4prTu3PoWJGfa25NLsnkcjblK7obQ2v7UWLtR2hpL6Slo4CW9kKiHScIN6WEmxIinJ/DTSlh\npgzBlH+AQYwhCUNnu2Gc3SBF1rEyHBSJnRM2OyfEwXGxc9zm4IRYH3YxOAA7BoeAA+drAYPBjvOY\nWGW84U0pf87g96au2JbxfryjZ978ZnnKSJXj96YMxpg5wBywWu5e3LuK6y96iOt5qC6XKtVk2WzC\nQ9N033nlPW8eYsoC3DtYk4Hs6so4u2ViAX3aQSmlgsSb5L4a6C0iKSISCcwEFlQqswC42vn1DGBp\nTf3tSimlGlat3TLOPvTbgCVYYxmvG2M2i8jDwBpjzALg/4C3RWQHVot9ZkMGrZRSqmZejWYZYxYB\niyode9Dt6yLg1/4NTSmlVF3pwmFKKRWCNLkrpVQI0uSulFIhSJO7UkqFoFqXH2iwG4vkAHvqeHk8\nlZ5+bSQ0Lt9oXL5rrLFpXL6pT1zdjDEJtRUKWnKvDxFZ483aCoGmcflG4/JdY41N4/JNIOLSbhml\nlApBmtyVUioENdXkPifYAVRD4/KNxuW7xhqbxuWbBo+rSfa5K6WUqllTbbkrpZSqgSZ3pZQKQU0+\nuYvI3SJiRKThtzbxgog8IiIbRWS9iPxXRJKCHROAiPxTRLY6Y/uPiLQNdkwAIvJrEdksIg4RCfqU\nNRGZKiLpIrJDRO4LdjwAIvK6iBwSkV+CHYs7EekiIstEJM35b3hnsGMCEJFoEflJRDY44/pLsGNy\nJyJhIrJORD5ryPs06eQuIl2wNu7ODHYsbv5pjBlsjBkKfAY8WNsFAfIlMMgYMxjYBtwf5HhcfgEu\nAb4NdiBum8GfBwwAZgk+ti8AAAK0SURBVInIgOBGBcCbwNRgB+FBGfB7Y0x/YAxwayP5eRUDZxtj\nhgBDgakiMibIMbm7E0hr6Js06eQOPA3ci3+3QKwXY0yB28tWNJLYjDH/Nca4dsZehbWjVtAZY9KM\nMenBjsNpFLDDGLPLGFMCvA9MD3JMGGO+pRHubGaM2W+MWev8+hhWwuoc3KjAWAqdLyOcH43i91BE\nkoELgNca+l5NNrmLyDRgnzFmQ7BjqUxE/ioie4HLaTwtd3fXAYuDHUQj5Gkz+KAnq6ZARLoDw+DU\nPtvB5Oz6WA8cAr40xjSKuIBnsBqkjoa+UaPeel5EvgISPZx6APgjcG5gI7LUFJcx5lNjzAPAAyJy\nP3Ab8OfGEJezzANYf06/G4iYvI2rkfBqo3dVkYi0Bj4GflfpL9egMcbYgaHOsaX/iMggY0xQxyxE\n5ELgkDHmZxGZ2ND3a9TJ3Rgz2dNxETkNSAE2iAhYXQxrRWSUMeZAsOLy4D3gcwKU3GuLS0SuBi4E\nJgVyj1sffl7B5s1m8MqNiERgJfZ3jTH/DnY8lRljjorIcqwxi2APSI8DponI+UA00EZE3jHGXNEQ\nN2uS3TLGmE3GmA7GmO7GmO5Yv5TDA5HYayMivd1eTgO2BisWdyIyFfgDMM0YcyLY8TRS3mwGr5zE\naln9H5BmjHkq2PG4iEiCazaYiLQAJtMIfg+NMfcbY5KdOWsmsLShEjs00eTeyD0uIr+IyEasbqNG\nMT0MeAGIAb50TtN8JdgBAYjIxSKSBYwFPheRJcGKxTng7NoMPg34wBizOVjxuIjIPOAHoK+IZInI\n9cGOyWkccCVwtvP/1HpnqzTYOgHLnL+Dq7H63Bt02mFjpMsPKKVUCNKWu1JKhSBN7kopFYI0uSul\nVAjS5K6UUiFIk7tSSoUgTe5KKRWCNLkrpVQI+v+/UUrGAF9qJgAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" + "application/vnd.plotly.v1+json": { + "data": [ + { + "name": "f(x)", + "type": "scatter", + "uid": "e65d224e-31c3-414f-addd-1a7db561aa98", + "x": [ + -8, + -7.919597989949748, + -7.839195979899498, + -7.758793969849246, + -7.678391959798995, + -7.597989949748744, + -7.517587939698492, + -7.437185929648241, + -7.35678391959799, + -7.276381909547739, + -7.1959798994974875, + -7.115577889447236, + -7.035175879396985, + -6.954773869346734, + -6.874371859296483, + -6.793969849246231, + -6.71356783919598, + -6.633165829145729, + -6.552763819095477, + -6.472361809045227, + -6.391959798994975, + -6.311557788944723, + -6.231155778894472, + -6.150753768844221, + -6.07035175879397, + -5.989949748743719, + -5.909547738693467, + -5.829145728643216, + -5.748743718592965, + -5.668341708542714, + -5.5879396984924625, + -5.507537688442211, + -5.427135678391959, + -5.346733668341709, + -5.266331658291458, + -5.185929648241206, + -5.105527638190955, + -5.025125628140703, + -4.944723618090452, + -4.864321608040201, + -4.78391959798995, + -4.703517587939698, + -4.623115577889447, + -4.542713567839196, + -4.4623115577889445, + -4.381909547738694, + -4.301507537688442, + -4.221105527638191, + -4.14070351758794, + -4.060301507537688, + -3.9798994974874375, + -3.899497487437186, + -3.8190954773869343, + -3.7386934673366836, + -3.658291457286432, + -3.5778894472361804, + -3.4974874371859297, + -3.417085427135678, + -3.3366834170854274, + -3.2562814070351758, + -3.175879396984924, + -3.0954773869346734, + -3.015075376884422, + -2.934673366834171, + -2.8542713567839195, + -2.773869346733668, + -2.693467336683417, + -2.6130653266331656, + -2.532663316582915, + -2.4522613065326633, + -2.3718592964824117, + -2.291457286432161, + -2.2110552763819094, + -2.1306532663316586, + -2.050251256281407, + -1.9698492462311554, + -1.8894472361809047, + -1.809045226130653, + -1.7286432160804015, + -1.6482412060301508, + -1.5678391959798992, + -1.4874371859296485, + -1.4070351758793969, + -1.3266331658291453, + -1.2462311557788945, + -1.165829145728643, + -1.0854271356783922, + -1.0050251256281406, + -0.924623115577889, + -0.8442211055276383, + -0.7638190954773867, + -0.683417085427136, + -0.6030150753768844, + -0.5226130653266328, + -0.44221105527638205, + -0.36180904522613044, + -0.2814070351758797, + -0.20100502512562812, + -0.12060301507537652, + -0.0402010050251258, + 0.040201005025124914, + 0.12060301507537652, + 0.20100502512562812, + 0.2814070351758797, + 0.36180904522613133, + 0.44221105527638116, + 0.5226130653266328, + 0.6030150753768844, + 0.683417085427136, + 0.7638190954773876, + 0.8442211055276392, + 0.924623115577889, + 1.0050251256281406, + 1.0854271356783922, + 1.1658291457286438, + 1.2462311557788954, + 1.3266331658291453, + 1.4070351758793969, + 1.4874371859296485, + 1.5678391959799, + 1.6482412060301517, + 1.7286432160804015, + 1.809045226130653, + 1.8894472361809047, + 1.9698492462311563, + 2.050251256281408, + 2.1306532663316577, + 2.2110552763819094, + 2.291457286432161, + 2.3718592964824126, + 2.452261306532664, + 2.532663316582914, + 2.6130653266331656, + 2.693467336683417, + 2.773869346733669, + 2.8542713567839204, + 2.9346733668341702, + 3.015075376884422, + 3.0954773869346734, + 3.175879396984925, + 3.2562814070351767, + 3.3366834170854265, + 3.417085427135678, + 3.4974874371859297, + 3.5778894472361813, + 3.658291457286433, + 3.7386934673366827, + 3.8190954773869343, + 3.899497487437186, + 3.9798994974874375, + 4.060301507537689, + 4.140703517587941, + 4.221105527638191, + 4.301507537688442, + 4.381909547738694, + 4.462311557788945, + 4.542713567839197, + 4.623115577889447, + 4.703517587939698, + 4.78391959798995, + 4.864321608040202, + 4.944723618090453, + 5.025125628140703, + 5.105527638190955, + 5.185929648241206, + 5.266331658291458, + 5.3467336683417095, + 5.427135678391959, + 5.507537688442211, + 5.5879396984924625, + 5.668341708542714, + 5.748743718592966, + 5.829145728643216, + 5.909547738693467, + 5.989949748743719, + 6.07035175879397, + 6.150753768844222, + 6.231155778894472, + 6.311557788944723, + 6.391959798994975, + 6.472361809045227, + 6.552763819095478, + 6.633165829145728, + 6.71356783919598, + 6.793969849246231, + 6.874371859296483, + 6.9547738693467345, + 7.035175879396984, + 7.115577889447236, + 7.1959798994974875, + 7.276381909547739, + 7.356783919597991, + 7.4371859296482405, + 7.517587939698492, + 7.597989949748744, + 7.678391959798995, + 7.758793969849247, + 7.839195979899499, + 7.919597989949748, + 8 + ], + "y": [ + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0.25, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + { + "name": "g(x)", + "type": "scatter", + "uid": "eee4c846-4953-47af-8744-17839939e577", + "x": [ + -8, + -7.919597989949748, + -7.839195979899498, + -7.758793969849246, + -7.678391959798995, + -7.597989949748744, + -7.517587939698492, + -7.437185929648241, + -7.35678391959799, + -7.276381909547739, + -7.1959798994974875, + -7.115577889447236, + -7.035175879396985, + -6.954773869346734, + -6.874371859296483, + -6.793969849246231, + -6.71356783919598, + -6.633165829145729, + -6.552763819095477, + -6.472361809045227, + -6.391959798994975, + -6.311557788944723, + -6.231155778894472, + -6.150753768844221, + -6.07035175879397, + -5.989949748743719, + -5.909547738693467, + -5.829145728643216, + -5.748743718592965, + -5.668341708542714, + -5.5879396984924625, + -5.507537688442211, + -5.427135678391959, + -5.346733668341709, + -5.266331658291458, + -5.185929648241206, + -5.105527638190955, + -5.025125628140703, + -4.944723618090452, + -4.864321608040201, + -4.78391959798995, + -4.703517587939698, + -4.623115577889447, + -4.542713567839196, + -4.4623115577889445, + -4.381909547738694, + -4.301507537688442, + -4.221105527638191, + -4.14070351758794, + -4.060301507537688, + -3.9798994974874375, + -3.899497487437186, + -3.8190954773869343, + -3.7386934673366836, + -3.658291457286432, + -3.5778894472361804, + -3.4974874371859297, + -3.417085427135678, + -3.3366834170854274, + -3.2562814070351758, + -3.175879396984924, + -3.0954773869346734, + -3.015075376884422, + -2.934673366834171, + -2.8542713567839195, + -2.773869346733668, + -2.693467336683417, + -2.6130653266331656, + -2.532663316582915, + -2.4522613065326633, + -2.3718592964824117, + -2.291457286432161, + -2.2110552763819094, + -2.1306532663316586, + -2.050251256281407, + -1.9698492462311554, + -1.8894472361809047, + -1.809045226130653, + -1.7286432160804015, + -1.6482412060301508, + -1.5678391959798992, + -1.4874371859296485, + -1.4070351758793969, + -1.3266331658291453, + -1.2462311557788945, + -1.165829145728643, + -1.0854271356783922, + -1.0050251256281406, + -0.924623115577889, + -0.8442211055276383, + -0.7638190954773867, + -0.683417085427136, + -0.6030150753768844, + -0.5226130653266328, + -0.44221105527638205, + -0.36180904522613044, + -0.2814070351758797, + -0.20100502512562812, + -0.12060301507537652, + -0.0402010050251258, + 0.040201005025124914, + 0.12060301507537652, + 0.20100502512562812, + 0.2814070351758797, + 0.36180904522613133, + 0.44221105527638116, + 0.5226130653266328, + 0.6030150753768844, + 0.683417085427136, + 0.7638190954773876, + 0.8442211055276392, + 0.924623115577889, + 1.0050251256281406, + 1.0854271356783922, + 1.1658291457286438, + 1.2462311557788954, + 1.3266331658291453, + 1.4070351758793969, + 1.4874371859296485, + 1.5678391959799, + 1.6482412060301517, + 1.7286432160804015, + 1.809045226130653, + 1.8894472361809047, + 1.9698492462311563, + 2.050251256281408, + 2.1306532663316577, + 2.2110552763819094, + 2.291457286432161, + 2.3718592964824126, + 2.452261306532664, + 2.532663316582914, + 2.6130653266331656, + 2.693467336683417, + 2.773869346733669, + 2.8542713567839204, + 2.9346733668341702, + 3.015075376884422, + 3.0954773869346734, + 3.175879396984925, + 3.2562814070351767, + 3.3366834170854265, + 3.417085427135678, + 3.4974874371859297, + 3.5778894472361813, + 3.658291457286433, + 3.7386934673366827, + 3.8190954773869343, + 3.899497487437186, + 3.9798994974874375, + 4.060301507537689, + 4.140703517587941, + 4.221105527638191, + 4.301507537688442, + 4.381909547738694, + 4.462311557788945, + 4.542713567839197, + 4.623115577889447, + 4.703517587939698, + 4.78391959798995, + 4.864321608040202, + 4.944723618090453, + 5.025125628140703, + 5.105527638190955, + 5.185929648241206, + 5.266331658291458, + 5.3467336683417095, + 5.427135678391959, + 5.507537688442211, + 5.5879396984924625, + 5.668341708542714, + 5.748743718592966, + 5.829145728643216, + 5.909547738693467, + 5.989949748743719, + 6.07035175879397, + 6.150753768844222, + 6.231155778894472, + 6.311557788944723, + 6.391959798994975, + 6.472361809045227, + 6.552763819095478, + 6.633165829145728, + 6.71356783919598, + 6.793969849246231, + 6.874371859296483, + 6.9547738693467345, + 7.035175879396984, + 7.115577889447236, + 7.1959798994974875, + 7.276381909547739, + 7.356783919597991, + 7.4371859296482405, + 7.517587939698492, + 7.597989949748744, + 7.678391959798995, + 7.758793969849247, + 7.839195979899499, + 7.919597989949748, + 8 + ], + "y": [ + 9.618248283383024e-23, + 2.6144449325296834e-22, + 7.03519778903078e-22, + 1.8740726496628094e-21, + 4.942080682164859e-21, + 1.2901688073692953e-20, + 3.334237578851743e-20, + 8.530212379287862e-20, + 2.1604113189677862e-19, + 5.416594716308688e-19, + 1.3444031994647709e-18, + 3.303284889763764e-18, + 8.034813896184245e-18, + 1.93472351896612e-17, + 4.6118513221909357e-17, + 1.0882908623229344e-16, + 2.5423068360693334e-16, + 5.879281377023518e-16, + 1.345965176753511e-15, + 3.050399350932936e-15, + 6.843730100310222e-15, + 1.5199956511748707e-14, + 3.3419897603413727e-14, + 7.27413207589433e-14, + 1.5673664539497103e-13, + 3.3432835417930026e-13, + 7.059747547614434e-13, + 1.475769158163078e-12, + 3.053943417556454e-12, + 6.256289554970612e-12, + 1.2687790317845596e-11, + 2.547231652320866e-11, + 5.062490141374709e-11, + 9.960318730656045e-11, + 1.9399725262249926e-10, + 3.74051345066937e-10, + 7.139703224494959e-10, + 1.3490945777281483e-09, + 2.523584966233056e-09, + 4.67311817898248e-09, + 8.566608000600595e-09, + 1.554620258245146e-08, + 2.7928849691780146e-08, + 4.967010437574129e-08, + 8.744810329976383e-08, + 1.5241194797882349e-07, + 2.629668058432444e-07, + 4.491549046007874e-07, + 7.594595705773657e-07, + 1.2712368403805476e-06, + 2.1065005597933074e-06, + 3.4554927440581074e-06, + 5.611405967524216e-06, + 9.020834015445063e-06, + 1.435605097638842e-05, + 2.2617082884061024e-05, + 3.527373803176134e-05, + 5.446025602034105e-05, + 8.323791054413639e-05, + 0.00012594355821477721, + 0.00018864445580180767, + 0.00027972123092825, + 0.00041060110451906346, + 0.0005966616073068661, + 0.0008583202760014873, + 0.001222317270250134, + 0.0017231846681645129, + 0.0024048776909560234, + 0.00332251892339894, + 0.004544176908974613, + 0.006152566205894467, + 0.00824651890135099, + 0.010942040542234764, + 0.01437273036661151, + 0.018689321491074606, + 0.02405808689065889, + 0.030657867382724056, + 0.038675513735025986, + 0.04829960055060064, + 0.05971236668569637, + 0.07307996457298814, + 0.08854125418088227, + 0.10619554756220469, + 0.12608988409206806, + 0.14820657816276658, + 0.172451911623819, + 0.19864692345007048, + 0.22652126149677448, + 0.2557109923549757, + 0.2857611082638674, + 0.31613322609297945, + 0.34621865335651436, + 0.3753566204116639, + 0.40285707524792574, + 0.42802704260449903, + 0.4501992004120721, + 0.46876106039899773, + 0.48318298730964987, + 0.4930432743029813, + 0.4980486199659097, + 0.4980486199659097, + 0.4930432743029813, + 0.48318298730964987, + 0.46876106039899773, + 0.4501992004120719, + 0.4280270426044993, + 0.40285707524792574, + 0.3753566204116639, + 0.34621865335651436, + 0.3161332260929791, + 0.2857611082638671, + 0.2557109923549757, + 0.22652126149677448, + 0.19864692345007048, + 0.1724519116238187, + 0.14820657816276628, + 0.12608988409206806, + 0.10619554756220469, + 0.08854125418088227, + 0.07307996457298797, + 0.05971236668569623, + 0.04829960055060064, + 0.038675513735025986, + 0.030657867382724056, + 0.024058086890658824, + 0.01868932149107455, + 0.014372730366611549, + 0.010942040542234764, + 0.00824651890135099, + 0.006152566205894451, + 0.004544176908974597, + 0.003322518923398952, + 0.0024048776909560234, + 0.0017231846681645129, + 0.0012223172702501286, + 0.0008583202760014835, + 0.0005966616073068687, + 0.00041060110451906346, + 0.00027972123092825, + 0.00018864445580180683, + 0.00012594355821477675, + 8.323791054413684e-05, + 5.446025602034105e-05, + 3.527373803176134e-05, + 2.2617082884060943e-05, + 1.4356050976388368e-05, + 9.020834015445127e-06, + 5.611405967524216e-06, + 3.4554927440581074e-06, + 2.1065005597933074e-06, + 1.2712368403805385e-06, + 7.594595705773617e-07, + 4.491549046007874e-07, + 2.629668058432444e-07, + 1.5241194797882349e-07, + 8.74481032997632e-08, + 4.9670104375741116e-08, + 2.7928849691780146e-08, + 1.554620258245146e-08, + 8.566608000600595e-09, + 4.673118178982447e-09, + 2.523584966233047e-09, + 1.3490945777281483e-09, + 7.139703224494959e-10, + 3.74051345066937e-10, + 1.9399725262249926e-10, + 9.960318730655939e-11, + 5.062490141374709e-11, + 2.547231652320866e-11, + 1.2687790317845596e-11, + 6.256289554970612e-12, + 3.0539434175564107e-12, + 1.475769158163078e-12, + 7.059747547614434e-13, + 3.3432835417930026e-13, + 1.5673664539497103e-13, + 7.274132075894252e-14, + 3.3419897603413727e-14, + 1.5199956511748707e-14, + 6.843730100310222e-15, + 3.050399350932936e-15, + 1.345965176753492e-15, + 5.879281377023602e-16, + 2.5423068360693334e-16, + 1.0882908623229344e-16, + 4.6118513221909357e-17, + 1.93472351896612e-17, + 8.034813896184359e-18, + 3.303284889763764e-18, + 1.3444031994647709e-18, + 5.416594716308688e-19, + 2.1604113189677708e-19, + 8.530212379287983e-20, + 3.334237578851743e-20, + 1.2901688073692953e-20, + 4.942080682164859e-21, + 1.8740726496627696e-21, + 7.03519778903063e-22, + 2.6144449325296834e-22, + 9.618248283383024e-23 + ] + }, + { + "name": "convolution", + "type": "scatter", + "uid": "fecdc77f-4398-4623-b84b-7cc8deebcdbc", + "x": [ + -8, + -7.919597989949748, + -7.839195979899498, + -7.758793969849246, + -7.678391959798995, + -7.597989949748744, + -7.517587939698492, + -7.437185929648241, + -7.35678391959799, + -7.276381909547739, + -7.1959798994974875, + -7.115577889447236, + -7.035175879396985, + -6.954773869346734, + -6.874371859296483, + -6.793969849246231, + -6.71356783919598, + -6.633165829145729, + -6.552763819095477, + -6.472361809045227, + -6.391959798994975, + -6.311557788944723, + -6.231155778894472, + -6.150753768844221, + -6.07035175879397, + -5.989949748743719, + -5.909547738693467, + -5.829145728643216, + -5.748743718592965, + -5.668341708542714, + -5.5879396984924625, + -5.507537688442211, + -5.427135678391959, + -5.346733668341709, + -5.266331658291458, + -5.185929648241206, + -5.105527638190955, + -5.025125628140703, + -4.944723618090452, + -4.864321608040201, + -4.78391959798995, + -4.703517587939698, + -4.623115577889447, + -4.542713567839196, + -4.4623115577889445, + -4.381909547738694, + -4.301507537688442, + -4.221105527638191, + -4.14070351758794, + -4.060301507537688, + -3.9798994974874375, + -3.899497487437186, + -3.8190954773869343, + -3.7386934673366836, + -3.658291457286432, + -3.5778894472361804, + -3.4974874371859297, + -3.417085427135678, + -3.3366834170854274, + -3.2562814070351758, + -3.175879396984924, + -3.0954773869346734, + -3.015075376884422, + -2.934673366834171, + -2.8542713567839195, + -2.773869346733668, + -2.693467336683417, + -2.6130653266331656, + -2.532663316582915, + -2.4522613065326633, + -2.3718592964824117, + -2.291457286432161, + -2.2110552763819094, + -2.1306532663316586, + -2.050251256281407, + -1.9698492462311554, + -1.8894472361809047, + -1.809045226130653, + -1.7286432160804015, + -1.6482412060301508, + -1.5678391959798992, + -1.4874371859296485, + -1.4070351758793969, + -1.3266331658291453, + -1.2462311557788945, + -1.165829145728643, + -1.0854271356783922, + -1.0050251256281406, + -0.924623115577889, + -0.8442211055276383, + -0.7638190954773867, + -0.683417085427136, + -0.6030150753768844, + -0.5226130653266328, + -0.44221105527638205, + -0.36180904522613044, + -0.2814070351758797, + -0.20100502512562812, + -0.12060301507537652, + -0.0402010050251258, + 0.040201005025124914, + 0.12060301507537652, + 0.20100502512562812, + 0.2814070351758797, + 0.36180904522613133, + 0.44221105527638116, + 0.5226130653266328, + 0.6030150753768844, + 0.683417085427136, + 0.7638190954773876, + 0.8442211055276392, + 0.924623115577889, + 1.0050251256281406, + 1.0854271356783922, + 1.1658291457286438, + 1.2462311557788954, + 1.3266331658291453, + 1.4070351758793969, + 1.4874371859296485, + 1.5678391959799, + 1.6482412060301517, + 1.7286432160804015, + 1.809045226130653, + 1.8894472361809047, + 1.9698492462311563, + 2.050251256281408, + 2.1306532663316577, + 2.2110552763819094, + 2.291457286432161, + 2.3718592964824126, + 2.452261306532664, + 2.532663316582914, + 2.6130653266331656, + 2.693467336683417, + 2.773869346733669, + 2.8542713567839204, + 2.9346733668341702, + 3.015075376884422, + 3.0954773869346734, + 3.175879396984925, + 3.2562814070351767, + 3.3366834170854265, + 3.417085427135678, + 3.4974874371859297, + 3.5778894472361813, + 3.658291457286433, + 3.7386934673366827, + 3.8190954773869343, + 3.899497487437186, + 3.9798994974874375, + 4.060301507537689, + 4.140703517587941, + 4.221105527638191, + 4.301507537688442, + 4.381909547738694, + 4.462311557788945, + 4.542713567839197, + 4.623115577889447, + 4.703517587939698, + 4.78391959798995, + 4.864321608040202, + 4.944723618090453, + 5.025125628140703, + 5.105527638190955, + 5.185929648241206, + 5.266331658291458, + 5.3467336683417095, + 5.427135678391959, + 5.507537688442211, + 5.5879396984924625, + 5.668341708542714, + 5.748743718592966, + 5.829145728643216, + 5.909547738693467, + 5.989949748743719, + 6.07035175879397, + 6.150753768844222, + 6.231155778894472, + 6.311557788944723, + 6.391959798994975, + 6.472361809045227, + 6.552763819095478, + 6.633165829145728, + 6.71356783919598, + 6.793969849246231, + 6.874371859296483, + 6.9547738693467345, + 7.035175879396984, + 7.115577889447236, + 7.1959798994974875, + 7.276381909547739, + 7.356783919597991, + 7.4371859296482405, + 7.517587939698492, + 7.597989949748744, + 7.678391959798995, + 7.758793969849247, + 7.839195979899499, + 7.919597989949748, + 8 + ], + "y": [ + 8.790341583664457e-15, + 8.790341583664457e-15, + 4.0232653389567294e-14, + 4.0232653389567294e-14, + 1.7687847416080462e-13, + 1.7687847416080462e-13, + 7.469820174952057e-13, + 7.469820174952057e-13, + 3.0304063789625895e-12, + 3.0304063789625895e-12, + 1.1810416636658146e-11, + 1.1810416636658146e-11, + 4.4220408325841164e-11, + 4.4220408325841164e-11, + 1.590723440635099e-10, + 1.590723440635099e-10, + 5.497991634704617e-10, + 5.497991634704617e-10, + 1.8258959887563695e-09, + 1.8258959887563695e-09, + 5.82690507397363e-09, + 5.82690507397363e-09, + 1.786980146832728e-08, + 1.786980146832728e-08, + 5.26688897590977e-08, + 5.26688897590977e-08, + 1.4920288595626584e-07, + 1.492028859562658e-07, + 4.0628283623261836e-07, + 4.0628283623261814e-07, + 1.0635344070847177e-06, + 1.0635344070847165e-06, + 2.6766688401928946e-06, + 2.676668840192886e-06, + 6.477556148673193e-06, + 6.477556148673136e-06, + 1.5075110475312233e-05, + 1.507511047531189e-05, + 3.374494063696167e-05, + 3.374494063695969e-05, + 7.266570035393728e-05, + 7.266570035392627e-05, + 0.00015055857895448756, + 0.00015055857895442896, + 0.00030021305199892743, + 0.00030021305199862754, + 0.0005762436037262752, + 0.0005762436037248023, + 0.0010650086141015694, + 0.001065008614094624, + 0.0018958508504730504, + 0.0018958508504730504, + 0.0032517036032142597, + 0.0032517036032142597, + 0.005375837999412226, + 0.005375837999412226, + 0.008570515029108007, + 0.008570515029108007, + 0.013183132396069875, + 0.013183132396069875, + 0.019576702088807112, + 0.019576702088807112, + 0.028084455225677495, + 0.028084455225677495, + 0.03895276122208978, + 0.03895276122208978, + 0.05228135503559177, + 0.05228135503559177, + 0.06797349949696875, + 0.06797349949696875, + 0.08570950133885663, + 0.08570950133885663, + 0.1049539088574992, + 0.1049539088574992, + 0.1249999473311103, + 0.1249999473311103, + 0.1450459240698136, + 0.1450459240698136, + 0.16429008655140231, + 0.16429008655140231, + 0.18202543514272834, + 0.18202543514272834, + 0.19771596774576902, + 0.19771596774576902, + 0.21104076106268932, + 0.21104076106268932, + 0.2219004696196269, + 0.2219004696196269, + 0.23038955295874558, + 0.23038955295874558, + 0.23674420190054585, + 0.23674420190054585, + 0.24127892639119058, + 0.24127892639119058, + 0.24432394894841197, + 0.24432394894841197, + 0.2461720527930189, + 0.2461720527930189, + 0.24703914053541481, + 0.24703914053541481, + 0.24703914053541476, + 0.24703914053541476, + 0.2461720527930189, + 0.2461720527930189, + 0.24432394894841192, + 0.24432394894841192, + 0.24127892639119053, + 0.24127892639119053, + 0.2367442019005458, + 0.2367442019005458, + 0.23038955295874552, + 0.23038955295874552, + 0.2219004696196268, + 0.2219004696196268, + 0.21104076106268924, + 0.21104076106268924, + 0.19771596774576888, + 0.19771596774576888, + 0.1820254351427282, + 0.1820254351427282, + 0.1642900865514021, + 0.1642900865514021, + 0.14504592406981343, + 0.14504592406981343, + 0.12499994733111021, + 0.12499994733111021, + 0.10495390885749903, + 0.10495390885749903, + 0.08570950133885641, + 0.08570950133885641, + 0.06797349949696863, + 0.06797349949696863, + 0.05228135503559165, + 0.05228135503559165, + 0.03895276122208968, + 0.03895276122208968, + 0.028084455225677422, + 0.028084455225677422, + 0.019576702088807053, + 0.019576702088807053, + 0.013183132396069854, + 0.013183132396069854, + 0.008570515029107974, + 0.008570515029107974, + 0.005375837999412205, + 0.005375837999412205, + 0.003251703603214245, + 0.003251703603214245, + 0.0018958508504730422, + 0.0018958508504730422, + 0.0010650086140946186, + 0.0010650086141015642, + 0.000576243603724798, + 0.0005762436037262708, + 0.0003002130519986261, + 0.00030021305199892596, + 0.00015055857895442793, + 0.00015055857895448653, + 7.266570035392586e-05, + 7.266570035393686e-05, + 3.374494063695946e-05, + 3.3744940636961436e-05, + 1.5075110475311791e-05, + 1.5075110475312133e-05, + 6.47755614867308e-06, + 6.477556148673136e-06, + 2.6766688401928535e-06, + 2.6766688401928624e-06, + 1.0635344070847076e-06, + 1.0635344070847088e-06, + 4.062828362326137e-07, + 4.062828362326139e-07, + 1.4920288595626462e-07, + 1.4920288595626464e-07, + 5.2668889759097204e-08, + 5.2668889759097204e-08, + 1.7869801468327e-08, + 1.7869801468327e-08, + 5.826905073973616e-09, + 5.826905073973616e-09, + 1.8258959887563542e-09, + 1.8258959887563542e-09, + 5.497991634704552e-10, + 5.497991634704552e-10, + 1.590723440635079e-10, + 1.590723440635079e-10, + 4.4220408325840815e-11, + 4.4220408325840815e-11, + 1.181041663665804e-11, + 1.181041663665804e-11, + 3.030406378962536e-12, + 3.030406378962536e-12, + 7.469820174952038e-13, + 7.469820174952038e-13, + 1.768784741608024e-13, + 1.768784741608024e-13, + 4.0232653389567035e-14, + 4.0232653389567035e-14, + 8.790341583664315e-15, + 8.790341583664315e-15 + ] + } + ], + "layout": {} + }, + "text/html": [ + "
" + ], + "text/vnd.plotly.v1+html": [ + "
" ] }, "metadata": {}, @@ -400,8 +1940,8 @@ } ], "source": [ - "wStep = 2; # Ширина ступеньки\n", - "sigma = 0.5;# Стандартное отклонение Гауссианы\n", + "wStep = 4; # Ширина ступеньки\n", + "sigma = 0.8;# Стандартное отклонение Гауссианы\n", "\n", "# ступенька\n", "f = lambda x: 1/wStep if (x >= -wStep/2 and x<= wStep/2) else 0.0 # нормировка на единицу\n", @@ -415,12 +1955,15 @@ "\n", "# автоматическое определение окна интегрирования и отрисовки\n", "wind = max(2*wStep, 4*sigma)\n", - "x = np.linspace(-wind, wind, 300)\n", - "plt.plot(x, f(x), label=\"f(x)\");\n", - "plt.plot(x, g(x), label=\"g(x)\");\n", - "plt.plot(x, convolute(f,g, -wind, wind)(x), label=\"convolution\");\n", - "plt.title( \"Convolution test plot\")\n", - "plt.legend();" + "x = np.linspace(-wind, wind, 200)\n", + "\n", + "traces = [\n", + " go.Scatter(x = x, y = f(x), name = \"f(x)\"),\n", + " go.Scatter(x = x, y = g(x), name = \"g(x)\"),\n", + " go.Scatter(x = x, y = convolute(f,g, -wind, wind)(x), name = \"convolution\")\n", + "]\n", + "\n", + "iplot(traces)" ] }, { @@ -446,7 +1989,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 46, "metadata": {}, "outputs": [], "source": [ @@ -479,14 +2022,14 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 47, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEICAYAAACktLTqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3Xd4FFXbx/HvTQq9h55AQg0gPRQF\nBaRI7yoIAlJFEQUbIoI0QUTlUfDhxQZWLEgHFRREQYRA6CSEEiAQegmBEJJw3j928YkxIQtsMrub\n+3NdXGR3z878Zje5d/bMzDlijEEppZRnyWF1AKWUUs6nxV0ppTyQFnellPJAWtyVUsoDaXFXSikP\npMVdKaU8kBZ3DyYiOUUkTkRKZ8Kyc4jIlyJyUUTWO3v5Gaz7VxF5NBOWO09EXnL2cjODiCwQkbF3\n+NxM+72wL/9dEXnSgXYHReReB9qJiISJSCXnJMweRM9zz3oiEpfiZh4gAUi23x5qjPnyDpe7CZhl\njPniLiM6sq5WwP8B1Y0x8Zm4nmmAnzFmUGat406IyAJgtzFmsquvP4t/L8oAm4AKxpjrTlxuX+Ah\nY0xvZy3T0+meuwWMMflu/gOOAh1T3HdHhd0C5YBDmVnYPZmIeFudIZMMABY7s7Db/QC0F5GiTl6u\n5zLG6D8L/wFRQMtU93kBrwGHgLPAl0Ah+2N5gQXAeeAi8BdQGHgb297/NSDOfjsXYAB/+3MXADOB\nn4DLwAagXIr1tgci7cudiW0PrE8amZ+yryfJvq4xwJPAmhRtbnfdtYBfgQvASeB5oAtwHUi0r2ez\nve3fueyv1QRsH5KngE+A/PbHgu0ZnwCigTPAi7d4LxYAY+0/twEO2LftDHAc6G1/bIQ9U4I913f2\n+wOAJfb37BDwZIplTwO+Ar6xb38f+31fAwvt923B9k3o5nNqAL/b34+dQNt0shYDVtlznrdnKGV/\nzJHfiyL2bGeAw8BL/O9b/ZPAL8B79hwHSfX7muo13Aj0SHG7JPCj/bnngF9TPHYSaJLi9fnS/npc\ntm9v7VTL/h141Oq/WXf5p3vurulFoDXQBPDHVkjetT82CPAGygB+wHDgujHmeWzFYZCxfQN4Pp1l\nPwa8gu0POgZbYURESmIrPCOxFYsTQL20FmCM+QB4DlhnX9cbDm5XeusuDKzBtndWEqgMrDfGLAbe\nAebb19MgjWUOBR4B7gcqAcXtz7nJCwgBKgLtgCkiUt7BvOUAAUpje53niEg+Y8x72AryJHuuh0XE\nC1iJrbiVxvbhMEZEmqZYXndgPlDQ/vyU9xXBVpR/EBEvEckFLAcWY3s/XgS+E5GgNHLmAOYAZYGb\nj78L4ODvxRzAx/7cVsAwbO/VTQ8AoUBRYBbw0S1esxpARIrbL9tv+wGlgNdv8dyu2D6cC2H7QJmZ\n6vF92HYClAO0uLumocBoY8wJY8w1bEXwURERbIW+GLY+zSRjzBZjzJXbWPa3xphtxphEbHtrte33\ndwK2GGOW2x+bgW0v2pnSW3cX4IAxZpYxJsEYE2uM2eLgMnsDbxljjhhjYoFXgd721+qm8caYa/Zl\nhgM1HVz2VWCqMSbRGLMI295uxXTaNgFyGWPeNMZcN8bsBz4FeqZo85sxZqUx5ob5X3fWRmPMUvtr\nMg1bEayL7cMK4B37+n8CVgP/OpBsjDlljFlijIk3xlwCpgJNU7dLi4jkxPYB87IxJs4YcwBbUX08\nRbMIY8xnxphkbB9E5USkUBrL8gLyYdvzvikR24ddWfvrcquD778aY1bb1/M5//v9uOkytsKvHKDF\n3cXYi1IAsNJ+JspFIAzbe1UU+Bj4DfheRKJF5A37H5WjTqb4+Sq2P0aw/QEeu/mAMeYGtq4IZ0pv\n3QHYvu7fidLAkRS3jwC5se0JAyQbY86ms96MnLG/Do48txwQePM9s79vo7B9E7npWBrPS/maJ2H7\nxlTa/u+oMSblGQ9HsH1j+wcRyS8in4jIURGJBX7G9iHhiJLYfreO3mI9qd83SON1sBfly0D+FHdP\nsW/TWhE5ICKjbpElvd+Pm/Jj695RDtDi7mLsf8zHgQeNMYVS/MtljDlr37MdZ4wJxvZ1+WH+t3d4\nN6c+xWDrAgJspzqSRiG5hSvYzvy5qWR6DdNwDKiQzmMZbdMJbIX1prJAPLa+58yUOtcxIDzVe5bf\nGNP1Fs8B2wcb8Peeb2ls23QC27akVJa0P3BHY3vv6htjCmDr0kv5zeVWr+FJ4EaqdaW3HkfsxNat\nZluxMZeMMc8aY8ph+4YwVkQa3+GyqwI77vC52Y4Wd9c0B5gmIgEAIlJcRDraf24pItXsxTcW2wHD\nm6dRngIc7U9ObSnQUETa2c/kGIXtQK2jtgN1RKS6iOQBxt3GcxcDFUVkmIj4ikgBEalvf+wUEJSq\nmyWlr4EXRKSsiOQHJgNfpdrjzQypX+s/AETkORHJJSLeIlJTROpmsJz7RKSDiPhgO5B5DtiG7eBh\nDvvyvO2nnrYGvktjGfmx7eleFBE/IPX57+n+XhhjEoBFwBsikldEKgDPAnd62uRKUnQJiUgnEbn5\n/l3C9ruanN6T0yMiebH15/9yh7myHS3urmk6tgOMv4rIZWwH6W4WiTLYDrxdBnZj+2P61v7Yu0Bf\nEbkgItNvZ4XGmBigF7azIs5i2xPche2MEEeev8ue+3ds/drrbmPdF7AdyOsJnMZ2AK6J/eEF2L4R\nnBeRjWk8/b/YDsRuxNa1cx7bB1NmmwvUt3fBLLD3mbcD7sPWrXHGni2jLqCF2E4fvIBtz7a7MSbZ\nfqylA9ADW8F/B9uZIml1X83A1g1zDtuHzMpUj2f0ezHU/v8RbGcsfYTtzJU7MQ/oIiK+9ttVsf0u\nXAbWAzOMMZvuYLndgJWputjULehFTCpN9r33k9jOwf/T6jyeyFUv0LpbIvIOsN8YM8dJyxNgK9DT\nfqBaOcBTL6RQd0BE2mLbA07AdtbJVWx/VEo5zBjj1G9O9i62jLq3VCraLaNSegDbRSyngRZAV+P8\nKw2VUllAu2WUUsoD6Z67Ukp5IMv63P38/ExgYKBVq1dKKbe0devWs8aYYhm1s6y4BwYGEhoaatXq\nlVLKLYnIkYxbabeMUkp5JC3uSinlgbS4K6WUB9LirpRSHkiLu1JKeaAMi7t9nOjTIrI7ncdFRN6z\nj9W804FR8JRSSmUyR/bc52GbMiw9bbFNb1YJGIJtJDyllFIWyvA8d2PMehEJvEWTzsBn9sF9NolI\nIREpZR9CVimXlBB/lYhtv3Js1wbiTx8n+fIlbsRdRpL+N9S48fEmR958eBUoRN4SZSlT416q1GlO\nzly5LUyulGOccRFTGf45fVi0/b5/FXcRGYJt756yZVNPMqNU5rhw5jgbvpnJ5T1byXXiLIXPJFL0\nIvjcuJ2ZTTYD37M/B5wtBBeK+3K9tB/5azbg/kdHUqBw8czbAKXugDOKe1oz5KQ5GpkxZi62SQ4I\nCQnREctUpkhOSmLjso84vvIrChw+i3+MoYJ9h/xcAThXzIuTlfIjxfzIU7YihQMqU6hkWYoHVCZ/\nof9d1X354hlOH9vPhZjDXDiyn/joQ3DmLLnPxlHi+HWKhJ+AXxdzeNZiokvnILZ8MYI6P0Gjtv0s\n2nKl/scZxT2aFPNAYpvB54QTlqvUbdm0aj5RC+ZQav9Fil+wzZB9ojjsq5OfnLXqUrfTYKpWqefw\n8nLnK0Rx/0rpPn5w10Z2rphH4q4wih6No/y6U7BuGmsnT+NUlSJU7P0MIS16pvt8pTKTQ0P+2vvc\nlxtj7knjsfbAcGxTjDUE3jPGNMhomSEhIUbHllF368KZE/z89tMU3BxBuROGZIGogBzE3RNI7d7P\nE1zvwSzLsnvTSnYveI8Ce45RLvoGOQwc9s9BXMPqtHtpDvkKFsmyLMpzichWY0xIhu0yKu4i8jXQ\nDNscjaeA8YAPgDFmjn0KrFnYzqi5CjxhjMmwamtxV3cjcscGtr73MkFh5yhwFU4VgZO1S1Fn8Diq\n1GlmdTx2b1rFrk+mUWbnaYpdhIt5ISqkOPc+9zaBVTP8u1QqXU4r7plFi7u6E+Fh69g540Wq7IjD\nNwkig7zI0b4NbZ+chpe3680amXg9gVWzXyTHj79Q4cgNEnwgok5B6r/yPuWr1rc6nnJDWtyVRzka\nuZM/Jw6mSlgs3skQUS0nZQaNdKuDl7//MJszn82lSvh1Enxhf73CNJswn5Jl0+/XVyo1Le7KIyTE\nX2Xx2EcJ+vUAea9BeLAvAcNepEHrPlZHu2Mbl37IqY/eJ3h/IpfywtHW1eg64St8fHNaHU25AS3u\nyu2tnDOGnF8uovQZiCoj5B76JM0eGWF1LKdZ89lUkj/9nLIxhmMlBZ7oTet+r1odS7k4Le7KbR07\ntJu/Xnyc6nuucb4AxHQIoeuYT12yT/1uJV5PYPHrvfH/aQ+FrsCu2nlo9va3FC9TwepoykVpcVdu\nafFbwyjxzTryX4E9DQrSavp3FCkRkPET3dzp6AOse7kX1bfGcaEAXOzbgQ7D37I6lnJBjhZ3HfJX\nuYRjh3azsFttqny8jvhccOrV/jw6f1O2KOwAxf0r8siXW4h+oQfJXlBh1nK+e6Qup48fsjqaclNa\n3JXlVn82jSM9H6bKvgR23FuYkGW/0aLPy1bHssRDgyZRc+kadobkp9rOePY+3J7138+yOpZyQ1rc\nlWWSk5L4engrSk6bD8CJl3rR89ON2X4QrsLFyvDoF5uJGtGRnAlQcPxsFjzfkeSkJKujKTeixV1Z\n4uj+MFZ0qk3tNdEcCvKi3BcLaP3EOKtjuZT2T03H75MPOeafg1orDrC0e11ijoRbHUu5CS3uKstt\nWPoRUX0fIygqmR2tA+iwZDsBlWtZHcslVarVhIeWbWNHsxJU2p9I+GNdCf3lG6tjKTegxV1lqcVv\nDSP32LfxvQ4nXuhJz/d+9shTHJ3JxzcnPeesI+rpduS7Aub511k+6yWrYykXp8VdZYnkpCS+HvYg\nlT5ex7lCkPf9GTw0YLzVsdxKh+FvIzPGE5cXAmcvY8HIdlZHUi5Mi7vKdPFXYln0aH1qr41hf2Uf\n6n37EzUat7c6llsKadmT4C9/4FCgF7VWHebbXvVJvJ5gdSzlgrS4q0x19mQUq3vcR/U919hxXxE6\n/bCNIiV1isW7USqwKg/9sJmd9fJRIyyO5T3qE3vhtNWxlIvR4q4yzaF9W9jasx0VopLZ0a48PT/Z\noP3rTpIzdx4e/WIzO1qUJnh/In883Jzjh/daHUu5EC3uKlNs/30JRwf2peQZQ0SfRvR8Z4XVkTyP\nCD1n/8LuHjUJOHGD8L7dCd/6q9WplIvQ4q6cLvSXBVwZNZp8V+DEiG50e/VTqyN5tIcnf8Phwa0o\nchFOP/00OzfqB6nS4q6cbNOq+SS+PAGfJIgbM5S2Q6dYHSlb6DTyPU6P7EXeq3Bp5AuE/bbI6kjK\nYlrcldNsXPohjJ1GjhuQMG4EzR59zupI2cpDA8Zx4cV+5L4GV18cQ+gvC6yOpCykxV05xe8/zMbr\n9XcAuDHxee7vOsziRNlTy8dHc/mVwfheh+svT+CvHz+zOpKyiBZ3ddc2rvgU38mzSM4BMuUV7u0w\nyOpI2VrznqOIH/s0XjcgeexUwtYutDqSsoAWd3VXwtYuhPHTMYDX5Fdo2Kav1ZEU8ECP4SSMeRrf\nJIgbPZY9f/1sdSSVxbS4qzu256+fiRs9Ft8kSBw7XAu7i3mgx3AujnqcvPFwZuSzHNy10epIKgtp\ncVd3JHLnRs6MfJa88XDx+X7c3+1pqyOpNLTsO4aYYV0oHAuHnxrIsYO7rY6ksogWd3XbTh6NJGr4\nQArFwsmnutLy8dFWR1K30H7YVKKeaEmJc7Bn8CNcOHPc6kgqC2hxV7cl7tIFQgd3odQZiOrfnHZP\nvmF1JOWAzs+/T0TP+gScMPz2RBsS4q9aHUllMi3uymHJSUn89ERzKhy5wd5OwXR54QOrI6nb0GPc\nZ+xqFUCVA0ks6X+/Ttvn4bS4K4d9N+h+qu1NYEcTPx55U6+AdEc93/+ZnSEFqLHjKt8Ob2l1HJWJ\ntLgrhywY1Z5amy6yu0ZuHp6z1uo46i50+2Q9+6r4UHvdKb599RGr46hMosVdZWjxO89QY9UhIoO8\n6DBvnQ7b6+Z8fHPSct4aDgfkoOqiXfz44WtWR1KZQIu7uqUNSz8iYN4aTvpBo4+WkDtvAasjKSco\nULg493zwFecLQpEPvmfrL99bHUk5mUPFXUTaiEiEiBwQkX+d9yYiZUVkrYiEichOEdHJHT3AoX1b\nuDHlbRK9odi06RQvU8HqSMqJylaqRa7xr5DDQOy414g5Em51JOVEGRZ3EfECZgNtgWpALxGplqrZ\nWOBbY0wdoCegp1G4ubhL54kY3o8CcRA74jFqNu5odSSVCRq26cvJQe3xuwChQ7vrKZIexJE99wbA\nAWPMIWPMdWAB0DlVGwPc/L5eEDjhvIgqqyUnJfHjwBYEHjfs71ab1v21T9aTdRg+g71tK1Ax6gaL\nBzW1Oo5yEkeKexngWIrb0fb7Unod6CMi0cBK4Jm0FiQiQ0QkVERCz5w5cwdxVVb47qUuVN99jR33\nFuLhSV9bHUdlgUffXs6uOnmpuTWOb8f1tDqOcgJHirukcZ9JdbsXMM8Y4w+0Az4XkX8t2xgz1xgT\nYowJKVas2O2nVZnu53mTqP7jQQ4E5qC7nvKYrbSf+wtRZYTKP+xg/fezrI6j7pIjxT0aCEhx259/\nd7sMBL4FMMb8CeQC/JwRUGWdiO3ryTfrKy7mh1r/+RyfnLmsjqSyUN78BSk/4wPic4G8NZujkTut\njqTugiPFfQtQSUSCRMQX2wHTpanaHAVaAIhIVWzFXftd3Ej8lVgOvvAkea5B8vPDKFulrtWRlAWq\n1GlG7FO9KHQZdox4jMTrCVZHUncow+JujEkChgM/AfuwnRWzR0Qmikgne7PngcEisgP4GuhvjEnd\ndaNc2NIhLQmKNuzvXINmj4ywOo6y0EMDxrGnTXkqHk5m4bAWVsdRd0isqsEhISEmNDTUknWrf/ru\n9d7cs2Abu+rk5ZGv9T1RtjOmFj8SQrW9CUQMbEqXF+dYHUnZichWY0xIRu30CtVsbtOq+VRcuI0j\npYV2c3QqNmXj5e3Ng/+3guPFwf+L3wj7TQeKczda3LOxC2dOcOWNaSR6Q8DUmeQrWMTqSMqFFC5W\nhiLjJyIGTr/+KlcuX7I6kroNWtyzsTXDO1L6DMT0eZDqDVtbHUe5oLotHuZwt3qUjTEsf/ohq+Oo\n26DFPZtaOKkf9+y4ys6QAnR+frbVcZQL6/H6F+ypkYuamy+x9F092O4utLhnQ2FrFxL4/WaOlRTa\nz15ldRzlBlp8sJwYPyjx+Wr2bfnF6jjKAVrcs5m4S+c5M8E2Vkyx8ZO0n105pHCxMuR6aRQ5E+Hw\nmBE6wJgb0OKezax4ui0BJw1RPepTp3l3q+MoN3Jfp8FEtA8m6NgNFj2j/e+uTot7NrLsvVHUDI1l\nd63cdH/tM6vjKDfUY/J37Av2pcaGs/z0yUSr46hb0OKeTRyN2IbfZ6s4WQRazlpmdRzlpry8vbl3\n5gIu5Ifcc7/m9PGDVkdS6dDing0kJyWx9cX+5LsK5plBFC6WesRmpRxXKrAqlwd1o+hFWP9sD6vj\nqHRocc8GFo7vTfD+RHY3Kc6DvZ63Oo7yAG2HTGF3g4JU332NRdOGWB1HpUGLu4fb/vsSKizbyZHS\nQrf/6GmPynnav7+S48Wg9Le/E7F9vdVxVCpa3D1Y4vUETkx4BQFKvDaJnLnzWB1JeZB8BYuQ64WR\n5EqAiFeeIjkpyepIKgUt7h5s4XPtCIo2RLYL1tMeVaZo0nkI+x4MoNLhZL5/uYvVcVQKWtw91O+L\n/ku1304QUdGbHpO/szqO8mDd317GobI5qPLzQbasXmB1HGWnxd0DxV+J5drM94nPCTWm/h9e3t5W\nR1IezMc3J+UmziBZ4Oy0iTp7k4vQ4u6BlozqhP8pQ3SX+lSocZ/VcVQ2cE+jthxsG0zgccPCl7R7\nxhVocfcwfyyZS7U/ThFeyYfu4/QqVJV1uk/5joPlchD8SxRbf9GuQKtpcfcg8VdiufrOTK75wj2T\n/2t1HJXNeHl7U3b8dG4InJr6unbPWEyLuwdZ/HxnAk4ZjnauR6Vaja2Oo7Khmve1J/KhygRF32Dh\ny12tjpOtaXH3EBuXfkj1308SUdGbrmPnWR1HZWM9pi7kYLkcVFlzmLB1P1gdJ9vS4u4B4q/EEvfO\nu1zzhepT5ujZMcpSXt7elB03DSMQM+U17Z6xiBZ3D7Dk5e4EnDQc6VRHu2OUS6jZuCP7W1ck6NgN\nfnj1EavjZEta3N1c2G+LCP4tmsggL7rpGO3KhTw8bRGH/YUKP+8nImyd1XGyHS3ubiw5KYnoqWMx\nQODYqdodo1yKl7c3RV8YjU8S7B2vE2tnNS3ubmzR5H5UjLpBRLMAajbuaHUcpf6lYZu+7LuvGMH7\nE1k0/Umr42QrWtzd1NHIHQQs3UZ0CaHr9MVWx1EqXR1mLOZkUSj+3W+cPHbA6jjZhhZ3N7V5TH/y\nxoP3sEE6lK9yafkKFuH6wF4UugzrX+5ldZxsQ4u7G1o5ZwzVd11jT0gBmvccZXUcpTL00IBx7Kmd\nh+rb4ljz2RtWx8kWtLi7mdgLp8nz2SLOFoQW03V4VeU+7n/zSy7lA/nwc65cvmR1HI/nUHEXkTYi\nEiEiB0RkdDptHhGRvSKyR0S+cm5MddPKF7pR4jxc6NkSv1JBVsdRymGlygVzstt9lD4DS1/uZnUc\nj5dhcRcRL2A20BaoBvQSkWqp2lQCXgEaG2OqA89lQtZsb+OKT6m26Rz7gn3pNPJ9q+Moddu6jfmY\nyPJeBP9+gt2bdE7fzOTInnsD4IAx5pAx5jqwAOicqs1gYLYx5gKAMea0c2Oq5KQkLsycwXVvqDFh\nttVxlLpjAS9OIIeByCkvWR3FozlS3MsAx1Lcjrbfl1JloLKIbBCRTSLSJq0FicgQEQkVkdAzZ87c\nWeJsatHkfpQ/doMDLcpTqVYTq+ModcfqNO/OvnuLERyZxNJ3n7U6jsdypLhLGveZVLe9gUpAM6AX\n8JGIFPrXk4yZa4wJMcaEFCtW7HazZlsnj0ZSZvk2ootD1yk6CYJyf+2mf8/pwlDom5+5eO6k1XE8\nkiPFPRoISHHbHziRRpslxphEY8xhIAJbsVdO8NuYPhSKAzOgt57TrjxCgcLFie35EMUuwo8vP2x1\nHI/kSHHfAlQSkSAR8QV6AktTtVkMNAcQET9s3TSHnBk0u/pjyVyqbYtlzz25aN1/rNVxlHKajs/O\nJLySD1U3nSVs7UKr43icDIu7MSYJGA78BOwDvjXG7BGRiSLSyd7sJ+CciOwF1gIvGmPOZVbo7CI5\nKYnY92eS4At1J86xOo5STlf51bdIzgHHpo8nOTnZ6jgexaHz3I0xK40xlY0xFYwxU+z3jTPGLLX/\nbIwxo4wx1YwxNYwxenWNEyyc2IegaMPBFhUoX62h1XGUcrrqjR5i//2lqXQ4mSXTh1odx6PoFaou\nKuZIOGVX7CC6hNBl8rdWx1Eq03Sc9oNtYLFFGzh/6ljGT1AO0eLuotaP6Uv+KyCD+upBVOXR8uYv\nyLW+3SgaCz+P7ml1HI+hxd0FrV/0AdW3XWZvzdy0fDzN0R6U8ihth05hX7AvVTef10m1nUSLu4tJ\nTkoi7oPZxOeE+hPmWh1HqSxTefRUTA44MmO81VE8ghZ3F7P4zcEEHbvBweZBBFYNsTqOUlnmnkbt\nCG9UjCoHklg+60Wr47g9Le4u5OK5GEos2USMH3SerCccqeznoTe+5lwByLNgOfFXYq2O49a0uLuQ\nH8f0omgsXH20HbnzFrA6jlJZrnCxMpzq1JBSZ2HJq3pw9W5ocXcR+7asocrGU+yv6EWHZ962Oo5S\nluky+iMOBeSg4rrDRO0LtTqO29Li7iL2Tn0BrxsQMHKc1VGUspSXtzcFnxpOrgTY/Lpe2HSntLi7\ngJ/nv0G1vQnsCylE3RaPWB1HKcs16TqMvbXyUn3nVdYv1PkL7oQWd4slXr+O+fQLLuWFppM+szqO\nUi6j0YT/42pOiPvvByQnJVkdx+1ocbfYogmPU/ak4WjrapQsq6MkK3VT2Sr1ONg8iKDoGyyeOsjq\nOG5Hi7uFTh8/RMBPOzlWQug6QecUVyq1zpMXEOMHxZf/RexFnb3tdmhxt9CvYx+3TcLRryc+vjmt\njqOUy8mdtwBx3VvidwlWjH3M6jhuRYu7RXb/9SPBW84TXsWHhwboGTJKpafTc+9xsFwOKv0eradG\n3gYt7haJeHM0YiBw1OtWR1HKtYlQ6Mnh5L4OmycNszqN29DiboG138wkeG8C4fUKUKdpN6vjKOXy\nmnQdxr57clF1exybf/7S6jhuQYt7FktOSuLqRx9yJTfcN/4jq+Mo5TZqvPIuid5w4r1pVkdxC1rc\ns9iymc9S/tgNDj1QloAKNayOo5TbqFK3Gfsb2kaNXDVXJ4vPiBb3LBR/JZaCi37ldGHoMPFrq+Mo\n5XZaT/qCC/nA68sfSLyeYHUcl6bFPQstGdebkufgXIdG5CtYxOo4SrmdIiXLEt26GgGnDIsm97c6\njkvT4p5FTh47QNDaA0SVETq//KHVcZRyW11f/4ro4lDmx+1cOHPC6jguS4t7Flk3rh8FroJPvz54\neXtbHUcpt+Xjm5PrPTtSJBZ+fK231XFclhb3LJDygqWWfcdYHUcpt9f+qelElveiysaTRO7caHUc\nl6TFPQtETB9NDr1gSSmnKv7Mi/gkQdiUZ6yO4pK0uGeydd/+h+A9CeyrqxcsKeVMjdr2I7xGHqru\nusqW1TrncGpa3DNZ3MdzuZoL7ntdL1hSytlqjn6bJC+InvWG1VFcjhb3TLTsveepcOQGB5uU0QuW\nlMoEVeo0I6J+EYIjEvnly+lWx3EpWtwzSeL16+RauIpzBaDdJB0LQ6nM0nT8x8TmgWvz5pOcnGx1\nHJehxT2TLJk6EP9ThhMtqlGgcAmr4yjlsUqVC+Zwk7KUP3aD5e8/b3Ucl6HFPRNcibtE8VWhxPhB\n53GfWx1HKY/XbsLnnC0IeRd8vSY8AAAcX0lEQVT+pMMS2DlU3EWkjYhEiMgBERl9i3Y9RMSISIjz\nIrqfZeN6U+wixHa8n5y581gdRymPV6BwcU62rkWZM+iwBHYZFncR8QJmA22BakAvEamWRrv8wAjg\nL2eHdCdnT0YR+NtBjpQROj7/gdVxlMo2urw2n+PFoNRP24m7dN7qOJZzZM+9AXDAGHPIGHMdWAB0\nTqPdJGA6cM2J+dzO6vH9KXgFpFcPHWZAqSzk45uTq91a4XcJlo3T+VYdKe5lgGMpbkfb7/ubiNQB\nAowxy2+1IBEZIiKhIhJ65oznzWQeFb6Vyn+eIrK8Fw8Nmmh1HKWynfbPvMOhgBxUWH+EmCPhVsex\nlCPFXdK4z/z9oEgO4F0gw8PUxpi5xpgQY0xIsWLFHE/pJv6a/BS5EqHI0KetjqJUtuTl7U3Ovo+T\nPx5+mzDI6jiWcqS4RwMBKW77AynH2cwP3AOsE5EooBGwNLsdVN2xYQVVw2IJr5aTJp11El+lrNLy\n8dGEV/ahypZzhIetszqOZRwp7luASiISJCK+QE9g6c0HjTGXjDF+xphAY0wgsAnoZIwJzZTELiry\nnVcxQOWR2h2jlNXKDH8J72TYOS37nveeYXE3xiQBw4GfgH3At8aYPSIyUUQ6ZXZAd/DH0g+pujeB\n8Dr5qdFEXxKlrNagdR/Ca+Sm6q6rhK1daHUcS4gxJuNWmSAkJMSEhnrGzv2S9jXwP5ZE0a/nE1i9\ngdVxlFLAvi2ruf7ECA5Uzkn3H7ZbHcdpRGSrMSbDbm+9QvUu/TxvMpUPJhHZsJgWdqVcSNX6rQiv\nnZ/gfQn8ufxjq+NkOS3udynxq6+JzQMPjv/E6ihKqVTqj5lFgg+c+r+ZVkfJclrc78KKD16i/NEb\nHLrPn+L+Fa2Oo5RKpXy1BuwPKUKVyCR+/fptq+NkKS3udyg5KQmv75dzIR+0nfCZ1XGUUum4/7UP\nicsFV+Znr2/XWtzv0PJ3n6HcCcPRphUpVLSU1XGUUukoE1SNg/eWomLUDX788DWr42QZLe53IPF6\nAnmXreNsQej4+hdWx1FKZaD16/O5lBfMgoUkJyVZHSdLaHG/A0unDabMaYhpWYO8+QtaHUcplYEi\nJQKIuj+QwOOGFe+PsjpOltDifpsS4q9S5MctnCwKncfOszqOUspBHSZ8ybkCkHvxmmyx967F/TYt\nmdSXkufhfJsGOhGHUm4kX8EiHH+wKv6nDEveHGx1nEynxf02xF06T6lf9nC8OHR6+UOr4yilblOn\n1+ZxqggUXrmJhPirVsfJVFrcb8PyCY/jdwniOjXHx9fX6jhKqduUO28BzrapT8lzsMTDp+PT4u6g\nC2eOU279IY6UFjo+957VcZRSd6jz6A9t0/Gt2cWVyxetjpNptLg76McJ/SkUB8k9Our0eUq5MR/f\nnMR1aobfJVj+eh+r42QaLe4OOHnsABU2RHOobA7aP/Wm1XGUUnep48j3OVJaKPvbQS6ei7E6TqbQ\n4u6AdRMHkj8ecvbpbXUUpZQTeHl7k9StPYXi4MeJ/a2Okym0fyEDxw7uptLm00SW96JT3zFWx3FL\niYmJREdHc+3aNaujeKRcuXLh7++Pj4+P1VHcStth0/hp8QoC/zjKhTPHKVysjNWRnEqLewY2TBlK\nrQQo0H+I1VHcVnR0NPnz5ycwMBCRtOZbV3fKGMO5c+eIjo4mKCjI6jhuxcvLC9OjMwVnLuanCf3o\nOWuN1ZGcSrtlbuFoeCiVQs8TUdGbZo+MsDqO27p27RpFixbVwp4JRISiRYvqt6I71P7JqRwqm4Og\njcc5G3PY6jhOpcX9Fv6c9gx5rkPhAcOsjuL2tLBnHn1t747XIz0ocBXWTBpodRSn0uKejqi9m6m0\n7SLhlXxo2u0pq+MopTJJm0ETOFguB+X/jOF09AGr4ziNFvd0/PXmCHJeh2KDn7E6ispC7dq14+LF\nW1/YMm7cONasubP+2XXr1tGhQ4c7eq7KPL69epE/Hn6dPMjqKE6jxT0Nh/b8SeVtl4io4kOTTp4/\nwJCyHZi8ceMGK1eupFChQrdsO3HiRFq2bJlFyVRWaN1/LAeCvKiw6RQxUfusjuMUerZMGrZMe457\nEqHEoOesjuJxJizbw94TsU5dZrXSBRjfsXqG7d555x0++cQ21dqgQYPo0qULbdu2pXnz5vz5558s\nXryYpk2bEhoaip+fH5MmTeLLL78kICAAPz8/6tWrxwsvvED//v3p0KEDPXr0IDAwkH79+rFs2TIS\nExP57rvvCA4OZvPmzTz33HPEx8eTO3duPv30U6pUqeLU7VbOladPX/JN+pTfpgyl54frrY5z13TP\nPZXIHb9TZXssEcG+NO44wOo4ykm2bt3Kp59+yl9//cWmTZv48MMPuXDhAhEREfTt25ewsDDKlSv3\nd/vQ0FAWLlxIWFgYP/zwA6Ghoeku28/Pj23btjFs2DBmzJgBQHBwMOvXrycsLIyJEycyZoxeI+Hq\nWvR+if3lvai4+QzHD++xOs5d0z33VLa99Tz3JEHpJ5+3OopHcmQPOzP88ccfdO3albx58wLQrVs3\nfv/9d8qVK0ejRo3SbN+5c2dy584NQMeOHdNddrdu3QCoV68eP/zwAwCXLl2iX79+REZGIiIkJiY6\ne5NUJijQbyB5x8/l98lD6fnxH1bHuSu6555CxLZ1VNl+mfBgXxq16Wt1HOVExpg0779Z7B1tn5ac\nOXMCtotikuwz/Lz22ms0b96c3bt3s2zZMj0P3U00f3QkERW9qbTlHMf277A6zl3R4p7CjrdfxCcZ\n/J98yeooyskeeOABFi9ezNWrV7ly5QqLFi3i/vvvT7d9kyZN/i7KcXFxrFix4rbWd+nSJcqUsV3O\nPm/evLuJrrJYkSeeJM912DDVva9v0eJuFx66hio74givmpOGD+kAYZ6mbt269O/fnwYNGtCwYUMG\nDRpE4cKF021fv359OnXqRK1atejWrRshISEULOj4ZOgvvfQSr7zyCo0bNyY5OdkZm6CyyAPdnya8\nkg+Vt14gau8Wq+PcMbmdr5/OFBISYm51kCqrfftYCNXCrnBt1gRCWjxidRyPsm/fPqpWrWp1jNsW\nFxdHvnz5uHr1Kg888ABz586lbt26VsdKk7u+xq7qj6VzKfzSu+xuWJBH52+yOs4/iMhWY0xIRu10\nzx3Ys+knquy4Qni1XFrY1d+GDBlC7dq1qVu3Lt27d3fZwq6cr0mnIURU8aHytksc3LXB6jh3xKHi\nLiJtRCRCRA6IyOg0Hh8lIntFZKeI/CIi5dJajqvaM/NVchgIenqs1VGUC/nqq6/Yvn074eHhvPLK\nK1bHUVms5NBR+CZB6PRRVke5IxkWdxHxAmYDbYFqQC8RqZaqWRgQYoypCXwPTHd20Myye9NKgndd\nIaJ6Luo92N3qOEopF3Ffu/6EB/tSZXsskTt+tzrObXNkz70BcMAYc8gYcx1YAHRO2cAYs9YYc9V+\ncxPg79yYmWffu2MRAxWGj7c6ilLKxfgPfRGfJNg24wWro9w2R4p7GeBYitvR9vvSMxBYldYDIjJE\nREJFJPTMmTOOp8wkOzcsJXhXPOHVc1OnaRer4yilXEzDNn2IqGLbe3e3vndHintag0WneYqNiPQB\nQoC30nrcGDPXGBNijAkpVqyY4ykzScR/XgegynMTrQ2ilHJZJYeMwicRQt9yr753R4p7NBCQ4rY/\ncCJ1IxFpCbwKdDLGJDgnXubZ/vsSgnfHE14jDzUb6xCsnm7AgAEUL16ce+655x/3nz9/nlatWlGp\nUiVatWrFhQsXnLK+++67L8M2M2fO5OrVqxm2U9a6r10/25kzYbEc2uNap0XeiiPFfQtQSUSCRMQX\n6AksTdlAROoA/4etsJ92fkzni3x/AgBVntW99uygf//+/Pjjj/+6f9q0abRo0YLIyEhatGjBtGnT\nnLK+jRs3ZthGi7v7KDXkOXwTYct09xkpNsOBw4wxSSIyHPgJ8AI+McbsEZGJQKgxZim2bph8wHf2\nKb+OGmM6ZWLuu7Lrj6W2vfZ78vDwfe2tjpO9rBoNJ3c5d5kla0DbWxflBx54gKioqH/dv2TJEtat\nWwdAv379aNasGW+++eY/2sybN49FixaRkJDA4cOHeeyxxxg/3nYAPvUwws89Z/vjz5cvH3Fxcaxb\nt47XX38dPz8/du/eTb169fjiiy94//33OXHiBM2bN8fPz481a9YwcOBAQkNDEREGDBjAyJEj7/KF\nUc5yb/sBLJo7k0phl4jau5nAag2sjpQhh0aFNMasBFamum9cip/dauaC8FkTCAYqjnjd6ijKYqdO\nnaJUqVIAlCpVitOn0/7iuXnzZnbv3k2ePHmoX78+7du3R0T+HkbYGEPDhg1p2rQpderU+cdzw8LC\n2LNnD6VLl6Zx48Zs2LCBESNG8M4777B27Vr8/PzYunUrx48fZ/fu3QAZzgalsp7fE8PJPfpd/pr+\nLIHz/rQ6Toay3ZC/ezatosquq4RXz83DTdIfxlVlkgz2sF1Vq1atKFq0KGAb4vePP/5ARNIcRjh1\ncW/QoAH+/razg2vXrk1UVBRNmjT5R5vy5ctz6NAhnnnmGdq3b0/r1q2zYKvU7bi/yxAWffw+lbZd\n5Gh4KGWDMxwBwFLZbviBPe+9Ro4bUP4pvRpVQYkSJYiJiQEgJiaG4sWLp9nO3t34j9uOjst0c0hg\n+OewwCkVLlyYHTt20KxZM2bPns2gQZ4zl6cnKTrgKXJfh41vjrA6SoayVXGP2PoLVXbaxpCp17yb\n1XGUC+jUqRPz588HYP78+XTu3DnNdqtXr+b8+fPEx8ezePFiGjdufNvDCKeWP39+Ll++DMDZs2e5\nceMG3bt3Z9KkSWzbtu3uN0453QNdh9nGe996gWP7t1sd55ayVXHf8e5ovJOh3LB/DY+jPFyvXr24\n9957iYiIwN/fn48//hiA0aNHs3r1aipVqsTq1asZPTrt340mTZrw+OOPU7t2bbp3705ISEiawwin\n7pK5lSFDhvw9h+vx48dp1qwZtWvXpn///kydOtUp262cr1D/obbx3qc9bXWUW8o2Q/5G7vidK72H\ncLBSTrovcu1PXE/j7sPRzps3j9DQUGbNmmV1lHS5+2vsbpa0r4F/dBIlFn6Df8WaWbpuHfI3lW0z\nnscnCUoP1blRlVJ3J3+/weRJgD+mPmV1lHRli+J+aM+fVN5+mYgqvtzb5nGr4yg3079/f5fea1dZ\n78FHRrC/vDcVQ89x/PBuq+OkKVsU9y1vjcQ3EUoMetbqKEopD5H/8QHkTYDf33DNuVY9vrgfDd9C\npW2X2F/Zh8YdB1gdRynlIR7sNZLI8l5U2HKWk0cjrI7zLx5f3De++Sy5r0PRJ1y3b0wp5Z7y9O5H\nvmuwbvIQq6P8i0cX9+gDO6m09QIRFb15oOuTVsdRSnmYlr1f5ECgF+W3nOb0sUir4/yDRxf3P6Y+\nRZ7rUKif632qqqx1u0P+GmMYMWIEFStWpGbNmk67qGjQoEHs3bv3lm0WL16cYRvlOnI+1pv88fDr\nlMFWR/kHjy3uMVF7qRh6jv0VvGn28DNWx1EWu90hf1etWkVkZCSRkZHMnTuXYcOcc9Dso48+olq1\n1FMQ/5MWd/fSuu8rHCjnRfm/TnE62nX23j124LDfpjxJrQTI36e/1VFUCm9ufpPw8+FOXWZwkWBe\nbvDyLdvc7pC/S5YsoW/fvogIjRo14uLFi8TExPw9giRAVFQUbdq0oWHDhoSFhVG5cmU+++wz8uTJ\nwy+//MILL7xAUlIS9evX57///S85c+akWbNmzJgxg5CQEPLly8ezzz7L8uXLyZ07N0uWLOHgwYMs\nXbqU3377jcmTJ7Nw4UJWrFjBnDlz8Pb2plq1aixYsMCZL59yAt9evcg/7Qt+nTKEnv9da3UcwEP3\n3E8e3U+FLWeIDPLiwV560ZJKX3pD/h4/fpyAgP9NQObv78/x48f/9fyIiAiGDBnCzp07KVCgAB98\n8AHXrl2jf//+fPPNN+zatYukpCT++9///uu5V65coVGjRuzYsYMHHniADz/8kPvuu49OnTrx1ltv\nsX37dipUqMC0adMICwtj586dzJkzJ5NeCXU3Hur/KgfL5SDor5OcPXHQ6jiAh+65r3tjKLWuQe7H\n9IIlV5PRHrarSGtYjtQjQwIEBATQuHFjAPr06cN7771Hq1atCAoKonLlyoDtG8Hs2bP/nsjjJl9f\nXzp0sE3xWK9ePVavXp1mlpo1a9K7d2+6dOlCly46kbur8nr0UQpM/5o1UwbTc/avVsfxvD33sycO\nUv6vkxwI9KLV4+5RSJR10hvy19/fn2PHjv3dLjo6mtKlS//r+XczFLCPj8/fz09vKGCAFStW8PTT\nT7N161bq1auXbjtlrbYDxnGobA6C/ozh/MmjVsfxvOK+ZvJg8seD76OPWh1FuYH0hvzt1KkTn332\nGcYYNm3aRMGCBf/R337T0aNH+fNP26w8X3/9NU2aNCE4OJioqCgOHDgAwOeff07Tpk0dzpRyKOAb\nN25w7NgxmjdvzvTp07l48SJxcXF3tc0q8+To0Z0CV+HnKQOtjuJZxf38yaMEbYrhUNkcPPTEa1bH\nUS7kdof8bdeuHeXLl6dixYoMHjyYDz74IM3lVq1alfnz51OzZk3Onz/PsGHDyJUrF59++ikPP/ww\nNWrUIEeOHDz5pOPXWfTs2ZO33nqLOnXqEBkZSZ8+fahRowZ16tRh5MiRFCpU6O5fEJUp2g6ZyGH/\nHJTbGM3FsycszeJRQ/4ueKYVtVZHEzXqYdoOmejUZas756nD0UZFRdGhQ4e/5z21kqe+xu5o+ayX\nqDBrGTvblOPRmf8+/fZuZbshfy+cOU7gxmgOB+TQwq6UskzbYVM5UloI2HCE2AtpT7ieFTymuP80\neSAFr4Dp2snqKCqbCAwMdIm9duVavLy8SOjUmsKXYZWFfe8eUdxjL5yi7IYjRJUR2gydbHUcpVQ2\n12H4DI6VFMqsP8CVyxctyeARxX3lxAEUjoOkzm3x8vKyOo5SKpvz8vbmavumFI2FFZOesCSD2xf3\nuIvnCPjjEEdKC+2eetPqOEopBUDHke8TXRxKrg8n/kpslq/f7Yv7isn9KXIZrndshZe3R15wq5Ry\nQ17e3sS2aUyxi7D8jazve3fr4n7l8kXKrD/AsZJC+2fetjqOclE3LwKqWrUq1atX5z//+c/fj+mQ\nvyozdXrhA04Ug2Jrd5MQfzVL1+3WxX3FpCcoGgtX2zfVvXaVLm9vb95++2327dvHpk2bmD179t/F\nU4f8VZnJx9eXC63qU+I8LJ02KEvX7bYXMcXHXSK0RSOu5RIe/GWnFncXlvICm5NvvEHCPucO+Zuz\najAlx4xxuH3nzp0ZPnw4rVq1okqVKqxbt45SpUoRExNDs2bNiIiIYOjQoTRr1oxevXoB/KPdTZk1\n5G+HDh0oWLAgBQsWdHjIX72IyXUlXk/gj+a1AWiydjs+vjnvankefxHTsjcG4ncJ4to20cKuHBYV\nFUVYWBgNGzYEdMhflfl8fHNypkVtSp6DpW9m3WxNblkVE+KvUGLtHk4Us/VpKfdxO3vYzhYXF0f3\n7t2ZOXMmBQoUuGVbHfJXOVPnVz5m0+p6FPp5C8mvJOLl7ZPp63Roz11E2ohIhIgcEJHRaTyeU0S+\nsT/+l4gEOjtoSkunDKD4BbjYpqHutSuHJCYm0r17d3r37k23bt3+vl+H/FVZIWfuPJxqXp3SZ2Dp\njKeyZJ0ZFncR8QJmA22BakAvEUl9RGggcMEYUxF4F8i0E84T4q9S7NedxPhBpxf/L7NWozyIMYaB\nAwdStWpVRo0a9Y/HdMhflVU6vvoJZwtCvlUbSM6CD2hH9twbAAeMMYeMMdeBBUDnVG06A/PtP38P\ntJC0vsM6wbI3B1PiPJxvHXLXByZU9rBhwwY+//xzfv31V2rXrk3t2rVZuXIloEP+qqyTO28BTjSt\ngv8pw7KZIzJ9fRmeLSMiPYA2xphB9tuPAw2NMcNTtNltbxNtv33Q3uZsqmUNAYYAlC1btt6RI0du\nO/Dit55E1v1Bux9C8cmZ67afr7Kep57JoUP+qtsVd+k8a3s+gLR7iA53eG2Oo2fLONJhndYeeOpP\nBEfaYIyZC8wF26mQDqz7X7q8OAdevJNnKqWUtfIVLELHVVmzM+BIt0w0EJDitj+QeoqRv9uIiDdQ\nEDjvjIBKuSod8le5MkeK+xagkogEiYgv0BNYmqrNUqCf/ecewK/GqqujlEvSX4fMo6+tSkuGxd0Y\nkwQMB34C9gHfGmP2iMhEEbk5M8bHQFEROQCMAv51uqTKvnLlysW5c+e0CGUCYwznzp0jVy49/qT+\nyW2HH1DuIzExkejoaK5du2Z1FI+UK1cu/P398fHJ/AtjlPWceUBVqbvi4+NDUFCQ1TGUylbcdmwZ\npZRS6dPirpRSHkiLu1JKeSDLDqiKyBng9i9RtfEDzmbYyrW5+za4e35w/23Q/NazYhvKGWOKZdTI\nsuJ+N0Qk1JGjxa7M3bfB3fOD+2+D5reeK2+DdssopZQH0uKulFIeyF2L+1yrAziBu2+Du+cH998G\nzW89l90Gt+xzV0opdWvuuueulFLqFrS4K6WUB3Lp4u5qE3PfLgfy9xeRMyKy3f5vkBU50yMin4jI\naftMW2k9LiLynn37dopI3azOmBEHtqGZiFxK8R6My+qMtyIiASKyVkT2icgeEXk2jTYu+z44mN/V\n34NcIrJZRHbYt2FCGm1crxYZY1zyH+AFHATKA77ADqBaqjZPAXPsP/cEvrE6923m7w/MsjrrLbbh\nAaAusDudx9sBq7DNxNUI+MvqzHewDc2A5VbnvEX+UkBd+8/5gf1p/B657PvgYH5Xfw8EyGf/2Qf4\nC2iUqo3L1SJX3nN3qYm574Aj+V2aMWY9t55RqzPwmbHZBBQSkVJZk84xDmyDSzPGxBhjttl/voxt\nToUyqZq57PvgYH6XZn9d4+w3fez/Up+J4nK1yJWLexngWIrb0fz7l+LvNsY2qcgloGiWpMuYI/kB\nutu/Sn8vIgFpPO7KHN1GV3ev/Sv3KhGpbnWY9Ni/6tfBtueYklu8D7fIDy7+HoiIl4hsB04Dq40x\n6b4HrlKLXLm4O21ibos4km0ZEGiMqQms4X+f/O7ClV9/R23DNlZHLeB9YLHFedIkIvmAhcBzxpjY\n1A+n8RSXeh8yyO/y74ExJtkYUxvbHNINROSeVE1c7j1w5eLu7hNzZ5jfGHPOGJNgv/khUC+LsjmL\nI++RSzPGxN78ym2MWQn4iIifxbH+QUR8sBXGL40xP6TRxKXfh4zyu8N7cJMx5iKwDmiT6iGXq0Wu\nXNzdfWLuDPOn6hfthK0/0p0sBfraz9ZoBFwyxsRYHep2iEjJm32jItIA29/EOWtT/Y8928fAPmPM\nO+k0c9n3wZH8bvAeFBORQvafcwMtgfBUzVyuFrnsNHvGmCQRuTkxtxfwibFPzA2EGmOWYvul+Vxs\nE3Ofx1ZAXYKD+UeIbZLxJGz5+1sWOA0i8jW2Mxn8RCQaGI/tYBLGmDnASmxnahwArgJPWJM0fQ5s\nQw9gmIgkAfFAT6v/KFNpDDwO7LL3+QKMAcqCW7wPjuR39fegFDBfRLywffB8a4xZ7uq1SIcfUEop\nD+TK3TJKKaXukBZ3pZTyQFrclVLKA2lxV0opD6TFXSmlPJAWd6WU8kBa3JVSygP9P3pww7Z6csQa\nAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEICAYAAACktLTqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xd4FFXbx/HvTQq9h55AQg0gPRQF\nBaRI7yoIAlJFEQUbIoI0QUTlUfDhxQZWLEgHFRREQYRA6CSEEiAQegmBEJJw3j928YkxIQtsMrub\n+3NdXGR3z878Zje5d/bMzDlijEEppZRnyWF1AKWUUs6nxV0ppTyQFnellPJAWtyVUsoDaXFXSikP\npMVdKaU8kBZ3DyYiOUUkTkRKZ8Kyc4jIlyJyUUTWO3v5Gaz7VxF5NBOWO09EXnL2cjODiCwQkbF3\n+NxM+72wL/9dEXnSgXYHReReB9qJiISJSCXnJMweRM9zz3oiEpfiZh4gAUi23x5qjPnyDpe7CZhl\njPniLiM6sq5WwP8B1Y0x8Zm4nmmAnzFmUGat406IyAJgtzFmsquvP4t/L8oAm4AKxpjrTlxuX+Ah\nY0xvZy3T0+meuwWMMflu/gOOAh1T3HdHhd0C5YBDmVnYPZmIeFudIZMMABY7s7Db/QC0F5GiTl6u\n5zLG6D8L/wFRQMtU93kBrwGHgLPAl0Ah+2N5gQXAeeAi8BdQGHgb297/NSDOfjsXYAB/+3MXADOB\nn4DLwAagXIr1tgci7cudiW0PrE8amZ+yryfJvq4xwJPAmhRtbnfdtYBfgQvASeB5oAtwHUi0r2ez\nve3fueyv1QRsH5KngE+A/PbHgu0ZnwCigTPAi7d4LxYAY+0/twEO2LftDHAc6G1/bIQ9U4I913f2\n+wOAJfb37BDwZIplTwO+Ar6xb38f+31fAwvt923B9k3o5nNqAL/b34+dQNt0shYDVtlznrdnKGV/\nzJHfiyL2bGeAw8BL/O9b/ZPAL8B79hwHSfX7muo13Aj0SHG7JPCj/bnngF9TPHYSaJLi9fnS/npc\ntm9v7VTL/h141Oq/WXf5p3vurulFoDXQBPDHVkjetT82CPAGygB+wHDgujHmeWzFYZCxfQN4Pp1l\nPwa8gu0POgZbYURESmIrPCOxFYsTQL20FmCM+QB4DlhnX9cbDm5XeusuDKzBtndWEqgMrDfGLAbe\nAebb19MgjWUOBR4B7gcqAcXtz7nJCwgBKgLtgCkiUt7BvOUAAUpje53niEg+Y8x72AryJHuuh0XE\nC1iJrbiVxvbhMEZEmqZYXndgPlDQ/vyU9xXBVpR/EBEvEckFLAcWY3s/XgS+E5GgNHLmAOYAZYGb\nj78L4ODvxRzAx/7cVsAwbO/VTQ8AoUBRYBbw0S1esxpARIrbL9tv+wGlgNdv8dyu2D6cC2H7QJmZ\n6vF92HYClAO0uLumocBoY8wJY8w1bEXwURERbIW+GLY+zSRjzBZjzJXbWPa3xphtxphEbHtrte33\ndwK2GGOW2x+bgW0v2pnSW3cX4IAxZpYxJsEYE2uM2eLgMnsDbxljjhhjYoFXgd721+qm8caYa/Zl\nhgM1HVz2VWCqMSbRGLMI295uxXTaNgFyGWPeNMZcN8bsBz4FeqZo85sxZqUx5ob5X3fWRmPMUvtr\nMg1bEayL7cMK4B37+n8CVgP/OpBsjDlljFlijIk3xlwCpgJNU7dLi4jkxPYB87IxJs4YcwBbUX08\nRbMIY8xnxphkbB9E5USkUBrL8gLyYdvzvikR24ddWfvrcquD778aY1bb1/M5//v9uOkytsKvHKDF\n3cXYi1IAsNJ+JspFIAzbe1UU+Bj4DfheRKJF5A37H5WjTqb4+Sq2P0aw/QEeu/mAMeYGtq4IZ0pv\n3QHYvu7fidLAkRS3jwC5se0JAyQbY86ms96MnLG/Do48txwQePM9s79vo7B9E7npWBrPS/maJ2H7\nxlTa/u+oMSblGQ9HsH1j+wcRyS8in4jIURGJBX7G9iHhiJLYfreO3mI9qd83SON1sBfly0D+FHdP\nsW/TWhE5ICKjbpElvd+Pm/Jj695RDtDi7mLsf8zHgQeNMYVS/MtljDlr37MdZ4wJxvZ1+WH+t3d4\nN6c+xWDrAgJspzqSRiG5hSvYzvy5qWR6DdNwDKiQzmMZbdMJbIX1prJAPLa+58yUOtcxIDzVe5bf\nGNP1Fs8B2wcb8Peeb2ls23QC27akVJa0P3BHY3vv6htjCmDr0kv5zeVWr+FJ4EaqdaW3HkfsxNat\nZluxMZeMMc8aY8ph+4YwVkQa3+GyqwI77vC52Y4Wd9c0B5gmIgEAIlJcRDraf24pItXsxTcW2wHD\nm6dRngIc7U9ObSnQUETa2c/kGIXtQK2jtgN1RKS6iOQBxt3GcxcDFUVkmIj4ikgBEalvf+wUEJSq\nmyWlr4EXRKSsiOQHJgNfpdrjzQypX+s/AETkORHJJSLeIlJTROpmsJz7RKSDiPhgO5B5DtiG7eBh\nDvvyvO2nnrYGvktjGfmx7eleFBE/IPX57+n+XhhjEoBFwBsikldEKgDPAnd62uRKUnQJiUgnEbn5\n/l3C9ruanN6T0yMiebH15/9yh7myHS3urmk6tgOMv4rIZWwH6W4WiTLYDrxdBnZj+2P61v7Yu0Bf\nEbkgItNvZ4XGmBigF7azIs5i2xPche2MEEeev8ue+3ds/drrbmPdF7AdyOsJnMZ2AK6J/eEF2L4R\nnBeRjWk8/b/YDsRuxNa1cx7bB1NmmwvUt3fBLLD3mbcD7sPWrXHGni2jLqCF2E4fvIBtz7a7MSbZ\nfqylA9ADW8F/B9uZIml1X83A1g1zDtuHzMpUj2f0ezHU/v8RbGcsfYTtzJU7MQ/oIiK+9ttVsf0u\nXAbWAzOMMZvuYLndgJWputjULehFTCpN9r33k9jOwf/T6jyeyFUv0LpbIvIOsN8YM8dJyxNgK9DT\nfqBaOcBTL6RQd0BE2mLbA07AdtbJVWx/VEo5zBjj1G9O9i62jLq3VCraLaNSegDbRSyngRZAV+P8\nKw2VUllAu2WUUsoD6Z67Ukp5IMv63P38/ExgYKBVq1dKKbe0devWs8aYYhm1s6y4BwYGEhoaatXq\nlVLKLYnIkYxbabeMUkp5JC3uSinlgbS4K6WUB9LirpRSHkiLu1JKeaAMi7t9nOjTIrI7ncdFRN6z\nj9W804FR8JRSSmUyR/bc52GbMiw9bbFNb1YJGIJtJDyllFIWyvA8d2PMehEJvEWTzsBn9sF9NolI\nIREpZR9CVimXlBB/lYhtv3Js1wbiTx8n+fIlbsRdRpL+N9S48fEmR958eBUoRN4SZSlT416q1GlO\nzly5LUyulGOccRFTGf45fVi0/b5/FXcRGYJt756yZVNPMqNU5rhw5jgbvpnJ5T1byXXiLIXPJFL0\nIvjcuJ2ZTTYD37M/B5wtBBeK+3K9tB/5azbg/kdHUqBw8czbAKXugDOKe1oz5KQ5GpkxZi62SQ4I\nCQnREctUpkhOSmLjso84vvIrChw+i3+MoYJ9h/xcAThXzIuTlfIjxfzIU7YihQMqU6hkWYoHVCZ/\nof9d1X354hlOH9vPhZjDXDiyn/joQ3DmLLnPxlHi+HWKhJ+AXxdzeNZiokvnILZ8MYI6P0Gjtv0s\n2nKl/scZxT2aFPNAYpvB54QTlqvUbdm0aj5RC+ZQav9Fil+wzZB9ojjsq5OfnLXqUrfTYKpWqefw\n8nLnK0Rx/0rpPn5w10Z2rphH4q4wih6No/y6U7BuGmsnT+NUlSJU7P0MIS16pvt8pTKTQ0P+2vvc\nlxtj7knjsfbAcGxTjDUE3jPGNMhomSEhIUbHllF368KZE/z89tMU3BxBuROGZIGogBzE3RNI7d7P\nE1zvwSzLsnvTSnYveI8Ce45RLvoGOQwc9s9BXMPqtHtpDvkKFsmyLMpzichWY0xIhu0yKu4i8jXQ\nDNscjaeA8YAPgDFmjn0KrFnYzqi5CjxhjMmwamtxV3cjcscGtr73MkFh5yhwFU4VgZO1S1Fn8Diq\n1GlmdTx2b1rFrk+mUWbnaYpdhIt5ISqkOPc+9zaBVTP8u1QqXU4r7plFi7u6E+Fh69g540Wq7IjD\nNwkig7zI0b4NbZ+chpe3680amXg9gVWzXyTHj79Q4cgNEnwgok5B6r/yPuWr1rc6nnJDWtyVRzka\nuZM/Jw6mSlgs3skQUS0nZQaNdKuDl7//MJszn82lSvh1Enxhf73CNJswn5Jl0+/XVyo1Le7KIyTE\nX2Xx2EcJ+vUAea9BeLAvAcNepEHrPlZHu2Mbl37IqY/eJ3h/IpfywtHW1eg64St8fHNaHU25AS3u\nyu2tnDOGnF8uovQZiCoj5B76JM0eGWF1LKdZ89lUkj/9nLIxhmMlBZ7oTet+r1odS7k4Le7KbR07\ntJu/Xnyc6nuucb4AxHQIoeuYT12yT/1uJV5PYPHrvfH/aQ+FrsCu2nlo9va3FC9TwepoykVpcVdu\nafFbwyjxzTryX4E9DQrSavp3FCkRkPET3dzp6AOse7kX1bfGcaEAXOzbgQ7D37I6lnJBjhZ3HfJX\nuYRjh3azsFttqny8jvhccOrV/jw6f1O2KOwAxf0r8siXW4h+oQfJXlBh1nK+e6Qup48fsjqaclNa\n3JXlVn82jSM9H6bKvgR23FuYkGW/0aLPy1bHssRDgyZRc+kadobkp9rOePY+3J7138+yOpZyQ1rc\nlWWSk5L4engrSk6bD8CJl3rR89ON2X4QrsLFyvDoF5uJGtGRnAlQcPxsFjzfkeSkJKujKTeixV1Z\n4uj+MFZ0qk3tNdEcCvKi3BcLaP3EOKtjuZT2T03H75MPOeafg1orDrC0e11ijoRbHUu5CS3uKstt\nWPoRUX0fIygqmR2tA+iwZDsBlWtZHcslVarVhIeWbWNHsxJU2p9I+GNdCf3lG6tjKTegxV1lqcVv\nDSP32LfxvQ4nXuhJz/d+9shTHJ3JxzcnPeesI+rpduS7Aub511k+6yWrYykXp8VdZYnkpCS+HvYg\nlT5ex7lCkPf9GTw0YLzVsdxKh+FvIzPGE5cXAmcvY8HIdlZHUi5Mi7vKdPFXYln0aH1qr41hf2Uf\n6n37EzUat7c6llsKadmT4C9/4FCgF7VWHebbXvVJvJ5gdSzlgrS4q0x19mQUq3vcR/U919hxXxE6\n/bCNIiV1isW7USqwKg/9sJmd9fJRIyyO5T3qE3vhtNWxlIvR4q4yzaF9W9jasx0VopLZ0a48PT/Z\noP3rTpIzdx4e/WIzO1qUJnh/In883Jzjh/daHUu5EC3uKlNs/30JRwf2peQZQ0SfRvR8Z4XVkTyP\nCD1n/8LuHjUJOHGD8L7dCd/6q9WplIvQ4q6cLvSXBVwZNZp8V+DEiG50e/VTqyN5tIcnf8Phwa0o\nchFOP/00OzfqB6nS4q6cbNOq+SS+PAGfJIgbM5S2Q6dYHSlb6DTyPU6P7EXeq3Bp5AuE/bbI6kjK\nYlrcldNsXPohjJ1GjhuQMG4EzR59zupI2cpDA8Zx4cV+5L4GV18cQ+gvC6yOpCykxV05xe8/zMbr\n9XcAuDHxee7vOsziRNlTy8dHc/mVwfheh+svT+CvHz+zOpKyiBZ3ddc2rvgU38mzSM4BMuUV7u0w\nyOpI2VrznqOIH/s0XjcgeexUwtYutDqSsoAWd3VXwtYuhPHTMYDX5Fdo2Kav1ZEU8ECP4SSMeRrf\nJIgbPZY9f/1sdSSVxbS4qzu256+fiRs9Ft8kSBw7XAu7i3mgx3AujnqcvPFwZuSzHNy10epIKgtp\ncVd3JHLnRs6MfJa88XDx+X7c3+1pqyOpNLTsO4aYYV0oHAuHnxrIsYO7rY6ksogWd3XbTh6NJGr4\nQArFwsmnutLy8dFWR1K30H7YVKKeaEmJc7Bn8CNcOHPc6kgqC2hxV7cl7tIFQgd3odQZiOrfnHZP\nvmF1JOWAzs+/T0TP+gScMPz2RBsS4q9aHUllMi3uymHJSUn89ERzKhy5wd5OwXR54QOrI6nb0GPc\nZ+xqFUCVA0ks6X+/Ttvn4bS4K4d9N+h+qu1NYEcTPx55U6+AdEc93/+ZnSEFqLHjKt8Ob2l1HJWJ\ntLgrhywY1Z5amy6yu0ZuHp6z1uo46i50+2Q9+6r4UHvdKb599RGr46hMosVdZWjxO89QY9UhIoO8\n6DBvnQ7b6+Z8fHPSct4aDgfkoOqiXfz44WtWR1KZQIu7uqUNSz8iYN4aTvpBo4+WkDtvAasjKSco\nULg493zwFecLQpEPvmfrL99bHUk5mUPFXUTaiEiEiBwQkX+d9yYiZUVkrYiEichOEdHJHT3AoX1b\nuDHlbRK9odi06RQvU8HqSMqJylaqRa7xr5DDQOy414g5Em51JOVEGRZ3EfECZgNtgWpALxGplqrZ\nWOBbY0wdoCegp1G4ubhL54kY3o8CcRA74jFqNu5odSSVCRq26cvJQe3xuwChQ7vrKZIexJE99wbA\nAWPMIWPMdWAB0DlVGwPc/L5eEDjhvIgqqyUnJfHjwBYEHjfs71ab1v21T9aTdRg+g71tK1Ax6gaL\nBzW1Oo5yEkeKexngWIrb0fb7Unod6CMi0cBK4Jm0FiQiQ0QkVERCz5w5cwdxVVb47qUuVN99jR33\nFuLhSV9bHUdlgUffXs6uOnmpuTWOb8f1tDqOcgJHirukcZ9JdbsXMM8Y4w+0Az4XkX8t2xgz1xgT\nYowJKVas2O2nVZnu53mTqP7jQQ4E5qC7nvKYrbSf+wtRZYTKP+xg/fezrI6j7pIjxT0aCEhx259/\nd7sMBL4FMMb8CeQC/JwRUGWdiO3ryTfrKy7mh1r/+RyfnLmsjqSyUN78BSk/4wPic4G8NZujkTut\njqTugiPFfQtQSUSCRMQX2wHTpanaHAVaAIhIVWzFXftd3Ej8lVgOvvAkea5B8vPDKFulrtWRlAWq\n1GlG7FO9KHQZdox4jMTrCVZHUncow+JujEkChgM/AfuwnRWzR0Qmikgne7PngcEisgP4GuhvjEnd\ndaNc2NIhLQmKNuzvXINmj4ywOo6y0EMDxrGnTXkqHk5m4bAWVsdRd0isqsEhISEmNDTUknWrf/ru\n9d7cs2Abu+rk5ZGv9T1RtjOmFj8SQrW9CUQMbEqXF+dYHUnZichWY0xIRu30CtVsbtOq+VRcuI0j\npYV2c3QqNmXj5e3Ng/+3guPFwf+L3wj7TQeKczda3LOxC2dOcOWNaSR6Q8DUmeQrWMTqSMqFFC5W\nhiLjJyIGTr/+KlcuX7I6kroNWtyzsTXDO1L6DMT0eZDqDVtbHUe5oLotHuZwt3qUjTEsf/ohq+Oo\n26DFPZtaOKkf9+y4ys6QAnR+frbVcZQL6/H6F+ypkYuamy+x9F092O4utLhnQ2FrFxL4/WaOlRTa\nz15ldRzlBlp8sJwYPyjx+Wr2bfnF6jjKAVrcs5m4S+c5M8E2Vkyx8ZO0n105pHCxMuR6aRQ5E+Hw\nmBE6wJgb0OKezax4ui0BJw1RPepTp3l3q+MoN3Jfp8FEtA8m6NgNFj2j/e+uTot7NrLsvVHUDI1l\nd63cdH/tM6vjKDfUY/J37Av2pcaGs/z0yUSr46hb0OKeTRyN2IbfZ6s4WQRazlpmdRzlpry8vbl3\n5gIu5Ifcc7/m9PGDVkdS6dDing0kJyWx9cX+5LsK5plBFC6WesRmpRxXKrAqlwd1o+hFWP9sD6vj\nqHRocc8GFo7vTfD+RHY3Kc6DvZ63Oo7yAG2HTGF3g4JU332NRdOGWB1HpUGLu4fb/vsSKizbyZHS\nQrf/6GmPynnav7+S48Wg9Le/E7F9vdVxVCpa3D1Y4vUETkx4BQFKvDaJnLnzWB1JeZB8BYuQ64WR\n5EqAiFeeIjkpyepIKgUt7h5s4XPtCIo2RLYL1tMeVaZo0nkI+x4MoNLhZL5/uYvVcVQKWtw91O+L\n/ku1304QUdGbHpO/szqO8mDd317GobI5qPLzQbasXmB1HGWnxd0DxV+J5drM94nPCTWm/h9e3t5W\nR1IezMc3J+UmziBZ4Oy0iTp7k4vQ4u6BlozqhP8pQ3SX+lSocZ/VcVQ2cE+jthxsG0zgccPCl7R7\nxhVocfcwfyyZS7U/ThFeyYfu4/QqVJV1uk/5joPlchD8SxRbf9GuQKtpcfcg8VdiufrOTK75wj2T\n/2t1HJXNeHl7U3b8dG4InJr6unbPWEyLuwdZ/HxnAk4ZjnauR6Vaja2Oo7Khmve1J/KhygRF32Dh\ny12tjpOtaXH3EBuXfkj1308SUdGbrmPnWR1HZWM9pi7kYLkcVFlzmLB1P1gdJ9vS4u4B4q/EEvfO\nu1zzhepT5ujZMcpSXt7elB03DSMQM+U17Z6xiBZ3D7Dk5e4EnDQc6VRHu2OUS6jZuCP7W1ck6NgN\nfnj1EavjZEta3N1c2G+LCP4tmsggL7rpGO3KhTw8bRGH/YUKP+8nImyd1XGyHS3ubiw5KYnoqWMx\nQODYqdodo1yKl7c3RV8YjU8S7B2vE2tnNS3ubmzR5H5UjLpBRLMAajbuaHUcpf6lYZu+7LuvGMH7\nE1k0/Umr42QrWtzd1NHIHQQs3UZ0CaHr9MVWx1EqXR1mLOZkUSj+3W+cPHbA6jjZhhZ3N7V5TH/y\nxoP3sEE6lK9yafkKFuH6wF4UugzrX+5ldZxsQ4u7G1o5ZwzVd11jT0gBmvccZXUcpTL00IBx7Kmd\nh+rb4ljz2RtWx8kWtLi7mdgLp8nz2SLOFoQW03V4VeU+7n/zSy7lA/nwc65cvmR1HI/nUHEXkTYi\nEiEiB0RkdDptHhGRvSKyR0S+cm5MddPKF7pR4jxc6NkSv1JBVsdRymGlygVzstt9lD4DS1/uZnUc\nj5dhcRcRL2A20BaoBvQSkWqp2lQCXgEaG2OqA89lQtZsb+OKT6m26Rz7gn3pNPJ9q+Moddu6jfmY\nyPJeBP9+gt2bdE7fzOTInnsD4IAx5pAx5jqwAOicqs1gYLYx5gKAMea0c2Oq5KQkLsycwXVvqDFh\nttVxlLpjAS9OIIeByCkvWR3FozlS3MsAx1Lcjrbfl1JloLKIbBCRTSLSJq0FicgQEQkVkdAzZ87c\nWeJsatHkfpQ/doMDLcpTqVYTq+ModcfqNO/OvnuLERyZxNJ3n7U6jsdypLhLGveZVLe9gUpAM6AX\n8JGIFPrXk4yZa4wJMcaEFCtW7HazZlsnj0ZSZvk2ootD1yk6CYJyf+2mf8/pwlDom5+5eO6k1XE8\nkiPFPRoISHHbHziRRpslxphEY8xhIAJbsVdO8NuYPhSKAzOgt57TrjxCgcLFie35EMUuwo8vP2x1\nHI/kSHHfAlQSkSAR8QV6AktTtVkMNAcQET9s3TSHnBk0u/pjyVyqbYtlzz25aN1/rNVxlHKajs/O\nJLySD1U3nSVs7UKr43icDIu7MSYJGA78BOwDvjXG7BGRiSLSyd7sJ+CciOwF1gIvGmPOZVbo7CI5\nKYnY92eS4At1J86xOo5STlf51bdIzgHHpo8nOTnZ6jgexaHz3I0xK40xlY0xFYwxU+z3jTPGLLX/\nbIwxo4wx1YwxNYwxenWNEyyc2IegaMPBFhUoX62h1XGUcrrqjR5i//2lqXQ4mSXTh1odx6PoFaou\nKuZIOGVX7CC6hNBl8rdWx1Eq03Sc9oNtYLFFGzh/6ljGT1AO0eLuotaP6Uv+KyCD+upBVOXR8uYv\nyLW+3SgaCz+P7ml1HI+hxd0FrV/0AdW3XWZvzdy0fDzN0R6U8ihth05hX7AvVTef10m1nUSLu4tJ\nTkoi7oPZxOeE+hPmWh1HqSxTefRUTA44MmO81VE8ghZ3F7P4zcEEHbvBweZBBFYNsTqOUlnmnkbt\nCG9UjCoHklg+60Wr47g9Le4u5OK5GEos2USMH3SerCccqeznoTe+5lwByLNgOfFXYq2O49a0uLuQ\nH8f0omgsXH20HbnzFrA6jlJZrnCxMpzq1JBSZ2HJq3pw9W5ocXcR+7asocrGU+yv6EWHZ962Oo5S\nluky+iMOBeSg4rrDRO0LtTqO29Li7iL2Tn0BrxsQMHKc1VGUspSXtzcFnxpOrgTY/Lpe2HSntLi7\ngJ/nv0G1vQnsCylE3RaPWB1HKcs16TqMvbXyUn3nVdYv1PkL7oQWd4slXr+O+fQLLuWFppM+szqO\nUi6j0YT/42pOiPvvByQnJVkdx+1ocbfYogmPU/ak4WjrapQsq6MkK3VT2Sr1ONg8iKDoGyyeOsjq\nOG5Hi7uFTh8/RMBPOzlWQug6QecUVyq1zpMXEOMHxZf/RexFnb3tdmhxt9CvYx+3TcLRryc+vjmt\njqOUy8mdtwBx3VvidwlWjH3M6jhuRYu7RXb/9SPBW84TXsWHhwboGTJKpafTc+9xsFwOKv0eradG\n3gYt7haJeHM0YiBw1OtWR1HKtYlQ6Mnh5L4OmycNszqN29DiboG138wkeG8C4fUKUKdpN6vjKOXy\nmnQdxr57clF1exybf/7S6jhuQYt7FktOSuLqRx9yJTfcN/4jq+Mo5TZqvPIuid5w4r1pVkdxC1rc\ns9iymc9S/tgNDj1QloAKNayOo5TbqFK3Gfsb2kaNXDVXJ4vPiBb3LBR/JZaCi37ldGHoMPFrq+Mo\n5XZaT/qCC/nA68sfSLyeYHUcl6bFPQstGdebkufgXIdG5CtYxOo4SrmdIiXLEt26GgGnDIsm97c6\njkvT4p5FTh47QNDaA0SVETq//KHVcZRyW11f/4ro4lDmx+1cOHPC6jguS4t7Flk3rh8FroJPvz54\neXtbHUcpt+Xjm5PrPTtSJBZ+fK231XFclhb3LJDygqWWfcdYHUcpt9f+qelElveiysaTRO7caHUc\nl6TFPQtETB9NDr1gSSmnKv7Mi/gkQdiUZ6yO4pK0uGeydd/+h+A9CeyrqxcsKeVMjdr2I7xGHqru\nusqW1TrncGpa3DNZ3MdzuZoL7ntdL1hSytlqjn6bJC+InvWG1VFcjhb3TLTsveepcOQGB5uU0QuW\nlMoEVeo0I6J+EYIjEvnly+lWx3EpWtwzSeL16+RauIpzBaDdJB0LQ6nM0nT8x8TmgWvz5pOcnGx1\nHJehxT2TLJk6EP9ThhMtqlGgcAmr4yjlsUqVC+Zwk7KUP3aD5e8/b3Ucl6HFPRNcibtE8VWhxPhB\n53GfWx1HKY/XbsLnnC0IeRd8vSY8AAAcX0lEQVT+pMMS2DlU3EWkjYhEiMgBERl9i3Y9RMSISIjz\nIrqfZeN6U+wixHa8n5y581gdRymPV6BwcU62rkWZM+iwBHYZFncR8QJmA22BakAvEamWRrv8wAjg\nL2eHdCdnT0YR+NtBjpQROj7/gdVxlMo2urw2n+PFoNRP24m7dN7qOJZzZM+9AXDAGHPIGHMdWAB0\nTqPdJGA6cM2J+dzO6vH9KXgFpFcPHWZAqSzk45uTq91a4XcJlo3T+VYdKe5lgGMpbkfb7/ubiNQB\nAowxy2+1IBEZIiKhIhJ65oznzWQeFb6Vyn+eIrK8Fw8Nmmh1HKWynfbPvMOhgBxUWH+EmCPhVsex\nlCPFXdK4z/z9oEgO4F0gw8PUxpi5xpgQY0xIsWLFHE/pJv6a/BS5EqHI0KetjqJUtuTl7U3Ovo+T\nPx5+mzDI6jiWcqS4RwMBKW77AynH2cwP3AOsE5EooBGwNLsdVN2xYQVVw2IJr5aTJp11El+lrNLy\n8dGEV/ahypZzhIetszqOZRwp7luASiISJCK+QE9g6c0HjTGXjDF+xphAY0wgsAnoZIwJzZTELiry\nnVcxQOWR2h2jlNXKDH8J72TYOS37nveeYXE3xiQBw4GfgH3At8aYPSIyUUQ6ZXZAd/DH0g+pujeB\n8Dr5qdFEXxKlrNagdR/Ca+Sm6q6rhK1daHUcS4gxJuNWmSAkJMSEhnrGzv2S9jXwP5ZE0a/nE1i9\ngdVxlFLAvi2ruf7ECA5Uzkn3H7ZbHcdpRGSrMSbDbm+9QvUu/TxvMpUPJhHZsJgWdqVcSNX6rQiv\nnZ/gfQn8ufxjq+NkOS3udynxq6+JzQMPjv/E6ihKqVTqj5lFgg+c+r+ZVkfJclrc78KKD16i/NEb\nHLrPn+L+Fa2Oo5RKpXy1BuwPKUKVyCR+/fptq+NkKS3udyg5KQmv75dzIR+0nfCZ1XGUUum4/7UP\nicsFV+Znr2/XWtzv0PJ3n6HcCcPRphUpVLSU1XGUUukoE1SNg/eWomLUDX788DWr42QZLe53IPF6\nAnmXreNsQej4+hdWx1FKZaD16/O5lBfMgoUkJyVZHSdLaHG/A0unDabMaYhpWYO8+QtaHUcplYEi\nJQKIuj+QwOOGFe+PsjpOltDifpsS4q9S5MctnCwKncfOszqOUspBHSZ8ybkCkHvxmmyx967F/TYt\nmdSXkufhfJsGOhGHUm4kX8EiHH+wKv6nDEveHGx1nEynxf02xF06T6lf9nC8OHR6+UOr4yilblOn\n1+ZxqggUXrmJhPirVsfJVFrcb8PyCY/jdwniOjXHx9fX6jhKqduUO28BzrapT8lzsMTDp+PT4u6g\nC2eOU279IY6UFjo+957VcZRSd6jz6A9t0/Gt2cWVyxetjpNptLg76McJ/SkUB8k9Our0eUq5MR/f\nnMR1aobfJVj+eh+r42QaLe4OOHnsABU2RHOobA7aP/Wm1XGUUnep48j3OVJaKPvbQS6ei7E6TqbQ\n4u6AdRMHkj8ecvbpbXUUpZQTeHl7k9StPYXi4MeJ/a2Okym0fyEDxw7uptLm00SW96JT3zFWx3FL\niYmJREdHc+3aNaujeKRcuXLh7++Pj4+P1VHcStth0/hp8QoC/zjKhTPHKVysjNWRnEqLewY2TBlK\nrQQo0H+I1VHcVnR0NPnz5ycwMBCRtOZbV3fKGMO5c+eIjo4mKCjI6jhuxcvLC9OjMwVnLuanCf3o\nOWuN1ZGcSrtlbuFoeCiVQs8TUdGbZo+MsDqO27p27RpFixbVwp4JRISiRYvqt6I71P7JqRwqm4Og\njcc5G3PY6jhOpcX9Fv6c9gx5rkPhAcOsjuL2tLBnHn1t747XIz0ocBXWTBpodRSn0uKejqi9m6m0\n7SLhlXxo2u0pq+MopTJJm0ETOFguB+X/jOF09AGr4ziNFvd0/PXmCHJeh2KDn7E6ispC7dq14+LF\nW1/YMm7cONasubP+2XXr1tGhQ4c7eq7KPL69epE/Hn6dPMjqKE6jxT0Nh/b8SeVtl4io4kOTTp4/\nwJCyHZi8ceMGK1eupFChQrdsO3HiRFq2bJlFyVRWaN1/LAeCvKiw6RQxUfusjuMUerZMGrZMe457\nEqHEoOesjuJxJizbw94TsU5dZrXSBRjfsXqG7d555x0++cQ21dqgQYPo0qULbdu2pXnz5vz5558s\nXryYpk2bEhoaip+fH5MmTeLLL78kICAAPz8/6tWrxwsvvED//v3p0KEDPXr0IDAwkH79+rFs2TIS\nExP57rvvCA4OZvPmzTz33HPEx8eTO3duPv30U6pUqeLU7VbOladPX/JN+pTfpgyl54frrY5z13TP\nPZXIHb9TZXssEcG+NO44wOo4ykm2bt3Kp59+yl9//cWmTZv48MMPuXDhAhEREfTt25ewsDDKlSv3\nd/vQ0FAWLlxIWFgYP/zwA6Ghoeku28/Pj23btjFs2DBmzJgBQHBwMOvXrycsLIyJEycyZoxeI+Hq\nWvR+if3lvai4+QzHD++xOs5d0z33VLa99Tz3JEHpJ5+3OopHcmQPOzP88ccfdO3albx58wLQrVs3\nfv/9d8qVK0ejRo3SbN+5c2dy584NQMeOHdNddrdu3QCoV68eP/zwAwCXLl2iX79+REZGIiIkJiY6\ne5NUJijQbyB5x8/l98lD6fnxH1bHuSu6555CxLZ1VNl+mfBgXxq16Wt1HOVExpg0779Z7B1tn5ac\nOXMCtotikuwz/Lz22ms0b96c3bt3s2zZMj0P3U00f3QkERW9qbTlHMf277A6zl3R4p7CjrdfxCcZ\n/J98yeooyskeeOABFi9ezNWrV7ly5QqLFi3i/vvvT7d9kyZN/i7KcXFxrFix4rbWd+nSJcqUsV3O\nPm/evLuJrrJYkSeeJM912DDVva9v0eJuFx66hio74givmpOGD+kAYZ6mbt269O/fnwYNGtCwYUMG\nDRpE4cKF021fv359OnXqRK1atejWrRshISEULOj4ZOgvvfQSr7zyCo0bNyY5OdkZm6CyyAPdnya8\nkg+Vt14gau8Wq+PcMbmdr5/OFBISYm51kCqrfftYCNXCrnBt1gRCWjxidRyPsm/fPqpWrWp1jNsW\nFxdHvnz5uHr1Kg888ABz586lbt26VsdKk7u+xq7qj6VzKfzSu+xuWJBH52+yOs4/iMhWY0xIRu10\nzx3Ys+knquy4Qni1XFrY1d+GDBlC7dq1qVu3Lt27d3fZwq6cr0mnIURU8aHytksc3LXB6jh3xKHi\nLiJtRCRCRA6IyOg0Hh8lIntFZKeI/CIi5dJajqvaM/NVchgIenqs1VGUC/nqq6/Yvn074eHhvPLK\nK1bHUVms5NBR+CZB6PRRVke5IxkWdxHxAmYDbYFqQC8RqZaqWRgQYoypCXwPTHd20Myye9NKgndd\nIaJ6Luo92N3qOEopF3Ffu/6EB/tSZXsskTt+tzrObXNkz70BcMAYc8gYcx1YAHRO2cAYs9YYc9V+\ncxPg79yYmWffu2MRAxWGj7c6ilLKxfgPfRGfJNg24wWro9w2R4p7GeBYitvR9vvSMxBYldYDIjJE\nREJFJPTMmTOOp8wkOzcsJXhXPOHVc1OnaRer4yilXEzDNn2IqGLbe3e3vndHintag0WneYqNiPQB\nQoC30nrcGDPXGBNijAkpVqyY4ykzScR/XgegynMTrQ2ilHJZJYeMwicRQt9yr753R4p7NBCQ4rY/\ncCJ1IxFpCbwKdDLGJDgnXubZ/vsSgnfHE14jDzUb6xCsnm7AgAEUL16ce+655x/3nz9/nlatWlGp\nUiVatWrFhQsXnLK+++67L8M2M2fO5OrVqxm2U9a6r10/25kzYbEc2uNap0XeiiPFfQtQSUSCRMQX\n6AksTdlAROoA/4etsJ92fkzni3x/AgBVntW99uygf//+/Pjjj/+6f9q0abRo0YLIyEhatGjBtGnT\nnLK+jRs3ZthGi7v7KDXkOXwTYct09xkpNsOBw4wxSSIyHPgJ8AI+McbsEZGJQKgxZim2bph8wHf2\nKb+OGmM6ZWLuu7Lrj6W2vfZ78vDwfe2tjpO9rBoNJ3c5d5kla0DbWxflBx54gKioqH/dv2TJEtat\nWwdAv379aNasGW+++eY/2sybN49FixaRkJDA4cOHeeyxxxg/3nYAPvUwws89Z/vjz5cvH3Fxcaxb\nt47XX38dPz8/du/eTb169fjiiy94//33OXHiBM2bN8fPz481a9YwcOBAQkNDEREGDBjAyJEj7/KF\nUc5yb/sBLJo7k0phl4jau5nAag2sjpQhh0aFNMasBFamum9cip/dauaC8FkTCAYqjnjd6ijKYqdO\nnaJUqVIAlCpVitOn0/7iuXnzZnbv3k2ePHmoX78+7du3R0T+HkbYGEPDhg1p2rQpderU+cdzw8LC\n2LNnD6VLl6Zx48Zs2LCBESNG8M4777B27Vr8/PzYunUrx48fZ/fu3QAZzgalsp7fE8PJPfpd/pr+\nLIHz/rQ6Toay3ZC/ezatosquq4RXz83DTdIfxlVlkgz2sF1Vq1atKFq0KGAb4vePP/5ARNIcRjh1\ncW/QoAH+/razg2vXrk1UVBRNmjT5R5vy5ctz6NAhnnnmGdq3b0/r1q2zYKvU7bi/yxAWffw+lbZd\n5Gh4KGWDMxwBwFLZbviBPe+9Ro4bUP4pvRpVQYkSJYiJiQEgJiaG4sWLp9nO3t34j9uOjst0c0hg\n+OewwCkVLlyYHTt20KxZM2bPns2gQZ4zl6cnKTrgKXJfh41vjrA6SoayVXGP2PoLVXbaxpCp17yb\n1XGUC+jUqRPz588HYP78+XTu3DnNdqtXr+b8+fPEx8ezePFiGjdufNvDCKeWP39+Ll++DMDZs2e5\nceMG3bt3Z9KkSWzbtu3uN0453QNdh9nGe996gWP7t1sd55ayVXHf8e5ovJOh3LB/DY+jPFyvXr24\n9957iYiIwN/fn48//hiA0aNHs3r1aipVqsTq1asZPTrt340mTZrw+OOPU7t2bbp3705ISEiawwin\n7pK5lSFDhvw9h+vx48dp1qwZtWvXpn///kydOtUp262cr1D/obbx3qc9bXWUW8o2Q/5G7vidK72H\ncLBSTrovcu1PXE/j7sPRzps3j9DQUGbNmmV1lHS5+2vsbpa0r4F/dBIlFn6Df8WaWbpuHfI3lW0z\nnscnCUoP1blRlVJ3J3+/weRJgD+mPmV1lHRli+J+aM+fVN5+mYgqvtzb5nGr4yg3079/f5fea1dZ\n78FHRrC/vDcVQ89x/PBuq+OkKVsU9y1vjcQ3EUoMetbqKEopD5H/8QHkTYDf33DNuVY9vrgfDd9C\npW2X2F/Zh8YdB1gdRynlIR7sNZLI8l5U2HKWk0cjrI7zLx5f3De++Sy5r0PRJ1y3b0wp5Z7y9O5H\nvmuwbvIQq6P8i0cX9+gDO6m09QIRFb15oOuTVsdRSnmYlr1f5ECgF+W3nOb0sUir4/yDRxf3P6Y+\nRZ7rUKif632qqqx1u0P+GmMYMWIEFStWpGbNmk67qGjQoEHs3bv3lm0WL16cYRvlOnI+1pv88fDr\nlMFWR/kHjy3uMVF7qRh6jv0VvGn28DNWx1EWu90hf1etWkVkZCSRkZHMnTuXYcOcc9Dso48+olq1\n1FMQ/5MWd/fSuu8rHCjnRfm/TnE62nX23j124LDfpjxJrQTI36e/1VFUCm9ufpPw8+FOXWZwkWBe\nbvDyLdvc7pC/S5YsoW/fvogIjRo14uLFi8TExPw9giRAVFQUbdq0oWHDhoSFhVG5cmU+++wz8uTJ\nwy+//MILL7xAUlIS9evX57///S85c+akWbNmzJgxg5CQEPLly8ezzz7L8uXLyZ07N0uWLOHgwYMs\nXbqU3377jcmTJ7Nw4UJWrFjBnDlz8Pb2plq1aixYsMCZL59yAt9evcg/7Qt+nTKEnv9da3UcwEP3\n3E8e3U+FLWeIDPLiwV560ZJKX3pD/h4/fpyAgP9NQObv78/x48f/9fyIiAiGDBnCzp07KVCgAB98\n8AHXrl2jf//+fPPNN+zatYukpCT++9///uu5V65coVGjRuzYsYMHHniADz/8kPvuu49OnTrx1ltv\nsX37dipUqMC0adMICwtj586dzJkzJ5NeCXU3Hur/KgfL5SDor5OcPXHQ6jiAh+65r3tjKLWuQe7H\n9IIlV5PRHrarSGtYjtQjQwIEBATQuHFjAPr06cN7771Hq1atCAoKonLlyoDtG8Hs2bP/nsjjJl9f\nXzp0sE3xWK9ePVavXp1mlpo1a9K7d2+6dOlCly46kbur8nr0UQpM/5o1UwbTc/avVsfxvD33sycO\nUv6vkxwI9KLV4+5RSJR10hvy19/fn2PHjv3dLjo6mtKlS//r+XczFLCPj8/fz09vKGCAFStW8PTT\nT7N161bq1auXbjtlrbYDxnGobA6C/ozh/MmjVsfxvOK+ZvJg8seD76OPWh1FuYH0hvzt1KkTn332\nGcYYNm3aRMGCBf/R337T0aNH+fNP26w8X3/9NU2aNCE4OJioqCgOHDgAwOeff07Tpk0dzpRyKOAb\nN25w7NgxmjdvzvTp07l48SJxcXF3tc0q8+To0Z0CV+HnKQOtjuJZxf38yaMEbYrhUNkcPPTEa1bH\nUS7kdof8bdeuHeXLl6dixYoMHjyYDz74IM3lVq1alfnz51OzZk3Onz/PsGHDyJUrF59++ikPP/ww\nNWrUIEeOHDz5pOPXWfTs2ZO33nqLOnXqEBkZSZ8+fahRowZ16tRh5MiRFCpU6O5fEJUp2g6ZyGH/\nHJTbGM3FsycszeJRQ/4ueKYVtVZHEzXqYdoOmejUZas756nD0UZFRdGhQ4e/5z21kqe+xu5o+ayX\nqDBrGTvblOPRmf8+/fZuZbshfy+cOU7gxmgOB+TQwq6UskzbYVM5UloI2HCE2AtpT7ieFTymuP80\neSAFr4Dp2snqKCqbCAwMdIm9duVavLy8SOjUmsKXYZWFfe8eUdxjL5yi7IYjRJUR2gydbHUcpVQ2\n12H4DI6VFMqsP8CVyxctyeARxX3lxAEUjoOkzm3x8vKyOo5SKpvz8vbmavumFI2FFZOesCSD2xf3\nuIvnCPjjEEdKC+2eetPqOEopBUDHke8TXRxKrg8n/kpslq/f7Yv7isn9KXIZrndshZe3R15wq5Ry\nQ17e3sS2aUyxi7D8jazve3fr4n7l8kXKrD/AsZJC+2fetjqOclE3LwKqWrUq1atX5z//+c/fj+mQ\nvyozdXrhA04Ug2Jrd5MQfzVL1+3WxX3FpCcoGgtX2zfVvXaVLm9vb95++2327dvHpk2bmD179t/F\nU4f8VZnJx9eXC63qU+I8LJ02KEvX7bYXMcXHXSK0RSOu5RIe/GWnFncXlvICm5NvvEHCPucO+Zuz\najAlx4xxuH3nzp0ZPnw4rVq1okqVKqxbt45SpUoRExNDs2bNiIiIYOjQoTRr1oxevXoB/KPdTZk1\n5G+HDh0oWLAgBQsWdHjIX72IyXUlXk/gj+a1AWiydjs+vjnvankefxHTsjcG4ncJ4to20cKuHBYV\nFUVYWBgNGzYEdMhflfl8fHNypkVtSp6DpW9m3WxNblkVE+KvUGLtHk4Us/VpKfdxO3vYzhYXF0f3\n7t2ZOXMmBQoUuGVbHfJXOVPnVz5m0+p6FPp5C8mvJOLl7ZPp63Roz11E2ohIhIgcEJHRaTyeU0S+\nsT/+l4gEOjtoSkunDKD4BbjYpqHutSuHJCYm0r17d3r37k23bt3+vl+H/FVZIWfuPJxqXp3SZ2Dp\njKeyZJ0ZFncR8QJmA22BakAvEUl9RGggcMEYUxF4F8i0E84T4q9S7NedxPhBpxf/L7NWozyIMYaB\nAwdStWpVRo0a9Y/HdMhflVU6vvoJZwtCvlUbSM6CD2hH9twbAAeMMYeMMdeBBUDnVG06A/PtP38P\ntJC0vsM6wbI3B1PiPJxvHXLXByZU9rBhwwY+//xzfv31V2rXrk3t2rVZuXIloEP+qqyTO28BTjSt\ngv8pw7KZIzJ9fRmeLSMiPYA2xphB9tuPAw2NMcNTtNltbxNtv33Q3uZsqmUNAYYAlC1btt6RI0du\nO/Dit55E1v1Bux9C8cmZ67afr7Kep57JoUP+qtsVd+k8a3s+gLR7iA53eG2Oo2fLONJhndYeeOpP\nBEfaYIyZC8wF26mQDqz7X7q8OAdevJNnKqWUtfIVLELHVVmzM+BIt0w0EJDitj+QeoqRv9uIiDdQ\nEDjvjIBKuSod8le5MkeK+xagkogEiYgv0BNYmqrNUqCf/ecewK/GqqujlEvSX4fMo6+tSkuGxd0Y\nkwQMB34C9gHfGmP2iMhEEbk5M8bHQFEROQCMAv51uqTKvnLlysW5c+e0CGUCYwznzp0jVy49/qT+\nyW2HH1DuIzExkejoaK5du2Z1FI+UK1cu/P398fHJ/AtjlPWceUBVqbvi4+NDUFCQ1TGUylbcdmwZ\npZRS6dPirpRSHkiLu1JKeSDLDqiKyBng9i9RtfEDzmbYyrW5+za4e35w/23Q/NazYhvKGWOKZdTI\nsuJ+N0Qk1JGjxa7M3bfB3fOD+2+D5reeK2+DdssopZQH0uKulFIeyF2L+1yrAziBu2+Du+cH998G\nzW89l90Gt+xzV0opdWvuuueulFLqFrS4K6WUB3Lp4u5qE3PfLgfy9xeRMyKy3f5vkBU50yMin4jI\naftMW2k9LiLynn37dopI3azOmBEHtqGZiFxK8R6My+qMtyIiASKyVkT2icgeEXk2jTYu+z44mN/V\n34NcIrJZRHbYt2FCGm1crxYZY1zyH+AFHATKA77ADqBaqjZPAXPsP/cEvrE6923m7w/MsjrrLbbh\nAaAusDudx9sBq7DNxNUI+MvqzHewDc2A5VbnvEX+UkBd+8/5gf1p/B657PvgYH5Xfw8EyGf/2Qf4\nC2iUqo3L1SJX3nN3qYm574Aj+V2aMWY9t55RqzPwmbHZBBQSkVJZk84xDmyDSzPGxBhjttl/voxt\nToUyqZq57PvgYH6XZn9d4+w3fez/Up+J4nK1yJWLexngWIrb0fz7l+LvNsY2qcgloGiWpMuYI/kB\nutu/Sn8vIgFpPO7KHN1GV3ev/Sv3KhGpbnWY9Ni/6tfBtueYklu8D7fIDy7+HoiIl4hsB04Dq40x\n6b4HrlKLXLm4O21ibos4km0ZEGiMqQms4X+f/O7ClV9/R23DNlZHLeB9YLHFedIkIvmAhcBzxpjY\n1A+n8RSXeh8yyO/y74ExJtkYUxvbHNINROSeVE1c7j1w5eLu7hNzZ5jfGHPOGJNgv/khUC+LsjmL\nI++RSzPGxN78ym2MWQn4iIifxbH+QUR8sBXGL40xP6TRxKXfh4zyu8N7cJMx5iKwDmiT6iGXq0Wu\nXNzdfWLuDPOn6hfthK0/0p0sBfraz9ZoBFwyxsRYHep2iEjJm32jItIA29/EOWtT/Y8928fAPmPM\nO+k0c9n3wZH8bvAeFBORQvafcwMtgfBUzVyuFrnsNHvGmCQRuTkxtxfwibFPzA2EGmOWYvul+Vxs\nE3Ofx1ZAXYKD+UeIbZLxJGz5+1sWOA0i8jW2Mxn8RCQaGI/tYBLGmDnASmxnahwArgJPWJM0fQ5s\nQw9gmIgkAfFAT6v/KFNpDDwO7LL3+QKMAcqCW7wPjuR39fegFDBfRLywffB8a4xZ7uq1SIcfUEop\nD+TK3TJKKaXukBZ3pZTyQFrclVLKA2lxV0opD6TFXSmlPJAWd6WU8kBa3JVSygP9P3pww7Z6csQa\nAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "
" ] }, "metadata": {}, @@ -505,14 +2048,3066 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 48, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEICAYAAACktLTqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzsnXd8lFX2h58zM6lAaAkkEHoRkE4A\nFaSoqJRFRaygoChrW9uuyu661p+KZV23WNaKHXWRorIqCuiiIEUQAop0CJDQS0idmfv7474ThpAy\nSaa8Ge7zEZN5y70nM+/7nfOee+65opTCYDAYDNGFI9IGGAwGgyH4GHE3GAyGKMSIu8FgMEQhRtwN\nBoMhCjHibjAYDFGIEXeDwWCIQoy4RxEiEiciuSLSLARtO0TkXRE5JCLfBrv9SvqeLyJXhKDdaSJy\nb7DbDQUiMl1E7q/muSG7Lqz2/yYiN4Wi7Qr6TBeRTBGJCWe/tQkj7mHAurF8/7wiku/3elwN2l0i\nIuN9r5VShUqpukqpXcGx/ATOBc4E0pRSg0LQPgAiMlVEXvXfppQ6Ryn1QbD7UkpNVEo9FaBd1RbX\ncBPO60JEmgNjgdcDODZbRAYGo1+lVBawFJgYjPaiESPuYcC6seoqpeoC24Hf+G17N9L2BUgrYLNS\nKj/ShtRGRMQVaRtCxPXALKVUUQT6fhf4bQT6rR0opcy/MP4DtgLnldrmBP4CbAb2oS/aBta+OsB0\n4ABwCPgBaAj8FfAABUCu9ToeUEC6de504DngC+Ao8B3Qyq/fkcAGq93ngCXA+DJsvsXqx2319Sfg\nJuArv2Oq2ncPYD5wEMgGfg9cDBQBxVY/S61jS+yy3quH0V+SOWiPsZ61r5Nl43VAFrAXuKeCz2I6\ncL/1+4XARutv2wvsBMZZ+263bCq07PrI2t4CmG19ZpuBm/zangq8B3xg/f3jrW3vAzOsbcuA0/3O\n6Qb8z/o8VgPDy7E1BfivZecBy4Y0a18g10Ujy7a9wBbgXkCsfTcBXwP/sOzYRKnrtdR7+D0w1u91\nKvC5de5+YL61/SPAC+RZdt1ubT8bfU0fAn4EBvi1tQR4FFgBHLbet/qlrrkioGmk72s7/ou4Aafa\nP8oW9ynWTd3MumCnAW9Y++4A/gMkAC6gL1DH2neCGJdxE08H9gC9gRirnWnWvlTrJhtl7bsXLWAn\nibt1fGkxD0Tcy+u7oSUstwFxQBLQ19o3FXi1VN/+4n4L8DP6SSIJ+BR4xdrXybLhecuevtbN37ac\nv6m0uBcDf7bsvQQtwHVLH2u9dgJrgPuAWKAj+gtnsN/fUQiMQD8hJ1jbioDRVh/3A+uttuKBbegv\nuRjgAuvzaVOGrU2Bi6w266PFfXpZ71c5n82HaLGtC7RHC/w4v8+1GLjWsusuYGsF1/NRoJvf678B\nf0dfq7HAIL992cBAv9et0V8A51nv0Qjrumjo93dssz7XusAnZVwbvwLnR/q+tuM/E5axB78Fpiil\ndimlCtCe6RUiIugbLQVop5RyK6WWKaWOVaHtD5VSPyqlitHeWk9r+2hgmVLqU2vfM2gvOpiU1/fF\nwEal1L+UjgcfUUotC7DNccDTSqltSqkjaDEeZ71XPh5UShVYbf4CdA+w7TzgCaVUsVJqJloQ25dz\n7EAgXin1pFKqSCn1K/AGcKXfMd8opeYqpbzqeDjre6XUHOs9mQoko78Az7b2P2v1/wUwDzhpIFkp\nlaOUmq2UyldKHQaeAAYH8geKSBxwKXCfUipXKbUR/YR1jd9h65VSbymlPMCbQCsRaVBGW0606B71\n21yMdlJaWu9LRYPvE4CPlVJfWe/RXGAdcL7fMW8opX5RSuUCDwJXlWrjKHCSbQYTc484lii1AOZa\nmSiHgJXoz6Yx8BrwDfAfEckSkcetmypQsv1+z0PfjKBvwB2+HUopLzoUEUzK67sF+nG/OjRDe3M+\ntqE92EbWa49Sal85/VbGXut9COTcVkBr32dmfW53o5+IfOwo4zz/99wN7EL/Tc2A7cpyRy22Ac1L\nNyAi9UTkdRHZLiJHgC/RXxKBkIq+trZX0E/pzw3KeB8s8T8K1PPb/Jj1Ny0QkY0icncFtrQCxpd6\nDzPQ74UP//dwG5AoIvX9ttVDh3QMpTDiHmGsm3kncI5SqoHfv3il1D7Ls31AKdUJGARcxnHvsCYl\nPXcD6b4XIuKgDCGpgGNAot/r1PIOLIMdQLty9lX2N+1Ci4KPlkA+OvYcSkrbtQP4pdRnVk8pdUkF\n54D+YgNKPN9m6L9pF/pv8aclZX/hTkF/dn2VUkloT9f/yaWi9zAbHfv276u8fgJhNTokpTtW6rBS\n6g6lVCv0E8L9IjKgHLt2oMMs/u9hHaXU3/yOaeH3e0sgz3paQUTi0aGd1dW0Paox4m4PXgKmikgL\nABFpIiK/sX4/T0S6WOJ7BD1g6LHOywHaVrPPOUB/ERlhZXLcjY6FB8oqoJeInC4iicADVTh3FtBe\nRG4WkVgRSRKRvta+HKBNqTCLP+8DfxCRliJSD/g/4L1SHm8oKP1eLwIQkTtFJF5EXCLSXUR6V9LO\nWSIyysrPvhcdc/4RPebisNpzicgwtGh/VEYb9dAe9SERSUbH7iuytQSlVCEwE3hcROqISDv0uM47\nldhdHnPxCwmJyGgR8X1+h9HXannX65vAZSJyrog4RSTB+t3fUZgoIh1FpC7wEHqA2sdZQKZSyv9J\nw2BhxN0ePAV8BcwXkaPoDASfSDRHD5gdBTLRN9OH1r6/AdeKyEERCShf24dSajc6fvkPdLZHOnqA\nsDDA89dYdv8PHddeWIW+DwLD0E8ge9CDir785+noJ4IDIvJ9Gae/CHyMfo82oT32ih79g8XLQF8r\nfDDdipmPQAvMNvRA4ItUHgKagU4fPIj2bC9VSnmssZZR6Jzx/cCzwBVKqbLCV8+gwzD70V8yc0vt\nr+y68KUPbkNnLL2KztCqDtOAi0Uk1nrdGX0tHAW+BZ5RSi2x9j0GPGa9h7cppTaj34OH0dfgNvQX\njb8uvY3+Qt+JfuL4vd++cWjHyFAGEnqHx1AbsLz3bHQO/uJI2xONiMhUIFkpdUOkbQkmIvIs8KtS\nKqhCKyJLgH8ppU56qrAmT30J9LS+aA2liNaJFYYAEJHhaA+4EJ11kofOKTYYAkYpFY4np9J97gRO\nD3e/tQkTljm1GYTOcd6DLi9wiYrMTEODwRBkTFjGYDAYohDjuRsMBkMUErGYe3JysmrdunWkujcY\nDIZayYoVK/YppVIqOy5i4t66dWuWL18eqe4NBoOhViIi2yo/yoRlDAaDISox4m4wGAxRiBF3g8Fg\niEKMuBsMBkMUYsTdYDAYohAj7gaDwRCFGHE3GAyGKMQUDjOEn/yDsHkh7N+ol29o2BpaD4SktAgb\nZkMO74Sti+DQdnA4oHEHaDsE4pMibZnB5hhxN4SP/IOw4AlYMQ08pcvGC3Q4H859AFK7RsI6e7Fz\nBXz9KGxecPK+mEToOwkG3wdx9U7ebzBgxP2UochTxD3f3MMN3W6gW0q38BuwezVMHwdHsqDnOOh9\nLaR2AwT2rYefP4Vlr8K/z4Y+18GwRyAu0KVPo4j8Q/DFn2HVO1CnCQz9M5w2ApI7gNcDu1fBijfh\n+3/BL3Phqvch5bSwm7ksexnTf5nOU4OewumoypK+hnARsaqQGRkZypQfCB+Ldi7i5q9upm9qX16/\n4PXwdr5zBbx1iRbry9+C9Iyyj8s/CAunwtKXIfk0uOIdSG4fXlsjSc5a+GC8DsGccQsMuqf88MvW\n7+CjiaA8MOETaBre0uajZo5i25FtTB85ndOTTVn1cCIiK5RS5dxExzEDqqcAqrgYz32P0ypH0TSx\naXg7P7QD3rsCEurD9Z+XL+wACQ1h+JMw/mM4tgdeHgKbvwmbqRHl1y/g1fOgKA8mfgbnP1pxXL31\nAP1+OmPh3cvhaE74bAXS6qTRMUtx4N77UV5vWPs2BIYR91OA4pw9NFm+ha7bFHnFeeHr2OOG/1wP\n7kIY9x9o0DKw89oNhcnfQP10ePcyWP/f0NoZadb8B6ZfDckd4bffQsszAjuvcTu4ajrk7YeZkyGM\nIquUovsWRfL3v+A9ciRs/RoCx4j7KUDe0QMAJBTCvvx94ev4u+cgaymM+lvV48INWsB1c6FpFx2r\n/+Wz0NgYaTJnwIwboEV/HV6pV8Unq2Y94cIndPbRsldDYmJZ7M3fS0KRDukWHcsNW7+GwDHifgpw\n9PBeABKKFHvz94an04Pb4NunofNo6Da2em0kNoJr52gB++g62PK/4NoYabZ8CzNv0p76uP9UP72x\nz0Rodw7MfzRs4Zm9+XtJtBKe8nIPhKVPQ9Uw4n4KUHTsKACNPQnsy99HWAbRv3oQxKG9ypoQn6SF\nr1EbeP8q2PljcOyLNNmZ+omkUVud8RKbWP22RGDEM+Au0AIfYgrcBRwtOkpDdzwARblHQ96noeoY\ncT8FKM7TN19DdzzF3mIOFx4ObYe7f4K1M+HM23TcvKYkNoJrZkJiQ3jnUti3oeZtRpJDO+DdsRBb\nR39xJTSseZuN20HGJFj1XsjfH19or4EnFoCiYybmbkeMuJ8CePKOAVDfrac1hDw0881TEN8Azrot\neG0mNYNrZoHDCe+MCXt2SNDIO6C/oIqOwfgZemwhWJz9e3DF63BYCPGJe91ind9efMx47nbEiPsp\nQPExLe51ivTHHVJx3/urHvzsNxni6we37cbt4OoP4Ng+eO8yKKxlA3nFBTor5uAWuPLd4Oem102B\nPhP0IO3hrOC27Yfv+vHF3N3W9WWwF0bcTwF8nnt8oU6V25sXQnFf8gK44rS4h4LmfeCyN3XM+qMJ\n4CkOTT/BxuuBj2+E7YvhkpegzaDQ9HPGzaAU/PBSaNoH9uTtASCuwANAcV4t+5I9RTDifgrgyde5\n7TH5biCEnnvRMZ2zffoY7UWGio7n6/TKjV/Bp3dqMbMzSsHnU+DnOXDB49D10tD11aAlnDYcVr0f\nsi++vXl7cYkLV34RAG4j7rbEiPspgDdPi7sjr4D6cfXJPpYdmo7WzYaio9D7mtC070+fCbpw1sp3\n4JsnQ99fTfjuOV1S4czb4MxbQ99f72shbx/8+nlIms/OyyY1oQnkFQDHry+DvTDifgqg8vP1L3n5\npMU3Zfex3aHpaOU70KgdtDwzNO2XZsgfdRGyhU/Aj2+Fp8+qsuo9+Ooh7a0PC32aIgDtzoV6afrz\nCAG7c3eT7kpBrCcmjxF3W1KpuIvI6yKyR0Qyy9kvIvIPEdkoIqtFpHfwzTTUhBJxV4p0V0poPPf9\nm2Dbd9BrvM67Dgci8Ju/azH75E7YMC88/QbKujkw+1ZoMxguflHXYw8HThf0uAo2fAlHgv9FnpOX\nQ7qjUclrr+/6MtiKQK62acCFFewfDnSw/k0GXqy5WYZgogqO105v6a3P+e9v4tiSJQC8tfYtLp1z\nKY8teaxmdWdWvqMnLfW4qqbmVg1nDFz+ps48+XACZNmk0ujGr3VdneYZcOV7epA5nPQaD8oLP71f\n7SaOFB3hwe8fZOycsXzwywd62zffMGJGFs29xzOhlBF3WxJQyV8RaQ18qpQ6aRUFEfk3sFAp9b71\nej0wRClVoctgSv6Gh8IiN2/f+BIJhTrH/UhiPEl5BXjFybHERJzFR0EceFEIguBCL4/ktX4CVO6J\nO/AAgrcSfyGUQ58OPAjgxYEKwOYSgvigoQBB4VBeQPCKI6R/c0U40NlRlX0mJyKAw3of3WBdF0oU\nInVIzM/DobwcSUwgKU+Lel6Cm+tfuQWny0R5w0GgJX+DsVhHc2CH3+ssa9tJ4i4ik9HePS1bBlgh\n0FAjtmUdpTChC06VQ2zRYZLyCjgWB/HFkJh/jIIYwUEcLuXFSzFIEb4bPHDVU/q/AMIxQdPRMhXT\ngeDFidcStAB7C6L6CgopEVXBEUJlr+yvE6Xt8VpfOYHhReEBUTiVAyEG/aVdRIwnD6/DQYHTWyLs\nhXENKYpLYf+hApok16CEgiHoBEPcy7pqyryklVIvAy+D9tyD0LehEnxPZs2zvqTFLh2KeXCck5vH\n/537F/+Fs5oP4OnBx2c0FrgLiHXG4pAqeGHfPAULHoff/wL1UoNqf5U5sgveHA2Htuk4d3WLllWH\nle/CJ7dD06569mmd5PD1XRb7N8E/e8OFU3X+e4B4vB7cyk2c83go6Z5v7uG7nYv4Y98pfPTWn/jj\nR/oLbGuLIWxud1l46hUZqkQwnqOyAP851OnAriC0awgCvhLfeX4h3/Xp8Pav73Kk+CiXdjwx5zre\nFV81YQf45VNI7xt5YQddpmDSlzrWPWMSzH9MTyAKJZ5i+O99MPsWaDVAl+6NtLCDntHbpEuVyyU7\nHc4ThB1gTIcxHC3OZfqGD8lsddyfy4vTom7W67AfwRD3OcC1VtbMGcDhyuLthvDh86jy4o9va1Iv\njWXZy0ivm06/1H416+DQdl0orPOomrUTTBIbwbWzoOd4+PYpeOsiOLwzNH3t3wRvjNAzQs+4Ra8i\nVd3SvaGg00idxXRsf42a6Zfaj6aJTVm9dzXNG7cp2Z5vfQd4jeduOwJJhXwfWAycJiJZIjJJRG4S\nkZusQ+YCm4GNwCvALSGz1lBlfB7V0ToO6px1Ji2nvcG/zvkXDeIaMOH0CVX30kvzy1z9s5ONxB10\ndsrFz+vQzM4V8Hx/WPpK8Lx4dxEsfh5eGqgX+L70NV3e2GmzNec7jdJZMzWc0OR0OBnXeRzJCcn8\n45x/kP7CC9QdMoS8WO3Fe71G3O1GpVeiUqrC3DalXcMwTLszVAePpe7FsQ5avv4KAKcBCy5fgMsR\nBCFaPxdSOukQgB3pebVeDOPTu2HuH2D563ryU6dR1cs797h1GYEFj8H+jdB+mM61r988+LYHg7Qe\nkJSuP6de42rU1MTTJ3JNl2v0dXNOG+qdMxTPNTqWb8TdftjMzTAEG9/Tssd14rh3UIS9OB+2L4F+\nN9a8rVDSqK2uB792ph74/fAaPZO297XQdUxga7vu36TPX/EmHN6u1zu9+iPoMCx8k7aqgwi0PwfW\nztZfTDV4shARXHLi+R6XzqgwURn7YcQ9yvEW6eJRHmcIcpC3fQ+eQmg7NPhtBxsRLeRdLoLMj2HF\nG3q1qK8e1EKfngGN20PdJromenE+HNsLe9frsM7BLbqdVgN0+OW04bq2fG2g7VBdnmHXSmjRN6hN\ne5wOXBx/QjTYByPuUY63QBd38sSEQIg2LwBnLLQ6K/hthwqHE7pfpv/t36Sn6G9eCFu/g9UfnHx8\nUjo07wX9fwudfxOclaXCTdshgOjPK9ji7rLEvdgd1HYNNceIe5SjCrW4q1DMHty0EFr0r9n6n5Gk\ncTtofPPxHPCiY5B/SK9F6oqHOingio2sjcEgsZGOvW9aAIPvDWrTXqeAB5TlRBjsg5kvHOWoYutx\nOdghhNw9kLMG2tWCkEygxNbRA6ON2+mf0SDsPtoNhaylUBjkJfGc+rpS7hDPJTBUGSPuUY5XaXGX\nYMfcN3+jf7YdEtx2DaGh7RDwunX4KZhYg8lej4m52w0j7lGOsm46kSB77psX6kWw03oGt11DaGhx\nhg41bV4Q1GbFiLttMeIe5Xg9+nHZEexa4lv/B60H1p6MkVOdmHid7x9kz12s68p3nRnsgxH3KEd5\ndAJyUMX98E5dmKvVgOC1aQg9Lc+CnEw9aBwkxJrhrMwkJtthxD3KUVb+sQRj0pKP7Yv1z1ZhWk7P\nEBxanQko2PFD0Jos8dzdJixjN4y4RzlebwgGVLd9D7F1oWm34LVpCD3NM8ARoz+/IFEi7mYSk+0w\n4h7tWLFQZ00LhPmzfTG06Ge/IlmGiolNhGY9jz95BQHfQL0yA6q2w4h7lFPs0TMHHcES4rwDsGdd\n7ZqVajhOq7Ng54+6vEIQ8I3lKDOgajuMuEc5xW5dW8bhDFJWiy9e29KIe62k5VngLQ7aQuJiZUu5\n3ab8gN0w4h7leD2WuAdrQHXb97qeTPM+wWnPEF5a9gckaKEZh0/crevMYB+MuEc5bp/nHqxJTNuX\nQLPeOm/aUPtIaKiX3gvSoKpvQNX3hGiwD0bcoxyvtfJQUMIy7kK9pF6QKwsawkyLvjruHoQMF1+e\nu9djwjJ2w4h7lBPUVMjsTF2/Pd2Ie60mvS8UHob9G2rclO+68pgBVdthxD3K8fiyZYJRJiBrmf5p\nxL124/v8fJ9nDfBly3iM5247jLhHOcoXlgmWuCc1h6RmNW/LEDkad4C4+kER9+OTmIy42w0j7lGO\n73E5KDH3rGV6OTpD7cbhgPQ+QUmH9DkNJixjP4y4Rzm+2jI1FvfcvbpYmAnJRAfpffVktMLcGjUj\nDhNztytG3KMcn7g7azqgutPy8oy4RwfpfUF59aLZNcDhMNkydiWgO15ELhSR9SKyUUSmlLG/pYgs\nEJGVIrJaREYE31RDdfAGK+aetQwcLr0Wp6H245uEVsO4u2+Gqqnnbj8qFXfRlYGeB4YDXYCrRKRL\nqcPuBz5USvUCrgReCLahhurhWyGnxrVlspZBajeISQiCVYaIk9gIGrevsbg7nKYqpF0JxHPvB2xU\nSm1WShUB04GLSh2jgCTr9/rAruCZaKgJSvnCMjUQd68Xdq3SM1MN0UOz3jUPy/gWyDaeu+0IRNyb\nAzv8XmdZ2/x5CBgvIlnAXOB3ZTUkIpNFZLmILN+7d281zDVUFeUJwoDqwS1QeASa9QqSVQZb0KwX\nHN0NR7Or3YSvZpEv/GewD4GIu5SxrfSaWlcB05RS6cAI4G2RkwuIK6VeVkplKKUyUlJSqm6tocoo\nZdVzr4nn7vPumpnFsKMK3+e5a1W1mzgeljHibjcCEfcsoIXf63RODrtMAj4EUEotBuKB5GAYaKgZ\nSunvYaerhuLuioeUTkGyymALUrsDArtrIO4+z90s1mE7AhH3ZUAHEWkjIrHoAdM5pY7ZDpwLICKd\n0eJu4i42wHfTuWoSltm1Cpp2BWdMkKwy2IK4upDcMSieu+8J0WAfKhV3pZQbuA34AvgZnRWzVkQe\nEZHR1mG/B24UkZ+A94GJyucyGiKLb0DVVU1h9np1JUgTkolOmvWs0aCqy+mLuZvb3W4E9KyulJqL\nHij13/aA3+/rgAHBNc0QDEpmqFY3z/3AZig6agZTo5VmvWD1B3BkNySlVfn0kmwZE3O3HWaGapSj\nLI8qxhVbvQZ8Xl2a8dyjEt/nWs24u9MK1Zk8d/thxD3K8eW5u6o7oLp7lRlMjWZSu4E4qh13d7os\nCTHibjuMuEc7lufuqm7MfddKLQA1neFqsCe+QdVqeu4OMZ67XTHiHuX4xrWr5bn7BlNNSCa6Sav+\noGrJdWUGVG2HEfdoxxeWialGzH3/RijKNYOp0U6zXpCbowdVq4grRnvuynjutsOIe5TjG1B1VifP\n3feobtIgo5uSmapV9959WVheZcTdbhhxj3ZKZqhWQ9x3rQRXAiSfFmSjDLbCN6hajbh7ycxnM63F\ndhhxj3J8MfcySv1Uzq5VZjD1VCC2jv4Cr4bn7vLNWjZhGdthxD3ascTdEVNFz93rhew1ZnGOU4W0\nHrB7dZVP8w2oKjOgajuMuEc7PnGvasz90DY9MzW1awiMMtiO1G6Qm63Xyq0CDl+4z4RlbIcR92jH\nuueqvIZq9hr9s2m34NpjsCep1uecs6ZKpzmscJ/x3O2HEfcox3fTOaoq7jmZepCtSecQWGWwHT5x\nz66auIvLVxXSxNzthhH3qMcXc6/ioGh2pl5jMzYxBDYZbEdiI0hKr7K4m7CMfTHiHu34smUcZS2o\nVQE5a3QNd8OpQ2q3qou7w5IQo+22w4h7tOOLuVclz73gMBzabgZTTzVSu8G+X6E4P+BTSgbqTSqk\n7TDiHu2oasTcc9bqn2Yw9dQitZsuV7FnXcCnOJz6idBEZeyHEfdox+e5O6rwUWdn6p/Gcz+1qMag\nqom52xcj7tGOdc9VKeaeswYSGkG9qq/MY6jFNGgFsfWqJu4lT4RG3O2GEfdox7rnqjSemp2pvXap\n4iCsoXbjcOjP3ffkFgDieyI0ee62w4h7tFMyiSlAofa4dczVxNtPTVK76TkOAQ6QlgzUG223HUbc\noxzx5bkHGnM/sAncBcfjr4ZTi9Ruuob/wS0BHe4oqQoZQpsM1cKIe7SjtMce8Afti7eawdRTkyoO\nqkrJE6FRd7thxD3K8d16AVf8zckER4yp4X6qktIZxBmwuJeE+0yau+0I6JYXkQtFZL2IbBSRKeUc\nc7mIrBORtSLyXnDNNFQbpUB5Aw/LZGdCymngqsayfIbaT0y8/vwDFfeqpNgawkqlBUdExAk8DwwD\nsoBlIjJHKbXO75gOwB+BAUqpgyLSJFQGG6qIqmrZgUxoMzg0thhqB6ndYMv/AjpUTFTGtgTytdsP\n2KiU2qyUKgKmAxeVOuZG4Hml1EEApdSe4JppqD4q8Akmx/bD0d0m3n6q07QrHN2lr4dKcPpybM0k\nJtsRiLg3B3b4vc6ytvnTEegoIt+JyBIRubCshkRksogsF5Hle/dWbVEAQzVRUpIxUym+Wt6mYNip\nTRVquzsscRej7bYjEHEv67m+9EfpAjoAQ4CrgFdFpMFJJyn1slIqQymVkZKSUlVbDdUmwDuvpOyA\nSYM8palCxoyYiW62JRBxzwJa+L1OB3aVccxspVSxUmoLsB4t9oYII4rAH5lzMqFuKtRJDqlNBptT\nJxnqNQtI3E31AfsSiLgvAzqISBsRiQWuBOaUOmYWMBRARJLRYZrNwTTUUBMC9dzXGK/doEntFtCC\n2SXlB8p8wDdEkkrFXSnlBm4DvgB+Bj5USq0VkUdEZLR12BfAfhFZBywA7lFKVT4aYwg5QoAxd3cR\n7F1vBlMNmtSuVm33ggoP83nuJuZuPwJae00pNReYW2rbA36/K+Bu65/BTqiS/1XMvvXgLTaDqQZN\n066gPLD3F2jWs9zDfPMnjN9uP8wMhChHkMCiMmYw1eBPScZMABUildfE3G2IEfcoRj9QCQHdeTmZ\n4IqHRu1CbZahNtCoLbgSAiz/a5Tdjhhxj2K8JR5VADdf9hpo0hmcAUXqDNGOwwlNuwTkuYtSRt9t\niBH3KMat3DosU9mdp5S+iU0LHj5yAAAgAElEQVS83eBP0676Sz+AVFoxUXfbYcQ9ivF4PYiSyjMZ\njmZD3n4TbzecSGo3KDgER3ZWcqCyqlwY991OGHGPYoq9xQQUc/c9ehvP3eCP73qoNO6uEESHAQ22\nwYh7FONRHgIS92xrskrT00NtkqE24bseKqsxoxSiBLdyh94mQ8AYcY9iPF5PYDH37Exo0BISTioH\nZDiViU+CBq0q9dz1JDnB4/WExy5DQBhxj2LcXjcBTS/JyTQLYhvKxrdgdqUYz91uGHGPYgLKlinO\nh/0bTdkBQ9k07Qr7N0HRsfKP8YVlvEbc7YQR9yjG7XXrlZgqymLYs07PMDSDqYaySO0KKNjzSwUH\n6QFVE5axF0bco5jjMfcKKCk7YMTdUAa+L/0KB1V1zN147vbCiHsUo2OglYRlcjIhti40aB0mqwy1\nigatILZeJYOq2nM3MXd7YcQ9itGeeyVkZ+qUN7OKvaEsHA59fVQ0qKoUmJi77TB3dBRT6SQmpSBn\nrYm3Gyomtau+TioYuzExd/thxD2K8SiPHlAtj0PbofCwibcbKqZpVyg8Aoe2lXOAFn0TlrEXRtyj\nmErz3H1rZKZ2D4s9hlpKyYLZ5YdmjOduP4y4RzEer8danb6cx+mcTEB0qV+DoTyadAak3Li7b4aq\nDgMa7IIR9yjGrdwVh2Wy10DjdhBbJ3xGGWofsXX0dZJddjqkQg+o6lpGBrtgxD2KOR6WqcBzN4Op\nhkBo2rXCjBkxee62w4h7FFNhzL3gCBzcagZTDYGR2lVfLwVHTtplCofZEyPuUYxHVVAVcs86/dMU\nDDMEgu868V03/ijMJCYbEpC4i8iFIrJeRDaKyJQKjhsrIkpEMoJnoqG6HPfcy/DeSzJljOduCADf\ndVJO3N2UH7AflYq7iDiB54HhQBfgKhHpUsZx9YDbgR+CbaShelQYc8/JhPgGkNQ83GYZaiNJzfX1\nUmbc3dSWsSOBeO79gI1Kqc1KqSJgOnBRGcc9CjwFFATRPkMNOF5bpgyyM3X+spiFjQ0BIKKvl3Jy\n3QWTLWM3AhH35sAOv9dZ1rYSRKQX0EIp9WkQbTPUED3AVYZ4ez06dmoWxDZUhaZd9XVz0sCpqS1j\nRwIR97Jcu5LnfBFxAH8Dfl9pQyKTRWS5iCzfu3dv4FYaqoXb6y7bbz+wGYrzTBqkoWqkdtXXzYEt\nJ2z2iYERd3sRiLhnAS38XqcDu/xe1wO6AgtFZCtwBjCnrEFVpdTLSqkMpVRGSkpK9a02BIR+THac\n/PXsWxA7zZQdMFSBcmq7i/V/ky1jLwIR92VABxFpIyKxwJXAHN9OpdRhpVSyUqq1Uqo1sAQYrZRa\nHhKLDQFzvCpkKbLXgCMGkk8Lu02GWkxKJxDnSXF3PZzqMHnuNqNScVdKuYHbgC+An4EPlVJrReQR\nERkdagMN1afcm233amjSCVyx4TXIULuJiYfkjmVkzFhVIU1Yxla4AjlIKTUXmFtq2wPlHDuk5mYZ\ngoF+TI45eUf2GugwLOz2GKKA1K6wbXEZO0y2jN0wM1SjmDKzZY7mwLE9psyvoXo07QpHsiDvQKkd\nDlMV0mYYcY9iSh6T/fW9ZGaqSYM0VAPfTNWctce3WdeXibnbCyPuUYxbuU+epOTLlDFlBwzVwVdj\n5qS4u8mWsRtG3KOYMqtCZq/WK9rH14+ITYZaTr2mUCflpIwZsxKT/TDiHsWUxNxLh2VMSMZQE5p2\nLZXrbtWWMZ67rTDiHsX4asuUTCcuzIX9myCtRwStMtR6UrvCnl/A4yfmYsoP2I2AUiENtZOTwjJ7\n1gEq7J57cXExWVlZFBSYmnKhID4+nvT0dGJiykh7DQVNu4GnEPZvOL7+rjJhGbthxD2KKRF3n76X\nDKaGV9yzsrKoV68erVu3thbsNgQLpRT79+8nKyuLNm3ahKfTktrumVrcBeO52xATloliPMpzYrZM\n9hpIaBj2Gu4FBQU0btzYCHsIEBEaN24c3qei5I7gjC0VdzeTmOyGEfcoxu0pRvl77rtXR6yGuxH2\n0BH299YZAymnlcqYETOJyWYYcY9ivG6/PHeP26rhbmamGoJA026lct2N5243jLhHMW6vn+e+fyO4\nC4y4V8KIESM4dOhQhcc88MADfPXVV9Vqf+HChYwaNapa59qK1G6Qm6PLWQiYZfbshxlQjWK8Hr/a\nMqbsQIUopVBKMXfu3EqPfeSRR8Jgkc3xpdPu/snaYLJl7IYR9yjG4ynWYRkRnSnjjIPkDhG16eFP\n1rJu15GgttmlWRIP/ub0So979tlnef311wG44YYbuPjiixk+fDhDhw5l8eLFzJo1i8GDB7N8+XKS\nk5N59NFHeffdd2nRogXJycn06dOHP/zhD0ycOJFRo0YxduxYWrduzYQJE/jkk08oLi7mo48+olOn\nTixdupQ777yT/Px8EhISeOONNzjttCiqn+9zEnb/BLTEeO72w4Rlohjl8RyfwJS9RqetOcOUC20z\nVqxYwRtvvMEPP/zAkiVLeOWVVzh48CDr16/n2muvZeXKlbRq1ark+OXLlzNjxgxWrlzJxx9/zPLl\n5a89k5yczI8//sjNN9/MM888A0CnTp349ttvWblyJY888gh/+tOfQv43hpX4JGjcHnavslIhMTNU\nbYbx3KMYj8cNYi2zl70aOo2MtEkBedihYNGiRVxyySXUqVMHgDFjxvC///2PVq1accYZZ5R5/EUX\nXURCQgIAv/nNb8pte8yYMQD06dOHjz/+GIDDhw8zYcIENmzYgIhQXByFmSRpPWH7EmA0CsHticK/\nsRZjPPcoxuNxoxCcuCFv//GKfqcgSqkyt/vEPtDjyyIuLg4Ap9OJ262917/85S8MHTqUzMxMPvnk\nk+icnZvWA45k4cAL4sBrYu62woh7FOO18o5jlSUszXpF0JrIMmjQIGbNmkVeXh7Hjh1j5syZnH32\n2eUeP3DgwBJRzs3N5bPPPqtSf4cPH6Z5cz1ZbNq0aTUx3b406wlADIUAeNzGc7cTJiwTxXg9HpQ4\niPPm64WNT+Ea7r1792bixIn069cP0AOqDRs2LPf4vn37Mnr0aHr06EGrVq3IyMigfv3AyyTfe++9\nTJgwgWeffZZzzjmnxvbbEiutNkYV4SHBys4y2AWpyuNnMMnIyFAVDVIZas6Vb17AeQsm0yh2M2N6\nzYabF0XEjp9//pnOnTtHpO+akJubS926dcnLy2PQoEG8/PLL9O7dO9JmlUnE3uO/92T6mkkUFDZi\n3sUzeffS/4TfhlMMEVmhlMqo7DjjuUcxXq8HBOK8eSWP0IbAmTx5MuvWraOgoIAJEybYVtgjSrOe\nxK4uIB9MzN1mGHGPYkoGVJX7lI63V5f33nsv0ibYn7QeuFQ+iOh5FQbbYAZUoxjl8YA4ELzQ3Hid\nhhCQ1hNBoRCU8dxtRUDiLiIXish6EdkoIlPK2H+3iKwTkdUi8rWItCqrHUN48XrdehKTAE26RNga\nQ1SS1gMRLyC6UJ3BNlQq7iLiBJ4HhgNdgKtEpLRSrAQylFLdgf8ATwXbUEM1cOvaMkXOBHDFRdoa\nQzSS2Ai3uFBixN1uBOK59wM2KqU2K6WKgOnARf4HKKUWKKXyrJdLgPTgmmmoDmKV/C10JkbaFEMU\nU+yIR9cfMOJuJwIR9+bADr/XWda28pgE/LesHSIyWUSWi8jyvXv3Bm6loVootweFUOgqexbmqcT1\n119PkyZN6Nr1xFz/AwcOMGzYMDp06MCwYcM4ePBgUPo766yzKj3mueeeIy8vr9Lj7E6RM0EXpzPi\nbisCEfeylnkpMzleRMYDGcDTZe1XSr2slMpQSmWkpKQEbqWhWohbL7NX6KoXaVMizsSJE/n8889P\n2j516lTOPfdcNmzYwLnnnsvUqVOD0t/3339f6THRIu6FzkS9bkBxUaRNMfgRSCpkFtDC73U6sKv0\nQSJyHvBnYLBSqjA45hmqi8frweFFe+4xNvLc/zvleG35YJHaDYZXLMqDBg1i69atJ22fPXs2Cxcu\nBGDChAkMGTKEJ5988oRjpk2bxsyZMyksLGTLli1cffXVPPjgg8DJZYTvvPNOAOrWrUtubi4LFy7k\noYceIjk5mczMTPr06cM777zDP//5T3bt2sXQoUNJTk7mq6++YtKkSSxfvhwR4frrr+euu+6q4RsT\nHgpdicQgUGw8dzsRiLgvAzqISBtgJ3AlcLX/ASLSC/g3cKFSak/QrTRUGY/y4PQCCMrhjLQ5tiUn\nJ4e0tDQA0tLS2LOn7Mt36dKlZGZmkpiYSN++fRk5ciQiUlJGWClF//79GTx4ML16nTinYOXKlaxd\nu5ZmzZoxYMAAvvvuO26//XaeffZZFixYQHJyMitWrGDnzp1kZuql6ypbDcpOeB0xKPGAxxtpUwx+\nVCruSim3iNwGfAE4gdeVUmtF5BFguVJqDjoMUxf4yFqsd7tSanQI7TZUgttdiMujUCLgsNHi1JV4\n2HZl2LBhNG7cGNAlfhctWoSIlFlGuLS49+vXj/R0nWPQs2dPtm7dysCBA084pm3btmzevJnf/e53\njBw5kvPPPz8Mf1VwUGIVdPd4QamILMBuOJmAZqgqpeYCc0tte8Dv9/OCbJehhrj3/VriueMwc9XK\no2nTpuzevZu0tDR2795NkyZNyjxOSgmWiARcFthXEhhOLAvsT8OGDfnpp5/44osveP755/nwww9L\nwj22x6FX+3IqwXtwK45GbSJtkQEzQzVqce9cpsVdBGXEvVxGjx7Nm2++CcCbb77JRRddVOZx8+bN\n48CBA+Tn5zNr1iwGDBhQ5TLCpalXrx5Hjx4FYN++fXi9Xi699FIeffRRfvzxx5r/cWFCiegyFx6F\nO2tppM0xWJjaMlGKZ9ePuDx6QNVWYZkIcdVVV7Fw4UL27dtHeno6Dz/8MJMmTWLKlClcfvnlvPba\na7Rs2ZKPPvqozPMHDhzINddcw8aNG7n66qvJyNBF+UqXES4dkqmIyZMnM3z4cNLS0njuuee47rrr\n8Hp13PqJJ56o4V8cRhwOEC9OL7h3/khs9ysibZEBI+5Ri3vXKlwewIg7AO+//36Z2xs3bszXX39d\n6flNmjThX//610nb7777bu6+++6Ttufm5gIwZMgQhgwZUrLdv43f/e53/O53vyt5XZu89RNwCApw\necC9q5b+DVGIeV6PRgoO4z6wCafXGuwyYRlDCNFhPwcuL3hy1oCpDmkLTg3PXSk4sBmO7YW4epDc\nEZwxkbYqdGQtxy1YA6oYca8hEydOZOLEiZE2w744BAScHij2FOl5DNFchdRdCPs2QFEu1G0CDdvY\nMkMousW98Ch8/09YMQ1yc45vj0mETqNgwO16Aky0kbWMInHgcgPiMOJuCClKHHpA1QtFAuz4ITrF\nfecKrSfr/wtuvwXPk5pDxnVwxq0Qa586TtEr7juWwUcT4Mgu6HgBdBoJSc0g/xBsXQSZM2DNh3DG\nLXDugxATH2mLg8eOpRQ1aoNzlzW13WkmMRlChzgcIA5cHiiq1wy2L4Ezbo60WcEj/xB88SdY9S7E\nN4Be10CrMyG+PhzaAT9/AvP/D1a+A5e/BWk9Im0xEK3i/uuX8MF4SEqDSfOgRd8T93cbC+c9CPMf\ngyUvwJZv9YfSuF1k7A0mXi/sXE5hhyE4vdbglvHcDaHE4UChw4BFad20uEfLZKb9m+C9K3RYd+Dd\ncPbdOrTrT8Z12mH8eDK8fiFc/SG0CTwlNlRE312/Yyl8eA006QQ3zD9Z2H0kNISRz8DVH2nv/o3h\nkLMuvLaGgn2/QsFhilI64PJaN5cRd0MIUQ49Q9XphcKmnSE3Gw5ti7RZNWf7D/DKOZC3HybM0Q5h\naWH30Xog3DgfGrSE96+E3avDa2sZRNddn7sHPrgG6qXB+JlQp3Hl53Q8H67/XMemp42AXatCb2co\n2a6rERYlt8fptT5eZ3R9zNWhqiV/lVLcfvvttG/fnu7duwctTfGGG25g3bqKnYhZs2ZVeoytcDhQ\nIjosk9JJb9u+JLI21ZSdK+CdS6FOshbt1gMrP6deKlwzC+KSdOQgPzjlo6tL9Nz1SsEnd+o39Ip3\nAhN2HymnaYGPrQvvXgYHt4bMzJCz9Tuom0phQiOcHmt6vBH3Kpf8/e9//8uGDRvYsGEDL7/8Mjff\nHJwY8quvvkqXLhUveVjrxN3pwOe5FyWlaXGrzeKesw7eHgOJjWDCJ1CVcgpJaTrEezgL/ntf6GwM\ngOiJua+dCes/g2GPQmrXyo8vTcPWMH4GvDYM3hkLk77UH25tQinY9h20Oosib1FJWKZ0XZRI8uTS\nJ/nlwC9BbbNTo07c16/iG6mqJX9nz57Ntddei4hwxhlncOjQoZIaND62bt3KhRdeSP/+/Vm5ciUd\nO3bkrbfeIjExka+//po//OEPuN1u+vbty4svvkhcXBxDhgzhmWeeISMjg7p163LHHXfw6aefkpCQ\nwOzZs9m0aRNz5szhm2++4f/+7/+YMWMGn332GS+99BIul4suXbowffr0YL59NUccuraMFwq9xdCi\nn86YqY0c26dj7DEJOhST1KzqbbToC2f/Hr59CrpdBh2GBd/OAIgOl64oD778CzTtBmfeWv12Uk6D\nK9/X8cIZk6C2reZ+cAsc3Q2tB1DoKcRZIu4RtsvGlFfyd+fOnbRocXwZg/T0dHbu3HnS+evXr2fy\n5MmsXr2apKQkXnjhBQoKCpg4cSIffPABa9aswe128+KLL5507rFjxzjjjDP46aefGDRoEK+88gpn\nnXUWo0eP5umnn2bVqlW0a9eOqVOnsnLlSlavXs1LL70UoneiBjh1KqTLA0WeImhxBuxZF/GwRJVx\nF8GH18KxPXDle9rhqy6D7oFG7eDzP0ZsUld0eO5L/w1HsmDMv6GmtctbD4DhT8Gnd8I3T8HQPwbH\nxnCw9Tv9s9VAivb/iNNjP8+9Mg/bLpRV8bGs97FFixYMGDAAgPHjx/OPf/yDYcOG0aZNGzp27Ajo\nJ4Lnn3++ZCEPH7GxsYwaNQqAPn36MG/evDJt6d69O+PGjePiiy/m4osvrtHfFRKsVEinV1HkLYJW\n1hKD277XKci1hXl/0U++Y16teZ6+KxYueBzev0LPs+l3Y1BMrAq133MvPArf/R3aDwts0CMQ+kyE\nHlfBN0/Cxq+C02Y42PY9JDaGlNMo8hwPy5S5UKIBOF7yFzih5G96ejo7dhxfOjgrK4tmzU5+RK9J\nKeCYmJiS88srBQzw2Wefceutt7JixQr69OlT7nGRwvcWOL1Q6CmE9AxwJcDmbyJrWFX4ZS788BL0\nvxm6XxacNjteoJ9i/vcsFBdUfnyQqf3ivmKafvwbEkQPWwRGPqvDNLNugbwDwWs7lGxbpL0mER2W\nUfbz3O1GeSV/R48ezVtvvYVSiiVLllC/fv0T4u0+tm/fzuLFiwFdnGzgwIF06tSJrVu3snHjRgDe\nfvttBg8eHLBN/qWAvV4vO3bsYOjQoTz11FMcOnSopCiZbbCuL5dHdFjGFacn+Wz5NsKGBcjhLJh9\nC6R2h2EPB69dERj6Jzi6C34qu3BdKKnd4u71wNJXoOVZkN4nuG3HJsKYl7Wwf3qXHqy0M4d2wKHt\n0EqHCAo9hTg9+uM12q5L/p555pmsX7+e9PR0XnvtNQCmTJnCvHnz6NChA/PmzWPKlCkAjBgxgrZt\n29K+fXtuvPFGXnjhhTLb7dy5M2+++Sbdu3fnwIED3HzzzcTHx/PGG29w2WWX0a1bNxwOBzfddFPA\ntl555ZU8/fTT9OrViw0bNjB+/Hi6detGr169uOuuu2jQoEHN35Agctxz104FAG0Gwd6fdXqynVFK\nO3DuIhj7hv5iCiZtBukSJ0tfCbuG1O6Y+4Z5evAzmN+2/qT1gCFTYP6jsOY/wXtcCwWbF+qfrfXM\nuGJvMQnKQRFG3KHqJX9FhOeff77Sdh0OR5mDnOeeey4rV648absvMwc4wQMfO3YsY8eOBWDAgAEn\npEIuWrSoUjsiSUloyee5A7SxnlS2fKtnhNuVFdNgyzcw6m+Q3D747YtAv9/CnNt02LT1gOD3UQ61\n23Nf+m89YanTqND1MeBOSO8Hc38Ph0/OlrANm76GuqnQ9HRAe+4xXj24LKaeuyGE+JyHGK/zuLin\n9YC4+lo47cqh7fDl/dq77nNd6PrpNlbPiF/679D1UQa1V9z3bYBN8yHj+tCW73W64JKXdDrTJ3fY\nMzzj9cCmBdDunJI7rchTRIyywjKRtC2Kad26NZmZmZE2I/L4xF05jodlHE6d4GDXQVWlYM7t+ufo\nf4X28TYmQRcb+/nTsDqItVfcV74DDpfObAk1jdvBuQ/Axnm6mqTd2LUSCg5B+3NLNulsGevjNXEZ\nQwjxhWVivK7jnjtA28E6bHpgS4Qsq4CVb8PmBTqk27BV6PvrOwmUB356L/R9WdROcVcKMj+GtkN1\nsfxw0G8yNO+jpxTbLHsm6+fZTExtwk/1j78XhZ7CEnF3mLCMIYSIpSIxSnSeu8XS+k24LrUJe9bN\njJBl5XA4C774sx6fypgUnj4btoaWZ2rdChO1U9yzlsHh7dD10vD16XDCb/6hPeQv7w9fvwHwftY8\nViTEc8fiBzhQoL94ijxFOJXPc4+gcYaoR6wLzOUXlsk+ls1dK59heUI8MzbPjqR5J6KUzn7zumH0\nP8NbMbXrpXrmbpiqzwb0l4nIhSKyXkQ2isiUMvbHicgH1v4fRKR1sA09gcwZ4IwL/+y31K5w1u26\naP+mBeHtuxyKcvcwRx2htase+wv2s2L9AraOH0/GrPXEFenxAYcJyxhCiXV51ckXen2wmm3XTuCH\nDQs4UnSE1s46fFy8F0/+ocja6GPtx7DhSzjnL1UrCBYMulykH3PWhsd7r1TcRcQJPA8MB7oAV4lI\n6bJ2k4CDSqn2wN+AJ4NtaAlejy4S1vF8iE8KWTflMvheXTPi0zt1TZsIM//HFznkdHJLhysAKF74\nHfnLV9Bv3g6aZutHZKmdz2dBwzcJqHPnzpx++un8/e9/L9lnSv7WHF/Yr9WOArp/tYW8pUsp/n4p\ngvDb9peR7XLy/apXI2wlOpz63/ugWS/o/9vw91+3ic7MyZwRlsQMqWyqtIicCTyklLrAev1HAKXU\nE37HfGEds1hEXEA2kKIqaDwjI0MtX768ygbPeHoqeWsPUOCqh9tRwYQDP2dVBRKXkFInlZx7Mi5V\nTGLxQQqdiRQ6SxXvL7MrKfelKm9HqVMUXoq9hXgpxiEu6jqbEiPx5Bb9gtfjoUlRKgfJIakwjvpH\nCgCF25XArmZnU29QU669+vSyDAsLP//8M507d45Y/7t372b37t307t2bo0eP0qdPH2bNmkWXLl24\n9957adSoEVOmTGHq1KkcPHiQJ598krlz5/LPf/6TuXPn8sMPP3DHHXfwww/hqXQ4ceJERo0aVZL3\nHgiRfI9ffnUVxcsPkJ61EIe3CCUODtWP41hMMQ1IITs2mwTlJNHVBrcqIM9zAC9unMTgdMRy/GJX\nZd5vwSLOfZQYbyF5MQ3wSmSm+MR4C4hz55KU0ZyLbrujWm2IyAqlVEZlxwXyFzYHdvi9zgL6l3eM\nUsotIoeBxsC+UkZNBiYDtGzZMoCuT+bIlsMUxJyjX1R0Jfjtq0lQoqxzvUCuVZ/MEcbCkf4flqcY\nPIALXU/nYJwg6jSOxsLhJAcO5bUOLKRlq/rhM7ISsh9/nMKfg1vyN65zJ1L/9Kdy96elpZWUDqhX\nrx6dO3dm586ddOnSxZT8DQItWtdnyw+72ZWmC4Z5RV9/CjgoQrw6DSVwzLpXnNIOX3m/cGYWFzr1\nP91x+Pr1p1igOAa8G0JfmiEQcS9L30q/NYEcg1LqZeBl0J57AH2fxHUvPAGFuRBXtzqnV5sTHkKU\n0vVsnj9Dr74y6SudD1/6GN95ftsVfv5Jecf4hNnvGEFwWvGVw0VHeGbZM3y59Qs6FxXx7NlTSe4x\nhr8+cTEj3lxPi3+/xI7f6unu9S68kPQBw4P1NtR6tm7dysqVK+nfX/snVS35W7q+zPr163nttdcY\nMGAA119/PS+88AK33XYbEydO5Ouvv6Zjx45ce+21vPjiiydVhfSV/H3ssce49957eeWVV7j//vsZ\nPXr0CZ771KlT2bJlC3FxcRw6ZJPYtR/Dz2vD9umPc2zRIgrjHLSd+gw77r6bL2/qzV13vMvuxf/m\ntjXP8mtcLGM6jOGejHuoG6vvX4/Xg4ggSOhqIBUXwItn6VTEmxfr0iKRpDAX4i4MeTeBiHsW0MLv\ndTqwq5xjsqywTH0gdPmCYRZ2KFV8S0Sv9DTyKfhoIix7CQaU/YgVisu1YZ06PHb+X/nTR/ups/kb\n6DoagMODuvPHJgeZNXgwBXFCfKFCXPaqMFGRhx1qcnNzufTSS3nuuedISqp4vMaU/K0avuusIN5B\n3Qsu4M476nBe7+4ApPW+mv98/SB5Pa6gzlknlgpx1rREdyB8+zQc2ATXzIy8sEPY9CuQobZlQAcR\naSMiscCVwJxSx8wBJli/jwXmVxRvjxq6XAynjYQFj+tV0sNJcQF1NnwFnUfppwYgtU4qm10HKfYU\nkx9nVYS0mbhHiuLiYi699FLGjRvHmDFjSrabkr/BQWIscY8VjhYfJTuhkNQ6qXpnXD2k00jqrJuj\nC3SFk5x18N1zuoR3u3PC23eEqVTclVJu4DbgC+Bn4EOl1FoReURERluHvQY0FpGNwN3ASemSUYkI\njHwGnLHhL02wcR4UHYXOF5VsSq2TikKxJ38P+bGWiTFG3JVSTJo0ic6dO3P33XefsM+U/A0SlhOR\nH6dz3AGa1ml6fH/3KyD/QHjXR/B64ZPbIb4+nP9Y+Pq1CQElySml5iqlOiql2imlHrO2PaCUmmP9\nXqCUukwp1V4p1U8ptTmURtuKpGYw7BHY+j/48a3w9bviTajXDNoOKdmUmqg9pexj2SXijvHc+e67\n73j77beZP38+PXv2pKTcf8cAABAISURBVGfPnsydOxcwJX+Dhbh0faf8WMjJywGOX48AtBsKicmw\n+oPwGbX8NT3h8YIndBj1FMPc+cGg9wRdEvjLv0CH8/UK6KHk0HbtAQ2+tyQkA8c9pZxjORyLtQZi\nXSEsqlZLGDhwYLmhElPyNzj4wn/HYsHjE/c6fuLujNEzNFdMg4LD2psOJQe2wLwHdSim++Wh7cum\nnOLTW4KEwwG/+Tu4C+Czu0MfnvE9IfS65oTNyQnJAOw6tot8awqAibkbwoHvOsuL9bIvT2dAN44v\n5S33uBI8hbAqxKsSeT16AQ6HU5cYOEVnaBtxDxbJ7eHcv8D6uaENz3jc8OPb0GEYNGhxwq6k2CTi\nnHHszN1JXknM3XjuocKU/D2O7zo7FuMlJy+HRvGNiCldirt5b702wg8vagEOFUtehO3fw/AnoX56\n6PqxOUbcg8kZt+rpxZ9PCV32zPq5kJutQ0GlEBGSE5LZeXQnBT5xN567IRy4dEpjXhzsyt1V8hR5\nEmfeCge36us4FOz5Bb5+BE4boTNkTmGMuAcThwMufklnz3x8o55GGkyUgkV/0+VDO5Y9CSIlIYWd\nuTsp9DlNrjDkERsMVnpmfpywM3cnKYkpZR/XaRQ0aAmLKx/PqLoNhTBzMsTWgVHPnbLhGB9G3INN\n/ebwm+dg5wr4Jsj10zYvgF0/6glTzrI98pRELe7Fvt3uMNZHMJyyeAt1qd/8WLS4J5Qj7k4XnHEL\nbF8MO5YF14gv/gy7f4KL/gX1mlZ+fJRjxD0UnH4J9BwP3z4Dv34RnDaV0o+bSenQ4+pyD0tJSMGj\nPBS5tNfiLSwITv8GQwWoAi3uBbHgUZ7yxR10IkBiMnz9cPCSD9bOhGWvwJm3hb8UuE0x4h4qRj4D\nqd1gxo3Bib9nztDL6Q39E8TEl3uY73G4yPLcfTfdqUxBQQH9+vWjR48enH766Tz44IMl+7Zs2UL/\n/v3p0KEDV1xxBUVFegZlYWEhV1xxBe3bt6d///5s3bo1KLaMGDGi0vow06ZNY9eu0hU+7I3PifBd\nd+WGZUBPvx90j54bsuHLmneevQZm3QrpfeG8h2reXpRgxD1UxCTAle/qdKz3roBj+6vfVsER/ciZ\n1kOnk1WAbyDLEa+/AIznDnFxccyfP5+ffvqJVatW8fnnn7NkyRIA7rvvPu666y42bNhAw4YNee21\n1wB47bXXaNiwIRs3buSuu+7ivvvuC4otc+fOrXQSUm0Ud58TUSLuFXnuoBe2T+4Ic++p2boIR7P1\n/ZXQAC5/W+fTGwAziSm0NGipBf7tS+DdsTBhDsTVq/y80nz+R8jNgave018WFVA/Vk8OqZ+UAmxD\nFYa5lkcl/O/DX9m3I7jT55Nb1OXsyzuWu19EqFtXF2sqLi6muLi4pAbM/Pnzee89vWjxhAkTeOih\nh7j55puZPXs2Dz30EKAnGN12220opU6oJbNw4UIeeOABGjduzPr16xk0aBAvvPACDoeD999/n8cf\nfxylFCNHjuTJJ/X4S+vWrVm+fDm5ubkMHz6cgQMH8v3339O8eXNmz57NZ599xvLlyxk3bhwJCQks\nXryYhx9+mDlz5uByuTj//PN55plngvr+BQNlxdwT6zYEDtM4oZIZoa5YGPksvDlKh2eGV2N8Ku8A\nvHsZ5B+C6z8P/eTBWobx3ENNq7Ng7Bt6oOf9q7QXXhV+mg6r3oFBf9ALdFdCuwbtABjQZigAqsB4\n7gAej4eePXvSpEkThg0bRv/+/dm/fz8NGjTAZaWL+sr6woklf10uF/Xr12f//pOfvpYuXcpf//pX\n1qxZw6ZNm/j444/ZtWsX9913H/Pnz2fVqlUsW7aMWbNmnXTuhg0buPXWW1m7di0NGjRgxowZjB07\nloyMDN59911WrVpFfn4+M2fOZO3ataxevZr777fX+r0+fAOqozvrdY3T6waQX97mbOh/E/zwEvz8\nSdU6zDsAb10Ee3+By9+EtO5VNTnqMZ57OOg0Ai75N8y6Cd4YDuP+E5iXsfkbmPM7vUr74MDCAi2T\nWvLj+B9h3wE2PjaN+peOqfSccFKRhx1KnE4nq1at4tChQ1xyySVkZmbStOnJGRU+zzzQkr/9+vWj\nbdu2AFx11VUsWrSImJgYhgwZQkqKDk2MGzeOb7/99qRyvW3atKFnz56ALvlbVlw/KSmJ+Ph4brjh\nBkaOHFlSIthuNLrmGnbdcw8XDL6eYXVvO3kCU3mc97Cu//LxZLh2NrToV/k5BzbD/7d3/rFVnWUc\n/zzQ0jK7AYVQwM6tBBydzsDSwFACLVs2bJSCsFoXsHV1EWb8xxhlgT+MyYIYEoiZyYZmzjkpZTUw\nxiwIg7KYwCom3Qp0QAF/MLpROlvS8WPQPv5x3sKxvbe9t73n3tvL80lO7jnvr/O9z/ve557znve8\n77YV0NYMZVu9F/qMPtiVe7z4ypPw1HbvBY4tC+BE71mTe3F8B2wt9dZrLX01qr7E9JHppOfkkP9B\nE3cXFg5JdqoxduxYCgsL2bNnDxMmTKC9vf3WFLr+aX39U/7evHmTjo4OsrOz+5Q3lCl/MzJuLxMZ\nbsrftLQ06uvrWbZsGTt37mTRouAXeRgMY775DfI/aGLkmDGRO3bwBgeUVUFWjtd9OdDosqY34aVC\nuPwhPFVtjr0fzLnHk2mPQuVfvYVyt6+ErWXwz7/dfhVbFT46BjVPe4uATHoIKt6Cu/o6FSNyWltb\nb41QuXr1Kvv372fGjBmICEVFRdTU1AB9p/ztmQq4pqaGhQsXhrxyr6+v59y5c3R3d1NdXc28efOY\nM2cOhw4d4tKlS3R1dVFVVTXoKX87Ozvp6OiguLiYzZs309DQMCRbJCV353h95tl53gXNzmeh9eTt\n+K6bcLYOXlsG1Stg/FT4wTveTJNGWKxbJt7kfAmeOQiHX/DeNj1VC6OyvOX6rrbDlUuQlgnzf+oN\nF0sbNXCZRr+0tLRQXl5OV1cX3d3dlJaW3ure2LBhA2VlZaxbt45Zs2ZRWVkJQGVlJStXrmTatGlk\nZ2eHXbd07ty5rFmzhsbGRubPn8/SpUsZMWIE69evp6ioCFWluLj41p9GJFRUVLBq1SpGjx5NbW0t\nJSUlXLt2DVVl06ZNQzdIMtKzXOXB570++IY/wecmQuY9cPkC3LgCo7O96bXnrLbfRQRIohZMKigo\n0KNHjybk3EnD9U5vnO+/j8CnF72RNFNmeQtwpND8001NTeTn5ydaRsypq6tj48aN7N69O9FSUsvG\nnRfhxBvQ0gCffQpZk+C+ud502umjE60u4YjIP1S1YKB0duWeSDKy4Mvf8jbDMDyyJsLsZxKtYthj\nzt0wBklhYSGF9sDaSFLsgaoRF+6E9dIThdnWCIU5dyNwMjMzaWtrMycUAKpKW1sbmZnh5xsy7kys\nW8YInNzcXM6fP09ra2uipaQkmZmZ5ObeuSsOGaEx524ETnp6Onl5eYmWYRh3FNYtYxiGkYKYczcM\nw0hBzLkbhmGkIAl7Q1VEWoF/DTL7BOBSDOXECtMVHaYrepJVm+mKjqHouk9VB1gNJYHOfSiIyNFI\nXr+NN6YrOkxX9CSrNtMVHfHQZd0yhmEYKYg5d8MwjBRkuDr3LYkWEAbTFR2mK3qSVZvpio7AdQ3L\nPnfDMAyjf4brlbthGIbRD+bcDcMwUpCkde4i8qSIHBeRbhEJO2RIRBaJyEkRaRaRNb7wPBF5V0RO\ni0i1iMRkXS4RyRaRfa7cfSIyLkSaIhFp8G3XRGSJi3tFRM754mbGS5dL1+U79y5feCLtNVNEDrv6\nfl9Evu2Li6m9wrUXX3yG+/7Nzh73++Kec+EnReSJoegYhK4fi8gJZ5+3ReQ+X1zIOo2TrgoRafWd\n//u+uHJX76dFpDzOujb5NJ0SkXZfXJD2ellELorIsTDxIiK/drrfF5GHfXGxtZeqJuUG5AMPAHVA\nQZg0I4EzwFRgFPAe8KCL2w6Uuf0XgdUx0vUrYI3bXwNsGCB9NvAJcJc7fgVYHoC9ItIFdIYJT5i9\ngC8C093+FKAFGBtre/XXXnxpngVedPtlQLXbf9ClzwDyXDkj46iryNeGVvfo6q9O46SrAnghRN5s\n4Kz7HOf2x8VLV6/0PwJeDtperuz5wMPAsTDxxUAtIMAjwLtB2Stpr9xVtUlVTw6QbDbQrKpnVfUz\nYBtQIiICLARqXLo/AEtiJK3ElRdpucuBWlW9EqPzhyNaXbdItL1U9ZSqnnb7F4CLwIBv4A2CkO2l\nH701wKPOPiXANlW9rqrngGZXXlx0qepBXxs6AsRjjt9I7BWOJ4B9qvqJqv4X2AcsSpCu7wBVMTp3\nv6jqO3gXc+EoAV5VjyPAWBGZTAD2SlrnHiGfB/7jOz7vwsYD7ap6s1d4LMhR1RYA9zlxgPRl9G1Y\nz7tbsk0ikhFnXZkiclREjvR0FZFE9hKR2XhXY2d8wbGyV7j2EjKNs0cHnn0iyRukLj+VeFd/PYSq\n03jqWubqp0ZE7o0yb5C6cN1XecABX3BQ9oqEcNpjbq+EzucuIvuBSSGi1qrqG5EUESJM+wkfsq5I\ny3DlTAYeAvb6gp8DPsJzYFuAnwG/iKOuL6jqBRGZChwQkUbgcoh0ibLXH4FyVe12wYO2V6hThAjr\n/T0DaVMDEHHZIrICKAAW+IL71KmqngmVPwBdbwJVqnpdRFbh3fUsjDBvkLp6KANqVLXLFxaUvSIh\nbu0roc5dVR8bYhHngXt9x7nABbwJecaKSJq7+uoJH7IuEflYRCaraotzRhf7KaoU2KGqN3xlt7jd\n6yLye+An8dTluj1Q1bMiUgfMAv5Mgu0lIvcAbwHr3O1qT9mDtlcIwrWXUGnOi0gaMAbvNjuSvEHq\nQkQew/vDXKCq13vCw9RpLJzVgLpUtc13+Ftggy9vYa+8dTHQFJEuH2XAD/0BAdorEsJpj7m9hnu3\nzN+B6eKN9BiFV5G71HtCcRCvvxugHIjkTiASdrnyIim3T1+fc3A9/dxLgJBP1YPQJSLjero1RGQC\n8DXgRKLt5epuB15f5Ou94mJpr5DtpR+9y4EDzj67gDLxRtPkAdOB+iFoiUqXiMwCXgIWq+pFX3jI\nOo2jrsm+w8VAk9vfCzzu9I0DHuf/72AD1eW0PYD3cPKwLyxIe0XCLuC7btTMI0CHu4CJvb2Cemo8\n1A1Yivdvdh34GNjrwqcAf/GlKwZO4f3zrvWFT8X78TUDrwMZMdI1HngbOO0+s114AfA7X7r7gQ+B\nEb3yHwAa8ZzUa0BWvHQBX3Xnfs99ViaDvYAVwA2gwbfNDMJeodoLXjfPYref6b5/s7PHVF/etS7f\nSeDrMW7vA+na734HPfbZNVCdxknXeuC4O/9BYIYv79POjs3A9+Kpyx3/HPhlr3xB26sKb7TXDTz/\nVQmsAla5eAF+43Q34hsJGGt72fQDhmEYKchw75YxDMMwQmDO3TAMIwUx524YhpGCmHM3DMNIQcy5\nG4ZhpCDm3A3DMFIQc+6GYRgpyP8AozCpQusBbt0AAAAASUVORK5CYII=\n", - "text/plain": [ - "" + "application/vnd.plotly.v1+json": { + "data": [ + { + "name": "original", + "type": "scatter", + "uid": "a4f4ba56-fa00-4f4e-90e7-25e12fd692bc", + "x": [ + -1, + -0.9933110367892977, + -0.9866220735785953, + -0.979933110367893, + -0.9732441471571907, + -0.9665551839464883, + -0.959866220735786, + -0.9531772575250836, + -0.9464882943143813, + -0.939799331103679, + -0.9331103678929766, + -0.9264214046822743, + -0.919732441471572, + -0.9130434782608696, + -0.9063545150501673, + -0.8996655518394648, + -0.8929765886287625, + -0.8862876254180602, + -0.8795986622073578, + -0.8729096989966555, + -0.8662207357859532, + -0.8595317725752508, + -0.8528428093645485, + -0.8461538461538461, + -0.8394648829431438, + -0.8327759197324415, + -0.8260869565217391, + -0.8193979933110368, + -0.8127090301003345, + -0.8060200668896321, + -0.7993311036789298, + -0.7926421404682275, + -0.7859531772575251, + -0.7792642140468228, + -0.7725752508361204, + -0.7658862876254181, + -0.7591973244147157, + -0.7525083612040133, + -0.745819397993311, + -0.7391304347826086, + -0.7324414715719063, + -0.725752508361204, + -0.7190635451505016, + -0.7123745819397993, + -0.705685618729097, + -0.6989966555183946, + -0.6923076923076923, + -0.68561872909699, + -0.6789297658862876, + -0.6722408026755853, + -0.6655518394648829, + -0.6588628762541806, + -0.6521739130434783, + -0.6454849498327759, + -0.6387959866220736, + -0.6321070234113713, + -0.6254180602006689, + -0.6187290969899666, + -0.6120401337792643, + -0.6053511705685619, + -0.5986622073578596, + -0.5919732441471572, + -0.5852842809364549, + -0.5785953177257526, + -0.5719063545150502, + -0.5652173913043479, + -0.5585284280936456, + -0.5518394648829432, + -0.5451505016722409, + -0.5384615384615385, + -0.5317725752508362, + -0.5250836120401338, + -0.5183946488294314, + -0.5117056856187291, + -0.5050167224080268, + -0.4983277591973244, + -0.4916387959866221, + -0.48494983277591974, + -0.4782608695652174, + -0.47157190635451507, + -0.46488294314381273, + -0.4581939799331104, + -0.45150501672240806, + -0.4448160535117057, + -0.4381270903010034, + -0.43143812709030105, + -0.4247491638795987, + -0.4180602006688964, + -0.41137123745819404, + -0.4046822742474917, + -0.39799331103678925, + -0.3913043478260869, + -0.3846153846153846, + -0.37792642140468224, + -0.3712374581939799, + -0.36454849498327757, + -0.35785953177257523, + -0.3511705685618729, + -0.34448160535117056, + -0.3377926421404682, + -0.3311036789297659, + -0.32441471571906355, + -0.3177257525083612, + -0.3110367892976589, + -0.30434782608695654, + -0.2976588628762542, + -0.29096989966555187, + -0.28428093645484953, + -0.2775919732441472, + -0.27090301003344486, + -0.2642140468227425, + -0.2575250836120402, + -0.25083612040133785, + -0.2441471571906355, + -0.23745819397993317, + -0.23076923076923084, + -0.2240802675585284, + -0.21739130434782605, + -0.21070234113712372, + -0.20401337792642138, + -0.19732441471571904, + -0.1906354515050167, + -0.18394648829431437, + -0.17725752508361203, + -0.1705685618729097, + -0.16387959866220736, + -0.15719063545150502, + -0.1505016722408027, + -0.14381270903010035, + -0.137123745819398, + -0.13043478260869568, + -0.12374581939799334, + -0.117056856187291, + -0.11036789297658867, + -0.10367892976588633, + -0.09698996655518399, + -0.09030100334448166, + -0.08361204013377932, + -0.07692307692307698, + -0.07023411371237465, + -0.06354515050167231, + -0.05685618729096986, + -0.050167224080267525, + -0.04347826086956519, + -0.03678929765886285, + -0.030100334448160515, + -0.02341137123745818, + -0.01672240802675584, + -0.010033444816053505, + -0.0033444816053511683, + 0.0033444816053511683, + 0.010033444816053505, + 0.01672240802675584, + 0.02341137123745818, + 0.030100334448160515, + 0.03678929765886285, + 0.04347826086956519, + 0.050167224080267525, + 0.05685618729096986, + 0.0635451505016722, + 0.07023411371237454, + 0.07692307692307687, + 0.08361204013377921, + 0.09030100334448155, + 0.09698996655518388, + 0.10367892976588622, + 0.11036789297658856, + 0.11705685618729089, + 0.12374581939799323, + 0.13043478260869557, + 0.1371237458193979, + 0.14381270903010024, + 0.15050167224080258, + 0.1571906354515049, + 0.16387959866220725, + 0.17056856187290959, + 0.17725752508361192, + 0.18394648829431426, + 0.1906354515050166, + 0.19732441471571893, + 0.2040133779264215, + 0.21070234113712383, + 0.21739130434782616, + 0.2240802675585285, + 0.23076923076923084, + 0.23745819397993317, + 0.2441471571906355, + 0.25083612040133785, + 0.2575250836120402, + 0.2642140468227425, + 0.27090301003344486, + 0.2775919732441472, + 0.28428093645484953, + 0.29096989966555187, + 0.2976588628762542, + 0.30434782608695654, + 0.3110367892976589, + 0.3177257525083612, + 0.32441471571906355, + 0.3311036789297659, + 0.3377926421404682, + 0.34448160535117056, + 0.3511705685618729, + 0.35785953177257523, + 0.36454849498327757, + 0.3712374581939799, + 0.37792642140468224, + 0.3846153846153846, + 0.3913043478260869, + 0.39799331103678925, + 0.4046822742474916, + 0.41137123745819393, + 0.41806020066889626, + 0.4247491638795986, + 0.43143812709030094, + 0.4381270903010033, + 0.4448160535117056, + 0.45150501672240795, + 0.4581939799331103, + 0.4648829431438126, + 0.47157190635451496, + 0.4782608695652173, + 0.48494983277591963, + 0.49163879598662197, + 0.4983277591973243, + 0.5050167224080266, + 0.511705685618729, + 0.5183946488294313, + 0.5250836120401337, + 0.531772575250836, + 0.5384615384615383, + 0.5451505016722409, + 0.5518394648829432, + 0.5585284280936456, + 0.5652173913043479, + 0.5719063545150502, + 0.5785953177257526, + 0.5852842809364549, + 0.5919732441471572, + 0.5986622073578596, + 0.6053511705685619, + 0.6120401337792643, + 0.6187290969899666, + 0.6254180602006689, + 0.6321070234113713, + 0.6387959866220736, + 0.6454849498327759, + 0.6521739130434783, + 0.6588628762541806, + 0.6655518394648829, + 0.6722408026755853, + 0.6789297658862876, + 0.68561872909699, + 0.6923076923076923, + 0.6989966555183946, + 0.705685618729097, + 0.7123745819397993, + 0.7190635451505016, + 0.725752508361204, + 0.7324414715719063, + 0.7391304347826086, + 0.745819397993311, + 0.7525083612040133, + 0.7591973244147157, + 0.765886287625418, + 0.7725752508361203, + 0.7792642140468227, + 0.785953177257525, + 0.7926421404682273, + 0.7993311036789297, + 0.806020066889632, + 0.8127090301003344, + 0.8193979933110367, + 0.826086956521739, + 0.8327759197324414, + 0.8394648829431437, + 0.846153846153846, + 0.8528428093645484, + 0.8595317725752507, + 0.866220735785953, + 0.8729096989966554, + 0.8795986622073577, + 0.8862876254180603, + 0.8929765886287626, + 0.899665551839465, + 0.9063545150501673, + 0.9130434782608696, + 0.919732441471572, + 0.9264214046822743, + 0.9331103678929766, + 0.939799331103679, + 0.9464882943143813, + 0.9531772575250836, + 0.959866220735786, + 0.9665551839464883, + 0.9732441471571907, + 0.979933110367893, + 0.9866220735785953, + 0.9933110367892977, + 1 + ], + "y": [ + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0 + ] + }, + { + "name": "10 points", + "type": "scatter", + "uid": "2eec82cd-3886-4eda-ada2-559552f5c04f", + "x": [ + -1, + -0.9933110367892977, + -0.9866220735785953, + -0.979933110367893, + -0.9732441471571907, + -0.9665551839464883, + -0.959866220735786, + -0.9531772575250836, + -0.9464882943143813, + -0.939799331103679, + -0.9331103678929766, + -0.9264214046822743, + -0.919732441471572, + -0.9130434782608696, + -0.9063545150501673, + -0.8996655518394648, + -0.8929765886287625, + -0.8862876254180602, + -0.8795986622073578, + -0.8729096989966555, + -0.8662207357859532, + -0.8595317725752508, + -0.8528428093645485, + -0.8461538461538461, + -0.8394648829431438, + -0.8327759197324415, + -0.8260869565217391, + -0.8193979933110368, + -0.8127090301003345, + -0.8060200668896321, + -0.7993311036789298, + -0.7926421404682275, + -0.7859531772575251, + -0.7792642140468228, + -0.7725752508361204, + -0.7658862876254181, + -0.7591973244147157, + -0.7525083612040133, + -0.745819397993311, + -0.7391304347826086, + -0.7324414715719063, + -0.725752508361204, + -0.7190635451505016, + -0.7123745819397993, + -0.705685618729097, + -0.6989966555183946, + -0.6923076923076923, + -0.68561872909699, + -0.6789297658862876, + -0.6722408026755853, + -0.6655518394648829, + -0.6588628762541806, + -0.6521739130434783, + -0.6454849498327759, + -0.6387959866220736, + -0.6321070234113713, + -0.6254180602006689, + -0.6187290969899666, + -0.6120401337792643, + -0.6053511705685619, + -0.5986622073578596, + -0.5919732441471572, + -0.5852842809364549, + -0.5785953177257526, + -0.5719063545150502, + -0.5652173913043479, + -0.5585284280936456, + -0.5518394648829432, + -0.5451505016722409, + -0.5384615384615385, + -0.5317725752508362, + -0.5250836120401338, + -0.5183946488294314, + -0.5117056856187291, + -0.5050167224080268, + -0.4983277591973244, + -0.4916387959866221, + -0.48494983277591974, + -0.4782608695652174, + -0.47157190635451507, + -0.46488294314381273, + -0.4581939799331104, + -0.45150501672240806, + -0.4448160535117057, + -0.4381270903010034, + -0.43143812709030105, + -0.4247491638795987, + -0.4180602006688964, + -0.41137123745819404, + -0.4046822742474917, + -0.39799331103678925, + -0.3913043478260869, + -0.3846153846153846, + -0.37792642140468224, + -0.3712374581939799, + -0.36454849498327757, + -0.35785953177257523, + -0.3511705685618729, + -0.34448160535117056, + -0.3377926421404682, + -0.3311036789297659, + -0.32441471571906355, + -0.3177257525083612, + -0.3110367892976589, + -0.30434782608695654, + -0.2976588628762542, + -0.29096989966555187, + -0.28428093645484953, + -0.2775919732441472, + -0.27090301003344486, + -0.2642140468227425, + -0.2575250836120402, + -0.25083612040133785, + -0.2441471571906355, + -0.23745819397993317, + -0.23076923076923084, + -0.2240802675585284, + -0.21739130434782605, + -0.21070234113712372, + -0.20401337792642138, + -0.19732441471571904, + -0.1906354515050167, + -0.18394648829431437, + -0.17725752508361203, + -0.1705685618729097, + -0.16387959866220736, + -0.15719063545150502, + -0.1505016722408027, + -0.14381270903010035, + -0.137123745819398, + -0.13043478260869568, + -0.12374581939799334, + -0.117056856187291, + -0.11036789297658867, + -0.10367892976588633, + -0.09698996655518399, + -0.09030100334448166, + -0.08361204013377932, + -0.07692307692307698, + -0.07023411371237465, + -0.06354515050167231, + -0.05685618729096986, + -0.050167224080267525, + -0.04347826086956519, + -0.03678929765886285, + -0.030100334448160515, + -0.02341137123745818, + -0.01672240802675584, + -0.010033444816053505, + -0.0033444816053511683, + 0.0033444816053511683, + 0.010033444816053505, + 0.01672240802675584, + 0.02341137123745818, + 0.030100334448160515, + 0.03678929765886285, + 0.04347826086956519, + 0.050167224080267525, + 0.05685618729096986, + 0.0635451505016722, + 0.07023411371237454, + 0.07692307692307687, + 0.08361204013377921, + 0.09030100334448155, + 0.09698996655518388, + 0.10367892976588622, + 0.11036789297658856, + 0.11705685618729089, + 0.12374581939799323, + 0.13043478260869557, + 0.1371237458193979, + 0.14381270903010024, + 0.15050167224080258, + 0.1571906354515049, + 0.16387959866220725, + 0.17056856187290959, + 0.17725752508361192, + 0.18394648829431426, + 0.1906354515050166, + 0.19732441471571893, + 0.2040133779264215, + 0.21070234113712383, + 0.21739130434782616, + 0.2240802675585285, + 0.23076923076923084, + 0.23745819397993317, + 0.2441471571906355, + 0.25083612040133785, + 0.2575250836120402, + 0.2642140468227425, + 0.27090301003344486, + 0.2775919732441472, + 0.28428093645484953, + 0.29096989966555187, + 0.2976588628762542, + 0.30434782608695654, + 0.3110367892976589, + 0.3177257525083612, + 0.32441471571906355, + 0.3311036789297659, + 0.3377926421404682, + 0.34448160535117056, + 0.3511705685618729, + 0.35785953177257523, + 0.36454849498327757, + 0.3712374581939799, + 0.37792642140468224, + 0.3846153846153846, + 0.3913043478260869, + 0.39799331103678925, + 0.4046822742474916, + 0.41137123745819393, + 0.41806020066889626, + 0.4247491638795986, + 0.43143812709030094, + 0.4381270903010033, + 0.4448160535117056, + 0.45150501672240795, + 0.4581939799331103, + 0.4648829431438126, + 0.47157190635451496, + 0.4782608695652173, + 0.48494983277591963, + 0.49163879598662197, + 0.4983277591973243, + 0.5050167224080266, + 0.511705685618729, + 0.5183946488294313, + 0.5250836120401337, + 0.531772575250836, + 0.5384615384615383, + 0.5451505016722409, + 0.5518394648829432, + 0.5585284280936456, + 0.5652173913043479, + 0.5719063545150502, + 0.5785953177257526, + 0.5852842809364549, + 0.5919732441471572, + 0.5986622073578596, + 0.6053511705685619, + 0.6120401337792643, + 0.6187290969899666, + 0.6254180602006689, + 0.6321070234113713, + 0.6387959866220736, + 0.6454849498327759, + 0.6521739130434783, + 0.6588628762541806, + 0.6655518394648829, + 0.6722408026755853, + 0.6789297658862876, + 0.68561872909699, + 0.6923076923076923, + 0.6989966555183946, + 0.705685618729097, + 0.7123745819397993, + 0.7190635451505016, + 0.725752508361204, + 0.7324414715719063, + 0.7391304347826086, + 0.745819397993311, + 0.7525083612040133, + 0.7591973244147157, + 0.765886287625418, + 0.7725752508361203, + 0.7792642140468227, + 0.785953177257525, + 0.7926421404682273, + 0.7993311036789297, + 0.806020066889632, + 0.8127090301003344, + 0.8193979933110367, + 0.826086956521739, + 0.8327759197324414, + 0.8394648829431437, + 0.846153846153846, + 0.8528428093645484, + 0.8595317725752507, + 0.866220735785953, + 0.8729096989966554, + 0.8795986622073577, + 0.8862876254180603, + 0.8929765886287626, + 0.899665551839465, + 0.9063545150501673, + 0.9130434782608696, + 0.919732441471572, + 0.9264214046822743, + 0.9331103678929766, + 0.939799331103679, + 0.9464882943143813, + 0.9531772575250836, + 0.959866220735786, + 0.9665551839464883, + 0.9732441471571907, + 0.979933110367893, + 0.9866220735785953, + 0.9933110367892977, + 1 + ], + "y": [ + 0, + 0.019439949398771132, + 0.03709762839425934, + 0.05302834882656651, + 0.06728742253579453, + 0.07993016136204527, + 0.09101187714542064, + 0.1005878817260225, + 0.10871348694395275, + 0.11544400463931326, + 0.1208347466522059, + 0.12494102482273259, + 0.1278181509909952, + 0.12952143699709562, + 0.13010619468113566, + 0.12962773588321735, + 0.12814137244344243, + 0.1257024162019129, + 0.12236617899873055, + 0.11818797267399725, + 0.11322310906781494, + 0.10752690002028563, + 0.10115465737151097, + 0.09416169296159298, + 0.08660331863063353, + 0.07853484621873441, + 0.07001158756599768, + 0.06108885451252519, + 0.05182195889841845, + 0.04226621256377994, + 0.03247692734871113, + 0.02250941509331389, + 0.012418987637690504, + 0.00226095682194255, + -0.007909365513828183, + -0.018036667529519598, + -0.028065637385030047, + -0.03794096324025732, + -0.0476073332550997, + -0.0570094355894553, + -0.06609195840322224, + -0.07479958985629863, + -0.08307701810858259, + -0.09086893131997223, + -0.09812001765036568, + -0.10477496525966105, + -0.11077846230775647, + -0.11607519695455001, + -0.12060985735993984, + -0.12432713168382403, + -0.12717170808610076, + -0.1290882747266681, + -0.13002151976542414, + -0.12991613136226707, + -0.12871679767709493, + -0.12636820686980593, + -0.12281504710029807, + -0.11800200652846952, + -0.11187377331421841, + -0.10437503561744291, + -0.09545048159804104, + -0.08504479941591092, + -0.07310267723095068, + -0.059568803203058546, + -0.04438786549213242, + -0.02750455225807058, + -0.008863551660771185, + 0.01158564017861069, + 0.03380721461843145, + 0.05769070499464677, + 0.08312318296704864, + 0.10999172019542951, + 0.13818338833958047, + 0.16758525905929392, + 0.1980844040143619, + 0.22956789486457632, + 0.2619228032697292, + 0.29503620088961263, + 0.32879515938401843, + 0.36308675041273875, + 0.3977980456355654, + 0.43281611671229053, + 0.468028035302706, + 0.5033208730666039, + 0.5385817016637762, + 0.5736975927540148, + 0.6085556179971118, + 0.6430428490528589, + 0.6770463575810486, + 0.7104532152414726, + 0.7431504936939233, + 0.7750252645981919, + 0.8059645996140705, + 0.8358555704013515, + 0.8645852486198269, + 0.8920407059292883, + 0.918109013989528, + 0.9426772444603382, + 0.9656324690015102, + 0.9868617592728365, + 1.0062533108115188, + 1.0237627517993262, + 1.0394502310171114, + 1.053384888265001, + 1.0656358633431229, + 1.076272296051604, + 1.0853633261905717, + 1.0929780935601534, + 1.0991857379604768, + 1.1040553991916688, + 1.107656217053857, + 1.1100573313471689, + 1.1113278818717314, + 1.1115370084276721, + 1.1107538508151185, + 1.1090475488341978, + 1.1064872422850374, + 1.1031420709677644, + 1.0990811746825064, + 1.0943736932293908, + 1.089088766408545, + 1.083295534020096, + 1.0770631358641718, + 1.0704607117408989, + 1.0635574014504054, + 1.0564223447928183, + 1.0491246815682649, + 1.0417335515768729, + 1.034318094618769, + 1.0269474504940814, + 1.019690759002937, + 1.0126171599454628, + 1.005795793121787, + 0.9992957825250403, + 0.9931705083804242, + 0.9874280638698467, + 0.9820684489933077, + 0.9770916637508072, + 0.9724977081423452, + 0.9682865821679216, + 0.9644582858275366, + 0.9610128191211902, + 0.957950182048882, + 0.9552703746106126, + 0.9529733968063815, + 0.9510592486361891, + 0.9495279301000351, + 0.9483794411979196, + 0.9476137819298426, + 0.947230952295804, + 0.9472309522958041, + 0.9476137819298426, + 0.9483794411979195, + 0.949527930100035, + 0.951059248636189, + 0.9529733968063816, + 0.9552703746106126, + 0.957950182048882, + 0.96101281912119, + 0.9644582858275365, + 0.9682865821679216, + 0.9724977081423452, + 0.9770916637508071, + 0.9820684489933077, + 0.9874280638698466, + 0.9931705083804242, + 0.9992957825250403, + 1.0057957931217867, + 1.0126171599454628, + 1.0196907590029367, + 1.0269474504940812, + 1.034318094618769, + 1.0417335515768726, + 1.0491246815682649, + 1.056422344792818, + 1.0635574014504052, + 1.070460711740899, + 1.0770631358641716, + 1.0832955340200958, + 1.089088766408545, + 1.094373693229391, + 1.0990811746825064, + 1.1031420709677644, + 1.1064872422850374, + 1.1090475488341978, + 1.1107538508151185, + 1.1115370084276721, + 1.1113278818717314, + 1.1100573313471689, + 1.107656217053857, + 1.1040553991916688, + 1.0991857379604768, + 1.0929780935601534, + 1.0853633261905715, + 1.0762722960516036, + 1.0656358633431227, + 1.0533848882650008, + 1.0394502310171112, + 1.023762751799326, + 1.0062533108115184, + 0.9868617592728364, + 0.96563246900151, + 0.9426772444603378, + 0.9181090139895279, + 0.892040705929288, + 0.8645852486198266, + 0.8358555704013512, + 0.8059645996140701, + 0.7750252645981914, + 0.7431504936939228, + 0.7104532152414725, + 0.6770463575810485, + 0.6430428490528589, + 0.6085556179971117, + 0.5736975927540148, + 0.538581701663776, + 0.5033208730666038, + 0.4680280353027058, + 0.4328161167122903, + 0.39779804563556526, + 0.36308675041273863, + 0.32879515938401815, + 0.29503620088961235, + 0.26192280326972894, + 0.22956789486457613, + 0.19808440401436167, + 0.1675852590592936, + 0.13818338833958027, + 0.10999172019542913, + 0.0831231829670489, + 0.0576907049946469, + 0.033807214618430836, + 0.011585640178609968, + -0.008863551660771808, + -0.027504552258071233, + -0.04438786549213302, + -0.05956880320305905, + -0.07310267723095122, + -0.0850447994159114, + -0.09545048159804145, + -0.10437503561744331, + -0.11187377331421883, + -0.1180020065284699, + -0.12281504710029839, + -0.1263682068698062, + -0.12871679767709523, + -0.12991613136226732, + -0.1300215197654244, + -0.12908827472666828, + -0.1271717080861009, + -0.12432713168382419, + -0.12060985735993998, + -0.11607519695455012, + -0.11077846230775655, + -0.1047749652596611, + -0.0981200176503657, + -0.09086893131997226, + -0.08307701810858262, + -0.07479958985629853, + -0.06609195840322218, + -0.05700943558945526, + -0.047607333255099665, + -0.0379409632402572, + -0.02806563738502993, + -0.018036667529519657, + -0.00790936551382837, + 0.0022609568219424747, + 0.0124189876376905, + 0.022509415093314004, + 0.0324769273487111, + 0.042266212563779895, + 0.05182195889841852, + 0.06108885451252508, + 0.07001158756599771, + 0.0785348462187345, + 0.08660331863063359, + 0.09416169296159307, + 0.10115465737151108, + 0.10752690002028574, + 0.11322310906781513, + 0.11818797267399742, + 0.12236617899873067, + 0.12570241620191314, + 0.12814137244344267, + 0.12962773588321755, + 0.1301061946811359, + 0.1295214369970958, + 0.12781815099099542, + 0.12494102482273277, + 0.12083474665220607, + 0.1154440046393134, + 0.10871348694395286, + 0.10058788172602262, + 0.09101187714542075, + 0.07993016136204537, + 0.06728742253579459, + 0.053028348826566596, + 0.037097628394259397, + 0.019439949398771195, + 0 + ] + }, + { + "name": "100 points", + "type": "scatter", + "uid": "7c76672a-16d0-4cde-b922-09d1796ac1b8", + "x": [ + -1, + -0.9933110367892977, + -0.9866220735785953, + -0.979933110367893, + -0.9732441471571907, + -0.9665551839464883, + -0.959866220735786, + -0.9531772575250836, + -0.9464882943143813, + -0.939799331103679, + -0.9331103678929766, + -0.9264214046822743, + -0.919732441471572, + -0.9130434782608696, + -0.9063545150501673, + -0.8996655518394648, + -0.8929765886287625, + -0.8862876254180602, + -0.8795986622073578, + -0.8729096989966555, + -0.8662207357859532, + -0.8595317725752508, + -0.8528428093645485, + -0.8461538461538461, + -0.8394648829431438, + -0.8327759197324415, + -0.8260869565217391, + -0.8193979933110368, + -0.8127090301003345, + -0.8060200668896321, + -0.7993311036789298, + -0.7926421404682275, + -0.7859531772575251, + -0.7792642140468228, + -0.7725752508361204, + -0.7658862876254181, + -0.7591973244147157, + -0.7525083612040133, + -0.745819397993311, + -0.7391304347826086, + -0.7324414715719063, + -0.725752508361204, + -0.7190635451505016, + -0.7123745819397993, + -0.705685618729097, + -0.6989966555183946, + -0.6923076923076923, + -0.68561872909699, + -0.6789297658862876, + -0.6722408026755853, + -0.6655518394648829, + -0.6588628762541806, + -0.6521739130434783, + -0.6454849498327759, + -0.6387959866220736, + -0.6321070234113713, + -0.6254180602006689, + -0.6187290969899666, + -0.6120401337792643, + -0.6053511705685619, + -0.5986622073578596, + -0.5919732441471572, + -0.5852842809364549, + -0.5785953177257526, + -0.5719063545150502, + -0.5652173913043479, + -0.5585284280936456, + -0.5518394648829432, + -0.5451505016722409, + -0.5384615384615385, + -0.5317725752508362, + -0.5250836120401338, + -0.5183946488294314, + -0.5117056856187291, + -0.5050167224080268, + -0.4983277591973244, + -0.4916387959866221, + -0.48494983277591974, + -0.4782608695652174, + -0.47157190635451507, + -0.46488294314381273, + -0.4581939799331104, + -0.45150501672240806, + -0.4448160535117057, + -0.4381270903010034, + -0.43143812709030105, + -0.4247491638795987, + -0.4180602006688964, + -0.41137123745819404, + -0.4046822742474917, + -0.39799331103678925, + -0.3913043478260869, + -0.3846153846153846, + -0.37792642140468224, + -0.3712374581939799, + -0.36454849498327757, + -0.35785953177257523, + -0.3511705685618729, + -0.34448160535117056, + -0.3377926421404682, + -0.3311036789297659, + -0.32441471571906355, + -0.3177257525083612, + -0.3110367892976589, + -0.30434782608695654, + -0.2976588628762542, + -0.29096989966555187, + -0.28428093645484953, + -0.2775919732441472, + -0.27090301003344486, + -0.2642140468227425, + -0.2575250836120402, + -0.25083612040133785, + -0.2441471571906355, + -0.23745819397993317, + -0.23076923076923084, + -0.2240802675585284, + -0.21739130434782605, + -0.21070234113712372, + -0.20401337792642138, + -0.19732441471571904, + -0.1906354515050167, + -0.18394648829431437, + -0.17725752508361203, + -0.1705685618729097, + -0.16387959866220736, + -0.15719063545150502, + -0.1505016722408027, + -0.14381270903010035, + -0.137123745819398, + -0.13043478260869568, + -0.12374581939799334, + -0.117056856187291, + -0.11036789297658867, + -0.10367892976588633, + -0.09698996655518399, + -0.09030100334448166, + -0.08361204013377932, + -0.07692307692307698, + -0.07023411371237465, + -0.06354515050167231, + -0.05685618729096986, + -0.050167224080267525, + -0.04347826086956519, + -0.03678929765886285, + -0.030100334448160515, + -0.02341137123745818, + -0.01672240802675584, + -0.010033444816053505, + -0.0033444816053511683, + 0.0033444816053511683, + 0.010033444816053505, + 0.01672240802675584, + 0.02341137123745818, + 0.030100334448160515, + 0.03678929765886285, + 0.04347826086956519, + 0.050167224080267525, + 0.05685618729096986, + 0.0635451505016722, + 0.07023411371237454, + 0.07692307692307687, + 0.08361204013377921, + 0.09030100334448155, + 0.09698996655518388, + 0.10367892976588622, + 0.11036789297658856, + 0.11705685618729089, + 0.12374581939799323, + 0.13043478260869557, + 0.1371237458193979, + 0.14381270903010024, + 0.15050167224080258, + 0.1571906354515049, + 0.16387959866220725, + 0.17056856187290959, + 0.17725752508361192, + 0.18394648829431426, + 0.1906354515050166, + 0.19732441471571893, + 0.2040133779264215, + 0.21070234113712383, + 0.21739130434782616, + 0.2240802675585285, + 0.23076923076923084, + 0.23745819397993317, + 0.2441471571906355, + 0.25083612040133785, + 0.2575250836120402, + 0.2642140468227425, + 0.27090301003344486, + 0.2775919732441472, + 0.28428093645484953, + 0.29096989966555187, + 0.2976588628762542, + 0.30434782608695654, + 0.3110367892976589, + 0.3177257525083612, + 0.32441471571906355, + 0.3311036789297659, + 0.3377926421404682, + 0.34448160535117056, + 0.3511705685618729, + 0.35785953177257523, + 0.36454849498327757, + 0.3712374581939799, + 0.37792642140468224, + 0.3846153846153846, + 0.3913043478260869, + 0.39799331103678925, + 0.4046822742474916, + 0.41137123745819393, + 0.41806020066889626, + 0.4247491638795986, + 0.43143812709030094, + 0.4381270903010033, + 0.4448160535117056, + 0.45150501672240795, + 0.4581939799331103, + 0.4648829431438126, + 0.47157190635451496, + 0.4782608695652173, + 0.48494983277591963, + 0.49163879598662197, + 0.4983277591973243, + 0.5050167224080266, + 0.511705685618729, + 0.5183946488294313, + 0.5250836120401337, + 0.531772575250836, + 0.5384615384615383, + 0.5451505016722409, + 0.5518394648829432, + 0.5585284280936456, + 0.5652173913043479, + 0.5719063545150502, + 0.5785953177257526, + 0.5852842809364549, + 0.5919732441471572, + 0.5986622073578596, + 0.6053511705685619, + 0.6120401337792643, + 0.6187290969899666, + 0.6254180602006689, + 0.6321070234113713, + 0.6387959866220736, + 0.6454849498327759, + 0.6521739130434783, + 0.6588628762541806, + 0.6655518394648829, + 0.6722408026755853, + 0.6789297658862876, + 0.68561872909699, + 0.6923076923076923, + 0.6989966555183946, + 0.705685618729097, + 0.7123745819397993, + 0.7190635451505016, + 0.725752508361204, + 0.7324414715719063, + 0.7391304347826086, + 0.745819397993311, + 0.7525083612040133, + 0.7591973244147157, + 0.765886287625418, + 0.7725752508361203, + 0.7792642140468227, + 0.785953177257525, + 0.7926421404682273, + 0.7993311036789297, + 0.806020066889632, + 0.8127090301003344, + 0.8193979933110367, + 0.826086956521739, + 0.8327759197324414, + 0.8394648829431437, + 0.846153846153846, + 0.8528428093645484, + 0.8595317725752507, + 0.866220735785953, + 0.8729096989966554, + 0.8795986622073577, + 0.8862876254180603, + 0.8929765886287626, + 0.899665551839465, + 0.9063545150501673, + 0.9130434782608696, + 0.919732441471572, + 0.9264214046822743, + 0.9331103678929766, + 0.939799331103679, + 0.9464882943143813, + 0.9531772575250836, + 0.959866220735786, + 0.9665551839464883, + 0.9732441471571907, + 0.979933110367893, + 0.9866220735785953, + 0.9933110367892977, + 1 + ], + "y": [ + 0, + 3.2814094847721537e-14, + 2.6566922481922936e-14, + 5.93810173296619e-16, + -2.5769914807465038e-14, + -3.3188925189669525e-14, + -2.3278937026244694e-15, + 6.906343704517116e-14, + 1.0607957730525636e-13, + 1.20451660639815e-14, + -2.4560215140357743e-13, + -3.917123338890595e-13, + -5.893138033678536e-14, + 8.948637012305054e-13, + 1.4625804219506502e-12, + 2.715635863820171e-13, + -3.2643043880724876e-12, + -5.4629657951520246e-12, + -1.201674830459579e-12, + 1.190090906980797e-11, + 2.0396441400445944e-11, + 5.169480233304925e-12, + -4.335714296282765e-11, + -7.611602595877745e-11, + -2.1783126350118783e-11, + 1.578400089040682e-10, + 2.839194131087681e-10, + 9.034855401873516e-11, + -5.741656063306738e-10, + -1.0585570277948669e-09, + -3.7007843417367406e-10, + 2.086930288727203e-09, + 3.944903506803139e-09, + 1.5006095761621496e-09, + -7.579061923762897e-09, + -1.4694810309781038e-08, + -6.033971453847089e-09, + 2.7500756749793814e-08, + 5.4714109798167975e-08, + 2.4092263730443735e-08, + -9.969633677062571e-08, + -2.0363128032766412e-07, + -9.56179341364005e-08, + 3.6107834390489104e-07, + 7.575325026233443e-07, + 3.7752349665824273e-07, + -1.3064480941041277e-06, + -2.816899065082102e-06, + -1.4838089283743084e-06, + 4.722048534683833e-06, + 1.0470223126744694e-05, + 5.80865470275285e-06, + -1.7048787376329528e-05, + -3.8900611295192766e-05, + -2.265847399625842e-05, + 6.148318579149026e-05, + 0.00014446869794380266, + 8.810602894588059e-05, + -0.00022145817076763775, + -0.0005363011762759018, + -0.000341615631481911, + 0.0007966535076395903, + 0.0019900410121287074, + 0.0013211254281776785, + -0.0028619135595283067, + -0.007381320026151431, + -0.005097124202709809, + 0.010266352352617091, + 0.027366864300543546, + 0.019623133298607418, + -0.036771194554406174, + -0.10142268956777327, + -0.07539618604618142, + 0.13645039048286645, + 0.5019782786869437, + 0.8667009380846525, + 1.0764476143433144, + 1.1010528403895734, + 1.0360010571156317, + 0.9800846246082667, + 0.9727272504900977, + 0.9899405460862166, + 1.00517827702991, + 1.0073574679549715, + 1.0028063603175108, + 0.9986563589248707, + 0.9980159761201489, + 0.9992182547292702, + 1.0003478573674027, + 1.000534791254401, + 1.0002174595619435, + 0.9999101650100382, + 0.999855907880553, + 0.9999395887234301, + 1.0000231370391501, + 1.0000388073652147, + 1.0000167615943674, + 0.9999940589754985, + 0.9999895526688558, + 0.9999953548567937, + 1.0000015203973298, + 1.0000028113371282, + 1.0000012858652554, + 0.9999996123695953, + 0.9999992438015933, + 0.9999996444274452, + 1.0000000984080757, + 1.0000002033164646, + 1.0000000982243695, + 0.9999999751379341, + 0.9999999453586027, + 0.9999999728925573, + 1.0000000062462409, + 1.0000000146785035, + 1.0000000074740252, + 0.9999999984408895, + 0.9999999960585995, + 0.9999999979411048, + 1.0000000003861929, + 1.0000000010578547, + 1.0000000005666871, + 0.9999999999052148, + 0.9999999997162045, + 0.9999999998441539, + 1.000000000023004, + 1.0000000000761005, + 1.0000000000428257, + 0.9999999999944946, + 0.9999999999796031, + 0.9999999999882405, + 1.000000000001294, + 1.0000000000054643, + 1.0000000000032265, + 0.999999999999703, + 0.9999999999985368, + 0.9999999999991154, + 1.000000000000066, + 1.0000000000003915, + 1.0000000000002425, + 0.9999999999999861, + 0.9999999999998952, + 0.9999999999999337, + 1.0000000000000027, + 1.0000000000000282, + 1.0000000000000182, + 0.9999999999999996, + 0.9999999999999921, + 0.9999999999999943, + 1, + 1.0000000000000033, + 1.0000000000000033, + 1.0000000000000002, + 0.9999999999999944, + 0.9999999999999922, + 0.9999999999999997, + 1.0000000000000182, + 1.000000000000028, + 1.0000000000000024, + 0.9999999999999336, + 0.9999999999998953, + 0.9999999999999862, + 1.0000000000002425, + 1.0000000000003917, + 1.0000000000000657, + 0.9999999999991154, + 0.9999999999985368, + 0.999999999999703, + 1.0000000000032268, + 1.0000000000054643, + 1.000000000001294, + 0.9999999999882406, + 0.999999999979603, + 0.9999999999944946, + 1.0000000000428257, + 1.0000000000761002, + 1.000000000023004, + 0.9999999998441538, + 0.9999999997162045, + 0.9999999999052148, + 1.0000000005666871, + 1.0000000010578547, + 1.0000000003861926, + 0.9999999979411048, + 0.9999999960585993, + 0.9999999984408895, + 1.0000000074740252, + 1.0000000146785035, + 1.0000000062462409, + 0.9999999728925573, + 0.9999999453586027, + 0.9999999751379343, + 1.0000000982243695, + 1.0000002033164646, + 1.0000000984080757, + 0.9999996444274453, + 0.9999992438015933, + 0.9999996123695953, + 1.0000012858652554, + 1.000002811337128, + 1.0000015203973298, + 0.9999953548567937, + 0.9999895526688559, + 0.9999940589754984, + 1.0000167615943674, + 1.0000388073652147, + 1.0000231370391501, + 0.9999395887234301, + 0.9998559078805529, + 0.9999101650100382, + 1.0002174595619435, + 1.000534791254401, + 1.0003478573674027, + 0.9992182547292702, + 0.998015976120149, + 0.9986563589248705, + 1.0028063603175108, + 1.007357467954971, + 1.0051782770299102, + 0.9899405460862173, + 0.9727272504900979, + 0.9800846246082654, + 1.0360010571156275, + 1.1010528403895705, + 1.0764476143433173, + 0.8667009380846639, + 0.5019782786869602, + 0.1364503904828811, + -0.0753961860461757, + -0.10142268956777423, + -0.03677119455441091, + 0.019623133298605194, + 0.027366864300543154, + 0.01026635235261708, + -0.005097124202709812, + -0.007381320026151526, + -0.0028619135595284693, + 0.0013211254281775896, + 0.0019900410121286944, + 0.0007966535076396114, + -0.00034161563148189946, + -0.0005363011762759055, + -0.00022145817076764948, + 8.810602894587391e-05, + 0.00014446869794380158, + 6.148318579149149e-05, + -2.265847399625756e-05, + -3.890061129519303e-05, + -1.7048787376330345e-05, + 5.808654702752365e-06, + 1.0470223126744679e-05, + 4.72204853468404e-06, + -1.483808928374167e-06, + -2.8168990650820525e-06, + -1.306448094104119e-06, + 3.7752349665824316e-07, + 7.575325026233525e-07, + 3.6107834390490724e-07, + -9.561793413639029e-08, + -2.0363128032766214e-07, + -9.969633677062737e-08, + 2.409226373044241e-08, + 5.471410979816817e-08, + 2.750075674979492e-08, + -6.0339714538463316e-09, + -1.4694810309780905e-08, + -7.579061923763191e-09, + 1.5006095761619509e-09, + 3.944903506803155e-09, + 2.0869302887273233e-09, + -3.700784341735916e-10, + -1.058557027794862e-09, + -5.741656063307072e-10, + 9.03485540187123e-11, + 2.839194131087647e-10, + 1.5784000890407356e-10, + -2.1783126350114737e-11, + -7.611602595877756e-11, + -4.335714296283e-11, + 5.1694802333032055e-12, + 2.039644140044565e-11, + 1.190090906980835e-11, + -1.2016748304592659e-12, + -5.462965795152027e-12, + -3.264304388072531e-12, + 2.715635863819726e-13, + 1.4625804219506258e-12, + 8.948637012305142e-13, + -5.893138033677335e-14, + -3.9171233388905385e-13, + -2.4560215140357607e-13, + 1.2045166063981399e-14, + 1.060795773052571e-13, + 6.906343704517317e-14, + -2.327893702622584e-15, + -3.318892518966883e-14, + -2.5769914807465142e-14, + 5.938101732960929e-16, + 2.656692248192233e-14, + 3.281409484772111e-14, + -1.262177448353619e-29 + ] + }, + { + "name": "200 points", + "type": "scatter", + "uid": "3510ac5b-ba35-436b-9e7a-1ae2c3c5e4cf", + "x": [ + -1, + -0.9933110367892977, + -0.9866220735785953, + -0.979933110367893, + -0.9732441471571907, + -0.9665551839464883, + -0.959866220735786, + -0.9531772575250836, + -0.9464882943143813, + -0.939799331103679, + -0.9331103678929766, + -0.9264214046822743, + -0.919732441471572, + -0.9130434782608696, + -0.9063545150501673, + -0.8996655518394648, + -0.8929765886287625, + -0.8862876254180602, + -0.8795986622073578, + -0.8729096989966555, + -0.8662207357859532, + -0.8595317725752508, + -0.8528428093645485, + -0.8461538461538461, + -0.8394648829431438, + -0.8327759197324415, + -0.8260869565217391, + -0.8193979933110368, + -0.8127090301003345, + -0.8060200668896321, + -0.7993311036789298, + -0.7926421404682275, + -0.7859531772575251, + -0.7792642140468228, + -0.7725752508361204, + -0.7658862876254181, + -0.7591973244147157, + -0.7525083612040133, + -0.745819397993311, + -0.7391304347826086, + -0.7324414715719063, + -0.725752508361204, + -0.7190635451505016, + -0.7123745819397993, + -0.705685618729097, + -0.6989966555183946, + -0.6923076923076923, + -0.68561872909699, + -0.6789297658862876, + -0.6722408026755853, + -0.6655518394648829, + -0.6588628762541806, + -0.6521739130434783, + -0.6454849498327759, + -0.6387959866220736, + -0.6321070234113713, + -0.6254180602006689, + -0.6187290969899666, + -0.6120401337792643, + -0.6053511705685619, + -0.5986622073578596, + -0.5919732441471572, + -0.5852842809364549, + -0.5785953177257526, + -0.5719063545150502, + -0.5652173913043479, + -0.5585284280936456, + -0.5518394648829432, + -0.5451505016722409, + -0.5384615384615385, + -0.5317725752508362, + -0.5250836120401338, + -0.5183946488294314, + -0.5117056856187291, + -0.5050167224080268, + -0.4983277591973244, + -0.4916387959866221, + -0.48494983277591974, + -0.4782608695652174, + -0.47157190635451507, + -0.46488294314381273, + -0.4581939799331104, + -0.45150501672240806, + -0.4448160535117057, + -0.4381270903010034, + -0.43143812709030105, + -0.4247491638795987, + -0.4180602006688964, + -0.41137123745819404, + -0.4046822742474917, + -0.39799331103678925, + -0.3913043478260869, + -0.3846153846153846, + -0.37792642140468224, + -0.3712374581939799, + -0.36454849498327757, + -0.35785953177257523, + -0.3511705685618729, + -0.34448160535117056, + -0.3377926421404682, + -0.3311036789297659, + -0.32441471571906355, + -0.3177257525083612, + -0.3110367892976589, + -0.30434782608695654, + -0.2976588628762542, + -0.29096989966555187, + -0.28428093645484953, + -0.2775919732441472, + -0.27090301003344486, + -0.2642140468227425, + -0.2575250836120402, + -0.25083612040133785, + -0.2441471571906355, + -0.23745819397993317, + -0.23076923076923084, + -0.2240802675585284, + -0.21739130434782605, + -0.21070234113712372, + -0.20401337792642138, + -0.19732441471571904, + -0.1906354515050167, + -0.18394648829431437, + -0.17725752508361203, + -0.1705685618729097, + -0.16387959866220736, + -0.15719063545150502, + -0.1505016722408027, + -0.14381270903010035, + -0.137123745819398, + -0.13043478260869568, + -0.12374581939799334, + -0.117056856187291, + -0.11036789297658867, + -0.10367892976588633, + -0.09698996655518399, + -0.09030100334448166, + -0.08361204013377932, + -0.07692307692307698, + -0.07023411371237465, + -0.06354515050167231, + -0.05685618729096986, + -0.050167224080267525, + -0.04347826086956519, + -0.03678929765886285, + -0.030100334448160515, + -0.02341137123745818, + -0.01672240802675584, + -0.010033444816053505, + -0.0033444816053511683, + 0.0033444816053511683, + 0.010033444816053505, + 0.01672240802675584, + 0.02341137123745818, + 0.030100334448160515, + 0.03678929765886285, + 0.04347826086956519, + 0.050167224080267525, + 0.05685618729096986, + 0.0635451505016722, + 0.07023411371237454, + 0.07692307692307687, + 0.08361204013377921, + 0.09030100334448155, + 0.09698996655518388, + 0.10367892976588622, + 0.11036789297658856, + 0.11705685618729089, + 0.12374581939799323, + 0.13043478260869557, + 0.1371237458193979, + 0.14381270903010024, + 0.15050167224080258, + 0.1571906354515049, + 0.16387959866220725, + 0.17056856187290959, + 0.17725752508361192, + 0.18394648829431426, + 0.1906354515050166, + 0.19732441471571893, + 0.2040133779264215, + 0.21070234113712383, + 0.21739130434782616, + 0.2240802675585285, + 0.23076923076923084, + 0.23745819397993317, + 0.2441471571906355, + 0.25083612040133785, + 0.2575250836120402, + 0.2642140468227425, + 0.27090301003344486, + 0.2775919732441472, + 0.28428093645484953, + 0.29096989966555187, + 0.2976588628762542, + 0.30434782608695654, + 0.3110367892976589, + 0.3177257525083612, + 0.32441471571906355, + 0.3311036789297659, + 0.3377926421404682, + 0.34448160535117056, + 0.3511705685618729, + 0.35785953177257523, + 0.36454849498327757, + 0.3712374581939799, + 0.37792642140468224, + 0.3846153846153846, + 0.3913043478260869, + 0.39799331103678925, + 0.4046822742474916, + 0.41137123745819393, + 0.41806020066889626, + 0.4247491638795986, + 0.43143812709030094, + 0.4381270903010033, + 0.4448160535117056, + 0.45150501672240795, + 0.4581939799331103, + 0.4648829431438126, + 0.47157190635451496, + 0.4782608695652173, + 0.48494983277591963, + 0.49163879598662197, + 0.4983277591973243, + 0.5050167224080266, + 0.511705685618729, + 0.5183946488294313, + 0.5250836120401337, + 0.531772575250836, + 0.5384615384615383, + 0.5451505016722409, + 0.5518394648829432, + 0.5585284280936456, + 0.5652173913043479, + 0.5719063545150502, + 0.5785953177257526, + 0.5852842809364549, + 0.5919732441471572, + 0.5986622073578596, + 0.6053511705685619, + 0.6120401337792643, + 0.6187290969899666, + 0.6254180602006689, + 0.6321070234113713, + 0.6387959866220736, + 0.6454849498327759, + 0.6521739130434783, + 0.6588628762541806, + 0.6655518394648829, + 0.6722408026755853, + 0.6789297658862876, + 0.68561872909699, + 0.6923076923076923, + 0.6989966555183946, + 0.705685618729097, + 0.7123745819397993, + 0.7190635451505016, + 0.725752508361204, + 0.7324414715719063, + 0.7391304347826086, + 0.745819397993311, + 0.7525083612040133, + 0.7591973244147157, + 0.765886287625418, + 0.7725752508361203, + 0.7792642140468227, + 0.785953177257525, + 0.7926421404682273, + 0.7993311036789297, + 0.806020066889632, + 0.8127090301003344, + 0.8193979933110367, + 0.826086956521739, + 0.8327759197324414, + 0.8394648829431437, + 0.846153846153846, + 0.8528428093645484, + 0.8595317725752507, + 0.866220735785953, + 0.8729096989966554, + 0.8795986622073577, + 0.8862876254180603, + 0.8929765886287626, + 0.899665551839465, + 0.9063545150501673, + 0.9130434782608696, + 0.919732441471572, + 0.9264214046822743, + 0.9331103678929766, + 0.939799331103679, + 0.9464882943143813, + 0.9531772575250836, + 0.959866220735786, + 0.9665551839464883, + 0.9732441471571907, + 0.979933110367893, + 0.9866220735785953, + 0.9933110367892977, + 1 + ], + "y": [ + 0, + -1.3256594649578736e-28, + 1.315692100559653e-28, + 2.9702745906564796e-30, + -5.30204081971271e-28, + 1.3006924693218492e-27, + 7.672005595421819e-29, + -7.30047724646984e-27, + 1.7896987996456608e-26, + 1.5929314863225292e-27, + -1.0181790315004396e-25, + 2.4672078653631224e-25, + 2.9409517065191404e-26, + -1.4199385649678327e-24, + 3.400699017963001e-24, + 5.090297541378472e-25, + -1.9799710994423456e-23, + 4.6866413981306603e-23, + 8.457889155492955e-24, + -2.7605301750692733e-22, + 6.457810132105232e-22, + 1.3662765453768282e-22, + -3.848319179532356e-21, + 8.896880803523016e-21, + 2.1619846470793116e-21, + -5.364079137790845e-20, + 1.2255135576466156e-19, + 3.36759097279098e-20, + -7.475931548641084e-19, + 1.6878162824668923e-18, + 5.180636844291643e-19, + -1.0417944193656227e-17, + 2.3241156948692435e-17, + 7.889949477010587e-18, + -1.4515961557711868e-16, + 3.199739380095628e-16, + 1.1916622584306217e-16, + -2.0223538477072297e-15, + 4.404478440138307e-15, + 1.787300829783593e-15, + -2.8171923289930657e-14, + 6.061722783753873e-14, + 2.6647509114713028e-14, + -3.9239576059467105e-13, + 8.340997429233634e-13, + 3.9526283715949653e-13, + -5.464884634699019e-12, + 1.1475161827710034e-11, + 5.836771045666593e-12, + -7.610040679141561e-11, + 1.5784000820071039e-10, + 8.585217550813161e-11, + -1.0596016728077034e-09, + 2.1706574281388043e-09, + 1.2583930208521495e-09, + -1.4751912944081283e-08, + 2.9845565786738765e-08, + 1.8387829170684664e-08, + -2.0535460673703304e-07, + 4.1028064741642237e-07, + 2.6793627516582194e-07, + -2.858322981490702e-06, + 5.638884867641799e-06, + 3.8943682649440525e-06, + -3.9780406570965387e-05, + 7.748446279845099e-05, + 5.647394074915807e-05, + -0.0005535775971134837, + 0.001064494405260537, + 0.0008172451858828268, + -0.007702637499285108, + 0.014621016876588273, + 0.011803920452752567, + -0.10716484868738597, + 0.21655987736315158, + 0.9397433745107114, + 1.0885306076069514, + 0.9740948272892201, + 0.9955276063293403, + 1.0063974111158402, + 0.9981515611539272, + 0.9996653149368344, + 1.000462237711447, + 0.9998681349162424, + 0.9999749903687621, + 1.0000333946666, + 0.9999905950066247, + 0.9999981336416217, + 1.000002412347042, + 0.9999993293609414, + 0.9999998608966895, + 1.00000017424234, + 0.999999952190029, + 0.9999999896445558, + 1.000000012584012, + 0.9999999965924291, + 0.9999999992299483, + 1.000000000908733, + 0.9999999997571906, + 0.9999999999427969, + 1.0000000000656153, + 0.9999999999827027, + 0.999999999995755, + 1.0000000000047373, + 0.9999999999987681, + 0.9999999999996854, + 1.000000000000342, + 0.9999999999999123, + 0.9999999999999767, + 1.0000000000000246, + 0.9999999999999938, + 0.9999999999999983, + 1.0000000000000018, + 0.9999999999999996, + 0.9999999999999998, + 1, + 1, + 0.9999999999999999, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 0.9999999999999999, + 0.9999999999999999, + 0.9999999999999996, + 1.0000000000000018, + 0.9999999999999983, + 0.9999999999999937, + 1.0000000000000249, + 0.9999999999999767, + 0.9999999999999122, + 1.000000000000342, + 0.9999999999996853, + 0.9999999999987681, + 1.000000000004737, + 0.999999999995755, + 0.9999999999827027, + 1.0000000000656153, + 0.9999999999427971, + 0.9999999997571906, + 1.000000000908733, + 0.9999999992299485, + 0.9999999965924291, + 1.000000012584012, + 0.9999999896445557, + 0.9999999521900291, + 1.00000017424234, + 0.9999998608966895, + 0.9999993293609415, + 1.000002412347042, + 0.9999981336416217, + 0.9999905950066246, + 1.0000333946666, + 0.9999749903687623, + 0.9998681349162424, + 1.0004622377114467, + 0.9996653149368344, + 0.9981515611539273, + 1.0063974111158398, + 0.9955276063293409, + 0.9740948272892201, + 1.088530607606948, + 0.9397433745107213, + 0.2165598773631715, + -0.10716484868738504, + 0.011803920452749554, + 0.014621016876588726, + -0.007702637499285046, + 0.0008172451858826157, + 0.0010644944052605227, + -0.0005535775971134844, + 5.647394074914989e-05, + 7.748446279845305e-05, + -3.978040657096422e-05, + 3.894368264943991e-06, + 5.638884867641714e-06, + -2.8583229814906613e-06, + 2.679362751658198e-07, + 4.102806474164341e-07, + -2.0535460673702994e-07, + 1.838782917068147e-08, + 2.98455657867382e-08, + -1.4751912944081043e-08, + 1.2583930208521311e-09, + 2.170657428138772e-09, + -1.0596016728076881e-09, + 8.585217550813065e-11, + 1.578400082007148e-10, + -7.610040679141329e-11, + 5.836771045666494e-12, + 1.147516182770986e-11, + -5.464884634698931e-12, + 3.9526283715949047e-13, + 8.34099742923352e-13, + -3.9239576059467054e-13, + 2.6647509114706686e-14, + 6.061722783753761e-14, + -2.8171923289930196e-14, + 1.7873008297835684e-15, + 4.4044784401382436e-15, + -2.0223538477071998e-15, + 1.1916622584306074e-16, + 3.199739380095824e-16, + -1.4515961557711382e-16, + 7.889949477008254e-18, + 2.3241156948692955e-17, + -1.0417944193656038e-17, + 5.180636844289948e-19, + 1.6878162824669316e-18, + -7.475931548641042e-19, + 3.367590972788554e-20, + 1.22551355764659e-19, + -5.364079137790839e-20, + 2.161984647078425e-21, + 8.896880803523198e-21, + -3.848319179532285e-21, + 1.366276545376192e-22, + 6.457810132105583e-22, + -2.7605301750691323e-22, + 8.457889155492873e-24, + 4.686641398130435e-23, + -1.9799710994423192e-23, + 5.090297541381667e-25, + 3.400699017962951e-24, + -1.4199385649678257e-24, + 2.9409517065166935e-26, + 2.4672078653629847e-25, + -1.0181790315004408e-25, + 1.5929314863225109e-27, + 1.789698799645632e-26, + -7.300477246469723e-27, + 7.672005595421815e-29, + 1.3006924693218764e-27, + -5.302040819712584e-28, + 2.9702745906466712e-30, + 1.3156921005596236e-28, + -1.3256594649578555e-28, + 0 + ] + }, + { + "name": "300 points", + "type": "scatter", + "uid": "d2b3d57a-5f96-42c0-bc08-051543dcdce9", + "x": [ + -1, + -0.9933110367892977, + -0.9866220735785953, + -0.979933110367893, + -0.9732441471571907, + -0.9665551839464883, + -0.959866220735786, + -0.9531772575250836, + -0.9464882943143813, + -0.939799331103679, + -0.9331103678929766, + -0.9264214046822743, + -0.919732441471572, + -0.9130434782608696, + -0.9063545150501673, + -0.8996655518394648, + -0.8929765886287625, + -0.8862876254180602, + -0.8795986622073578, + -0.8729096989966555, + -0.8662207357859532, + -0.8595317725752508, + -0.8528428093645485, + -0.8461538461538461, + -0.8394648829431438, + -0.8327759197324415, + -0.8260869565217391, + -0.8193979933110368, + -0.8127090301003345, + -0.8060200668896321, + -0.7993311036789298, + -0.7926421404682275, + -0.7859531772575251, + -0.7792642140468228, + -0.7725752508361204, + -0.7658862876254181, + -0.7591973244147157, + -0.7525083612040133, + -0.745819397993311, + -0.7391304347826086, + -0.7324414715719063, + -0.725752508361204, + -0.7190635451505016, + -0.7123745819397993, + -0.705685618729097, + -0.6989966555183946, + -0.6923076923076923, + -0.68561872909699, + -0.6789297658862876, + -0.6722408026755853, + -0.6655518394648829, + -0.6588628762541806, + -0.6521739130434783, + -0.6454849498327759, + -0.6387959866220736, + -0.6321070234113713, + -0.6254180602006689, + -0.6187290969899666, + -0.6120401337792643, + -0.6053511705685619, + -0.5986622073578596, + -0.5919732441471572, + -0.5852842809364549, + -0.5785953177257526, + -0.5719063545150502, + -0.5652173913043479, + -0.5585284280936456, + -0.5518394648829432, + -0.5451505016722409, + -0.5384615384615385, + -0.5317725752508362, + -0.5250836120401338, + -0.5183946488294314, + -0.5117056856187291, + -0.5050167224080268, + -0.4983277591973244, + -0.4916387959866221, + -0.48494983277591974, + -0.4782608695652174, + -0.47157190635451507, + -0.46488294314381273, + -0.4581939799331104, + -0.45150501672240806, + -0.4448160535117057, + -0.4381270903010034, + -0.43143812709030105, + -0.4247491638795987, + -0.4180602006688964, + -0.41137123745819404, + -0.4046822742474917, + -0.39799331103678925, + -0.3913043478260869, + -0.3846153846153846, + -0.37792642140468224, + -0.3712374581939799, + -0.36454849498327757, + -0.35785953177257523, + -0.3511705685618729, + -0.34448160535117056, + -0.3377926421404682, + -0.3311036789297659, + -0.32441471571906355, + -0.3177257525083612, + -0.3110367892976589, + -0.30434782608695654, + -0.2976588628762542, + -0.29096989966555187, + -0.28428093645484953, + -0.2775919732441472, + -0.27090301003344486, + -0.2642140468227425, + -0.2575250836120402, + -0.25083612040133785, + -0.2441471571906355, + -0.23745819397993317, + -0.23076923076923084, + -0.2240802675585284, + -0.21739130434782605, + -0.21070234113712372, + -0.20401337792642138, + -0.19732441471571904, + -0.1906354515050167, + -0.18394648829431437, + -0.17725752508361203, + -0.1705685618729097, + -0.16387959866220736, + -0.15719063545150502, + -0.1505016722408027, + -0.14381270903010035, + -0.137123745819398, + -0.13043478260869568, + -0.12374581939799334, + -0.117056856187291, + -0.11036789297658867, + -0.10367892976588633, + -0.09698996655518399, + -0.09030100334448166, + -0.08361204013377932, + -0.07692307692307698, + -0.07023411371237465, + -0.06354515050167231, + -0.05685618729096986, + -0.050167224080267525, + -0.04347826086956519, + -0.03678929765886285, + -0.030100334448160515, + -0.02341137123745818, + -0.01672240802675584, + -0.010033444816053505, + -0.0033444816053511683, + 0.0033444816053511683, + 0.010033444816053505, + 0.01672240802675584, + 0.02341137123745818, + 0.030100334448160515, + 0.03678929765886285, + 0.04347826086956519, + 0.050167224080267525, + 0.05685618729096986, + 0.0635451505016722, + 0.07023411371237454, + 0.07692307692307687, + 0.08361204013377921, + 0.09030100334448155, + 0.09698996655518388, + 0.10367892976588622, + 0.11036789297658856, + 0.11705685618729089, + 0.12374581939799323, + 0.13043478260869557, + 0.1371237458193979, + 0.14381270903010024, + 0.15050167224080258, + 0.1571906354515049, + 0.16387959866220725, + 0.17056856187290959, + 0.17725752508361192, + 0.18394648829431426, + 0.1906354515050166, + 0.19732441471571893, + 0.2040133779264215, + 0.21070234113712383, + 0.21739130434782616, + 0.2240802675585285, + 0.23076923076923084, + 0.23745819397993317, + 0.2441471571906355, + 0.25083612040133785, + 0.2575250836120402, + 0.2642140468227425, + 0.27090301003344486, + 0.2775919732441472, + 0.28428093645484953, + 0.29096989966555187, + 0.2976588628762542, + 0.30434782608695654, + 0.3110367892976589, + 0.3177257525083612, + 0.32441471571906355, + 0.3311036789297659, + 0.3377926421404682, + 0.34448160535117056, + 0.3511705685618729, + 0.35785953177257523, + 0.36454849498327757, + 0.3712374581939799, + 0.37792642140468224, + 0.3846153846153846, + 0.3913043478260869, + 0.39799331103678925, + 0.4046822742474916, + 0.41137123745819393, + 0.41806020066889626, + 0.4247491638795986, + 0.43143812709030094, + 0.4381270903010033, + 0.4448160535117056, + 0.45150501672240795, + 0.4581939799331103, + 0.4648829431438126, + 0.47157190635451496, + 0.4782608695652173, + 0.48494983277591963, + 0.49163879598662197, + 0.4983277591973243, + 0.5050167224080266, + 0.511705685618729, + 0.5183946488294313, + 0.5250836120401337, + 0.531772575250836, + 0.5384615384615383, + 0.5451505016722409, + 0.5518394648829432, + 0.5585284280936456, + 0.5652173913043479, + 0.5719063545150502, + 0.5785953177257526, + 0.5852842809364549, + 0.5919732441471572, + 0.5986622073578596, + 0.6053511705685619, + 0.6120401337792643, + 0.6187290969899666, + 0.6254180602006689, + 0.6321070234113713, + 0.6387959866220736, + 0.6454849498327759, + 0.6521739130434783, + 0.6588628762541806, + 0.6655518394648829, + 0.6722408026755853, + 0.6789297658862876, + 0.68561872909699, + 0.6923076923076923, + 0.6989966555183946, + 0.705685618729097, + 0.7123745819397993, + 0.7190635451505016, + 0.725752508361204, + 0.7324414715719063, + 0.7391304347826086, + 0.745819397993311, + 0.7525083612040133, + 0.7591973244147157, + 0.765886287625418, + 0.7725752508361203, + 0.7792642140468227, + 0.785953177257525, + 0.7926421404682273, + 0.7993311036789297, + 0.806020066889632, + 0.8127090301003344, + 0.8193979933110367, + 0.826086956521739, + 0.8327759197324414, + 0.8394648829431437, + 0.846153846153846, + 0.8528428093645484, + 0.8595317725752507, + 0.866220735785953, + 0.8729096989966554, + 0.8795986622073577, + 0.8862876254180603, + 0.8929765886287626, + 0.899665551839465, + 0.9063545150501673, + 0.9130434782608696, + 0.919732441471572, + 0.9264214046822743, + 0.9331103678929766, + 0.939799331103679, + 0.9464882943143813, + 0.9531772575250836, + 0.959866220735786, + 0.9665551839464883, + 0.9732441471571907, + 0.979933110367893, + 0.9866220735785953, + 0.9933110367892977, + 1 + ], + "y": [ + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 1, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 6.372367644529809e-58 + ] + } + ], + "layout": {} + }, + "text/html": [ + "
" + ], + "text/vnd.plotly.v1+html": [ + "
" ] }, "metadata": {}, @@ -520,18 +5115,20 @@ } ], "source": [ - "plt.title(\"Testing function interpolation (step)\")\n", "x = np.linspace(-1, 1, 300, endpoint=True)\n", "# ступенька\n", "f = lambda x: 1 if (x >= -0.5 and x<= 0.5) else 0.0 # нормировка на единицу\n", "f = np.vectorize(f)\n", "\n", - "plt.plot(x, f(x), label=\"original\")\n", - "plt.plot(x, interpolate(f, -1, 1, 10)(x), label=\"10 points\")\n", - "plt.plot(x, interpolate(f, -1, 1, 100)(x), label=\"100 points\")\n", - "plt.plot(x, interpolate(f, -1, 1, 200)(x), label=\"200 points\")\n", - "plt.plot(x, interpolate(f, -1, 1, 300)(x), label=\"300 points\")\n", - "plt.legend();" + "traces = [\n", + " go.Scatter(x = x, y = f(x), name = \"original\"),\n", + " go.Scatter(x = x, y = interpolate(f, -1, 1, 10)(x), name=\"10 points\"),\n", + " go.Scatter(x = x, y = interpolate(f, -1, 1, 100)(x), name=\"100 points\"),\n", + " go.Scatter(x = x, y = interpolate(f, -1, 1, 200)(x), name=\"200 points\"),\n", + " go.Scatter(x = x, y = interpolate(f, -1, 1, 300)(x), name=\"300 points\"),\n", + "]\n", + "\n", + "iplot(traces)" ] }, { @@ -575,11 +5172,11 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 49, "metadata": {}, "outputs": [], "source": [ - "uniform = lambda a,b: np.vectorize(lambda x: 1/(b-a) if (x>=a and x<=b) else 0.0)\n" + "uniform = lambda a,b: np.vectorize(lambda x: 1/(b-a) if (x>=a and x<=b) else 0.0)" ] }, { @@ -591,14 +5188,14 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 50, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEICAYAAACktLTqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3X+cXHV97/HXZ2Y22YQkhOyGGgmQ\noFESVGLIRVSkWLEFSqGIVWhUqFikl3h7q/aWNq1SqvUHWn88RL1UrYoUtPRSA0ZRi1RrxRJKEAKm\nRC6W5efuJiEJ2c3uzHz6xzmzmWxmZ87Mntnz3dn38/HIg92ZszOfPex89rOf85nv19wdERHpLLms\nAxARkfQpuYuIdCAldxGRDqTkLiLSgZTcRUQ6kJK7iEgHUnKXKWFmnzezv6j6/A/M7Gkz22tmPVnG\nFsfzqJmdEX/8Z2b2hRQfe6+ZHRd//GUz+0CKj33QeRWpKGQdgEwPZubACnffXnXbVcAL3f0tjb7e\n3S+v+rou4G+AU9z9vjaEOynu/tdJjjOzO4GvuXvdXwTuPi+NuMzsEuAd7n5q1WNfPvFXyEymyl2y\n8CtAN7C12S+0yLT4uTUzFU+SmWnxIpHwmdnpZtZnZu8xs2fM7Ekz+72q+79sZh8wsxcB2+Kbd5nZ\nHfH9rzKzu83s2fi/r6r62jvN7INm9mNgH3BcfNsHzOzf4rbHrWbWY2Y3mNnu+DGW1Yn3rWb2SzMb\nNLMN4+67ysy+Fn/cbWZfi4/bFT/ur5jZB4HXAJ+Jn/8z8fFuZleY2cPAw1W3vbDqKXrN7HtmtsfM\n/sXMjo2PWxYfW6iK5U4ze4eZrQQ+D7wyfr5d1ee16vjfN7PtZrbDzDaa2fOr7nMzu9zMHjaznWZ2\nrZlZo/+3Mj0puUuangccDhwFXApca2ZHVB/g7v8JnBB/utDdf83MFgHfAj4N9BC1bL41rhf/VuAy\nYD7wy/i2C+PbjwJeAPwE+DtgEfAQ8P5aQZrZKuBz8dc+P37OpRN8TxfH39PR8XGXA0PuvgH4EbDe\n3ee5+/qqr/lt4BXAqgkecx3wV0AvsAW4YYLjxrj7Q/Fz/yR+voU1vq9fAz4EvAlYQnSebhp32DnA\n/wBOjI/7jUbPLdOTkrukaRS42t1H3X0TsBd4cYKv+03gYXe/3t2L7n4j8HPgt6qO+bK7b43vH41v\n+zt3/4W7Pwt8G/iFu3/f3YvAPwAvn+D53gjc5u4/dPf9wF8A5TrfUw/RtYWSu9/j7rsbfD8fcvcd\n7j40wf3fqnruDUTV+NENHjOJdcCX3P0/4sf+0/ixl1Ud82F33+Xu/wX8AFidwvNKgJTcJakS0DXu\nti6i5FcxGCfWin1AkouJz+dANV7xS6KKvOKxGl/3dNXHQzU+n+i5n1/9eO7+HDA4wbHXA7cDN5nZ\nE2b20fiCcD21Yq15v7vvBXbEMU3WQecxfuxBDj6PT1V9nPT/j0xDSu6S1H8By8bdtpxDk3IrngCO\nHXfbMcDjVZ+nuXzpk0RtFgDMbC5RdX6I+K+Qv3T3VcCriNoab2sQU6NYq597HlEb6QngufjmuVXH\nPq+Jxz3oPJrZYUTf1+MTfoV0LCV3SerrwJ+b2VIzy8Uz4b8F3JzCY28CXmRmv2tmBTN7M1G/+rYU\nHruWm4FzzOxUM5sFXM0ErwUze62ZvdTM8sBuor9USvHdTwPHtfD8Z1c9918BP3X3x9y9nygRv8XM\n8mb2dqJrCRVPA0vjr6vl74HfM7PVZjYb+Ov4sR9tIUaZ5pTcJamrgX8D/hXYCXwUWOfuD0z2gd19\nkKgifg9RG+H/AOe4+8BkH3uC59sKXEGUDJ8k+n76Jjj8eUS/DHYTXaT9F+Br8X2fAt4YT558uokQ\n/p7oYu8O4CSiXnnF7wN/THQeTiA65xV3EI2PPmVmh5wbd/9nousH/xh/Xy8guugsM5Bpsw4Rkc6j\nyl1EpAMpuYuIdCAldxGRDqTkLiLSgTJb2Ki3t9eXLVuW1dOLiExL99xzz4C7L250XGbJfdmyZWze\nvDmrpxcRmZbMLNEbB9WWERHpQEruIiIdSMldRKQDaacYEQna6OgofX19DA8PZx3KlOru7mbp0qV0\ndTVahLQ2JXcRCVpfXx/z589n2bJlzJSNo9ydwcFB+vr6WL58eUuP0bAtY2ZfirdNq7lAVLyn5afj\nrb1+ZmZrWopERKSG4eFhenp6ZkxiBzAzenp6JvXXSpKe+5eBM+vcfxawIv53GdH2ZSIiqZlJib1i\nst9zw7aMu/+w3kbDwHnAVz1aXvIuM1toZkvc/clJRSYzxje3PM4vntmbdRjBOn7JAs5+6ZKsw5Bp\nJo2e+1EcvK1YX3zbIcndzC4jqu455phjUnhqme7cnT/6+hbKDjOwOGvIHeZ3F5TcA3HVVVcxb948\n3vve907qcd7+9rdz2223ceSRR/LAA5PeEqGmNJJ7rZdkzUXi3f064DqAtWvXaiF5oVR2yg7vef2L\neNfrVmQdTnA+tOkhvvKTR7MOQ1J2ySWXsH79et72trc1PrhFacy591G1JySwlGgvR5GGiuXod3w+\nr7K9lnzOKJVVB2Xpgx/8IC9+8Ys544wz2LZtWyqPedppp7Fo0aJUHmsiaVTuG4H1ZnYT8ArgWfXb\nJalK4irklNxrKeRs7BegwF/eupUHn9id6mOuev4C3v9bJ9S875577uGmm27i3nvvpVgssmbNGk46\n6aRDjrvhhhu45pprDrn9hS98ITffnMY2w81rmNzN7EbgdKDXzPqI9n7sAnD3zxNtbnw2sB3YB/xe\nu4KVzjNWuef0Zula8rkc7lAuOzn9ApxyP/rRjzj//POZO3cuAOeee27N49atW8e6detq3peVJNMy\nFzW434k2GxZpmir3+gpxu6pYdmbpHE1YYbdTkpHEaVm5i7RTsVwGot6yHKpyXtR3z8Zpp53GJZdc\nwpVXXkmxWOTWW2/lne985yHHhVi5629hyZQq9/oq56XyS1Cm1po1a3jzm9/M6tWrueCCC3jNa16T\nyuNedNFFvPKVr2Tbtm0sXbqUL37xi6k8bjVV7pKpYqnSc1dyr0WVe/Y2bNjAhg0bUn3MG2+8MdXH\nq0WVu2RqrHLXKGRNByp3JXdpjpK7ZErTMvVVzosqd2mWXlGSKfXc61PlLq1ScpdMaVqmvrGee0nJ\nXZqj5C6ZUuVe34E5d03LSHOU3CVTB3ruSu61aFpGWqXkLpk6ULnrR7EW9dzDctVVV/Gxj31sUo/x\n2GOP8drXvpaVK1dywgkn8KlPfSql6A6mOXfJlObc69O0TOcpFAp8/OMfZ82aNezZs4eTTjqJ17/+\n9axatSrV51G5JJnSnHt9qtyzl/aSv0uWLGHNmmir6fnz57Ny5Uoef/zxST/ueKrcJVOalqnvQM9d\nF1QB+PaV8NT96T7m814KZ3245l3tXvL30Ucf5d577+UVr3hF6/FPQMldMqVpmfrGKneNQmainUv+\n7t27lwsuuIBPfvKTLFiwYNKxjqfkLpnStEx9mpYZZ4IKu53aseTv6OgoF1xwAevWreMNb3hDKnGO\np+QumdK0TH3V67nL1GvHkr/uzqWXXsrKlSt597vfnXbIY/SKkkypcq9P0zLZaseSvz/+8Y+5/vrr\nueOOO1i9ejWrV69m06ZNKUR7MFXukqnKhUL13GvTtEz20l7y99RTTyXawK69VLlLpjTnXp+mZaRV\nSu6SKc2516fKXVql5C6ZUs+9Pk3LSKuU3CVTmpapr3JeNOcuzdIrSjKlyr2+fF6Vu7RGyV0ypWmZ\n+tRzl1YpuUumVLnXp2mZsKSx5O/w8DAnn3wyJ554IieccALvf//7U4ruYJpzl0xVto9T5V6bKvfO\nM3v2bO644w7mzZvH6Ogop556KmeddRannHJKqs+jyl0ypcq9Pk3LZC/tJX/NjHnz5gHRGjOjo6OJ\n1q9plip3yVSp7ORz1pYf7k4wNi2j5A7AR/79I/x8x89TfczjFx3Pn5z8JzXva9eSv6VSiZNOOont\n27dzxRVXaMlf6TzFOLlLbarcs9WuJX/z+Txbtmxh165dnH/++TzwwAO85CUvSSXmCiV3yVSpXFa/\nvQ6t536wiSrsdmrHkr8VCxcu5PTTT+c73/lO6sldPXfJlCr3+nI5w0zTMlk57bTTuOWWWxgaGmLP\nnj3ceuutNY9bt24dW7ZsOeRfrcTe39/Prl27ABgaGuL73/8+xx9/fOqxJ6rczexM4FNAHviCu394\n3P3HAF8BFsbHXOnu6a9hKR2nVHZV7g0Ucqaee0aql/w99thjU1ny98knn+Tiiy+mVCpRLpd505ve\nxDnnnJNCtAdrmNzNLA9cC7we6APuNrON7v5g1WF/DnzD3T9nZquATcCy1KOVjhNV7voDsp58ztRz\nz1DaS/6+7GUv4957703t8SaS5FV1MrDd3R9x9xHgJuC8ccc4UNkE8HDgifRClE5WKqlyb6SQy6ly\nl6YlSe5HAY9Vfd4X31btKuAtZtZHVLW/q9YDmdllZrbZzDb39/e3EK50GvXcG1PlLq1IktxrvfLG\n/6RdBHzZ3ZcCZwPXm9khj+3u17n7Wndfu3jx4uajlY5TKpe1lnsDUc99Zl9QnYqdi0Iz2e85SXLv\nA46u+nwph7ZdLgW+EQf0E6Ab6J1UZDIjjKpybyifsxk9Ctnd3c3g4OCMSvDuzuDgIN3d3S0/RpJp\nmbuBFWa2HHgcuBD43XHH/BfwOuDLZraSKLmr7yINqefe2Eyfllm6dCl9fX3MtFZud3c3S5cubfnr\nGyZ3dy+a2XrgdqIxxy+5+1YzuxrY7O4bgfcAf2tmf0TUsrnEZ9KvWWmZpmUay+dnds+9q6uL5cuX\nZx3GtJNozj2eWd807rb3VX38IPDqdEOTmUDvUG1M0zLSCpVMkqli2XVBtYFCzvQOVWmakrtkSu9Q\nbWymX1CV1ii5S6Y0595YYYb33KU1Su6Sqahy149hPXn13KUFelVJplS5N1bQO1SlBUrukilNyzSW\n1ztUpQVK7pKpYkmVeyOq3KUVSu6SqZJGIRvKz/B3qEprlNwlUyW9Q7UhVe7SCr2qJFNFzbk3lM/l\nNOcuTVNyl0yVNC3TkCp3aYWSu2SqqGmZhvJ5TctI85TcJVOq3BtT5S6tUHKXTKnn3pimZaQVSu6S\nqVJJ0zKNqHKXVuhVJZnSkr+NaW0ZaYWSu2RKPffGVLlLK5TcJVOalmksWs9d0zLSHCV3yUy57JQd\nVe4NqHKXVii5S2ZK8R7qqtzri+bcldylOUrukplKNappmfpUuUsr9KqSzFSqUVXu9VWmZdyV4CU5\nJXfJTKlUqdyV3Oup/PJT8S7NUHKXzFTWS9Gce32VX35aX0aaoeQumTnQc1dyr6dSuavvLs1QcpfM\nqOeezIHKXcldklNyl8xoWiaZscpdG3ZIE/Sqksyock8mn49epqrcpRlK7pKZUnyBUD33+tRzl1Yo\nuUtmVLkno2kZaUWi5G5mZ5rZNjPbbmZXTnDMm8zsQTPbamZ/n26Y0omKmnNPRJW7tKLQ6AAzywPX\nAq8H+oC7zWyjuz9YdcwK4E+BV7v7TjM7sl0BS+eoJCvNudenaRlpRZLK/WRgu7s/4u4jwE3AeeOO\n+X3gWnffCeDuz6QbpnSioqZlEinE50eVuzQjyavqKOCxqs/74tuqvQh4kZn92MzuMrMzaz2QmV1m\nZpvNbHN/f39rEUvHKKnnnshY5a5RSGlCkuRe65U3/qesAKwATgcuAr5gZgsP+SL369x9rbuvXbx4\ncbOxSocpalomEfXcpRVJknsfcHTV50uBJ2oc8013H3X3/w9sI0r2IhNS5Z5MPq9pGWlekuR+N7DC\nzJab2SzgQmDjuGP+CXgtgJn1ErVpHkkzUOk8Ra0tk4gqd2lFw+Tu7kVgPXA78BDwDXffamZXm9m5\n8WG3A4Nm9iDwA+CP3X2wXUFLZ6i8nb6gC6p1aVpGWtFwFBLA3TcBm8bd9r6qjx14d/xPJBFV7slo\nWkZaoZJJMqM592RUuUsrlNwlM5qWSeZAz10XVCU5JXfJjKZlktGcu7RCyV0yo557MpW2lXru0gwl\nd8lMUdMyiVT+shlVcpcm6FUlmdF67snkx6Zl1HOX5JTcJTNazz2Zgnru0gIld8nM2B6qGoWsK693\nqEoLlNwlM5XKvUs997oKec25S/P0qpLMlDQtk4jeoSqtUHKXzByYllFyr0fvUJVWKLlLZkrlMmaQ\nU3KvS+9QlVYouUtmimVX1Z6AKndpRaJVIaWDPPUA/OhjUC5lHQnnPrWHEwvPwddvzDqUoM1y+GzX\nU7zo/nnw9Lysw4F8F5z+p9Cr/XhCpuQ+0zz4Tdh6CyxemXUkLBraT55RGNiTdShBM+AFtoeFQ7Ng\nYHa2wXgZBrbBkhOh9w+zjUXqUnKfaUaeg1nz4Yq7so6Ez27cyi33Ps59V/x61qEEzYCz/2wTf3Di\nC3jvb7w422DKZbj6CBjZl20c0pB67jPNyF6YdVjWUQDRkr/quSeTz1kYPfdcDroOi36OJGhK7jPN\nyHPBJPdS2TXjnlAhZ+FMy8w6LPo5kqApuc80ASX3YknTMkkFU7mDkvs0oeQ+04zshVkBTFwQV+5a\nVyaRqHIPJbnPU3KfBpTcZ5qQKveyay33hPK5XGCVu3ruodMra6YJ6IKqeu7JFXJGKZQlf5XcpwUl\n95lm5Llg2jKalklOPXdplpL7TKPKfVoq5EOallHPfTpQcp9J3APsuSu5JxFe5a62TOiU3GeS0giU\ni8Ekd1XuyYU1LaO2zHSg5D6TVF6QofTcS5qWSSqsaZl5UaFQHMk6EqlDr6yZpPKntCr3aSe4yh1g\nVNV7yJTcZ5Kxyj2M5F4sl8f2B5X6guu5g1ozgVNyn0kqL8bZ87ONI6bKPbmg1paZHbf1lNyDpuQ+\nkwTWltG0THL5nI3tOZu5yjUbTcwELVFyN7MzzWybmW03syvrHPdGM3MzW5teiJKawNoyqtyTi+bc\nQ0nuastMBw2Tu5nlgWuBs4BVwEVmtqrGcfOB/wX8NO0gJSWhTctobZnEwpqWUXKfDpK8sk4Gtrv7\nI+4+AtwEnFfjuL8CPgoMpxifpCmwtowq9+TCmpZRz306SJLcjwIeq/q8L75tjJm9HDja3W+r90Bm\ndpmZbTazzf39/U0HK5MUWFtGa8skF+a0jHruIUuS3Gu9+sZ+yswsB3wCeE+jB3L369x9rbuvXbx4\ncfIoJR2V5N41N9s4YqWSKvekgpqWUVtmWkiS3PuAo6s+Xwo8UfX5fOAlwJ1m9ihwCrBRF1UDtH9P\nlNhz+awjAeKeu+bcEwmqcu+Kk/t+Ve4hS5Lc7wZWmNlyM5sFXAhsrNzp7s+6e6+7L3P3ZcBdwLnu\nvrktEUvrAlo0DNRzb0ZQPfd8AQrdassErmFyd/cisB64HXgI+Ia7bzWzq83s3HYHKCkKLLlrWia5\nfC4Xzpw7aPGwaaCQ5CB33wRsGnfb+yY49vTJhyVtEdBGHaDKvRlBVe6g5D4NqGyaSQLaqAM0LdOM\nfD6gnjvEG3aoLRMyJfeZJLC2jCr35IKalgFV7tOAkvtMElhy19oyyQU1LQNK7tOAkvtMElDPvVx2\n3KMLhdJYeD137aMaOr2yZpKAeu6VKlRz7skEtbYMaB/VaUDJfSYJqHKvVKHquSejyl2alWgUUlp3\nzd3XsH3X9qzDAC9D7wLY8RP43juzjoZiucycowe59enDuPd7YSyHELJf7nyOWUft453f/WbtBUGm\n2p7tsKAQxM8SwEt6X8K7Xv6urMMIipJ7G+0v7eerD36VJYctYfHcjNfSKZcglwPKMJr9n9OlkmO5\n/YyWc+wdDWgKJFCjPozl9rNndC8WQnKnDOZRaybjeJ567inufupu1q9ej4VxcoKg5N5Gg0ODAFx+\n4uW8YcUbsg3m2cfhE6tg7QY46eJsYwEG9u5n7Qe+z1tXn8BbX7ks63CC99k7t/PR+7bxpXecSXdX\nAGsD/dtn4Lsb4OLPQfeCTEP56tavcs3ma9g9spvDZx+eaSwhUc+9jQaGBgDondObcSQEt9zvgZ67\nfgSTqIyMBtN3D2hlyMrrq1JMSUSvrDaqJPeeOT0ZR0LVRh1hXFAdLUWtGM25J1P5JRjM+jIBbdhR\nSe6V15tElNzbaKxy71blPp6mZZpT+SVYDOVdqgFt2KHkXpuSexsNDg1iGIvmLMo6lOC22NOce3Py\nwbZlsk/ulb+MldwPpuTeRv1D/RzRfQRdua6sQwluc2xV7s05ULmHktzDacssmLWAWblZSu7jKLm3\n0cDQQBj9dgivco97x1rPPZlCPjpPqtwPZWb0zulVch9Hr6w2GhwaDKPfDsH23HVBNZnwKvdwpmUA\nJfcalNzbaGBoIIwxSAguuVcuDObVc0/kQM89tAuqYST3njk9DAwruVdTcm8Tdw8sue+F/GzIB9D/\nR5V7s8Kr3Cs99+zbMhBV7ppzP5iSe5vsGd3DSHkkoJ57eGu5gy6oJlU5T8HMuRdmQa4rmMq9d04v\nO4d3MloezTqUYCi5t0lQ706FoFaEhOrKXT+CSVRGRoO5oApBbdjRO6cXx9k5vDPrUIKhV1abDOyL\nkvviORkvGFYxshdmh5PcVbk3Z+wdqiEl99nzg0ruEI0fS0TJvU3CrNzDactULgyq555McGvLQFAb\ndmh9mUMpubdJUOvKQHDJvdI7VuWeTD605QcguLYM6F2q1ZTc22RgeICuXBcLZmW7HOqYUHvuGoVM\nJNzKPYzkriUIDqXk3iaDQ4P0zukNZ/OAgPZPhaq1ZVS5J5IPbRQS4q32wmjLzM7PZv6s+UruVZTc\n2ySoGXcIri2j9dybU5kqKoUyCglBVe6gd6mOp1dWmwS1rgwEl9xVuTcnzMo9vOSuC6oHKLm3SVCV\ne7kEo/sC67nHyw8ouScS5pz7PNgfRlsGon0TVLkfoOTeBsVykZ3DOwOacQ9rXRlQ5d6sYKdlRp+D\nQGLqndurOfcqSu5tsGN4B46HU7kHmNy1nntzgp2WgeivwgD0zullqDjEvkDiyVqi5G5mZ5rZNjPb\nbmZX1rj/3Wb2oJn9zMz+2cyOTT/U6SPIGXcIqi2j9dybE2zPHYLpu2vW/WANX1lmlgeuBc4CVgEX\nmdmqcYfdC6x195cBNwMfTTvQ6SS8d6eGtVEHVFXumnNPZGxaJqjkHtjKkN1K7tWSlE0nA9vd/RF3\nHwFuAs6rPsDdf+Dulb+F7gKWphvm9FK5Yh9Ocg+vLaOee3NUuTemNzIdLElyPwp4rOrzvvi2iVwK\nfLvWHWZ2mZltNrPN/f2de+FjrC3TrbbMRDQt05yxnnspjIuXQHDJXW2ZgyVJ7rVefTXLBzN7C7AW\nuKbW/e5+nbuvdfe1ixcHMknSBgNDA8zvmk93oTvrUCIBtmXGVoUM5R28gau0r8Kq3MPZJBvgiO4j\nyFteyT1WSHBMH3B01edLgSfGH2RmZwAbgF919/3phDc99Q/10zs3kJYMBFq5OzmDnCr3RMKclgmr\n556zHD3dPUrusSSV+93ACjNbbmazgAuBjdUHmNnLgf8LnOvuz6Qf5vRSWVcmGIH23DUpk5x67sn0\nzFFyr2j46nL3IrAeuB14CPiGu281s6vN7Nz4sGuAecA/mNkWM9s4wcPNCANDA2NX7oMw1pYJq3JX\nvz25sKdlwknuWl/mgCRtGdx9E7Bp3G3vq/r4jJTjmtaCXFcm1xXtexmIYsk1KdOEyqkKs3IPoy0D\nUXLftmNb1mEEQX8Xp2zf6D72FfeF15YJqCUD0bSMZtyTMzMKORubMgpCYTZYPrjKfXB4kLIHdJ4y\nouSesuBm3CG4jTqg0nNXcm9GPmdhVe5m8Zru4ST3njk9lLzErv27sg4lc0ruKRsYDuzdqRDcRh2g\nnnsrCjkLaz13CGofVdCsezUl95T174venKXkXp+mZZoXXOUOwSX3ykqsA/uU3PXqSllw68pAoD13\nVe7NKuRzYU3LQJAbdsCBv6BnMiX3lA0MDZC3PAtnL8w6lANG9qrn3gHCrNzD6rmrLXOAknvKBocH\nWdS9iHwun3UoBwRZuZdVuTcpuGkZCK4tM7drLnMKc5TcUXJPXVDb61UEmNyLJbVlmhVm5R5WWwb0\nRqYKJfeUBfcGJghyFLJU9rF9QSWZqHJXcm9EG2VHlNxTFlzlXi6HWbmXnbymZZoSZuUeVs8dVLlX\n6NWVorKX2TG0I6zkXhwCPLjkXtIF1aYVcrlw59w9nLi0MmREyT1Fu/bvoujFsJJ7paqaHVZbpqgL\nqk0LsnKfPQ+8DMXhrCMZs3juYnaP7GZ/aUavPK7knqYwZ9zDWxESVLm3opAPcVomzJUhgRnfd1dy\nT1GYyT28tdyh0nNXcm9GkJV7oCtDgmbdldxTFOyiYRBcclfl3rxgp2UgqMpdG2VHlNxTFGblHmZb\nJppz149fM8Ku3MNJ7pWNcpTcJTUDQwPMKcxhbmFu1qEcoMq9YxRyIa4tE9Y+qgCL5iwC1HNXck/R\nwNAAPd09mAWUtAJN7qParKNp+ZxRLIV2QTW8yr0r18URs49Q5Z51AJ1kYGiAxXMXZx3GwfaH2ZZR\n5d68Qshtmf3hVO4AvXN76R/qzzqMTCm5pyi4d6dCVc89rMpda8s0Lx/kBdXw2jIQ9d3VlpHUVNoy\nQRl5DiwHhe6sIzmIKvfmFfIBV+4BtWVASxCAkntqRkoj7B7ZHWDlHi8aFtJ1AOL13PP68WtGkBdU\nC3MACza5e0DLIkw1vbpSEuSMOwS5xR5E67mrcm9O1HMP7IJqLhfkypA9c3oYKY+wZ3RP1qFkRsk9\nJUHOuEOQK0KC3qHainyIG2RDcBt2gN6lCkruqVFyb4567s0LsucOQVbuWl9GyT01lQ15w0zuYY1B\ngtZzb0WQ0zIQZHJfPCcaSVblLpM2sC/6Iaq8Oy4YAW6ODarcW1HI5QKt3OcH15aprC/Tv2/mzror\nuadkYGiAI2YfQVeuK+tQDhZgW8bdKann3jRV7sktmLWArlzX2F/UM5GSe0qC3DsVgkzulQSlyr05\nQU7LQJDJ3cxm/F6qSu4pGRgO8N2pEGTPvdJa0NoyzQm3cg9vH1XQG5mU3FMyODQYXnJ3D3LOXZV7\na4JcWwaCHIWEqO+u5N6AmZ0dgcAPAAAHLklEQVRpZtvMbLuZXVnj/tlm9vX4/p+a2bK0Aw2Zu4e5\nrkxxP3gpuOQ+VrlrWqYp+VwOdyiHluADbMuAKveGry4zywPXAmcBq4CLzGzVuMMuBXa6+wuBTwAf\nSTvQkO0d3cv+0v7wkvvYcr9htWVUubemELexgqveZx0G5VEojmQdyUEWz1nMzuGdFMvFrEPJRCHB\nMScD2939EQAzuwk4D3iw6pjzgKvij28GPmNm5m1Y2OGWh2/hK1u/kvbDTkrRox+enn/9NNz52Yyj\nqVIaBeBjP3iM23/8LxkHc0AlueeU3JtSmS4661M/JBfQWkG/vf8prgD43Ksgl886nDG9hVG82zn/\nm+eTt3DiArj8xMs5c/mZbX2OJMn9KOCxqs/7gFdMdIy7F83sWaAHOOhvIjO7DLgM4Jhjjmkp4MNn\nH85xC49r6Wvb6WWzF3PKnmGwsEYh+xe+lB3lV7OiK6zq/aVLD+dXVwS29n3gzlh5JFuf2E0psImZ\np0dOY0f+GRaFtfAorymP8JuHH8bInMOzDuUQC2YtaPtzWKPi2sx+B/gNd39H/PlbgZPd/V1Vx2yN\nj+mLP/9FfMyEc0hr1671zZs3p/AtiIjMHGZ2j7uvbXRckitafcDRVZ8vBZ6Y6BgzKwCHAzuShSoi\nImlLktzvBlaY2XIzmwVcCGwcd8xG4OL44zcCd7Sj3y4iIsk07LnHPfT1wO1AHviSu281s6uBze6+\nEfgicL2ZbSeq2C9sZ9AiIlJfkguquPsmYNO4295X9fEw8DvphiYiIq3Su0hERDqQkruISAdSchcR\n6UBK7iIiHajhm5ja9sRm/cAvW/zyXsa9+zUQiqs5iqt5ocamuJozmbiOdfeGb+/OLLlPhpltTvIO\nrammuJqjuJoXamyKqzlTEZfaMiIiHUjJXUSkA03X5H5d1gFMQHE1R3E1L9TYFFdz2h7XtOy5i4hI\nfdO1chcRkTqU3EVEOtC0SO5mdo2Z/dzMfmZmt5jZwgmOq7uRdxvi+h0z22pmZTObcKzJzB41s/vN\nbIuZtX2HkibimurztcjMvmdmD8f/PWKC40rxudpiZuOXl04zniA3fk8Q1yVm1l91jt4xRXF9ycye\nMbMHJrjfzOzTcdw/M7M1gcR1upk9W3W+3lfruJRjOtrMfmBmD8WvxT+scUx7z5e7B/8P+HWgEH/8\nEeAjNY7JA78AjgNmAfcBq9oc10rgxcCdwNo6xz0K9E7h+WoYV0bn66PAlfHHV9b6/xjft3cKzlHD\n7x/4n8Dn448vBL4eSFyXAJ+Zqp+nquc9DVgDPDDB/WcD3wYMOAX4aSBxnQ7cNsXnagmwJv54PvCf\nNf4/tvV8TYvK3d2/6+6VLczvItoNaryxjbzdfQSobOTdzrgecvdt7XyOViSMa8rPV/z4ld3NvwL8\ndpufr54k3391vDcDrzNr+87UWfx/ScTdf0j9HdbOA77qkbuAhWa2JIC4ppy7P+nu/xF/vAd4iGiv\n6WptPV/TIrmP83ai33bj1drIe/zJzIoD3zWze+JNwkOQxfn6FXd/EqIffuDICY7rNrPNZnaXmbXr\nF0CS7/+gjd+Bysbv7ZT0/8sF8Z/yN5vZ0TXuz0LIr8FXmtl9ZvZtMzthKp84bue9HPjpuLvaer4S\nbdYxFczs+8Dzaty1wd2/GR+zASgCN9R6iBq3TXrOM0lcCbza3Z8wsyOB75nZz+NqI8u4pvx8NfEw\nx8Tn6zjgDjO7391/MdnYxkny/bflHDWQ5DlvBW509/1mdjnRXxe/1ua4ksjifCXxH0Trsew1s7OB\nfwJWTMUTm9k84B+B/+3uu8ffXeNLUjtfwSR3dz+j3v1mdjFwDvA6jxtW4yTZyDv1uBI+xhPxf58x\ns1uI/vSeVHJPIa4pP19m9rSZLXH3J+M/P5+Z4DEq5+sRM7uTqOpJO7k3s/F7n03dxu8N43L3wapP\n/5boOlQI2vIzNVnVSdXdN5nZZ82s193buqCYmXURJfYb3P3/1TikredrWrRlzOxM4E+Ac9193wSH\nJdnIe8qZ2WFmNr/yMdHF4ZpX9adYFuereiP1i4FD/sIwsyPMbHb8cS/wauDBNsQS6sbvDeMa15c9\nl6ifG4KNwNviKZBTgGcrbbgsmdnzKtdKzOxkorw3WP+rJv2cRrS39EPu/jcTHNbe8zWVV5Bb/Qds\nJ+pNbYn/VSYYng9sGnf1+T+JqrwNUxDX+US/ffcDTwO3j4+LaOrhvvjf1lDiyuh89QD/DDwc/3dR\nfPta4Avxx68C7o/P1/3ApW2M55DvH7iaqIgA6Ab+If75+3fguHafo4RxfSj+WboP+AFw/BTFdSPw\nJDAa/3xdClwOXB7fb8C1cdz3U2eCbIrjWl91vu4CXjUFMZ1K1GL5WVXeOnsqz5eWHxAR6UDToi0j\nIiLNUXIXEelASu4iIh1IyV1EpAMpuYuIdCAldxGRDqTkLiLSgf4bRh23aloffTwAAAAASUVORK5C\nYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEICAYAAACktLTqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XuYXFWZ7/HvL92BCAEiSUQgQIJE\nITCKIQdQkYOCIzAIIl5gohJFkTPGOXN05siczCiD4g111EdGD+MdEVTmwAQMMiDejopDMBEJEAk3\naUAJgZBEE0h3v/NH7equdKrTe3fv6r2q+vd5njypy+5db6+u/daqd6+9liICMzPrLJOqDsDMzMrn\n5G5m1oGc3M3MOpCTu5lZB3JyNzPrQE7uZmYdyMndxoWkL0r6x4b7/0PSHyRtkjS9ytiyeB6QdEJ2\n+/9I+lKJ+94k6cDs9tckfbjEfW/TrmZ13VUHYO1BUgBzI2JNw2MXAAdFxJtH+vmIOK/h5yYDnwaO\njohftyDcMYmIj+TZTtKPgG9GxA4/CCJiahlxSVoEvCMijmnY93nD/4RNZO65WxX2AqYAq4r+oGra\n4n0ryZ0nq0xbHCSWPknHSeqR9D5Jj0l6VNLbGp7/mqQPS3o+sDp7eL2km7PnXyrpVklPZf+/tOFn\nfyTpIkk/A/4EHJg99mFJP8/KHtdKmi7pckkbsn3M3kG8b5H0oKR1kpYMee4CSd/Mbk+R9M1su/XZ\nfveSdBHwcuDz2et/Pts+JL1b0j3APQ2PHdTwEjMk3Shpo6QfSzog2252tm13Qyw/kvQOSYcAXwRe\nkr3e+sZ2bdj+nZLWSHpC0lJJ+zQ8F5LOk3SPpCclXSJJI/1trT05uVuZngvsAewLnANcIunZjRtE\nxG+BQ7O70yLilZL2BL4HfA6YTq1k870htfi3AOcCuwEPZo+dmT2+L/A84BfAV4E9gbuADzYLUtI8\n4AvZz+6TveasYX6ns7Pfab9su/OAzRGxBPgpsDgipkbE4oafeS1wFDBvmH0uBD4EzABWApcPs92A\niLgre+1fZK83rcnv9Urgo8Abgb2ptdOVQzY7BfhvwIuy7V490mtbe3JytzJtBS6MiK0RsQzYBLwg\nx8/9BXBPRFwWEb0RcQVwN/Cahm2+FhGrsue3Zo99NSLujYingOuBeyPipojoBb4LvHiY13s9cF1E\n/CQingb+Eejfwe80ndq5hb6IuC0iNozw+3w0Ip6IiM3DPP+9htdeQq03vt8I+8xjIfCViPhVtu+/\nz/Y9u2Gbj0XE+oj4HfBD4PASXtcS5ORuefUBk4c8Npla8qtblyXWuj8BeU4m7sNgb7zuQWo98rqH\nmvzcHxpub25yf7jX3qdxfxHxR2DdMNteBtwAXCnpEUmfyE4I70izWJs+HxGbgCeymMZqm3bM9r2O\nbdvx9w238/59rA05uVtevwNmD3lsDtsn5dF4BDhgyGP7Aw833C9z+tJHqZVZAJC0C7Xe+XaybyH/\nFBHzgJdSK2u8dYSYRoq18bWnUisjPQL8MXt4l4Ztn1tgv9u0o6Rdqf1eDw/7E9axnNwtr28D/yBp\nlqRJ2Zjw1wBXlbDvZcDzJf2lpG5Jb6JWr76uhH03cxVwiqRjJO0EXMgwx4KkV0j6M0ldwAZq31T6\nsqf/ABw4itc/ueG1PwT8MiIeioi11BLxmyV1SXo7tXMJdX8AZmU/18y3gLdJOlzSzsBHsn0/MIoY\nrc05uVteFwI/B/4/8CTwCWBhRNwx1h1HxDpqPeL3USsj/G/glIh4fKz7Hub1VgHvppYMH6X2+/QM\ns/lzqX0YbKB2kvbHwDez5z4LvD4befK5AiF8i9rJ3ieAI6jVyuveCfwdtXY4lFqb191Mbfjo7yVt\n1zYR8QNq5w/+Lfu9nkftpLNNQPJiHWZmncc9dzOzDuTkbmbWgZzczcw6kJO7mVkHqmxioxkzZsTs\n2bOrenkzs7Z02223PR4RM0farrLkPnv2bJYvX17Vy5uZtSVJuS4cdFnGzKwDObmbmXUgJ3czsw7k\nlWLMLGlbt26lp6eHLVu2VB3KuJoyZQqzZs1i8uSRJiFtzsndzJLW09PDbrvtxuzZs5koC0dFBOvW\nraOnp4c5c+aMah8jlmUkfSVbNq3pBFHZmpafy5b2ul3S/FFFYmbWxJYtW5g+ffqESewAkpg+ffqY\nvq3kqbl/DThxB8+fBMzN/p1LbfkyM7PSTKTEXjfW33nEskxE/GRHCw0DpwHfiNr0krdImiZp74h4\ndEyRWUfr6w+++rP72bB568gbGwDP3nUnFr104pQmbGzKqLnvy7bLivVkj22X3CWdS613z/7771/C\nS1u7Wv37jXz4e3cB4Fw1svrM3McfvBf7T99lxxtby1xwwQVMnTqVv/3bvx3Tft7+9rdz3XXX8Zzn\nPIc77hjzkghNlZHcmx2aTSeJj4hLgUsBFixY4InkJ7C+/tqf/0tvXcAJ8/aqOJr0XbPiYf7m2yvp\n7R9uHW9rJ4sWLWLx4sW89a1vHXnjUSpjnHsPDWtCArOoreVoZtb2LrroIl7wghdwwgknsHr16lL2\neeyxx7LnnnuWsq/hlNFzXwoslnQlcBTwlOvtNpLIvty5JJNPvZ0m+tfdf7p2FXc+sqHUfc7bZ3c+\n+JpDmz532223ceWVV7JixQp6e3uZP38+RxxxxHbbXX755Vx88cXbPX7QQQdx1VVlLDNc3IjJXdIV\nwHHADEk91NZ+nAwQEV+ktrjxycAa4E/A21oVrHUOr+44Om638fXTn/6U008/nV12qZ3nOPXUU5tu\nt3DhQhYuXNj0uarkGS1z1gjPB7XFhs0Kc8/dihiuh91KeUYntWXP3awV6h1QNT0fb0MNJhh33cfT\nsccey6JFizj//PPp7e3l2muv5V3vetd226XYc/fEYVaJcH1hVNxs42v+/Pm86U1v4vDDD+eMM87g\n5S9/eSn7Peuss3jJS17C6tWrmTVrFl/+8pdL2W8j99ytWu645+Jmqs6SJUtYsmRJqfu84oorSt1f\nM+65WyUGyzKWh0fLWFFO7lYJlxdGx+1meTm5W6U8T0o+PvFsRTm5W0Wyi5gqjqJdDJZl3HW3fJzc\nrRIuL4yO283ycnK3Srkqk4+byYpycrdK+CKmYgbKMu65V+qCCy7gk5/85Jj28dBDD/GKV7yCQw45\nhEMPPZTPfvazJUW3LY9zt0o4SdlE1d3dzac+9Snmz5/Pxo0bOeKII3jVq17FvHnzSn0d99ytUi7L\n5FVrKJ9QHX9lT/m79957M39+banp3XbbjUMOOYSHH354zPsdyj13q0R9+gHn9nxclslcfz78/jfl\n7vO5fwYnfazpU62e8veBBx5gxYoVHHXUUaOPfxhO7laJiZ6jrD20csrfTZs2ccYZZ/CZz3yG3Xff\nfcyxDuXkbtVy1z0XN1NmmB52K7Viyt+tW7dyxhlnsHDhQl73uteVEudQTu5WiXp5waNl8qknmAlf\nlhlnrZjyNyI455xzOOSQQ3jve99bdsgDfELVKuETg9YOWjHl789+9jMuu+wybr75Zg4//HAOP/xw\nli1bVkK023LP3Srl0TL5DC7V4Q/F8Vb2lL/HHHPMuKxn4J67VWOgLGN5eLSMFeXkbpVwjjJrLSd3\nq5Sn/M3Hi3VYUU7uVomB0TLO7bnURxV57VnLy8ndzKwDOblbJcKLdRTjsowV5ORulXBZppiBoZDO\n7pUqY8rfLVu2cOSRR/KiF72IQw89lA9+8IMlRbctj3M3MxtHO++8MzfffDNTp05l69atHHPMMZx0\n0kkcffTRpb6Oe+5WicEOqLvueQyOKnLXfbyVPeWvJKZOnQrU5pjZunVrS0aNuedulRiY8te5PReX\nZWo+/p8f5+4n7i51nwfveTDvP/L9TZ9r1ZS/fX19HHHEEaxZs4Z3v/vdnvLXzGw8tWrK366uLlau\nXMn69es5/fTTueOOOzjssMNKibnOyd0qMbiGquXhi5hqhutht1IrpvytmzZtGscddxzf//73S0/u\nrrlbNQZGyzi95zF4EVPFgUwwxx57LFdffTWbN29m48aNXHvttU23W7hwIStXrtzuX7PEvnbtWtav\nXw/A5s2buemmmzj44INLjz1Xz13SicBngS7gSxHxsSHP7w98HZiWbXN+RJQ/h6WZ2ThqnPL3gAMO\nKGXK30cffZSzzz6bvr4++vv7eeMb38gpp5xSQrTbGjG5S+oCLgFeBfQAt0paGhF3Nmz2D8B3IuIL\nkuYBy4DZpUdrHcMXMRUzOCuku+7jrewpf1/4wheyYsWK0vY3nDxlmSOBNRFxX0Q8A1wJnDZkmwDq\niwDuATxSXojWiXwRUzEeCGlF5Unu+wIPNdzvyR5rdAHwZkk91Hrt72m2I0nnSlouafnatWtHEa6Z\nmeWRJ7k361sN7UCcBXwtImYBJwOXSdpu3xFxaUQsiIgFM2fOLB6tdQyvoVrQBF+sYyKWo8b6O+dJ\n7j3Afg33Z7F92eUc4DtZQL8ApgAzxhSZdbSBoZDO7bkMjJaZgIWZKVOmsG7dugmV4COCdevWMWXK\nlFHvI89omVuBuZLmAA8DZwJ/OWSb3wHHA1+TdAi15O66i5mN2axZs+jp6WGilXKnTJnCrFmzRv3z\nIyb3iOiVtBi4gdowx69ExCpJFwLLI2Ip8D7gXyX9L2qdskUxkT5mrTC/PYqZyFPLTJ48mTlz5lQd\nRtvJNc49G7O+bMhjH2i4fSfwsnJDs07mskwxbiYryleomrWRCdhxt1FycrdKeLRMMfVpGlzNsryc\n3K0invK3CLeTFeXkbtZGJuJQSBsdJ3erhKcfKMaLdVhRTu5WicH53J3d8/CHoBXl5G7WRtxxt7yc\n3K0SLssUVR8t4/Ru+Ti5WyV8YtCstZzcrVLuuOfjNVStKCd3q4TLMsUMNJOzu+Xk5G6VcI4yay0n\nd6uYu+55DEw/4I9Fy8nJ3SpRH/Xhskw+vojJinJyNzPrQE7uVil33PPRBF9D1YpzcrdKDI6WcXrP\nY3ANVbN8nNytEj4xaNZaTu5WKffb8xksy/hD0fJxcrdK+CKm0XFqt7yc3K0S7oCatZaTu1XK87nn\n49EyVpSTu1ViYLEO5/ZcBj8End0tHyd3q4RPDJq1lpO7WRtwWcaKcnK3SrgsU4znc7einNytGs5S\nZi3l5G6V8vQD+QxMP+APRcvJyd0qUZ9+wKk9H38GWlFO7lYJ90BHx3PyWF65krukEyWtlrRG0vnD\nbPNGSXdKWiXpW+WGaZ3KPdJ8vFiHFdU90gaSuoBLgFcBPcCtkpZGxJ0N28wF/h54WUQ8Kek5rQrY\nOsPAaBkXZnLxh6AVlafnfiSwJiLui4hngCuB04Zs807gkoh4EiAiHis3TDMDDzKy/PIk932Bhxru\n92SPNXo+8HxJP5N0i6QTm+1I0rmSlktavnbt2tFFbB3Bs0IWVR8t4/Ru+eRJ7s0Ov6HvsG5gLnAc\ncBbwJUnTtvuhiEsjYkFELJg5c2bRWK2DeLRMMf4QtKLyJPceYL+G+7OAR5ps8+8RsTUi7gdWU0v2\nZmZWgTzJ/VZgrqQ5knYCzgSWDtnmGuAVAJJmUCvT3FdmoNZZYvCMquXg0TJW1IjJPSJ6gcXADcBd\nwHciYpWkCyWdmm12A7BO0p3AD4G/i4h1rQra2p9HyxTjK3mtqBGHQgJExDJg2ZDHPtBwO4D3Zv/M\nrEV8EZPl5StUrRpZfcEd0nxclrGinNytEi65F+MPQSvKyd2sjbjnbnk5uVslBi9icpc0j4EpfyuO\nw9qHk7tVon6lpVN7Pv4MtKKc3M3aiKcfsLyc3K0SXkN1dJzaLS8nd6vEQM3dhZlc/CFoRTm5m7UT\nd90tJyd3q8RAjnKPNJf6qCJfoWp5OblbJcJXqBbiZrKinNzN2ogHy1heTu5WKfdI86l/w3Fut7xy\nzQppbezpjXD9+2v/J+SVj/+RfSZv5FlXXwGTnOJH8uyt/fzL5Mc47Fd7wP3PqjqcbU3ZA07+JEye\nUnUk1sDJvdM9ejusvBz22B922rXqaAZM+9MzPE9Po3UbXHjPoau/n+fpj+y+6Qnom1x1OIOe3ggb\neuDId8LeL6o6Gmvg5N7por/2/+lfgNnHVBtLg6t+ci8fWXY3q975anbd2W/DkTyxYQuv/sgPuOjl\nh7HwqAOqDmfQ6uvhijN9MiBBrrl3unpyV1p/6sGJw6qNo10k20z191X9fWbJSOuIt/IlmtxtdJLr\nIA8k99QCMx/xnS7R5O41VAtKtZkGhvG4556atI54K99A/SOtP7XLMsUkO5+7yzLJSuuIt/IN9Nyd\nRTtCauUPJ/dkObl3umTLMoklqcQl+9ns5J6stI54K1+qyd25fVSSazYn92SldcRb+RJN7nXJ9kgT\nU2+m5D4UndyTleYRb+VJPbknOwwkLckuJO7knqw0j3grT6LJ3WuBjk5y7ebknqy0jngrX6LJvS7V\nDmlqBsoylUbRhC9iSlaaR7yVJ9HkPriGquWR7IegL2JKVlpHvJUv1YuYqg6gTSXXQXZZJllpHfFW\nvsQvYkr2RGFifIWqFeXk3ukGDrq0kqjLMgUl21Auy6QqV3KXdKKk1ZLWSDp/B9u9XlJIWlBeiDYm\nqdbc0+uDtgWPlrG8RjziJXUBlwAnAfOAsyTNa7LdbsBfA78sO0gbg0STe52rMvkk205O7snKc8Qf\nCayJiPsi4hngSuC0Jtt9CPgEsKXE+GysEk3ug7NCppq10pJsKzm5JyvPEb8v8FDD/Z7ssQGSXgzs\nFxHX7WhHks6VtFzS8rVr1xYO1kYh1eRedQBtKrWqjJN7uvIc8c06DQNvMUmTgH8G3jfSjiLi0ohY\nEBELZs6cmT9KG71Ek7sVU/+Gk9y5Cl/ElKw8R3wPsF/D/VnAIw33dwMOA34k6QHgaGCpT6omItXk\nHpFuHTlByTaVL2JKVp4j/lZgrqQ5knYCzgSW1p+MiKciYkZEzI6I2cAtwKkRsbwlEVsxvoipoyTX\nQXZZJlkjHvER0QssBm4A7gK+ExGrJF0o6dRWB2hjlPBFTOlFlK6BDnK1YWzPyT1Z3Xk2iohlwLIh\nj31gmG2PG3tYVppEyzIRHilTRLJTIzu5JyutI97Kl2pyT68P2hZclrG80jrirXyJJndwWaaIwbJM\nYtndyT1Z6R3xVq5Ek3utLFN1FDZmTu7JSuuIt/IlmtxtdFyWsbx8xHe6RJN7kPBJwgQl+y3HFzEl\nK60j3sqX6jj3Wna3nJL9IPRFTMnKNRTS8vnub7/LTQ/eVHUY23rifthrJvzgr5Lq/t2//o9M3mcz\n77rxmqpDaQv9ETxrv8e57rFduf3GXaoOZ1Df1tr766GlsHFF1dFs45QDT+E1z3tN1WFUxsm9RNfc\ncw33P3U/c6bNqTqUQf3PwKRJsPWPSfWUn+nfDJOeZtPWTVWH0hYiQJOe5pl+sWlrQr3k/r7a+6v/\naUjob7nmyTX0RZ+Tu5WjN3p58V4v5pLjL6k6lEE3XwSrL4Z3XV51JNv46LK7+PrdD3D5eSdVHUpb\n6O3r56Al1/Pa5z+f9xw/t+pwBj29CT66Lxy2GF7211VHM2DR9xfRP8FLRWkVYttcX38fXeqqOoxt\nRX9y9XYbveROWyY6WqZb3fT191UdRqV81JeoL/ronpTYl6FEk7tHyxST7FQNiSb3rkld9EZv1WFU\nKr2jvo319ve6555TeMrfQupNldyIw1STu7rcc686gE7SF310TXJyt9ZJd/qBtOLqmtRFXzi5W0mS\nrLkTSSb3iKQG7yQv2W85A++ttJJ7t7rp7XdZxkrSG70J1twTTe4kXEdO0MAye2nl0GQvYnLP3cm9\nVEn23F2W6Sip5fZacld6yd01dyf3MvVFqsk9vR6yyzIdRJOSS+7dk7rdc686gE7S1++hkHkFzu5F\nSSRYlyHJ5N6lLtfcqw6gk/SGh0JaayWY2tNM7q65O7mXqa/fQyHzclmmuGTbK8Xk7pq7k3uZ0q25\np/ln9miZYiQlWZVJMbl3T+r2FapVB9ApIsLTD1jLJXcRE2TJPa243HN3ci9Nvb7nnns+nn6guGSb\nK8Geu2vuTu6lGUjuydXcE76Iqeog2oyUXAe5Rh7nnqL0jvo2VX8jdSvFsozTaKdIMbcn2XOXe+5O\n7iWpn7xJr+eealnGJ1SLSnaK5BST+6QugpjQC3akd9S3qXrP3TX3fIJINVWlK9myTHrJvf4NeiKX\nZtI76ttU/SugR8tYK6U7Wiat5F7/Bj2Rh0P6qC9J/VJn99zzqZVlqo6ivSTbXCkm9+w4dM/dxizd\n0TKJJncg4XSVpNrcMlVH0USCyb3+DXoin1TNddRLOlHSaklrJJ3f5Pn3SrpT0u2SfiDpgPJDTZtr\n7jYeUsztqV7EBEzoycNGPOoldQGXACcB84CzJM0bstkKYEFEvBC4CvhE2YGmLt2LmBId5+6yTGHp\njpZJcJx79g3aPfcdOxJYExH3RcQzwJXAaY0bRMQPI+JP2d1bgFnlhpm+gZ57kmWZFJNCWj29dhGJ\n9ZCBNMsyHi2TK7nvCzzUcL8ne2w45wDXN3tC0rmSlktavnbt2vxRtoGB0TJJXsSUXs8dXHEvKsnP\naEgyuXu0TL7k3uwt1bT7IOnNwALg4mbPR8SlEbEgIhbMnDkzf5RtwBcxFeOyTHGprtWRZHL3aBny\ndDN7gP0a7s8CHhm6kaQTgCXAf4+Ip8sJr32kfUI1vSyaZJJqA0k2m2vuScrTpbsVmCtpjqSdgDOB\npY0bSHox8H+BUyPisfLDTJ+HQhaX7AnCRCU7XUOCPfd6edSjZXYgInqBxcANwF3AdyJilaQLJZ2a\nbXYxMBX4rqSVkpYOs7uOVX8TueaeT+Apf4tyWSa/gbLMBO6558pEEbEMWDbksQ803D6h5Ljajnvu\nxSSZpNpAutMPpBXXQFlmAtfc0zvq21S6Nfc0x7mDR8sUlmqDJVhzHxgKOYF77mke9W3IE4cVEyRc\nQ06UyzL5DQyFdM3dxirticPSS6JJJikbnQST+6SsQ+Oeu42Za+7Wasl+00kwuXviMCf30qS9zF56\nf2aPlimutoZqgl95EkzuvojJyb00vkK1oARzVDtIstlSTO6+iMnJvSzpjpZJNLmT5KmApCXbXAkm\nd08c5uReGo+WKSbwFapFSUrzRHSK49zlicPSO+rbVNqjZdL7MydZO24D6V7ElFbP3RcxObmXJt3R\nMglfxOSOeyHJNpcvYkpSmkd9G0q75p5eWqiVZayI2miZqqNoIuGeuy9isjFzzb2YJJNUG0iy2VJM\n7p44zMm9LK65F5fsRTnJSrS9Ukzurrk7uZcl3Zp7msndZZniXJbJb2A+d4+WsbFKu+ae3p/Zo2VG\nK8F2SzC5u+fu5F6a3uhFaGDComQkmtwBd90LSra5Ukzurrk7uZelr78vvZIMJJvcXZYpLu2yTFqB\neeIwJ/fS9Ed/epOGQdLj3K24xHJoTYLj3AeuUPVQSBur3uhNuOeeYB85PFqmqGSna0iwLOP53J3c\nS9PX35feyVRItuceRKqpKllSytMPpBWXJLrV7ROqNnZ90ZfeBUyQbM3dRiexHFqTYM8dar13D4W0\nMevt7020555mco9Is1qUsmSbK9Hk3jWpyz13G7u+8GiZIiISriEnSlKKRZlkk3u3uulPMK7xkt5R\n36bSrbmnmdytgySa3LsmdXm0jI1db/S65l6A11AdnXRr7ukF1qUuj5axsUu3557oaJn0ckHy0h0t\nk944d8hq7k7uNlauuduElWhZplvdLsvY2PX19yV6hWqaFzEFvoipKIkk5w1LNbm7526l6A0PhSyi\nNlrGihAeLVNElzwU0krgicNswko0uXdP6nbP3cauL1I9oZpqcvdomaJqs0Im2HdPNLl3yUMhRyTp\nREmrJa2RdH6T53eW9O3s+V9Kml12oKnr7fdQyCJ8hWpxqZbck03urrnvmKQu4BLgJGAecJakeUM2\nOwd4MiIOAv4Z+HjZgabOPXebsBId5z7RJw7L09U8ElgTEfcBSLoSOA24s2Gb04ALsttXAZ+XpGjB\nd8ir77mar6/6etm7HbOeDQ+yYGs/XHJU1aEMEXzjFw9y2YofVx3INh5ev5nnzZxadRhtRRI33/UY\nr/p0Wn/Ld215mDOe2YASe+93PWsLv5rcxWuveW3VoWznvBedx4lzTmzpa+RJ7vsCDzXc7wGG/hUH\ntomIXklPAdOBxxs3knQucC7A/vvvP6qA99h5Dw6cduCofraVDuyeyl9s3AC7Tas6lG08vutBPNR/\nPHN3TiuRzt1rKq88eK+qw2gr5xwzh5/f+/jIG46ze7f8Oeu7e3n2s9IqS57V+yQ37rEn7Dq96lC2\ns/tOu7f8NTRS51rSG4BXR8Q7svtvAY6MiPc0bLMq26Ynu39vts264fa7YMGCWL58eQm/gpnZxCHp\ntohYMNJ2eYqxPcB+DfdnAY8Mt42kbmAP4Il8oZqZWdnyJPdbgbmS5kjaCTgTWDpkm6XA2dnt1wM3\nt6LebmZm+YxYJMtq6IuBG4Au4CsRsUrShcDyiFgKfBm4TNIaaj32M1sZtJmZ7ViuMyARsQxYNuSx\nDzTc3gK8odzQzMxstDwA2sysAzm5m5l1ICd3M7MO5ORuZtaBRryIqWUvLK0FHhzlj89gyNWviXBc\nxTiu4lKNzXEVM5a4DoiImSNtVFlyHwtJy/NcoTXeHFcxjqu4VGNzXMWMR1wuy5iZdSAndzOzDtSu\nyf3SqgMYhuMqxnEVl2psjquYlsfVljV3MzPbsXbtuZuZ2Q44uZuZdaC2SO6SLpZ0t6TbJV0tqely\nRyMt5N2CuN4gaZWkfknDDmuS9ICk30haKanlK5QUiGu822tPSTdKuif7/9nDbNeXtdVKSUOnly4z\nniQXfs8R1yJJaxva6B3jFNdXJD0m6Y5hnpekz2Vx3y5pfiJxHSfpqYb2+kCz7UqOaT9JP5R0V3Ys\n/s8m27S2vSIi+X/AnwPd2e2PAx9vsk0XcC9wILAT8GtgXovjOgR4AfAjYMEOtnsAmDGO7TViXBW1\n1yeA87Pb5zf7O2bPbRqHNhrx9wf+CvhidvtM4NuJxLUI+Px4vZ8aXvdYYD5wxzDPnwxcDwg4Gvhl\nInEdB1w3zm21NzA/u70b8Nuil8ZOAAADNUlEQVQmf8eWtldb9Nwj4j8ioje7ewu11aCGGljIOyKe\nAeoLebcyrrsiYnUrX2M0csY17u2V7b++uvnXgSpXLs7z+zfGexVwvCQlEFclIuIn7HiFtdOAb0TN\nLcA0SXsnENe4i4hHI+JX2e2NwF3U1ppu1NL2aovkPsTbqX3aDdVsIe+hjVmVAP5D0m3ZIuEpqKK9\n9oqIR6H25geeM8x2UyQtl3SLpFZ9AOT5/bdZ+B2oL/zeSnn/LmdkX+WvkrRfk+erkPIx+BJJv5Z0\nvaRDx/OFs3Lei4FfDnmqpe2VzHLlkm4CntvkqSUR8e/ZNkuAXuDyZrto8tiYx3nmiSuHl0XEI5Ke\nA9wo6e6st1FlXOPeXgV2s3/WXgcCN0v6TUTcO9bYhsjz+7ekjUaQ5zWvBa6IiKclnUft28UrWxxX\nHlW0Vx6/ojYfyyZJJwPXAHPH44UlTQX+DfibiNgw9OkmP1JaeyWT3CPihB09L+ls4BTg+MgKVkPk\nWci79Lhy7uOR7P/HJF1N7av3mJJ7CXGNe3tJ+oOkvSPi0ezr52PD7KPeXvdJ+hG1Xk/Zyb3Iwu89\nGr+F30eMKyLWNdz9V2rnoVLQkvfUWDUm1YhYJulfJM2IiJZOKCZpMrXEfnlE/L8mm7S0vdqiLCPp\nROD9wKkR8adhNsuzkPe4k7SrpN3qt6mdHG56Vn+cVdFejQupnw1s9w1D0rMl7ZzdngG8DLizBbGk\nuvD7iHENqcueSq2em4KlwFuzUSBHA0/Vy3BVkvTc+rkSSUdSy3vrdvxTY35NUVtb+q6I+PQwm7W2\nvcbzDPJo/wFrqNWmVmb/6iMY9gGWDTn7/Ftqvbwl4xDX6dQ+fZ8G/gDcMDQuaqMefp39W5VKXBW1\n13TgB8A92f97Zo8vAL6U3X4p8JusvX4DnNPCeLb7/YELqXUiAKYA383ef/8JHNjqNsoZ10ez99Kv\ngR8CB49TXFcAjwJbs/fXOcB5wHnZ8wIuyeL+DTsYQTbOcS1uaK9bgJeOQ0zHUCux3N6Qt04ez/by\n9ANmZh2oLcoyZmZWjJO7mVkHcnI3M+tATu5mZh3Iyd3MrAM5uZuZdSAndzOzDvRf0giYqfEvWTkA\nAAAASUVORK5CYII=\n", "text/plain": [ - "" + "
" ] }, "metadata": {}, @@ -607,11 +5204,11 @@ ], "source": [ "plt.title(\"Uniform distribution\")\n", - "x = np.linspace(-1,1, endpoint=True)\n", + "x = np.linspace(-1,1,300, endpoint=True)\n", "plt.plot(x, uniform(-0.5, 0.5)(x), label=\"d = 1\")\n", - "x = np.linspace(-1.5,1.5, endpoint=True)\n", + "x = np.linspace(-1.5,1.5,300, endpoint=True)\n", "plt.plot(x, uniform(-1, 1)(x), label=\"d = 2\")\n", - "x = np.linspace(-2,2, endpoint=True)\n", + "x = np.linspace(-2,2,300, endpoint=True)\n", "plt.plot(x, uniform(-1.5, 1.5)(x), label=\"d = 3\");\n", "plt.legend();" ] @@ -649,7 +5246,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 20, "metadata": {}, "outputs": [], "source": [ @@ -665,14 +5262,14 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 51, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEICAYAAACzliQjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3Xl8VOXVwPHfmUlmshICBAgECJRV\nREERtVW0VSwuxdoCglrXatW6VO1CtcW1LtVabUWrrVr3BbVCrUupC1p9KSCCCoLsEhL2ANkzy/P+\nce/EEBIySWbLvefLJ5/M3LnLmZlw5plzn/s8YoxBKaWUO3iSHYBSSqnE0aSvlFIuoklfKaVcRJO+\nUkq5iCZ9pZRyEU36SinlIpr0XUJE/iIiv03l44rIeyLy4yjXPV5EShrdXy4ix7czzKb7PltE/t3o\nvhGRwbHYt72/ShEZFKv9Ndn3HSLys3jsO95EpJeIfCEi/mTH4mSa9B1CRDaISI2dUMpF5F8i0i/y\nuDHmUmPMrYmOK1HHNcaMNMa8d6B1RKTYTuBprezrGWPMSbGIq7kPMmNMjjFmXSz23+RYBcC5wMOx\n3ncrx+0mIv8QkSoR2SgiZx1g3ZtEJGD/nVY2/gA0xmwF3gUuSVTsbqRJ31m+Z4zJAQqBrcCfkxxP\np9PaB0KKOx943RhTk+DjzgLqgV7A2cBDIjLyAOu/YH/w5TTzAfgM8JM4xup6mvQdyBhTC7wEHBRZ\nJiJ/F5Hb7NvHi0iJiFwnIttEpExELmi0bp6IPCki2+2W229ExGM/dr6IfCgifxSR3SKyTkS+aS/f\nZO/vvBaOmy8ir9n7LbdvF0XznEQk095XuYisAI5o8vgGETnRvj1ORBaLyF4R2Soi99qrvW//3m23\nMI9u8nx2ATfZy/7bJIRT7Oe6Q0TubvR63CQiTzeKo+HbhIj8DjgWeMA+3gP2Og3loihe6/+KyD32\n814vIicf4GU6GZjfKJbI+3y9HfcGETk7mtc7WiKSDfwQ+K0xptIY819gLvCjdu7yf8AgERkQqxjV\nvjTpO5CIZAFnAgsOsFpvIA/oC1wEzBKRfPuxP9uPDQKOwyoZXNBo2yOBT4HuwLPA81hJeDBwDlaS\ny2nmmB7gcWAA0B+oAR6I8mndCHzD/vkucN4B1r0fuN8Y08Ve/0V7+Xj7d1e7hfl/jZ7POqAn8LsW\n9nkGMBY4DDgduLC1gI0xNwAfAFfYx7uimdWiea1XAT2A3wOPioi0cMhR9rqN9ba37Yv1mj0iIsOa\n21hEHrQ/yJv7+bSFYw4FQsaYLxstWwYcqKX/PRHZJdZ5mMsaP2CMCQJrgEMPsL3qAE36zvKqiOwG\n9gITgLsPsG4AuMUYEzDGvA5UAsNExIv1gfFrY0yFMWYD8Af2bbmtN8Y8bowJAS8A/ex91Rlj/o31\nVX+/E5/GmJ3GmJeNMdXGmAqsBHtclM9tKvA7Y8wuY8wm4E+tPLfBItLDbn0e6MMPoNQY82djTPAA\npZG77GN/BdwHTI8y7hZF+VpvNMb81X6tn8Aq3fVqYZddgYpmlv/Wfm/mA//Cei33Y4y53BjTtYWf\nQ1o4Zg6wp8myPUBuC+u/CIwACoCLgZki0vS1rLCfi4oDTfrO8n1jTFfAD1wBzBeR3i2su9NuVUVU\nY/0H7gH4gI2NHtuI1VKM2Nrodg00nIRrvGy/lr6IZInIw3YZYy9WuaWrnfxa0wfY1CSmllyE1QJd\nKSKLROS0Vva9qZXHm66z0Y6no6J5rbdEbhhjqu2bzX2LAihn/2RbboyparL/WMQeUQl0abKsC81/\n+GCMWWGMKTXGhIwxH2F9K5vcZLVcYHcMY1SNaNJ3IPs/1CtACDimjZvvwGopN66p9gc2xyC064Bh\nwJF26SVSbmmpXNFYGdY3isYxNcsYs9oYMx2rXHMX8JJde25pSNlohppteuxS+3YVkNXosaYfsgfa\nd6xf60+xPuway7efe+P9l9IMsbrXVrbws7yFY34JpInIkEbLDgVaWr8pQ6P3X6wT6YOxSkQqDjTp\nO5BYTgfygS/asq1dRngR+J2I5Non1K4Fnj7wllHJxfoWsFtEumHV6aP1IvBr+2RwEXBlSyuKyDki\nUmCMCfN1izEEbAfCWPXztvqFfex+wNVYZS2ApcB4EekvInnAr5tst7Wl48XhtX6d5stlN4uIT0SO\nBU4DZrcQz6VNetU0/mm2Rm9/i3gFuEVEskXkW1jnPJ5qbn0ROd1+HUVExgFXAXMarTIO2GCMOdA3\nOdUBmvSd5Z8iUolV0/8dcJ4xJtoWV2NXYrVg1wH/xTpZ+1gM4rsPyMRq4S4A3mzDtjdjlSbWA/+m\nhaRimwgst1+L+4FpxphauzzyO+BD++TkUW04/hzgY6wk/y/gUQBjzDysD4BP7cdfa7Ld/cBku/dN\nc+chYvlaP4nVyyiz0bItWGWfUqzukJcaY1a2c/8tuRzrfd0GPAdcFvm7E5Fj7fchYhrWidoKO967\njDFPNHr8bOAvMY5PNSI6iYpSziEitwPbjDH3iXWF8tPGmKi6xSabiPTE6nI6xu52rOKgM1+IopRq\nwhhzfbJjaC9jzDasnj0qjrS8o5RSLqLlHaWUchFt6SullIukXE2/R48epri4ONlhKKVUp/Lxxx/v\nMMYUtLZeyiX94uJiFi9enOwwlFKqUxGRqK5t0PKOUkq5iCZ9pZRykaiSvohMFJFVIrJGRGY08/i1\nIrJCRD4Vkbcbj4UtIiERWWr/zI1l8Eoppdqm1Zq+PQLiLKyhekuARSIy1xizotFqnwBjjTHV9vjY\nv8caMhagxhgzOsZxK6UcJBAIUFJSQm2tXojbmoyMDIqKikhPT2/X9tGcyB0HrIlMaSYiz2MNqNSQ\n9I0x7zZafwHWRBpKKRWVkpIScnNzKS4upuU5YpQxhp07d1JSUsLAgQPbtY9oyjt92Xcs8RL2He+7\nqYuANxrdzxBr6roFIvL95jYQkUvsdRZv3749ipCUUk5SW1tL9+7dNeG3QkTo3r17h74RRdPSb+5d\naPYyXhE5B2tKucbDu/Y3xpSKNeP9OyLymTFm7T47M+YR4BGAsWPH6iXCSrmQJvzodPR1iqalX8K+\nE0gU0cwkDGJNSn0DMMkYUxdZbowptX+vA94DxnQg3rj5fPMePt5YnuwwlFIqrqJJ+ouAISIyUER8\nWONh79MLR0TGAA9jJfxtjZbni4jfvt0D+BaNzgWkkjvfWMlvX/082WEopRzkwgsvpGfPnhx88MH7\nLN+1axcTJkxgyJAhTJgwgfLyxDU4W0369jyqVwBvYc3C9KIxZrmI3CIik+zV7saat3N2k66ZI4DF\nIrIMeBe4s0mvn5SxdW8t2yrqWl9RKaWidP755/Pmm/vPFXTnnXdywgknsHr1ak444QTuvPPOhMUU\n1TAMxpjXsaZia7xsZqPbJ7aw3UfAqI4EmCjbK+vYWxMgFDZ4PVpbVMpNNmzYwMknn8wxxxzDRx99\nRN++fZkzZw6ZmZmtb3wA48ePZ8OGDfstnzNnDu+99x4A5513Hscffzx33XVXh44VrZQbeycZ6oIh\ndlcHANhZVUfP3IwkR6SUe938z+WsKN0b030e1KcLN36v2Wl+G6xevZrnnnuOv/71r0ydOpWXX36Z\nc87Zt/f5M888w913373ftoMHD+all16KOp6tW7dSWFgIQGFhIdu2bWtli9jRpA/srKxvuL29QpO+\nUm40cOBARo+2riM9/PDDm22hn3322Zx99tkJjiy2NOljJfrmbiulEq+1Fnm8+P3+htter5eampr9\n1olVS79Xr16UlZVRWFhIWVkZPXv2bF/Q7aBJH036SqnoxKqlP2nSJJ544glmzJjBE088wemnnx6D\n6KKjo2wCOyobJf1KTfpKqdiYPn06Rx99NKtWraKoqIhHH30UgBkzZjBv3jyGDBnCvHnzmDFjv3Es\n40Zb+nzdus9I92hLXykXKi4u5vPPv75O5+c//3lM9vvcc881u7x79+68/fbbMTlGW2nSx2rdd81K\nJz/Lx45GJ3WVUsppNOljtfQLcvzkZ/nYXqFDuyqlnEtr+lhJv0eOn4Jcv5Z3lFKOpkkfq7xTkOun\nR45Pk75SytE06WOXd3Ktlv7e2iC1gVCyQ1JKqbhwfdKvqgtSXR9qSPqwbxdOpZRyEtcn/UiCL8j5\nOulriUcpFQvFxcWMGjWK0aNHM3bs2IblKT20stNFEnxBrp+CnIx9limlVEe9++67LF26lMWLFzcs\nS+bQypr0Gyf9SEtfyztKucqGDRsYMWIEF198MSNHjuSkk05qduydWJkzZw7nnXceYA2t/Oqrr8bt\nWE25vp9+JMEX5PrJy0y3lmlLX6nkeWMGbPkstvvsPQpOPnBrOh5DK4sIJ510EiLCT37yEy655BJA\nh1ZOqu0VdXgE8rN8eD1Ct2zttqmUG8VjaOUPP/yQPn36sG3bNiZMmMDw4cMZP358rEJuF036FXV0\nz/E3zJZVkOPX3jtKJVMrLfJ4icfQyn369AGgZ8+enHHGGSxcuJDx48fr0MrJFBmCIUKvylVKtaQt\nLf2qqirC4TC5ublUVVXx73//m5kzrVlmkzm0siZ9+2rciIJcP4s3ViUxIqWUE2zdupUzzjgDgGAw\nyFlnncXEiRMBa2jlqVOn8uijj9K/f39mz56dsLhcn/R3VNQxtFduw/1IS98Yg4hOkK6UG8RjaOVB\ngwaxbNmyZh9L5tDKru6yaYzZr6XfI8dHbSBMZV0wiZEppVR8uDrp76kJEAiZ/Wr6oN02lVLO5Oqk\nH0nsPRrX9PWqXKWUg2nSh+Zb+tptUynlQO5O+o2uxo3Q8o5SysncnfQr9k/6XTPTSfOIJn2llCO5\nPun70jx0yfi656rHI/TI0Qu0lFIdd+GFF9KzZ08OPvjgfZa3NLSyMYarrrqKwYMHc8ghh7BkyZKY\nx+TupF9pXY3btD9+Qa4OxaCU6rjzzz+fN998c7/lLQ2t/MYbb7B69WpWr17NI488wmWXXRbzmNyd\n9Cv27aMfUZDr1xO5SrlIvIZWHj9+PN26ddtveUtDK8+ZM4dzzz0XEeGoo45i9+7dlJWVdTiOxlx9\nRW55df0+PXci8rN8rNpSkYSIlFJ3LbyLlbtWxnSfw7sN51fjfnXAdeIxtHJLWhpaefPmzfTr169h\nvaKiIjZv3tywbixElfRFZCJwP+AF/maMubPJ49cCPwaCwHbgQmPMRvux84Df2KveZox5Ikaxd1h1\nfYgs//4vQZbPS3W9XpGrlJvEY2jltjLG7Lcs1sPBtJr0RcQLzAImACXAIhGZa4xZ0Wi1T4Cxxphq\nEbkM+D1wpoh0A24ExgIG+NjeNnETQh5ATX2IrHTvfsutpB9KQkRKqdZa5PESj6GVW9LS0MpFRUVs\n2rSpYb2SkpKG4ZljJZqa/jhgjTFmnTGmHnge2GccUGPMu8aYavvuAqDIvv1dYJ4xZped6OcBE2MT\nesdV14fI8u2f9DN9XuqCYULh/T91lVLudfbZZ7N06dL9ftqS8OHroZWBfYZWnjRpEk8++STGGBYs\nWEBeXl5MSzsQXdLvC2xqdL/EXtaSi4A32rKtiFwiIotFZPH27dujCCk2quuDzZZ3sn1pDY8rpVR7\nTZ8+naOPPppVq1ZRVFTEo48+ClhDK8+bN48hQ4Ywb948ZsyYAcApp5zCoEGDGDx4MBdffDEPPvhg\nzGOKpqbfXEGp2SawiJyDVco5ri3bGmMeAR4BGDt2bEKa14FQmEDINFveybRb/zX1IXIz0hMRjlIq\nieIxtDLAc8891+zyloZWFhFmzZoVk2O3JJqWfgnQr9H9IqC06UoiciJwAzDJGFPXlm2TIVKzz2ym\nvBMp+WhdXynlNNEk/UXAEBEZKCI+YBowt/EKIjIGeBgr4Tee1v0t4CQRyReRfOAke1nS1dgJPcvX\nfO8d0KSvlHKeVss7xpigiFyBlay9wGPGmOUicguw2BgzF7gbyAFm292LvjLGTDLG7BKRW7E+OABu\nMcbsisszaaNIvb75E7nWy1IT0Jq+UspZouqnb4x5HXi9ybKZjW6feIBtHwMea2+A8aLlHaWUG7l2\nGIbqhvJOMy39dE36SilncnHSj5R3mumy6dcum0opZ3Jt0q85QEtfyztKqVhoaWjlm266ib59+zJ6\n9GhGjx7N669/XT2/4447GDx4MMOGDeOtt2Lf78W1Sf+A5Z1G/fSVUqq9WhpaGeCaa65puKL3lFNO\nAWDFihU8//zzLF++nDfffJPLL7+cUCi2eci9ST9wgBO5WtNXylUSPbRyS+bMmcO0adPw+/0MHDiQ\nwYMHs3Dhwg7H0Zhrh1auOUBNP83rwef1aNJXKgm23H47dV/Edmhl/4jh9L7++gOuk8ihlQEeeOAB\nnnzyScaOHcsf/vAH8vPz2bx5M0cddVTDOpGhlWPJtS39qjq7pd/MMAxgfQOo0RO5SrlGtEMrx2LA\ntcsuu4y1a9eydOlSCgsLue6664AUGVrZqWoCITLSPXg9zb+g2Tq8slJJ0VqLPF4SPbRyxMUXX8xp\np50GJGZoZdcm/er6YLOlnYhMTfpKqSZiNYlKZCx9gH/84x8NvXsmTZrEWWedxbXXXktpaSmrV69m\n3LhxHT5eYy5O+qEWSztg1fq1n75SqiOmT5/Oe++9x44dOygqKuLmm2/moosu4pe//CVLly5FRCgu\nLubhhx8GYOTIkUydOpWDDjqItLQ0Zs2ahdfbcp5qD9cm/ZoWJlCJ0Ja+Uu6R6KGVn3rqqRa3ueGG\nG7jhhhticvzmuPZEbkuzZkVk+bzUBDTpK6WcxbVJv6Y+1Gwf/QidJ1cp5USuTfpVrZ3ITU/TK3KV\nSqDmuiuq/XX0dXJt0m+tpp/t9+qJXKUSJCMjg507d2rib4Uxhp07d5KRkdHufbj2RG5rNf1Mn5cq\nbekrlRBFRUWUlJSwffv2ZIeS8jIyMigqKmr39i5O+gcu72Slp1EfDBMKmxYv4FJKxUZ6ejoDBw5M\ndhiu4N7yTqD1E7mgY+orpZzFlUm/PhgmEDINo2k2R4dXVko5kSuTfs0B5seN0IlUlFJO5MqkXx1o\neVjlCE36SikncmfStxN5tv/AY+8A1AS0pq+Ucg5XJv2G8s4BB1yzHouMu6+UUk7gyqT/9fy4Bx5a\nufG6SinlBC5N+lbJ5sAncrW8o5RyHpcm/UhLX3vvKKXcRZN+C7SfvlLKiVyZ9CMTnh94GAZt6Sul\nnMeVST+aln6a14MvzaNJXynlKK5O+gfqsgmRiVT0RK5SyjlcmfRrAiEy0j14Whk9MytdZ89SSjlL\nVElfRCaKyCoRWSMiM5p5fLyILBGRoIhMbvJYSESW2j9zYxV4R1TVHXhY5YhMn1dP5CqlHKXVzCci\nXmAWMAEoARaJyFxjzIpGq30FnA80N4V8jTFmdAxijZma+lCrpR2wTvRqeUcp5STRTKIyDlhjjFkH\nICLPA6cDDUnfGLPBfiwchxhjrrVZsyIydXJ0pZTDRFPe6QtsanS/xF4WrQwRWSwiC0Tk+82tICKX\n2OssTsR0adWBEFn+1j/vsn1eagKa9JVSzhFN0m/ubGdbZi/ub4wZC5wF3Cci39hvZ8Y8YowZa4wZ\nW1BQ0IZdt09NffCAE6hEZPnSqKrT8o5SyjmiSfolQL9G94uA0mgPYIwptX+vA94DxrQhvrhoS3lH\nT+QqpZwkmqS/CBgiIgNFxAdMA6LqhSMi+SLit2/3AL5Fo3MByVJTf+D5cSOyfF6qtbyjlHKQVpO+\nMSYIXAG8BXwBvGiMWS4it4jIJAAROUJESoApwMMistzefASwWESWAe8Cdzbp9ZMUVfVBPZGrlHKl\naHrvYIx5HXi9ybKZjW4vwir7NN3uI2BUB2OMOau80/pTz0pPoz4YJhQ2eFu5kEsppToDd16R24by\nDqB99ZVSjuG6pF8fDBMMG7KjSfp+HV5ZKeUsrkv6DfPjRlPeicyTq0lfKeUQrkv61YHIWPpRnMhN\ntz4YtLyjlHIK1yX9qrrWx9KPyNLZs5RSDuO6pF8T5Vj6oPPkKqWcx3VJvzqKqRIjMjXpK6Ucxn1J\n377CNtIz50Cy7Q+GmoDW9JVSzuC6pF8Txfy4EVreUUo5jeuSfsOk6OltKO/UadJXSjmDC5O+VaqJ\n7orcSJdNTfpKKWdwYdKPvrzj9Qi+NE9D336llOrsXJv0o+myCdaHg/bTV0o5heuSfk19kIx0D54o\nR83MStfhlZVSzuG6pF9dH2roihmNLH+atvSVUo7huqQf7bDKEVk+r469o5RyDNcl/Wjnx43ITPfq\nKJtKKcdwXdKvqg9GNaxyhJ7IVUo5ieuSfk19iKwoe+6A1VdfyztKKadwXdJvc3lHW/pKKQdxXdKv\nCbTtRG62z9swSJtSSnV2rkv6lXVBcvxt67JZVaflHaWUM7gu6Ve1Menn+NMIhAx1QW3tK6U6P1cl\n/VDYWBdntTHpA1TWOrS1b0yyI1BKJZCrkn6V3QunLS39yAdElROHV/7y33DPEFj+j2RHopRKEHcl\nfbs2n5PRjpa+0+r6mz+G2edB9S545RLY8GGyI1JKJYCrkn6kRNOu8o6Tkv6udfDMVMjuAZd9BPnF\n8Px02PZFsiNTSsWZu5J+pKUfxfy4Edn2uo7pwVNTDk//EEwIznkFeg6Hs1+CtAx4ejJUbkt2hEqp\nOHJV0o/U5XP86VFvk2uXgiqckvSXPW+19M98BnoMsZblD4CzZ8PezfDxE8mNTykVV65K+pV1AeDr\n1ns0vj6R65Ck/8Vr0PMgKP7WvssLD4V+42DlP5MTl1IqIVyW9K2Wfm4bWvo5Tkr6ldvhq49g+GnN\nPz78NChbBuUbExuXUiphokr6IjJRRFaJyBoRmdHM4+NFZImIBEVkcpPHzhOR1fbPebEKvD0qa9vR\n0rdH5KxwQj/9Va+DCcOI7zX/+Aj7w2Dla4mLSSmVUK0mfRHxArOAk4GDgOkiclCT1b4CzgeebbJt\nN+BG4EhgHHCjiOR3POz2iYyL35beOx6PkOXzOqOlv/I16DoAeo9q/vFug6DXKKsEpJRypGha+uOA\nNcaYdcaYeuB54PTGKxhjNhhjPgXCTbb9LjDPGLPLGFMOzAMmxiDudqmsC5LuFfxpbatq5fjTGi7s\n6rRq98C696xWvhxgfuARp8FX/6e9eJRyqGiyX19gU6P7JfayaHRk25irrA2S7U9DDpT0mpHjT+v8\n5Z3V8yBU33JpJ2LE9wADK/+VkLCUUokVTdJvLkNGO2BLVNuKyCUislhEFm/fvj3KXbddVV2wTZOi\nR2Q7YaTNL/4JOb2gaNyB1+t5kFXm0bq+Uo4UTdIvAfo1ul8ElEa5/6i2NcY8YowZa4wZW1BQEOWu\n266yLtjQ774tcvxpnfuK3ECN1dIfdgp4WnnLRaxePOvmQ83uxMSnlEqYaJL+ImCIiAwUER8wDZgb\n5f7fAk4SkXz7BO5J9rKkqKwLtukkbkS2P62hu2entG4+BKpaL+1EjJgE4YD1QaGUcpRWk74xJghc\ngZWsvwBeNMYsF5FbRGQSgIgcISIlwBTgYRFZbm+7C7gV64NjEXCLvSwp2jqWfkRuRicv72z8ELw+\nGPCt1tcF6Hs4+POs7ZRSjhJVBjTGvA683mTZzEa3F2GVbprb9jHgsQ7EGDOVdUGK8rPavF2239u5\nyzsli6wrbtMzolvf44Giw63tlFKO4rIrcoNtujArIrsz1/SD9bB5SesncJsqGgdbl0Pt3vjEpZRK\nClcl/aq6UJsGW4vI9adRHwxTH2x6GUInsOUzCNVBvyPatl2/IwBjjbuvlHIM1yT9cNjYk6K3r6UP\nnXT8nZKF1u+2tvT7jrW31xKPUk7imqRfHWj7EAwR2Z15IpVNC6FLEeS18Zq4zK5QMNzaXinlGK5J\n+u2ZKjEit7Mn/baWdiL6jbNa+uFOWNZSSjXLNUk/MoxCe7psdtryzt5S2FvS9tJORNE4qN0NO9fE\nNi6lVNK4Juk3tPTbkfQj3w46XUs/Uprp186kH9muREs8SjmF65J+e2r6nXZy9JJF4PVD70Pat333\nIZCRp3V9pRzENUm/ogMt/U5b3tm0EPqMgTRf+7b3eKDoCE36SjmIa5J+h8o7/k44e1awDsqWtv8k\nbkTRONi+0hqPXynV6bku6bery6bPa++jEw26VrbMGj+/vSdxIyIXaZUsjklYndmu2l089vljXP3O\n1cxZM4faYG2yQ1KqzdqeATupjpR30rweMtI9nWv2rMhFVe09iRvRdywgVtIffEKHw+qMyirL+OOS\nP/Kfjf8hEA7QI7MH72x6h98v+j1nDD6DK8ZcQUZalOMaKZVkrkn6VXVBvB4hI719X25y/Omdq7xT\n+gnk9oHc3h3bT0YX6DHE2p8L7a3fy6X/uZSyqjKmDpvK1KFTGZg3kMVbF/PCqhd4csWTlFWVcfdx\nd+MR13xxVp2Ya5J+ZW2QbJ+3zVMlRuT4O9nk6KWfWCdxY6HPGGtMfpcJhANc9951fLX3Kx456RGO\n6P31+ZEjeh/BEb2P4PHuj3Pvx/cy4JMBXHXYVUmMVqnouKZpUlkXaldpJ6JTTZlYu9e6oCqWSb9y\nC+wti83+OgFjDHf87w4WlC1g5tEz90n4jZ0/8nx+OOSH/PWzvzJ3bbRzCymVPK5J+lV1wXYNwRCR\n409rOC+Q8sqWWb/7jI7N/grt/ZQtjc3+OoGXV7/M7C9nc9HBF3HGkDNaXE9EuOGoGziy95Hc+NGN\nrNi5IoFRKtV2rkn67Z0qMSKnM7X0I8m5MEZJv/coEA+UuiPpV9RXcP+S+zmi9xFRlWzSPen84fg/\n0MXXhXsW34MxJgFRKtU+rkr6HSnv5GR0oolUSpdaI2vmxGiSeX8O9Bjqmpb+o589yu663fx87M+j\nPjmb58/j0kMvZdGWRbxf8n6cI1Sq/VyT9Ns7P25Ep6rpl34Su9JORJ8xrujBU1ZZxlMrnuK0Qadx\nUPeD2rTt5KGTKe5SzB8+/gPBcCf5W1Gu45qkH4vyTqdo6dfugV1rY5/0C0dD5VbHn8z98yd/BuCq\nMW3viZPuSednh/+M9XvW88rqV2IdmlIx4aqk36Hyjj+N2kCYYCjFx5ZvOIkbo547EZH9Obi1/8XO\nL3ht3Wucc9A5FOYUtmsf3+mzPOPkAAAgAElEQVT3HQ7reRgPLn2QqkBVjCNUquNckfSNMTEp70An\nGIohcrK1MMZJP3Iy18F1/QeXPUgXfxd+POrH7d6HiHDd2OvYWbuTF1a9EMPoOi8TDhOuq0t2GMrm\niouzagIhwqZ94+5ERObWragLkJfV9snVE6b0E8jrD9ndY7tfX5Y1faJDW/ob925k/qb5XHLIJeT6\ncju0r0MKDuHI3kfy7BfP8qODfkS6J4X/XuKkftMm9r72GtVLl1KzdBnhvXvxDx1K5ujRZB91JLnf\n/S7icUWbM+W44lWv7MBUiRE5fus/bsq39MuWQp9D47PvwtHWNwkHdkl8esXTpHnSmDZ8Wkz2d+7I\nc9lavZV5G+bFZH+dhQmF2PnY46z73iS23/8nAps3kzvhRLpf+hPSevRg77/+xeZrrmXjuedSt359\nssN1JVe09Csbpkr0tnsf2fa2KX0yt2Y37FoHY86Jz/77jIFlz1rTMLZ1ovUUtqduD3PWzuGUgafQ\nI7NHTPZ5TN9jKO5SzJMrnuTkgSe3e/iPzqRu3XpKfz2D2mWfkvPtb9P7xpmk99537CcTDrPn1Tls\nvfNO1n//DAquupJuF17oitcnVbiipR9pnUda6+2R2xmmTIycxI3VRVlN9XHmlbkvffkSNcEafnTQ\nj2K2T494OGfEOSzfuZxPtjmzJNZY3Zo1bDznHAIbv6LPPfdQ9OCs/RI+gHg8dP3BGQx67Z9kH3sM\n2+6+h6133KEXtCWQK5J+ZcNY+h1p6XeC2bMi9fZY99yJ6HUwiBc2L4nP/pMgEA7w7MpnObLwSIZ1\nGxbTfX/vG98jz5/HUyueiul+U039hg1svOAC8HoY8Nyz5J12aqst9/SePSn685/pdt65lD/5FNv/\n8AdN/AniqqTfod47vk7Q0t/8MXQdAFnd4rN/Xxb0PAhKnZP0/73h32yr3sa5B50b831npWcxZegU\n3v7qbTbt3RTz/aeC+pISNp5/AQRDDHj8cfwDB0a9rYjQc8YMuk6fxs6/PcqOB2bFMVIV4Yqk35Gp\nEiMayjupPKb+5iVQNDa+x+h7mPXh4pBW2bMrn6W4SzHH9D0mLvufPnw6XvHy/Krn47L/ZApXVbHp\nkp8Qrqmh/+OP4R88uM37EBF6//a35P3gB+yYNYvd/3g1DpGqxlyR9GPS0k/18k7FFthbYs90FUdF\nY62rfneuje9xEmDVrlV8uv1Tpg6bGrcJUHpm9eTb/b/NnLVzqAs5p6+6MYYtt9xC/fr1FN1/HxnD\nh7d7X+LxUHjrLWSNG8eWW26hbs2aGEaqmnJV0u9IP/10rwdfmid1yzuROWz7Hh7f40T2v7nzz5k7\n+8vZ+Dw+Jn1jUlyPM2XoFPbU7WHeRud039zzyj/YM2cuPS6/nOyjjurw/sTrpc89d+PJyqLkZz8j\nXF0dgyhVc1yR9KvqgohAlq/9J3IBclN5/J3NH4MnDQoPie9xCoaDL8c6XidWHajmtXWv8d3i75Ln\nz4vrsY4sPJJ+uf2YvWp2XI+TKHWrV7Pl1lvJOvJIelx+Wcz2m96zJ31+fxf1a9ex5bbfxWy/al9R\nJX0RmSgiq0RkjYjMaOZxv4i8YD/+PxEptpcXi0iNiCy1f/4S2/CjU1EbJMeX1uG+wCk90ubmxVbv\nmvTM+B7H47V6B5V07pb+G+vfoCpQxdRhU+N+LI94mDJ0Cku2LWHt7s5dFjP19Wy+9jo82dn0vedu\nxNuxhlRTOd/6Ft0v/Ql7XnmFvW+8EdN9K0urSV9EvMAs4GTgIGC6iDQdc/YioNwYMxj4I3BXo8fW\nGmNG2z+XxijuNunorFkRKTvSZjgEmz+Jf2knou9hsOUzCNQm5nhx8OKXLzK462AOLYjT1ctNnD74\ndNI96cz+snO39nc88lfqVq+m8NZbSSuI0XwNTRT89KdkHHwwW269jWB5eVyO4WbRtPTHAWuMMeuM\nMfXA88DpTdY5HXjCvv0ScIKk0CV2VfUdG1Y5ImWT/o7VUF8R/547EX3HQjgAWz9PzPFibPnO5azY\nuYIpQ6ck7ErQbhndOLH/icxdO5faYOf8sKxbvZodDz9Ml1NOIfc7347bcSQtjcLf3UZo71623XlX\n6xuoNokm6fcFGncyLrGXNbuOMSYI7AEiI34NFJFPRGS+iBzb3AFE5BIRWSwii7dv396mJxCNitrY\nJP1svzc1k/7mBJ3EjYgcp5OWeGavmk2GN4PTvnFaQo87ZdgUKuoreGvDWwk9biyYUIjS3/wGb3Y2\nvW64Pu7Hyxg2jO4X/5g9c+ZQ+cEHcT+em0ST9JtrCjXtpN3SOmVAf2PMGOBa4FkR6bLfisY8YowZ\na4wZWxCHr4xVdUFyY9HSz0hPzQHXNn8M/jzoPiQxx8vrC7mFnfJkbmV9Ja+vf52JAyfSxbffn2Jc\nje01luIuxZ2yxFP+zDPULvuUXjdcT1r3GI/g2oIel12Gb9Agym68kVClzk0QK9Ek/RKgX6P7RUBp\nS+uISBqQB+wyxtQZY3YCGGM+BtYCQzsadFtV1YU6NARDRE6qtvRLFkPfMZDIoWr7Ht4pu22+vv51\naoI1TBk6JeHHFhEmD53Msu3L+LL8y4Qfv70CW7aw7b77yR5/LF1OS9y3I4/PR+FttxEs28KOBx5I\n2HGdLpossQgYIiIDRcQHTAPmNllnLnCefXsy8I4xxohIgX0iGBEZBAwB1sUm9Oh1dKrEiGxfWupd\nkVtfDVuXJ660E9H3cGtEz+pdiT1uBxhjmP3lbIblD2NUj1FJieH0b5yOz+PrVN03t955F4RC9J45\nM+GjYWYdNoaukyez66mnqP2y83xQprJWk75do78CeAv4AnjRGLNcRG4RkchVLY8C3UVkDVYZJ9Kt\nczzwqYgswzrBe6kxJuFZoqI2EJPyTm5GOjWBEIFUmjJxy6dgQvG/ErepyEnjTjT42uc7PmflrpUJ\nPYHbVNeMrkwonsBr616jOpD6FyBVfvghFW++SfefXIKvqCgpMRRcew3enBy23nKrDsoWA1HVA4wx\nrxtjhhpjvmGM+Z29bKYxZq59u9YYM8UYM9gYM84Ys85e/rIxZqQx5lBjzGHGmH/G76k0r6Y+xN7a\nID27ZHR4Xz27+AHYVpFCl9Mn6krcpvqMAaRTlXhmfzmbzLRMTh10alLjmDJ0CpWBypQ/oRuur2fr\nrbeR3r8/3S+6KGlxpOXnU3DdtVQvXszefyY8hTiO46/ILd1TA0BhXseTfm97H2W7azq8r5jZtMCa\nHjG3V2KP68+1Rtz8akFij9tOFfUVvLnhTU4ZeAo5vpykxnJYz8MYlDco5U/o7nr879Rv2EDv3/4G\nj9+f1Fi6Tp5MxiGHsPX3dxOqqEhqLJ2d45P+lj1Wn+jCvI5fqdrH3kfZnhTpZx0Ow4b/wsDxyTn+\nwGOtpB+sT87x2+C1da8l7QRuUyLClKFT+GzHZ6zctTLZ4TQrUFrKjoceInfCieQc22xP64QSj4fe\nM2cS2rmT7X/6c7LD6dQcn/RL7VZ5n64db+kX2vso25MiLf2tn0NNeRKT/ngI1qR8iSdyAndEtxGM\n7DEy2eEA1gQrfq+fF1a9kOxQmrX1jjsB6PXrXyc5kq9lHjySrtPOtLqPrlqV7HA6Lccn/UirvFcM\navq5/jSyfV5Kd6dIS3/9+9bvgUlqiQ34Fojn6zhS1KIti1hdvprpw6cnO5QGef48Th10Kq+tfY09\ndXuSHc4+Kv/7IRXz5tHj0p+Q3qdPssPZR8+rr8bbpQtb9KRuu7ki6XfP9pGR3vF++iJCYdfMhpJR\n0q1/37ogq0uS/mNmdoXCQ1M+6T/zxTPk+/M5ZdApyQ5lH2cNP4vaUC2vrH4l2aE0CNfXs/W220gf\n0J9uF16Y7HD24+3alYLrrqXm44/1pG47uSDp1zSUZWKhMC8jNco7oQBs/DB5pZ2IgeNh00LreoEU\nVFJRwrub3mXy0Mn4vck9GdnUsG7DGNtrLM+tfI5gODWu/9j19yesk7e/+Q0eny/Z4TSr6w9/aJ3U\nvftuQpWVyQ6n03F+0t9dS+8usRtuuDAvg9JUaOmXLoX6ytRI+uGA1YsoBT2/8nk84uHMYWcmO5Rm\nnTPiHMqqypi/aX6yQyGweTM7HnqInBNPSImTty0Rj4fev/0toR072f6nPyU7nE7H+Ul/T01MTuJG\nFOZlsqOyjvpgki/QWm8nieIk/+fsf7Q1eUsKlniqA9W8svoVJgyYQK/sBHdpjdJx/Y6jT3Yfnv7i\n6aTGYYxhy623AdA7hU7etiRz1MHkT59G+dPPUPP58mSH06k4OulX1QXZWxuMSXfNiD5dMzAGtu5N\ncmt//fvWpCnZiRn8qkW+bOtq4BRM+v9c+08qAhWcPeLsZIfSojRPGtOGT2Px1sWs2pW8HikV8+ZR\n+d57FFx5Jel9mw6im5oKrrkGb/dubJk5ExNMjfJYZ+DopF8WwwuzInqnQl/9QC1s+l/ySzsRA8dD\n6SfWhOkpIhQO8fQXTzOy+8iETZTSXj8Y8gMy0zJ5asVTSTl+qLKSrbf9Dv/w4XQ790dJiaE9vLm5\n9L7+empXrKD82WeTHU6n4fCkH7kwK3ZJv09eCvTVL1kEwdrUSvomDBs/SnYkDeZ9NY8Nezdw/sjz\nkzbOTrTy/Hn8YMgP+Ne6f1FSUZLw42+//08Et2+n8OabkLSOj1GVSLkTJ5I9/li233c/gS1bkh1O\np+DspG/3p+/TNYYncrumQEt//ftW//gB30xeDI0VHQFpGSlT4gmbMA8ve5hBeYOYMGBCssOJygUj\nL0BEePTzRxN63Ooln1D+zDPkT59G5qGp/Y2oOSJC75kzMeEwW268SfvuR8HRST8y7k4sLsyKyPGn\nketPS+74O6vesOroGXnJi6Gx9AzrQq1Vr0MK/Kd756t3WLN7DRcfcjFeT2wn7o6XXtm9+MGQH/Dq\nmlcpqyxLyDHD1dWU/noG6b17U3DttQk5Zjz4ioroee01VM6fz55X/pHscFKeo5P+lj219Mjx40uL\n7dMs7JqRvJb+9lWw9TM4+IfJOX5LDv4BlG9I+lDLxhge/vRhBnQZwMTiiUmNpa0uOtgayTJRrf1t\n9/6RwMavKLz9drw5yR2ErqPyzzmHrCOOYOvttxPYvDnZ4aQ0Ryf90j21Me2uGVGYl5m8pP/ZS1Zp\nZ+QZyTl+S4afBl4ffP5SUsOYXzKflbtWcvGoi0nzdK76dGFOId8f/H1eWf0KW6u2xvVYVQsWUP70\n0+T/6EdkH3VkXI+VCOLxUHjH7WAMpTf8BhNOoTkvUoyjk/6WPTUxPYkbkbSrco2Bz2ZbffMTPZRy\nazK7wpCT4POXIZyceYTDJsxDyx6iKKco5YZciNaPR/0YY0xcW/uhigpKr78e34AB9Lz2mrgdJ9F8\nRUX0/NWvqF6wgPJntDdPSxyd9Mt218a0j36EdYFWPXXBBCe30iVQvh5GJX944GaNmgyVW63hnpNg\n7tq5rNi5gstGX0a6Jz0pMXRU35y+nDHkDF5c9SJrytfEfP/GGEpn/Jrgtu30uetOPJmx//+RTF2n\nTiH7uPFs+/3vqfnss2SHk5Icm/QragNU1AXj09K3S0Zb9yR4Bq3PXrJKKCO+l9jjRmvoRPDlWN9G\nEmxv/V7++PEfObTgUE4blLjJu+PhyjFXkp2ezR0L74h5b5Rdjz5K5dtv0+sXPydz9OiY7jsViAh9\n7rwTb0EPSq6+mmB5ebJDSjmOTfoNk6fEsLtmROSDpDSRJZ5wCD5/BQZPsEopqSg9E4afCl/MhWBi\nPxAfXPog5bXlXH/k9Xikc/9Z52fkc9WYq1i4ZSFvbYzdlIpV/1vItnv/SO7EieSfe27M9ptq0vLz\nKbr/fkLbd1D6y19pfb+Jzv2/4wBK43BhVkSkZJTQIZY3fgiVW6wSSiobNcW6MnfN2wk75Kpdq3hu\n5XNMHTaVg7oflLDjxtPkoZMZ0W0Edy+6OyYTqAe2bGHzddfhGzCAwttuS/kL1joqc9Qoet1wPVUf\nfMCOBx5IdjgpxbFJP9KPPl4nciHBLf1PX7RKJ0NTvBvioOMhsxt8mpgZocImzO3/u50uvi5cOebK\nhBwzEbweL9cfeT3bqrfxl0//0qF9hXbv5qsf/xhTU0PRn+7Hm5MdoyhTW9czzyTvjDPY8eBDlL/4\nYrLDSRnOTfp7ahGJ7YVZEdn+NLpkpDVc8Rt3uzdZSfTgH4IvKzHHbC9vOow+yyrx7Fgd98P97bO/\nsWTbEq49/Fry/ClysVqMjO45mh8O+SF///zvLChr39DV4ZoaNl16GYGNX1E0axb+IUNiHGXqEhEK\nb7mZ7GOPZctNN1Pxn/8kO6SU4OCkX0NBjp90b3yeYp+uCeyrP9+ar5Txv0jM8TrqWz+DtEx457a4\nHmZh2UJmLZ3FKQNP4fuDvx/XYyXLL4/4JYPyBvGr93/FtuptbdrWBAJs/tk11CxbRp977nFEf/y2\nkvR0iu6/j4xRB7P52uuoXrQo2SElnYOTfm1cTuJGJKyv/o7VsPRZGHsRdO0X/+PFQk4BHH05rHjV\nmuwlDrZXb+eX7/+S4i7F3Hj0jY6tUWelZ3Hv8fdSE6zhF/N/QSAciGq7cHU1m664gsr58+l940y6\nfPekOEeaujxZWfT7y19I79ePry75CZUffJDskJLK0Um/Txzq+RG9E3VV7ju3Wa3mY6+L/7Fi6ZtX\nQkZXeOfWmO+6PlTPL9//JdXBau49/l6y0lO85NVBg7oO4sajb2TJtiXc9/F9ra4fLC9n4wUXUPXB\nf+l9003kT5uWgChTW1p+PgP+/ji+4mI2XXY5e+bMSXZISePIpG+MoWx3Db3jmPT75GWwq6qe2kAc\nL9AqXWq1lo++3Go9dyYZeXDMNbDmP7Dhw5jtti5Ux8/e/RmLty5m5tEz+UbXb8Rs36ns1EGnMm3Y\nNJ5c8SQPfPJAi/336zdsYOP0s6j7YiVFf7qf/GmpOU1kMqQVFDDgqSfJGjuW0l/NYMdfHnZld05H\nJv2P1u6kqj7EIUXxO7E3sCCbgwq7sLc2uq/bbRYKwr9/Y7WWv9lJe6WMuwRyelvPIwb99muCNVz5\n9pV8sPkDZh49s9NfhNVWM8bN4IzBZ/Dwpw9z35L79kn8xhh2v/wy637wQ4Ll5fR//DFyTzwxidGm\nJm9ODv0eeZgup57K9vvuY9OPLyawtW3nSjo7Ryb9x/67nh45Pk4ZVRi3Y5x2SB9ev/pYeubG4duE\nMfCva2HDB/Dd36XOEMpt5cuCk++0ho949XLoQKtqd+1urnj7ChaULeCWb97ClKEpOhRFHHk9Xm76\n5k2cOexMHvv8Me5ceCeBcIDgrl1svvpnlN3wGzJHjWLQnFfJOvzwZIebsjw+H33uuZveN99M9ZIl\nrD/9dPa+9W/XjMXfuYYhjML6HVW8vXIbV58wBH9a5xhLfT8f/AGWPGHV8ceck+xoOmbkGbBrPbx9\ns3Ui+sSb2ryL90ve58aPbmR37W5uP/Z217XwG/OIhxuOvAGf18eLS5+ky3Nv8Z3390IgSM9f/Jxu\nF1yAeBzZlospESH/zKlkHTGW0p//gs1XX03WEUfQ8xc/J/OQQ5IdXlw5Luk/8dEG0r3C2Uf1T3Yo\n7bP0Oevk56gp8J3fJjua2DjmGtj9Ffz3j9ClL4y7OKrNdtbs5IGlD/DSly8xuOtgHjrxIYZ3Gx7n\nYFNfaPduLvqsgFMez8a7ayuLh3pJ/+kFfP+EszXht5F/0CCKX3ie8hdfZMesB9kw9UxyJ0wg/0fW\n+PxO7BUmqfaVZuzYsWbx4sXt2nZvbYCjb3+b7x7cm3undrLBpCq3wVs3wGcvWkMnn/MypPmTHVXs\nhILw/Fmw+i0YMQlOvgu69Gl21U0Vm3hi+RO8uuZV6kP1nDfyPK4YcwV+r4NejzYK19ZSvXAhe+b+\nk4q33sIEAmSNHYvvpxdwe/U/eK/kPbpldOOcEecwddhUx12olgihyip2PfYYu556inBFBb5Bg+g6\neTK5J3wH34AByQ6vVSLysTFmbKvrRZP0RWQicD/gBf5mjLmzyeN+4EngcGAncKYxZoP92K+Bi4AQ\ncJUx5oAjSHUk6f/tg3Xc9q8veO3KYzi4byf5o6/YCstfgffugPpqq1V87LXW4GVOE6yHj/4E798N\nnjTrYrNDpmJyC1m7ey3zS+bzfsn7LN2+FI94mPSNSZw38jwG5Q1KduQJF6qooHb5CmqXL6dq4f+o\nXvA/TF0dntxc8k4/na5Tp5AxdChgncRdtGURjy1/jA83f0iGN4OjCo/iuH7HcUzfY+id3TvJz6Zz\nCdfUsPeNN9n9wgvULFsGgG/AALKPPZbMQw8lY+RIfMUDUu5bVcySvoh4gS+BCUAJsAiYboxZ0Wid\ny4FDjDGXisg04AxjzJkichDwHDAO6AP8BxhqjGmxn2N7k34obDju7nfpk5fJi5ce3ebt4y5Qaw1E\ntmeTVePeudoalGyz/VyLj4VT74WCocmNM8bCJkxtsJaK+goqA5WU15azbfvnbPvkCUr2rOdLXzpf\n+jOosr9Fj8jpz/FFxzF5+HR6dikCh3y9NuEwpq6OcG0tprqaUGUl4cpKQuXlBHfsJLhzB4GyMgKb\nSqjf9BXB0q/nyfUNGED2cePJOXY8WeOOwONv+RvPql2reHn1y8zfNJ/SqlIAumd0Z1i3YQzpOoTC\nnEJ6ZvWkZ1ZPuvi6kOvLJSc9B7/X78hSRkfVf/UVle9/QOX786leuAhTa12b48nKIn3AAHxFRaT3\n60daQQFpPbrj7dYNb5c8PDnZeLKz8WRl4fH5ID097q9vLJP+0cBNxpjv2vd/DWCMuaPROm/Z6/yf\niKQBW4ACYEbjdRuv19Lx2pv0v/hsEVsuPZfU/LNt6TX2gMdjTX+YopE3ZZq51XDPGHupsf4Z63dL\nPHjwiQd/OIw/FCDLGLyN/x5Fvn5tRNjvNerIf6K2VjUN1olo8Vi9qyLPzWDdD4cxJgyhMCYcsn4H\ng5hgEAIBTKD1rr3eHj2sJNK/H/5Bg8gYeTAZB48kLT+/7U/PGNbuXsv/lf0fq3at4svyL1m7ey31\n4foWt/F7/fg8PtK96XjFi9fjxSteBMEjHkQEsd+DpglMovj7jWadVOYJGXpuq6Pv5jr6lNbSbWeA\nbrsC5JcHSA8e+A8qLBBME8IeIeQVwh4IewQjWD8ewQAVxT04+dl32hVftEk/mhO5fYFNje6XAE0H\n8WhYxxgTFJE9QHd7+YIm2/ZtJthLgEsA+vdv3wnYPt27sK7A165tO2S/v2PZ97YAeL5OYB6v9SNp\nnaoV2/S/eMMtaUgD1j87MXhE8IoXj3jwioc0TxppnnTSPWn40zLI8PrtOWztfYVDEKiG+irrdzj4\n9Y8Jf/0DVpLdRxzPSzV64lI01CpLRR4Q+8cjiNjvsdeDeLzW77R0JC0NSU9DfH4kw4/H77dagDm5\neLKz8eZ3Ja1HD9Ly8xFf7P5+RYTB+YMZnD+4YZkxhvK6crZVb2Nb9Tb21u+lsr6SykAldaE66ydY\nR8iECIaDBMNBDIawCRMyIazPuP0/yKMpER/ow79T6Q7lI2CfqVmMwVcTJHNvHZkV9fhqgqTXBPDV\nBkmrD5MWCOGtD+MJRX4MnrBBIj8GxFgNCE9R/LqZR0ST9JvLTE3fwZbWiWZbjDGPAI+A1dKPIqb9\n5PUZxqmvLmvPpkq5gojQLaMb3TK6aS8oF4vmTEQJ0HikryKgtKV17PJOHrArym2VUkolSDRJfxEw\nREQGiogPmAbMbbLOXOA8+/Zk4B1jfeebC0wTEb+IDASGAAtjE7pSSqm2arW8Y9forwDewuqy+Zgx\nZrmI3AIsNsbMBR4FnhKRNVgt/Gn2tstF5EVgBRAEfnqgnjtKKaXiy1EXZymllFtF23snta4uUEop\nFVea9JVSykU06SullIto0ldKKRdJuRO5IrId2NiBXfQAdsQonM7Cjc8Z3Pm83ficwZ3Pu63PeYAx\nptV5VVMu6XeUiCyO5gy2k7jxOYM7n7cbnzO483nH6zlreUcppVxEk75SSrmIE5P+I8kOIAnc+JzB\nnc/bjc8Z3Pm84/KcHVfTV0op1TIntvSVUkq1QJO+Ukq5iGOSvohMFJFVIrJGRGYkO554EZF+IvKu\niHwhIstF5Gp7eTcRmSciq+3fbZ9jL8WJiFdEPhGR1+z7A0Xkf/ZzfsEe+ttRRKSriLwkIivt9/xo\np7/XInKN/bf9uYg8JyIZTnyvReQxEdkmIp83WtbseyuWP9n57VMROay9x3VE0rcnb58FnAwcBEy3\nJ2V3oiBwnTFmBHAU8FP7uc4A3jbGDAHetu87zdXAF43u3wX80X7O5cBFSYkqvu4H3jTGDAcOxXr+\njn2vRaQvcBUw1hhzMNZw7tNw5nv9d2Bik2UtvbcnY81HMgRratmH2ntQRyR9YBywxhizzhhTDzwP\nnJ7kmOLCGFNmjFli367ASgJ9sZ7vE/ZqTwDfT06E8SEiRcCpwN/s+wJ8B3jJXsWJz7kLMB5rvgqM\nMfXGmN04/L3Gmucj056FLwsow4HvtTHmfaz5Rxpr6b09HXjSWBYAXUWkXRPqOiXpNzd5+34TsDuN\niBQDY4D/Ab2MMWVgfTAAPZMXWVzcB/wSsGdHpzuw2xgTtO878T0fBGwHHrfLWn8TkWwc/F4bYzYD\n9wBfYSX7PcDHOP+9jmjpvY1ZjnNK0o9qAnYnEZEc4GXgZ8aYvcmOJ55E5DRgmzHm48aLm1nVae95\nGnAY8JAxZgxQhYNKOc2xa9inAwOBPkA2VmmjKae9162J2d+7U5K+qyZgF5F0rIT/jDHmFXvx1sjX\nPfv3tmTFFwffAiaJyAas0t13sFr+Xe0SADjzPS8BSowx/7Pvv4T1IeDk9/pEYL0xZrsxJgC8AnwT\n57/XES29tzHLcU5J+tFM3u4Idi37UeALY8y9jR5qPDn9ecCcRMcWL8aYXxtjiowxxVjv7TvGmLOB\nd4HJ9mqOes4AxpgtwHp7m/0AAADYSURBVCYRGWYvOgFrvmnHvtdYZZ2jRCTL/luPPGdHv9eNtPTe\nzgXOtXvxHAXsiZSB2swY44gf4BTgS2AtcEOy44nj8zwG62vdp8BS++cUrBr328Bq+3e3ZMcap+d/\nPPCafXsQsBBYA8wG/MmOLw7PdzSw2H6/XwXynf5eAzcDK4HPgacAvxPfa+A5rPMWAayW/EUtvbdY\n5Z1Zdn77DKt3U7uOq8MwKKWUizilvKOUUioKmvSVUspFNOkrpZSLaNJXSikX0aSvlFIuoklfKaVc\nRJO+Ukq5yP8D8NwtZkrIINgAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEICAYAAACzliQjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl8VOXVwPHfmUlmshICBAgECJRV\nREERtVW0VSwuxdoCglrXatW6VO1CtcW1LtVabUWrrVr3BbVCrUupC1p9KSCCCoLsEhL2ANkzy/P+\nce/EEBIySWbLvefLJ5/M3LnLmZlw5plzn/s8YoxBKaWUO3iSHYBSSqnE0aSvlFIuoklfKaVcRJO+\nUkq5iCZ9pZRyEU36SinlIpr0XUJE/iIiv03l44rIeyLy4yjXPV5EShrdXy4ix7czzKb7PltE/t3o\nvhGRwbHYt72/ShEZFKv9Ndn3HSLys3jsO95EpJeIfCEi/mTH4mSa9B1CRDaISI2dUMpF5F8i0i/y\nuDHmUmPMrYmOK1HHNcaMNMa8d6B1RKTYTuBprezrGWPMSbGIq7kPMmNMjjFmXSz23+RYBcC5wMOx\n3ncrx+0mIv8QkSoR2SgiZx1g3ZtEJGD/nVY2/gA0xmwF3gUuSVTsbqRJ31m+Z4zJAQqBrcCfkxxP\np9PaB0KKOx943RhTk+DjzgLqgV7A2cBDIjLyAOu/YH/w5TTzAfgM8JM4xup6mvQdyBhTC7wEHBRZ\nJiJ/F5Hb7NvHi0iJiFwnIttEpExELmi0bp6IPCki2+2W229ExGM/dr6IfCgifxSR3SKyTkS+aS/f\nZO/vvBaOmy8ir9n7LbdvF0XznEQk095XuYisAI5o8vgGETnRvj1ORBaLyF4R2Soi99qrvW//3m23\nMI9u8nx2ATfZy/7bJIRT7Oe6Q0TubvR63CQiTzeKo+HbhIj8DjgWeMA+3gP2Og3loihe6/+KyD32\n814vIicf4GU6GZjfKJbI+3y9HfcGETk7mtc7WiKSDfwQ+K0xptIY819gLvCjdu7yf8AgERkQqxjV\nvjTpO5CIZAFnAgsOsFpvIA/oC1wEzBKRfPuxP9uPDQKOwyoZXNBo2yOBT4HuwLPA81hJeDBwDlaS\ny2nmmB7gcWAA0B+oAR6I8mndCHzD/vkucN4B1r0fuN8Y08Ve/0V7+Xj7d1e7hfl/jZ7POqAn8LsW\n9nkGMBY4DDgduLC1gI0xNwAfAFfYx7uimdWiea1XAT2A3wOPioi0cMhR9rqN9ba37Yv1mj0iIsOa\n21hEHrQ/yJv7+bSFYw4FQsaYLxstWwYcqKX/PRHZJdZ5mMsaP2CMCQJrgEMPsL3qAE36zvKqiOwG\n9gITgLsPsG4AuMUYEzDGvA5UAsNExIv1gfFrY0yFMWYD8Af2bbmtN8Y8bowJAS8A/ex91Rlj/o31\nVX+/E5/GmJ3GmJeNMdXGmAqsBHtclM9tKvA7Y8wuY8wm4E+tPLfBItLDbn0e6MMPoNQY82djTPAA\npZG77GN/BdwHTI8y7hZF+VpvNMb81X6tn8Aq3fVqYZddgYpmlv/Wfm/mA//Cei33Y4y53BjTtYWf\nQ1o4Zg6wp8myPUBuC+u/CIwACoCLgZki0vS1rLCfi4oDTfrO8n1jTFfAD1wBzBeR3i2su9NuVUVU\nY/0H7gH4gI2NHtuI1VKM2Nrodg00nIRrvGy/lr6IZInIw3YZYy9WuaWrnfxa0wfY1CSmllyE1QJd\nKSKLROS0Vva9qZXHm66z0Y6no6J5rbdEbhhjqu2bzX2LAihn/2RbboyparL/WMQeUQl0abKsC81/\n+GCMWWGMKTXGhIwxH2F9K5vcZLVcYHcMY1SNaNJ3IPs/1CtACDimjZvvwGopN66p9gc2xyC064Bh\nwJF26SVSbmmpXNFYGdY3isYxNcsYs9oYMx2rXHMX8JJde25pSNlohppteuxS+3YVkNXosaYfsgfa\nd6xf60+xPuway7efe+P9l9IMsbrXVrbws7yFY34JpInIkEbLDgVaWr8pQ6P3X6wT6YOxSkQqDjTp\nO5BYTgfygS/asq1dRngR+J2I5Non1K4Fnj7wllHJxfoWsFtEumHV6aP1IvBr+2RwEXBlSyuKyDki\nUmCMCfN1izEEbAfCWPXztvqFfex+wNVYZS2ApcB4EekvInnAr5tst7Wl48XhtX6d5stlN4uIT0SO\nBU4DZrcQz6VNetU0/mm2Rm9/i3gFuEVEskXkW1jnPJ5qbn0ROd1+HUVExgFXAXMarTIO2GCMOdA3\nOdUBmvSd5Z8iUolV0/8dcJ4xJtoWV2NXYrVg1wH/xTpZ+1gM4rsPyMRq4S4A3mzDtjdjlSbWA/+m\nhaRimwgst1+L+4FpxphauzzyO+BD++TkUW04/hzgY6wk/y/gUQBjzDysD4BP7cdfa7Ld/cBku/dN\nc+chYvlaP4nVyyiz0bItWGWfUqzukJcaY1a2c/8tuRzrfd0GPAdcFvm7E5Fj7fchYhrWidoKO967\njDFPNHr8bOAvMY5PNSI6iYpSziEitwPbjDH3iXWF8tPGmKi6xSabiPTE6nI6xu52rOKgM1+IopRq\nwhhzfbJjaC9jzDasnj0qjrS8o5RSLqLlHaWUchFt6SullIukXE2/R48epri4ONlhKKVUp/Lxxx/v\nMMYUtLZeyiX94uJiFi9enOwwlFKqUxGRqK5t0PKOUkq5iCZ9pZRykaiSvohMFJFVIrJGRGY08/i1\nIrJCRD4Vkbcbj4UtIiERWWr/zI1l8Eoppdqm1Zq+PQLiLKyhekuARSIy1xizotFqnwBjjTHV9vjY\nv8caMhagxhgzOsZxK6UcJBAIUFJSQm2tXojbmoyMDIqKikhPT2/X9tGcyB0HrIlMaSYiz2MNqNSQ\n9I0x7zZafwHWRBpKKRWVkpIScnNzKS4upuU5YpQxhp07d1JSUsLAgQPbtY9oyjt92Xcs8RL2He+7\nqYuANxrdzxBr6roFIvL95jYQkUvsdRZv3749ipCUUk5SW1tL9+7dNeG3QkTo3r17h74RRdPSb+5d\naPYyXhE5B2tKucbDu/Y3xpSKNeP9OyLymTFm7T47M+YR4BGAsWPH6iXCSrmQJvzodPR1iqalX8K+\nE0gU0cwkDGJNSn0DMMkYUxdZbowptX+vA94DxnQg3rj5fPMePt5YnuwwlFIqrqJJ+ouAISIyUER8\nWONh79MLR0TGAA9jJfxtjZbni4jfvt0D+BaNzgWkkjvfWMlvX/082WEopRzkwgsvpGfPnhx88MH7\nLN+1axcTJkxgyJAhTJgwgfLyxDU4W0369jyqVwBvYc3C9KIxZrmI3CIik+zV7saat3N2k66ZI4DF\nIrIMeBe4s0mvn5SxdW8t2yrqWl9RKaWidP755/Pmm/vPFXTnnXdywgknsHr1ak444QTuvPPOhMUU\n1TAMxpjXsaZia7xsZqPbJ7aw3UfAqI4EmCjbK+vYWxMgFDZ4PVpbVMpNNmzYwMknn8wxxxzDRx99\nRN++fZkzZw6ZmZmtb3wA48ePZ8OGDfstnzNnDu+99x4A5513Hscffzx33XVXh44VrZQbeycZ6oIh\ndlcHANhZVUfP3IwkR6SUe938z+WsKN0b030e1KcLN36v2Wl+G6xevZrnnnuOv/71r0ydOpWXX36Z\nc87Zt/f5M888w913373ftoMHD+all16KOp6tW7dSWFgIQGFhIdu2bWtli9jRpA/srKxvuL29QpO+\nUm40cOBARo+2riM9/PDDm22hn3322Zx99tkJjiy2NOljJfrmbiulEq+1Fnm8+P3+htter5eampr9\n1olVS79Xr16UlZVRWFhIWVkZPXv2bF/Q7aBJH036SqnoxKqlP2nSJJ544glmzJjBE088wemnnx6D\n6KKjo2wCOyobJf1KTfpKqdiYPn06Rx99NKtWraKoqIhHH30UgBkzZjBv3jyGDBnCvHnzmDFjv3Es\n40Zb+nzdus9I92hLXykXKi4u5vPPv75O5+c//3lM9vvcc881u7x79+68/fbbMTlGW2nSx2rdd81K\nJz/Lx45GJ3WVUsppNOljtfQLcvzkZ/nYXqFDuyqlnEtr+lhJv0eOn4Jcv5Z3lFKOpkkfq7xTkOun\nR45Pk75SytE06WOXd3Ktlv7e2iC1gVCyQ1JKqbhwfdKvqgtSXR9qSPqwbxdOpZRyEtcn/UiCL8j5\nOulriUcpFQvFxcWMGjWK0aNHM3bs2IblKT20stNFEnxBrp+CnIx9limlVEe9++67LF26lMWLFzcs\nS+bQypr0Gyf9SEtfyztKucqGDRsYMWIEF198MSNHjuSkk05qduydWJkzZw7nnXceYA2t/Oqrr8bt\nWE25vp9+JMEX5PrJy0y3lmlLX6nkeWMGbPkstvvsPQpOPnBrOh5DK4sIJ510EiLCT37yEy655BJA\nh1ZOqu0VdXgE8rN8eD1Ct2zttqmUG8VjaOUPP/yQPn36sG3bNiZMmMDw4cMZP358rEJuF036FXV0\nz/E3zJZVkOPX3jtKJVMrLfJ4icfQyn369AGgZ8+enHHGGSxcuJDx48fr0MrJFBmCIUKvylVKtaQt\nLf2qqirC4TC5ublUVVXx73//m5kzrVlmkzm0siZ9+2rciIJcP4s3ViUxIqWUE2zdupUzzjgDgGAw\nyFlnncXEiRMBa2jlqVOn8uijj9K/f39mz56dsLhcn/R3VNQxtFduw/1IS98Yg4hOkK6UG8RjaOVB\ngwaxbNmyZh9L5tDKru6yaYzZr6XfI8dHbSBMZV0wiZEppVR8uDrp76kJEAiZ/Wr6oN02lVLO5Oqk\nH0nsPRrX9PWqXKWUg2nSh+Zb+tptUynlQO5O+o2uxo3Q8o5SysncnfQr9k/6XTPTSfOIJn2llCO5\nPun70jx0yfi656rHI/TI0Qu0lFIdd+GFF9KzZ08OPvjgfZa3NLSyMYarrrqKwYMHc8ghh7BkyZKY\nx+TupF9pXY3btD9+Qa4OxaCU6rjzzz+fN998c7/lLQ2t/MYbb7B69WpWr17NI488wmWXXRbzmNyd\n9Cv27aMfUZDr1xO5SrlIvIZWHj9+PN26ddtveUtDK8+ZM4dzzz0XEeGoo45i9+7dlJWVdTiOxlx9\nRW55df0+PXci8rN8rNpSkYSIlFJ3LbyLlbtWxnSfw7sN51fjfnXAdeIxtHJLWhpaefPmzfTr169h\nvaKiIjZv3tywbixElfRFZCJwP+AF/maMubPJ49cCPwaCwHbgQmPMRvux84Df2KveZox5Ikaxd1h1\nfYgs//4vQZbPS3W9XpGrlJvEY2jltjLG7Lcs1sPBtJr0RcQLzAImACXAIhGZa4xZ0Wi1T4Cxxphq\nEbkM+D1wpoh0A24ExgIG+NjeNnETQh5ATX2IrHTvfsutpB9KQkRKqdZa5PESj6GVW9LS0MpFRUVs\n2rSpYb2SkpKG4ZljJZqa/jhgjTFmnTGmHnge2GccUGPMu8aYavvuAqDIvv1dYJ4xZped6OcBE2MT\nesdV14fI8u2f9DN9XuqCYULh/T91lVLudfbZZ7N06dL9ftqS8OHroZWBfYZWnjRpEk8++STGGBYs\nWEBeXl5MSzsQXdLvC2xqdL/EXtaSi4A32rKtiFwiIotFZPH27dujCCk2quuDzZZ3sn1pDY8rpVR7\nTZ8+naOPPppVq1ZRVFTEo48+ClhDK8+bN48hQ4Ywb948ZsyYAcApp5zCoEGDGDx4MBdffDEPPvhg\nzGOKpqbfXEGp2SawiJyDVco5ri3bGmMeAR4BGDt2bEKa14FQmEDINFveybRb/zX1IXIz0hMRjlIq\nieIxtDLAc8891+zyloZWFhFmzZoVk2O3JJqWfgnQr9H9IqC06UoiciJwAzDJGFPXlm2TIVKzz2ym\nvBMp+WhdXynlNNEk/UXAEBEZKCI+YBowt/EKIjIGeBgr4Tee1v0t4CQRyReRfOAke1nS1dgJPcvX\nfO8d0KSvlHKeVss7xpigiFyBlay9wGPGmOUicguw2BgzF7gbyAFm292LvjLGTDLG7BKRW7E+OABu\nMcbsisszaaNIvb75E7nWy1IT0Jq+UspZouqnb4x5HXi9ybKZjW6feIBtHwMea2+A8aLlHaWUG7l2\nGIbqhvJOMy39dE36SilncnHSj5R3mumy6dcum0opZ3Jt0q85QEtfyztKqVhoaWjlm266ib59+zJ6\n9GhGjx7N669/XT2/4447GDx4MMOGDeOtt2Lf78W1Sf+A5Z1G/fSVUqq9WhpaGeCaa65puKL3lFNO\nAWDFihU8//zzLF++nDfffJPLL7+cUCi2eci9ST9wgBO5WtNXylUSPbRyS+bMmcO0adPw+/0MHDiQ\nwYMHs3Dhwg7H0Zhrh1auOUBNP83rwef1aNJXKgm23H47dV/Edmhl/4jh9L7++gOuk8ihlQEeeOAB\nnnzyScaOHcsf/vAH8vPz2bx5M0cddVTDOpGhlWPJtS39qjq7pd/MMAxgfQOo0RO5SrlGtEMrx2LA\ntcsuu4y1a9eydOlSCgsLue6664AUGVrZqWoCITLSPXg9zb+g2Tq8slJJ0VqLPF4SPbRyxMUXX8xp\np50GJGZoZdcm/er6YLOlnYhMTfpKqSZiNYlKZCx9gH/84x8NvXsmTZrEWWedxbXXXktpaSmrV69m\n3LhxHT5eYy5O+qEWSztg1fq1n75SqiOmT5/Oe++9x44dOygqKuLmm2/moosu4pe//CVLly5FRCgu\nLubhhx8GYOTIkUydOpWDDjqItLQ0Zs2ahdfbcp5qD9cm/ZoWJlCJ0Ja+Uu6R6KGVn3rqqRa3ueGG\nG7jhhhticvzmuPZEbkuzZkVk+bzUBDTpK6WcxbVJv6Y+1Gwf/QidJ1cp5USuTfpVrZ3ITU/TK3KV\nSqDmuiuq/XX0dXJt0m+tpp/t9+qJXKUSJCMjg507d2rib4Uxhp07d5KRkdHufbj2RG5rNf1Mn5cq\nbekrlRBFRUWUlJSwffv2ZIeS8jIyMigqKmr39i5O+gcu72Slp1EfDBMKmxYv4FJKxUZ6ejoDBw5M\ndhiu4N7yTqD1E7mgY+orpZzFlUm/PhgmEDINo2k2R4dXVko5kSuTfs0B5seN0IlUlFJO5MqkXx1o\neVjlCE36SikncmfStxN5tv/AY+8A1AS0pq+Ucg5XJv2G8s4BB1yzHouMu6+UUk7gyqT/9fy4Bx5a\nufG6SinlBC5N+lbJ5sAncrW8o5RyHpcm/UhLX3vvKKXcRZN+C7SfvlLKiVyZ9CMTnh94GAZt6Sul\nnMeVST+aln6a14MvzaNJXynlKK5O+gfqsgmRiVT0RK5SyjlcmfRrAiEy0j14Whk9MytdZ89SSjlL\nVElfRCaKyCoRWSMiM5p5fLyILBGRoIhMbvJYSESW2j9zYxV4R1TVHXhY5YhMn1dP5CqlHKXVzCci\nXmAWMAEoARaJyFxjzIpGq30FnA80N4V8jTFmdAxijZma+lCrpR2wTvRqeUcp5STRTKIyDlhjjFkH\nICLPA6cDDUnfGLPBfiwchxhjrrVZsyIydXJ0pZTDRFPe6QtsanS/xF4WrQwRWSwiC0Tk+82tICKX\n2OssTsR0adWBEFn+1j/vsn1eagKa9JVSzhFN0m/ubGdbZi/ub4wZC5wF3Cci39hvZ8Y8YowZa4wZ\nW1BQ0IZdt09NffCAE6hEZPnSqKrT8o5SyjmiSfolQL9G94uA0mgPYIwptX+vA94DxrQhvrhoS3lH\nT+QqpZwkmqS/CBgiIgNFxAdMA6LqhSMi+SLit2/3AL5Fo3MByVJTf+D5cSOyfF6qtbyjlHKQVpO+\nMSYIXAG8BXwBvGiMWS4it4jIJAAROUJESoApwMMistzefASwWESWAe8Cdzbp9ZMUVfVBPZGrlHKl\naHrvYIx5HXi9ybKZjW4vwir7NN3uI2BUB2OMOau80/pTz0pPoz4YJhQ2eFu5kEsppToDd16R24by\nDqB99ZVSjuG6pF8fDBMMG7KjSfp+HV5ZKeUsrkv6DfPjRlPeicyTq0lfKeUQrkv61YHIWPpRnMhN\ntz4YtLyjlHIK1yX9qrrWx9KPyNLZs5RSDuO6pF8T5Vj6oPPkKqWcx3VJvzqKqRIjMjXpK6Ucxn1J\n377CNtIz50Cy7Q+GmoDW9JVSzuC6pF8Txfy4EVreUUo5jeuSfsOk6OltKO/UadJXSjmDC5O+VaqJ\n7orcSJdNTfpKKWdwYdKPvrzj9Qi+NE9D336llOrsXJv0o+myCdaHg/bTV0o5heuSfk19kIx0D54o\nR83MStfhlZVSzuG6pF9dH2roihmNLH+atvSVUo7huqQf7bDKEVk+r469o5RyDNcl/Wjnx43ITPfq\nKJtKKcdwXdKvqg9GNaxyhJ7IVUo5ieuSfk19iKwoe+6A1VdfyztKKadwXdJvc3lHW/pKKQdxXdKv\nCbTtRG62z9swSJtSSnV2rkv6lXVBcvxt67JZVaflHaWUM7gu6Ve1Menn+NMIhAx1QW3tK6U6P1cl\n/VDYWBdntTHpA1TWOrS1b0yyI1BKJZCrkn6V3QunLS39yAdElROHV/7y33DPEFj+j2RHopRKEHcl\nfbs2n5PRjpa+0+r6mz+G2edB9S545RLY8GGyI1JKJYCrkn6kRNOu8o6Tkv6udfDMVMjuAZd9BPnF\n8Px02PZFsiNTSsWZu5J+pKUfxfy4Edn2uo7pwVNTDk//EEwIznkFeg6Hs1+CtAx4ejJUbkt2hEqp\nOHJV0o/U5XP86VFvk2uXgiqckvSXPW+19M98BnoMsZblD4CzZ8PezfDxE8mNTykVV65K+pV1AeDr\n1ns0vj6R65Ck/8Vr0PMgKP7WvssLD4V+42DlP5MTl1IqIVyW9K2Wfm4bWvo5Tkr6ldvhq49g+GnN\nPz78NChbBuUbExuXUiphokr6IjJRRFaJyBoRmdHM4+NFZImIBEVkcpPHzhOR1fbPebEKvD0qa9vR\n0rdH5KxwQj/9Va+DCcOI7zX/+Aj7w2Dla4mLSSmVUK0mfRHxArOAk4GDgOkiclCT1b4CzgeebbJt\nN+BG4EhgHHCjiOR3POz2iYyL35beOx6PkOXzOqOlv/I16DoAeo9q/vFug6DXKKsEpJRypGha+uOA\nNcaYdcaYeuB54PTGKxhjNhhjPgXCTbb9LjDPGLPLGFMOzAMmxiDudqmsC5LuFfxpbatq5fjTGi7s\n6rRq98C696xWvhxgfuARp8FX/6e9eJRyqGiyX19gU6P7JfayaHRk25irrA2S7U9DDpT0mpHjT+v8\n5Z3V8yBU33JpJ2LE9wADK/+VkLCUUokVTdJvLkNGO2BLVNuKyCUislhEFm/fvj3KXbddVV2wTZOi\nR2Q7YaTNL/4JOb2gaNyB1+t5kFXm0bq+Uo4UTdIvAfo1ul8ElEa5/6i2NcY8YowZa4wZW1BQEOWu\n266yLtjQ774tcvxpnfuK3ECN1dIfdgp4WnnLRaxePOvmQ83uxMSnlEqYaJL+ImCIiAwUER8wDZgb\n5f7fAk4SkXz7BO5J9rKkqKwLtukkbkS2P62hu2entG4+BKpaL+1EjJgE4YD1QaGUcpRWk74xJghc\ngZWsvwBeNMYsF5FbRGQSgIgcISIlwBTgYRFZbm+7C7gV64NjEXCLvSwp2jqWfkRuRicv72z8ELw+\nGPCt1tcF6Hs4+POs7ZRSjhJVBjTGvA683mTZzEa3F2GVbprb9jHgsQ7EGDOVdUGK8rPavF2239u5\nyzsli6wrbtMzolvf44Giw63tlFKO4rIrcoNtujArIrsz1/SD9bB5SesncJsqGgdbl0Pt3vjEpZRK\nClcl/aq6UJsGW4vI9adRHwxTH2x6GUInsOUzCNVBvyPatl2/IwBjjbuvlHIM1yT9cNjYk6K3r6UP\nnXT8nZKF1u+2tvT7jrW31xKPUk7imqRfHWj7EAwR2Z15IpVNC6FLEeS18Zq4zK5QMNzaXinlGK5J\n+u2ZKjEit7Mn/baWdiL6jbNa+uFOWNZSSjXLNUk/MoxCe7psdtryzt5S2FvS9tJORNE4qN0NO9fE\nNi6lVNK4Juk3tPTbkfQj3w46XUs/Uprp186kH9muREs8SjmF65J+e2r6nXZy9JJF4PVD70Pat333\nIZCRp3V9pRzENUm/ogMt/U5b3tm0EPqMgTRf+7b3eKDoCE36SjmIa5J+h8o7/k44e1awDsqWtv8k\nbkTRONi+0hqPXynV6bku6bery6bPa++jEw26VrbMGj+/vSdxIyIXaZUsjklYndmu2l089vljXP3O\n1cxZM4faYG2yQ1KqzdqeATupjpR30rweMtI9nWv2rMhFVe09iRvRdywgVtIffEKHw+qMyirL+OOS\nP/Kfjf8hEA7QI7MH72x6h98v+j1nDD6DK8ZcQUZalOMaKZVkrkn6VXVBvB4hI719X25y/Omdq7xT\n+gnk9oHc3h3bT0YX6DHE2p8L7a3fy6X/uZSyqjKmDpvK1KFTGZg3kMVbF/PCqhd4csWTlFWVcfdx\nd+MR13xxVp2Ya5J+ZW2QbJ+3zVMlRuT4O9nk6KWfWCdxY6HPGGtMfpcJhANc9951fLX3Kx456RGO\n6P31+ZEjeh/BEb2P4PHuj3Pvx/cy4JMBXHXYVUmMVqnouKZpUlkXaldpJ6JTTZlYu9e6oCqWSb9y\nC+wti83+OgFjDHf87w4WlC1g5tEz90n4jZ0/8nx+OOSH/PWzvzJ3bbRzCymVPK5J+lV1wXYNwRCR\n409rOC+Q8sqWWb/7jI7N/grt/ZQtjc3+OoGXV7/M7C9nc9HBF3HGkDNaXE9EuOGoGziy95Hc+NGN\nrNi5IoFRKtV2rkn67Z0qMSKnM7X0I8m5MEZJv/coEA+UuiPpV9RXcP+S+zmi9xFRlWzSPen84fg/\n0MXXhXsW34MxJgFRKtU+rkr6HSnv5GR0oolUSpdaI2vmxGiSeX8O9Bjqmpb+o589yu663fx87M+j\nPjmb58/j0kMvZdGWRbxf8n6cI1Sq/VyT9Ns7P25Ep6rpl34Su9JORJ8xrujBU1ZZxlMrnuK0Qadx\nUPeD2rTt5KGTKe5SzB8+/gPBcCf5W1Gu45qkH4vyTqdo6dfugV1rY5/0C0dD5VbHn8z98yd/BuCq\nMW3viZPuSednh/+M9XvW88rqV2IdmlIx4aqk36Hyjj+N2kCYYCjFx5ZvOIkbo547EZH9Obi1/8XO\nL3ht3Wucc9A5FOYUtmsf3+mzPOPkAAAgAElEQVT3HQ7reRgPLn2QqkBVjCNUquNckfSNMTEp70An\nGIohcrK1MMZJP3Iy18F1/QeXPUgXfxd+POrH7d6HiHDd2OvYWbuTF1a9EMPoOi8TDhOuq0t2GMrm\niouzagIhwqZ94+5ERObWragLkJfV9snVE6b0E8jrD9ndY7tfX5Y1faJDW/ob925k/qb5XHLIJeT6\ncju0r0MKDuHI3kfy7BfP8qODfkS6J4X/XuKkftMm9r72GtVLl1KzdBnhvXvxDx1K5ujRZB91JLnf\n/S7icUWbM+W44lWv7MBUiRE5fus/bsq39MuWQp9D47PvwtHWNwkHdkl8esXTpHnSmDZ8Wkz2d+7I\nc9lavZV5G+bFZH+dhQmF2PnY46z73iS23/8nAps3kzvhRLpf+hPSevRg77/+xeZrrmXjuedSt359\nssN1JVe09Csbpkr0tnsf2fa2KX0yt2Y37FoHY86Jz/77jIFlz1rTMLZ1ovUUtqduD3PWzuGUgafQ\nI7NHTPZ5TN9jKO5SzJMrnuTkgSe3e/iPzqRu3XpKfz2D2mWfkvPtb9P7xpmk99537CcTDrPn1Tls\nvfNO1n//DAquupJuF17oitcnVbiipR9pnUda6+2R2xmmTIycxI3VRVlN9XHmlbkvffkSNcEafnTQ\nj2K2T494OGfEOSzfuZxPtjmzJNZY3Zo1bDznHAIbv6LPPfdQ9OCs/RI+gHg8dP3BGQx67Z9kH3sM\n2+6+h6133KEXtCWQK5J+ZcNY+h1p6XeC2bMi9fZY99yJ6HUwiBc2L4nP/pMgEA7w7MpnObLwSIZ1\nGxbTfX/vG98jz5/HUyueiul+U039hg1svOAC8HoY8Nyz5J12aqst9/SePSn685/pdt65lD/5FNv/\n8AdN/AniqqTfod47vk7Q0t/8MXQdAFnd4rN/Xxb0PAhKnZP0/73h32yr3sa5B50b831npWcxZegU\n3v7qbTbt3RTz/aeC+pISNp5/AQRDDHj8cfwDB0a9rYjQc8YMuk6fxs6/PcqOB2bFMVIV4Yqk35Gp\nEiMayjupPKb+5iVQNDa+x+h7mPXh4pBW2bMrn6W4SzHH9D0mLvufPnw6XvHy/Krn47L/ZApXVbHp\nkp8Qrqmh/+OP4R88uM37EBF6//a35P3gB+yYNYvd/3g1DpGqxlyR9GPS0k/18k7FFthbYs90FUdF\nY62rfneuje9xEmDVrlV8uv1Tpg6bGrcJUHpm9eTb/b/NnLVzqAs5p6+6MYYtt9xC/fr1FN1/HxnD\nh7d7X+LxUHjrLWSNG8eWW26hbs2aGEaqmnJV0u9IP/10rwdfmid1yzuROWz7Hh7f40T2v7nzz5k7\n+8vZ+Dw+Jn1jUlyPM2XoFPbU7WHeRud039zzyj/YM2cuPS6/nOyjjurw/sTrpc89d+PJyqLkZz8j\nXF0dgyhVc1yR9KvqgohAlq/9J3IBclN5/J3NH4MnDQoPie9xCoaDL8c6XidWHajmtXWv8d3i75Ln\nz4vrsY4sPJJ+uf2YvWp2XI+TKHWrV7Pl1lvJOvJIelx+Wcz2m96zJ31+fxf1a9ex5bbfxWy/al9R\nJX0RmSgiq0RkjYjMaOZxv4i8YD/+PxEptpcXi0iNiCy1f/4S2/CjU1EbJMeX1uG+wCk90ubmxVbv\nmvTM+B7H47V6B5V07pb+G+vfoCpQxdRhU+N+LI94mDJ0Cku2LWHt7s5dFjP19Wy+9jo82dn0vedu\nxNuxhlRTOd/6Ft0v/Ql7XnmFvW+8EdN9K0urSV9EvMAs4GTgIGC6iDQdc/YioNwYMxj4I3BXo8fW\nGmNG2z+XxijuNunorFkRKTvSZjgEmz+Jf2knou9hsOUzCNQm5nhx8OKXLzK462AOLYjT1ctNnD74\ndNI96cz+snO39nc88lfqVq+m8NZbSSuI0XwNTRT89KdkHHwwW269jWB5eVyO4WbRtPTHAWuMMeuM\nMfXA88DpTdY5HXjCvv0ScIKk0CV2VfUdG1Y5ImWT/o7VUF8R/547EX3HQjgAWz9PzPFibPnO5azY\nuYIpQ6ck7ErQbhndOLH/icxdO5faYOf8sKxbvZodDz9Ml1NOIfc7347bcSQtjcLf3UZo71623XlX\n6xuoNokm6fcFGncyLrGXNbuOMSYI7AEiI34NFJFPRGS+iBzb3AFE5BIRWSwii7dv396mJxCNitrY\nJP1svzc1k/7mBJ3EjYgcp5OWeGavmk2GN4PTvnFaQo87ZdgUKuoreGvDWwk9biyYUIjS3/wGb3Y2\nvW64Pu7Hyxg2jO4X/5g9c+ZQ+cEHcT+em0ST9JtrCjXtpN3SOmVAf2PMGOBa4FkR6bLfisY8YowZ\na4wZWxCHr4xVdUFyY9HSz0hPzQHXNn8M/jzoPiQxx8vrC7mFnfJkbmV9Ja+vf52JAyfSxbffn2Jc\nje01luIuxZ2yxFP+zDPULvuUXjdcT1r3GI/g2oIel12Gb9Agym68kVClzk0QK9Ek/RKgX6P7RUBp\nS+uISBqQB+wyxtQZY3YCGGM+BtYCQzsadFtV1YU6NARDRE6qtvRLFkPfMZDIoWr7Ht4pu22+vv51\naoI1TBk6JeHHFhEmD53Msu3L+LL8y4Qfv70CW7aw7b77yR5/LF1OS9y3I4/PR+FttxEs28KOBx5I\n2HGdLpossQgYIiIDRcQHTAPmNllnLnCefXsy8I4xxohIgX0iGBEZBAwB1sUm9Oh1dKrEiGxfWupd\nkVtfDVuXJ660E9H3cGtEz+pdiT1uBxhjmP3lbIblD2NUj1FJieH0b5yOz+PrVN03t955F4RC9J45\nM+GjYWYdNoaukyez66mnqP2y83xQprJWk75do78CeAv4AnjRGLNcRG4RkchVLY8C3UVkDVYZJ9Kt\nczzwqYgswzrBe6kxJuFZoqI2EJPyTm5GOjWBEIFUmjJxy6dgQvG/ErepyEnjTjT42uc7PmflrpUJ\nPYHbVNeMrkwonsBr616jOpD6FyBVfvghFW++SfefXIKvqCgpMRRcew3enBy23nKrDsoWA1HVA4wx\nrxtjhhpjvmGM+Z29bKYxZq59u9YYM8UYM9gYM84Ys85e/rIxZqQx5lBjzGHGmH/G76k0r6Y+xN7a\nID27ZHR4Xz27+AHYVpFCl9Mn6krcpvqMAaRTlXhmfzmbzLRMTh10alLjmDJ0CpWBypQ/oRuur2fr\nrbeR3r8/3S+6KGlxpOXnU3DdtVQvXszefyY8hTiO46/ILd1TA0BhXseTfm97H2W7azq8r5jZtMCa\nHjG3V2KP68+1Rtz8akFij9tOFfUVvLnhTU4ZeAo5vpykxnJYz8MYlDco5U/o7nr879Rv2EDv3/4G\nj9+f1Fi6Tp5MxiGHsPX3dxOqqEhqLJ2d45P+lj1Wn+jCvI5fqdrH3kfZnhTpZx0Ow4b/wsDxyTn+\nwGOtpB+sT87x2+C1da8l7QRuUyLClKFT+GzHZ6zctTLZ4TQrUFrKjoceInfCieQc22xP64QSj4fe\nM2cS2rmT7X/6c7LD6dQcn/RL7VZ5n64db+kX2vso25MiLf2tn0NNeRKT/ngI1qR8iSdyAndEtxGM\n7DEy2eEA1gQrfq+fF1a9kOxQmrX1jjsB6PXrXyc5kq9lHjySrtPOtLqPrlqV7HA6Lccn/UirvFcM\navq5/jSyfV5Kd6dIS3/9+9bvgUlqiQ34Fojn6zhS1KIti1hdvprpw6cnO5QGef48Th10Kq+tfY09\ndXuSHc4+Kv/7IRXz5tHj0p+Q3qdPssPZR8+rr8bbpQtb9KRuu7ki6XfP9pGR3vF++iJCYdfMhpJR\n0q1/37ogq0uS/mNmdoXCQ1M+6T/zxTPk+/M5ZdApyQ5lH2cNP4vaUC2vrH4l2aE0CNfXs/W220gf\n0J9uF16Y7HD24+3alYLrrqXm44/1pG47uSDp1zSUZWKhMC8jNco7oQBs/DB5pZ2IgeNh00LreoEU\nVFJRwrub3mXy0Mn4vck9GdnUsG7DGNtrLM+tfI5gODWu/9j19yesk7e/+Q0eny/Z4TSr6w9/aJ3U\nvftuQpWVyQ6n03F+0t9dS+8usRtuuDAvg9JUaOmXLoX6ytRI+uGA1YsoBT2/8nk84uHMYWcmO5Rm\nnTPiHMqqypi/aX6yQyGweTM7HnqInBNPSImTty0Rj4fev/0toR072f6nPyU7nE7H+Ul/T01MTuJG\nFOZlsqOyjvpgki/QWm8nieIk/+fsf7Q1eUsKlniqA9W8svoVJgyYQK/sBHdpjdJx/Y6jT3Yfnv7i\n6aTGYYxhy623AdA7hU7etiRz1MHkT59G+dPPUPP58mSH06k4OulX1QXZWxuMSXfNiD5dMzAGtu5N\ncmt//fvWpCnZiRn8qkW+bOtq4BRM+v9c+08qAhWcPeLsZIfSojRPGtOGT2Px1sWs2pW8HikV8+ZR\n+d57FFx5Jel9mw6im5oKrrkGb/dubJk5ExNMjfJYZ+DopF8WwwuzInqnQl/9QC1s+l/ySzsRA8dD\n6SfWhOkpIhQO8fQXTzOy+8iETZTSXj8Y8gMy0zJ5asVTSTl+qLKSrbf9Dv/w4XQ790dJiaE9vLm5\n9L7+empXrKD82WeTHU6n4fCkH7kwK3ZJv09eCvTVL1kEwdrUSvomDBs/SnYkDeZ9NY8Nezdw/sjz\nkzbOTrTy/Hn8YMgP+Ne6f1FSUZLw42+//08Et2+n8OabkLSOj1GVSLkTJ5I9/li233c/gS1bkh1O\np+DspG/3p+/TNYYncrumQEt//ftW//gB30xeDI0VHQFpGSlT4gmbMA8ve5hBeYOYMGBCssOJygUj\nL0BEePTzRxN63Ooln1D+zDPkT59G5qGp/Y2oOSJC75kzMeEwW268SfvuR8HRST8y7k4sLsyKyPGn\nketPS+74O6vesOroGXnJi6Gx9AzrQq1Vr0MK/Kd756t3WLN7DRcfcjFeT2wn7o6XXtm9+MGQH/Dq\nmlcpqyxLyDHD1dWU/noG6b17U3DttQk5Zjz4ioroee01VM6fz55X/pHscFKeo5P+lj219Mjx40uL\n7dMs7JqRvJb+9lWw9TM4+IfJOX5LDv4BlG9I+lDLxhge/vRhBnQZwMTiiUmNpa0uOtgayTJRrf1t\n9/6RwMavKLz9drw5yR2ErqPyzzmHrCOOYOvttxPYvDnZ4aQ0Ryf90j21Me2uGVGYl5m8pP/ZS1Zp\nZ+QZyTl+S4afBl4ffP5SUsOYXzKflbtWcvGoi0nzdK76dGFOId8f/H1eWf0KW6u2xvVYVQsWUP70\n0+T/6EdkH3VkXI+VCOLxUHjH7WAMpTf8BhNOoTkvUoyjk/6WPTUxPYkbkbSrco2Bz2ZbffMTPZRy\nazK7wpCT4POXIZyceYTDJsxDyx6iKKco5YZciNaPR/0YY0xcW/uhigpKr78e34AB9Lz2mrgdJ9F8\nRUX0/NWvqF6wgPJntDdPSxyd9Mt218a0j36EdYFWPXXBBCe30iVQvh5GJX944GaNmgyVW63hnpNg\n7tq5rNi5gstGX0a6Jz0pMXRU35y+nDHkDF5c9SJrytfEfP/GGEpn/Jrgtu30uetOPJmx//+RTF2n\nTiH7uPFs+/3vqfnss2SHk5Icm/QragNU1AXj09K3S0Zb9yR4Bq3PXrJKKCO+l9jjRmvoRPDlWN9G\nEmxv/V7++PEfObTgUE4blLjJu+PhyjFXkp2ezR0L74h5b5Rdjz5K5dtv0+sXPydz9OiY7jsViAh9\n7rwTb0EPSq6+mmB5ebJDSjmOTfoNk6fEsLtmROSDpDSRJZ5wCD5/BQZPsEopqSg9E4afCl/MhWBi\nPxAfXPog5bXlXH/k9Xikc/9Z52fkc9WYq1i4ZSFvbYzdlIpV/1vItnv/SO7EieSfe27M9ptq0vLz\nKbr/fkLbd1D6y19pfb+Jzv2/4wBK43BhVkSkZJTQIZY3fgiVW6wSSiobNcW6MnfN2wk75Kpdq3hu\n5XNMHTaVg7oflLDjxtPkoZMZ0W0Edy+6OyYTqAe2bGHzddfhGzCAwttuS/kL1joqc9Qoet1wPVUf\nfMCOBx5IdjgpxbFJP9KPPl4nciHBLf1PX7RKJ0NTvBvioOMhsxt8mpgZocImzO3/u50uvi5cOebK\nhBwzEbweL9cfeT3bqrfxl0//0qF9hXbv5qsf/xhTU0PRn+7Hm5MdoyhTW9czzyTvjDPY8eBDlL/4\nYrLDSRnOTfp7ahGJ7YVZEdn+NLpkpDVc8Rt3uzdZSfTgH4IvKzHHbC9vOow+yyrx7Fgd98P97bO/\nsWTbEq49/Fry/ClysVqMjO45mh8O+SF///zvLChr39DV4ZoaNl16GYGNX1E0axb+IUNiHGXqEhEK\nb7mZ7GOPZctNN1Pxn/8kO6SU4OCkX0NBjp90b3yeYp+uCeyrP9+ar5Txv0jM8TrqWz+DtEx457a4\nHmZh2UJmLZ3FKQNP4fuDvx/XYyXLL4/4JYPyBvGr93/FtuptbdrWBAJs/tk11CxbRp977nFEf/y2\nkvR0iu6/j4xRB7P52uuoXrQo2SElnYOTfm1cTuJGJKyv/o7VsPRZGHsRdO0X/+PFQk4BHH05rHjV\nmuwlDrZXb+eX7/+S4i7F3Hj0jY6tUWelZ3Hv8fdSE6zhF/N/QSAciGq7cHU1m664gsr58+l940y6\nfPekOEeaujxZWfT7y19I79ePry75CZUffJDskJLK0Um/Txzq+RG9E3VV7ju3Wa3mY6+L/7Fi6ZtX\nQkZXeOfWmO+6PlTPL9//JdXBau49/l6y0lO85NVBg7oO4sajb2TJtiXc9/F9ra4fLC9n4wUXUPXB\nf+l9003kT5uWgChTW1p+PgP+/ji+4mI2XXY5e+bMSXZISePIpG+MoWx3Db3jmPT75GWwq6qe2kAc\nL9AqXWq1lo++3Go9dyYZeXDMNbDmP7Dhw5jtti5Ux8/e/RmLty5m5tEz+UbXb8Rs36ns1EGnMm3Y\nNJ5c8SQPfPJAi/336zdsYOP0s6j7YiVFf7qf/GmpOU1kMqQVFDDgqSfJGjuW0l/NYMdfHnZld05H\nJv2P1u6kqj7EIUXxO7E3sCCbgwq7sLc2uq/bbRYKwr9/Y7WWv9lJe6WMuwRyelvPIwb99muCNVz5\n9pV8sPkDZh49s9NfhNVWM8bN4IzBZ/Dwpw9z35L79kn8xhh2v/wy637wQ4Ll5fR//DFyTzwxidGm\nJm9ODv0eeZgup57K9vvuY9OPLyawtW3nSjo7Ryb9x/67nh45Pk4ZVRi3Y5x2SB9ev/pYeubG4duE\nMfCva2HDB/Dd36XOEMpt5cuCk++0ho949XLoQKtqd+1urnj7ChaULeCWb97ClKEpOhRFHHk9Xm76\n5k2cOexMHvv8Me5ceCeBcIDgrl1svvpnlN3wGzJHjWLQnFfJOvzwZIebsjw+H33uuZveN99M9ZIl\nrD/9dPa+9W/XjMXfuYYhjML6HVW8vXIbV58wBH9a5xhLfT8f/AGWPGHV8ceck+xoOmbkGbBrPbx9\ns3Ui+sSb2ryL90ve58aPbmR37W5uP/Z217XwG/OIhxuOvAGf18eLS5+ky3Nv8Z3390IgSM9f/Jxu\nF1yAeBzZlospESH/zKlkHTGW0p//gs1XX03WEUfQ8xc/J/OQQ5IdXlw5Luk/8dEG0r3C2Uf1T3Yo\n7bP0Oevk56gp8J3fJjua2DjmGtj9Ffz3j9ClL4y7OKrNdtbs5IGlD/DSly8xuOtgHjrxIYZ3Gx7n\nYFNfaPduLvqsgFMez8a7ayuLh3pJ/+kFfP+EszXht5F/0CCKX3ie8hdfZMesB9kw9UxyJ0wg/0fW\n+PxO7BUmqfaVZuzYsWbx4sXt2nZvbYCjb3+b7x7cm3undrLBpCq3wVs3wGcvWkMnn/MypPmTHVXs\nhILw/Fmw+i0YMQlOvgu69Gl21U0Vm3hi+RO8uuZV6kP1nDfyPK4YcwV+r4NejzYK19ZSvXAhe+b+\nk4q33sIEAmSNHYvvpxdwe/U/eK/kPbpldOOcEecwddhUx12olgihyip2PfYYu556inBFBb5Bg+g6\neTK5J3wH34AByQ6vVSLysTFmbKvrRZP0RWQicD/gBf5mjLmzyeN+4EngcGAncKYxZoP92K+Bi4AQ\ncJUx5oAjSHUk6f/tg3Xc9q8veO3KYzi4byf5o6/YCstfgffugPpqq1V87LXW4GVOE6yHj/4E798N\nnjTrYrNDpmJyC1m7ey3zS+bzfsn7LN2+FI94mPSNSZw38jwG5Q1KduQJF6qooHb5CmqXL6dq4f+o\nXvA/TF0dntxc8k4/na5Tp5AxdChgncRdtGURjy1/jA83f0iGN4OjCo/iuH7HcUzfY+id3TvJz6Zz\nCdfUsPeNN9n9wgvULFsGgG/AALKPPZbMQw8lY+RIfMUDUu5bVcySvoh4gS+BCUAJsAiYboxZ0Wid\ny4FDjDGXisg04AxjzJkichDwHDAO6AP8BxhqjGmxn2N7k34obDju7nfpk5fJi5ce3ebt4y5Qaw1E\ntmeTVePeudoalGyz/VyLj4VT74WCocmNM8bCJkxtsJaK+goqA5WU15azbfvnbPvkCUr2rOdLXzpf\n+jOosr9Fj8jpz/FFxzF5+HR6dikCh3y9NuEwpq6OcG0tprqaUGUl4cpKQuXlBHfsJLhzB4GyMgKb\nSqjf9BXB0q/nyfUNGED2cePJOXY8WeOOwONv+RvPql2reHn1y8zfNJ/SqlIAumd0Z1i3YQzpOoTC\nnEJ6ZvWkZ1ZPuvi6kOvLJSc9B7/X78hSRkfVf/UVle9/QOX786leuAhTa12b48nKIn3AAHxFRaT3\n60daQQFpPbrj7dYNb5c8PDnZeLKz8WRl4fH5ID097q9vLJP+0cBNxpjv2vd/DWCMuaPROm/Z6/yf\niKQBW4ACYEbjdRuv19Lx2pv0v/hsEVsuPZfU/LNt6TX2gMdjTX+YopE3ZZq51XDPGHupsf4Z63dL\nPHjwiQd/OIw/FCDLGLyN/x5Fvn5tRNjvNerIf6K2VjUN1olo8Vi9qyLPzWDdD4cxJgyhMCYcsn4H\ng5hgEAIBTKD1rr3eHj2sJNK/H/5Bg8gYeTAZB48kLT+/7U/PGNbuXsv/lf0fq3at4svyL1m7ey31\n4foWt/F7/fg8PtK96XjFi9fjxSteBMEjHkQEsd+DpglMovj7jWadVOYJGXpuq6Pv5jr6lNbSbWeA\nbrsC5JcHSA8e+A8qLBBME8IeIeQVwh4IewQjWD8ewQAVxT04+dl32hVftEk/mhO5fYFNje6XAE0H\n8WhYxxgTFJE9QHd7+YIm2/ZtJthLgEsA+vdv3wnYPt27sK7A165tO2S/v2PZ97YAeL5OYB6v9SNp\nnaoV2/S/eMMtaUgD1j87MXhE8IoXj3jwioc0TxppnnTSPWn40zLI8PrtOWztfYVDEKiG+irrdzj4\n9Y8Jf/0DVpLdRxzPSzV64lI01CpLRR4Q+8cjiNjvsdeDeLzW77R0JC0NSU9DfH4kw4/H77dagDm5\neLKz8eZ3Ja1HD9Ly8xFf7P5+RYTB+YMZnD+4YZkxhvK6crZVb2Nb9Tb21u+lsr6SykAldaE66ydY\nR8iECIaDBMNBDIawCRMyIazPuP0/yKMpER/ow79T6Q7lI2CfqVmMwVcTJHNvHZkV9fhqgqTXBPDV\nBkmrD5MWCOGtD+MJRX4MnrBBIj8GxFgNCE9R/LqZR0ST9JvLTE3fwZbWiWZbjDGPAI+A1dKPIqb9\n5PUZxqmvLmvPpkq5gojQLaMb3TK6aS8oF4vmTEQJ0HikryKgtKV17PJOHrArym2VUkolSDRJfxEw\nREQGiogPmAbMbbLOXOA8+/Zk4B1jfeebC0wTEb+IDASGAAtjE7pSSqm2arW8Y9forwDewuqy+Zgx\nZrmI3AIsNsbMBR4FnhKRNVgt/Gn2tstF5EVgBRAEfnqgnjtKKaXiy1EXZymllFtF23snta4uUEop\nFVea9JVSykU06SullIto0ldKKRdJuRO5IrId2NiBXfQAdsQonM7Cjc8Z3Pm83ficwZ3Pu63PeYAx\nptV5VVMu6XeUiCyO5gy2k7jxOYM7n7cbnzO483nH6zlreUcppVxEk75SSrmIE5P+I8kOIAnc+JzB\nnc/bjc8Z3Pm84/KcHVfTV0op1TIntvSVUkq1QJO+Ukq5iGOSvohMFJFVIrJGRGYkO554EZF+IvKu\niHwhIstF5Gp7eTcRmSciq+3fbZ9jL8WJiFdEPhGR1+z7A0Xkf/ZzfsEe+ttRRKSriLwkIivt9/xo\np7/XInKN/bf9uYg8JyIZTnyvReQxEdkmIp83WtbseyuWP9n57VMROay9x3VE0rcnb58FnAwcBEy3\nJ2V3oiBwnTFmBHAU8FP7uc4A3jbGDAHetu87zdXAF43u3wX80X7O5cBFSYkqvu4H3jTGDAcOxXr+\njn2vRaQvcBUw1hhzMNZw7tNw5nv9d2Bik2UtvbcnY81HMgRratmH2ntQRyR9YBywxhizzhhTDzwP\nnJ7kmOLCGFNmjFli367ASgJ9sZ7vE/ZqTwDfT06E8SEiRcCpwN/s+wJ8B3jJXsWJz7kLMB5rvgqM\nMfXGmN04/L3Gmucj056FLwsow4HvtTHmfaz5Rxpr6b09HXjSWBYAXUWkXRPqOiXpNzd5+34TsDuN\niBQDY4D/Ab2MMWVgfTAAPZMXWVzcB/wSsGdHpzuw2xgTtO878T0fBGwHHrfLWn8TkWwc/F4bYzYD\n9wBfYSX7PcDHOP+9jmjpvY1ZjnNK0o9qAnYnEZEc4GXgZ8aYvcmOJ55E5DRgmzHm48aLm1nVae95\nGnAY8JAxZgxQhYNKOc2xa9inAwOBPkA2VmmjKae9162J2d+7U5K+qyZgF5F0rIT/jDHmFXvx1sjX\nPfv3tmTFFwffAiaJyAas0t13sFr+Xe0SADjzPS8BSowx/7Pvv4T1IeDk9/pEYL0xZrsxJgC8AnwT\n57/XES29tzHLcU5J+tFM3u4Idi37UeALY8y9jR5qPDn9ecCcRMcWL8aYXxtjiowxxVjv7TvGmLOB\nd4HJ9mqOes4AxpgtwHp7m/0AAADYSURBVCYRGWYvOgFrvmnHvtdYZZ2jRCTL/luPPGdHv9eNtPTe\nzgXOtXvxHAXsiZSB2swY44gf4BTgS2AtcEOy44nj8zwG62vdp8BS++cUrBr328Bq+3e3ZMcap+d/\nPPCafXsQsBBYA8wG/MmOLw7PdzSw2H6/XwXynf5eAzcDK4HPgacAvxPfa+A5rPMWAayW/EUtvbdY\n5Z1Zdn77DKt3U7uOq8MwKKWUizilvKOUUioKmvSVUspFNOkrpZSLaNJXSikX0aSvlFIuoklfKaVc\nRJO+Ukq5yP8D8NwtZkrIINgAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "
" ] }, "metadata": {}, @@ -727,7 +5324,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 22, "metadata": { "ExecuteTime": { "end_time": "2017-09-22T06:34+0000", @@ -749,7 +5346,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 52, "metadata": { "ExecuteTime": { "end_time": "2017-09-22T06:29+0000", @@ -759,9 +5356,9 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEICAYAAACzliQjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3Xl8VNXd+PHPd7LvgZAAIUBYZQsC\nslkVUAQUF8QV5Gfdqq3W9qmt9dE+rdU+rUtbuzxP9alatW6VKnVBRUAFtKDIvoUdDJCF7Mlkkkwy\ny/n9MZMYQ0Im5E7uncl5v155ZZZ773znJvnmzLnnfI8opdA0TdN6BpvZAWiapmndRyd9TdO0HkQn\nfU3TtB5EJ31N07QeRCd9TdO0HkQnfU3TtB5EJ33NVCLyMxH5m9lxtEVEbhGR9S3uO0RkqEHHbn7f\nIpItIkpEIg069iB/rBFGHE8LLzrpa4YQkTwRqfcnm2IReVFEEjvaTyn1qFLqO90RY1cppRKVUkdP\nt42IzBKR/ACOZdj79p/7i1sc+7g/Vo8Rx9fCi076mpGuUEolApOAKcDPTY7Hkoxq0WvamdBJXzOc\nUqoA+BAYByAimSKyXEQqROSwiNzRtK2IPCwir/pvx4rIqyJSLiJVIrJZRPr6n7tFRI6KSI2IfCUi\nS/yP20Tk5yJyTERKRORlEUnxP9fUbXKziBwXkTIR+a/24haRNH+cdhHZBAxr9bwSkeH+2/NFZK8/\nngIRuU9EEvzvO9P/icfhf+8Pi8gy/3uzA7e0fN8t3CYihSJSJCI/afG6fxeRX7e43/xpQkReAQYB\n7/lf7/7W3UUBnP83/OetRkRyRWRyQD9oLSTppK8ZTkQGAvOB7f6HXgfygUzgWuBREZndxq43AynA\nQCAN+B5Q70+m/wNcqpRKAr4F7PDvc4v/60JgKJAI/KXVcc8HzgJmAw+JyOh2Qn8KcAL9gdv8X+15\nHviuP55xwBqlVC1wKVDo715JVEoV+rdfACwDUoHX2jnmhcAIYC7wQMsum/YopW4CjuP/lKWU+m0b\nm3V0/q8ElvpjW86p508LIzrpa0Z6R0SqgPXAp/iSy0B8Sfc/lVJOpdQO4G/ATW3s78KX7IcrpTxK\nqa1KKbv/OS8wTkTilFJFSqlc/+NLgD8opY4qpRzAg8CiVl0ojyil6pVSO4GdwNmtX9h/0fMa4CGl\nVK1Sag/w0mneqwsYIyLJSqlKpdS2Ds7NF0qpd5RSXqVUfTvbPOJ/7d3Ai8DiDo7ZoQDP/3ql1Ar/\nNYBXaOP8aOFDJ33NSFcppVKVUoOVUnf7k1smUKGUqmmx3TFgQBv7vwKsApb6uzl+KyJR/hb0Dfha\n/kUi8oGIjPLvk+k/XstjRwJ9Wzx2ssXtOnyfBlpL9+93otWx2nMNvk8zx0TkUxE59zTb0uq4gWxz\nDN9766pAzn/r8xOrrzuEL530tWArBHqLSFKLxwYBBa03VEq5lFKPKKXG4OvCuRz4tv+5VUqpOfi6\nXvYDz7U4/uBWx3YDxZ2Ms9S/38BWx2qTUmqzUmoBkAG8A7zR9FR7uwQQQ+vXbuoaqgXiWzzXrxPH\nDvj8az2DTvpaUCmlTgCfA4/5L9SOB26njX5tEblQRHL8XS12fF0oHhHpKyJX+vv2GwAH0DQc8XXg\nXhEZ4h8i+ijwT6WUu5NxeoC3gIdFJF5ExuC7xnAKEYkWkSUikqKUcvljbYqnGEhrupjcSb/wv/ZY\n4Fbgn/7HdwDzRaS3iPQDftRqv2J81zPael8Bn3+tZ9BJX+sOi4FsfK3Ot4FfKqU+amO7fvgudtqB\nffiuC7yK7/f0J/79K4CZwN3+fV7A1y30GfAVvguxPzjDOO/B1/VzEvg7vn719twE5PlH43wP+H8A\nSqn9+P4RHfWPQOpMF82nwGHgE+D3SqnV/sdfwXctIg9Yzdf/DJo8Bvzc/3r3tXHcQM+/1gOIXkRF\n0zSt59AtfU3TtB5EJ31N07QeRCd9TdO0HkQnfU3TtB7EchMw+vTpo7Kzs80OQ9M0LaRs3bq1TCmV\n3tF2lkv62dnZbNmyxewwNE3TQoqInG4GeTPdvaNpmtaD6KSvaZrWg+ikr2ma1oNYrk9f0zRzuFwu\n8vPzcTqdZoeinUZsbCxZWVlERUWd0f466WuaBkB+fj5JSUlkZ2cjImaHo7VBKUV5eTn5+fkMGTLk\njI6hu3c0TQPA6XSSlpamE76FiQhpaWld+jSmk76mac10wre+rv6MdNLvglW5J3nus6Nmh6FpmhYw\nnfS7YPnOQl79MqD5EJqmBSAxsa2VLDvv4Ycf5ve//32H291yyy0sW7bMkNdsy2233UZGRgbjxo37\nxuMPP/wwAwYMYMKECUyYMIEVK1YELYbWdNLvgiMlDoalG/NLqmla+LnllltYuXJlm8/de++97Nix\ngx07djB//vxuiymgpC8il4jIARE5LCIPtPH8DBHZJiJuEbm21XM3i8gh/1eby8+FIq9X8VVZLcPS\nE8wORdPCjsPhYPbs2UyaNImcnBzeffddAPLy8hg1ahTf+c53GDduHEuWLOHjjz/mvPPOY8SIEWza\ntKn5GDt37uSiiy5ixIgRPPecb0llpRT33HMPY8aM4bLLLqOkpKR5+1/96ldMmTKFcePGceedd2LE\nAlMzZsygd+/eXT6OkTocsulfr/QpYA6QD2wWkeVKqb0tNjsO3ALc12rf3sAvgcn4Fm/e6t+30pjw\nzVNQVU+D28tQ3dLXwtAj7+Wyt9Bu6DHHZCbzyyvGBrRtbGwsb7/9NsnJyZSVlTF9+nSuvPJKAA4f\nPsybb77Js88+y5QpU/jHP/7B+vXrWb58OY8++ijvvPMOALt27WLjxo3U1tYyceJELrvsMjZu3MiB\nAwfYvXs3xcXFjBkzhttuuw2Ae+65h4ceegiAm266iffff58rrrjiG3G99tpr/O53vzsl3uHDh3e6\nm+gvf/kLL7/8MpMnT+bJJ5+kV69endr/TAXS0p8KHFZKHVVKNQJLgQUtN1BK5SmldgHeVvvOAz5S\nSlX4E/1HwCUGxG26I6UOAN29o2lBoJTiZz/7GePHj+fiiy+moKCA4uJiAIYMGUJOTg42m42xY8cy\ne/ZsRIScnBzy8vKaj7FgwQLi4uLo06cPF154IZs2beKzzz5j8eLFREREkJmZyUUXXdS8/dq1a5k2\nbRo5OTmsWbOG3NzcU+JasmRJc5dMy6/OJvy77rqLI0eOsGPHDvr3789PfvKTMztRZyCQyVkDgBMt\n7ucD0wI8flv7Dmi9kYjcCdwJMGjQoAAPba6jpbUAuntHC0uBtsiD5bXXXqO0tJStW7cSFRVFdnZ2\n89j0mJiY5u1sNlvzfZvNhtvtbn6u9dDGpvttDXl0Op3cfffdbNmyhYEDB/Lwww+3ORbeqJZ+3759\nm2/fcccdXH755QHv21WBtPTbGhQaaGdXQPsqpZ5VSk1WSk1OT++wHLQlHCl1kBIXRe+EaLND0bSw\nU11dTUZGBlFRUaxdu5Zjxzo/Su7dd9/F6XRSXl7OunXrmDJlCjNmzGDp0qV4PB6KiopYu3YtQHOC\n79OnDw6Ho90EblRLv6ioqPn222+/fcronmAKpKWfDwxscT8LKAzw+PnArFb7rgtwX0s7UupgWHqC\nnsyiaUGwZMkSrrjiCiZPnsyECRMYNWpUp48xdepULrvsMo4fP84vfvELMjMzWbhwIWvWrCEnJ4eR\nI0cyc+ZMAFJTU7njjjvIyckhOzubKVOmGPI+Fi9ezLp16ygrKyMrK4tHHnmE22+/nfvvv58dO3Yg\nImRnZ/PMM88Y8nqBkI6uUItIJHAQmA0UAJuBG5VSp3R4icjfgfeVUsv893sDW4FJ/k22AecopSra\ne73JkyerUFhEZcpvPmbWyHR+d93ZZoeiaYbYt28fo0ePNjsMLQBt/axEZKtSanJH+3bYvaOUcgP3\nAKuAfcAbSqlcEfmViFzpf7EpIpIPXAc8IyK5/n0rgP/G949iM/Cr0yX8UGF3uiitadAjdzRNCzkB\nVdlUSq0AVrR67KEWtzfj67ppa98XgBe6EKPl6Iu4mqaFKj0j9wwcKfEP18zQLX1N00KLTvpn4Eip\ng0ibMKh3vNmhaJqmdYpO+mfgWEUdWb3iiIrQp0/TtNCis9YZKKtpID0ppuMNNU3TLEYn/TNQUduo\nJ2VpWhCEU2nlEydOcOGFFzJ69GjGjh3Ln//852/EZ1ZpZb1G7hmoqG1kyhBrVc7TNM1aIiMjefLJ\nJ5k0aRI1NTWcc845zJkzhzFjxgC+0sr33XdfB0cxnm7pd5LHq6isayRNt/Q1LWjCobRy//79mTTJ\nNy81KSmJ0aNHU1BQ0KVjGkG39Dupqq4Rr0J372jh7cMH4ORuY4/ZLwcufTygTcOttHJeXh7bt29n\n2rSva1VaubSy1kJFbSOgk76mBVM4lVZ2OBxcc801/OlPfyI5ORmwfmllrYVyf9Lvk6hH72hhLMAW\nebCES2lll8vFNddcw5IlS7j66qubH7d6aWWtBd3S17TgC4fSykopbr/9dkaPHs2Pf/zjbzxn9dLK\nWgvljgYAfSFX04IoHEorb9iwgVdeeYWcnBwmTJgAwKOPPsr8+fOtXVq5u1m9tPKfPj7Inz4+xKHf\nXKpn5GphRZdWDh1BLa2sfVNFbSMpcVE64WuaFpJ05uqk8lo9Rl/TtNClk34nVTh0CQZN00KXTvqd\nVF7boJO+pmkhSyf9TqqobSRNj9HXNC1E6aTfCV6vorLOpfv0NU0LWTrpd0J1vQuPV+nuHU0LknAq\nrQyQnZ3dPE5/8uSvR1NWVFQwZ84cRowYwZw5c6isrAxaDK3ppN8J5bX+iVmJOulrmhaYtWvXsmPH\nDlrOP3r88ceZPXs2hw4dYvbs2Tz+ePeVvdBJvxPKHb4SDGkJuk9f04IpHEorn867777LzTffDMDN\nN9/cXBm0O+gyDJ2g6+5oPcUTm55gf8V+Q485qvco/nPqfwa0bbiUVhYR5s6di4jw3e9+lzvvvBOA\n4uJi+vfvD/jq7rf85xNsOul3QlOFTd29o2nB1VRa+bPPPsNms7VZWhkIqLRyXFxcwKWVf/vb31JX\nV0dFRQVjx449JekvWbKEJUuWBPw+NmzYQGZmJiUlJcyZM4dRo0YxY8aMLpyZrtNJvxOaund6xeuk\nr4W3QFvkwRIupZUzMzMByMjIYOHChWzatIkZM2bQt29fioqK6N+/P0VFRWRkZHR4Toyi+/Q7oaK2\ngeTYSKIj9WnTtGAKh9LKtbW11NTUNN9evXp1cwnlK6+8kpdeegmAl156iQULFnT6/Z0p3dLvhHI9\nMUvTukU4lFYuLi5m4cKFALjdbm688UYuueQSAB544AGuv/56nn/+eQYNGsSbb77Z5dcLlC6t3Ak3\nPf8ljgY3b999ntmhaJrhdGnl0KFLK3eT6noXKXFRZoehaZp2xgJK+iJyiYgcEJHDIvJAG8/HiMg/\n/c9/KSLZ/sejROQlEdktIvtE5EFjw+9e9noXybE66WuaFro6TPoiEgE8BVwKjAEWi8iYVpvdDlQq\npYYDfwSe8D9+HRCjlMoBzgG+2/QPIRTZnW6S4/RlEE3TQlcgLf2pwGGl1FGlVCOwFGh9qXkB8JL/\n9jJgtvjGRSkgQUQigTigEbAbEnk3U0rp7h1N00JeIEl/AHCixf18/2NtbqOUcgPVQBq+fwC1QBFw\nHPi9UqqiizGboq7Rg8ergtu94/XCnn+BMyT/L2qaFgICSfqnzmTwteAD2WYq4AEygSHAT0Rk6Ckv\nIHKniGwRkS2lpaUBhNT9qutdACQHs6V/YiMsuw0OrQ7ea2ia1qMFkvTzgYEt7mcBhe1t4+/KSQEq\ngBuBlUopl1KqBNgAnDKkSCn1rFJqslJqcnp6euffRTewO31JP6jdO7nvQGQsjLwkeK+haRYWTqWV\nDxw4wIQJE5q/kpOT+dOf/gRYv7TyZmCEiAwRkWhgEbC81TbLgZv9t68F1ijfBIDjwEXikwBMB4yt\n4tRN7PW+6d1B697xemHvuzD8Yogx5hdf0zTznHXWWc0zdrdu3Up8fHzzZC1Ll1b299HfA6wC9gFv\nKKVyReRXInKlf7PngTQROQz8GGga1vkUkAjswffP40Wl1C6D30O3aOreCVpL/8RGcJyEsQuDc3xN\nCyHhVlr5k08+YdiwYQwePBgIgdLKSqkVwIpWjz3U4rYT3/DM1vs52no8FNmb+/SDNGRTd+1oFnLy\n0Udp2Gfsh/KY0aPo97OfBbRtuJRWbrJ06VIWL17cfF+XVg4BTX36Qene0V07mvYN4VJaGaCxsZHl\ny5fz2GOPneHZMJZO+gFq6t5Jig3CKSvc7uvaGXOV8cfWtDMQaIs8WMKltDLAhx9+yKRJk+jbt2/z\nY7q0cgiw17tJjIkkMiIIp6x4t+/7wK5X9tO0cBAOpZWbvP7669/o2gFdWjkk2J0ukoPRygco3gvR\niZAyKDjH17QQEw6llQHq6ur46KOPeOaZZ77xuC6t3IJVSyvf8fIWTlTUsfJHQVjq7O+Xg6se7vjE\n+GNrWoB0aeXQoUsrdwN7vSt4s3FL9kGG/mPTNC34dNIPkN3pDs7IHUcJ1JVBRuvCpZqmacbTST9A\n9mBV2CzZ6/veVyd9TdOCTyf9APm6d4JwIbdkn++7bulrmtYNdNIPgMerqGkIUvdOyV6IT4MEaxaa\n0zQtvOikH4CaYFbYLN7ra+W3MWFE0zTNaDrpB6C5wqbRSd/rhdL9umtH0/zCqbQywG233UZGRgbj\nxo37xuPtlVZWSvHDH/6Q4cOHM378eLZt22Z4TDrpByBotfSrT0CjQw/X1LQwdcstt7By5cpTHm+v\ntPKHH37IoUOHOHToEM8++yx33XWX4THppB+A5lWzjJ6RW3rA910nfU37hnAprTxjxgx69+59yuPt\nlVZ+9913+fa3v42IMH36dKqqqigqKupyHC3pMgwBsAdrqcQqfz2RXtnGHlfTuujfbxyk7ITD0GP2\nGZjIBdePDGjbcCut3Fp7pZULCgoYOPDrhQqzsrIoKCho3tYIOukHIGgLqFQdh4gYSOi+CnuaFgrC\nqbRyZ993a21VBe0KnfQD0FxLPxhJP3Ug2HQvm2YtgbbIgyWcSiu3pb3SyllZWZw4caJ5u/z8fDIz\nMwM+biB0tgmAvd5NhE1IiI4w9sBVxyBVV9bUtNbCqbRyW9orrXzllVfy8ssvo5Ri48aNpKSkGNq1\nA7qlH5Dqel9ZZaM/ZlF1HPpPMPaYmhYGwqW08uLFi1m3bh1lZWVkZWXxyCOPcPvtt7dbWnn+/Pms\nWLGC4cOHEx8fz4svvmhIHC3p0soB+I+l29lxoopPf3qhcQdtcMBjA2D2L+GCHxt3XE07Q7q0cujQ\npZWDzF7vMr4EQ7W/305372ia1o100g+A3ek2vtha1XHf99TBxh5X0zTtNHTSD4C93kVSTBBG7oBu\n6Wua1q100g9ATTBa+pV5EBkLiXqMvqZp3Ucn/QDUOF0kGd2nX3Xc18rX1TU1TetGOul3wO3xUtvo\nIcnoujtNSV/TNK0b6aTfAUeDv6xysFr6mqY16ymllX/6058yatQoxo8fz8KFC6mqqmp+7rHHHmP4\n8OGcddZZrFq1yvCYdNLvQI3Tl/QNbek31EB9hU76mhbm2iutPGfOHPbs2cOuXbsYOXIkjz32GAB7\n9+5l6dKl5ObmsnLlSu6++248Ho+hMemk34GmYmuG9unr4ZqadlrhXlp57ty5REb6GpLTp08nPz8f\n8JWOWLRoETExMQwZMoThw4d/4z0ZQZdh6EBTS9/Q0Tt6uKZmcWv//iwlx44aesyMwUO58JY7A9o2\n3Esrt/TCCy9www03AL7SytOnT29+rqm0spECymQicgnwZyAC+JtS6vFWz8cALwPnAOXADUqpPP9z\n44FngGTAC0xRSp1avs6imtbHNbRP3+7/ISYPMO6YmhZGekpp5d/85jdERkY2H9MSpZVFJAJ4CpgD\n5AObRWS5Umpvi81uByqVUsNFZBHwBHCDiEQCrwI3KaV2ikga4DL0HQSZPRh9+vYikAg9Rl+zrEBb\n5MES7qWVwVdd8/333+eTTz5pjskqpZWnAoeVUkeVUo3AUmBBq20WAC/5by8DZovvXcwFdimldgIo\npcqVUsZelQiyoLT0a4ogqR/YDC7VrGlhItxLK69cuZInnniC5cuXEx8f3/z4lVdeydKlS2loaOCr\nr77i0KFDTJ06tdPv/XQCab4OAE60uJ8PTGtvG6WUW0SqgTRgJKBEZBWQDixVSv229QuIyJ3AnQCD\nBlmrn7upTz/R0JZ+ASQZWyNb08JJuJdWvueee2hoaGDOnDmA72LuX//6V8aOHcv111/PmDFjiIyM\n5KmnniIiwtjGYYellUXkOmCeUuo7/vs3AVOVUj9osU2uf5t8//0j+D4h3Ap8H5gC1AGfAD9XSn3S\n3utZrbTyr9/fy2tfHmfff19i3EH/MhXSz4IbXjHumJrWRbq0cugIdmnlfGBgi/tZQGF72/j78VOA\nCv/jnyqlypRSdcAKYFIAr2kZQam7Yy+EZGP76TRN0wIRSNLfDIwQkSEiEg0sApa32mY5cLP/9rXA\nGuX7CLEKGC8i8f5/BjOBvYSQmgaD6+401EBjje7e0TTNFB02Yf199PfgS+ARwAtKqVwR+RWwRSm1\nHHgeeEVEDuNr4S/y71spIn/A949DASuUUh8E6b0Ehb3ebfzIHdDDNTVNM0VA2UwptQJf10zLxx5q\ncdsJXNfOvq/iG7YZkmqcLlLjo407YPMYfd3S1zSt++kyDB2ocRrc0q/xt/TDvHvH5XXx2JePcbL2\npNmhaJrWgk76HbAbXUu/uaUfvhdyPV4P/7X+v/jH/n/wZdGXZoejaVoLOul3wPD1ce1FENcLouKM\nO6aFKKV49MtH+fCrD/nRpB+xYHjreXya1r6eUlr54YcfZsCAAUyYMIEJEyawYsXXvee6tLKJnC4P\njW6v8bNxw/gi7r8L/s0bB9/g1nG3cnvO7WaHo2mmaq+0MsC9997bPKN3/vz5gC6tbLqg1NIP49m4\nSime2/Uc/RP684OJP+h4B01rR7iXVm6PLq1ssuBU2CyC/mcbdzwL2VK8hR2lO/jZtJ8RZTN4pTGt\nW1W9d4TGwlpDjxmdmUDqFcMC2rYnlFb+y1/+wssvv8zkyZN58skn6dWrV7eUVtYt/dMwvKXvboTa\n0rDt3nlu13OkxaaxcPhCs0PRQlxTaeXx48dz8cUXt1la2WazBVRauU+fPgGXVp42bRo5OTmsWbOG\n3NzcU+IyquDaXXfdxZEjR9ixYwf9+/fnJz/5SfP7bq3bSyv3ZHanwatmOU4CKiy7dw5UHOCLoi/4\n8Tk/JjYy1uxwtC4KtEUeLOFeWrlv377Nt++44w4uv/xywDqllXssw1fNap6NG37DNVfmrSRCIrhq\n+FVmh6KFgXAvrVxUVNR8++23324e3WOV0so9Vo3RLf2mMfph1tJXSrE6bzVT+02lV2wvs8PRwkC4\nl1a+//772bFjByJCdnY2zzzzDIA1Sit3NyuVVn7us6P8ZsU+dj0815iLuV88DasehPu/gvjAr+hb\n3f6K/Vz33nX88txfcu3Ia80ORztDurRy6Ah2aeUeq8bpQgQSow36QFRTBBExvslZYWRV3ioiJILZ\ng2abHYqmaR3QSf807E43iTGR2GwGXT2vOelbJtHgq/Fm0l07mhZadNI/DbvTFYS1ccOrP/9g5UGO\n1xxnbvZcs0PRDGC17l7tVF39GemkfxrGV9j0t/TDyOeFnwMwM2umyZFoXRUbG0t5eblO/BamlKK8\nvJzY2DMfFq1H75xGjeEt/ZMw/GLjjmcBG4s2Mjx1OOnx6WaHonVRVlYW+fn5lJaWmh2KdhqxsbFk\nZWWd8f466Z+Gvd5NZqpBE42al0kMn5Z+g6eBbcXbQnrEjlLK8BmPoSoqKoohQ4aYHYYWZLp75zSq\n610kxxnU0q/xTSEPpz79nSU7cXqcTO8/veONLaj2y03kXXsdrpN6oRet59BJ/zTs9QZ27zSvmBU+\nLf2NRRuJkAgm9+twaLCleOvrKfrFQxy/+WY8NTW4y8rNDknTuo3u3mmHx6uoaXCTYlhLP/yWSdxY\ntJHx6eNJiEowO5SAKaUo+vkvsK9YQdp3bqfP97+PLS48F7TRtLboln47mkowGJ70w2RB9OqGanLL\nc0Oua6fy5Zexf/AB6T/6ERn33acTvtbj6KTfjup6fy19w5L+SYhOhJgkY45nsq3FW/EqL9P6TzM7\nlIDV79xJ8W9/R+LFs0m78w6zw9E0U+ik346mpG9oSz+M+vO3l2wnyhbFuD7jOt7YApRSFD/+BBG9\ne5H52GN6xI7WY+mk3w57va+ssnFJ/2RY9edvL9nO2LSxxETEdLyxBTjWrKF++3bS7/kBEUnh8WlL\n086ETvrt0C399jV4GthbvpeJGRPNDiUgyu2m5Mk/ED1kCKnXXG12OJpmKj16px1f9+kbcIqUCqsS\nDLllubi8LiZkTDA7lIBUv/c+jUePMuB//weJ1L/yWs+mW/rtsBs5esdZBW5n2HTvbC/ZDhASSV8p\nRcUrLxMzYjhJF4dXCQxNOxM66bejut5FVIQQF2XAqjU1/hmfYdLS31Gyg+zkbHrHWn8hmPrtO2jY\nu49eS5boi7eahk767aqud5ESF2VMogijiVle5WV76faQaOUDVL76KrakJFKuuMLsUDTNEnTSb0e1\nkSUY7OFTgiGvOo/qhuqQuIjrKinBvno1qVcvxJYQOrOGNS2YAkr6InKJiBwQkcMi8kAbz8eIyD/9\nz38pItmtnh8kIg4Ruc+YsIPPbmixtULf9zBo6e8s3QnAhHTrt/Sr33oL3G563Xij2aFommV0mPRF\nJAJ4CrgUGAMsFpExrTa7HahUSg0H/gg80er5PwIfdj3c7mP3d+8Yc7Ai37q4UaE/5X9X2S6SopLI\nTsk2O5TTUkpRvfw94idPJnrwYLPD0TTLCKSlPxU4rJQ6qpRqBJYCC1ptswB4yX97GTBb/J3hInIV\ncBTINSbk7mFsWeUiSMo05lgm2126m3F9xmETa/cMOnP30nj0KMlX6r78Jh6Xl8NbS3j/LzvZ/0WR\n2eFoJgnkL3cAcKLF/Xz/Y23uxQNzAAAgAElEQVRuo5RyA9VAmogkAP8JPHK6FxCRO0Vki4hsscqq\nPb4LuQaN6bYXhEWhtTpXHYeqDpGTnmN2KB2qXv4uEhVF8rx5ZodiCSf2VfDyf33Oquf2UJbvwOvV\nSyL2VIFktbaGr7T+jWlvm0eAPyqlHKcbBaOUehZ4FmDy5Mmm/zYqpbA7DSyrbC+C/mcbcywT7S3f\ni1d5Gd9nvNmhnJZyu7F/sILEWbOISEkxOxxTKaXY9P5XbFmRR69+Ccy+eTRZo3tjs+nhqz1VIEk/\nHxjY4n4WUNjONvkiEgmkABXANOBaEfktkAp4RcSplPpLlyMPotpGDx6vMibpe1xQWxoW3Tt7yvYA\nWL7IWu0XX+ApL9ddO8DGd46ybdUxRk3vx4zFZxEVY8C8Ey2kBZL0NwMjRGQIUAAsAloPh1gO3Ax8\nAVwLrFFKKeCCpg1E5GHAYfWEDy1KMBgxZLPmJKDContnV9kuBiQOIC0uzexQTsu+4kNsSUkkzpxp\ndiim2vHxcbatOsbYCzKZeeNZenKaBgSQ9JVSbhG5B1gFRAAvKKVyReRXwBal1HLgeeAVETmMr4W/\nKJhBB1t1nYElGJonZoV+S3932W7LD9VULhc1a9aQeOEsbNHRZodjmhP7Ktiw7DDDJqYzY7FO+NrX\nArpSqZRaAaxo9dhDLW47ges6OMbDZxCfKQytu2Mv8H0P8ZZ+aV0pJ2tPkjPa2hdx6zZvxltdTfLc\nuWaHYhqnw8Unf99Lr37xzL51TEj239c7aoiMiiIqJtbsUMKOLjnYBkNXzWqajZvcesBTaNldthuA\n8enWvohrX70aiY8n4fzzzQ7FFEop1r22n3qHi8u+fzZR0aHTh++sdbBz9QqObNvEyUMHufSeHzP6\n/FlmhxV2dNJvg6G19GsKISLGNzkrhO0p20OERDCq9yizQ2mX8nio+fgTEmfMwBbbM1uIX+0o48j2\nUs5dOIz0QaGxWIzyetn58Uo+f+NV6mvs9Bs2gmlX30DfocPNDi0s6aTfBrvRLf3k/hDifaq7y3Yz\notcIYiOtm0zrt2/HU1ZG0pyeWULZ3ehh/bJDpA1IYMLFAzvewQJcTicfPv0HDn35OQPH5DDz29+h\n75BhZocV1nTSb4O93oUIJMUYcHrCYDauUorc8lzmZVt7olPNRx8j0dEkzpxldiim2P7RcWrKnVx1\n70RsEdaeMQ1QZ6/mX48+REneUWbedDvnXHaVvuDcDXTSb0N1vYukmEhjLoDZC2DAOV0/jomO1xyn\nprGGcWnWHZ+vlKJm7Vrip08jIrHnVdSsqXCybeUxhp+TwYCzrN+V2Fhfx1uP/ZKKgnwW3v8QQydN\nMTukHsP6zQETVNe7SIk3oGtHKV/3TohX12y6iGvlSVmNR4/iOn6cpIsuMjsUU2z5MA+vUpx7tfW7\nRtwuF+/+/teUHvuKK378gE743Uwn/TYYVoKhvhI8DSE/cie3LJfYiFiGpVo3odSsWQNA4qxZ5gZi\ngurSOvZvKGLs+QNITrN+Jdd1Lz3H8T27mHfXjxg6USf87qa7d9pQbVRZZbu/WkWIj9HfU7aH0Wmj\nibRZ99fFsXYdsWPGENUv9Beq6azNH+QhEcI5l1q/hPS+DZ+y86MVTL7iasZccKHZ4ViCu6yehq+q\nacyvITI9nqTzg9tItO5fsYmq6hoZ2deA4W5hMBvX5XWxr2If1591vdmhtMtdUUH99u30uftus0Pp\ndpUnazn45UnOvngQCSkxZodzWhWFBXz0zP8yYNQYzl/0bbPDMZVSCmduOY7PC2k4Wg2AxEaQMDn4\njRad9NtQUdtI7wQDpvCHwWzcI1VHaPA0WPoiruPTz0ApEi/qeS3HbauPExFpY+KcQWaHclper4dV\n//cnIiIjuew/7icisuemHldJHVXvHqbhSDURvWJIviSbuLFpRKbFId0we7rnnvl2eLyKqnoXaUYk\n/eoCEFtIX8gNhcqajrVriczIIHZM6wXdwltNhZODG08yduYA4pOtXWdo+4fvUXhwH5fe8xOSevcx\nOxzT1G4tpvLtw0ikjdQFw0iY1r9bEn1LOum3UlXXiFIY09Kvzvcl/AiD6vKbYE/ZHlJiUhiYZM3J\nPqqxkdoNG0ieP7/HjfHe+bFvbSOrT8SqPFnI+qWvMHTSlB5bVkF5FVXvHaH2iyJihqXQe9EoIpLM\n+Uetk34rFbWNAPRONKB/tPoEpGR1/Tgm2l3mWx7Rqgm1butWvLW1JF44y+xQupXT4SJ3fQEjpva1\n9IgdpRRrXnwGW0QEF9/xfcv+HgWT8nip+OcB6neVkThjACnzhiAR5p0HPWSzlXJ/0jeke6fqOKRY\nuxV2OnWuOg5XHSanj3UrazrWfYpER5MwfbrZoXSrPZ/l4270Wr4v/8iWL8nbsZVvXbekR3brKLeX\n8lf3Ub+rjJT5Q0idP9TUhA+6pX+K5pZ+V5O+1+Mbspkaukm/aXlEayf9dcRPm4YtPt7sULqNx+Vl\n97oCBo3pTdqARLPDaZersYG1Lz1HWtYgJsy7zOxwup3yKiqXHcS5r4LUBcNIPNcao/h0S78Vw1r6\njmLwukK6e8fqF3Eb8/JoPHasx62QdWhrMXX2Rs62eF/+lvfewl5azOzbvtcjR+tUr8yjbkcpyfMG\nWybhg076p6hw+JJ+r64m/ep83/cUa3/8Pp3dZbsZkDiA3rG9zQ6lTY5PPwUgcVbPSfpKKXZ+coLe\nmQkMHG3NnwtAbVUlm9/9FyOmfouBY629BkMw1G4+ieOzfBKm9ydplrX+Oeuk30pFbQNJsZFEdbVK\nYdVx3/cQ7t7ZU7bH0l07NevWET18GNFZoftpqrMKD1ZRdsLB2RcNtPRF0c/ffA2P28UFN95sdijd\nruG4ncp3DhMzIpXUK4ZZ7uekk34r5bWNBo3R9w2nC9XunbL6MgprCy3bteNxOKjbspWkHlZrZ9fa\nfGITohg5ta/ZobSrPP84uz9Zzdlz5tOrf2jXneosT00j5a/uIyIlhrTFo0y/aNsWnfRbMWw2bnU+\nxKZCTGisXtRaU3++VVv6tRs+B5erR/Xn28vr+WpnKWPOzyTSwssg/vv1l4mKjWX6NYvMDqVbKa+i\n4o0DeOvcpP2/0diMqNQbBDrpt+JL+gaM0a86EdJdO7tKd1l6eUTHunXYkpOJmzjR7FC6zZ5PC0CE\ncTOt23ouPLifI1s2MuWKq4lPTjE7nG5V81k+DYeqSL1iKNGZ1h1VpZN+K4Z274TwRdydpTs5q/dZ\nxEdZbyik8npxfPYZiRdcgPSQUSGuRg971xcy9Ow+JPW25pKVSinWv/4S8SmpTLpsgdnhdKvG/Brs\nq/OIy+lDwlRrV3rVSb8FpRSVtY30TjSoeydE+/PdXje7y3ZzdvrZZofSJueePXjKy3vUqJ1Dm4pp\nqHOTc6F1f6eO7drOib27mbbweqJjrTtL2GjK7aVy2UFsidH0unqE5S7ctqaTfgt2pxu3V3W9pV9f\nBQ32kO3eOVR5iHp3PRPSJ5gdSpsc69aBzUbC+eebHUq3UEqxa10+aQMSyByRanY4bVJKseGfr5DU\nJ53xF19qdjjdqmbdCVwn6+h11XBscdb/5KmTfguGzcZtHqMfmkl/Z+lOAM7OsGZLv2btOuImTiSy\nl/XXgjVC0ZFqyvMd5MzKsmwr8ui2TZw8cohzr1lMZJQ1L2AGg+tkLfa1J4ibkE7cmDSzwwmITvot\nVNQ2AEYk/abhmqGZ9HeU7iA9Lp3MBOvMImziKiykYd8+knpQ7fzd6/KJiY9kpEX7ipXXy4Y3XiO1\nb3/GzOg5axQrj6Ji2UFssZGkXmHdpURb00m/hXKHQS39Kn/SD9HunZ0lOzk7/WxLtipr1q4FILGH\nLIBeW9XA0W2ljPpWf6JirDlM89CmzynNO8q51y7uUeUWHOsLcOU7SF0wjIiE0Pl0o5N+C4Z171Tm\nQVQ8JKR3PahuVlZfRr4j37IXcR2frCF6yBBihgwxO5RuseezArxKMW6GNYdper0ePn/zH/TOzGLU\n+T3nwrqrtI7qj44ROzaNuJzQqh6qk34LXxdb6+I4/Yoj0HsoWLCl3JGm/vwJGda7iOupqaF28+Ye\nsyyix+Ul998FDB6XRmqG9YbOAhz8Yj3l+cc597obsdms+UnEaMqrqPzXISTSRq8Fwy35ifh0Akr6\nInKJiBwQkcMi8kAbz8eIyD/9z38pItn+x+eIyFYR2e3/bunP5BW1jcRFRRDX1dmO5f6kH4J2lOwg\nyhbF6LTRZodyitr168HlIqmHdO0c3lZCfY2L8RYdpun1ePh82ev0GTiYs6b3jJFUALUbi2jMs5N6\nxVAiLL5MZVs6TPoiEgE8BVwKjAEWi0jrxUhvByqVUsOBPwJP+B8vA65QSuUANwOvGBV4MBhSgsHj\nhsqvIG24MUF1sy0nt5DTJ4eYCANmJRus5pM1RPTqRdwE630KCYZda/NJ7RvPwFHWrKa5f8OnVBbm\n863rliC2ntFp4K5wUr3yK2JG9iJ+UobZ4ZyRQH5SU4HDSqmjSqlGYCnQerrdAuAl/+1lwGwREaXU\ndqVUof/xXCBWRKyXTfzKaxtJ6+rErOrj4HVDWuhczW9S66plX8U+JvebbHYop/A2NuJYt47Eiy5E\nIsK/G+HkV9WU5NkZf2FWty+cHQiP280Xy14nPXsow6f0jFXLlFJUvnUIEHpdHXrdOk0CSfoDgBMt\n7uf7H2tzG6WUG6gGWg9avQbYrpRqaP0CInKniGwRkS2lpaWBxm64itqGrrf0y4/6vvcOvaS/vWQ7\nHuVhcl/rJf26L77A63CQPHeu2aF0i11r8omKjeCs6dYcppn76SdUFRdx3vU9p5Vft6WYhsNVpMzP\nJjLVmqUwAhHIT6utf2eqM9uIyFh8XT7fbesFlFLPKqUmK6Ump6ebN+KlrKax6xdxyw/7vodg986W\nk1uIlEhLjtyxr16NLTGR+HPPNTuUoHNUOjmytYQx52USHWu9IZBul4uNby2l3/CRDJ001exwuoXH\n3kDVB0eJHpJCwtT+ZofTJYEk/Xyg5YDzLKCwvW1EJBJIASr897OAt4FvK6WOdDXgYHF5vJTUOMns\n6n/wiiMQkwwJoTWMC2BL8RbG9hlruSJryu3G8ckaEmfNwhYdehfOOmv3ugKUUpa9gLtnzWpqyko5\n7/r/F7JdHJ2hlKLy7cPgUfS+ZoQlu9s6I5CkvxkYISJDRCQaWAQsb7XNcnwXagGuBdYopZSIpAIf\nAA8qpTYYFXQwFNudeBVkpnaxUFR5aA7XrHPVkVuWa82unc2b8VRVkTR3jtmhBJ2r0UPuvwsYOiGd\n5D7WK1rmanCy8a2lDBg1lsHje0ZZ6/qdpTj3VZA8dzCRFvyZdFaHSd/fR38PsArYB7yhlMoVkV+J\nyJX+zZ4H0kTkMPBjoGlY5z3AcOAXIrLD/2XJS95F1U7AgKRfcSQkL+LuLN2JW7kteRHXvno1EhdH\n4gUXmB1K0B34ooiGOjfjZ1tzNvf2le9TW1XJ+Yu/3SNa+R5HI1XvHSF6YBKJ51lzglxnBdRhqJRa\nAaxo9dhDLW47geva2O/XwK+7GGO3KKyqB2BAV7p33I2+tXHH32BQVN1n88nN2MTGxAxrtd6U203N\nqtUkzpiBLS70W1mn4/Uqtn98gozBSfQfZr0FSJy1Dja/u4whEyeTNWqs2eF0i6rlR/A6PfS6NvS7\ndZr0jMvuASjwJ/3+KV1ILJV5oLwhOXLni8IvGN9nPAlRCWaH8g21X2zEU1FByhWXmx1K0B3dXoq9\ntJ5J8wZbshW95b23cNY6OH/Rt80OpVvU55ZRv6uM5NmDiOprrb+LrtBJ36+wqp7U+CgSYrowWqLC\nf506xLp3Kp2V5Jbnct6A88wO5RT299/HlpREwowZZocSVEoptq8+Rkp6HEMmWK9mU01FGVs/eJdR\n580kIzs0Z5t3hrfOReU7h4nqn0DSTGteUD9TOun7FVY5yexKKx98F3Eh5EowfFH4BQrFeZnWSvre\n+npqPvqIpHlzw37UTuHBKkqO1TBhziBsFuxG+PyN11BeD+cvusnsULpF1XtH8da66HXtSCQivNJk\neL2bLiisqu/6RdySfb7KmvHWnDbfng2FG0iNSWVMWuvqGuZyrFuHt66OlMvDv2tn68o84pKiGGXB\nyVilx/PIXfcJE+ZdTkqG9eIzWv2eMuq2l5B04SCiB1h3gfMzpZO+X2FVfdcu4gKc3AX9xhsTUDfx\nKi8bCjZwbua5RFisSmL1e+8TmZFB/JQpZocSVCePVnNiXyUT5wwmsqvF/gymlOKz114kOj6OaVeH\n3gCFzvLUNFL59iGiBiSSfJE1R1B1lU76QI3Thd3p7lpL393oa+n3yzEusG5wsPIg5c5yy3XtuEtL\ncXz6KclXXB72tXY2f5BHbGIUY2dYb6Wyr7ZvIW/HVs69ZjFxiUlmhxNUTZOwvA0eel8fft06TcLz\nXXVS0xj9/l1J+qX7weuC/qHV0l9fsB6Ab2V+y+RIvqnq7XfA4yH12mvNDiWoivPsHM8tZ8LFAy1X\ncsHjdrHu5efonZnFhHnh38VWt7UE595yUuZlh9VondZ00ufr4Zpd6t45ucv3vZ/16tacztrjaxmT\nNob0eOuMGFFKUbVsGfGTJ4f9Clmb3jtKTEIkObOsN0Jk24rlVBYVMuvmO8J+GUR3ldM3CWtIcthM\nwmqPTvp8PTGrS907J3dDVEJIjdwpchSxq2wXcwZbq7xB3abNuI4fJ/X6U+b7hZWCA5Ucz63gnHnZ\nlmvl28tK+WLZ6wydNIUhE84xO5ygUh4vFa8fAAW9rzsrbCZhtUcnfaCoykmETchI6kJLv2gX9BsH\nIVRm9uPjHwNYLulXvfkmtuRkksK4jLJSis/fPkJirxhyZlmvZbn278+glOKiW79ndihBV73qGI3H\n7PS6ejiRvUO3ZHKgQidDBVFhVT39kmOJONP/8F6vr6UfYiN3Pjr2EWf1OovByYPNDqWZq7gE+6pV\npCxYgC02fP8Aj+4opSTPzpTLh1huxM7hLV9yePNGzr12MSkZfc0OJ6jq95bj+CyfhOn9iZ9gybJg\nhtNJH1+f/oCudO1U5UFjTUhdxC2uLWZ7yXbLtfIrX3sN3G56fzt8JwG5XR4+f+sIvfrFW25cfkNd\nLZ+88H/0GTiYcy67yuxwgspd4aTijYNEDUgk9bLQ6ZbtKp308SX9LtXRL2q6iBs6wzWbunbmZlun\nC8VbV0flP/9J0sUXEz0wPMdIA+z4+AT20nouuH4kNosNC1z70nPUVlYw73v/EdYXb5XbS/k/9gGK\ntBtHIVHW+jkEU895p+2obXBTUFXP0PQuzLwr2gm2SEgfbVxgQfb+kfcZ0WsEQ1KsMzqm6p138FZX\n0/vWW80OJWhqKpxs/TCPoRPTGTjGWjO3j27bTO66j5m64Fr6DR9pdjhBo5Si6r0juPId9L5uJJFp\n4V29tbUen/T3FdlRCsZmJp/5QfLWQ+ZEiAqNPuh95fvYU76Ha0ZcY3YozZTLRcWLfyf27PHETZxg\ndjhBs+HNQygF511jreU0a6sqWf3M/9BnUDbTr1lsdjhB5dhQSO2XJ0mamUXc2NBb4a6renzSzy20\nAzDmTJO+sxoKtsLQWYbFFGzLDi4jJiKGy4daZ8JN1Vtv4zpxgj533WXJssJGOLy1hCPbS5lyWbal\nVsVSXi8fPvUHGmprmf+D+4iMijI7pKCp319B9QdHiR2TRvK8bLPDMYVO+oXV9E6Ipl/yGbbS89aD\n8sDQC40NLEjqXHV88NUHzMueR0qMNRbq8DY0UPb008RNmEDizJlmhxMU9Y5GPlt6gPRBSUycM8js\ncL5h07vLOLZrOxfeeifpg7LNDidoGo7ZqXhtH1GZifReFP7j8dujk36hnbGZyWfeujy6DqLiISs0\nioKtzFtJrauWa0dap7xB5euv4y4uJv3ee8Oyla+U4tN/HKShzs3sm0db6uLt0e2b2fDPVznrWzPI\nuWie2eEEjau4lrK/5xKRHE2fW8Zis9gw2e5knd8+EzS6vRwsrjnzrh2AI2th8HkQaf16717l5ZW9\nrzA8dTgT0q3Rb+6urKT8r8+Q8K1zSZg21exwgiL3swKObCth6hVDSLNQqd7y/BN88Off0WdwNvO+\n+8Ow/IcLvoRf+txuJNJGn9tziEiy/t9qMPXopH+opAaXRzE28wy7OarzofwQDAuNrp2Pjn3E4arD\n3Dn+Tsv8gZf87vd4HA4yHnjA7FCCovR4Df9+8xCDxqYxaa51JsHVVlXy9m8fITI6mqt++nOiwnQi\nXFPCRyD9jpweMeO2Iz066TddxD3jkTtH1/m+D51lRDhB5VVe/rrzrwxNGcrcwdYYm1+7aRPVb71F\n2q23Ejsy/IYI1lY38OFfdxOfFM3Ft462TB+y0+Fg2W9+QV1VFQvu+znJfcJzJmrDMTulz+wCEdLv\nHE9URrzZIVlCj076ewvtxEdHMCTtDMuo7l8Bif0gw1orTrVl9bHVHK46zPfO/p4lFkvx1tVx8pcP\nE5WVRZ+77zI7HMO5GjyseHoX9Y5GLv1eDnGJ1uhScNY6eOvxX1JZmM+C+35O5shRZocUFPW55ZQ+\ntxtbXCQZ3xtPVLpO+E3Cd8pdAHILqxndP/nM1iS1F8LBlXDeD8EiXSXtqXPV8eetf2ZYyjBLtPKV\nUhQ9/DCNeXkMevEFbHHWGb5oBI/Ly6q/7aH0eA2X3jWejMFduGZkoLrqKpY9+hDlJ45z+b3/yeDx\n1riuYyTlVdSsOY794+NEDUyiz81jiLDIP1yr6LFJ3+nykFto57pzzrCO+bZXfEM1J91sbGBB8NSO\np8h35PPCvBcs0cqvevNN7Mvfo88Pf0DC9Olmh2Mot8vDymf2cGxPObOWnMWQ8daY/FNRWMA7v/0V\nNeVlLLz/F2SHYblkj6ORymWHcO6vIH5SBr0WDkeizP99t5oem/Q/3ldMXaOHuWPPoOCVxw3bXoJh\ns6G3dcoYtGVX6S5e3fcq14+8nin9zB9W6tiwgeL//jUJ551Hn++FV9leZ62LVc/tIf9AJbOWnMXY\nC6xRMvmr7Vv44H9+hy0igmv/678ZMMr63ZGdVb+vnMp/HcLrdJN65TASzu1vmcEKVtNjk/5b2wro\nnxLL9KFpnd/50GqwF8ClvzU+MANVOit54N8PkB6Xzr3n3Gt2ONRt3Ur+9+8heuhQBjz5eySE1h7o\nSOXJWj54ehc15U4uvnk0Z03vb3ZIuBsbWb/0ZbZ+8A7p2UO56r6fk5weXhdtPdUNVL1/lPrdZUT1\niyf9OzlE9QvfpQ6N0COTfpmjgU8PlnLHBUM7X0Pf44bPfgdJmTDykuAEaACn28kP1vyAkroS/jb3\nbyRGmzs+3PHppxT8+CdE9evHoOf/RkRqqqnxGEUpxd71haxfdpioaBsL7p1I5nDz39uJvbv55Pn/\nozz/OGfPmc/Mm24jKiZ8hit6nW5qPs3Hsb4ApSB53mCSLshCIsOnIREsPTLpv7ezEI9XcfWkM/j4\n/cX/QuE2uPZFiLDm6atz1XH/Z/ezq3QXT856kgkZ5l2wU14vFS/+nZLf/56YUaMY+H9PE9nHGv3c\nXVVRWMv6ZYc4sbeCrFG9uOjbo0kyeRx4ef4JPn/zNQ5uXE9yegZXP/hIWC136KlpxPF5IY6NRah6\nN3Fnp5Myd3CPq5TZFdbMWkGklOJf2/IZNyCZkX2TOrdzyX5Y+yiMvhLGLgxOgF10svYkP1zzQw5U\nHuBn035m6iIpDUePUvTQQ9Rv2UrSvHlkPvYotvjQHzpXVVzH9tXH2Pd5EVGxkVxww0hyZg4wbRy+\nUor8fXvYsfJ9Dm76nMjoaL513RImX3k1UdExpsRkJOX24jxcRd3WYur3loNXETcmjaSLBhFtoRnO\noaLHJf2n1x1hT4Gdx6/u5IInpQfh9RsgOhEue9JywzRdXhdvHHiDp3c8jUd5+N+L/pcZWTNMiaXh\n6FeU/+1vVC9fji0hgf6/+Q0pVy8M6Qtr7kYPX+0q48CXJzm2pxxbhDBuZhZTLs82ZQy+UoqyE8c4\n9OUG9n/+byoL84mJT2DaVdczaf6VxCdbo5jemfI4GnHur8S5rxznoSpUowdbfCSJ52aSMK2fHnff\nBQElfRG5BPgzEAH8TSn1eKvnY4CXgXOAcuAGpVSe/7kHgdsBD/BDpdQqw6LvpNW5J/ndqgNcNSGT\nG6YEuDKT1wsHPoB3vw+2KLjxDUi0zsWw0rpS3jv6HssOLuNEzQnO7X8uD057sFsXR1FK0fhVHrUb\nNmBfsYL67duR2Fh6LVpEn+99NyS7czwuL2X5Dk4erebE/goKDlbhbvCQkBLN5EuzyZmVRXxy9yV7\nV4OT8hPHOXnkEIWH9nNiz04clRUgQtbosUy76jpGTj8v5PrtlVJ4a1y4y+poLHDQmO+gMb8GT7kT\nAFtyNPET04kdnUbs8FTdZ2+ADpO+iEQATwFzgHxgs4gsV0rtbbHZ7UClUmq4iCwCngBuEJExwCJg\nLJAJfCwiI5VSHqPfSHucLg+Hih28uvEYb28vYHxWCo9fM779VqfXA3UVULoP8rfAzteh7KBvVawb\nl0Kv7O4KvZnL46LGVUN5fTmldaXk2fM4UnWEbSXbOFx1GIBJGZP46eSfMmvgLMNb1Mrlwltbi8fh\nwFNZhbu8DFdhIa78AhoOHsS5fz+esjIAYkaMIP1HPyL1umuJTDuDkVFBpLwKt9uLy+nB1eChsd6N\ns85FfU0jddWNOCoasJfXU1VcR3VJPV6vAiAlPY7R0/sxdGI6mSN7ndlkvla8Hg/uxgZcDQ24nE4a\n6utoqK3F6bBTX2PHUVmJo6Ice2kxVcUnsZeVgPLFE5+SysCx4xk07myGnTOVhNReXY6nK5RS4FUo\ntxfl8rb4rlCNHry1Lrx1brx1rubbHkcj7gonngonyuVtPlZEagzRAxKJmtKP2BG9iMpMCOlPiFYk\nyv+L1O4GIucCDyul5lM8WQsAAAdjSURBVPnvPwiglHqsxTar/Nt8ISKRwEkgHXig5bYtt2vv9SZP\nnqy2bNnS6Tey+g9Pk5V/uguzHfzidPh0V3/xTr9/13+t2z9C899Mez/q0/5RqdMe2/fKXTu33XZu\n2n3/bdwU/7sK8PdCtTz46f6k1De2PO3hRQSxRfi/27DZInxlmcXW/CPr4M/39LEEskFH+/uTfcev\n4xch2OKjiEiIIqJ3LJG9Y4lMiyUyLY6o/gk9vgJmV4jIVqXU5I62C6R7ZwBwosX9fGBae9sopdwi\nUg2k+R/f2GrfUzKziNwJ3AkwaNCZLTARk5yA3VXdwVan/8089dnWf5KB/ma3d/wz2791UhWk05mw\nw9duevrrrNfqPv5/DuL/JoFf11BdPXMtA2yDtPOvSVqcO2kO39dylKakCmITRATftIG235Nq8Qqt\nT9E3X1Oafz7NLVTxHb8pefsSuA2xRWCL8H1FREYRERlJRHQUkVHRREZHBzyPocst4a7sLoJE2ZBI\nm+970+1IG0TakGgbEfFR2BKisMVHIjERuuVuskCSfls/odZ/ge1tE8i+KKWeBZ4FX0s/gJhOMfM7\n1i+HoGmaZrZAmhL5QMurnllAYXvb+Lt3UoCKAPfVNE3TukkgSX8zMEJEhohINL4Ls8tbbbMcaGpq\nXwusUb6LBcuBRSISIyJDgBHAJmNC1zRN0zqrw+4dfx/9PcAqfEM2X1BK5YrIr4AtSqnlwPPAKyJy\nGF8Lf5F/31wReQPYC7iB73fnyB1N0zTtmzocvdPdznT0jqZpWk8W6OgdPdNB0zStB9FJX9M0rQfR\nSV/TNK0H0Ulf0zStB7HchVwRKQWOdeEQfYAyg8IJBqvHBzpGo+gYjaFjDMxgpVR6RxtZLul3lYhs\nCeQKtlmsHh/oGI2iYzSGjtFYuntH0zStB9FJX9M0rQcJx6T/rNkBdMDq8YGO0Sg6RmPoGA0Udn36\nmqZpWvvCsaWvaZqmtUMnfU3TtB4kbJK+iFwiIgdE5LCIPGB2PAAiMlBE1orIPhHJFZH/8D/eW0Q+\nEpFD/u+mLnIqIhEisl1E3vffHyIiX/rj+6e/pLapRCRVRJaJyH7/+TzXSudRRO71/4z3iMjrIhJr\nhfMoIi+ISImI7GnxWJvnTXz+x/83tEtEJpkU3+/8P+ddIvK2iKS2eO5Bf3wHRGResONrL8YWz90n\nIkpE+vjvd/s57KywSPry9eLtlwJjgMXiW5TdbG7gJ0qp0cB04Pv+uB4APlFKjQA+8d83038A+1rc\nfwL4oz++SnwL35vtz8BKpdQo4Gx88VriPIrIAOCHwGSl1Dh8JcgXYY3z+HfgklaPtXfeLsW35sUI\nfMuX/p9J8X0EjFNKjQcOAg8C+P92FgFj/fs87f/bNyNGRGQgMAc43uJhM85h5yilQv4LOBdY1eL+\ng8CDZsfVRpzv4vslOQD09z/WHzhgYkxZ+P7wLwLex7fEZRkQ2da5NSnGZOAr/AMPWjxuifPI12tE\n98a3RsX7wDyrnEcgG9jT0XkDngEWt7Vdd8bX6rmFwGv+29/4u8a3xse5ZpxD/2PL8DVA8oA+Zp7D\nznyFRUufthdvP2UBdjOJSDYwEfgS+P/tnb9rFFEUhb8LykJi4Q+IRlIksbDVVEEtBC00hLUVAgb0\nH7BSZEGwF0kjWggWEgyoQYJgpdaKEWMEFSMG3BBNGiNoE/FYvDe6LLu6guw8du4Hw8y8N8XhzN67\nO/cNe7dLWgaI+578lDEBnAF+xPNtwGdJ3+N5Cl4OAqvA9ViGumZm3STio6Ql4CLhF98ysAbMkp6P\nGc18SzGOTgL343Ey+sysDCxJmqubSkZjMzol6bfUgD0vzGwTcAc4LelL3noyzGwUWJE0Wzvc4NK8\nvdwADAFXJO0FvpJ/SewXsSZ+DBgAdgLdhMf8evL28W8kde/NrEIokU5mQw0ua7s+M+sCKsD5RtMN\nxpK6752S9JNtwG5mGwkJf1LSdBz+ZGa9cb4XWMlJ3n6gbGaLwBShxDMBbI4N7iENL6tAVdLjeH6b\n8CWQio+HgfeSViWtA9PAPtLzMaOZb8nEkZmNA6PAmGKdhHT07SJ8wc/F2OkDnpnZDtLR2JROSfqt\nNG9vO2ZmhP7BryRdqpmqbSQ/Tqj1tx1J5yT1SeonePZQ0hjwiNDgPld9GZI+Ah/MbHccOkTou5yE\nj4SyzrCZdcV7nulLyscamvk2A5yIb6AMA2tZGaidmNkR4CxQlvStZmoGOG5mJTMbICyWPmm3Pknz\nknok9cfYqQJD8XOahId/JO9Fhf+40DJCWOl/B1Ty1hM1HSA82r0AnsdthFA3fwC8jfutCWg9CNyL\nx4OEYFoAbgGlBPTtAZ5GL+8CW1LyEbgAvAZeAjeAUgo+AjcJ6wzrhOR0qplvhNLE5RhD84S3kfLQ\nt0Coi2cxc7Xm+krU9wY4mpeHdfOL/F7IbbuH/7r53zA4juMUiE4p7ziO4zgt4EnfcRynQHjSdxzH\nKRCe9B3HcQqEJ33HcZwC4UnfcRynQHjSdxzHKRA/AZEkKMH7TGJ6AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEICAYAAABfz4NwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzsvXl8lOW5//++Zib7RlZICBC2sIZG\nDIsLWECs0iparZVSq9Wj1X495/vtbnu6qKfVrqc9/bWn1R61aq249FioRXEBFFE2NbKKbCGENStZ\nJ8nMXL8/5pkQwkzmSTIJkLnfr9e8MvM893M/9ww611zL/blEVTEYDAaDwXG2F2AwGAyGcwNjEAwG\ng8EAGINgMBgMBgtjEAwGg8EAGINgMBgMBgtjEAwGg8EAGINgOEcRke+JyP+c7XUEQ0RuFZG3O71u\nFJExEZq7432LSIGIqIi4IjT3SGutzkjMZxh8GINg6FdEpExEWqwvouMi8riIJIe7TlUfVNV/GYg1\n9hVVTVbV/d2NEZFPikiFjbki9r6tz/7yTnOXW2v1RmJ+w+DDGATDQHC1qiYD04EZwPfP8nrOSSLl\nCRgMvcUYBMOAoaqHgZeBqQAikiciK0SkRkT2isgdgbEicp+I/MV6Hi8ifxGRahGpE5HNIjLUOner\niOwXkQYROSAiS63jDhH5vogcFJETIvKkiKRZ5wKhmFtEpFxEqkTk30OtW0QyrXXWi8gmYGyX8yoi\n46zni0Rkp7WewyLyTRFJst53nuUpNVrv/T4RecF6b/XArZ3fdyduE5EjInJURL7R6b5/FpEfd3rd\n4YWIyFPASOAf1v2+3TUEZePzf8763BpEZIeIlNj6hzactxiDYBgwRGQEsAj4wDr0DFAB5AE3AA+K\nyIIgl94CpAEjgEzgLqDF+qL9LXCVqqYAFwOl1jW3Wo95wBggGfhdl3kvBSYAC4AfisikEEv/PeAG\ncoHbrEcoHgW+Yq1nKrBaVZuAq4AjVsgmWVWPWOMXAy8AQ4CnQ8w5DxgPXAHc2zkMFApVvRkox/LO\nVPXnQYaF+/yvAZZZa1vBmZ+fYZBhDIJhIPi7iNQBbwNv4v/iGYH/C/k7qupW1VLgf4Cbg1zfjt8Q\njFNVr6q+p6r11jkfMFVEElT1qKrusI4vBf5TVferaiPwXeCmLmGZ+1W1RVU/BD4EPtH1xlYC9nrg\nh6rapKrbgSe6ea/twGQRSVXVWlV9P8xn866q/l1VfaraEmLM/da9twGPA0vCzBkWm5//26q60so5\nPEWQz8cwuDAGwTAQXKuqQ1R1lKp+1friywNqVLWh07iDwPAg1z8FrAKWWaGTn4tIjPXL+/P4PYaj\nIvJPEZloXZNnzdd5bhcwtNOxY52eN+P3IrqSbV13qMtcobgevxd0UETeFJGLuhlLl3ntjDmI/731\nFTuff9fPJ97kOQY3xiAYzhZHgAwRSel0bCRwuOtAVW1X1ftVdTL+sNBngC9Z51ap6kL84ZyPgD91\nmn9Ul7k9wPEerrPSum5El7mCoqqbVXUxkAP8HXgucCrUJTbW0PXegXBTE5DY6dywHsxt+/M3RA/G\nIBjOCqp6CHgHeMhKGk8DbidIHF1E5olIkRW+qccflvGKyFARucbKJbQCjUCgpPIZ4GsiMtoqc30Q\neFZVPT1cpxf4X+A+EUkUkcn4cxpnICKxIrJURNJUtd1aa2A9x4HMQGK7h/zAuvcU4MvAs9bxUmCR\niGSIyDDg/3W57jj+/Emw92X78zdED8YgGM4mS4AC/L9WXwR+pKqvBRk3DH/itR7YhT8P8Rf8//1+\nw7q+BrgM+Kp1zWP4Q01vAQfwJ4X/tZfrvAd/OOkY8Gf8cfxQ3AyUWVVDdwFfBFDVj/Abqf1WpVRP\nwj5vAnuBN4Bfquqr1vGn8Oc+yoBXOWUoAjwEfN+63zeDzGv38zdECWIa5BgMBoMBjIdgMBgMBgtj\nEAwGg8EAGINgMBgMBgtjEAwGg8EA+DfcnDdkZWVpQUHB2V6GwWAwnFe89957VaqaHW7ceWUQCgoK\n2LJly9lehsFgMJxXiEh3u+s7MCEjg8FgMADGIBgMBoPBwhgEg8FgMADnWQ7BYDCcHdrb26moqMDt\ndp/tpRi6IT4+nvz8fGJiYnp1vTEIBoMhLBUVFaSkpFBQUICInO3lGIKgqlRXV1NRUcHo0aN7NYcJ\nGRkMhrC43W4yMzONMTiHEREyMzP75MXZMggicqWI7Lb6rt4b5PxcEXlfRDwickOn4/NEpLTTwy0i\n11rn/iz+HriBc8W9fhcGg6HfMcbg3Kev/0ZhQ0aWBv3vgYX4+69uFpEVqrqz07By/P1rT5PYVdU1\nQLE1TwZ+Cd9XOw35lqq+0Jc3EAnKq5v52/sVqCoFWUl8dnr+2V6SwWAwDDh2PISZwF6rN20b/qbb\nizsPUNUyVd2Kv79tKG4AXlbV5l6vtp/4y8aD/Ncbe/jt6r184/kPafN09zYMBsPZIDk5WIfTnnPf\nfffxy1/+Muy4W2+9lRde6L/fq7fddhs5OTlMnTr1tOP33Xcfw4cPp7i4mOLiYlauXNlva+iKHYMw\nnNN7ulYQvO9tOG7C3yCkMz8Rka0i8msRiQt2kYjcKSJbRGRLZWVlL24bnvqWdnJS4nhg8RRUocHd\n3i/3MRgMhgC33norr7zyStBzX/va1ygtLaW0tJRFixYN2JrsGIRgQakeddURkVygCH+j9ADfBSYC\nM4AM4DvBrlXVR1S1RFVLsrPDSnH0isZWD8lxLlLi/RG0enePuiwaDIYBpLGxkQULFjB9+nSKiopY\nvnw5AGVlZUycOJF/+Zd/YerUqSxdupTXX3+dSy65hPHjx7Np06aOOT788EPmz5/P+PHj+dOf/G24\nVZV77rmHyZMn8+lPf5oTJ050jH/ggQeYMWMGU6dO5c477yQSjcXmzp1LRkZGn+eJJHbKTis4vcl3\nPqeafNvlRuBFq88sAKp61HraKiKP0yX/MJA0tXpIinORGu+v3a1vMR6CwRCK+/+xg51H6iM65+S8\nVH509RRbY+Pj43nxxRdJTU2lqqqK2bNnc8011wCwd+9enn/+eR555BFmzJjBX//6V95++21WrFjB\ngw8+yN///ncAtm7dyoYNG2hqauKCCy7g05/+NBs2bGD37t1s27aN48ePM3nyZG677TYA7rnnHn74\nwx8CcPPNN/PSSy9x9dVXn7aup59+ml/84hdnrHfcuHE9Dj397ne/48knn6SkpIRf/epXpKen9+j6\n3mLHQ9gMjLealcfiD/2s6OF9ltAlXGR5DYg/LX4tsL2Hc0aMxlYPSXFOUhMsg2BCRgbDOYuq8r3v\nfY9p06Zx+eWXc/jwYY4fPw7A6NGjKSoqwuFwMGXKFBYsWICIUFRURFlZWcccixcvJiEhgaysLObN\nm8emTZt46623WLJkCU6nk7y8PObPn98xfs2aNcyaNYuioiJWr17Njh07zljX0qVLO8I8nR89NQZ3\n3303+/bto7S0lNzcXL7xjW/07oPqBWE9BFX1iMg9+MM9TuAxVd0hIg8AW1R1hYjMwN+kOx24WkTu\nV9UpACJSgN/DeLPL1E+LSDb+kFQp/obkZ4XGVi/DhyR08hBMyMhgCIXdX/L9xdNPP01lZSXvvfce\nMTExFBQUdNTex8WdSkU6HI6O1w6HA4/n1P/XXcszA6+DlW263W6++tWvsmXLFkaMGMF9990XtNY/\nUh7C0KFDO57fcccdfOYzn7F9bV+xtQ9BVVeqaqGqjlXVn1jHfqiqK6znm1U1X1WTVDUzYAysc2Wq\nOlxVfV3mnK+qRao6VVW/qKqNkXxjPaGp1UNynJPUhEAOwXgIBsO5ysmTJ8nJySEmJoY1a9Zw8KAt\nZefTWL58OW63m+rqatauXcuMGTOYO3cuy5Ytw+v1cvToUdasWQPQ8eWflZVFY2NjyC/3SHkIR48e\n7Xj+4osvnlGF1J8Y6QrOzCGYKiOD4dxl6dKlXH311ZSUlFBcXMzEiRN7PMfMmTP59Kc/TXl5OT/4\nwQ/Iy8vjuuuuY/Xq1RQVFVFYWMhll10GwJAhQ7jjjjsoKiqioKCAGTNmROR9LFmyhLVr11JVVUV+\nfj73338/t99+O9/+9rcpLS1FRCgoKODhhx+OyP3sIJHIlg8UJSUl2h8Ncgq//zJfvriAe6+ayLh/\nf5m7LxvLNz81IeL3MRjOV3bt2sWkSZPO9jIMNgj2byUi76lqSbhro17LqN3ro83jIznOhYiQGu8y\nISODwRCVRL1BaGr1J5qS4vzRs5T4GFN2ajAYopKoNwiNlkFItgxCaoLLbEwzGAxRiTEIXTyEVOMh\nGAyGKCXqDcKpkJETsAyCySEYDIYoJOoNQmOrF6BDxyg1wWU2phkMhqgk6g1C16RyanyM2YdgMJyD\nDCb560OHDjFv3jwmTZrElClT+K//+q/T1ne25K+jfmNaRw4hNuAhxNDU5sXj9eFyRr29NBgM/YDL\n5eJXv/oV06dPp6GhgQsvvJCFCxcyefJkwC9//c1vDrzeZ9R/4zW6u1QZWaGjBlNpZDCckwwG+evc\n3FymT58OQEpKCpMmTeLw4cN9mjMSRL2HEGwfAvj1jNKTYs/augyGc5aX74Vj2yI757AiuOqntoYO\nNvnrsrIyPvjgA2bNmtVx7FyWvx7UNLZ5iHU5iHX5P4oOCWyTWDYYzkkGk/x1Y2Mj119/Pb/5zW9I\nTU0FznH568FOk9UtLUBqvFE8NRi6xeYv+f5isMhft7e3c/3117N06VI++9nPdhw/5+WvBzONbk/H\nHgTo7CEYg2AwnIsMBvlrVeX2229n0qRJfP3rXz/tnJG/Pos0tno7KowA0zXNYDjHGQzy1+vXr+ep\np56iqKiI4uJiAB588EEWLVpk5K/t0h/y10se2YDH5+P5uy4G/L0Qiu57le9/ehL/MmdMRO9lMJyv\nGPnr8wcjf90Hmto8HRVG4N+P4BATMjIYDNFH1BuExtbTDYLDIX4JbLMPwWAwRBm2DIKIXCkiu0Vk\nr4jcG+T8XBF5X0Q8InJDl3NeESm1His6HR8tIhtFZI+IPCsiZ6Xov9HtITn29FSKX8/IeAgGgyG6\nCGsQRMQJ/B64CpgMLBGRyV2GlQO3An8NMkWLqhZbj2s6Hf8Z8GtVHQ/UArf3Yv19pqmLhwCQEmcU\nTw0GQ/Rhx0OYCexV1f2q2gYsAxZ3HqCqZaq6FfDZuan4i33nA4F6rCeAa22vOkL4fEpTm5fk+GAe\nggkZGQyG6MKOQRgOHOr0usI6Zpd4EdkiIhtEJPClnwnUqWrgWzfknCJyp3X9lsrKyh7cNjzN7X7p\n6+RO+xDA9EQwGAzRiR2DcObWPehJrepIq9zpC8BvRGRsT+ZU1UdUtURVS7Kzs3tw2/AEhO26hoxS\nE0zXNIPhXGMwyV8DFBQUdOxDKCk5VRFaU1PDwoULGT9+PAsXLqS2trbf1tAVOwahAhjR6XU+cMTu\nDVT1iPV3P7AWuACoAoaISOCbuEdzRoqu/ZQD+HsimJCRwWDoX9asWUNpaSmd91f99Kc/ZcGCBezZ\ns4cFCxbw058OnFSIHYOwGRhvVQXFAjcBK8JcA4CIpItInPU8C7gE2Kn+3XBrgEBF0i3A8p4uvq80\nhTIICS4aWj14fefPpj2DIVoYDPLX3bF8+XJuueUWAG655ZYOhdaBIKx0hap6ROQeYBXgBB5T1R0i\n8gCwRVVXiMgM4EUgHbhaRO5X1SnAJOBhEfHhNz4/VdWd1tTfAZaJyI+BD4BHI/7uwtBV+jpAwEA0\ntnpIs6QsDAaDn59t+hkf1XwU0TknZkzkOzO/Y2vsYJG/FhGuuOIKRISvfOUr3HnnnQAcP36c3Nxc\nwN83obNh6m9saRmp6kpgZZdjP+z0fDP+sE/X694BikLMuR9/BdNZoyGEh5Bo7UtoafMag2AwnGME\n5K/feustHA5HUPlrwJb8dUJCgm3565///Oc0NzdTU1PDlClTzjAIS5cuZenSpbbfx/r168nLy+PE\niRMsXLiQiRMnMnfu3D58Mn0nqsXtQnkIibH+qqPmNpNHMBi6YveXfH8xWOSv8/LyAMjJyeG6665j\n06ZNzJ07l6FDh3L06FFyc3M5evQoOTk5YT+TSBHV0hWnDMLpZacJHQbBO+BrMhgM3TMY5K+bmppo\naGjoeP7qq692yFxfc801PPHEEwA88cQTLF68+Izr+4uo9hAaW/1f+Clxp4eFAnLYLe3GIBgM5xqD\nQf76+PHjXHfddQB4PB6+8IUvcOWVVwJw7733cuONN/Loo48ycuRInn/++T7fzy5RLX/9y1W7+e+1\ne9n34KLTXMX3DtZy/R/e4YnbZnJZYWT3PhgM5yNG/vr8wchf95KA0mnXuGFHDqHV5BAMBkP0ENUG\nwd3uJSHGecbxRJNDMBgMUUhUG4RWj4+4mDM/go6ksskhGAyGKCLKDYKXeFcwDyGwD8GEjAwGQ/QQ\n1QbB3R7CQ4gxISODwRB9RLVBaPV4iQviITgdQpzLQYsxCAaDIYqIboPQ7iPOFfwjSIx1Gg/BYDiH\nGEzy17t376a4uLjjkZqaym9+8xvg3Je/HrS0enzEB6kyAn8ewRgEg8HQH0yYMKFjJ/N7771HYmJi\nx0a1c13+etDibvd26yG0tJukssFwrjHY5K/feOMNxo4dy6hRo4BzXP56MNPq6T5k1NRqPASDoSvH\nHnyQ1l2Rlb+OmzSRYd/7nq2xg0X+OsCyZctYsmRJx+tzXv56sNLq8YYMGSXEOk1S2WA4Bxks8tcA\nbW1trFixgoceeqiXn0ZkiWqD4O42qeziRMOZErcGQ7Rj95d8fzFY5K8BXn75ZaZPn87QoUM7jhn5\n67NEq8dLXDcegkkqGwznHoNB/jrAM888c1q4CIz89VlBVbvPIcSYkJHBcC4yGOSvAZqbm3nttdd4\n+OGHTztu5K9tEkn56zaPj8Lvv8y3PjWB/zNv3Bnnf7R8O38vPcKHP7oiIvczGM5njPz1+UO/y1+L\nyJUisltE9orIvUHOzxWR90XEIyI3dDpeLCLvisgOEdkqIp/vdO7PInJAREqtR7GdtUQKt8f/6z+U\nh5AQ6zIegsFgiCrChoxExAn8HlgIVACbRWSFqu7sNKwcuBX4ZpfLm4EvqeoeEckD3hORVapaZ53/\nlqr2z1bAMLS2+4DQBiEp1kmb14fH68PljOpUi8FgiBLs5BBmAntVdT+AiCwDFgMdBkFVy6xzvs4X\nqurHnZ4fEZETQDZQx1mmtcNDCJ1UBr8EdmrAINQcgBX/Ch43xCbDDY9BYsaArNdgMBj6Gzs/fYcD\nhzq9rrCO9QgRmQnEAvs6Hf6JFUr6tYjEhbjuThHZIiJbKisre3rbkLR6LA8hiNopnJLAbu68OW3f\nG1C2DlRh/xo4+E7E1mMwGAxnGzsG4czCXOhRJlpEcoGngC+rasCL+C4wEZgBZADfCXatqj6iqiWq\nWpKdHbn+xu727j2EU13TOslXVO8HVwLc/KL/ddXuiK3HYDAYzjZ2DEIFMKLT63zgiN0biEgq8E/g\n+6q6IXBcVY+qn1bgcfyhqQEjnIeQEKyNZvVeyBgD8amQOhwqPw56rcFgMJyP2DEIm4HxIjJaRGKB\nm4AVdia3xr8IPKmqz3c5l2v9FeBaYHtPFt5XwiWVAx5CS+c2mjX7IHOM/3nWeOMhGAwDyGCSvwa4\n7bbbyMnJYerUqacdDyV/rar827/9G+PGjWPatGm8//77EV9TWIOgqh7gHmAVsAt4TlV3iMgDInIN\ngIjMEJEK4HPAwyKyw7r8RmAucGuQ8tKnRWQbsA3IAn4c0XcWhkBSObT8dRcPweuB2jLIGOt/nTUB\nqvb48wkGg8HQQ2699VZeeeWVM46Hkr9++eWX2bNnD3v27OGRRx7h7rvvjviabNVTqupKVS1U1bGq\n+hPr2A9VdYX1fLOq5qtqkqpmquoU6/hfVDVGVYs7PUqtc/NVtUhVp6rqF1W1MeLvrhvcYTyEhJgu\nfZVPloPPA5nWJrbsQmhrhHrb0TODwRABBov89dy5c8nIOLNKMZT89fLly/nSl76EiDB79mzq6uo4\nevRon9fRmaiVrghXdnqGh1C93/83s5OHAP6wUVqPi64MhvOWdc99TNWhyP5+yxqRzJwbC22NHWzy\n110JJX99+PBhRow4lc7Nz8/n8OHDHWMjQRQbBL+HEB+q7DSui0GosaplAyGjbMsgVH4MY+djMBgG\nhsEkf93T992VYOqsfSF6DULYstNAyCjgIezzb0ZLtqRok7IhPs0klg1Rh91f8v3FYJK/DkYo+ev8\n/HwOHTq1JayiooK8vDzb89ohajUZwpadWsnmpkAOoWafv+Q08B+MiD9sZEpPDYYBZTDJXwcjlPz1\nNddcw5NPPomqsmHDBtLS0iIaLoJo9hA83SeVnQ4hzuU43UPI66K/l10IH7/an8s0GAxdGCzy10uW\nLGHt2rVUVVWRn5/P/fffz+233x5S/nrRokWsXLmScePGkZiYyOOPPx6RdXQmauWv//PV3fx/a/ay\n/8FFIeNwFzzwKp+Zlsd/XD0BfjwU5nwd5n//1ID1v4XXfgDfKYOE9Iisy2A4FzHy1+cP/S5/PRhx\nW81xukvKJMa6/Enl2oOg3lMJ5QBZVizVhI0MBsMgIGoNQmu7N2RCOUBCrJOWds+pCqPMLgZhiFUC\nVn+4H1ZoMBgMA0v0GoRu2mcGSAz0VQ584aeNOH1A8jD/38YTGAwGw/lOVBuEULIVARJiLIPQVO0/\nkJjZZUA6OFzQeLyfVmkwGAwDR9QaBHe7N6yHkBRntdFsroK4NHDFnj7A4YDkocYgGAyGQUHUGoRW\njy/kHoQACbFOfz+E5urQndGSc4xBMBgMg4IoNgjhk8qJHSGjKkjKCj4oeRg0GINgMPQ30SJ//a1v\nfYuJEycybdo0rrvuOurqTnUcfuihhxg3bhwTJkxg1apVEV9T9BqEdl9IHaMAHUnl5qoz8wcBjIdg\nMBh6QSj564ULF7J9+3a2bt1KYWEhDz30EAA7d+5k2bJl7Nixg1deeYWvfvWreL3eM67vC1FrENw2\nPISE2EAOoQYSQ3gIKcOgqdLfL8FgMPQ7g13++oorrsDl8otIzJ49m4qKCsAvt3HTTTcRFxfH6NGj\nGTdu3GnvKRJEr3RFu72y0zavF22qQpK68RBQvxeRMizyCzUYzjHW/PkRThzcH9E5c0aNYd6td9oa\nO9jlrzvz2GOP8fnPfx7wy1/Pnj2741xA/jqSRK9BsFF2mhjrJAk34m3tJmRkGYGGY8YgGAwDQLTI\nX//kJz/B5XJ1zGnkr/sRO2WnibEu0qXBehEqqTzU/9dsTjNECXZ/yfcXg13+Gvwqpy+99BJvvPFG\nx5qM/HU/YmenclKck0zq/S9CeQgpAYNwLIKrMxgMoRjs8tevvPIKP/vZz1ixYgWJiYkdx6+55hqW\nLVtGa2srBw4cYM+ePcycObPH7707bBkEEblSRHaLyF4RuTfI+bki8r6IeETkhi7nbhGRPdbjlk7H\nLxSRbdacv5VI+z5haPV4iQsbMurkIYQqO02yGuaYSiODYUBYunQpW7ZsoaSkhKeffrpP8tezZ88+\nTf56/PjxFBUVcffddweVv7722msjKn990UUXsXv3bvLz83n00UcBf76ioaGBhQsXUlxczF133QX4\nQ2A33ngjkydP5sorr+T3v/89Tmf332E9RlW7fQBOYB8wBogFPgQmdxlTAEwDngRu6HQ8A9hv/U23\nnqdb5zYBFwECvAxcFW4tF154oUYCn8+nBfe+pL9a9VG3497eU6lf/+63VX+Uqlq9P/TAh0aq/vOb\nEVmbwXAusnPnzrO9BINNgv1bAVs0zPerqtryEGYCe1V1v6q2AcuAxV2MSpmqbgV8Xa79FPCaqtao\nai3wGnCliOQCqar6rrXYJ4FrbVmwCNDm9aGKDQ/BSYaECRmBP4/QYEJGBoPh/MaOQRgOHOr0usI6\nZodQ1w63noedU0TuFJEtIrKlsrLS5m27J1y3tABJcS4ypAGvIwbiUkIPTBlqksoGg+G8x45BCBbb\nt7srI9S1tudU1UdUtURVS7Kzs23etnta2+0ZhMRYJxk00BqTfqqXcjCSh5qkssFgOO+xYxAqgM6N\nAPKBIzbnD3VthfW8N3P2mVaPf7t3uJBRUqyLDKnHHTOk+wmTLQ/hPGpHajAYDF2xYxA2A+NFZLSI\nxAI3AStszr8KuEJE0kUkHbgCWKWqR4EGEZltVRd9CVjei/X3CrddDyHOSYY00OQK0y85eSi0N0Nr\nQ6SWaDAYDANOWIOgqh7gHvxf7ruA51R1h4g8ICLXAIjIDBGpAD4HPCwiO6xra4D/wG9UNgMPWMcA\n7gb+B9iLv4rp5Yi+s27o8BDCaBnFOh1kSgONztTuJzSb0wwGwyDA1j4EVV2pqoWqOlZVf2Id+6Gq\nrrCeb1bVfFVNUtVMVZ3S6drHVHWc9Xi80/EtqjrVmvMeq9poQAgklcOpnYoIGdJAvSOt+wnN5jSD\nod+JFvnr++67j+HDh1NcXExxcTErV67sOGfkr/uBU0nlMJs6vO2k0sRJCeMhdGxOMx6CwWCwRyj5\na4Cvfe1rHTudFy1aBBj5637D3ZFUDvP2m/29lGsIZxCyTxtvMBj6j8Eufx0KI3/dT9gtOw18wVdr\nGIOQmAGIv7OawTDIqfvHPtqONEV0zti8JIZcPdbW2GiQv/7d737Hk08+SUlJCb/61a9IT08fEPnr\nqPQQAknlcPLXgS/4Km9S9+McTkhI9zfKMRgM/Ypa8tfTpk3j8ssvDyp/7XA4bMlfZ2Vl2Za/njVr\nFkVFRaxevZodO3acsa5Iidvdfffd7Nu3j9LSUnJzc/nGN77R8b67YuSvI4B9D8FvEE54u9mlHCAp\nq2O8wTCYsftLvr8Y7PLXQ4cO7Xh+xx138JnPfAYw8tf9ht2yU5r9FbLHPIndjwN/v4Qmk0MwGPqb\nwS5/ffTo0Y7nL774YkcV0kDIX0enhxDQMgqXVG6pA+BEe0L4SZOyoOrjHq1DVfnX1f/KtqptAHxx\n0he5Y9odPZrDYIg2li5dytVXX01JSQnFxcV9kr8uLy8/Tf569erVFBUVUVhYGFT+uqCgIKLy12vX\nrqWqqor8/Hzuv/9+br/9dr6Dk0eqAAAgAElEQVT97W9TWlqKiFBQUMDDDz8MnC5/7XK5+kX+Wgaw\n/L/PlJSU6JYtW/o8z+/X7OUXq3bz8Y+vIra7sNGqf6dt46OU+J5g632f6n7Sl74GO5fDt+33mv3g\nxAd86eUvMTd/LpXNlZQ3lPPG594gKSZMzsJgGGB27drFpEmTzvYyDDYI9m8lIu+pakm4a6MyZORu\n9yICMc4wCZmWOtyuFJrbvOHLzBKz/CEmn/264Od2P0dSTBK/mPsLfjD7BzS1N7F874ApeBgMBsNp\nRKVBCLTPDJuhb6mlLSYVj09p83Zt9dCFpCxAoaXW1hpq3bWsKlvF1WOuJjEmkaLsIqZlTeOZj57B\np2HuZTAYDP1AdBqEdm/4hDKAuw5PjF+2ork1zC//QItNm6Wny/cup93Xzo0Tbuw49oVJX6Csvox3\njrxjaw6DYSA5n8LL0Upf/42i0yB4fGF1jABoqcMb5zcITW2e7scmBgyCvdLTv+35G9NzpjM+fXzH\nsStGXUFWQhZ/+/hvtuYwGAaK+Ph4qqurjVE4h1FVqquriY+P7/UcUVll5O6Bh+AbUghAc5tND8HG\nXoQTzScoqy87zTsAiHHGcEneJbxZ8SaqGvFNJwZDb8nPz6eiooJIdS009A/x8fHk5+eHHxiCqDQI\nLe1e2x6C5vp7IYQ1CD3wELZV+stMi7KKzjh34dALWb5vOQfqDzAmbUz4NRoMA0BMTAyjR48+28sw\n9DNRGTJyt/tICCdb4WmD9iYkwd8trbk1XMgo0//XhkHYWrUVl8PFpMwzy/guyLkAgPePvx92HoPB\nYIgkUWoQvGHbZ+L2b0pzJvo9hKZwHoLT5dczshEy2la1jQnpE4hzxp1xblTqKDLiM/jgxAdh5zEY\nDIZIEp0GweMLL2xn7VJ2JgVCRmE8BLDkK7o3CF6flx1VO4KGi8CvpTI9Z7rxEAwGw4ATlQahtd1L\nfDhhO8tDiE3265U3hSs7BUvgrns9o30n99HsaWZa9rSQYy7IuYCKxgpONJuGOwaDYeCISoPgTyrb\n8xBiU/y5AXseQmbYfQjdJZQDTB86HYD3TxgvwWAwDBy2DIKIXCkiu0Vkr4jcG+R8nIg8a53fKCIF\n1vGlIlLa6eETkWLr3FprzsC5nEi+se5w26kysjyEeMsg2PMQssOGjLZVbSM1NpVRqaNCjpmYMZEE\nVwIfHDd5BIPBMHCENQgi4gR+D1wFTAaWiMjkLsNuB2pVdRzwa+BnAKr6tKoWq2oxcDNQpqqlna5b\nGjivqgMWH7FVZWRJUDgT04lzOWhut+EhJGVBSw34QktPbK3aSlFWUbd7DFwOF0VZRWyt3Br+ngaD\nwRAh7HgIM4G9qrpfVduAZcDiLmMWA09Yz18AFsiZ33hLgGf6sthI4e5ByIj4NJLiXOGlK8CfVFZf\nSD2jVm8r++r2MSVrStipCtML2Vu3F28PxPIMBoOhL9gxCMOBQ51eV1jHgo5RVQ9wEsjsMubznGkQ\nHrfCRT8IYkAAEJE7RWSLiGyJxC5Jn0/94nZ2yk5jk8EZQ2KsM7x0BYTVMzpYfxCf+hibFr7jVGF6\nIW6vm0MNh8KONRgMhkhgxyAE+6LuKmjS7RgRmQU0q+r2TueXqmoRMMd63Bzs5qr6iKqWqGpJdna2\njeV2T6A5TtgcQksdxPs3pSXF2vQQwshX7D/p75UwZkj4HcgTMiYA8HFtz5ruGAwGQ2+xYxAqgBGd\nXucDR0KNEREXkAbUdDp/E128A1U9bP1tAP6KPzTV77jb/V/s8eG0jNx1/o1mQGKcTQ8hsXsP4UDd\nAQShILUg7FRjh4zFIQ5jEAwGw4BhxyBsBsaLyGgRicX/5b6iy5gVwC3W8xuA1WrJIoqIA/gc/twD\n1jGXiGRZz2OAzwDbGQDcVj/lhFgbOYSETh5CuJ3K4K8ygpCVRvtP7icvOY94V3g1wjhnHAWpBeyu\n3R3+vgaDwRABworbqapHRO4BVgFO4DFV3SEiDwBbVHUF8CjwlIjsxe8Z3NRpirlAhap27i0ZB6yy\njIETeB34U0TeURjc7XZDRrWQ6Y/1J8Q6qWpsDT95YiYgIQ3CgZMHGJ1mXyCsML2wo9+ywWAw9De2\n1E5VdSWwssuxH3Z67sbvBQS7di0wu8uxJuDCHq41IvQsZBTwEJy0tNvwEJwuSMyApjMraL0+L2X1\nZczKnWV7rYXphbxS9goNbQ2kxKbYvs5gMBh6Q9TtVO4wCHbKTq2kcmKcy97GNLA2p52ZQzjSdIRW\nb2uPJK0DieW9dXttX2MwGAy9JeoMQuCXflx3ISNPK3haOpLKSbFOe9IVEHK38oGTBwB7FUYBCtP9\nzXl215g8gsFg6H+irkFOa0cOoRsPIbApzQoZJVpJZZ9PcTjCdDFLyoJjZ8b9AwZhdKr9HMLQxKGk\nxKb0S6WRp7KSqocfwdfUhCMhgcw77yBm2LCI38dgMJw/RJ1BCISMupWuCOw0DuxDiPOPbWn3khQX\n5iNLyoHGM0NG+0/uJyM+gyHWnHYQEQrTCyNuELx1dZTfdjttZWU4s7PwVlXTtH49I596kpicAZOU\nMhgM5xhRFzIKlJ126yG4z/QQAJu7lbOh9aQ/7NSJ/XX7e1RhFGDckHHsr9sfsebmvuZmyu/8Cm1l\nZYx4+I+MX72akX9+nPbKSspvuw1vXV1E7mMwGM4/os8g2Ck77dAxsnIIlodguycCnJZHUFX2n9zf\nqx7Jo9NG09DeQFVL+E5sdqh54gncW7cy/Nf/SdLFFwOQOH06I/7wB9oOlFH1hz9E5D4Gg+H8I+oM\nQkubjbLTLh5CanwMAA3u9vA36NicdipsVNdaR31bva0dyl0ZO8S/F2LfyX09vrYrvqYmav78BMmX\nXUbK5Zefdi5p1kzSFi+m9plltB8/3ud7GQyG84+oMwi2QkYdHoJlEBL8BqG+xUbIKNmKwXcyCOUN\n5QDd9kAIRUAIb3/d/jAjw1O77Fm8J0+SdfddQc9nffWrqCpVf/xjn+9lMBjOP6LPIFgho7juWmgG\nkspdPIR6Wx7CmXpG5fV+gzAidUSwK7olKyGLlJiUDmG83uJzu6l+/HGSLr6IhOLioGNi84cz5PrP\nUvfC32irONyn+xkMhvOPqDMIre1e4lyO7stHW2ohPg0cfi8iNcGfVK5v6V3I6FDDIQQhPzm/x+sV\nEcYMGcO+ur6FjOr/+U+8VVVkfiW4dxAg6667wOej7tll3Y4zGAyDj6gzCPaa49RAQkbHyx55CLHJ\n4Eo4I2SUm5RLrDO2V2seO2Rsnz2E+n/+k5iRI0mcOaPbcTHDhpF86aWcXPEP1Gua8xgM0UTUGYQW\nO/2UW2o7dikDJMY6cTrEXg5BxO8ldNqLcKj+UK/CRQHGpI2hxl1DrTt4J7ZweKqradqwkdRFV3Xb\nujNA2nXX4jl+nKYNG3p1P4PBcH4SdQbB3e4L7yE015xmEESE1HiXPQ8B/HmELiGjkSkje7NcgI5y\n1d56CfWrVoHPR+qiRbbGJ8+bhyM1lZN/X96r+xkMhvOTKDQI3u53KYPfQ0jMOO1QakKMvRwCnCZw\nV99WT21rbZ8MQqD0tNcGYeVK4saPI76w0NZ4R1wcqYuuouG11/A2NvbqngaD4fwj+gyCnX7KLad7\nCODPI9S7bQrcJZ8SuAv0RO5LyGhY0jASXAm9Kj1tP3aMli3v2fYOAgy59lrU7abh1dd6fM9wtDS0\ncXB7NQe3V1N9xBgcg+FcISq1jOK7Kzn1ecF98rSkMvgrjXrsIahyqN5vEPriITjEwei00b2qNGp4\n7XUAUq68skfXxX/iE8Tk5dHw+usM+ex1Pb5vMNSn7Hj7CO++uI+2TvmYSRfnctFnx5KQ3Luku8Fg\niAxRZxBa270MSezmi8d90v83iIewr8Hmr9mkbPC1g7uuY1NafkrPS047MzZtLJuOberxdY1vryO2\noIC40T3TURIRkufPp+755/E1N+NITOzxvTujPmXVn7az74NKhk9Ip2RRAa4YB/tLK/nw9UMc3F7N\n9d++kNSshD7dx2Aw9J6oCxmFrTJqrvH/DRYyslNlBH7FU4CmKsrry8lJyCHB1bcvujFDxnC8+TiN\nbfZDLL7WVpo3biJpzpxe3TNlwXy0tZWmd97p1fWd2fTSAfZ9UMnsa8ew+P8Vkz8hnWFj0rj4s+O4\n4bsleD0+Xvr9VlrtfsYGgyHiRJ1BCFtlFNilfEZSuYdVRgBNlRxq6FvJaYBApVGgr4IdmrdsQd1u\nkudc2qt7JpaU4EhNpeH1N3p1fYC9751gy8oyJl2cy/RPjTqj9DV7RApX3jmVk8ebWfWn7agvMsqu\nBoOhZ9gyCCJypYjsFpG9InJvkPNxIvKsdX6jiBRYxwtEpEVESq3HHztdc6GIbLOu+a3YKZCPAGGr\njFpCewjNbV7avb7wNwnsVm48QXlDeZ/yBwF6I3LXtO5tJDaWxBndb0YLhcTEkHzZZTSuXYt6evfL\nvbW5nTef2U1OQSqXLZkQch9E/sQM5nx+PId21vDRhqO9upfBYOgbYQ2CiDiB3wNXAZOBJSIyucuw\n24FaVR0H/Br4Wadz+1S12Hp01k34A3AnMN569Czr2UvC7lTu0DHqYhASAoqn9gXumusrqGqpYkRK\n3z2E4cnDiXHE9KjSqHHdOhJnzMCR0PtwVcqC+Xjr6mh+//1eXb9lZRnupnY++YUJOMNsCJwyZzi5\nY9N453/34W6y6Y0ZDIaIYcdDmAnsVdX9qtoGLAMWdxmzGHjCev4CsKC7X/wikgukquq76u/88iRw\nbY9X3wv8Zad2hO26GoQe6BklZoHDxSGrKmhkat89BJfDRUFage29CO2HD9O2bx9JvQwXBUi6dA7E\nxNC4Zm2Pr6073szWNRVMuiiX7JEpYceLQ5i7pJDWpnY2Lu+7uqvBYOgZdgzCcOBQp9cV1rGgY1TV\nA5wEMq1zo0XkAxF5U0TmdBpfEWbOiOP1KW0eX/e9EJprAPGL23WiR3pGDgckD6O8oe8lp50ZmzbW\ndulp4/r1ACRf2jeD4ExOIvHCC2l6e12Pr93w9304XQ5mLbbfGCgrP4WieflsX3eYmqNNPb6nwWDo\nPXYMQrBf+l2zfqHGHAVGquoFwNeBv4pIqs05/ROL3CkiW0RkS2Xlmb2Ke0KrrV4ItX7Za8fpY3rU\nEwEgNZfylhMAEQkZgT+xfLjxMG6PO+zY5g0bcWVnEzt2bJ/vmzxnDq179tJ+1H5sv+54M/tKK5k2\nP5+ktLge3a/kKn9J6nuvlPVwpQaDoS/YMQgVQOdvtHzgSKgxIuIC0oAaVW1V1WoAVX0P2AcUWuM7\nF+YHmxPrukdUtURVS7Kzs20sNzSBXggJ3YaMztylDD30EABScjnUVk9GfAbJsck9XmswxgwZg6KU\n1Zd1O05Vadq0icTZs22J2YUjea7fsWtcZ99LKH29HIdTmDav58YwISWWqXOHs2fTcepONPf4eoPB\n0DvsGITNwHgRGS0iscBNwIouY1YAt1jPbwBWq6qKSLaVlEZExuBPHu9X1aNAg4jMtnINXwL6XUnN\n3W7XQ8g443CPcggAqXmUqzti4SI4VXoaLmzUtm8f3qoqkmbNjMh9Y8eNw5WbS9O6t22Nb65v46MN\nx5g4axiJqb3bfVy8cCQOl4P3XznYq+sNBkPPCbtTWVU9InIPsApwAo+p6g4ReQDYoqorgEeBp0Rk\nL1CD32gAzAUeEBEP4AXuUlWrrpO7gT8DCcDL1qNfsW0QErPOONxzD2EY5U5hVlJuj9cZilGpo3CK\nM6xBaNq4EYDEWbMicl8RIXnOHOpXrkTb25GYmG7Hb3uzAm+7j+KFvTeGSWlxTL40jx1vHmbGZ0aT\nkhHf67n6i9pjR/j43bc5fmAvAPFJyYwtmc2oaRfgCvMZGQznIrakK1R1JbCyy7EfdnruBj4X5Lq/\nAX8LMecWYGpPFttXWjoMQpidypnjzzjco54IgDspm+MuFyNi08IPtkmsM5YRKSPCbk5r3rgJV14u\nMfl9k8voTNKcS6l77jlaSku73dfg9fjY8dZhRhVlkj4sqU/3LF4wgu1rK9j+1mEuurbvuZBI0Vhb\nw+v/89/s2+LvF5GeOxyH00ljTTXbVr9KQmoa8269k4kXz41IyM5gGCiiSsuoo59ytx5C3Rm7lKHn\nPREqYvwf7UiJ7C/bMWlj2Fu3N+R59flo3rSJ5E9+MqJfRkkXXQQuF41vrevWIJRtraKloZ2pc/te\nNJaalcDoT2Szc90RZiwqwBUbRqV2ANi7eQOr/vAbPG1tXHzjUqZctoDULP++E6+nnYPbSnn3hWdY\n+dtfsPudt7jq/3yDuD7qQBkMA0VUSVe0BjyEUGWnXg+0ngyaVIae9UQox3+vkRrZj3hc+jgONRyi\n1dsa9Hzrnj146+pInB2ZcFEAZ3IyicXFNK7vPo+w8+0jJKfHMXJKZrfj7DJtXj7upnY+3nw8IvP1\nhV1vr2XFrx4kbWguN//8t1x0/ZIOYwDgdMUw5oIZLPmPX3DZF29j//ubef4//p3m+pNncdUGg32i\nyiC4rbLThFC/NN11/r+hDEIPeiIc8vpr6Ee0Bf/i7i3j08fjVW/IHcvNVv4gKUL5g84kXXoprTt3\n4amqCnq+vqqF8l01TLw4F4cjMt5JXuEQMocnsXVNBf49jGeHXevWsPJ3vyJ/0hRu/NGDZOSFDsc5\nHE5Krv4si7/571QdKuO5+79LS0P9AK7WYOgd0WUQrJBRyBxCh9LpmSEj6FlPhPLm46T5fKQ11YQf\n3AMKh/i7nu2p2xP0fNOmTcSMGEFMbuSS2QGSrE1uodRPd73j36cw+ZK8iN1TxF+6Wl3RyNF9Z+eX\n9pGPP2LVH/+LEZOLuO7eHxEbb08KZOyFs/jsvfdTd+wIK/7zQbweI8dhOLeJMoMQJmQUQrYigN9D\nsGkQGsoZqU5oCLq9oteMTB1JrCOWj2s+PuOc+ny0bN7SazG7cMRPnoQzPZ0maxd0Z3w+5aN3jzJy\nckbEK4LGzxhKbLyTHesOR3ReOzTW1rDiPx8kOTOLq7/+XWLievbeRk6dxqfu+r9U7NzO6//z32fV\nyzEYwhFVSeWWcGWnHdLX3RgEm1VGhxoO8QlnItRHVrnT5XAxdsjYoB5C6549eE+eJHFm/xgEcThI\nuvhiGte/g/p8iOPU74nDH9fSWNvKxdePi/h9Y+KcFM4axq71R5lzYzvxSQNT0qk+H//87c9pbW7i\n+u89QEJyeD2mYEyaM4+aIxVs+N9nySucRNH8KyK80r7hbWrH/VENbeX1eKrdoIrEOIkZnkxcQSpx\nY4cgEQoBGs5tosxDCBMyCiF9HcBuT4R2bztHm44yMjYDGo71aq3dMT59PHtqzzQIzZs2A5DUTx4C\n+MNG3qoqWnfvPu347g3HiI13MnramXs4IsGUOXl4PT52b4j85xmK91/+BxU7tzP/y18he2RBn+a6\n+HNLGTl1Gqv//DA1RyrCXzAAeKpbqHnhY44+tIna5z+mubQSbfOiXsVT66ZhdTlVj27n2C+30LDu\nMOqxIf1uOK+JKg8h7MY0GyGjQE+EGGdoW3qo8RA+9TEyaRg0bgSfzy94FyHGDxnPin0rqHPXMSR+\nSMfx5s2bicnLI2Z4/+kEJl1yMQCN694mftIkANpbvez7oJLCkpx+Kw3Nyk9h6OhUdqw7zLT5+f1e\n319zpIK3n3mCMdNnMPWTC/s8nzgcXPl/vs6T3/43/vlfv+ALP/klTtfZ2bymXh8N6w5T/3o5IpB0\nYQ5JM3OJyU06zRPwtXpw766l8Z0jnPznfpo2HmXIdeOIHzukm9kN5zNR5SG0tnsRgThXqKRyNYgT\n4oJvJrPbEyGwcWx06mjweaCpb6J8XRmf7t841zlspKo0b95M4szIyFWEIiYnh7gJE2jqpGu0v7QS\nT6uXCbMjn8juzJQ5edQea+bo3v5NLqvPx6o//hZXbCwL7/zXiBmflIwsPvWVf+NE2T42vvh8RObs\nKd7GNiof2Ub9K2UkTEhn2LdKSL9uPLHDk88ICzniXCROyybnrk+QddtU1KdU/WkbJ1eVma52g5So\nMghuj484lyP0/+ANx/3NbUL8mg/oGZ0MU2kUMAgFWROteSObWA4YhI9rTyWW2/buxVtb228J5c4k\nz51D8wcf4G3093feveEoqVnx5I6N3K7sYIy70J9c3rk+sp9nV3a8+QZHdu/ksi/9C8npwSvOesu4\nGbOZeMllbHzxOaoODaxOU9vRJk78rpT2I41k3DSBzJsn40y1p0QbX5jOsK9NJ2nGMBrWHKLqzzvw\n2SzBNpw/RJVBaGkL0y2t8TgkDw15ekiiX6itpqn7vQUHTh4gJyGH5CFWH4AI5xGyE7JJi0s7LY/Q\ntNmfP+ivhHJnkubMAY+HpnffpamulYqPaimcOazfE48xcU7GzxzGvvdO0NrcPyWcLY0NvPX04+RN\nmMyUufP75R7zbr2TuMREXv3jb/H5vP1yj660HW6k8pGtqE/J/so0Eotzwl/UBYlxkn79eIZcN47W\nvXVU/s82vKaz3aAiqgyCu93bfXOcxmPdGoShKf6SwxP13RuEsvoyRqeNhlQrhFIf2XJJEaEwvfC0\nkFHzxk24ciOrXxSKxAsuwJGcTNNb69iz5TiqUDgz9OcWSSZfkoun3cfHm/pn5/L6ZU/hbmrk8tvv\nPq2KKpIkWlpHR/fu5sNXV4a/oI+0VTRQ+adtOOKc5Nz1CWLze1ctFSB5Vi6ZN0+i/VgTlY9sxdvQ\nFqGVGs420WUQPL7uhe0aT0BK6C+2HMu9Pl4fukGNqnLg5AEK0gr8xsUZC7WRDw0Upheyp3YPXp+3\nQ78oadasARFTk5gYki66iMZ16/h44zFyRqX0WcjOLjmjUskakczO9UciXtNfVV7G1tdfofhTnyZ7\n1OiIzt2ViZdcxsiiYtY/+xea6mr77T6eqhaqHt+OI95J9p3TcEVoj0jCpEyybp2Kt8ZN1WPb8dlt\nHGU4p4kqg9Dobic5PkRhlc/rT/524yFkJMbicggnGkJ7CNXuahraGvwegsMJ6QVQ2706aW+YkjmF\nFk8LB04e8O8/qK2NmNy1HZLmzuFkvVJ5qJHCmcMG7L7g3wlddaiRyvKGiM775l8eIy4xkYtu+EJE\n5w2GiLDgtrtob23lrb881i/38Da2Ufn4dlDIun1qxIxBgPhxQ8i8eTLtJ5qpemIHvraBCX8Z+o+o\nMggnW9pJSwhR6tdUBerr1iA4HEJ2ShzHuwkZdVQYpVm/MNNHQ03/GASAHdU7OukX9W+FUWeS58zh\n2NAZCMq4kp7Ho/tC4axhuGIc7Hg7csnlAx9soezD95l9/ZJeb0DrKRl5+cy45rPsXLeGip3bIzq3\nenxUP7kT78k2Mm+ZQkx2/yiuxhemk/H5CbQdrKf2hY/NTuzzHGMQAjRaid+U7n/t5qTGc6IhdMgo\nYBAC3c3IGOM3CBH+H2VU6igSXYnsqN5B04aNxIwcSUxe5DSEwuEaOpQTwy8my3Okxz2T+0pcgotx\nJTns2XSctghUuvi8Xt78y2MMGZZL8acWRWCF9pl13Y2kZGWz+vE/4vNG5he2qlL79720lTeQcWMh\ncaNSIzJvKBKnZZN25WhatlbR8EZ5v97L0L9EmUHwhDYIDVaSshsPAWBoSly3SeUDJw+Q4EogJ9H6\n1ZwxBtqb/PmJCOJ0OJmUOYmdJ7bTvHnzgHoHAEf3naTFlUbW3jfw1PZfDDwUU+YMp73Vy54IyGJv\nX/s61RXlzPnCrQO+WSwmLp7Lvng7leVlbH1jVUTmbNp4lOYtx0mZN4LEaX3rQ26X5LnDSZyeQ/3r\n5TRvi+y+G8PAETUGQVU52dJGWkKIHr+N9gxCTmocx7vzEOoPUJBagEOsjzbD8hRqgstV94WpmVNx\n79yJr6GBxFmzIz5/d+zeeAyXC7IrS2l8880BvTfA0NGpZOQlsbOPYaP2VjfvPv80uYUTGT/z4git\nrmcUzr6EEVOmsf7Zp/osk912uJG6f+wnfkI6qQtHRWiF4RER0j87ntiRKdQ+9zFthxsH7N6GyBE1\nBqGl3Uu7V8OHjMJ6CPHUNbfT6gnu3pedLDuVPwDIsJ73R2I5awqFZf468IHYfxDA0+5l33snGDN9\nKPGZaTS+sXrA7h1ARJh8aR4nDjb0Kbn8/soVNNbWMHfpl89au0sRYf6td9La3MT6557u9Ty+Vg81\nf92FMzmG9BsnDLggnbgcZN48GUdiDNVP7MBbb8pRzzeixiAEdheHNggnID4NYrqvxAiUngYLG7V4\nWjjSeOR0g5A2wi+H0Q8ewpTMKXzigOIekUNMzsAldg9uq6a12cOE2cNInj+PxvXr8bVGthGQHSZY\nyeXtb/ZOLK65/iSblr/A2JLZ5E+cEuHV9YyskQV8YuEitr72MpUHe/7jQVWpfXEvnho3GTdNxDlA\nirBdcabEknnLZHwtHqr/ugv1GkG88wlbBkFErhSR3SKyV0TuDXI+TkSetc5vFJEC6/hCEXlPRLZZ\nf+d3umatNWep9ejXb7SwBqGh+01pAXJSrc1pQcJGB04eQNHTDYIrFoaM6BeDMNyZyaRDysHJwcX4\n+ovdG4+RmBZL/sQMUhYsQJubad6wYUDXABCfFEPhzKF8vOk47l7smN34v8/S7nYzZ8kt/bC6nnPx\njUuJS05m9Z8f7nG1TvN7x2kprST18lHEje5fCZFwxOYlk37DeNrK6jn5z8h7xob+I6xBEBEn8Hvg\nKmAysEREJncZdjtQq6rjgF8DP7OOVwFXq2oRcAvwVJfrlqpqsfWIbNa1CyebbXgINgxCd7uVd9f4\nJaEnZkw8/UQ/lZ62bNlCjBc2jBy4X+ctDW0c3FZN4YyhOBxC4qxZOBITaXj9jQFbQ2emfjIfT7uP\nj97tWd+JkyeOUfrqSqbOu5zM/BH9tLqekZCcwqWfv5mKndvZ/e668BdYtJ9opm75PuLGppEy79x4\nL4mfyCH5kjwa3zlCc82OMQQAACAASURBVGm//q9tiCB2PISZwF5V3a+qbcAyYHGXMYuBJ6znLwAL\nRERU9QNVDWT9dgDxIjKwNYoWdZaHMCSxmxyCLQ8h9G7lXTW7SIpJYkRKl/8pM8b0i4fQuO5tvLEu\nVqcfpbm9OeLzB2P3xmP4fMrEi/2yHI7YWJLnzaPhtdfQ9oHXtckekcKwMWlsf/NwjxQ43172FA6n\nk4s+1/+b0HpC0YIryCkYy5t/eYw2d0vY8drupfrpXUisk4zPTzynGtmkLRpNbEEqtX/bQ9vRprO9\nHIMN7BiE4cChTq8rrGNBx6iqBzgJZHYZcz3wgap2/jn7uBUu+oGEyOiJyJ0iskVEtlRW9r6crduQ\nkaolWxF+x213u5U/qvmICekTTlUYdVw0Btx1p3o2R4imdevwXjCJFqeX0srSiM4dDFVl5/qjDB2d\nSmZecsfx1EVX4a2ro2nDxn5fQzCKPjmck5UtlO+y9/ke37+Xj9a/yfRF15CS0T8NfXqLw+Fk/m13\n0Vhdxcb/fTbs+LqX9uM53kzGjYU4U0NU0J0lxOkgc+kkJN5F9V92GnmL8wA7BiHYF3XXn2LdjhGR\nKfjDSF/pdH6pFUqaYz1uDnZzVX1EVUtUtSQ7u/c11fWWQUgNZhBaG6C92ZaHEGq3sk997K7ZfWa4\nCPql0qjt0CHaDh5k6LxP4RQnW45tidjcoThR1kDt0SYmXXx634OkOXNwpKRQv7L/hdqCMXZ6Dklp\nsZS+Fn5TlKry5lOPkpCaxszFnxuA1fWc4RMmMeWyBWx56e/UHAktjNi8tZKmjcdIviyf+AmRlemO\nFM6UWDK/OAlvbSs1z+42fRTOcewYhAqgcwwkH+ha/N0xRkRcQBpQY73OB14EvqSq+wIXqOph628D\n8Ff8oal+42RLOyKQEhdEyyiwacyGQYDgu5XL68tp9jSHMAiBvQiRMwhNb78NQPpl85mSNYXNxzZH\nbO5Q7HznCK4YB+NKTv+cHLGxpCxYQMPrr+NrG/hSQ6fLQdG8fCo+qqWqovsS1P3vb+bQzm1cdMMS\n4hL7R84hEsz5wq3ExMXxxqP/HTTB7KluofZve4gdkULaFQO336A3xI1KZchnxuD+qIaG1WYn87mM\nHYOwGRgvIqNFJBa4CVjRZcwK/EljgBuA1aqqIjIE+CfwXVVdHxgsIi4RybKexwCfASIr5tKFgGyF\nI1iMtUO2wp5BCLZb+aOaj4AgCWXwC9whUHVmH+Te0rBmDTH5+cQWFFAytITtVdv7NY/Q5vawZ/Nx\nxk7PIS7hTKOa+ulF+BoaOgzVQDNlznBccU5KXzsUcozX4+Gtpx8nPXc40xZcOYCr6zlJQ9K5dMkt\nlG//kI/eXnvaOfX4qH7mIxAhY8lEpJt2rucKSRflknhBDvVvlNOyO7KhU0PkCPtfkpUTuAdYBewC\nnlPVHSLygIhcYw17FMgUkb3A14FAaeo9wDjgB13KS+OAVSKyFSgFDgN/iuQb60pdc3c6RvZ2KQcI\ntlt5V80uXA4X44aMO/OCmATIngBHIxPn9zY00PTuBlIWLkREmDFsBh719Gse4eNNx2l3e5kyN3i/\n5qTZs3EOGUL9Sy/12xq6Iz4phskX57Jn83Eaa4PvJP/wtZXUHD7E3KVfxuk699uJf+LyK8kdN4G1\nTz1KS+Mpz+fkK2W0VzSSccP4iCuY9hciwpDrxhEzLImaZbvxVIdPmBsGHls/LVR1paoWqupYVf2J\ndeyHqrrCeu5W1c+p6jhVnamq+63jP1bVpE6lpcWqekJVm1T1QlWdpqpTVPX/qmq/aud2K2xnU8co\nQLDdyh/VfMS4IeOIcYa4R94FcOSDiIjcNa5dC+3tpFzhb/5+Qc4F/ZpHUFW2ra0ga0Qyw8YEF0qT\nmP+/vTMPj6q89/jnnT37MiEbW9gJIIiERbQuiGURkVastGhVXG61ltraa+XxtrV9rru3Wqv1iisi\nFZXKFUVEwBYFi+xbEpaAYUtC9n0mmZnz3j/OSUjCTDKTTDKDOZ/nOc+Zc857znzPe5bfebffz0zs\nnDnUbNgYEt9GAOOu6Y8Er6WE+uoqvv5gBQPHjmdIVs+5Ce8KwmBg+t0/x1FTzeblrwPgyCmjdssZ\noqemEzEmvBrEO8JgMWK/JRMklL2Tq7vLDkPCv6wZJNo3CIVqIJsI/wZ4tR2tLKXkUPkh79VFTaSP\nV0siNYH1l/cq9/MNmJKTiRg3DoAocxSj7d3XjlBwpJLygjouuqpfu+4d4m+6CelyUfXRR92ioyNi\nkyIYMSWVg1+doa6qdZXe1veW0+hwcPVtd4fMRUVnSM4YzMS5N5L9r418u3UHFauOYE6PIm529wbw\n6S5M9ggSF4zAVVRHxT+O6u6yw4xeYxCqHS7vPYwAyvIgcQj4+aJIjYsAoKBSLfYW1xdT7izv2CCA\nWkroAkp9PbVffUXM9OmtQjxOTJ3IwdKDVDd2zTmaNw786zTWKBPDJ7ZfgrKNGE7EuHFUfrAqZA96\n1qyBKB7JnvXnGi+L8o6wf9N6xs+Yg73fgJDo6gqX3vhj7H0HUrM6H+lWSPxJJsJ04T66ESMTiZ2R\ngWNfCdUbgh9NUKfzXLh3VYBUOVzE+zIIJYehz3C/jzU8Re2Df/isWq/bVHc/JmmM751Sxqg+jbpo\nEGq/2oJ0Opuri5q4qv9VuKWbL09/2aXjt6W61MHxfaVkTk3HZGknHrVG/I9uovHYMRy7dwdVh7/E\n9YlsVUpQPB42vPoSUfEJTP3RwpBo6iomi4Vrx95BoimVkzF5mJMiQi2py8Rc2Y/IrBRqvjhF3c7u\niY+tEzi9wiBIKan0VWXkblDHBySN8Pt4qbE24iLM5BaqX+PbC7c3V9v4xBIJyZldNgjVn63DGB9P\nZFZWq/Vj+4wlOSKZjSc2dun4bdnz+UmEgHHT+vmVPnbWLAxRUVS81/Ggqu4ia9ZApEey45Nv2fPZ\nJxTnH+Pq2+7BGtkzcZ+DTe22QuQhB1XJVXy984OA3FqEK0IIEn4wFOvQeCo+PIozrzLUknToJQah\nrtGDR/Hh+rrsmBo6M8n/EoIQgsy0GHIK1RLC9qLtTEiZgMnQQc+V9IuhYG+nG5bdFRXUbtxE7PXX\nI9r0kjEIA9MGTGPrma1B635aV9VA7teFjLw0jegE/3qzGCIjibvxh1R/ug5XQfBCXAZCXJ9IxlzV\nl4Obc9my8m0Gjc9i+JTLQqKlqzQcr6RyzTFsIxMZcf8M0oaOYMPSF6kuvfD9AwmjAfstmZiSIih7\nJwdXcc+4X9HxTa8wCO26rShVHdIFUmUEkJkWy+GiagpqCsmvzmdSqh/j6tLHQ30pVHXOXXP1xx8j\nXS7i59/odfv0gdNxepxsLdjqdXug7N14CsWjcMmMwOrd7XfcAUJQ9sabQdHRGbJmDcTtWI/HA9cs\nuveCakhuwl3upGxFLia7jcQFIzBZzMz+xW+QUuGT55/CHQLfUcHGYDORdMdohMlA6esHcfvoMqzT\nM/QOg1DfjmO7kiOAAPuwgI6ZmRaL06Xw6TF1INbkND+6MnahYVlKSeUHq7CNHYtthPfqrQkpE4i3\nxgel2qi+upGDX55h2MQU4gIM0G5OSyPu+uupXLUKd1lZl7V0huzNn+JpPI3RehVlBRfeba443ZQt\nz0F6JPafjsJgU0uE8alpzLj3AQqPHuZfy5aGWGVwMCXYSFo0BqXBQ8lrB/TAOiHkwntSOkFVe36M\nSg+r8Qosgb30RqWp/fG3nPo3cdY4hif4UcJIGaN2bz0VuBM45/79NBw96rN0AGAymLi6/9VsPr0Z\nh7trA3+2f/Itiksha3ZGp/a333UXsqGB8mVvd0lHZyjOP86WlW8zeMIkkgdNZPO7hzsVLyFUSJdC\n2ds5uM7WYf9JJuY2Bnn45MuYOPdG9m1YF7Q4zKHGkh5N0qLRKDWNlLy6H09Vzwdc0uk1BkH94vBe\nZXQkoAblJoYmR2M0wKHKPUxKnXS+h1NvmKww6Eo49EnA7QgV772PiIwkdvZ17aabO2Quda461h5f\nG9DxW1JWUEvOV2cYfWVfElI71xBrHTyImJkzKF++HFdRUae1BIqzrpaP//wEETGxzPiPxVxz2ygc\nNS62rgqe25DuRHok5SsP0XC8ioSbRmAb7n1szOULfsrAsePZ9PrfyN+7q4dVdg/WAbEk3TEGT1Uj\nxUv3467Uq496ml5iEHy0ISgKlOapbiUCxGY2MjDFQZ1S6l/7QROZc6AiH87677rJdeYMVWvWED9v\nHsbo9l/QE1ImMDJxJCtyV3R6LMDX/8jDEmFi0nVdG/yU/OCD4PFQ/MyzXTqOv0hFYf3Lz1NdWsyc\nBx4mMi6e5IGxjP/+AA79u4j8/aU9oqOzSI+k/L1DOLLLiJszmKjxvoMIGoxGrv/VEuz9BrDmuSc5\n++0xn2kvJKyD4ki6awxKnYuSl/fhKtLjKPQkvdsgVJ0EtyOgHkYtibarL/XL+17u/04jrgME5Prv\n86f0laUIIbDfc3eHaYUQLMxcSF5lHtsKAw9reXTnWU5ml5M1OwNbdNfi8lr69SPxzkVUr11L/a7u\n/4rdsvJt8nZs44qFi+g7IrN5/aTrBmHvG83Gt3KoLg1PHzrSrVC+8hCO/aXEzcog5nLvPqNaYo2M\n5IcPP4otOppVj/2O4vzgB2EKBdYBsfS5ZyxSQvHL+3DmhcYVSm+k1xgEo0EQ3db1dckRdd6JEoKU\nkjKxFXfdYKKNAYSDju4DA6dC7sd+JXcVFFC5ejXxN83HnNpxAB+AWYNmkWhLZEXuCv91oXYz3fzu\nYZIzYhl7tX/jDjoi6e67MaWmUvToH1Gc3VcFsHf9WrZ/tIpx187iktlzW20zmg3M+pk6aHDdKwdw\nh5kPHcXppvStbBwHSombPYiYK/0PgxmdaOdHv3sck8XCB//9X98Zo2BJjyb5vosxxlspfeMgNV+d\n1t1c9AC9xiDERZjP73rY1OW0EyWEXWd3Ue0uwlWZxZ5TAQ6qybweirPVMRAdUPryywDY7+64dNCE\n1Wjl5hE38+XpL8kuzfZrHykl/3znEO5Ghem3Z2IIkktlQ2QkaX98lIajRyl++umgHLMt2Zs38cWb\nrzB4wiSm3fEzr11M4/pEMv2OUZSeqmXDmzkoHqVbtASKu8JJySv71TaD+cOJuSJwQxyfmsbNv38C\ns8XKe4/+lvx9oRklHmxM8VaS7x2HLdNO1dpvKf/7IZT6C6dzwIVIrzAIPl1fn94J0akQGXi0qdV5\nq4kyRRHhupiP9viOauWVkXPUefbqdpPVfbOdyg9WkbhwIea0tHbTtuXWUbdij7Dzp21/wqN0/EW8\na90JThwo49J5QzrdkOyL6CuvJPGOO6j4+7tUr/88qMfev/EzPnv5efqPHsOcxQ9hMPp2r5FxURKX\n3zSM43tK+OLtQyGP3uU8UkHxX/fgLneSdPtoorL887brjfjUNBb86Wli+6Tw4ZOPsnf92u/EF7XB\nZsJ+SyZxszJwZJdx9vndOI/qVUjdRa8wCFXeHNs11MKR9TCy/V473qhz1bHhxAZmDprJDeMyWHew\niGpnAF8u8f1h8FWw7W/g9O6MTqmvp/CRRzAPGECfXy4OWGOMJYaHJj5ETlkO7x95v920R3YU8c2a\n4wyfnMJYP11UBEryrx7ANnYsBUuWUL+na+47QG1A3vr+O2x49UUGXTyBeb/9A2Zbx6Opx13Tn8lz\nB3P4myI2LsvB4+r5koJ0eahce5zSNw9iiLGQ/IvxPnsTBUJsUh8W/PFpMsZdwqY3XuaT55/CWVcb\nBMWhRQhBzJX9Sb5vHMJqpPT1g5SvPISnRh+vEGx6hUFYemsWb94+sfXKI5+pDcpjfPfr98Wy7GU4\n3A5uHHYjN03oT4NbYe3+AN1aT38U6svg6xfO2ySl5OyTT+E6c4b0xx/DENE5Z2YzM2YyJW0KL+x+\ngfyqfK9p8veXsmlZLunD4pl2S2a3jegVFgv9Xvwrpj5JnLr7HhzZ/lVlecNZW8tH//M42/6xktFX\nTmfug49gtlj93n/CrIFMnjuYI9+c5aO/7MHRgy8WZ14lZ1/YQ+1XZ4ialEryzy8OqrM6a2QkP3jo\n93zvJ7dzdPvXLPvP+zm6/evvRGnB0i+GlMXjiZnWn/oDpRQ9u5PqjSdQGsKrTehCRlxIN0pWVpbc\nuTNIQWDe/QkU7IZf5YDBf7t4vOo489fM59qB1/LUFU8hpeT7z31JjM3Eh/cF6C9n1SI4vA4W74GY\ncw3GJS+9ROlfX8R+150k/+Y3gR2zDadqTrFw7UIizZG8M/sdkiLOBVXJ2VrAv1Ycpk//aK5ffDG2\nqK71KvIHV0EBJ265FU91NelPP03MtKsD2j9vxzY2vvYSjppqrrz1LsbPnNNpI3Z051k2vZWLNdLE\n1beMJGNs9wWccRXVUfX5CZw5ZRgTrCT8cBi2YV0vFbRHYd5hNrzyV0pO5pNx8QQuX/BTUgYN6db/\n7ClcJfVUf5aPI7sMQ6SJqEvTib40DWO0JdTSwhIhxC4pZVaH6XqlQXBWwTNDYeJdMPMJv3eTUrJo\n/SIOVxxmzbw1zS/XpV8e4/FPD/Hp4u8xKt17RDGvlB+HFyfC0Gvh5uVIg4nyN96k+JlniJs3j7TH\nH2sV86CzHCg5wJ2f30lGbAYvXfMScSKBrauOkrO1kAGjEplxzxgstp4LKekqKOD0LxbjzM7Gfvdd\nJN13X4eloLPH89iy8m3y9+2mz8BBzLj3gaC83EpO1bDprVzKztQy5JJkptwwmPiUwEat+0JKSeO3\nVdRsLcCZXYawGIm5uj8xl/dFmHumcO5xu9mzbg3bVr9HQ10dQ7KmcMmsufQffdEF6d+pLQ0nq6n5\n5ymcueVgEkSMTiIqKwXr4LgLItZ0T6EbhPbY+3f4v3vhrk3Qr8M8AkCRCs/ufJblOcv5w6V/YP7w\n+c3bymobWpUSEqMC+Er5Zims+088g+dSuCOBmg0biLn2Wvo+9+fzPJp2hS1ntvDrTQ8ysnwylxfM\nw10D478/gElzB2MMwYOjNDRw9r8fo/KDDzClptLngV8SN3s2wnIu7zxuN9/u3cXe9Z9wYv8ebNEx\nTJ53E+NnXY/RFLzSjMetsHv9CXZ/fhKPS2HohGTGXJFO2tD4gF+aUkrcxfU4DpRSv68Ed4kDYTMR\nfVk60VPTMfZAKcwbzrpadq39iL2fr8VZU01Cej9GTv0ewydfhr3/wAveOLiK66nbVkjd7mKk042w\nGrGNSMCWacc2PCFk+R4uBNUgCCFmAn8BjMBrUson22y3Am8DE4Ay4GYpZb62bQlwJ+ABFksp1/tz\nTG8ExSAUH4Jlc8AWB/fv9CtKWm1jLY/++1HW569nwYgFLJm85DxXFbtOVPDjV7cxtm8cby2adP6Y\nBx94KiupeHIx5eu24XEZSb7nFhIXLwlKyaCJiqI68nYVc2DLSRwVHkojT1MxKYcfXTGXyamTMRo6\nDnzTXdTv3MnZx5/AmZOD0W7HPHsm1QP6UlhdwbHdO3DW1hCdaGfc9FmMn3V9t8Y0qK9uZPf6E+Ru\nLaDR6SE2yUbGRUn0H5VI6uA4r1VqSqMHV1EdrsI6Gk/W0HCsEk9lAwiwDIwlamIqERclYfAjuFBP\n4G5s5NDXX5KzeROncg+ClETbkxg4Zhxpw0aSOmQYif36B9QmE05Il4LzSDmO3HKch8pRatXOHqak\nCMz9orH0jcHSNxpTUgSGGC9d0b+jBM0gCCGMwBHgWuA0sAP4sZQyp0Wa+4CxUsqfCSEWAD+QUt4s\nhBgFvAtMAtKBjUBTp/92j+mNLhkElwNOboMP7wZhgNvXQpJ3D6dSSkodpRyuOMzWM1tZnbeaOlcd\nv57wa24ffbvPm+jjfQX84t09xNpM3DY1g9unZmCPVh8sqSh4Kitxl5TSeCKfhqNHqd/2jdrjxu0m\natxg+gzIJiKqEoZMU6e+EyBhIESnQDsvbalIGp1uGurd1Fc3UlPupKq4nrIzdRQdr6K2Qn1BpQ+N\nZ/S0VDYbP2VF7juUOcuIt8YzJW0KmfZMhsYPJSUyhaSIJGItsZiNwfuqUjweXA1OGh0OGupqcdRU\nU1dVSW15GZVnCynLzaH09CmcUm0gNHsU0kxWMgYMYdCoi7AO6I8pKQljYiLG6GgMUVEIc/C/+qRH\n4qp3cWxXMaf2lVByrAqDR2IWEBdnIT7KTLTFgBUwOd0Yas/1LhM2I9Yh8diGJRAxyo4xNrzrs2vL\nyzi+Zwcn9u3hVM4BHDVqjzchDMQlpxCXkkpcnxSiEhKJik8gIjaWiOgYLJFRWCMiMdtsmK1WjGYL\nBqMx7F6uUpG4ztTiPFpB4+laXGdq8FSd60AgzAaMiTZMiTaMMRYMUWYM0WaMUWaEzYTBYkBYjAir\nEYM2F0YBBnUKt/Ntj2AahEuBR6WUM7TlJQBSyidapFmvpfm3EMIEFAF9gIdbpm1Kp+3W7jG90VmD\n8NX9r2K3+BpN7OOitnOtRXsbA0I9jnpfNR1Tgq9L0ipdC7ylF6I5uUDtutd2VyklChIpfXW9FF5+\ndbTUWpc/eSWEwGA0qpPBiEFKhNuDdLuRbndrR4BtH8IW56mdqQ9B7VxnYWyehB9OChukxOGBekVS\n7ZFUafN6LRuFQWA0CYwmA8IgMBgEwiAQBjAYmq65qrPtSyXgd0yQXkpSSjyuSlzOQkZMMlNReIbq\n4iKqSopxVFf5IcOA0WTCYDJiMJqaDYQwGNRJGBBCTXfuvEWrczjvTHycW3RCIjf97rFOnaenupHG\nwlo85U7cZU7c5U485U48tY0odS7fz543DKiGoclAtJm3PpemuThvXfMaL9taLifdNhqTvXM90vw1\nCP7Ua/QFTrVYPg20df7fnEZK6RZCVAF2bf22Nvs2OWnp6JgACCHuAe4BGDCgcwHSG3FQ7er4plb/\n8NwPX69DlfbvnKat6nuqxY0vmuaGVte/1dEE6ktQKtrLsGkSoH21N+/bdEiD+sMg1BvSYPT1YvSO\nIhXcihuP9KBIBQUFKaU6ITV92i9Jq2Ofp71pLgRSe+6lEGAAaRBIo8BkNpOZPBqT1YrRbD7fcGiL\nUkpkQyNKfR2K04lsaASXC+l2Id0eUNzqADNF1YuiNO3YxqOs9CKWFmk9gNJirmBKthM7ezqGCBMG\nmwlDpAljrBVMAmedi7rKBhy1Lpy1LlxOD41ON+5GBXejB49H4nErSI9EUSSyaZLaOUma9TVLkufk\n+Eew2/+igL5MnT+61Uh1j9tFfVUVjppqnLU1NDjqaayvx9XQgKvBicflwt3YiOJx43G5UBQFxeNW\nz1NRtHP3qHexdn2aP0Tb5kHzqfk+t4jYuE6foTHWQkSs94GoUpEoDjdKnQvZ4EFp8CAb1an5t0eC\nR2r3nDrJlnOPVNN4O4dWt6P3a9/efsLU/W19/hgEf96GvtL4Wu/tzLzeAVLKpcBSUEsIvmX65poX\nAx/YpaPTHhHRFiJ6SRdHo8lMjD2JGHv3dcsNB4RBYIwy9+oGaH9MzmmgpbetfkDbYLnNabQqozig\nvJ19/Tmmjo6Ojk4P4o9B2AEME0IMEkJYgAXAmjZp1gC3ab/nA19ItUy4BlgghLAKIQYBw4Dtfh5T\nR0dHR6cH6bDKSGsTuB9Yj9pF9A0pZbYQ4k/ATinlGuB1YLkQIg+1ZLBA2zdbCPE+kAO4gZ9LqXYj\n8XbM4J+ejo6Ojo6/9M6BaTo6Ojq9CH97Gelju3V0dHR0AN0g6Ojo6Oho6AZBR0dHRwfQDYKOjo6O\njsYF1agshCgBTnRy9ySgNIhyugNdY3AId43hrg90jcEiXDQOlFL26SjRBWUQuoIQYqc/reyhRNcY\nHMJdY7jrA11jsLgQNLZErzLS0dHR0QF0g6Cjo6Ojo9GbDMLSUAvwA11jcAh3jeGuD3SNweJC0NhM\nr2lD0NHR0dFpn95UQtDR0dHRaQfdIOjo6OjoAL3EIAghZgohDgsh8oQQD4eBnv5CiH8KIXKFENlC\niF9q6xOFEBuEEEe1eUIYaDUKIfYIIT7RlgcJIb7RNL6nuS8Ppb54IcQqIcQhLT8vDbd8FEL8SrvO\nB4UQ7wohbKHORyHEG0KIYiHEwRbrvOabUHlBe372CyEuCaHGZ7RrvV8IsVoIEd9i2xJN42EhxIxQ\naWyx7TdCCCmESNKWQ5KPgfCdNwhCCCPwEjALGAX8WAgxKrSqcAMPSikzgSnAzzVNDwObpJTDgE3a\ncqj5JZDbYvkp4DlNYwVwZ0hUneMvwGdSypHAOFStYZOPQoi+wGIgS0o5BtXd+wJCn49vATPbrPOV\nb7NQY5kMQw1n+3IINW4AxkgpxwJHgCUA2vOzABit7fM37dkPhUaEEP2Ba4GTLVaHKh/95jtvEIBJ\nQJ6U8riUshFYCdwQSkFSykIp5W7tdw3qS6yvpmuZlmwZMC80ClWEEP2A64DXtGUBTANWaUlCqlEI\nEQtcgRqPAyllo5SykjDLR9S4IxFaNMFIoJAQ56OU8kvU2CUt8ZVvNwBvS5VtQLwQIi0UGqWUn0sp\n3driNtRoi00aV0opG6SU3wJ5qM9+j2vUeA54iNahgUOSj4HQGwxCX+BUi+XT2rqwQAiRAYwHvgFS\npJSFoBoNIDl0ygB4HvWm1iLXYwcqWzyQoc7LwUAJ8KZWrfWaECKKMMpHKeUZ4FnUL8VCoArYRXjl\nYxO+8i1cn6FFwDrtd9hoFELMBc5IKfe12RQ2Gn3RGwyC8LIuLPraCiGigX8AD0gpq0OtpyVCiDlA\nsZRyV8vVXpKGMi9NwCXAy1LK8UAd4VHN1oxWD38DMAhIB6JQqw7aEhb3pA/C7bojhHgEtep1RdMq\nL8l6XKMQIhJ4BPi9t81e1oXVde8NBuE00L/Fcj+gIERamhFCmFGNwQop5Yfa6rNNRUhtXhwqfcBl\nwFwhRD5qNds01BJDvFb1AaHPy9PAaSnlN9ryKlQDEU75OB34VkpZIqV0AR8CUwmvfGzCV76F1TMk\nhLgNmAMslOcGhb+IcgAAAYVJREFUUoWLxiGoxn+f9uz0A3YLIVIJH40+6Q0GYQcwTOvVYUFteFoT\nSkFaXfzrQK6U8s8tNq0BbtN+3wZ81NPampBSLpFS9pNSZqDm2RdSyoXAP4H5WrJQaywCTgkhRmir\nrkGN3x02+YhaVTRFCBGpXfcmjWGTjy3wlW9rgJ9qvWSmAFVNVUs9jRBiJvBbYK6Usr7FpjXAAiGE\nVQgxCLXhdntP65NSHpBSJkspM7Rn5zRwiXavhk0++kRK+Z2fgNmoPRKOAY+EgZ7LUYuK+4G92jQb\ntY5+E3BUmyeGWqum9yrgE+33YNQHLQ/4ALCGWNvFwE4tL/8PSAi3fAT+CBwCDgLLAWuo8xF4F7VN\nw4X60rrTV76hVnW8pD0/B1B7TIVKYx5qPXzTc/O/LdI/omk8DMwKlcY22/OBpFDmYyCT7rpCR0dH\nRwfoHVVGOjo6Ojp+oBsEHR0dHR1ANwg6Ojo6Ohq6QdDR0dHRAXSDoKOjo6OjoRsEHR0dHR1ANwg6\nOjo6Ohr/Dysb0SqDIuQlAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "
" ] }, "metadata": {}, @@ -772,7 +5369,7 @@ "plt.title(\"Poisson distribution\")\n", "for i, mean in zip([15,25,50,70,100,120,150], [5,10,20,35,50,75,100]):\n", " x = range(0,i)\n", - " plt.plot(x, poisson.pmf(x,i), '-', label=\"lambda = {:d}\".format(i))\n", + " plt.plot(x, poisson.pmf(x,mean), '-', label=\"lambda = {:d}\".format(i))\n", "plt.legend();" ] }, @@ -810,7 +5407,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 53, "metadata": {}, "outputs": [], "source": [ @@ -827,7 +5424,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 54, "metadata": { "ExecuteTime": { "end_time": "2017-09-22T06:29+0000", @@ -837,9 +5434,9 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEICAYAAACzliQjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzsnXd4lFX2xz8nyUw6qbRUei9BkaKL\noqDAimIXu25xV8Xd1Z+sunZddy2su+5aUVwbrmJnFWUtIAg2UEATOpJkkgCB9Dol9/fHOxOH1Eky\nk5lJ7ud58mTmvfe975nJ5Dv3Pffcc0QphUaj0Wh6ByH+NkCj0Wg03YcWfY1Go+lFaNHXaDSaXoQW\nfY1Go+lFaNHXaDSaXoQWfY1Go+lFaNHXeB0R+UBErvDR2H1FZKeIRPhifG8jIleKyOfOx+EiskNE\n+nXg/JkiYnF7ni0iM71k2yUi8j+350pEhnljbOd4VSIyxFvjabyDFv0egIgsFJGvRKRaRA45H18r\nIuIPe5RS85RSL/ho+FuAfyul6gBEZK2I1IlIuquDiMwWkf0+un6nUUrVA88BN3dhjLFKqbVt9RGR\nQU4BD2tnrOVKqdM6a0uTa64VkV81GT9GKbXPG+NrvIcW/SBHRP4PeBR4GBgA9Ad+C5wAmP1omtcR\nkXDgCuDlJk3VwB1eukaoN8Zpg1eAK5yvxW+094Wg6blo0Q9iRCQOuBe4Vin1hlKqUhl8p5S6xDmz\nREROF5HvRKRCRPJF5G63MY5yHziP7ReR2c7HU0Rkk/PcgyLyiPN4hIi8LCJHRKRMRL4Rkf7OtsZZ\nn4gMFZFPnf0Oi8hyEYlvcq2bRGSbiJSLyGttuG6mAmVKKUuT4/8ELmrNNSEio502lTndI2e6tT0v\nIk+KyCoRqQZOdh57wummqhKRDSIyQET+ISKlThfNJLcxbhGRvSJSKSI5InJ2a38zp+2lwLRWbI10\nXr9URHKA45q0t/u3AdY5f5c57Z/udDNtEJG/i0gJcLe768mNn4vIPuff6mERCXFe624Rafyydb+b\nEJH7gRnAY87rPebs0+guEpE4EXlRRIpFJFdEbncb+0oR+VxEljhf948iMq+191DTNbToBzfTgXDg\n3Xb6VQOXA/HA6cA1InKWh9d4FHhUKdUHGAqscB6/AogD0oEkjLuL2hbOF+CvQAow2tn/7iZ9LgDm\nAoOBCcCVrdgyHtjZwvEC4JkWxkVETMB/gf8B/YDrgeUiMtKt28XA/UAs4BLBC4DbgWSgHvgC+Nb5\n/A3gEbfz92KIXhxwD/CyiAxs5TUAbAcmttJ2F8b7PBSYg/E+t0Zrf5sTnb/jnS6WL5zPpwL7MN6H\n+1sZ82xgMnAMsAD4RRvXB0ApdRuwHljkvN6iFrr9C+P9GQKchPF5vMqtfSrG3zYZeAhY5i/3ZE9H\ni35wkwwcVkrZXQdEZKNzRlsrIicCKKXWKqW+V0o1KKW2Af/B+MfzBBswTESSlVJVSqkv3Y4nAcOU\nUg6l1GalVEXTk5VSe5RSHyml6pVSxRhi2fTa/1RKFSqlSjAEOqsVW+KBylba/gqcISJjmxyfBsQA\nDyilrEqpT4H3gIvc+ryrlNrgfH/qnMfedr6mOuBtoE4p9aJSygG8BjTO9JVSrzvtb1BKvQbsBqa0\nYifO1xDfStsFwP1KqRKlVD7GXUxrtPa3aY1CpdS/lFJ2pVRLX9AADzqvnQf8g6Pfp07hdJldCNzq\nvBvdD/wNuMytW65S6hnn+/sCMBDDVanxMlr0g5sjQLK7f1YpdbxSKt7Z5rp9nioia5y31uUYs/Jk\nD6/xS2AEsMPpwpnvPP4SsBp4VUQKReQh56z6KESkn4i8KiIFIlKB4Y9veu0Dbo9rMES6JUoxZuPN\ncH6hPIbh7nInBchXSjW4HcsFUt2e57cw5EG3x7UtPG+0UUQuF5Etzi/bMmAcbb+/sUBZK20pTezJ\nbWOc1v42rdHS62yrT67Tnq6SjLG+5P5amv4NGj8DSqka58PWPgeaLqBFP7j5AsP1sKCdfq8AK4F0\npVQc8BSG2wUM10+Uq6NzVtbX9VwptVspdRGGS+BB4A0RiVZK2ZRS9yilxgDHA/Mxbtmb8ldAAROc\nbohL3a7dUbZhiFxrPAycDBzrdqwQSHf5j51kYLiEXHQ61ayIZGK4lhYBSc4v3B9o+zWOBra20laE\n4QJzt7VFWvvb0Prr8eR1Nr12ofPxUZ8TjKABT8c+jHFXktlk7IKWu2t8iRb9IEYpVYbhQ35CRM4T\nkRgRCRGRLCDarWssUKKUqhORKRg+bBe7gAgxFntNGH7sxsgSEblURPo6Z8qu2alDRE4WkfHOL4kK\njH9qRwtmxgJVGIuKqcDiLrzkr4F45zjNcL4ffwP+6Hb4KwzB+qOImMSIcT8DeLULdrjjEtliABG5\nCmOm3yJO2xOB1lwxK4BbRSRBRNIw1iBaG6vFv43TlgYM/3lHWey8djrwewxXFsAW4EQRyRAjgODW\nJucdbO16TpfNCuB+EYl1flHeSPMoLE03oEU/yFFKPYTxD/RH4BDGP9/TGLHgG53drgXuFZFK4E5+\nWvBDKVXubH8WY+ZVDbhHx8wFskWkCmPhcKHTzz0AY0GzAmNh8jNa/ie+B2NRsBx4H3irC6/VCjyP\ncbfQGo/i9uXjPOdMYB7GjPMJ4HKl1I7O2tHEphyML5ovMN778cCGNk65GHjBFVnVAvdguD5+xFh8\nfqmNsVr82zjdI/cDG5wupxYjhVrhXWAzhsi/DywDUEp9hPEFsM3Z/l6T8x4FznNG37S0DnE9xmdr\nH8Zi+SsYexY03YzoIiqaYEJE+mJEikxqYzEyIBEjNn8rcKJS6pC/7dH0TrToazQaTS9Cu3c0Go2m\nF6FFX6PRaHoRWvQ1Go2mFxFwSZeSk5PVoEGD/G2GRqPRBBWbN28+rJTq216/gBP9QYMGsWnTJn+b\nodFoNEGFiLS1e7sR7d7RaDSaXoQWfY1Go+lFaNHXaDSaXkTA+fRbwmazYbFYqKura7+zpscSERFB\nWloaJlOzZJ4ajcZDPBJ9EZmLkVsjFHhWKfVAK/3OA14HjlNKbXIeuxUjBawD+J1SanVHjbRYLMTG\nxjJo0CB0XYXeiVKKI0eOYLFYGDx4sL/N0WiClnbdO84sio9jJKwag1GWbkwL/WKB32FkNXQdGwMs\nBMZiJId6QjpRg7Suro6kpCQt+L0YESEpKUnf7Wk0XcQTn/4UYI9Sap8zY+GrtJy//T6MMmfu/5UL\ngFedVZN+BPbQdkWhVtGCr9GfAY2m63gi+qkcXU3HwtEVbxCjSHS6UqpputV2z3Wef7UYBZ43FRcX\ne2S4RqMJfBqqqyn9z39QVqu/TdE48UT0W5peNabmdFYk+jvwfx09t/GAUkuVUpOVUpP79m13Q1nA\n8Ktf/YqcnBx/m9Eqc+fOJT4+nvnz26uip9F4H6UURXfcwYF77qXy44/9bY7GiSeib+HoEmpp/FRC\nDYzKSOOAtSKyH6MQ9UoRmezBuUHNs88+y5gxzZY3AobFixfz0ktt1eDQaHxH6cvLqVj1AQDVX3zh\nZ2s0LjyJ3vkGGC4igzEqKy3Erdyes/JSYxFoEVkL3KSU2iQitcArIvIIRoHl4Rgl74KK6upqLrjg\nAiwWCw6HgzvuuIMLL7yQmTNnsmTJEiZPnsyyZct48MEHSUlJYfjw4YSHh/PYY49x5ZVXEhkZyY4d\nO8jNzeXf//43L7zwAl988QVTp07l+eefB+Caa67hm2++oba2lvPOO4977rmny3bPmjWLtWvXdnmc\n3sz/sg+QV1LTYtvPhiczakCfbrYoOKjdsoWDDz1EzMknQ0gI1Rs2opTS6zIBQLuir5Syi8giYDVG\nyOZzSqlsEbkX2KSUWtnGudkisgLIAezAdc56mZ3mnv9mk1NY0ZUhmjEmpQ93nTG21fYPP/yQlJQU\n3n//fQDKy8uPai8sLOS+++7j22+/JTY2llNOOYWJEyc2tpeWlvLpp5+ycuVKzjjjDDZs2MCzzz7L\ncccdx5YtW8jKyuL+++8nMTERh8PBrFmz2LZtGxMmTDjqOg8//DDLly9vZt+JJ57IP//ZUoU6TVco\nq7Hym5c301qdoeMGJfD6b4/vXqOCAHtJCZY/3ICpf39SHvgr5e+/T9Unn2DLy8Ocmdn+ABqf4lGc\nvlJqFbCqybE7W+k7s8nz+zHqdQYt48eP56abbuLmm29m/vz5zJgx46j2r7/+mpNOOonExEQAzj//\nfHbt2tXYfsYZZyAijB8/nv79+zN+/HgAxo4dy/79+8nKymLFihUsXboUu91OUVEROTk5zUR/8eLF\nLF7clbrimo6wzVKOUvDs5ZOZMiTxqLaHPtzBG5st2B0NhIXqje0ulMNB4U2LcZSUMOjV/xAaF0f0\n9OmA4eLRou9/gmJHrjttzch9xYgRI9i8eTOrVq3i1ltv5bTTTuPOO3/6zmuv5GR4eDgAISEhjY9d\nz+12Oz/++CNLlizhm2++ISEhgSuvvLLFeHQ90+9etlnKADhucCJ9Io7eBXxsZgIvf5nH7kNVjB6o\nXTwuDj/+BNUbNzLgvnuJcK53mQcNIixlINUbNpKwcKGfLdQEnej7g8LCQhITE7n00kuJiYlp9MO7\nmDJlCjfccAOlpaXExsby5ptvNs7mPaGiooLo6Gji4uI4ePAgH3zwATNnzmzWT8/0u5etlnKGJEcT\nF9k87cOEtHjA+GLQom9QtW4dh594grhzziH+vPMaj4sI0dOnU/nRxyiHAwnt8P5MjRfRou8B33//\nPYsXLyYkJASTycSTTz55VHtqaip/+tOfmDp1KikpKYwZM4a4uDiPx584cSKTJk1i7NixDBkyhBNO\nOMErds+YMYMdO3ZQVVVFWloay5YtY86cOV4ZuzewzVLG9CFJLbYNToomNjyMrZZyLjyumw0LQGyF\nhRQu/iPho0Yx4M47mi3YRh9/POVvvkVddjaRTdyWmu5Fi74HzJkzp0WxdI+Mufjii7n66qux2+2c\nffbZnHbaaQBH3RUMGjSIH374ofG5e1vTuwdvsH79eq+P2Vs4UF7HwYp6JqbHt9geEiJMSI9rdAH1\ndkpffx1HVRWDHv0HIRERzdqjp00DoHrjF1r0/YxegfISd999N1lZWYwbN47Bgwdz1lln+dskTRfY\n6hRzlxunJSakxbOjqJI6W5cC0noE9Tt3YR48qNWF2rCkJMJHj6Z648buNUzTDD3T9xJLlizxtwka\nL7LNUkZYiDA2pXV//cS0OOwNipyiCo7JSOhG6wKP+t27iRjXdpBF9PTplL70Eg01NYRERXWTZZqm\n6Jm+RtMC2yzljOgfS4Sp9UXHxsXc/N7t4mmorsaWn0/EiBFt9os+/niUzUbN5s3dZJmmJbToazRN\nUEqxNb+sVX++i4FxEfSNDWebpbzNfj2d+j17AAgfPrzNflHHHoOYTFRv1CkZ/IkWfY2mCfuP1FBR\nZ2diWtsRWCLCxLQ4tvTyxdz63bsBCG9nph8SGUnkscdqv76f0aKv0TRhmweLuC4mpMWzr7iaijqb\nr80KWOp27UIiIzGlpbXbN3r6dOp37sR++HA3WKZpCS36XSCQUytv2bKF6dOnM3bsWCZMmMBrr73m\nb5OChq355USYQhjRP6bdvhOcdwM/9GIXT/3u3YQPG4aEtC8n0ccbuYqqv/jS12ZpWkGLfhcI5NTK\nUVFRvPjii2RnZ/Phhx/yhz/8gbKy3u2G8JStljLGpcR5lFNnovNuYGtvFv1duwkf0bY/30XEmNGE\nxMXpVMt+RIu+B1RXV3P66aczceJExo0b1zhrnjlzJps2bQJg2bJljBgxgpkzZ/LrX/+aRYsWAXDl\nlVdyzTXXcPLJJzNkyBA+++wzfvGLXzB69GiuvPLKxmtcc801TJ48mbFjx3LXXXd12eYRI0Yw3Lmw\nlpKSQr9+/dBVydrH7mggu7DcI9cOQEK0mYzEqF67Sct+5AiOI0faXcR1IaGhRE+bRvXGje3mrNL4\nhuCL0//gFjjwvXfHHDAe5j3QanOwp1b++uuvsVqtDB061KO3ozez62AVdbYGJqZ7nkZjQloc3+aW\n+tCqwMW1iNteuKY70dOnU7l6NdYf9xM+ZLCvTNO0gp7pe8D48eP5+OOPufnmm1m/fn2zvDruqZVN\nJhPnn3/+Ue0tpVYOCQlpTK0MsGLFCo455hgmTZpEdnZ2i2sFixcvZsuWLc1+2hL8oqIiLrvsMv79\n738T4oHPtbfTkUVcFxPT4iksr6O4st5XZgUs9c4U4u1F7rgTfYLTr6+jePyCRzN9EZkLPIpRROVZ\npdQDTdp/C1wHOIAq4GqlVI6IDAK2AzudXb9USv22Sxa3MSP3FcGaWrmiooLTTz+dP//5z0xz5j7R\ntM1WSxl9IsIYlOT5jlFXPP82SxmzRvf3lWkBSf3u3YQmJBCa1HJiupYwp6djSkuj+osvSLz0Eh9a\np2mJdkVfREKBx4FTMWrefiMiK5VS7lPRV5RSTzn7nwk8Asx1tu1VSmV51+zuJRhTK1utVs4++2wu\nv/zyZncemtbZml/OxPT4DpX1G5fahxAxFnN7m+jX7dpF+IgRHS6DGH388VSsWoWy25Gw4PMyBzOe\nvNtTgD1KqX0AIvIqsACjBCIASin3+oXRQI9aoQnG1MorVqxg3bp1HDlypPFL6vnnnycrK6i/f31K\nnc3BzoOV/HbUkA6dF2UOY3i/WLb2snQMqqGB+t17iD/nnA6fG338dMpWrKD2+++JmjTJB9ZpWkUp\n1eYPcB6GS8f1/DLgsRb6XQfsBfKB4c5jg4Bq4DvgM2BGe9c79thjVVNycnKaHQs0KisrlVJK2Ww2\nNX/+fPXWW2/52aKeiS8/C5v2l6jMm99TH/5Q1OFzb1qxRWXds1o1NDT4wLLApD4/X+WMHKVKXnut\nw+faSkpUzshRqnjpUh9Y1jvBqFnerqZ7srLX0n1bs5m8UupxpdRQ4GbgdufhIiBDKTUJuBF4RUSa\npS0UkatFZJOIbArWsEKdWjn4cc3Us9rJudMSE9PjKa2xYSmt9bZZAYtrEbcjkTsuwpzrANbcXG+b\npWkHT9w7FiDd7XkaUNhG/1eBJwGUUvVAvfPxZhHZC4wANrmfoJRaCiwFmDx5clC6hnRq5eBnm6WM\n/n3C6d+neRGQ9vhpk1YZ6Ym9I22wS/TNwzyL0W+KOSMDW26eN03SeIAnM/1vgOEiMlhEzMBCYKV7\nBxFx/6ufDux2Hu/rXAhGRIYAw4F93jBco/E22yyeb8pqysgBsZhDQ3pVxs36XbsxpaYSGhPdqfPN\nmZlY87Todzftir5Syg4sAlZjhF+uUEpli8i9zkgdgEUiki0iWzDcOFc4j58IbBORrcAbwG+VUiVe\nfxUaTRcpr7Wx73B1u5k1W8McFsLolD5s6UWLufW7d3m8E7clzJkZ2A8epKG297jEAgGPYqWUUquA\nVU2O3en2+PetnPcm8GZXDNRouoPvnTP09nLot0VWWhyvb7bgaFCEhnQshDHYUFYr9T/uJ+bkUzo9\nhikjAwCrBwVYNN5Db9HUaHCriZvaedGfkBZPjdXB3uIqb5kVsNT/uB/s9g7txG2KOcOop2vTLp5u\nRYt+Fwjk1Mq5ubkce+yxZGVlMXbsWJ566il/mxTQbLOUMSgpirgoU6fHcOXr6Q3x+o3pF7ri3skw\n4kOsejG3W9Fb4brAs88+628TWmXgwIFs3LiR8PBwqqqqGDduHGeeeSYpKSn+Ni0g2WYp57hBiV0a\nY0hyDDHhYWy1lHH+5PT2Twhi6nfvhrAwwgcP6vQYoXFxhMbH68XcbkbP9D0gGFMrm83mxjw/9fX1\nNDQ0dHnMnsqhijqKyuu65M8HCAkRxqfG9YoInvpduwgfPAgxm7s0jikzA2uejtXvToJupv/g1w+y\no2SHV8cclTiKm6fc3Gp7sKZWzs/P5/TTT2fPnj08/PDDepbfCjsPVgIwZmCzfYMdZkxKH17+Mhel\nVIfz0QQT9bt3E+n2Ge8s5oxMajdv9oJFGk/RM30PCNbUyunp6Wzbto09e/bwwgsvcPDgQe+8IT2M\nvJIaADI7kFmzNTKToqi3N/ToNMuOqmpsBQVdWsR1Yc7IwFZURIPV6gXLNJ4QdDP9tmbkviJYUyu7\nSElJYezYsaxfv57zzjuv3dfb28grqcEcGsKATuzEbUqGczduXkkN/bwwXiBSv9uVQ7/zi7guzJkZ\noBQ2i4XwIR1LdKfpHHqm7wGFhYVERUVx6aWXctNNN/Htt98e1T5lyhQ+++wzSktLsdvtvPlmx7Ym\ntJRauSU6MtO3WCzUOje9lJaWsmHDBkaOHNkhu3oL+SU1pCVGEuKF2Hp30e+puKpleWumD+gcPN1I\n0M30/UEwplbevn07//d//4eIoJTipptu6lCO/95EXklNo1h3ldSESER6uOjv2o1ERWHywhqRKVPH\n6nc3WvQ9YM6cOcyZM6fZ8bVr1zY+vvjii7n66qux2+2cffbZnHbaaQBHFVwZNGgQP/zwQ+Nz97am\nhVm6yqmnnsq2bdu8OmZPJe9IDcdkJHhlrPCwUAb2iejhor+L8OHDEC+U3wyNjyckNlbH6ncj2r3j\nJXRq5eCkvMZGRZ3dazN9gPTEKPJ7qOgrpajftctraRNEBHNGho7V70b0TN9L6NTKwYlrRu7NdMgZ\niVGs2x2cdSHaw3H4MI6ysi7txG2KOTOD2h+yvTaepm30TF/Tq3GJvjdn+hmJURysqKfO5vDamIGC\nNxdxXZgyMrAVFKBsNq+NqWkdLfqaXk1uSTXg5Zm+M96/J7p46ryQc6cp5oxMcDiwFbZVm0njLbTo\na3o1+SU1JEWbiQn3nqczvQeHbdbv3k1oUhJhSUleG9Oc6Qzb1H79bkGLvqZXk1dS4/Xyhj05Vt+6\nPxfz4EFeHfOnWH0t+t2BR6IvInNFZKeI7BGRW1po/62IfC8iW0TkcxEZ49Z2q/O8nSLSPO4xiAnk\n1MoAc+fOJT4+nvnz5/vblHaZOXMmI0eOJCsri6ysLA4dOtQt1/VmjL6LpGgzUebQHin6NosFc2qa\nV8cMTU5GoqJ04rVuot17WmeN28eBUzGKpH8jIiuVUu5q94pS6iln/zOBR4C5TvFfCIwFUoCPRWSE\nUqpHrHAFcmplMHbw1tTU8PTTT/vbFI9Yvnw5kydP7rbr2RwNFJbVsWCid0VfRMjogWGbDVYr9kOH\nMKV5V/Qbwzb1rtxuwZOZ/hRgj1Jqn1LKCrwKLHDvoJSqcHsaDbiS0SwAXlVK1SulfgT2OMcLKoIx\ntTLArFmziI2N9bi/p7bGxMQ0Pn7jjTeOagsmisrqcDQor8/0wfDr97SZvq2gAJTyuuiDM/Gadu90\nC56sXqUC+W7PLcDUpp1E5DqMouhmwFU4MxX4ssm5qS2cezVwNUCG07/XGgf+8hfqt3s3tXL46FEM\n+NOfWm0P1tTKncETWz1hzZo13HDDDc2OR0VFsXHjxhbPueqqqwgNDeXcc8/l9ttv93lqYl/E6LvI\nTIxi/e7iHpVi2WYpAMCc7gPRz8ygcs0alN2OhOntQ77Ek3e3pU9ss7SSSqnHgcdF5GLgduCKDpy7\nFFgKMHny5LZTVvqB8ePHc9NNN3HzzTczf/58ZsyYcVS7e2plgPPPP59dztA2aDm1MtCYWjkrK4sV\nK1awdOlS7HY7RUVF5OTkNBP9xYsXs3jxYp++Vk9s9YSTTz6ZLVu2eHzd5cuXk5qaSmVlJeeeey4v\nvfQSl19+eadeg6c0xuh7IaVyUzKSoqizNVBcVU+/2J6RbdNWYAHwyUzflJEBNhu2Awcw+2B8zU94\nIvoWwL32WxrQVkDtq4ArI1lHz22XtmbkviLYUyt3hPZsBY6aubZkJ3R8pp+aatwAxsbGcvHFF/P1\n1193i+ibQsUrKZWb4rp7yC+p6Tmib7EgJhNh/fp5fWxXkXRrbq4WfR/jieh/AwwXkcFAAcbC7MXu\nHURkuFJqt/Pp6YDr8UrgFRF5BGMhdzjwtTcM704KCwtJTEzk0ksvJSYmpllytClTpnDDDTdQWlpK\nbGwsb775ZocyWraUWnnmzJnN+nlrpn/rrbcyZcoUzj777E6d379/f7Zv387IkSN5++23W1w36MhM\n3263U1ZWRnJyMjabjffee4/Zs2d3yraOkF9SQ1pCFKFeSKncFPewzWMzu1Z7N1CwWgowpaR4JdFa\nU1yx+ra8PPBClllN67Qr+kopu4gsAlYDocBzSqlsEbkX2KSUWgksEpHZgA0oxXDt4Oy3AsgB7MB1\nwRi5E4yplQFmzJjBjh07qKqqIi0tjWXLljFnzhy+//57zjzzzE6P+8ADDzB//nzS09MZN24cVVVV\nXbKzvr6eOXPmYLPZcDgczJ49m1//+tddGtMTfBGj7yI13pli+UitT8b3BzaLxSeuHYCwfv2Q8HAd\nq98dKKUC6ufYY49VTcnJyWl2LNCorKxUSills9nU/Pnz1VtvveVni1rntNNO87cJncabn4UJd69W\nt7/9vdfGa8q0v3ysbnxti8/G7252Tp2mCu+8y2fj750/X+Vdc63Pxu/pYEzC29VYvSPXSwRTauXV\nq1f72wS/U15jo7zW5pNwTRc9KcWyo6oaR1kZprRmwXdew5SZqTdodQM6NspL6NTKwUV+qe/CNV1k\nJEbx+e7DPhu/O3FF7vhykdWckUn1uvWohgafrBtoDILmnVXtRMhoej7e/Az4IqVyUzISozhQUdcj\nUizbLL4L13RhzshAWa3YDx702TU0QSL6ERERHDlyRAt/L0YpxZEjR4iI8E74408bsyK9Ml5LuL5Q\nLKXBv5jbLaKfqROvdQdB4d5JS0vDYrFQXNwzqxFpPCMiIoI0L4lOXkkNidFmYiNMXhmvJdxj9Yf1\ni2mnd2BjtRQQEhVFaHy8z67RmG0zL5foac02/Wu8RFCIvslkYvDgwf42Q9ODyDviu3BNF66Zfu6R\nap9epztwhWv6MqVE2IABiMlkxOprfEZQuHc0Gm/ji5TKTUmOcaVY7hnuHV+6dgAkNBRTerp27/gY\nLfqaXofd0UBBWS0ZPvTnw08ploM926ZSCmtBgU/DNV2YMzJ0BS0fo0Vf0+soKvddSuWm9IRYfUdp\nKaqmplty4pgzDdHXQRu+Q4vc4OVzAAAgAElEQVS+ptfhy5TKTXHN9INZxLojcseFKSMDVVuLXQdt\n+Awt+ppeR3fE6LvISIyi1ubgcJXV59fyFY2i7+UyiS3hyrapF3N9hxZ9Ta8jr6SGsBBhYJxvffrQ\nM4qkW13FU7rDp69j9X2OFn1NryOvpIa0hEifpFRuinusfrBis1gITUggJDra59cypaRAWJhezPUh\nWvQ1vY58H6ZUbkpagnE3Ecwz/e4I13QhYWGYUlN0kXQfokVf0+vojhh9FxGmUAb0iQhq0bcWWLol\nXNOFOTWtcR1B43206Gt6FeW1NspqfJtSuSnBHKuvHA5shUXdWsLQlJ6uRd+HeCT6IjJXRHaKyB4R\nuaWF9htFJEdEtonIJyKS6dbmEJEtzp+V3jReo+koLt96pg+KobdGMMfq2w8eBJsNU1p6+529hCkt\nFUdZGY6q4E9fEYi0K/oiEgo8DswDxgAXiciYJt2+AyYrpSYAbwAPubXVKqWynD+dr9Gn0XiB/G6M\n0XcRzCmWrY0x+t3o3nHeVbhy+Gu8iycz/SnAHqXUPqWUFXgVWODeQSm1Rinlmsp8Cehy9pqApDs3\nZrnISIpEKSgoC74cPLbGcM1udO+4RD8/v9uu2ZvwRPRTAfd33+I81hq/BD5wex4hIptE5EsRabGG\noIhc7eyzSadP1viSvJIaEqJM9PFhSuWmZCRGN1472LBZLCCCaeDAbrumS/St2q/vEzxJrdxSMHOL\ne8pF5FJgMnCS2+EMpVShiAwBPhWR75VSe48aTKmlwFKAyZMnB+9+dU3A052ROy4ygjhW31ZgMVIe\nm83dds3Q+HhCoqMb7zI03sWTmb4FcF/FSQMKm3YSkdnAbcCZSql613GlVKHz9z5gLTCpC/ZqNF0i\nrxtj9F0kx5iJNIWSeyT4RN9qKcCc2n3+fDCyk5rSdNimr/BE9L8BhovIYBExAwuBo6JwRGQS8DSG\n4B9yO54gIuHOx8nACUCOt4zXaDqC3dFAQWltt8/0gznFcnduzHLHlJamF3J9RLuir5SyA4uA1cB2\nYIVSKltE7hURVzTOw0AM8HqT0MzRwCYR2QqsAR5QSmnR1/iFovI67N2UUrkpwRi22WC1Yj90yC+i\nb05LxWopCOrspIGKR+USlVKrgFVNjt3p9nh2K+dtBMZ3xUCNxlvkd2N2zaZkJEaxce9hlFI+LTno\nTWwFBaBUt4ZrujClpqFqa3EcOUJYcnK3X78no3fkanoN/gjXdJGRGEmNNbhSLPsjXNOFKd0Ztqn9\n+l5Hi76m1/BTSuWIbr92hnMHcH5p8Lh4XD51/7h3XGGbOoLH22jR1/Qa8kpqSE2IJCy0+z/2wRi2\nabNYEJOJsH79uv3aJmfEkJ7pex8t+ppegz9i9F2kJRjXDaawTaulAFNKChLS/TIREhVFaFISVove\nletttOhreg3+FP1gTLHsr3BNF6a0VL1Bywdo0df0CvyRUrkpwRar72/RN6fpFMu+QIu+plfgz3BN\nF8EUq++oqsZRVuaXcE0XprQ0bEVFKLvdbzb0RLToa3oFrhl2Rjfm0W9KMKVYdkXu+CNc04UpLRUc\nDmwHDvrNhp6IFn1Nr8CfMfouMpOiUAospYGfYtlm8V+4povGvPp6MderaNHX9Ar8kVK5KelBFLYZ\nCKLfmFdf+/W9ihZ9Ta8g34+ROy5c1w+GxVyrpcAIm4yP95sNpgEDIDRU59X3Mlr0Nb2C3CM1ZCRF\n+9WG5BgzUebgSLHsitzxZ54gMZkwDRigwza9jBZ9TY/H7migoKyWjMRIv9oRTCmW/R2u6ULn1fc+\nWvQ1PZ6i8jocfkqp3JRgCNtUSmG1WDCnB4Lop2LVefW9ihZ9TY8nECJ3XLhm+oGcJ95eXIyqrcWU\nmelvUzCnpeEoPkxDbeBHPAULWvQ1PR6XDz3Tzz59MES/1uaguKq+/c5+wpaXB4A5w/+ib0ozKrXa\nCrRf31t4JPoiMldEdorIHhG5pYX2G0UkR0S2icgnIpLp1naFiOx2/lzhTeM1Gk/IK6nBFCoM6NP9\nKZWbEgzZNq25TtHPzPCzJTTuCNYRPN6jXdEXkVDgcWAeMAa4SETGNOn2HTBZKTUBeAN4yHluInAX\nMBWYAtwlIgneM1+jaZ/8khrSEqIIDfF/xSrXjuBAXsy15uVBWBimgQP9bYrbBi090/cWnsz0pwB7\nlFL7lFJW4FVggXsHpdQapZTrU/wl4FoBmgN8pJQqUUqVAh8Bc71jukbjGXklNQHhzwdIjY9EBPKO\nBK6P2pqXizk1FQnzqJqqTwlNTkYiInQEjxfx5K+aCrjvg7ZgzNxb45fAB22c2yyDk4hcDVwNkJHh\n/1tKTc8i90g1Wemd2GRUdQjWLYHKopbbM6bBlN9AqOfi6EqxnFtS3XF7uglbbh6mAPk/FBFMqak6\nr74X8eTT2tI9cYuhByJyKTAZOKkj5yqllgJLASZPnhy4YQ2aoKO8xkZFnb1j4ZpKwbbX4MNbwFoN\niUOb93FYYftKo9+Cx2HAeI+HD+SwTaUU1rw84iZN8rcpjZjT0rR7x4t4IvoWIN3teRpQ2LSTiMwG\nbgNOUkrVu507s8m5aztjqEbTGTocrlmWD+/dAHs+gvSpcOa/oO/IlvvmvAvv3wRLZ8IJf4ATF4Op\n/cXizMQo1u0u9vAVdC+O0lIaqqoCYhHXhSktjZrNm1FK+XWHcE/BE5/+N8BwERksImZgIbDSvYOI\nTAKeBs5USh1ya1oNnCYiCc4F3NOcxzSabiHP0zz6DQ3w9TPwxDTI3QjzHoKrPmxd8AHGLIDrvoLx\nF8D6JfD0DMj7ql2bMhKjOFhRH5Aplq25uQAB494BQ/QbqqpoKC/3tyk9gnZFXyllBxZhiPV2YIVS\nKltE7hWRM53dHgZigNdFZIuIrHSeWwLch/HF8Q1wr/OYRtMtuHznbebRrymBF+bDqpsg7Ti49guY\n+hvwpDZsVCKc/SRc+ibYauG5OfDRnYaLqBVctgSiiyeQYvRd/BS2qV083sCjFSil1CpgVZNjd7o9\nnt3Guc8Bz3XWQI2mK+SX1JAUbSYmvJWPusMGKy4HyybDN591CXTGhTBstvFlsfo22PAoRCXDCb9r\nsWu6W7bN4f1jO34tH2LNzYOQEL9WzGqKOd25QcuST+S4sX62Jvjxf0yWRuND2g3X/PBW2L8ezn4a\nJi7s2sXCY+GMR6Gu3Jjt9xsNw09t1i0zgFMsW/PyMA0cSIjZ7G9TGtF59b2LTsOg6dHktZVHf9O/\n4Ztn4Pjruy74LkTgrCdgwDh44xdQvKtZl8RoM9Hm0IAV/UBaxAUIjYkhNC5O78r1Elr0NT0Wm6OB\nwrI6Mlvy5+/fYPjwh82G2fd498LmaFj4Hwg1w6sXQW3pUc0iQnpiFHkBmFfflpsbUIu4Lkw6bNNr\naNHX9FgKy2pxNKjm7p2yPFhxGSQMhnOXQUio9y8enw4XvgylufDGL8FhP6o5EPPqO8rLcZSXB9Qi\nrgudV997aNHX9FhaDNesr4L/XGSI8EWvQqQPywFmTof5j8DeT+Dju45qCsQUy9Y8Y9droLl3AMzp\nadgKClANDf42JejRoq/psTQT/YYGeOcaOJQD5z8HycN8b8QxlxupGr54DLa80ng4MymKensDxZWB\nk2LZmmfE6JsD1L2jbDbshw6131nTJlr0NT2WvCM1mENDfkqp/NVTRuqEU+8zfPndxZy/wOCT4L+/\nh0M7gJ/CNnMDyMXjitE3pae307P7MaXqCB5voUVf02PJK6khLTGSkBCBikJYcz8MPw2mX9e9hoSG\nwXnPgSnKWDxWP5VuDKTFXGtuHmEDBhAS4f+6A03RefW9hxZ9TY/lqHDN1bdBg91Ir+CP/C3RyTD7\nLmNPwPdvkJrgTLEcQDN9a15eQLp2AEypqSCiI3i8gBZ9TY9EKUXeEafo710D2W/Bz26ExMH+M+qY\nKyDlGPjfbYTbq0iJiwyoVAzWvDxMGYHn2gEIMZsJ698fW75OsdxVtOhreiRlNTYq6+0Mig8zXCoJ\ng+GE3/vXqJBQOP1vRp7+NX8hPTEyYHz6jqpqHIcPB2S4pgtTWirWAu3e6Spa9DU9EpfbZEbxq3Bk\nD/x8iUdpj31O6jEw+Rfw9VKmRhYEjHvHlu9KtBaY7h0Ac1o6tjw90+8qWvQ1PZK8khrSpJihO56E\n0WfA8G6M1mmPWXdAZCILix/lcGUttVb/p1gOpGLorWEeMgT7oUM4qqr8bUpQo0Vf0yPJK6nhzrAX\nEQmFuQ/425yjiUyA0+5jYMU2zgtdR36p/2f71sZwzcAV/fChQwCw7t3rZ0uCGy36mh5J1P6POS10\nM3LSHyEuzd/mNGfiRVT1P45bwv5DQWGzQnTdjjUvl9DkZEJjov1tSquEDzXKVtbv3ednS4IbLfqa\nnoetlp9b/k5+aDpMu9bf1rSMCI55S4ijmgGbHvK3NdhyAzdc04UpLQ0xmajfu8ffpgQ1Hom+iMwV\nkZ0iskdEbmmh/UQR+VZE7CJyXpM2h7OaVmNFLY3Gp3z+D/o7DvBuyo0QFjh54ZvSJ3Miy5nHqII3\noeBbv9oSyDH6LiQsDPPgwVj1TL9LtCv6IhIKPA7MA8YAF4nImCbd8oArgVdoTq1SKsv5c2YL7RqN\n96g6hNr4L953TMWafoK/rWkTEWFlwhVUhsTBx3f7zY6G2lrsBw8G9CKuC/PQIdRrn36X8GSmPwXY\no5Tap5SyAq8CC9w7KKX2K6W2AToFnsa/rH8E7HUssV/QdsWsAKFvUjIvmc6FHz+DfWv9YoPVueEp\nEPPoNyV86DBsFgsNdXX+NiVo8UT0UwH34FiL85inRIjIJhH5UkTOaqmDiFzt7LOpuLi4A0NrNG6U\n5cGmZRwYci4/qoFkJgXuoqSLjKQonqw+CdUnDT65t82C6r4iEIuht0b40CGgFNYff/S3KUGLJ6Lf\nUqKSjnwyM5RSk4GLgX+IyNBmgym1VCk1WSk1uW/fvh0YWqNxY+2DgLAx7VcArZdJDCDSE6OosodR\nMfVGKNgMO97vdhsaY/QDNAWDO2ZXBM8e7eLpLJ6IvgVw/zSkAR7HmCmlCp2/9wFrgUkdsE+j8Yzi\nXbD1FTjuV+ys7YM5LIR+seH+tqpdXF9MOwecAUnD4dM/Q0P3btay5uURGh9PaFxct163M5gHDYKQ\nEOr3adHvLJ6I/jfAcBEZLCJmYCHgURSOiCSISLjzcTJwApDTWWM1mlZZ82cjdfGMG9lXXEVmYpSR\nUjnAGeSs37vvSB2cchsUb4fvX+9WG6x5uZiCYBEXjMRr5owMrHqm32naFX2llB1YBKwGtgMrlFLZ\nInKviJwJICLHiYgFOB94WkSynaePBjaJyFZgDfCAUkqLvsa7FH4HOe8aefKjk9lxoJKRA2L9bZVH\npCdEEWkKZceBShi9AAZMgDV/Abu122yw5eUHhT/fhXnoUOr36bDNzhLmSSel1CpgVZNjd7o9/gbD\n7dP0vI3A+C7aqNG0zSf3GakNpl9HZZ0NS2ktF00JkplriDByQCw7DlRASAjMuguWnwvfvgBTfu3z\n6zdYrdiKiogLgsgdF+FDh1L12Wcomw0xmfxtTtChd+Rqgpv9nxuFx392I0TEsetgJQAj+wfHTB9g\n1IBYdh6oNIqkD5sFGcfDuofBWu3za9ssBdDQEBSLuC7Chw4Bu70xX5CmY2jR1wQvSsHH90DswMZZ\n8fYiQ/RHDQwu0S+tsXGost6o6jX7Lqg6CF897fNru4qhB0OMvgvzUKOgvY7g6RweuXc0moBk12qw\nfA3z/w6mSAB2HqgkNjyM1PjIDg+nlOJQzSG2l2xn+5Ht5JTksLt0N7X22hb7J0YkMjpxNKOTRjM6\ncTSjEkcRY47p8HVHDewDwI4DlfTvEwEZ02D4HNjwDyP3fmR8h8f0lMYY/czg8emHDzGqn1l1BE+n\n0KKvCU4aGuDT+4yKWJMuazy840AFIwfEIh7Wwa2x1fBR7kes3r+a7CPZlNSVACAIg+IGMSF5An3C\n+zQ7TynFgZoDfFn0Jf/d99/G45l9Msnqm8WZQ89k8oDJhEj7N9OjnIvOO4oqOGmEc5/KKbfD0zNg\n47+M/Ps+wpqbR0hMDKEJCT67hrcJiYrClJKiZ/qdRIu+JjjZvhIO/gBnPw2hxmKeUoodBypZkJXS\n5qlKKbYUb+GdPe/w4Y8fUmOvIS0mjRmpMxidNJoxSWMYmTCSKJNnm7uKa4ob7w62l2znk7xPeHfv\nu6TGpLJg6AIWDFtASkzrNsVHmRnQJ8KI4HExcAKMPRu+esrIFBqd5JEtHcWVaM3TL8lAQUfwdB4t\n+prgo8EBa/9qbGYaf37j4cLyOirr7Iwa0HxmDlBeX87ru17n3T3vsr9iP5FhkcwZNIezhp3FMf2O\n6bTw9Y3qS9+ovpyYdiIAtfZaPsn7hHf2vMOTW5/kya1PMmXgFM4Zdg5zBs0hNCS02RijBsYeLfoA\nJ90C2e/Axn/Cqfd0yrb2sOblEjGmaf7EwCd86FBqvv4a5XAgoc3fT03raNHXBB/Zb0PxDjh3mVFs\n3MmOogrgJ3eJizp7Hcu3L2fZ98uotFVyTL9j+MW4XzBn0ByPZ/MdITIskvlD5jN/yHwKqwp5d++7\nvLvnXW5efzNLty3lhmNv4MS0E4/6khk5IJYNew5jczRgCnW6hPqNgvHnwddLYfoiiPFuihJls2Er\nKKTP3HleHbc7MA8dgqqvx1ZYiDk9eCKPAgEdvaMJLhoc8NmD0He04f5wwzVTHuEUfUeDg7d3v838\nt+fzj2//waT+k3jzzDd5Yd4LnD38bJ8IflNSYlK4ZuI1rDpnFY/MfAS7srPo00VctfoqthVva+w3\nekAfbA7FvuImYZon3Qz2Otj4qNdts+bng90eVIu4LsIbI3h0QZWOokVfE1z88CYc3gUzbzlqlg+G\n6KclRBIbHsY6yzrO++953LnxTvpG9uW5Oc/x+KzHGZEwwi9mh0gIp2aeytsL3ub2qbfzY/mPXLLq\nEm5ceyO5FbmNIaY7DlQcfWLycBh/AXz9LFQe9KpNddnGxvmIscHo3nHWy9V+/Q6jRV8TPDjssPYB\n6D8ORjevx7OjqIIhA+xc+8m1XPfJdVgdVpactIRXTn+F4wYc5weDm2MKMXHhqAtZdc4qrpl4DZ8X\nfM5Z75zFhwXPExbiaO7XBzjpj+CwGiGcXqTuh2wkPLyx9mwwERoXR2jfZB3B0wm0T18TPHy/Akr2\nwoUvGykL3Kiz2cm1rqdE3iPkgIM/HvdHFo5ciCk0MLfpR5uiuTbrWi4YeQF/3/x3lv3wDH2GpvHd\ngauBUUd3ThoKEy+Cb5bB8b+DPgO9YkNdTg7ho0YiYcEpA+FDhupsm51Az/Q1wYHDZvjyB0yAUfOP\najpSe4TrPv4D4QNfY0BUJm+c+QaXjbksYAXfneTIZO7/2f08evKjEFZBNvfw7PfPYm+wH93xxJtA\nOeDzR7xyXdXQQF1ODpFjx3plPH8QPnQo1j17jfQVGo/Roq8JDra+CqX74eQ/GakKnHyc+zHnrDyH\nzcUbqDs4j0dmPE1mn+BbmDwl4xQuTXsMW+UYHv32Ua748Ar2l+//qUPiYMi6GDY/D+UFXb6eNTeX\nhupqIoJY9M1Dh9BQXY390CF/mxJUaNHXBD52K6x7CFImwYi5gLGT9rbPb+OGtTfQP6o/p8U/gFSc\nzNDklmP0g4FJaanUFVzM1aPuYH/5fs7773ms2Lnip5nsjJuMfEPr/9bla9VlGxnOg1n0dQRP59Ci\nrwl8tiw36t+efBuIkFeRx6UfXMp/9/6X30z4DctPX05RcTzD+8UQFhq8H2ljf4EQ1zCFtxe8zeT+\nk7nvy/u4fcPt1NnrICETjrkMvn3ReD+6QF12NmI2B+UirovwYYbt1r06gqcjBO9/iKZ3YK+HdUsg\n7TgYNps1eWtY+N5CDtUc4snZT7Jo0iJMISZ2HKhsdSdusDCgTwRxkSa2F1XSL6ofj896nGsmXsPK\nvSu57IPLyK/Mhxn/Z7i31j3cpWvVZWcTPnJkUOejD01KIiQujvq9ejG3I3gk+iIyV0R2isgeEbml\nhfYTReRbEbGLyHlN2q4Qkd3Onyu8Zbiml7DpOaiw4Jh5C//87l/8bs3vSO+TzmvzX+OE1BMAOFJV\nT3FlPaODKJ1yS4iIM7e+EasfGhLKtVnX8visxymoKmDhewtZV7kPjr0KvlsOhzvn1nAt4gZjfL47\nImIs5mrR7xDtir6IhAKPA/OAMcBFItL005IHXAm80uTcROAuYCowBbhLRIInnZ/Gv9RXwrqHKR38\nM67Zt4Jnvn+Gc4afw4vzXiQ1JrWx205nbHuwlEhsC1dBlYaGnyJSTkw7kdfmv8bA6IEs+mQRTyT3\npSEswqgL3AlseXk0VFUFtT/fRfjQIXqm30E8melPAfYopfYppazAq8AC9w5Kqf1KqW1AQ5Nz5wAf\nKaVKlFKlwEfAXC/YrekNfPEEO20VLIyoZvPBzdw9/W7uOf4ewkPDj+rm2tAU7O4dMHLrV1sdFJQd\nncM/PTadl37+EmcMPYMnt7/I9cPGUZ3zDhRu6fA1ap07cYM5XNOFeehQHKWl2EtK/G1K0OCJ6KcC\n+W7PLc5jnuDRuSJytYhsEpFNxcXFHg6t6dFUH2bd5ie5PC0Vu4Ty4rwXOXfEuS123XGgguQYM31j\nw1tsDyZcyeK2F1U0a4sMi+TPJ/yZ26bexob6Q1yWmkLRxx3PtV+Xk4OYTIQPG9Zle/2NayFau3g8\nxxPRbynfrKe7ITw6Vym1VCk1WSk1uW9f72YS1AQfSimWr17E9UkxZPYZxCunv8LY5NZnpTsOVPYI\n1w7AiP6uHDwtpGPA8GMvHLWQJ2Y9QVF4BBfZ9vL91hc7dI267BxjEdds7rK9/sYl+vU6gsdjPBF9\nC+CeuzQNKPRw/K6cq+mF2Bvs3L/uVh6ozGamOZnn5/+H/tH9W+3vaFDsOhj8kTsuosPDyEyKalyn\naI3jU4/n5XkvESEhXPXdw6z+cbVH4yulnIu4we/aAQgbOBCJitJ+/Q7gieh/AwwXkcEiYgYWAis9\nHH81cJqIJDgXcE9zHtNomlFpreS6T67jtf3vc1VFNX+f90K76Y9zj1RTZ2tolkM/mBk1IJbtTbNt\ntsDQ5LG8Mm4RY+rruGndTSzdtrTdlAS2/HwaKiqCsnBKS4gI4UOGaPdOB2hX9JVSdmARhlhvB1Yo\npbJF5F4RORNARI4TEQtwPvC0iGQ7zy0B7sP44vgGuNd5TKM5ioKqAi5bdRlfF33FPYdLuHHERYQk\ntJ9OoSct4roYOaAP+w9XU2dztNs38dhf8Yy1D6fbQvnXd//i9g23Y3PYWu3/UzrlnjHTBx3B01E8\nitNXSq1SSo1QSg1VSt3vPHanUmql8/E3Sqk0pVS0UipJKTXW7dznlFLDnD//9s3L0AQz2UeyueT9\nSzhUe4inwzI5p17gZzd6dO6OA5WECAzvH+NjK7uP0QNiaVCw+2BV+51DwwifdSd/tfzItf1/xsq9\nK/ntx7+lwtrynUJddjaYTISPGO5lq/2Heegw7AcP4qho/+5Io3fkavzMOss6rvrwKsJDw3n5mFuY\nsmstnPA7jwuB7yiqYHByNBGmnlMnddRA467FExcPAKPPRFImcc329fxl+j18e/BbrvjgCg5UH2jW\ntTY7m4jhwwnpAYu4LiInTACgZvNmP1sSHGjR1/iN13e9zvWfXs+gPoN4ed5LDPliKUQlw7RrPR6j\nJ6RfaEpGYhQRphB2FLW9mNuICMy+G8rzOePIAZ489UkOVB/gkvcvYUfJjsZuxiLu9h7l2gGInJSF\nmM3UfPmVv00JCrToa7qdBtXAo98+yr1f3MsJKSfw/Nzn6Vu4FfavhxMXQ7hnrprqejt5JTU9ahEX\nIDREGNk/lp0HO+CuGDITBp8E65cwLX4kL8x7ARHhig+uYEPBBgBsBQU0lJf3ONEPCQ8n8phjqP5K\ni74naNHXdCtWh5Vb19/Ks98/y7nDz+Wfp/yTKAmFD/4IScNg8lUej7XzYM9Jv9CUkQNiPZ/puzjt\nz1BbCmv+woiEESz/+XLSYtO47pPreHv329T90PMWcV1ET5tK/Y4d2EtL/W1KwKNFX9NtlNeX85uP\nfsOqH1fxu0m/467pdxEWEgZfPAYl+2DeQxDm+a5aVyz76IE9y70DRjTSkWorxZX1np80cAJM/iV8\n8ywUbaN/dH9emPsCUwZM4c6Nd7Lh0xchLIzwkf4pDu9LoqZOBaDmq6/9bEngo0Vf0y0UVBVw+QeX\ns6V4C3/52V/49YRfIyJQlm+kTh41H4bN6tCYO4oqiAkPIzU+0kdW+49RA107czsYkXLKbRCZAKsW\ng1LEmGN4fPbjnDXsLMq3fUfJwGgcoS1tlA9uIseNIyQqipqvtYunPbToa3xO9mEjJLO4tpilpy7l\njKFn/NT4v9uNalBz/9rhcbcfqGRE/xhCQnqeiLkWpzvs4olMMBZ187+Eba8BYAoxcc/0exhzOJzv\nEivaDOkMVsRkIvK4yVTrxdx20aKv8Smf5X/GVauNkMyX5r3EcQOO+6lx7xrIeccoDBKf0aFx62wO\ntlnKmJAW72WLA4PEaDNpCZF89WMn9jJmXQqpx8L/7oA6Q9zthUWYquoYf8JZfHvICOksrOpZGVGi\np07Dum8ftoO6Zm5baNHX+IzXdrzG79b8jsFxg1l++nKGxruV5rNbjcXbhMFw/PUdHnvj3sPU2Ro4\nZVQ/L1ocWJwyqh8b9hz2aGfuUYSEwM+XQHUxrH0A+Gkn7pSZC3lq9lMcrD7IJasuIedIjrfN9hvR\n05x+fe3iaRMt+hqv42hw8LdNf+PPX/2ZGakz+Pecf5McmXx0p6+egsO7YN6DYIro8DU+3n6IaHMo\nU4ckesnqwGPW6P7U2hx8sfdIx09OPQaOvcJ4nw9tN0Q/LIzwkSOZOnAqL857EVOIiSs/vJLP8j/z\nvvF+IHzUKELi4qj+8r8HE4EAACAASURBVEt/mxLQaNHXeJUaWw1/WPsHns9+ngtHXsg/Tv5H86Rp\nFUXw2YMwYi6MmNPhayil+HT7IWYM70t4WM/ZiduUqYMTiTKH8smOg50b4JQ7IaIPrFpMXU4O4cOG\nERJuREcNSxjG8p8vZ3DcYK7/9HpeyH6h3WRtgY6EhBA95Ti9SasdtOhrvEZRVRGXfXAZ6y3r+dPU\nP3H7tNuNkMymfHQHOGydWrwFyC6s4EBFHbNG91zXDkCEKZQZw5P5dPuhzglydBKccgfqx/XUbfu2\nWU3cvlF9eX7u88zOnM2STUu4+4u720zWFgxETZ2GraAAq8Xib1MCFi36Gq+wtXgrC99fSFFVEU/M\neoKLRl3Ucsf9n8P3r8MJv4fEIZ261qc7DiECJ/dgf76LWaP6U1hex/aORvG4OPZK7DHjcFTUEDFi\naLPmyLBIlpy0hKsnXM1bu9/i6o+upqyurItW+49Gv7528bSKFn1Nl3l/3/v84sNfEG2K5uWfv8zx\nqce33LGuHN65BhIGwc9u6PT1Ptl+kKz0eJJjgr88Ynu4vtg+2d5JF09IKDUDFgIQWfZJy10khOsn\nXc9fZ/yVbcXbuHjVxewrD85KVOahQwlNTtahm22gRV/TaRpUA//67l/csv4Wxvcdzys/f4Uh8W3M\n3lcthvICOOcZMLddHKU1DlXWsdVSzqxeMMsH6BsbzsT0eD7Z0fkwxIqvdhIWF0nEkffghzdb7Td/\nyHyWzVlGta2aS9+/tDFnTzAhIkRPnUr1V18G/RqFr9Cir+kU5fXlXPvJtSzdtpRzhp/DM6c+Q3xE\nGzHz2143NguddDOkT+n0ddc4xW/W6NZLKPY0Zo/qx1ZLWcdSMjhxlJdT/dk6+iw4D0mfDO/dYOyC\nboWsfln85/T/MDBmINd8fA1Pb32aBtXQFfO7nahpU3EUH8a6LzjvVnyNR6IvInNFZKeI7BGRW1po\nDxeR15ztX4nIIOfxQSJSKyJbnD9Pedd8jT/YfmQ7F753IV8VfcUd0+7g7ul3Ywo1tX5CaS68fyOk\nTzM2YnWBT7YfIiUuosdl1myLU0b3QylYs7Pjs/3Kjz5C2Wz0OeNMOPcZaHDA2781frdCSkwKL817\niXmD5/HYlsf4/ae/D6odvNHTpgHorJut0K7oi0go8DgwDxgDXCQiTQts/hIoVUoNA/4OPOjWtlcp\nleX8+a2X7Nb4iXf2vMNlH1yGvcHOC3Nf4IKRFxg5dFrDYYe3rjYen7MUQluI5vGQOpuD9bsPM2t0\n/7av2cMYM7APA+MiOuXXL3/vfcyZmUSMG2ssnP/8Ycj9HDb8o83zokxRPDDjAW6dciufF3zOwvcW\nsrNkZ2dfQrdiSksjLGWgDt1sBU9m+lOAPUqpfUopK/AqsKBJnwXAC87HbwCzpDf9V/YCrA4r935x\nL3dsuIOsvlmsOGMFE/pOaP/Ezx8x8sCc/jfwoOZtW3y57wi1Ngen9PBQzaaICKeM6sf63Yept3u+\nO9d28BA1X31Fn/nzf/qSnHgRjD0b1vwFCtquNCUiXDz6Yv6/vXOPr6K6Fv93nXPyJA8SEsIjPML7\n5YOXghW0QBUBsQoWahUqV7291lvbXm5btVh/2t/vV+vFtrYVHwjioy1YQHlpRLFAtQrIU0AISRDC\nKw+Sk4QkJzln1v1jJhjCOclJcpJAMt/PZzKTmT0za/bZs2bvtfdea+nkpVR4K7h7w92szVzblEdp\nEUy7/hjKPvsMNS4v01RLEIzS7w7UNALmWPv8prECqbuB6nh3aSKyS0Q2i8g4fzcQkQdEZIeI7MjL\ny2vQA9g0P8dLjjP33bm8dfgt5g2bxwvfeoHEyCBmwh7fbroBuOJOuPI7TZbjw4O5RIU5GdsnuFCK\nbYlJg1Moq/TxaVbwvniK390AqsRNnfr1ThGY9juISYGV94On/ji8V3c2P/JDk4by6D8f5def/poK\nb0VjHqPF6DDmWnxuN55Dl0frpCUJRun7q7HX7hYPlOYU0FNVhwM/Bf4iIhc5P1fVl1R1lKqOSk5O\nDkIkm5ZAVXn7yNvMXDOTr4q/4nc3/o6fjPyJ/wlXtfGUwKr7IK676QcmBLJs+jKX6/sntal4uMEy\ntm8nIsMcbGqAiad43Xoihwwhok/ahQeiEuD2F80YBumPBHWtpKgkXr7pZeYOmcvyQ8uZvW72BaEY\nLzWq/evbQzcvJhilnwP0qPF/KlDbPd/5NCLiAuKBs6rqUdUCAFX9HMgE2l4EhzaI2+Nm/ub5LPh4\nAUM6DWHl9JVM6jUpuJMNA9b8CIqOmXb8qKZ7wvzydAknisrbzVDN2kSGObm+XxIfBDk715OdTcUX\nXxA3bZr/BGnj4Pofw87XYM/yoGQIc4Qxf/R8Xpz0Iu5KN3etv4tXv3j1khzdE9alC+G9e9uTtPwQ\njNLfDvQXkTQRCQdmA2tqpVkDzLW2ZwKbVFVFJNnqCEZE+gD9AXsc1SXOtlPbuGPNHWw6tomHRzzM\n4psW0zWma/AX2LgA9q+CCQug19iQyLTJGqrZlr1q1sfEwSmcKCrn8Jn6TTLF6zeACHFTbgmc6MZH\nodf18M4PIXNT0HJc1/06Vk1fxbju41j4+UIe2PgAZ841cvJYMxI95lrKtm9Hqy5v1xKhpl6lb9no\nHwLSgYPAClXdLyJPish0K9krQCcROYJpxqke1jke2CsiezA7eH+gqo1wEG7TElT6Knl2x7Pc9/59\nRLuieWPqG9x3xX04HQ0wp3zyRzP84TUPNGnWbW0+OHiGK1Pj6RzXcI+cbYXqD94H9Zh4VJXideuI\nHj2asC5dAid0hcPsNyFpACy/B07uDlqWhMgEfv/N3/PE2CfYm7eXO9bcQfrR9KDPbwk6jBmDUVZG\n+d69rS3KJUVQ4/RVdYOqDlDVvqr6f619j6vqGmu7QlXvVNV+qnqNqmZZ+1eq6lBVvUpVR6jqpd/1\n307Zfno7M9bMYOn+pdw54E6WT1vO0E4NDKC9d4UZCWvIbTD5N2anYQjIL/Ww+3gREwe1nwlZ/kiJ\ni+SK7vHnWz2BqNh/gMqjR4mbNrXOdIBpert7pWnnf3OmaecPEhFhxoAZrJi2gh6xPZi/eT4Pb3qY\n0+dOB32N5qTDN76BIy6OgiVLW1uUSwp7Rm47p7CikMf++Rjz0ufhNby8OOlFFoxdcLE75Po48qHp\nV6f3OLj9JWhI66AePvoyF1XavFfNYJgwqDM7jxVSUBp4dm7x+vUQFkbcTTcFd9G4rnD3KjC88Pod\nUNqwEXS943vz+pTX+cnIn/DJyU+47e3beOPAG/jqmADWEjhjY0mcO4fSDz+k3AoiY2Mr/XZL9cic\n6W9PZ0PWBu6/4n5W37Y6sLO0uji5C1bMgeRBprmgEUFR6mLTl7mkxEUwtNtFA7/aHZMGp6AK/zjk\nXzGrz0fx+vXEjBuHs2MDOtCTB8Bdb0HJabPGH8RQzpqEOcKYN2weq29bzfCU4Ty9/Wnu2nAX+wta\nV9kmzpmDIy6O/D/9uVXluJSwlX475EjhEealz2PBxwtIi0/jrVvf4kcjfkSkqxHK+mwWvHknRCXC\n9/4OkfEhlbXU42XL4TwmDGpfs3ADMbRbHJ1jI3j3C/8mlLIdn+PNzSU+GNNObXqMhjtfhdP7YMU9\nZkjLBpIam8qiiYt45oZnyC3L5a71d/H0tqdxe9wNlycEOGNj6XTv9yn96CPK933RKjJcathKvx1x\n+txpFny8gBlrZ3Co8BC/GvsrXp38Kv0S+jXugmcOwLLbTD8u96wyzQQh5vcbD1NW5WPW6B71J24H\nOBzC7Gt68sHBM37DKBavW4dERxPzzW827gYDJ8P058zRPCvmNLjGD6atf3Lvybzz7Xe4c8CdvHnw\nTaasmsLSL5a2yqSuhHvuwRkfT/6f/tTi974UsZV+O8DtcbNwx0KmrprK+qz13DP4HjbcvoGZA2bi\nkEYWgcPp8Mq3wOcxFX5S/9AKDRw8VczST44ye3RPru7R9LH+bYUHb+xLj8Qofvn2Piq9X4+RNyor\nKX7/fWInTcQRFdX4Gwy/25xQl5EOS24251s0grjwOH455pe8detbXJl8Jc9+/izTVk9jdcbqFrX3\nO2NiSLz3Xko3b7ZH8mAr/TZNubecxfsWc8vKW1i2fxm3pN3C+tvXM3/0/LrdINeFKnz8HPxlFnTq\nC/d/BN2Gh1ZwwDCUx1bvo2NUGD+fPDDk17+ciQxz8uT0YWTmnePlrV+Ptjm3dSuG20381EaYdmpz\nzf2mua7oOLw8AY41fmbrwMSBLJq0iCU3L6FzdGce/+RxZqyZwaZjm1rM533C3Xfj7NiRPLu2byv9\ntsjZirMs2r2IySsn84edf2BkykhWTl/Jr6//dcMmWdXG64F3HjInXw25De59D+Jru2EKDct3HGfn\nsSIenTKYjtHhzXKPy5lvDurMLcO68NyHGRw/W4avtJTc3z6DKyWFDtc1ojPeH/0mwn0fQEQsLJsG\nu//apMuN7jKaN6e8ye9u/B0+9fHwRw/znXXfYW3mWqqM5p1A5YzpQOK8eZzbspXy3cHPR2iLyKUW\nXWbUqFG6Y8eO1hbjsiTbnc3rB15nTeYaPD4PN6TewLxh8xiRMqLpFy/NMzv3jv0LbviFGQzF0Tx1\nhoJSDxMWbmZQl1j+9sAYuwM3AKfc5UxauJlreifw1L7llKSn02vZq0SPHh3aG5WdhbfmQvYWM7bx\nxF81eUiu1/CyNnMty/YvI9OdSUp0Ct8b/D1mDphJbHjzxEowzp3jyKRvETl0KD0Xv9ws92hNRORz\nVR1Vbzpb6V/eGGrw+ZnPee3Aa/zj+D8Id4Rza99bmTNkTt2hCxvC4XRY/19wLg++/TwMmxGa6wZg\n/lt7eGf3Cd59eBz9OrefYCmNYfHWLHb/cTE/3Lua5J/+lKQH7m+eG/mq4N2fwY4l0OebpqvsThcH\nWm8ohhp8fOJjlu1fxmenPyPaFc2MATP47sDv0iMu9J33BYsXk/s/C+n1178QPTz0ZsnWxFb6bZxj\nxcdYm7WWtZlrOVF6goSIBGYPms2sgbPoFBUi18MFmZD+KBx+z5yqf/uL0D0ErYY6+CyrgFkvfcqD\nN/blZ5MHNeu92gKlu/eQfdf32N9tEFPX/oXYqGY2he1YAu8/bnbgX/efZiS08A4hufTBgoO8duA1\n3st+D696GdF5BNP7Tuem3jeFrPZvlJWZtf1Bg+i55JWQXPNSwVb6bZDiymLSj6azNnMtu3J3IQhj\nuo5her/pTOo5qXHj7P1ReQ62LjT96DjDTVPOtT8wfbU0I5Veg6nPbaW8ysfGn9xAVHj7c6HcEHxu\nN9l3zMBT5WX2qAeZNWEYv5xWO6hdM1ByGjb+Cvb+zXSdfdNTMPSOkLndOHPuDGuz1rImcw3Z7mwi\nnBFM6DGBW/veythuY4Nz7V0HBa8sIfeZZ+i5bBkdrm18vOZLDVvptxGOlxxnS84WtuZsZdvpbVQZ\nVfSJ78P0vtOZ2mcqXTrU4VCroajC/tWm/5ziE3DlbPjW/4HYEN6jDhb9I5On3/uSJd8fxYR27men\nPlSVnB8+ROnWrfR+43WezHSwYsdx1v3n9Qzu2kIzl499Chvmm5O5eo+DW56GlAb6a6oDVWV/wX7e\nOfIO7x59F7fHTUJEAtd3v57xPcbzjW7faFQLwCgvJ2vqNHxFRXRb+D/ENnZOwyWGrfQvU6p8VezJ\n28OWnC1sydlCpjsTgN5xvRmfOp4paVMY0mlIaDs3z+XD7r/A56/C2UzocoU5TrvnmNDdox62ZZ9l\n7pJtjB+QxIv31Ftu2z3VtdWURx8lcc49FJVVMnHhZrp2jOSVuaNJaSlvpIbPLDebnoLyQuhzI4z8\nPgycGtKWYZWvii05W9h4bCP/PPFP3B43LnExImUE41PHM677ONLi04J+L6rOnCHnwR9SceAAnefP\nJ3HevZf9gAFb6V8muD1u9uTtYeeZnezK3cX+gv14fB5c4mJkl5HckHoD41PH0yuuafFlL0IVjv4T\nPl8KB9eCrxJ6joWR98IVM0PqMK0uSj1efvvel7z2r6/okRjFin8fS9f4JkwsageUbd/OV9+/l9iJ\nE+n+h9+fV1bp+0/zo7/uItzlYMHUIdw5KrXlFFnZWdj+CuxcBu7j0CEZrv4ejJxrBmQPIV7Dy778\nfWw+vpnNOZs5UnQEgMTIRK5KvorhnYczvPNwhnQaQrgz8IfHKC/n5C8eoSQ9nfg77qDLE7/CEX75\nDg+2lf4lhqpSUFHA4cLDZBRmcLjwMAcKDpwvsC5xMbjTYK7ufDUjO4/k2q7XEhMeE1ohqsrh+DZz\n6N2Bt6HgiOkr56q7zJez8+DQ3q8eNh/O49FV+zjpLuf71/Xmv28eSHR40+y1bZnKo0fJX7QI99p1\nhPVIJe3vf8cZe6F5Izv/HD//+162HT3LuP5J/L/br6BHYgM9pjYFw2e6cNix1BwAoD5IuwEGTIa0\n8dB5SMiH+p4sPcknJz9hV+4udufu5liJOYM43BHOsKRhDEocRP+E/gxIGEC/jv0u8CCrhkH+n/5M\n/vPPEzVyJKl/fA5XYhDxny9BbKXfSpRVlXGi9AQ5JTkcLzlOTmkOWUVZZBRlcLbi6/gxSVFJDEwc\nyPDk4YxIGcGwpGFEuUJcw/VWwqndkLUZsjebCt/nAXGappvh98DQb0NYy9asi8oqeWrdQVbuzKFv\ncgd+O/NKRva6PF+0lqDy2DHyn1+Ee+1aJCyMhNmz6fTA/QGVk2Eob247xm82HESBn908kDlje+Nw\ntLD5ovgk7HoD9vzNNBsCRHcy7f9p482PQae+IesAria/PJ/dubvNj0DebjIKMyj3lp8/3iO2B/07\n9qd3fG9SY1NJjUkl5V8ZVD75LK6kJLo9/RuiRoxAmmkeSnMRUqUvIpOBPwBOYLGq/qbW8QjgNWAk\nUADMUtWj1rFHgH8DfMCPVLXO8DqXotJXVcq8Zbg9bgo9hRSUF5BXlkdeeR755fnklZnrE6UnKKi4\n0AlWTFgMveN6MyBxAP079qd/grkkRoZIyalChdt8qfIzIO8Q5B82l7NZpo90MO30aTeYL1vPsRDZ\nsm6K80rMQCi7jhWyYkcOhWWV/McNfXloQr92Gei8PtTnozI7m4IlS3G/8w7icpEwexad7rsPV3Jy\nUNc4UVTOo6v2sflwHlf36Mgtw7owvGcCV3SPb/mRUUXH4ehWs5WZtRlKrDDb4TGm36akgeY6eaA5\nPLhjr5C56DbU4ETpifMt7IzCDDKKMsgpyblgJvCAU8J/rzSIL/FRHhtO/lU9Kb9mCK5rR5KY3IOk\nqCTiI+KJj4gnwhkREtlCSciUvhXj9jDwLcwA6NuB76rqgRppHgSuVNUfiMhs4HZVnSUiQ4C/AtcA\n3YAPgAGqGtDbUmOVvqEGhRWFVBlVXy++KryGlyqjCo/Pg8fnocJbcX7b4/NQ7i2nrKqMc1XnKPPW\nWFeew13pxu1xU+wpxqtev/eNj4gnOSqZpKgkusd0P19zqF7HR8T7t6uqmgrZ6zHt6V6PWQv3VoK3\nAipLwVPy9VJZChXF5gSp0lwoPQPncs3tmp4LHS7Thpo0wFy6XmXWrDqEaOy+H1SVskofJRVeiiuq\nKKmoorjcS3b+OXZZij6n0KxpuRzCiF4JPD5tCMO6h9YN8+WCGgZaUYFRXm4upaVUHv0KT+YRKjOz\n8GRlUZmdjXo8SHg4HWfNotP99xHWueFBZFSVVTtP8NymDL4qKAPA6RAGdYlleM+OXJXakS7xkcRG\nhhEX6TLXUS4iXM34UVA1KyTZWyD3IOQfMissxScuTBcRDzGdISYFYpLNdXQn0y1EeIy5joiBiDhz\nroAzwuw8vmAdEbB/ymf4yCvPM1vkJTnklOZw5kwWsTsOk7r3DAMOnyOmAnwCh1LhYA+hMEZwd4CK\nmAiMjjFIYkfC4xPpEBFDtCua6DBz6RDWgWhXNJGuSCKcEUQ4I4h0RhLuDCfSFUmYI4xwZzhhjjBz\ncZrrCGcE8RGNey9CqfTHAk+o6s3W/48AqOr/r5Em3UrzLxFxAaeBZKxYudVpa6YLdL/GKv3sL7eT\ncd+cBp9XjUNBMJ0RifW/w/rfoWYTp3qfE3Cq4rTOqcbcvjA/a+6TWuvGYODEJw58OGssDrwSRhUu\nvLjQpjSXta5/leriUr1fFYw6ypDLIUSGOYkMcxIV5iAizBnq1nzzEujRaj7z+UxRa2WAoWAYqGFY\nax94fRgVFWh5uZ8LmoR170543z5E9O1HRN8+dBg3nrCU0EQMyy/1sOd4EbuOFbH7uLmUevxXZsJd\nDiJcDlwOwelw4HSAy+HA4QCHCILpQlng/EtQva8h1EwdpWX0ME7Q05dDsuaRoEUkGEUkaiEJWkSi\nUUgHyhr83AaCDycGjvPviyEODBwoguLAQFDE2meihlB6Vig7JchJITxAdG8FfE7wOcDrBK+19jnA\nsB5QxSpK1loDZFN+spPvvt04v//BKv1ges26A8dr/J8DXBsojap6RcQNdLL2f1rr3Is8dInIA8AD\nAD179gxCpIuJju6IMz6ihuK2CiYgCg7EUuJSQ6l/va9hCD5Me1X1//C1aje3v34T1CpQWGtFLMVs\nFTKpLnTV2w584rQUvOv8tiHOr68btKRNQC5YmXkqpgn2/DYQ5hTCHA5cTgdhTsHlMNfVyv6yJ5Ai\nk5pJ5MKdTqdpE3Y4wOlAxAEuJ47IKBxRUTiio5CoKBxR0Tiiownv2YPwtLSmuUSuh6SYCCYOTmHi\nYHMOhGEo2QXnOHuu8nzrrKSiiuIKL8XlVXi8Bj5D8ani81lrQzHU/PgrnPeSqef/BI9edEIMSme+\nYjhfBTjHoV4ijbKLlgijHJdW4dIqwrQSl1ae/9+BgUNNdS9qmGpffQgGolrjrTRwqOmq2qyYKRIH\n9FZElUrDQCp85lLutdY+HB4v+BSHAeGGEm4oGIphGBiAgZqLms9sWFl14TaoKB3jm7/1G4zS91fi\na/9agdIEcy6q+hLwEpg1/SBkuoiUnv1JWd++vefZ2DQEh0PomxxD3+C6CGzaCMF0T+cANT0fpQIn\nA6WxzDvxwNkgz7WxsbGxaSGCUfrbgf4ikiYi4cBsYE2tNGuAudb2TGCTmu2+NcBsEYkQkTSgP7At\nNKLb2NjY2DSUes07lo3+ISAdsw9ziaruF5EngR2qugZ4BXhdRI5g1vBnW+fuF5EVwAHAC/ywrpE7\nNjY2NjbNiz05y8bGxqYNEOzonctrypmNjY2NTZOwlb6NjY1NO8JW+jY2NjbtCFvp29jY2LQjLrmO\nXBHJg4AT8oIhCcgPkTihxJarYdhyNQxbrobRFuXqpar1TrW75JR+UxGRHcH0YLc0tlwNw5arYdhy\nNYz2LJdt3rGxsbFpR9hK38bGxqYd0RaV/kutLUAAbLkahi1Xw7DlahjtVq42Z9O3sbGxsQlMW6zp\n29jY2NgEwFb6NjY2Nu2Iy1Lpi8idIrJfRAwRGVXr2CMickREDonIzQHOTxORz0QkQ0SWWy6jQy3j\nchHZbS1HRcRvhBfr2D4rXbN7mhORJ0TkRA3ZpgRIN9nKwyMi8osWkOsZEflSRPaKyGoR6RggXYvk\nV33Pb7kLX24d/0xEejeXLDXu2UNEPhKRg1b5f9hPmhtFxF3j9328ueWy7lvn7yImz1n5tVdERrSA\nTANr5MNuESkWkR/XStMi+SUiS0QkV0S+qLEvUUQ2Wnpoo4gkBDh3rpUmQ0Tm+kvTIFT1sluAwcBA\n4B/AqBr7hwB7gAggDcgEnH7OXwHMtrZfAP6jmeVdCDwe4NhRIKkF8+4JYH49aZxW3vUBwq08HdLM\nct0EuKztp4GnWyu/gnl+4EHgBWt7NrC8BX67rsAIazsWOOxHrhuBdS1VnoL9XYApwLuY0fTGAJ+1\nsHxOzNjdvVojv4DxwAjgixr7fgv8wtr+hb8yDyQCWdY6wdpOaIosl2VNX1UPquohP4duA/6mqh5V\nzQaOANfUTCBmMNMJwN+tXcuAbzeXrNb9vgP8tbnu0QxcAxxR1SxVrQT+hpm3zYaqvq+q1VG6P8WM\nstZaBPP8t2GWHTDL0kRpaFTwBqKqp1R1p7VdAhzET8zpS5TbgNfU5FOgo4h0bcH7TwQyVbUps/0b\njapuwYw1UpOaZSiQHroZ2KiqZ1W1ENgITG6KLJel0q8Df0Hca78UnYCiGgrGb7D2EDIOOKOqGQGO\nK/C+iHxuBYhvCR6ymthLAjQpg8nH5mQeZq3QHy2RX8E8//k0VllyY5atFsEyJw0HPvNzeKyI7BGR\nd0VkaAuJVN/v0tplajaBK16tkV8AKap6CswPOtDZT5qQ51swgdFbBRH5AOji59BjqvpOoNP87As2\niHuDCVLG71J3Lf8bqnpSRDoDG0XkS6tW0GjqkgtYBDyF+cxPYZqe5tW+hJ9zmzy2N5j8EpHHMKOs\nvRngMiHPL3+i+tnXbOWooYhIDLAS+LGqFtc6vBPThFFq9de8jRmmtLmp73dpzfwKB6YDj/g53Fr5\nFSwhz7dLVumr6qRGnBZMIPZ8zKaly6qhNTpYe30yihkk/g5gZB3XOGmtc0VkNaZpoUlKLNi8E5GX\ngXV+DjVLQPsg8msuMA2YqJZB0881Qp5ffgjm+avT5Fi/czwXN99DjoiEYSr8N1V1Ve3jNT8CqrpB\nRJ4XkSRVbVbnYkH8Ls1SpoLkFmCnqp6pfaC18svijIh0VdVTlqkr10+aHMx+h2pSMfsyG01bM+/U\nG4jdUiYfYQZwBzOge6CWQ1OZBHypqjn+DopIBxGJrd7G7Mz8wl/aUFHLjnp7gPttB/qLOcopHLNp\nvKaZ5ZoM/ByYrqplAdK0VH4F8/xrMMsOmGVpU6APVaiw+gxeAQ6q6rMB0nSp7lsQkWsw3/GCZpYr\nmN9lDTDHGsUzBnBXmzZagICt7dbIrxrULEOB9FA6cJOIJFim2JusfY2nuXutm2PBVFY5gAc4A6TX\nOPYY5siLQ8AtUr7cnwAAAP9JREFUNfZvALpZ230wPwZHgLeAiGaS81XgB7X2dQM21JBjj7XsxzRz\nNHfevQ7sA/Zaha5rbbms/6dgjg7JbCG5jmDaLndbywu15WrJ/PL3/MCTmB8lgEir7ByxylKfFsij\n6zGb9ntr5NMU4AfV5Qx4yMqbPZgd4te1gFx+f5dacgnwZys/91Fj1F0zyxaNqcTja+xr8fzC/Oic\nAqos3fVvmH1AHwIZ1jrRSjsKWFzj3HlWOTsC3NtUWWw3DDY2NjbtiLZm3rGxsbGxqQNb6dvY2Ni0\nI2ylb2NjY9OOsJW+jY2NTTvCVvo2NjY27Qhb6dvY2Ni0I2ylb2NjY9OO+F+TB8g2bFgs7wAAAABJ\nRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEICAYAAACzliQjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzsnXl8lNXVx78nk5lMNrKyZSfsBBAE\nQasiigqKoNYdcavVt7611lqpWrdq3ap2L1V53apiFbfWKq4VN0QFlUX2ECAzBEjIQvbMTOa+fzwz\nIYQsk2TW5H4/Hz5MnrudmUx+z33OPfdcUUqh0Wg0mv5BVKgN0Gg0Gk3w0KKv0Wg0/Qgt+hqNRtOP\n0KKv0Wg0/Qgt+hqNRtOP0KKv0Wg0/Qgt+hq/IyLviMgVAep7oIhsFRFrIPr3NyJypYh87nkdIyJb\nRGRQN9rPFBF7q583ishMP9l2qYi83+pnJSIj/NG3p79aEcn3V38a/6BFvw8gIheLyFciUicipZ7X\n/ysiEgp7lFJnKKX+EaDubwWeUUo1AojIxyLSKCLZ3goicqqI7ArQ+D1GKdUEPA3c0os+CpRSH3dW\nR0TyPAIe3UVfS5VSp/fUljZjfiwiP27Tf4JSqsgf/Wv8hxb9CEdEfgn8GXgEGAIMBn4CHA9YQmia\n3xGRGOAK4IU2RXXAnX4aw+SPfjrhReAKz3sJGV3dEDR9Fy36EYyIJAH3Av+rlHpVKVWjDL5TSl3q\nmVkiInNF5DsRqRYRm4j8plUfh7kPPNd2icipntfTRGSNp+1+EfmD57pVRF4QkXIRqRKR1SIy2FPW\nMusTkeEi8pGn3gERWSoiyW3GullE1ovIQRF5uRPXzXSgSillb3P9L8AlHbkmRGSsx6Yqj3tkfquy\nZ0XkMRFZLiJ1wMmea3/3uKlqRWSliAwRkT+JSKXHRTO5VR+3isgOEakRkU0icm5HvzOP7ZXAsR3Y\nGusZv1JENgHHtCnv8ncDfOr5v8pj/3EeN9NKEfmjiFQAv2ntemrFmSJS5PldPSIiUZ6xfiMiLTfb\n1k8TInI/cCLwN894f/PUaXEXiUiSiDwnImUisltE7mjV95Ui8rmIPOp53ztF5IyOPkNN79CiH9kc\nB8QA/+6iXh1wOZAMzAWuE5FzfBzjz8CflVIDgOHAMs/1K4AkIBtIw3i6aGinvQAPAhnAWE/937Sp\ncyEwBxgGTASu7MCWCcDWdq7vAf6vnX4RETPwH+B9YBDwM2CpiIxuVW0BcD+QCHhF8ELgDiAdaAJW\nAd96fn4V+EOr9jswRC8JuAd4QUSGdvAeADYDR3VQdjfG5zwcmI3xOXdER7+bGZ7/kz0ullWen6cD\nRRifw/0d9HkuMBU4Gjgb+FEn4wOglLod+Ay43jPe9e1U+yvG55MPnITxfbyqVfl0jN9tOvAw8FSo\n3JN9HS36kU06cEAp5fJeEJEvPDPaBhGZAaCU+lgptUEp5VZKrQf+ifGH5wtOYISIpCulapVSX7a6\nngaMUEo1K6W+UUpVt22slCpUSn2glGpSSpVhiGXbsf+ilCpRSlVgCPSkDmxJBmo6KHsQmCciBW2u\nHwskAA8ppRxKqY+At4BLWtX5t1JqpefzafRce8PznhqBN4BGpdRzSqlm4GWgZaavlHrFY79bKfUy\nsB2Y1oGdeN5DcgdlFwL3K6UqlFI2jKeYjujod9MRJUqpvyqlXEqp9m7QAL/zjF0M/InDP6ce4XGZ\nXQTc5nka3QX8HrisVbXdSqn/83y+/wCGYrgqNX5Gi35kUw6kt/bPKqV+oJRK9pR5H5+ni8gKz6P1\nQYxZebqPY1wNjAK2eFw4Z3muPw+8B7wkIiUi8rBnVn0YIjJIRF4SkT0iUo3hj2879r5Wr+sxRLo9\nKjFm40fguaH8DcPd1ZoMwKaUcre6thvIbPWzrZ0u97d63dDOzy02isjlIrLWc7OtAsbT+eebCFR1\nUJbRxp7dnfTT0e+mI9p7n53V2e2xp7ekY6wvtX4vbX8HLd8BpVS952VH3wNNL9CiH9mswnA9nN1F\nvReBN4FspVQS8DiG2wUM10+ct6JnVjbQ+7NSartS6hIMl8DvgFdFJF4p5VRK3aOUGgf8ADgL45G9\nLQ8CCpjocUMsbDV2d1mPIXId8QhwMjCl1bUSINvrP/aQg+ES8tLjVLMikovhWroeSPPccL+n8/c4\nFljXQdleDBdYa1vbpaPfDR2/H1/eZ9uxSzyvD/ueYAQN+Nr3AYynktw2fe9pv7omkGjRj2CUUlUY\nPuS/i8j5IpIgIlEiMgmIb1U1EahQSjWKyDQMH7aXbYBVjMVeM4YfuyWyREQWishAz0zZOzttFpGT\nRWSC5yZRjfFH3dyOmYlALcaiYiawqBdv+Wsg2dPPEXg+j98Dv2p1+SsMwfqViJjFiHGfB7zUCzta\n4xXZMgARuQpjpt8uHttTgY5cMcuA20QkRUSyMNYgOuqr3d+NxxY3hv+8uyzyjJ0N/BzDlQWwFpgh\nIjliBBDc1qbd/o7G87hslgH3i0ii50Z5E0dGYWmCgBb9CEcp9TDGH9CvgFKMP74nMGLBv/BU+1/g\nXhGpAe7i0IIfSqmDnvInMWZedUDr6Jg5wEYRqcVYOLzY4+cegrGgWY2xMPkJ7f8R34OxKHgQeBt4\nvRfv1QE8i/G00BF/ptXNx9NmPnAGxozz78DlSqktPbWjjU2bMG40qzA++wnAyk6aLAD+4Y2saod7\nMFwfOzEWn5/vpK92fzce98j9wEqPy6ndSKEO+DfwDYbIvw08BaCU+gDjBrDeU/5Wm3Z/Bs73RN+0\ntw7xM4zvVhHGYvmLGHsWNEFG9CEqmkhCRAZiRIpM7mQxMiwRIzZ/HTBDKVUaans0/RMt+hqNRtOP\n0O4djUaj6Udo0ddoNJp+hBZ9jUaj6UeEXdKl9PR0lZeXF2ozNBqNJqL45ptvDiilBnZVL+xEPy8v\njzVr1oTaDI1Go4koRKSz3dstaPeORqPR9CO06Gs0Gk0/Qou+RqPR9CPCzqffHk6nE7vdTmNjY9eV\nNX0Wq9VKVlYWZvMRyTw1Go2P+CT6IjIHI7eGCXhSKfVQB/XOB14BjlFKrfFcuw0jBWwzcINS6r3u\nGmm320lMTCQvLw99rkL/RClFeXk5drudYcOGhdocjSZi6dK948miuBgjYdU4jGPpxrVTLxG4ASOr\noffaOOBioAAjOdTfpQdnkDY2NpKWlqYFvx8jIqSlpemnPY2ml/ji058GFCqlijwZC1+i/fztv8U4\n5qz1X+XZwEueU5N2AoV0fqJQh2jB1+jvgEbTe3wR/UwOP03HzuEn3iDGIdHZSqm26Va7bKvRRALl\ntU28+/1eVmwtxdns7rpBP8fd2EjFc89Rv3o1qrm9YxY0ocIX0W9vetWSmtNzItEfgV92t22rPq4V\nkTUisqasrMwHk8KDH//4x2zatCnUZnTInDlzSE5O5qyzujpFT9MZBxuc/PCxL/jJC99y1TOruf2N\nDaE2Kaxx19dj+5+fsP+BB9l92eXsXngZyuXquqEmKPgi+nYOP0Iti0NHqIFxMtJ44GMR2YVxEPWb\nIjLVh7YAKKWWKKWmKqWmDhzY5S7isOHJJ59k3LgjljfChkWLFvH8852dwaHpCqUUi15Zx57KBp64\nbArXzshn2Ro7L68uDrVpYUvJ7bdTv3o1Q357L4N+9SsavvuOyqVLQ22WxoMvor8aGCkiw0TEgrEw\n+6a3UCl1UCmVrpTKU0rlYRwDN98TvfMmcLGIxIjIMGAkxpF3EUVdXR1z587lqKOOYvz48bz8snGC\n3MyZM1tSRjz11FOMGjWKmTNncs0113D99dcDcOWVV3Lddddx8sknk5+fzyeffMKPfvQjxo4dy5VX\nXtkyxnXXXcfUqVMpKCjg7rvv9ovds2bNIjGx3XPENT7y8bYy3t+0n1vPGMPsgiHcMmcMPxiexn1v\nbabeoWevbWnauZOad98j7ZprSLngAlKvupL4GSdS9ue/4Ny/v+sONAGny5BNpZRLRK4H3sMI2Xxa\nKbVRRO4F1iil3uyk7UYRWQZsAlzATz3nZfaYe/6zkU0l1b3p4gjGZQzg7nkFHZa/++67ZGRk8Pbb\nbwNw8ODBw8pLSkr47W9/y7fffktiYiKnnHIKRx11VEt5ZWUlH330EW+++Sbz5s1j5cqVPPnkkxxz\nzDGsXbuWSZMmcf/995OamkpzczOzZs1i/fr1TJw48bBxHnnkEZa2M2OaMWMGf/lLeyfUaXrLy1/b\nSIu3cPlxeQCYooQbTx3FhU+sYvmGfZw/JSu0BoYZlc8/j0RHk7rwUsBYfB9y553smD2HqpdfZuAN\nN4TYQo1PO3KVUsuVUqOUUsOVUvd7rt3VnuArpWZ6Y/Q9P9/vaTdaKfWO/0wPHhMmTODDDz/klltu\n4bPPPiMpKemw8q+//pqTTjqJ1NRUzGYzF1xwwWHl8+bNQ0SYMGECgwcPZsKECURFRVFQUMCuXbsA\nWLZsGUcffTSTJ09m48aN7a4VLFq0iLVr1x7xTwt+YCiraeLDzfs5b0oWluhDfyrH5KWQnx6vXTxt\naK6qouqNfzFg3jyiW7lpLdnZxB87nYNvvY0+qS/0RMSO3NZ0NiMPFKNGjeKbb75h+fLl3HbbbZx+\n+uncddddLeVdfZFjYmIAiIqKannt/dnlcrFz504effRRVq9eTUpKCldeeWW78eh6ph9cXv/Wjsut\nuHBq9mHXRYSLjsnmwXe2UFhay4hBCSGyMLyo+e9HqIYGUi655IiyAXPnsvf2O2jcsIHYNk+wmuCi\nc+/4QElJCXFxcSxcuJCbb76Zb7/99rDyadOm8cknn1BZWYnL5eK1117rVv/V1dXEx8eTlJTE/v37\neeed9h+I9Ew/uPxnfQlH5yS3K+o/PDoLEXhr/RFxCf2W2k8/JXrQIKzjj5yYJZ52GmI2U+1xkWpC\nR8TN9EPBhg0bWLRoEVFRUZjNZh577LHDyjMzM/n1r3/N9OnTycjIYNy4cUe4gDrjqKOOYvLkyRQU\nFJCfn8/xxx/vF7tPPPFEtmzZQm1tLVlZWTz11FPMnj3bL333dSrqHGwsqeamU0e1Wz4wMYaJmUms\nLDzAjR3U6U8op5O6lSsZcMacdjfRmQYMIP6kGVS/+x6Dbr1Vb7QLJUqpsPo3ZcoU1ZZNmzYdcS3c\nqKmpUUop5XQ61VlnnaVef/31EFvUNwnWd+E/6/ao3FveUt/sruiwzu/e2ayG3/a2qml0BsWmcKb2\nq6/UptFj1MH33++wTsU/X1KbRo9RTTt3Bs+wfgRGYE2XGqvdO37iN7/5DZMmTWL8+PEMGzaMc845\nJ9QmaXrBysIDJFqjmZjZ8RPbCSPScbkVXxWVB9Gy8KT2k0/AbCb+uOM6rBM3zcjAUvd1xEVt9ym0\ne8dPPProo6E2QeMnlFJ8tv0Ax+WnEW3qeF50dG4KVnMUn20/wKyxg4NoYfhR98Uq4iZPxpTQ8aK2\nZVgepvR06r9eTcqFFwbPOM1h6Jm+RtOG4op67JUNnDAyvdN6VrOJY/JS+bzwQJAsC0/cdXU0bd1K\n3NQpndYTEeKnHWPk49GhmyFDi75G04Y1uyoBmD4srcu6x+anUVhaS1W9I9BmhS0N328Et5vYVhsS\nOyJu2jRc+/fjLNZ7HEKFFn2Npg3r7FXEWUw+xd8flZUMwHr7wS5q9l0a1q0DwOpD/L3Xr1+/enVA\nbdJ0jBZ9jaYN6+wHmZCZhCmq67DCCVnGQu96e1WgzQpbGtatw5KXR3RKSpd1LcOGEZWYSMOG74Ng\nmaY9tOj3gnBOrbx27VqOO+44CgoKmDhxYkuSOE3nOFxuNpdUc1R2sk/1k2LN5KfHs66fzvSVUjSs\nW+eTawcMv7513Dgaw/Tvpj+go3d6wZNPPhlqEzokLi6O5557jpEjR1JSUsKUKVOYPXs2ycm+iVl/\nZeu+GhzNbiZm+b65bmJWEqv6adimc08JzQcOEDvJN9EHsBYUUPnCCyinE9GH3AcdPdP3gUhMrTxq\n1ChGjhwJQEZGBoMGDSKSDqgJFes8bhqvr94XJmYls7+6if3V/e/83sYN6wHf/PlerOPGoRwOmnbs\nCJRZmk6IvJn+O7fCPj+fXDRkApzxUIfFkZ5a+euvv8bhcDB8+HCfPo7+zHp7FanxFrJSYn1u43UF\nrbNVcXrBkECZFpY0btkK0dHEeCYYvmAtMA4eaty4EeuYMYEyTdMBeqbvA5GcWnnv3r1cdtllPPPM\nM0RF6V93V2zYU82EzKRu5YYpyBiAKUr4fk//8+s3bd1KzLBhRFksPrex5OYSFR9P48aNAbRM0xGR\nN9PvZEYeKCI1tXJ1dTVz587lvvvu49hjj/X5/fZXnM1udpTWMmNU55uy2mI1m8hLi2PLvpoAWRa+\nNG7bStzRnW/KaotERWEdO5bGjXoxNxT4NPUTkTkislVECkXk1nbKfyIiG0RkrYh8LiLjPNfzRKTB\nc32tiDzu7zcQDCIxtbLD4eDcc8/l8ssvP+LJQ9M+u8vrcDS7GT24+0dMjh6SyNb9/Uv0mw8exFWy\nl5jR3c8yai0YR+PWrajmXh2kp+kBXc70RcQELAZOwzjofLWIvKmUan2bflEp9bin/nzgD8AcT9kO\npdQk/5odXCIxtfKyZcv49NNPKS8v59lnnwXg2WefZdKkiP5VBBTvTH30kB6I/uABvPP9PuodLuIs\nkfcA3ROatm0D6JFfPmbkSFRjI067HUturr9N03SCL9/OaUChUqoIQEReAs7GOPcWAKVU60Nr44E+\nlVhj9uzZ7eah//jjj1teL1iwgGuvvRaXy8W5557L6aefDtAiuAB5eXl8//2hTSmty1q/9gcLFy5k\n4cKFfu2zr7NtXw2mKGH4wO6fhDV6SCJKwfb9tT7H+Ec6jVsN0Y8ZNbrbbWNGjACgqbBQi36Q8cW9\nkwnYWv1s91w7DBH5qYjsAB4GWp9+PExEvhORT0TkxPYGEJFrRWSNiKyJ1LBCnVo58tmyr4a8tDis\nZlO323qfDvqTi6dp6xZMyclEDxrYdeU2WLyiv73Q32ZpusCXmX57YQxHzOSVUouBxSKyALgDuALY\nC+QopcpFZArwLxEpaPNkgFJqCbAEYOrUqRH5lKBTK0c+2/bXMC5jQI/a5qTGYTVHsbUfLeY2bt1G\nzOjRPToFy5SQQPTQoTpWPwT4MtO3A61Phs4COjsY9CXgHAClVJNSqtzz+htgB6DPltOEHfUOF7sr\n6hk9uGeib4oSRg5K7Deir5TCUVjY4qbpCTEjRtBUqGf6wcYX0V8NjBSRYSJiAS4G3mxdQURa78yY\nC2z3XB/oWQhGRPKBkUCRPwzXaPxJYWktSsHoId3353vpTxE8rtJS3PX1WIbn97iPmBEjcBQV6Qie\nINOl6CulXMD1wHvAZmCZUmqjiNzridQBuF5ENorIWuAmDNcOwAxgvYisA14FfqKUqvD7u9Boesm2\n/bUAjOxBuKaXUYMTKKtp6he59R1FxtwtJr93oq+amnDabF1X1vgNn2LLlFLLgeVtrt3V6vXPO2j3\nGtC9oHWNJgQUldUSHSXkpMb1uA9v1M+Osjqm5Pq+QzUSadphiL6lN6I/slUET16eP8zS+IDel98L\nwjm18u7du5kyZQqTJk2ioKCAxx+PyH1xQaOorI6ctDjMnZyJ2xX5HtEvKqv1l1lhi6OoiKiEBKIH\ndj9yx0uMJxeU9usHl/6xiyRAhHNq5aFDh/LFF18QExNDbW0t48ePZ/78+WRkZITatLCk6EAt+ek9\n9+cDZKfEYjYJRQfq/GRV+NK0swhLfn6PIne8RMXHEz1kCI6du/xnmKZL9EzfByIxtbLFYmnJ89PU\n1ITb7e51n32VZrdi14F6hg+M71U/0aYoclLj+sdMf0dRr/z5Xix5eTg8SQc1wSHiZvq/+/p3bKnY\n4tc+x6SO4ZZpt3RYHqmplW02G3PnzqWwsJBHHnlEz/I7wF5Zj6PZTX4vRR8MF8+Osr4902+urcVV\nWtorf74XS14uNe+86werNL6iZ/o+EKmplbOzs1m/fj2FhYX84x//YP/+/f75QPoYRR6R7kn6hbYM\nH5jA7vI6XM1998nKsXMnADH5w3rdlyUvz0jcVlnZ6740vhFxM/3OZuSBIlJTK3vJyMigoKCAzz77\njPPPP7/L99vf2OFxx+T7QfTzB8bjbFbYKxvIS+/9k0M44g3X9MdMP2aYceNw7Nzl08Hqmt6jZ/o+\nEImple12Ow0NDYDhXlq5ciWjR3c/MVZ/oOhAHclxZlLjex9m6V0XKDrQd/36DpsdRDBnZfW6L2+o\npvbrB4+Im+mHgkhMrbx582Z++ctfIiIopbj55puZMGFCr/vti+worSXfT7NybwTQjtI6TumjJwE6\nbTaiBw/u1mlZHWHOzIToaC36QUSLvg9EYmrl0047jfXr1/u1z77KrvI6ThjR83jz1qTEW0iOM7Oz\nvO8u5jrsdix+mOUDSHQ0luzslnUCTeDR7h0/oVMrRyb1Dhf7q5sYlt7znbhtyU2No7i83m/9hRtO\nux1zdnbXFX3EMmyYnukHET3T9xM6tXJkUlxhiHNumv8WXXPS4llr65vRKO6mJlz792PO9s9MHwy/\nft3nn6PcbiRKz0MDjf6ENf2aXQcM0c/zo+jnpsZRUtWIsw+GbTr37AHwm3sHwJKTg3I4cJWW+q1P\nTcdo0df0a3Z7fO85af5z7+SkxdHsVpRUNfitz3DBmxHTnOU/9473qcFRXOy3PjUdo0Vf06/ZVV5P\naryFpFiz3/rM9WTq3N0H/foOux0Aiz/dOzk5ADhtdr/1qekYLfqafs3u8jpy/TjLh0PrA7sr+p7o\nO212xGrFlJ7utz7NQ4aAyYTDpmf6wUCLfi8I59TKAHPmzCE5OZmzzjor1KZ0ycyZMxk9ejSTJk1i\n0qRJlAbJv7u7vN6v/nyAQYkxWKKjKO6DYZsOuw1zVmavsmu2RcxmzBkZeqYfJHwSfRGZIyJbRaRQ\nRG5tp/wnIrJBRNaKyOciMq5V2W2edltF5Mhg9wjmySefZNy4cV1XDBGLFi3i+eefD7UZPrN06dKW\nXcaDBg0K+HhNrmZKDjb4faYf5TmMpS+6d5z2PVj86M/3YsnOwmHXJ2gFgy5F33PG7WLgDGAccElr\nUffwolJqglJqEvAw8AdP23EYZ+oWAHOAv3vPzI0kIjG1MsCsWbNITPT9+D9fbU1IOJSj5tVXXz2s\nLJKwVTSglH8jd7zkpsa1hIP2FZRSOG02v8boezFnZeMs1qIfDHyJ058GFCqligBE5CXgbKDFr6GU\nqm5VPx7wZiA7G3hJKdUE7BSRQk9/q3pq8L4HHqBps39TK8eMHcOQX/+6w/JITa3cE3yx1RdWrFjB\nL37xiyOux8XF8cUXX7Tb5qqrrsJkMnHeeedxxx13+NWF0B7eyB1/z/TBiOBZVVSOUirg7yNYNFdV\n4a6rw5KV6fe+LTnZNFdW0lxbiymh94nvNB3ji+hnAq1vwXZgettKIvJTjEPRLcAprdp+2abtEd8Y\nEbkWuBYgx7OSH05MmDCBm2++mVtuuYWzzjqLE0888bDy1qmVAS644AK2bdvWUt5eamWgJbXypEmT\nWLZsGUuWLMHlcrF37142bdp0hOgvWrSIRYsWBfS9+mKrL5x88smsXbvW53GXLl1KZmYmNTU1nHfe\neTz//PNcfvnlPXoPvuJ1v/TmXNyOyE2No97RzIFaBwMTY7puEAG0hGsGaKbvHcM0dqzf+9ccwhfR\nb2+ackQuYaXUYmCxiCwA7gCu6EbbJcASgKlTp3aap7izGXmgiPTUyt2hK1uBw2au7dkJ3Z/pZ2Ya\nc4HExEQWLFjA119/HXDRt1XWE28x+SW7Zlu8ETzFFXV9R/Q94Zr+yK7ZFkuOIfoOmw2rFv2A4ovo\n24HWt/YsoKST+i8B3jSU3W0blpSUlJCamsrChQtJSEg4IjnatGnT+MUvfkFlZSWJiYm89tpr3cpo\n2V5q5ZkzZx5Rz18z/dtuu41p06Zx7rnn9qj94MGD2bx5M6NHj+aNN95od92gOzN9l8tFVVUV6enp\nOJ1O3nrrLU499dQe2dYdbBX1ZKfGBcT9kt0qVn9Kbqrf+w8FDk90jSXT/+4d79ODjuAJPL6I/mpg\npIgMA/ZgLMwuaF1BREYqpbZ7fpwLeF+/CbwoIn8AMoCRwNf+MDyYRGJqZYATTzyRLVu2UFtbS1ZW\nFk899RSzZ89mw4YNzJ8/v8f9PvTQQ5x11llkZ2czfvx4amt7lzu+qamJ2bNn43Q6aW5u5tRTT+Wa\na67pVZ++YKto8OtO3NZkp8Yi0rc2aDntNkxpaUTF+3/h25SYiCkpScfqBwOlVJf/gDOBbcAO4HbP\ntXuB+Z7XfwY2AmuBFUBBq7a3e9ptBc7oaqwpU6aotmzatOmIa+FGTU2NUkopp9OpzjrrLPX666+H\n2KKOOf3000NtQo/x13fB7XarsXe+o+55c6Nf+muP4x74UN340ncB6z/Y7LriSrXzwosC1n/R+Reo\n3T+6OmD993WANcoHPfcpy6ZSajmwvM21u1q9/nknbe8H7vdlnEjmN7/5DR9++CGNjY2cfvrpYZ1a\n+b333gu1CSGnvM5BvaOZnNTYgI2RkxbXEiHUF3Da7cT6uJDfEyzZWTRs3Biw/jUGOrWyn9CplSML\nmyeGPjsAkTteclPj+e+WvpE5UjmdOPfuZcBZcwM2hjk7h+r3P0C5XEi0lqZAETFpGFQXETKavo8/\nvwPFQRD9nLQ4DtQ2UdfkCtgYwcK5bx80N2MJQLimF0t2FrhcOPftD9gYmggRfavVSnl5uRb+foxS\nivLycqxWq1/6s1caaY+zUwIo+p4bSl/YmRuIlMptORSrrxdzA0lEPENlZWVht9spKysLtSmaEGK1\nWsnyU4y4raKe9IQYYi2Bywri3em7u7yesUMHBGycYBCIlMptaR2rH3/ccQEbp78TEaJvNpsZNmxY\nqM3Q9CGKK+rJDuAiLhg+fWOsyF/MddrsYDYTPXhwwMaIHjwYzGYdqx9gIsK9o9H4G1tlfUDSL7Qm\nKc5MUqy5T8TqO+w2zBlDEVPgnozEZMKSmYnDphOvBRIt+pp+h6vZTUlVY0D9+V6yU2OxVUb+sYmB\nSqncFnN2dsv6gSYwaNHX9DsOrjAmAAAgAElEQVT2Hmyk2a0C7t4BY6HY3kcWcgORc6ctluwsPdMP\nMFr0Nf2OYMToe8lOjcNe2YDbHbmRZ801NTRXVQV0EdeLOTsHd3U1zW3Sl2v8hxZ9Tb/DVukR/WC4\nd1JicTS7Ka1pCvhYgeJQds0guHc8ufq90UIa/6NFX9PvKK6oxxQlDE3yT8x/Z2R5nia8N5pIxCvA\n5iDM9C0eF5LTvifgY/VXtOhr+h22igYyk2OJNgX+6+99mrBFsF/fG0JpCYJP39wi+nqmHyi06Gv6\nHbbKwMfoe8lKMcaxVURuBI/TbiNqwABM3UgX3lNMiYlEJSXpQ9IDiBZ9Tb/DVlEfFH8+gNVsYlBi\nTGS7d2z2oMzyvVgyM7V7J4Bo0df0K+odLg7UOoISueMlOzUust07dntQwjW9mLOytHsngGjR1/Qr\nWhKtBVP0U2Jbxo00lNttiH4QFnG9mLOycO7Zg3K7gzZmf8In0ReROSKyVUQKReTWdspvEpFNIrJe\nRP4rIrmtyppFZK3n35v+NF6j6S7F5d5wzeD49MG4wew92ICzOfJEzFVainI6A5pSuS3mrEyUw4Gr\n7EDQxuxPdCn6ImICFgNnAOOAS0RkXJtq3wFTlVITgVeBh1uVNSilJnn+9fxgVo3GD7TE6Ad1ph+H\nW0FJVeTN9oMZo+/Fe4Nx7tEunkDgy0x/GlColCpSSjmAl4CzW1dQSq1QSnmdll8CwXsW1Gi6ga2i\ngTiLibR4S9DGzEqN3AgeR0u4ZmbQxjRn6rDNQOKL6GcCreOn7J5rHXE18E6rn60iskZEvhSRdg+O\nFZFrPXXW6Jz5mkBiqzQid0QkaGO2xOpHYASP02YDEcwZGUEb05xpjKV35QYGX/Lpt/fX0W4iERFZ\nCEwFTmp1OUcpVSIi+cBHIrJBKbXjsM6UWgIsAZg6dWrkJinRhD22IOTRb8vQJCumKInICB6H3Ub0\n0CGIJXhPRlExMUQPGqTDNgOELzN9O9DaoZcFlLStJCKnArcD85VSLYlGlFIlnv+LgI+Byb2wV6Pp\nMUop7JUNZAUpRt9LtCmKjGRrRKZYDlZK5bbosM3A4YvorwZGisgwEbEAFwOHReGIyGTgCQzBL211\nPUVEYjyv04HjgU3+Ml6j6Q5V9U5qm1xBXcT1khOhsfrBSqncFnNWpt6VGyC6FH2llAu4HngP2Aws\nU0ptFJF7RcQbjfMIkAC80iY0cyywRkTWASuAh5RSWvQ1IeFQds3guneMMeOwR5hP393QgKusLCgp\nldtiycrCtW8/yukM+th9HZ/OyFVKLQeWt7l2V6vXp3bQ7gtgQm8M1Gj8RXEQ8+i3JTs1jgO1Duod\nLuIsEXE0Nc49hk89mOGaXsyZWeB249y7F0tOTtDH78voHbmafoM3ZDIUou9NvBZJO3NbUioHMVzT\ni862GTi06Gv6DbbKelLizCTEBH+m7b3RRJJfvyWlchB343qx6MNUAoYWfU2/wQjXDP4sHyIzr77T\nbkNiYzGlpQV97OghQyA6WodtBgAt+pp+g72yIWgplduSnmAh1myKqLBNb0rlYG5k8yImE+aMDO3e\nCQBa9DX9ArdbsaeyoSUlQrAREbJSYiNsph/clMptsWRl4tD5d/yOFn1Nv2B/TSOOZnfIZvrgyasf\nITN9pRSOIKdUbos5M0u7dwKAFn1NvyCUkTteslNisVfUo1T4ZxpprqhA1deHZDeuF3NWFs3l5bjr\nI+fpKBLQoq/pF3jdKqHYmOUlOzWOmiYXBxvCf8PRoZTKIZzpeyJ4vPsFNP5Bi76mX2CrrEcEMkMo\n+lktETzh7+JpSakcQveO91xery0a/6BFX9MvsFU0MDjRSky0KWQ2eLN7RkKKZacn701oZ/p6g1Yg\n0KKv6RfYKoOfUrktkbRBy2GzYRqYTlRs6D4zU2oqEhurT9DyM1r0Nf0Ce0V9SCN3AAZYzSTFmiNk\npr8HS2ZoD8ATESNsU0fw+BUt+po+j8PlZm91I1khjNzxkp0aGxE+fafNhjkE6RfaYoRt6pm+P9Gi\nr+nz7KlqQKnQRu54yU6JC/uZvnI4cO7bF9JFXC/ew1QiIcw1UtCir+nz2EKYUrkt2alx2CsbcLvD\nV8Sce/eC2x2SlMptsWRn4a6ro7mqKtSm9Bm06Gv6PN6ZdU44iH5KLA6Xm7Lapq4rh4hQplRuy6EI\nHu3X9xc+ib6IzBGRrSJSKCK3tlN+k4hsEpH1IvJfEcltVXaFiGz3/LvCn8ZrNL5gq2jAbBIGD7CG\n2pSWdYVwjuAJZUrltrSIvo7g8Rtdir6ImIDFwBnAOOASERnXptp3wFSl1ETgVeBhT9tU4G5gOjAN\nuFtEUvxnvkbTNbbKejKTYzFFBT9bZFtaUiyHsV/fabchZjPRgwaF2hTjBC10rL4/8eU0iWlAoVKq\nCEBEXgLOptUB50qpFa3qfwks9LyeDXyglKrwtP0AmAP8s/emazS+Ye9NHv2qYtj+PuzfBHVlIFGQ\nnAMZk2HEqWAd0K3uvCdohXMEj8Nmx5yRgZhCt5HNiykhHlNysj5MxY/4IvqZQOtj6e0YM/eOuBp4\np5O2RzgKReRa4FqAHH0epsbP2CobmJ2R5HsDpaBoBXz6e9j9uXHNmgSJQ8Htgq3LodkBphiYeCGc\neBOk5vvUtdVsYlBiTHi7d+z2sAjX9GLOympxOWl6jy+i394zcbuhByKyEJgKnNSdtkqpJcASgKlT\np4ZvWIMm4qhrclFR5/B9N251Cbx9M2x9GxIzYNbdMO5sQ9S9h4k0u2DPGlj/Mny3FNa9BDNuhhNu\ngmhLl0MYKZbDV/QddjsDJk4ItRktmLOyaNq8OdRm9Bl8Wci1A61v+1lASdtKInIqcDswXynV1J22\nGk2g8IqrT7txd3wEjx1v/H/avfDztcYsPm34IcEHMEVDzrFw1h/hxvVQcA58/CA8cwYc7DrKJDsl\nfDdoNVdX4z54MKQpldtiycrEWVKCcrtDbUqfwBfRXw2MFJFhImIBLgbebF1BRCYDT2AIfmmroveA\n00UkxbOAe7rnmkYTFHzOo7/mGXjhPEgcAj/5HI7/OUTHdD1A4hA470m48Dko2wJLZsK+DZ02yU6N\nY+/BBpzN4Sdi4ZBSuS3mrCyU04mrtLTrypou6VL0lVIu4HoMsd4MLFNKbRSRe0VkvqfaI0AC8IqI\nrBWRNz1tK4DfYtw4VgP3ehd1NZpg4FMe/ZV/gbduNBZmr/4A0kd0f6BxZ8OP/wsmMzw7F2yrO6ya\nnRKHW8HeqsbujxNgwiGlclt0BI9/8cWnj1JqObC8zbW7Wr0+tZO2TwNP99RAjaY32CrribOYSI3v\nwNf+9f/BB3dCwQ/hh0sM0e4pg8bAj96Ff8yHpefBlcthyPgjqmW1SrGckxb6DWOtaUmpHFYLuUbs\nh8NuJ27q1BBbE/noHbmaPo2tooHslDhE2okp2PgvWL4IRp/Ze8H3kpwDl/8bzPHwwg+hynZElZZY\n/TCM4HHYbEQlJWFKTAy1KS2YMzNBRO/K9RNa9DV9GntHefRLvoM3fgLZ0+D8Z/wj+F5ScuGyN8DZ\nAP+8BJpqDysemmTFFCVhGcHjLC7GkpvbdcUgEmWxED14sHbv+Akt+po+i1IKW0V9yzGFLdRXwEuX\nQnw6XLQUzAFIzzBojHEzKd0Ib/7MiP33EG2KIiPZGpYRPI7dxVjCcK+MOStTi76f0KKv6bOU1zmo\nczQfnmhNKUOEa0vhouchYWDgDBh5Kpx8O2x8HdYuPawoJzWO4jBz77gdDpx794al6Fsys3DoA9L9\nghZ9TZ9l14E6AIalxx+6uOZp2PIWnHq3kUoh0JzwC8g7EZb/Cg4UtlzOS4tnV3ld4MfvBk77HnC7\nseSGn+ibs7Jw7duH2+EItSkRjxZ9TZ9lV7kxk871RsiUbob3fg3DT4FjfxocI6JMxiJxtAVe+xG4\njH2LeWnxVNU7qaoPHxFzFO8GwByGM31zVhYohatE7+3sLVr0NX2WXQfqMEWJ4dN3OeC1H0NMIpzz\nOEQF8as/IAPOXgx718GK+wHI8zx9eG9M4YCzuBgg7BZyASw5Rgipw3ZkNJSme2jR1/RZdpXXkZkc\niyU6Cr74M+z/Hub9BRIHB9+YMXPh6Cvgi7/B3nXkeZ4+doeRi8exu5iohARMKeGX/dx7I3Ls3BVa\nQ/oAWvQ1fZZd5XXGjLp8B3zyiLFrdsyZoTPotHsgLg3evIHs5BhEYOeBMBL9YiNyp909DSHGlJZG\nVHw8jt27Q21KxKNFX9MnUUqx+0A9w1JjjRQL0VY44+HQGhWbAmc8BHvXYv32STKSYtkdRu4dR/Fu\nzGG4iAsgIlhyc7Xo+wEt+po+SXmdg5omF7McH8HOT41oncQhoTbLSPcw4jT46D6mJNeGzUxfOZ04\n95RgyQk/f74XS54WfX+gRV/TJ9ldXkcStRxb+EfIng5Trgq1SQYiMPf3gOIn9UvCxqfv3LsXXK6w\njNH3Ys7NxblnD0qHbfYKLfqaPsnOA/X8PPp1zM6DMPcPwY3W6YqUXJhxM+OqP2Nc47ccrHeG2iIc\nu72RO+Er+jF5eeB249A5eHpFGP0laDT+o9q2kctMH+CefHm7mS5DzrE/pSEukzujX2Bn2cFQWxPW\nMfpeWiJ4du8KrSERjhZ9TZ9k2vbf0yQxmE65I9SmtI/ZStUJdzImygbfPhdqa3AWFyOxsUQPDGBa\nil5ibhF97dfvDT6JvojMEZGtIlIoIre2Uz5DRL4VEZeInN+mrNlzsErL4SoaTUDZ/iHj677izeSF\ngc2t00tSpl7AV+4xjNr4Z2ioCqkt3kRr4Riu6SU6JYWopCQcu3aF2pSIpkvRFxETsBg4AxgHXCIi\n49pUKwauBF5sp4sGpdQkz7/57ZRrNP6j2YV6/3Z2qyFsz10Qams6xWqJ5jHrNVhdB+HTR0JqizdG\nP9zRYZu9x5eZ/jSgUClVpJRyAC8BZ7euoJTapZRaD4TfoZ+a/sX6l5CyLTzgvITsgcmhtqZLHAPH\n85H1NPh6SbsHrgQD1dyM02YL60VcL1r0e48vop8JtP422j3XfMUqImtE5EsROadb1mk03cHVBB//\njrr0ibznnkpeengdRdgeeenxPNp0LiDw8UMhscG1bx/K6QzrRVwvltxcXHv34W5qCrUpEYsvot+e\nk0+1c60jcpRSU4EFwJ9EZPgRA4hc67kxrCkrK+tG1xpNK759Dg4W8+3w6wEhLy2+yyahJi8tji0N\nSTRN/hGsexFKtwTdBoc30VoYb8zyYsnNBaVaksNpuo8vom8HWp+SnAX4nN9UKVXi+b8I+Bg4Iom5\nUmqJUmqqUmrqwDCOHtCEMY56+PRRyPkBX0cddSi7ZpjjvTFtH32tca7uivuCbkMkxOh7seTpCJ7e\n4ovorwZGisgwEbEAFwM+ReGISIqIxHhepwPHA5t6aqxG0yFrnoLafXDKHewsrz+UXTPM8aZY3lEX\nA8ffAJv/A/ZvgmqDo7gY8ZxDG+5YdNhmr+nyr0Ip5QKuB94DNgPLlFIbReReEZkPICLHiIgduAB4\nQkQ2epqPBdaIyDpgBfCQUkqLvsa/NNXA5380DkfJO57d5fUtYhru5KTGIQK7DtTDsddBXDp8ePdh\nZ+oGGsfOnVhyc5Bw2rXcAaYBAzClpODYpUW/p0T7UkkptRxY3ubaXa1er8Zw+7Rt9wUwoZc2ajSd\n8+XjUF8Op9yBUopdB+qYnBP+kTsAVrOJoQOsxtGJMYkwYxG8ewsUrTBuYkHAsXMnMaNHB2Usf2DJ\nzdWx+r0g/G/tGk1nNFTCF3+F0XMhc0pLds1IWMT1kpceT5E32+bUqyApBz68JyizfeVw4LDZsAzL\nC/hY/sKSl6fdO71Ai74msvnir9BUDafcDkBhaS0AwwclhNKqbjF8YAJFpbUopSA6Bk7+NexdC5v+\nHfCxHTYbNDcTk58f8LH8hSUvF1dpKe768DmLIJLwyb2j0YQltWWGa2f8D2FwAQA7ygzRH9FD0VdK\nUVpfyo6qHew4uIO9dXs52HSQg00HcTQ7MJvMmKPMxJvjGRo/lIyEDLITsylIKyDO3LNooRGDEqhp\nclFW08SgAVaYeKGxRrHiARg7zzhcPUA0FRUBYBkWQaLvXcwtLsY6ZkyIrYk8tOhrIpfP/wiuBpj5\n65ZLhaW1xHr85L6yr24fq0pW8eXeL/l639ccaDjQUhYbHUtyTDJJMUlYTBZcDhdOt5PqpmrKGspw\nK2MTepREMTx5OJMHTuak7JOYNmQa1mjfbBg+MKHF9kEDrIbIn/xreOUK2PAKHHWxz++luziKdgJg\nGTYsYGP4G6+tjqIiLfo9QIu+JjI5uAdWPwlHLYD0ES2XC0trGT4onqiozhOHVTVW8f7u91m+cznf\n7DdCJNOsaUwfOp2jBh7FiOQRDE8eTlpsWod9ON1OSutLKaoqYsOBDaw/sJ63it5i2bZlxEbHckLm\nCZwz4hyOzzgeUyezde9TSWFZLT8YkW5cHDsfhkyEjx+E8eeByezrJ9MtHEVFRA8ejCkhctZALHl5\nIELTjqJQmxKRaNHXRCafPQrKDSf96rDLRWV1HJOX0mGzbZXbWLp5KW/teAuH28GwpGFcP+l6Tsk5\nhRHJI7qVZdIcZSYzIZPMhExOzDoRAEezg9X7VrPCtoIPdn/AB7s/YHDcYH448odcPOZiUq2pR/Qz\neEAMCTHR7PCsRwDGoS+n3AEvXgjfvWAs8AaApp07seRHziwfIMpqxZydTdOOHaE2JSLRoq+JPCp2\nGikXplxpnELloa7JxZ6qBi4emH1Ek7Wla/n72r+zau8qrCYr54w4h/NHnc+Y1DF+TSdsMVk4PvN4\njs88nluOuYWP7R/z2rbXeHzd4zzz/TOcP+p8rii4giHxh87rFRGGD4ynsKz28M5Gng5ZxxgZOI+6\nBMy+u6x8QSmFo6iIpPmRl/w2ZvhwHFr0e4QWfU3k8cnDEBUNJ9582OWiMiPssfUi7qbyTfztu7/x\n2Z7PSLWm8vOjf84Foy4gKSYp4GaaTWZOyz2N03JPo6iqiKe+f4p/bvknL219iQVjFnDtxGtb7Bg+\nKIGVhQcO70AETrkTnpsP3zwLx/7Er/a5yspw19ZGlD/fS8zwfGo//xzlciHRWsa6gw7Z1EQWZVth\n/UtwzI9hwNDDigrLagBD9Msbyrlr5V1c9NZFrCtbx41H38g7P3yHH0/4cVAEvy35yfncf8L9vP3D\nt5mXP4/nNz3Pma+fyT82/gNns5MRgxLYX91EdWOb83LzT4K8Ew13lsO/h6h7Z8oxI47IgRj2WIaP\nAKcTR3Fo0lFHMlr0NZHFxw+COQ5O+MURRTtK6zBFKb4o+xfz3pjHf3b8hysLruTd897l6glX9zik\n0p9kJmRy7/H38sq8V5iQPoFH1zzKhW9dSJR1F3DoaeUwTrkT6sqMnPt+pGn7dgBiRo70a7/BIGa4\nEWLqKNIunu6iRV8TOexdDxvfMHLUxKcfUbxu33YG5C/h0W8eZsLACbx29mv8cuovSbQkhsDYzhmd\nOprHT3ucv57yV+qcdSze+gtihrzO+pK9R1bOmW749z//EzT67xD1pu3bMaWkYErrOEIpXLHkG08n\nTYVa9LuLFn1N5LDiAbAmwXHXH3a52d3McxufY626C8ylPHDCAzx+6uPkJ4X/hqOZ2TP519n/4vJx\nV2BOXsPibdexet/qIyuefDs0VsGqv/tt7KbthcSM6F7EUrhgSogneuhQHcHTA7ToayID22rY9g78\n4AaIPZRMrbi6mB+99yMeWfMIrtoRXDjkz8wbPi+ihCzOHMeiY24mo/5mmpujufq9q/n9mt/jaHYc\nqpQxyYjdX7UY6it6PaZSiqbCwoh07XiJGT6cpsLCUJsRcWjR10QGK+4z0g5PPxTB8u7Od7ngPxew\nvWo7/zP2dhrslzM5M/wPAumICekToeQXXDDqAp7d+CwXv30x2yq3Hapw8q/BUQsr/9TrsVz79uGu\nrSVm5IiuK4cpMaNG4dixA+VyhdqUiEKLvib82fkZFH0MJ94EMQk0NTfx21W/ZdGnixiVMorX57/O\nIDkeEEYPGRBqa3vMmCGJHKiGn068hcWzFlPRUMGCtxfwxvY3jAqDxsKEC+CrJVCzv1djRfIirhfr\n6FFGllCdcbNbaNHXhDdKwUf3QWIGTL2a3dW7ufTtS1m2bRlXjb+Kp+c8zZD4IWzdX4PVHEVOaugj\ndHrKqCHGgvPWfTXMyJrBa/NfY9KgSdz1xV3c/cXdNLoaYeat0OyAz//Qq7GathtukZgRETzT95wB\n0LR1a4gtiSx8En0RmSMiW0WkUERubad8hoh8KyIuETm/TdkVIrLd8+8Kfxmu6ScUfgi2L2HGzfx3\n70oueusi9tfvZ/Gsxdw05SbMUUZOmq37ahg5KBFTFzl3wpkxLaJfDUBabBpPnPoE10y4hte3v87l\n71yOzWKByZfCmqehqucx6k3bt2MamI4pOTIOm2kPS34+REfTuHVb15U1LXQp+iJiAhYDZwDjgEtE\nZFybasXAlcCLbdqmAncD04FpwN0i0nFiFI2mNW43fHgP7pRc/m6q58YVN5KflM8r815hRtaMw6pu\n3V/D6CHhF5rZHQYlxpAcZ2br/kPpGExRJm44+gYWz1qMvdbORW9dxGejTzYKP32kx2M1bt2KdXRk\nZ6iMsliIGTZMz/S7iS8z/WlAoVKqSCnlAF4Czm5dQSm1Sym1HnC3aTsb+EApVaGUqgQ+AOb4wW5N\nf2Dj69SVfs8vckfx2IYlnD38bJ6Z88xheWsAKuoclNU0MXpwZIu+iDBqcGLLTL81M7JmsOysZWQm\nZHL9V/fw3NiZqO9egPLuhywqh4OmwkKsY8f6w+yQEjN6NI3btOh3B19EPxNo/Rxp91zzBZ/aisi1\nIrJGRNaUlZX52LWmT9PspPiT+7g0J5dPqgu5ddqt/Pb43xJjijmi6qYSQyTHDo3cRVwv44YOYMu+\nGprdRx6VmJWYxT/m/INZObN4pG4Lv0lPxfnxg90eo2nHDnA6sY6N7Jk+GBE8rpK9NNfUhNqUiMEX\n0W/PSerr4Z0+tVVKLVFKTVVKTR04cKCPXWv6Mms+f5BL4hwcsFh54rQnuHTspR3G3n9fYuxSLciI\nfNEvyBhAvaOZnQfaz7MTZ47j0ZMe5dqJ1/J6Qiw/PvAJFbavujVG4+YtAMSMifyZvnX0KEAv5nYH\nX0TfDrTOVZsFlPjYf2/aavopb217nWt3LiM1ysI/573K9KHTO62/saSazORYUuItQbIwcIzPNJLB\nbSzpON1ClETxs8k/43fT7+T7mBgWrPhftldu93mMxs2bkdhYLLmRu6fBi/fG1bhpc4gtiRx8Ef3V\nwEgRGSYiFuBi4E0f+38POF1EUjwLuKd7rmk0R6CU4rF1j3HbqruZ1NjECyc8QvaAI3Pjt2XjnoN9\nYpYPRoZQS3QUG0uO9Ou35cwxF/LskNk0ORu47O0FfGr/1KcxmjZvxjp6NGIK3Nm7wcI8eBCmgek0\nbtwYalMihi5FXynlAq7HEOvNwDKl1EYRuVdE5gOIyDEiYgcuAJ4QkY2ethXAbzFuHKuBez3XNJrD\ncDY7uWPlHfx97d+ZX+/gifiJJI04rct2tU0udpbXtcyQIx2zKYoxQxL5fo9vidUmzLyLf5bXk9Os\n+NlHP2Pp5qWd1ldK0bhlCzF9wJ/vJXZcAY2btOj7ik9x+kqp5UqpUUqp4Uqp+z3X7lJKvel5vVop\nlaWUildKpSmlClq1fVopNcLz75nAvA1NJHOw6SD/8+H/8OaON/nfAQXct38f5lPv9qnt5r3VKNU3\n/PleCjKS+H7PQZTyYenMmsSQ427g2V2FzEibyENfP8SDXz1Is7u53epOux13bS3WPuDP92ItKKBp\nRxHu+vpQmxIR6B25mpBiq7GxcPlC1pau5YEpv+K6TZ8g48+DoRN9ar/RMyPuKzN9gPGZA6hudGGv\nbPCtwfT/IS4unT/tL+OysZfx4pYXuWHFDdQ5j1wMbvz+ewCs49putYlcrOMLwO2mcYtezPUFLfqa\nkLGubB0Lly+ksqmSJactYV7hKnC7YNZdPvfxfUk16QkWBiUeGcoZqRRkGDcwX108WOLh5F9jKl7F\nrxLGcMf0O1i5ZyVXvHMF++r2HVa1Yf0GxGJpiXrpC1gLDMeC9uv7hhZ9TUh4b9d7XP3e1cSb43nh\njBeY6o6GtS8aB6Sk5Pncz1pbFUdlJUdUKuWuGDs0EYspirX2Kt8bTb4cBo6FD+7iohHn8rdZf8Ne\na2fB2wvYWH5IDBs2rMc6dixiifxIJy/RgwZhSk9veYrRdI4WfU1QUUrx9PdPc/MnNzM2dSxLz1xK\n3oBceP8OiEuFE3/pc18HG5wUltYyOSdy88e0R0y0ibEZA/iuuBuib4qG0++Dyp2w+v84IfMEnjvj\nOaKjornq3av4qPgjlMtF48ZNWI/yzXUWKYgI1oJxNGzUou8LWvQ1QcPldnHfl/fxx2/+yOy82Tw5\n+0lSrCmwdTns+gxm3macjOUj62yGKE7O6XvpnCZnJ7PBfhBXc9vMJp0w8lQYPgs++R3UVzAqZRQv\nzn2R/KR8blxxI6++9ydUQwOxE/qW6APEHnUUjh1FNFd3Hera39GirwkKdc46fvbRz1i2bRlXj7+a\nh2c8bKRUcDXB+3dC+miYclW3+vyuuAoRmJjVdxZxvUzOSabB2czW/d1ML3D6fdBUAx8/BEB6bDrP\nzHmGWTmzWPmhETxnHt93FnG9xE2eDErRsG59qE0Je7ToawLO/rr9XPHOFawqWcXdx93NjVNuJEo8\nX71Vi6FiB8x+wHBRdIPvbJWMGpRIotUcAKtDy9Gep5duuXgABo8zbp6r/w/2bQAgNjqW38/8PWc2\njKTGCjdt/x21jtouOoosrBMmQlQUDd99F2pTwh4t+pqAsrViKwuWL8BWY2PxrMWcP6rVcQtVNiM9\n8JizDNdEN1BK8V1xVfnkkj8AACAASURBVJ/z53vJSoklPcHSfdEHOOUOsCbD8kXGITQYqRuG211Q\nMJIv933FZe9cRklt38mIYkqIJ2bUKBrWrg21KWGPFn1NwFi5ZyWXv3M5AM+d8RzHZx5/eIX3bzdE\nafYD3e676EAdBxucTMrum6IvIkzKTuG74sruN45LhdPugeJVsP5lAFyVlTgKd5B/0jweO/Ux9tft\nZ8HbC/j+QN9Z/IydPImGdetQze1vTNMYaNHXBIRXtr3CT//7U3IG5PDimS8yOnX04RV2fASb/m1E\n66Tkdrv/r3ca2TyOGZbqD3PDkmPyUig6UEdpTWP3G09aCJlTjfWSxoM0fPMNAHFTp3BcxnE8f+bz\nWKOtXPXuVXyw+wM/Wx4a4iZPxl1XR1NhYahNCWu06Gv8ilu5+dM3f+LeVfdyXMZxPDvnWQbHDz68\nkqsJlv8KUvPhBz/r0ThfFpUzMDGG/PR4P1gdnhybnwbAV0U9SFcVFQVzH4W6MvjofupXr0FiYrCO\nHw/A8OThvHDmC4xKHcVNH9/E098/7VvahzAmdvJkAOo9NzhN+2jR1/iNemc9N318E099/xQXjLqA\nv57yV+LN7YjyJw9D+XY48xEwW7s9jlKKr4oqmD4stU9tympLQcYAEmKi+Wpnec86yJgMx/wYvl5C\n/RefEDtxIlGtNmWlx6bz1OlPMTtvNn/85o/cs+oenG6nn6wPPuasLKIzhlL/ZffOF+hvaNHX+IU9\ntXtY+M5CVthWcMsxt3DnsXcSHdVONM7e9bDyT3DUJTCie4u3XnaX17OvurFlJtxXiTZFMTUvhS97\nMtP3curdNFszaCzcRdyUyUcUW6OtPDzjYa6ZcA2vbX+N6z68jmpHZMa6iwjx04+l/quvUO5u7G/o\nZ2jR1/SaNfvWcMlbl7Cvbh+PzXqMheMWtj8Db3bBm9dDbEqPFm+9fFlkzHz7uuiD8R4LS2spq2nq\nWQcxiTTk/g8oiLO07+uOkihuOPoG7v3BvXyz7xsuW34Z9hp7L6wOHfHHTqf54EF9klYnaNHX9IpX\nt73KNe9fQ1JMEi+e+SI/yPxBx5VX/RX2roMzHzUiTHrIqqJy0hNiGD6w7/rzvXhvbN4bXU+oLapD\noqOI3fdSS+x+e5w78lyeOO0JyhrKuHT5pawtjbzwx7hjjwWgTrt4OkSLvqZHON1OHvjqAe5ZdQ/T\nM6azdO5S8pLyOm5QuhlWPAhj50HBOT0e1+1WfL79AMePSOvT/nwv4zMGMMAazafbynrcR93nnxN3\nzDFEJabAv64zFtI7YNrQaSw9cylx0XFc/d7VvLvz3R6PGwrMgwdjGTaM+i+/DLUpYYtPoi8ic0Rk\nq4gUisit7ZTHiMjLnvKvRCTv/9s78/Aoqqzh/053Z0/IQkgIe1gHUAYh4squKIuyijAz4gaO4/K5\nzOL4zHwzvsw3i46MzrzijsuorIpsoqKCgqCQoBCJiIYEISQEQkjI3p3u8/1RBcbQSTpJZyP1e55K\nVe69devUrdunbp27HDO8l4iUicgec3vWv+JbtAQnSk8w//35LPtmGfMGzWPxuMV0CKzFiYmrHN68\nHYI7wOR/NeraXx0t5GSJk7ED4hqVT1vBYbcxsn8nPv72BB5P/UfXuI4exZmZSdjoMXDdf4yW/kcL\naz0nMTKRpZOXMjh2ML/d+lsWpSyi0lPZwDtofsIuu5SS5GQ8FQ00iZ3n1Kn0RcQOLAYmAoOAuSJS\nffGO24FTqtoXeAJ4tErcQVUdam53+kluixYi+VgyN6y/gf35+/n7yL/z24t/i91Wh6/VDx+B42kw\n9WkIb5yy3nLgOCIwqn+nRuXTlhg7II4TRRV8nVP/DtbiT7cDED5yJPxkEiTdBp89ZcyTqIXo4Ghe\nnPAiNw64kVfSXmH+pvmcKG3410ZzEj56NFpaSumu5JYWpVXiS0t/BJCuqhmq6gSWA1OrpZkKvGoe\nvwmMl/bw7d2OOLMk8oJNC4gIjGDppKVM6T2l7hO/+xB2PgMjfgn9JzRaji0HTjC0exQxYefPevB1\nMdp8wX184Hi9zy359FMcCQkE9u5tBEz4q7G43du/gpLa+wkC7YH88dI/8rcr/0ZaXhqzN8wm5VhK\nvWVobkIvuQQJDqZ4y5aWFqVV4ovS7wocqfJ/lhnmNY3pSL0QODO0IlFEvhSRT0RkpLcLiMgdIpIi\nIiknTrSN1kR7oqC8gPu23McTu59gXI9xLJ+ynL7Rfes+seiYYUOOGwRX125S8IWTxRWkZhW0G9PO\nGTpFBDGkWyRbDtTvt+EpL6d4+3bCR436of8jMBRmLYGyfFh7F/gwtPG6PtexdPJSwgPCmb9pPku+\nWoJHW++QSFtwMGGXX07Rx1va/ISzpsAXpe+txV69JGtKkwP0UNWLgAeBpSJyjvFXVZ9X1SRVTerU\nqf18trcFdubsZOb6mWw7uo3fXfw7Fo1e5H3CVXUqnbByHjiLYeaSBk3Cqs6H+3NRhXE/aV9KH4x7\n/uLwKY6f9n1JhpJPP0VLS4mYcPWPIzpfaCzB/O17sO1xn/LqF92PZZOXMb7HeJ784knu2HQHuSW5\n9bmFZiV87Bgqs3Oo+Pbblhal1eGL0s8Culf5vxtQfXm+s2lExAFEAvmqWqGqJwFUdTdwEDh/nHOe\nx7g8Lp7c/SQLNi0g1BHKG5Pe4KZBN/k+Yua9h+DITpi62Fju1w9sSM2hZ8dQBneppdP4PGXyhQmo\nwrv7jtWd2OT0pk3YIiMJGzHi3MgRd8CQG2HL3+CAbyN0wgPDeXz04yy8fCGpeanMXD+Tjw5/5LM8\nzUnEmDEgQtEHH7a0KK0OX5R+MtBPRBJFJBCYA6yrlmYdcLN5PAvYrKoqIp3MjmBEpDfQD8jwj+gW\nTcWhwkPM2ziPJfuWMKPfDFZMWcGgjvVQ3LtfhZSX4Ir74YIZfpHpZHEFOw6eZPKFCe1iqGZ1+sVH\nMCA+gndSc3xKr04nxVs+JmLcOCTAi78BEbju30arf/UCyPNtkTIRYXq/6aycspKu4V25f8v9LPxs\nIaWu0vrcTpPj6NSJ0Isv5vQ771gmnmrUqfRNG/09wPvAfmClqqaJyEIRud5MtgToKCLpGGacM8M6\nRwGpIrIXo4P3TlVtxJxyi6bE7XHzyr5XmLV+FoeLDvPEmCd45PJHCA0I9T2TQ9th42+gzzgY/ye/\nyfZe2jHcHmXKkC5+y7OtMXlIAsnf53OssG4TT/GOHXiKis417VQlIATmvAE2ByybA6W+/zR7Rfbi\n9Ymvc+sFt/Lmt28yY90Mdua0rglRHaZMxpmZSfnXX7e0KK0Kn8bpq+pGVe2vqn1U9a9m2J9UdZ15\nXK6qN6hqX1UdoaoZZvhbqjpYVX+qqsNUdX3T3YpFY0g/lc5N797Eot2LuKLLFayZuoaretZzbZzc\nNFg2F6J7GXb8uoZy1oP1e7PpHRvGwIQIv+XZ1pg8xDDxbEit2/lJ4eq3sUdHE37FFbUnjOoBN74G\nBd/D0hvB6XuLPcAewIPDH+SVa1/BYXMwf9N8/uez/2k1Xrk6XHMNBARwesM7LS1Kq8KakdvOcbqd\nPLf3OWZvmM2RoiM8Nuoxnhz7JJ1C69mhXnAYXp9pjA75xepGLbNQncy8Ej7PyGfGsK7t0rRzhj6d\nwhnaPYrlyUdqNVlU5udTtGULkddfjwT6MLS115Uw4wXISoY3bzXWSKoHw+KH8eZ1b3LL4FtY/d1q\npq2dxtasrfXKoymwR0YSPmoUpzdsQCvbzuSypsZS+u2Y7Ue3M3PdTJ7a8xRju49lzdQ1TEycWH/F\nWpJnKHxnKfziLYjqXvc59WD5rsPYbcLsJP/m2xb52SU9SD9eTMr3NXvUOr1+PbhcRM6sR3/K4GnG\nUtffvgfr7/NpKGdVgh3B/Drp17w28TXCA8K5+6O7uXfzvRwpOlL3yU1I1IzpVJ44QdHm2iejtScs\npd8OOVp8lPs238edH96Jojw9/mkWjVlEx5AGrFpZdAxenmT4u527DOIH+1XWiko3q3ZncdXAOOI6\nNH7YZ1tnypAEIoIcLN152Gu8qnJq1SqCL7yQ4P71HCg3YgGMfgj2vA7r7gVP/d0ODuk0hFXXreKB\n4Q+wM2cn09ZM4+k9T1Ne2QDvX34gfMwYHF0SOLV0WYtcvzViKf12RJGziKe+fIqpa6byWc5n3Dfs\nPlZfv5qR3bzOmaubwix4eaKx/8Wb0KsO+3EDeCc1h/wSJz+7pP4uFc9HQgMdTB/WlXe+yvHqRrFk\n61ac6QeJ+cXPG3aBMQ/D6N8biv/tX9bb1AOGrf+2C25j/bT1jO85nmf2PsO0tdPYmLGx2Sd1id1O\n9Jy5lH7+ueVG0cRS+u2ACncFr6a9yqTVk3gu9TnGdh/LumnrmH/hfALtDVzO4ORBQ+GX5MFNbxt2\nYT/j8SjPfHyQAfERjOwb6/f82yq3XZFIpdvDkm2Z58SdfHEJjoQEOkya1LDMRWDswzD+z/DVKnjz\nFnCVNSir+LB4Hhv1GC9d8xJhAWE8tO0hZq+fzbasbc06jDJq1kwkMJCTL7/cbNdszVhK/zzG5XGx\n+rvVTF49mcdTHmdQx0Esn7Kcf47+J53DOjc844xP4IVxUFEM89ZCj0v8J3QVNn19jO+OF3PX2D7Y\nbO23A7c6vWLDmDKkC69//j0Fpc6z4WV791KanEzMvHnex+bXh5EPwrX/gP3rDfNdke+TwqpzceeL\nWXXdKv4x8h+UuEq466O7uOW9W/gi94vGyegjjpgYombPpnDNWpyHvZvF2hOW0j8PKXWV8vrXrzN5\n9WT+vOPPxIfGs2TCEp67+jkGd2ykzT15Cbw2HSI6w4LN0HWYf4Suhtuj/PujdBJNBWfxY+4e25cS\np5sXthlzHVWV44v+hT06mqgbbvDPRS79Fdz4Opz4Bp4fC9kNd6piExuTe09m3bR1/OGSP3C46DA3\nv3czN797M1uztjZ5y7/jggWIw0HeM9bq7pbSP484VX6KxXsWM+GtCTya/CgJYQksHr+Y1ye9zogE\nL1Px60NFkbEy4zsPQt/xcPsHEJPoH8G9sDLlCPtzTvPA1f2xW638cxjQOYLrf9qFF7ZlciS/lOIt\nWyjdtYvYe+/BHu5Hj2IDr4Pb3gexwUvXQPKL0AgFHWAPYM5P5vDO9Hd46OKHyC7J5u6P7mbGuhms\nP7i+yRyzB8THET1nDoVr11K+f3+TXKOtIK1tinJSUpKmpLT+5VtbC6rKnhN7WHlgJZsObcLpcTKm\n+xhuv+B2hsYN9c9FjuwypuoXHIaRvzY6+/w48ao6hWUuxj7+MX07hbPil5e267H5tZFTWMa4xz9h\nbGIHfr1iIdhs9F63tvGmHW8UHzc6dg9uhv7XwvVPQXjjF0d0eVy8m/kuL+97mfSCdGJDYpnRbwYz\n+82kS7h/v/DchYUcnDiJwO7d6blsKWI7v9q8IrJbVZPqTGcp/bZJQXkBGzM3surbVaQXpBMWEMaU\n3lOY+5O59Inq45+LVBTBJ4/BZ4shsitMfx56XuafvGvhgRV7WLvnKOvvvZLBXSKb/HptmcVb0il4\n/J/MOLiV7kterHsGbmPweGDXc/DBnw0vaBP+CkNmG52/jc1aPXx69FNWHFjBtqxtAIzsNpJZ/WZx\nZbcrCbD550VWsGYNOb9/mPg//V9ifvYzv+TZWrCU/nlIqauUzUc2827mu+w4uoNKrWRQx0HM7j+b\niYkT67dGTm2owr63YNMfoSgHLroJrvkrBDe9An77yyweWLGX+6/qx/1XWQuy1kXh9h1k3T6fD/pe\nwazX/k23aD/VgdrITTPG8R/dDT0uMyZ1db7Qb9lnF2fz1ndvsfq71eSV5REZFMnVPa9mUuIkhscP\nxyYNb6GrKkcW3EHprl30WrGc4IED/SZ3S2Mp/fOE/PJ8Pj36KZ8c+YStWVspd5cTHxrPxMSJTEqc\nxMCOfqy0qvDt+/DJo5D9BSQMhcmLoFud9cgv7D1SwNwXPmdwlw4sW3ApDvv59fntbyoyMzk0Zy4a\nHcPPh99J5/hoVvzyMsKDHE1/cY8HvnzNcIVZXgAXzIJRv4VO/ntRuzwuth/dzsbMjXx85GPKKsuI\nC4njqp5XMarbKJI6JxFkD6p3vpX5+WROn4EEBdFr+TIcMf5bMqQlsZR+G8XlcbH/5H52ZO9gW9Y2\nvsr7CkWJDYllfI/xTEycyEVxFzWqtXMOlU74Zj1s/w/k7DEW4Rr1Oxj6sya13Vcl40QxNzz7GSGB\ndlbfdTlxEdbs29pw5eTw/c234CkqotfKFWwvDWL+qylc3qcjL8xLIjigeZ4bpfnw6RNGB6+rzFhK\n+9K7oOtwv5h9zl7GVconWZ8YX7nZO6hwVxDiCOGShEsY1W0Ul3S+hO4R3X3u/yn94ksO33orQX36\n0OPVV7BHtP2F/Cyl30Yoqyxj/8n97M7dTUpuCl8e/5KyyjIE4YLYCxjZbSSjuo1iYMxA/yp6MNZQ\n3/OG0WIrOQHRiUZH7U/ngL0JOgNr4MvDp7j91RQEWHnnZfTpFN5s126LVGRkcHj+fDyni+jx4guE\nDDU67FelHOF3b6WS1DOaF+YlERXajH6ES/Jgx/8ayt9ZbJh7km6DQdP8uvgeQHllObuO7WJr1la2\nZW0ju8RYdTQuJI7hnYeTFJ/EsLhhJEYmYq+l0VK8dStH7r6HoL596f70YgISEvwqZ3NjKf1WSGFF\nIZmFmRzIP8C+k/tIO5lGRkEGbjXWOOkb1Zfh8cNJ6pzExfEXN2wtnNrweOB4Ghx4F75eC7n7jKF4\n/ScaP9A+46AZRzR4PMpL2zN57P0DdO4QzH9vG0GvWD8ONzzPUFUK167l2MK/YAsOpvsLzxMy+Mfz\nLjakZvPgir10igjiiRuHMiKxmU0X5aeNmbwpL0PuV8Za/YmjYdBU6Hc1dPDviBxVJbMwk+RjyaTk\nppCSm0JeWR4AIY4QBsYMZHDsYAZ3HEy/6H706tDrR7PQi7du5egDDyIhIST8ZSERY8f6Vb7mxFL6\nLUR5ZTk5JTnkFOdw6PQhMgozyCzMJKMw42xlBIgOimZQ7CAGdzQq5EVxFxEdHO1fYVxlRqdb9pdw\n+DNjJm2pKUP3S42VFQdN9fsPsS5UlR0HT/Loe9+QmlXIVQPjeHTmEDqG198+214o27OH44v+RWly\nMqFJSXRZ9DgB8fFe035x+BQPrNjD4fxSpg/tyv1X9adHx2bo4K2KqmEqTHsb0tYY6/UDxPaH3mOg\n28VGn1HHvn5taKgq35/+ntS8VNLy0kg7mcY3+d9Q4a4AjEli3cK70TuyN4lRifSO7E3PPBth/+85\n3OkZRFx9NbH33lP/xepaAX5V+iJyLfBvwA68qKr/qBYfBPwXGA6cBG5U1UNm3MPA7YAb+D+q+n5t\n12qNSl9VKa0sJb88n/zyfE6Vnzp7fLLsJLmluWQXZ5NTkkN++Y+9D0UERJytXGe2ftH9SAjzo9u/\nslOQnwmnMo39yYOQs9eYSWl+RRAeb/zYEkcbLfoOzfspq6pk5pXw4f5c3tp9lAO5RXSJDOY31wxg\n+kXte538mnAdPUrR5i0UblhP+d5U7NHRdLrvPqJumIXYa7fZl1RU8r+b03l5eyZOt4exA+K47qcJ\njO4fR0xYM5p9wHgB5O6Dg1sg42OjAXLGvWJguGEK6nwhxPQ2TIwxiRDVEwL806/j8rjIKMjgYMFB\nMgozzjbEDp0+RKXHWFDO7lamfw7X7/QQXKHkDIjl5JUDcQ8bTFjPRGJCOhITHEN0cDQxwTENX7Oq\nCfGb0jd93H4LXI3hAD0ZmKuqX1dJcxcwRFXvFJE5wHRVvVFEBgHLgBFAF+BDoL+q1rhma0OVvkc9\nnCo/hcvjosJdgdPtxOlx4nLX8L/HidPtpKyyjBJXCcXOYkorSyl2FlNSWUKJs4RiVzGlrlIKnYVn\nWwrVCXGE0DmsMwlhCSSEJdAlvMvZ454dehIbEnuuQlMFTyW4ncZW6fzh+MzmKjfGyVcUmvsi49O5\nvMCYKFN8HErMfcXpH+cfHg+dh0DCT6HLUGMf2d2vHWvVqah0U1rhpriikqLySnJPl5NTWE7WqVL2\nZZ8mNauAglJjtuWQbpH8/JIeTB3atfk6HFsZ6nLhKS/HU1qGO/8klSfzqTxxAmfGQSrSD1Jx4ACu\nbMNWHdS/P1GzZxM1fRq2sPqZv44VlvPGzu9ZmXKE3NNGHe4eE8KQblEM7BxBQmQICVHBxEUEERbk\nIDTQQXiQo2lnQbtdcOKA0TDJ2WPsc9OMvoCzCIR2NOpyeCdjH9bJGDYcFGFuHX44dgSBPQgcgWAP\nrHYc6LXuV3oqySrK4mjxUbJLsskpziE/93s6f5DK4M9yiD1lqKnjkZDeRciJhmPRQl4H0PBQpEME\nEhGOI7wD4cERhAeEExYQRnhAOKEBoQTZgwh2BBNoDyTIHnR2C7QHEmwPPnscaA/EYXPgEAfBjmAi\ngxo2NNqfSv8y4BFVvcb8/2EAVf17lTTvm2k+ExEHcAzohOkr90zaqulqul5DlX7GN8kcvH1evc8D\nEMCmxpoUcmaPsbepmnvjM8fY69n/z61KPy5POSdIvZxTC9UejwfBgx03Njxiw6023NioxIEbO5XY\n0aoVvJbnW12O6nWhLjkFNcTTc8REqoQ4bDYCHTYC7EKQw24olLq+MGuLr+NcPUeacxI0OO/Gyq0u\nF56KCqjJk1NAAEG9ehHYtw+hFw0j7IrLCerT+Ml2Ho+yJ6uAXZn5pGYVsPdIIUcLal49MzjARoDd\nht0m2EWw2QSHTbCJGGE28a0e+5DI+I0oUVpIFz1GF88xEjzHiNV8orWAaM8porWAKC0kBO+Nr7pw\n4sCDDcWGB0GxoYDKmf/FjDf2HhVcp4XS4zYqjgucEhzFhn6ojgKVdvDYwG2DSnPvtoHbDh6pUuXk\nh3POnl+ljPI62Zm7Zl+D7tFXpe/LgN6uQFX3N1lA9WUVz6ZR1UoRKQQ6muGfVzu3qxdh7wDuAOjR\no4cPIp1LeFg0tuggBMGmIMhZxS3I2b2h4AURY28zw8RUUyI1qGU5+wc3ghtwek8E/PhB/hAuqJgV\nTmxnK5mK8f+ZcEUMhS4BeMSOWwJwiwOP2M/K9uPsa/5lCZx9CXhNJTXG1Jr3mVAVwS7gsAsOmw2H\n3VDuIQF2QoMcBAfYaxavji+P2k0+dWiTur5qaouv823XcLklIAAJDsEWHGTsQ0Kwx0Tj6NgRR2ws\nAV26NMkyCjabMKxHNMN6/NBvVO5yk1NYTk5BGXklTkoqKs3NTYmzEpfbg9ujuD2KR419pUfxeBS3\nD12BvpiOf5wiEg89yMJQFN4S2dRNsKeEYE8pwZ4SQsy9Q13Y1YlDXTVsTuPXpj+oeFE1j6v+7/kh\nXYQiXc30qlS4FSl2YStxgdODON1IhRtxesCtiEcJUCXAA+pRVI2yUlU8ZlPEI4pHzT1GA8Vj3qOK\nEhXZ9BMgfVH63mrwuQ0772l8ORdVfR54HoyWvg8ynUNc976M39DwVQAtLNobwQF2EmPDSLRGTLUr\nfOk2zwKqOiftBmTXlMY070QC+T6ea2FhYWHRTPii9JOBfiKSKCKBwBxgXbU064CbzeNZwGY1vu3W\nAXNEJEhEEoF+wC7/iG5hYWFhUV/qNO+YNvp7gPcx+i5fUtU0EVkIpKjqOmAJ8JqIpGO08OeY56aJ\nyErga6ASuLu2kTsWFhYWFk2LNTnLwsLC4jzA19E71jKGFhYWFu0IS+lbWFhYtCMspW9hYWHRjrCU\nvoWFhUU7otV15IrICeD7RmQRC+TVmar5seSqH5Zc9cOSq36cj3L1VNU6vdW3OqXfWEQkxZce7ObG\nkqt+WHLVD0uu+tGe5bLMOxYWFhbtCEvpW1hYWLQjzkel/3xLC1ADllz1w5Krflhy1Y92K9d5Z9O3\nsLCwsKiZ87Glb2FhYWFRA5bSt7CwsGhHtEmlLyI3iEiaiHhEJKla3MMiki4iB0TkmhrOTxSRnSLy\nnYisMJeM9reMK0Rkj7kdEhGvHl7MuK/MdE2+0pyIPCIiR6vINqmGdNeaZZguIr9vBrn+KSLfiEiq\niLwtIlE1pGuW8qrr/s3lwleY8TtFpFdTyVLlmt1FZIuI7Dfr/31e0owRkcIqz/dPTS2Xed1an4sY\n/Mcsr1QRGdYMMg2oUg57ROS0iNxfLU2zlJeIvCQix0VkX5WwGBH5wNRDH4hIdA3n3mym+U5EbvaW\npl6oapvbgIHAAOBjIKlK+CBgLxAEJAIHAbuX81cCc8zjZ4FfNbG8i4A/1RB3CIhtxrJ7BPhNHWns\nZtn1BgLNMh3UxHJNABzm8aPAoy1VXr7cP3AX8Kx5PAdY0QzPLgEYZh5HAN96kWsMsKG56pOvzwWY\nBLyL4U3vUmBnM8tnx/Dd3bMlygsYBQwD9lUJewz4vXn8e291HogBMsx9tHkc3RhZ2mRLX1X3q+oB\nL1FTgeWqWqGqmUA6MKJqAjEcmI4D3jSDXgWmNZWs5vVmA8ua6hpNwAggXVUzVNUJLMco2yZDVTep\n6hlv4Z9jeFlrKXy5/6kYdQeMujReanfq22hUNUdVvzCPi4D9ePE53UqZCvxXDT4HokQkoRmvPx44\nqKqNme3fYFR1K4avkapUrUM16aFrgA9UNV9VTwEfANc2RpY2qfRrwZsT9+o/io5AQRUF49VZux8Z\nCeSq6nc1xCuwSUR2mw7im4N7zE/sl2r4pPSlHJuS2zBahd5ojvLy5f7PpjHrUiFG3WoWTHPSRcBO\nL9GXicheEXlXRAY3k0h1PZeWrlNzqLnh1RLlBRCvqjlgvNCBOC9p/F5uvjhGbxFE5EOgs5eoP6jq\n2ppO8xLmqxP3euOjjHOpvZV/hapmi0gc8IGIfGO2ChpMbXIBzwB/wbjnv2CYnm6rnoWXcxs9tteX\n8hKRP2B4WXujhmz8Xl7eRPUS1mT1qL6ISDjwFnC/qp6uFv0Fhgmj2OyvWYPhprSpqeu5tGR5BQLX\nAw97iW6p8vIVtlan1wAAAlxJREFUv5dbq1X6qnpVA07zxRF7HsanpcNsoTXYWXtdMorhJH4GMLyW\nPLLN/XEReRvDtNAoJeZr2YnIC8AGL1FN4tDeh/K6GZgCjFfToOklD7+Xlxd8uf8zabLM5xzJuZ/v\nfkdEAjAU/huqurp6fNWXgKpuFJGnRSRWVZt0cTEfnkuT1CkfmQh8oaq51SNaqrxMckUkQVVzTFPX\ncS9psjD6Hc7QDaMvs8Gcb+adOh2xm8pkC4YDdzAcutf05dBYrgK+UdUsb5EiEiYiEWeOMToz93lL\n6y+q2VGn13C9ZKCfGKOcAjE+jdc1sVzXAg8B16tqaQ1pmqu8fLn/dRh1B4y6tLmmF5W/MPsMlgD7\nVfVfNaTpfKZvQURGYPzGTzaxXL48l3XAPHMUz6VA4RnTRjNQ49d2S5RXFarWoZr00PvABBGJNk2x\nE8ywhtPUvdZNsWEoqyygAsgF3q8S9weMkRcHgIlVwjcCXczj3hgvg3RgFRDURHK+AtxZLawLsLGK\nHHvNLQ3DzNHUZfca8BWQala6hOpymf9PwhgdcrCZ5ErHsF3uMbdnq8vVnOXl7f6BhRgvJYBgs+6k\nm3WpdzOU0ZUYn/apVcppEnDnmXoG3GOWzV6MDvHLm0Eur8+lmlwCLDbL8yuqjLprYtlCMZR4ZJWw\nZi8vjJdODuAyddftGH1AHwHfmfsYM20S8GKVc28z61k6cGtjZbGWYbCwsLBoR5xv5h0LCwsLi1qw\nlL6FhYVFO8JS+hYWFhbtCEvpW1hYWLQjLKVvYWFh0Y6wlL6FhYVFO8JS+hYWFhbtiP8Piz0DIIS+\nOfcAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "
" ] }, "metadata": {}, @@ -848,7 +5445,7 @@ ], "source": [ "plt.title(\"Gaussian (Normal) distribution\")\n", - "x = np.linspace(-10,10)\n", + "x = np.linspace(-10,10, 200)\n", "plt.plot(x, gauss(0,1)(x), label=\"sigma = 1\")\n", "plt.plot(x, gauss(0,2)(x), label=\"sigma = 2\")\n", "plt.plot(x, gauss(0,3)(x), label=\"sigma = 3\")\n", @@ -881,7 +5478,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 26, "metadata": { "ExecuteTime": { "end_time": "2017-09-22T06:34+0000", @@ -903,7 +5500,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 27, "metadata": { "ExecuteTime": { "end_time": "2017-09-22T06:29+0000", @@ -913,9 +5510,9 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEICAYAAACzliQjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3Xd4VFX6wPHvmZJJDwkESC8QhCAY\nulKsINiwsCqCihUsuK6sDdeyq6trW8sq9gJiRWwgCOIPRMUGSA+9pVEC6XXa+f0xMzGElAmZPufz\nPHlM5p5775sQ35w55b1CSomiKIoSHDTeDkBRFEXxHJX0FUVRgohK+oqiKEFEJX1FUZQgopK+oihK\nEFFJX1EUJYiopK/4NSHEPiHEaDddWwoheto/f00I8ZCLrpsqhKgSQmjtX38vhLjJFde2X+8bIcQU\nV11PCSwq6SsuI4SYJIRYY09oB+zJZ6S343IFKeUtUsrH2mrnzB8hKWWelDJSSmnpaFxCiH8KId5v\ncv3zpJRzOnptJTCppK+4hBBiBvAC8ATQDUgFXgEu9mZcvkYIofN2DEpwU0lf6TAhRAzwKHC7lPJz\nKWW1lNIkpVwopbzH3maoEOIXIUSZ/V3Ay0KIEPuxdPtQiq7RNY8Z8hBC3CyE2CqEqBRC5AohBjYK\nIUcIsVEIUS6E+EQIEWo/Z7MQ4qJG19ALIY4IIXJa+D7uscdWJIS4ocmx2UKIf9s/7yKE+Nr+vZQI\nIX4UQmiEEHOx/bFbaH+3c2+j7+1GIUQesLy57xfoIYT43f49fCWEiLPf60whREGTWPYJIUYLIcYB\nDwBX2u+3oenPzh7Xg0KI/UKIw0KI9+z/Xo1/7lOEEHn2n80/2vwHV/yaSvqKK5wGhAJftNLGAtwF\ndLG3Pwe4zZmLCyEuB/4JXAtEA+OBo42aXAGMAzKA/sB19tffA65u1O584ICUcn0z9xgH3A2MAbKA\n1oZo/g4UAPHY3tU8AEgp5TVAHnCRffjm6UbnnAH0Aca2cM1rgRuARMAM/K+V+4PthkuwvbP6xH6/\nU5ppdp394ywgE4gEXm7SZiRwErZ/k4eFEH3aurfiv1TSV1yhM3BESmluqYGUcq2U8lcppVlKuQ94\nHVsidMZNwNNSytXSZpeUcn+j4/+TUhZJKUuAhYCjJ/8+cL4QItr+9TXA3BbucQXwrpRys5SyGtsf\nmZaYgAQgzf6O5kfZdhGrf9rfAdW2cHxuo3s/BFzhmOjtoMnAc1LKPVLKKmAmMLHJu4x/SSlrpZQb\ngA1Ac388lAChkr7iCkeBLq2NVwshetmHRA4KISqw9VC7OHn9FGB3K8cPNvq8BltvFillEbAKmCCE\n6AScB3zQwjUSgfxGX+9voR3AM8Au4FshxB4hxP2thw9Nrt3W8f2AHud/Pq1J5NjvZT+gw/YOxaHZ\nn58SmFTSV1zhF6AOuKSVNq8C24AsKWU0tiERYT9Wbf9veKP23Rt9ng/0OMHY5mAb4rkc+EVKWdhC\nuwPY/rg4pLZ0QSllpZTy71LKTOAiYIYQ4hzH4ZZOayPOpvc2AUew/Wwafi723n98O65bBKQ1ubYZ\nONTGeUqAUklf6TApZTnwMDBLCHGJECLcPml6nhDCMa4dBVQAVUKI3sCtjc4vBgqBq4UQWvskauMk\n/xZwtxBikLDpKYRonMha8yUwELgT2xh/S+YB1wkhsoUQ4cAjLTUUQlxoj0HYvyeL/QNsyTTTydga\nu7rRvR8F5tuXdO4AQoUQFwgh9MCDgKHReYeAdCFES/8vfwTcJYTIEEJE8uccQItDcUpgU0lfcQkp\n5XPADGxJqRhb73w6tqQLtknSSUAl8CbwSZNL3Azcg22oqC/wc6Nrfwo8DnxoP/9LIM7JuGqBz7BN\n8n7eSrtvsC05XY5t6GZ5K5fNAr4DqrC9y3lFSvm9/dh/gAftK3vudiZGu7nAbGxDLaHAX+1xlWOb\n8H4L2x/GamyTyA6f2v97VAjxRzPXfcd+7R+Avdjekd3RjriUACPUQ1SUQCeEeBjoJaW8us3GihLg\n1EYRJaDZ17vfiG3ljqIEPTW8owQsIcTN2IaZvpFS/uDteBTFF6jhHUVRlCCievqKoihBxOfG9Lt0\n6SLT09O9HYaiKIpfWbt27REpZXxb7Xwu6aenp7NmzRpvh6EoiuJXhBCt7SJvoIZ3FEVRgohK+oqi\nKEFEJX1FUZQg4nNj+s0xmUwUFBRQV1fn7VAUHxYaGkpycjJ6vd7boSiKz/KLpF9QUEBUVBTp6enY\nalwpyrGklBw9epSCggIyMjK8HY6i+Cy/GN6pq6ujc+fOKuErLRJC0LlzZ/VuUFHa4BdJH1AJX2mT\n+h1RlLb5TdJXFMX/WOvrKf1kHtJk8nYoip1K+kHqhx9+YODAgeh0OubPn+/tcJQAVTbvUw4+8gjV\nP//cdmPFI1TSD1KpqanMnj2bSZMmeTsUJUBJKSn9+GMA6nfv8XI0ioNK+k567LHH6N27N2PGjOGq\nq67i2WefBeDNN99kyJAhnHLKKUyYMIGamhoArrvuOm699VbOOussMjMzWblyJTfccAN9+vThuuuu\na7huZGQk9913H4MGDWL06NH8/vvvnHnmmWRmZrJgwQIA9u3bx6hRoxg4cCADBw7kZxf0mtLT0+nf\nvz8ajfoVUNyjZvVqjLttz7Ov39Pac+0VT/KLJZuN/WvhFnKLKlx6zezEaB65qG+Lx9esWcNnn33G\nunXrMJvNDBw4kEGDBgFw2WWXcfPNNwPw4IMP8vbbb3PHHban0ZWWlrJ8+XIWLFjARRddxKpVq3jr\nrbcYMmQI69evJycnh+rqas4880yeeuopLr30Uh588EGWLVtGbm4uU6ZMYfz48XTt2pVly5YRGhrK\nzp07ueqqq5qtTzRq1CgqKyuPe/3ZZ59l9OjRrvhRKYrTyj7+GE10NCFpaRj37PV2OIqd3yV9b/jp\np5+4+OKLCQsLA+Ciiy5qOLZ582YefPBBysrKqKqqYuzYsQ3HLrroIoQQ9OvXj27dutGvXz8A+vbt\ny759+8jJySEkJIRx48YB0K9fPwwGA3q9nn79+rFv3z7Atjlt+vTprF+/Hq1Wy44dO5qN88cff3TH\nt68o7WYuLqbi22XETZ6Eta6eyqVLvR2SYud3Sb+1Hrm7tPagmeuuu44vv/ySU045hdmzZ/P99983\nHDMYDABoNJqGzx1fm81mAPR6fcNSw8btGrd5/vnn6datGxs2bMBqtRIaGtpsLKqn73rv/7qffUeq\nmz02JrsbwzI7ezgi/1D22WdgNtPpyolU//gDZWVlmEtK0MU59Tx7xY38Lul7w8iRI5k2bRozZ87E\nbDazaNGihiGdyspKEhISMJlMfPDBByQlJbn8/uXl5SQnJ6PRaJgzZw4Wi6XZdqqn71qVdSYe/HIz\nIVoNeu2xewBqTRY2FZbzybTTvBSd75IWC6Xz5hF+2qkYMjMwFRYAYNyzRyV9H+DULJ4QYpwQYrsQ\nYpcQ4v5mjt8ihNgkhFgvhPhJCJHd6NhM+3nbhRBjm57rD4YMGcL48eM55ZRTuOyyyxg8eDAxMTGA\nbYJ32LBhjBkzht69e7vl/rfddhtz5szh1FNPZceOHURERHT4mqtXryY5OZlPP/2UadOm0bev599B\n+bq8Etuk/AsTc9jy6LhjPi4ZkES+/bhyrKqVP2AuOkDsxKsAMGRmAmoFj8+QUrb6AWiB3UAmEAJs\nALKbtIlu9Pl4YIn982x7ewOQYb+OtrX7DRo0SDaVm5t73GueVllZKaWUsrq6Wg4aNEiuXbvWyxEp\nzXHl78o3m4pk2n1fy00FZccde37Zdpl+/9eyzmR22f0Cxf6bb5Y7Ro6SVqNRSiml1WKRW3MGyINP\n/MfLkQU2YI1sI59LKZ3q6Q8Fdkkp90gpjcDHwMVN/nA0Xk4TATgGwS8GPpZS1ksp9wK77NfzO1On\nTiUnJ4eBAwcyYcIEBg4c6O2QFDdz9PRT4sKPO5YaF46UUFha6+mwfJqxoIDqH3+i0+WXI+zVToVG\nQ0hGOvV7VU/fFzgzpp8E5Df6ugAY1rSREOJ2YAa2dwNnNzr31ybnHjfoLYSYCkwF26YhX/Thhx96\nOwTFw/JKaogJ0xMTdnyp5lT7H4K8khoy4yM9HZrPKvvkE9Bo6HTF5ce8bsjIpHb9ei9FpTTmTE+/\nuSpWxy1nkVLOklL2AO4DHmznuW9IKQdLKQfHx7f5XF9F8Yj9R2tI63x8Lx+OTfqKjdVopGz+Z0Se\ndSb67t2PORaSmYGpqAhrrXpn5G3OJP0CIKXR18lAUSvtPwYuOcFzFcVn5JfUNDu0AxAfZSBUryHv\nqEr6DpVLl2IpLW2YwG3M0KMHSInRvvdE8R5nkv5qIEsIkSGECAEmAgsaNxBCZDX68gJgp/3zBcBE\nIYRBCJEBZAG/dzxsRXEvi1VSUFrb0KNvSghBaly46uk3UvrRx+jTUokYfvwy1pAM+wqePWpc39va\nHNOXUpqFENOBpdhW8rwjpdwihHgU22zxAmC6EGI0YAJKgSn2c7cIIeYBuYAZuF1K2fwic0XxIQfK\nazFbZYtJH1BJv5G67Tuo/eMPut57L6KZek4h6Wmg0ahyDD7Aqc1ZUsrFwOImrz3c6PM7Wzn3ceDx\nEw1QcY/nnnuOt956C51OR3x8PO+88w5paWneDstnOJJ5a0k/JS6cX3YfRUoZ9A9wqVr+fwDEXHpJ\ns8c1BgP65GRVeM0HqBKLQWrAgAGsWbOGjRs38pe//IV7773X2yH5lHwnkn5qXDjVRgsl1UZPheWz\njAUF6OLj0cXGttjGkJGhevo+QCV9JwVaaeWzzjqL8HBbQjv11FMpKCjo8DUDSV5JDVqNICGm+TpH\noFbwNGYqLEKfmNhqm5DMTIx79yJbKCOieIb/1d755n44uMm11+zeD857ssXDgV5a+e233+a8885r\n148s0OWV1JLUKQydtuV+UeOkPyC15R5uMDAVFRF28smttjH0yEQajZiKighJSWm1reI+/pf0vSCQ\nSyu///77rFmzhpUrV7b73ECWV1LT6tAOQHKs7Xiw1+CRViumAweIHntuq+1C7DV4jHv2qKTvRf6X\n9FvpkbuLDNDSyt999x2PP/44K1euPCY+xZbIx/bt3mqbsBAtXaMMQT+8Yy4uBpMJfRsVZkMyMgBb\n4bXIM87wRGhKM/wv6XtBIJZWXrduHdOmTWPJkiV07drVVaEGhMo6EyXVxjZ7+qCWbYJtPB9oc0xf\nFxuLNi4Oo6rB41Uq6TuhcWnltLS0Zksrp6Wl0a9fv2Z72h112223MWHCBD799FPOOussl5RWvuee\ne6iqquLyy201UlJTUxsmjoNdfomtVICzSf+3vSXuDsmnmQoLAdrs6YOtHIMqsexlzpTi9OSHKq2s\ndIQrfle+2XRApt33tdyYf3xJ5aae+9ZWYrneZOnwff1V8Wuvy9yTektLdXWbbYseelhuH3aqB6IK\nPjhZWln19J00depUcnNzqaurY8qUKaq0cgBzZo2+Q0OJ5bJaMrp0/B2YPzIVFqKNjUUT3vbPKyQz\nA0tZGebS0lbX9Cvuo5K+k1Rp5eCRV1JDdKiOmPDjSyo3ldr5z2WbQZv0i4qcGtqBP5+iZdy9G93g\nwe4MS2mB2pylKE3kldSQ1tm5BK42aNl6+m1N4jqEZPYAVOE1b1JJX1GacGaNvkN8pAGDTkPe0Wo3\nR+WbpJTt6unrExMQBoMqx+BFKukrSiO2ksot19FvSqMRpATxsk3L0aPI+nqne/q2RydmqMJrXqSS\nvqI0crCiDpOl9ZLKTdnW6gfnE6FMRfY1+u3Yn2LIzFQ9fS9SST9Ivfbaa/Tr14+cnBxGjhxJbm6u\nt0PyCY4nYbU36eeX1LS6cztQ/Zn0nevpg60cg6mwEGtdnbvCUlqhkn6QmjRpEps2bWL9+vXce++9\nzJgxw9sh+YT2LNd0SIkLp6reTGmNyV1h+ayGjVlODu+ArfCaenSi96ik76RAK60cHR3d8Hl1dXXQ\nPwTEoaGkcqeWSyo3FcwreEyFRWiio9FGRTl9TuPCa4rn+d06/ad+f4ptJdtces3ecb25b+h9LR4P\n1NLKs2bN4rnnnsNoNLJ8+fIT+tkFmrySGhI7haJvpaRyU42Tfk5KJ3eF5pPas1zTISQtDYRQ5Ri8\nxO+SvjcEamnl22+/ndtvv50PP/yQf//738yZM6dd5wei9izXdHC0D8YSy6aiIvSpqe06RxMaij45\nWRVe8xK/S/qt9cjdpbUJOn8urewwceJEbr311haPB5P8khrO7dutXeeEhWiJjzI0TAIHCyklpsJC\nwk89td3nqsJr3qPG9J0wcuRIFi5cSF1dHVVVVSxatKjhWNPSyu5QXl5OQkICGo2GuXPntlpaef36\n9cd9NJfwd+7c2fD5okWLyMrKckvs/qSq3szRaqPTa/QbC8YSy9bycqw1Ne1aueNgyMjEuG+fenSi\nF/hdT98bArG08ssvv8x3332HXq8nNjZWDe1wYit3HFLjwvk9yEosNyzXbOeYPkBIj0xkfT2mAwcI\nSU52dWhKa5wpxQmMA7YDu4D7mzk+A8gFNgL/B6Q1OmYB1ts/FrR1L1VaWemIjvyuLNlsK6m8Ib+0\n3ef+99vtMiPISiyXf/utzD2pt6zZvLnd51avWSNzT+otK7//3g2RBSecLK3c5vCOEEILzALOA7KB\nq4QQ2U2arQMGSyn7A/OBpxsdq5VS5tg/xp/Ynybvmzp1Kjk5OQwcOJAJEyao0soBqKM9fauEorLg\n2Zlr7khP375ss17tzPU4Z4Z3hgK7pJR7AIQQHwMXY+vZAyClXNGo/a/A1a4M0heo0sqBz1FSuVN4\nSLvPbbxsMz1ISiwbCwvRhIej7dT+ZaraTp3QREQ0bO5SPMeZidwkIL/R1wX211pyI/BNo69DhRBr\nhBC/CiEuae4EIcRUe5s1xcXFToSkKK6XV1LTUB+/vYJxg5atumbiCW3sE0KgT0pSSd8LnOnpN/cv\n2uwaRiHE1cBgoPGj7lOllEVCiExguRBik5TymBJ7Uso3gDcABg8eHHwFTBSfkFdSQ+/uzu8sbaxr\nlIEQnSao1uqbCovQncDQjoM+MbFhMljxHGd6+gVASqOvk4Hj/qWEEKOBfwDjpZT1jtellEX2/+4B\nvgcGdCBeRXELi1VSUFJ7Qss1wV5iOTaM/UG0Vt9UVERIO6prNqV6+t7hTNJfDWQJITKEECHARGBB\n4wZCiAHA69gS/uFGr8cKIQz2z7sAI2g0F6AovuJQRR1Gi/WEJnEdgmmtvqWqCmt5+QlN4jroExOx\nVlVhqahwYWRKW9pM+lJKMzAdWApsBeZJKbcIIR4VQjhW4zwDRAKfCiHWCyEcfxT6AGuEEBuAFcCT\nUkqV9H3ADz/8wMCBA9HpdMyfP9/b4bRq3759hIWFkZOTQ05ODrfccovL75HXgZU7DsFUYtlU2P46\n+k05zlW9fc9yanOWlHIxsLjJaw83+rzZPf5Syp+Bfh0JUHGP1NRUZs+e3VAt1Nf16NGD9evXu+36\nrkj6KXHhVNabKasxERvR/hVA/sRU1P6Syk01JP2iIkL79HFJXErbVBkGJwVaaeX09HT69++PRuP8\nr4Azsc6ePZvp06c3nHPhhRceU4/IV+WX1KARkNgp7ISvEUwreFzT00+0X0v19D3J78owHHziCeq3\nura0sqFPb7o/8ECLxwO1tHJ7OROrs+666y5WrFhx3OsTJ07k/vvvP+71vXv3MmDAAKKjo/n3v//N\nqFGjOvS9NGUrqRzWrpLKTTmWe+aV1HBKgJdYNhUVIQwGtJ07n/A1tLGxiLAwlfQ9zO+SvjcEamnl\n9nImVmc9//zzTrdNSEggLy+Pzp07s3btWi655BK2bNlyzINgOupESio3lRIbTD19Wx39jjx8Rwih\nlm16gd8l/dZ65O7S2sRcIJRWdpYzsep0OqxWa8M5dS08B7U9PX2DwdBwr0GDBtGjRw927NjB4MGD\nO/w9OeSX1DC6T/tKKjcVYdDRJTIkKNbqm4qKOjSe76BPSsSoevoe5XdJ3xtGjhzJtGnTmDlzJmaz\nmUWLFjUM6TQtrZzUgTHOlpSXl5OcnIxGo2HOnDmtllZ2hd69e7Nt24kNoaWnp/PKK69gtVopLCzk\n999/b7Zde3r6xcXFxMXFodVq2bNnDzt37iTTXrvFFarrzRypOrGSyk2lBMmyTVdNvuqTkqjbsNEF\nESnOUknfCYFYWnn16tVceumllJaWsnDhQh555BG2bNnCkSNHOrTkcMSIEWRkZNCvXz9OPvlklxSm\n++GHH3j44YfR6XRotVpee+014uLiOnxdh/xSW5J2RdJPjQtnzb7SDl/Hl1lra7EcPeqann5iIpby\ncixV1Wgjg6Nmkdc5U4rTkx+qtLJ3LVy4UL744oveDuOEncjvylJ7SeX1ee0vqdzUs0u3yYz7v5ZG\nc+CWWK7bvVvmntRbli1Y0OFrlS9aJHNP6i1rt293QWTBDSdLK6uevpOmTp1Kbm4udXV1TJkyJWBL\nK1944YXeDsHj8ktt5ZBdMrwTayuxfKCs7oSLt/k6x2qbjizXdHC8WzAVFhLaq1eHr6e0TSV9J6nS\nyoErv6SGSIOO2HB9h6+V0mitfuAm/ROvo9/Un7ty1QoeT/GbzVkyCLa2Kx1zor8j+SU1JMeGdWj5\noUNKnG1Zr2OeIBCZCgtBr0cXH9/ha2k7d0aEhKhlmx7kF0k/NDSUo0ePqsSvtEhKydGjR1tcztqa\n/NIalwztACTEhKHTiIBetmkqKkLfvTtCq+3wtYRGY1urr5ZteoxfDO8kJydTUFCAesCK0prQ0FCS\n2/mQbSkl+SW1jMrqeK8VQKsRJMWGBfSyTdvDU1y3NFmflKR6+h7kF0lfr9eTkZHh7TCUAHSkykit\nyUJK7InX3GkqJTa8YXI4EJkKC4kYOdJl19MnJlK3davLrqe0zi+GdxTFXRw9clcN79iuFRawwztW\noxFzcXFDsTRX0CclYSkpwVoTmD8zX6OSvhLUCko7XlK5qZS4cEqqjVTXm112TV9hPnAApESf6Mrh\nHfuyzQMHXHZNpWUq6StBzdEjT451YdK3XysQV/A4xt5dsVzTQT1MxbNU0leCWl5JDfFRBsJCOr4S\nxaGhrn4APi/XlRuzHBo/TEVxP5X0laCWX1Lr0klc+HN+IBAnc01FRaDRoO/W1WXX1MXHg16vevoe\nopK+EtRcuUbfITZcT0SINiAnc02FRei6d0PoO7572UFoNOgTEtSuXA9RSV8JWiaLlaKyWpdO4oLt\n4SAp9oekBxpjfj4hSe3bC+EMtUHLc1TSV4LWgbI6rPLPiVdXSokLD8iJXGNeHiHpaS6/rj4pEWOR\nSvqeoJK+ErQcSTk5zrVj+mDfoFVSG1ClQyxV1ViOHEGfmurya+uTkrAUH8FaX+/yayvHUklfCVqO\njVmuHt6xXTOMWpOFI1VGl1/bW0z5eQCEpLqhp+8osaxW8LidU0lfCDFOCLFdCLFLCHF/M8dnCCFy\nhRAbhRD/J4RIa3RsihBip/1jiiuDV5SOyC+pQacRJMS4oacfF3gPSTfutyf9NNf39EPUsk2PaTPp\nCyG0wCzgPCAbuEoIkd2k2TpgsJSyPzAfeNp+bhzwCDAMGAo8IoSIdV34inLi8kpqSIoNQ6vpeEnl\nphzvHgoCaFzfmGdP+ikpLr9244epKO7lTE9/KLBLSrlHSmkEPgYubtxASrlCSun47f4VcEzvjwWW\nSSlLpJSlwDJgnGtCV5SOyS+tdcskLvy5wzeQVvAY8/ajje+CxgXPaG5K160baLWqp+8BziT9JCC/\n0dcF9tdaciPwTXvOFUJMFUKsEUKsUeWTFU8pKKlpeOiJq4WFaOkSaQio4R3T/jy3jOcDCJ0Offfu\naq2+BziT9Jt779vskgQhxNXAYOCZ9pwrpXxDSjlYSjk43gVP41GUtlTXmzlabXT5xqzGUuPCyC8J\nnF25xrw8QtywcsdBrdX3DGeSfgHQeBAvGTjuz7EQYjTwD2C8lLK+Pecqiqc5lmu6a3gHAmutvrW2\nFvOhQ26ZxHVQD1PxDGeS/mogSwiRIYQIASYCCxo3EEIMAF7HlvAPNzq0FDhXCBFrn8A91/6aoniV\nowfujuWaDqlx4RSV1WKyWN12D08x5tlGad3d0zcfOoQ0Bs4yV1/UZtKXUpqB6diS9VZgnpRyixDi\nUSHEeHuzZ4BI4FMhxHohxAL7uSXAY9j+cKwGHrW/pihe5Y6HpzSVEhuOVdp2/vo7Y95+APRuGtMH\ne7VNKTEdOuS2eyhOPi5RSrkYWNzktYcbfT66lXPfAd450QAVxR3yS2qICNESG+66wmFNOXb65pXU\nkNrZfX9cPMGU5741+g6N6+q7Y1moYqN25CpBqcBeXVMI16/Rd0iNC5yHqRj356GNi0MbFeW2ezQ8\nQUtN5rqVSvpKUMorcX1J5aYSYsLQaURArNV398odAH23bqDRqGWbbqaSvhJ0pJT2h6e4N+lrNYLE\nTmEBsVbfmLffrUM7ACIkBF3Xrqqn72Yq6StB50iVkVqThVQ3bcxqLDUu3O+foGWtr8d84KBbqms2\npZZtup9K+krQaVij7+bhHds9wvx+eMdUUABSum03bmNqg5b7qaSvBJ18N5ZUbiolLpySaiPV9Wa3\n38td3Fldsyl9UiKmQ4eQZv/9efk6lfSVoONI+sluHtOHP3f8+vMKHscafXdP5IJ92abFglmt1Xcb\nlfSVoJNfUkuXSANhIVq336uhrv5R/036prw8NDExaDt1cvu9HCWWjWqIx21U0leCTn5pjUcmcaHx\nWn3/ncw17nf/ck0H9TAV91NJXwk6nlij7xAbriciROvXk7nG/fs9lvR1CQmA2qDlTirpK0HFZLFy\noLzO7Wv0HYQQtmqbfpr0pdGIqajII5O4ABqDAV18vNqg5UYq6StB5UBZHRar9MjKHQd/LrFsLCwE\nq9Uja/QdQtLSMO7d67H7BRuV9JWg4ki+yR4a0wfbCp78klqkbPbZQz6todCaB9boOxh6ZVG/c6df\n/rz8gUr6SlDx5Bp9h9S4MGpNFo5U+V+deE+u0XcwZGVhrarCfPCgx+4ZTFTSV4JKXkkNOo0gIcaD\nPX0/rrZpzMtDExmJNi7OY/dRXPy5AAAgAElEQVQ0ZGUBUL9zp8fuGUxU0leCSn5pLYmdwtBq3FdS\nuamGpO+Hk7nGPNvKHXeWoG7K0LMnoJK+u6ikrwSV/JIajw7tQKNduX6Y9E3789B7cGgHQNupE7qu\nXanfoZK+O6ikrwSV/JIaUjw4iQsQFqKlS6TB70osS7MZY2GhRydxHQxZWaqn7yYq6StBo7rezNFq\no0dq7jRlq7bpX7tyTQcOgNnssY1ZjRmysqjfvRtpsXj83oHOqWfkKkogKLCXQmjX8E55AZS3sDu0\nW18wRDp1mdS4cNbuL3X+vj7AGyt3HAxZWcj6ekz5+YSkp3v8/oFMJX0laDiGV5wuwbD/Z5gzHqym\n5o937gk3/R+EtV2ILCU2nIUbijBZrOi1/vEG21Fd05MbsxwMvWwreOp27lRJ38VU0leCxv6j1YCT\nPf2yPPjkGohNg3FPQdPVK1WHYMFfYf4NMPlT0LResTO1czhWaXu3kdEl4kS/BY8y7d+PCAtDFx/v\n8XsbevQA7Ct4xozx+P0DmVNJXwgxDngR0AJvSSmfbHL8dOAFoD8wUUo5v9ExC7DJ/mWelHK8KwJX\nlPbKLaqgW7SBuIiQ1hsaq+GjSWAxwVUfQ5es5ttZjLDwTlj2MIx9vNVL9uke3RCDvyR9R3VNTy7X\ndNCEh6NPScG4a5fH7x3o2nyfKYTQArOA84Bs4CohRHaTZnnAdcCHzVyiVkqZY/9QCV/xmi1FFfRN\njGm9kdUKX9wCh7fAX95pOeEDDLoOhk6FX16G9c396v+pV/dIdBrBlqLy9gfuJcY8z5VUbo5aweMe\nzgwuDgV2SSn3SCmNwMfAxY0bSCn3SSk3AlY3xKgoHVZnsrCruIq+idGtN/zhadi6AMY8Blmj277w\n2P9Axhm2Hn/+7y02M+i09OwayeaiinZG7h3SYrFNonphEtfBkJVF/d59SKP/la/wZc4k/SQgv9HX\nBfbXnBUqhFgjhPhVCHFJcw2EEFPtbdYUFxe349KK4pxtByuxWGXrST/3K/j+P3DKJDjtducurNXB\n5bMhOgk+ntzySh+gb2IMuUXlflFIzHzwINJk8sokroMhKwvMZur37fNaDIHImaTf3IBee35rU6WU\ng4FJwAtCiB7HXUzKN6SUg6WUg+O9MGmkBD7HsEqLwzsHN9mGdZKHwIXPHz9x25rwOLjqIzDVwseT\nwNj8JqyTk6I5UmXkcGV9e8P3OKMXqms2pWrwuIczSb8ASGn0dTLg9BMOpJRF9v/uAb4HBrQjPkVx\niS1FFUSH6kiObWY3bm0pfHQVhHaCK98HfWj7b9C1D0x4Ew5ssA31NMPxB8cfxvUb1uinezHpZ6SD\nTqeSvos5k/RXA1lCiAwhRAgwEVjgzMWFELFCCIP98y7ACCD3RINVlBPlmMRtdiXKqv/ZNmFd+T5E\ndT/xm5x0Hpx+D2ya1+z4fp+EKFsshb4/rm/My0MYDOi6dvVaDCIkhJD0NOp3qhU8rtRm0pdSmoHp\nwFJgKzBPSrlFCPGoEGI8gBBiiBCiALgceF0IscV+eh9gjRBiA7ACeFJKqZK+4lFmi5VtByqaH8+v\nKobfXoeTL4PkQR2/2Yg7IbwLLP/3cYeiQvWkdw5nsz/09PP2E5KagtB4dyOZWsHjek6t05dSLgYW\nN3nt4Uafr8Y27NP0vJ+Bfh2MUVE6ZHdxNfVmK32Tmkn6q14Acy2cOdM1NzNEwqgZsPQB2PsjZIw6\n5nDfpBg25Je55l5uZNq/H70Xx/MdDFlZVC5ZirWmBk2452smBSL/2A+uKB3Q4iRuxQFY/Rb0n9j6\nevz2GnwDRCXAisehyUqdvonRFJTWUl7TQmkHH2Ctq6N+776GXbHeZMjKAimp373H26EEDJX0lYC3\npaiCUL2GzKY7YX96DqxmOONe195QHwaj/g55v8Du5cccapjMPeC7Qzx1ublgNhN2Sn9vh0KoWsHj\ncirpKwFvS1E5vbtHo2tc6KwsH9bOhpzJEJfh+psOvBaik4/r7TvmFXJ9eJNW7YaNAIT1937S16ek\nIAwGlfRdSCV9JaBJKe0rd5qM5//4rO2/p9/jnhvrDLZ3EIVrYcfShpe7RBroFm1gc6Hv9vRrN25A\nn5jolUJrTQmtFkOPHirpu5BK+kpAyy+ppbLOfOx4fsleWPc+DJwCnVJaPrmjciZBbPpxvf2TE2PY\n4sM9/boNGwn1gaEdB7WCx7VU0lcC2p+TuI16+iufBo3ONu7uTlo9nHE/HNwIWxc2vNw3MZrdxVXU\nGn3vqVDm4mJMRUWE9T/F26E0MPTKwnzoEJZy33135E9U0lcC2paiCrQawUndbRujOLITNn4Mg2+E\n6AT3B9D/CuicZavpY7XVI8xOjMEqYdtB3+vt1260j+ef4kNJ3zGZq8osu4RK+kpA21xUTlbXSEL1\n9oecfP8k6EJh5F2eCUCjhbNmwuFc2PI58Oe7Dl+suFm7YSPodIRm9/F2KA1UDR7XUklfCWhbiirI\ndgztHN4Kmz+DYdMg0oOTlNmXQte+tj84FjPJsWHEhOnJ9cGdubUbNhB60kloQk+g/pCb6Lp3RxMZ\nSf0OlfRdQSV9JWAdrqyjuLL+z0ncH56FkAgY/lfPBqLRwJn3w9GdkPslQgj6Jkb73GSutFio27TJ\np4Z2AIQQajLXhVTSVwKWI6menBgNJXtswyuDr7eVQva03hdCl5PgpxdA2ur6bztYicniO88dqt+9\nG2tNjU9symrKkfT94VkEvk4lfSVgOTZAZSdGw88v2VbsnOrkw1FcTaOBkX+DQ5tg13f0TYzBaLay\nu7jKO/E0o84+iRvqA5uymjJkZWEpK8Ny5Ii3Q/F7KukrAWtzYTlpncOJMpXAug9s6+Y9sWKnJf0u\nt+3S/fE5TrYXf9vsQ2WWazdsQBMTQ0h6urdDOY6azHUdlfSVgNWwE/fXWWA1eX4svymtHobfAXk/\nk1GzmTC91qceqFK7YSNh/fs3/8wBLzP0UknfVVTSVwJSRZ2JvJIaBnTVwOp3IPsS6Oz9qpEMvBbC\nO6Nd9Ty9E6J8ZjLXUlVN/a5dPlFvpzm6uDi0nTtTp5J+h6mkrwQkx3j+OZULwFjpuXX5bQkJh2G3\nws6lnB17mK1FFVit3p+crNu8GaxWn5zEdTBkZallmy6gkr4SkLYUVRBKPek734OeYyDBh5LZ0Jsg\nJJKLKudRWW8mv7T5B6l7kmMnbmg/333mUWjfbOq3bsVa4/2flz9TSV8JSFsKy7kx/Cc0tUdsT7Ly\nJWGxMPh60g4sIUUc8onJ3NqNGwhJS0MXG+vtUFoUMXw40mSiZs0ab4fi11TSVwLStsISrhcLIWUY\npJ7m7XCOd+rtoNFxi26R1ydzpZS2nbg+PLQDED5oEMJgoHrVKm+H4tdU0lcCTp3JQp+SZXSxHIaR\nM8AHV6MQnYDImcTl2pUU5O/zaijmAwewFB/xqcqazdGEhhI+ZAhVKul3iEr6SsDZfqCcaZqvqIzp\nBb3Gejuclg3/KzosDCz6yKs7Tf+srOnbPX2AiBEjMO7ajenAAW+H4rd03g5AUVytbP0CTtEUcvTU\nWR3q5R+sPsjSfUspr29++CUjJoPRaaMJ04Wd2A0692BftzFMOLiU4uLDdO3a7YRj7YjaDRsRISGE\nnnSSV+7fHhEjhgNQ/fPPdJowwcvR+CeV9JXAIiU9tr5CAV1JGnplu083WoysyF/BF7u+4JeiX7BK\nK1qhPf42SKzSyhO/PcG4jHFc0vMS+ndp/8ammqF/JWrhUg6vfImul/+73fG6Qu2GDYRmZyNCQrxy\n//YwZGWhi4+netUqlfRPkFNJXwgxDngR0AJvSSmfbHL8dOAFoD8wUUo5v9GxKcCD9i//LaWc44rA\nFaU5cutCkmu38078vdyg1Tt93raSbXyx8wsW7V1EeX053SO6c3O/m7m4x8WkRB//SEWrtLL20Fq+\n3PUli/YsYv6O+WTGZHJJz0u4qMdFdAnr4tR9e/Y/jW8XDOX0re9AzQyPF4OTJhN1W7YQO7H9fyC9\nQQhBxIgRVK1YgbRYENrj/yArrWtzTF8IoQVmAecB2cBVQojsJs3ygOuAD5ucGwc8AgwDhgKPCCF8\nd02Y4t+sFuqXPcZuawJRQyY5dUq1qZp//vxPLl94OfN3zGd4wnBeH/M6Sy5bwvQB05tN+AAaoWFI\n9yE8PvJxVlyxgn8N/xfRIdE8t/Y5Lvj8AubvmO/UOH2oXsvPqdMIsdYgV73Yrm/XFep27EDW1/tk\nkbWWRIwciaW8nLrcrd4OxS85M5E7FNglpdwjpTQCHwMXN24gpdwnpdwINK0TOxZYJqUskVKWAsuA\ncS6IW1GOt/lzQkt38Lzlcs7OTmyz+dpDa5mwYAJf7PqC60++nuVXLOfpM55meOJwtBrne5AR+ggu\ny7qMuefP5auLv6JffD/+9cu/uP3/bqe4prjN80/OOZWvLMORv74GlYecvq8r1DVM4uZ49L4dETHc\ntgRXLd08Mc4k/SQgv9HXBfbXnOHUuUKIqUKINUKINcXFbf9PoijHsZjh+yfYo03ncPJYOkcaWmxa\nb6nnv2v+y/VLrkcjNMweN5sZg2YQY4jpcBiZnTJ5Y8wb3D/0flYfXM2lCy5lyb4lrZ5zdu+uvGS5\nDCwm+On5DsfQHrXrN6Dt3Bl9Utt/JH2FLi6O0Oxsqn/6yduh+CVnkn5zM1POri9z6lwp5RtSysFS\nysHx8R58jJ0SODZ8CCV7eKJ2AqP7tlw+OfdoLhO/nsjsLbO5vNflzL9oPgO6DnBpKBqhYXKfycy7\naB6pUancs/Ie7l15b4urgOIiQuiS1pdvQ86GNW9DeYFL42lN7UbfrazZmogRI6hZvx5LVbW3Q/E7\nziT9AqDxwGYyUOTk9TtyrqI4x1wPK5+mOPpkvrMOZEx292abfbTtIyYvmkxFfQWvjn6Vh057iHB9\nuNvCyojJ4L3z3mN6znSW7V/GZV9dxpYjW5pte252Nx6tuAgpgR+ecVtMjZlLSzHu3esX6/Obihgx\nAsxman7/3duh+B1nkv5qIEsIkSGECAEmAgucvP5S4FwhRKx9Avdc+2uK4jpr50B5Pm/qJ5HVNYqM\nLhHHHLZKK8+ufpYnfnuCkUkj+fzizxmZNNIjoek0OqadMo0PLvgAnUbH9Uuv54eCH45rNya7G0V0\nITfxMlj3vu3xjm5W+e0yACJPP93t93K1sIEDEGFhalz/BLSZ9KWUZmA6tmS9FZgnpdwihHhUCDEe\nQAgxRAhRAFwOvC6E2GI/twR4DNsfjtXAo/bXFMU1jDXw47OYU4bz9oF0xmQfu8Gp3lLPPSvvYU7u\nHK7qfRUvnPWCS8bu2yu7czYfXPABGTEZ3LH8DuZtn3fM8bTOEfTqFslLpotAo4fvn3J7TBWLFhGS\nkYGhTx+338vVNCEhRAwdqpL+CXCqDIOUcrGUspeUsoeU8nH7aw9LKRfYP18tpUyWUkZIKTtLKfs2\nOvcdKWVP+8e77vk2lKC1+k2oOsTPabdgsXJM0i+rK+Pmb2/m2/3fcvfgu5k5dGa7VuW4WpewLrw7\n9l1GJY3isV8f4/m1z2OVfy54Oze7O8vyNdQNvBE2fgKHt7ktFtOhQ9SsXk30BRf43Xi+Q8SIERj3\n7cNYUOjtUPyKqr2j+K+6CvjpBehxDh8fSqZrlIFTkjsBkF+Rz9XfXM2WI1v47xn/ZUrfKT6R3ML1\n4bxw1gtcedKVvLP5He7/4X6MFiNg+4NlsUq+i50IIZHw/RNui6Pim29ASqIvON9t93C3iJEjALV0\ns71U0lf812+vQW0JxjMeYOX2Ys7p0w2NRrCpeBNXf3M15fXlvDX2Lc5NP9fbkR5Dp9Hxj2H/4K5B\nd/HNvm+4+dubKa8vp19SDN2iDSzabYTTboPcr+DABrfEULFoMaHZ2RgyMtxyfU8IychAl5Cgkn47\nqaSv+KfyQlj1IvS+kFW1qVQbLZyb3Y3fDvzGjd/eSLgunLnnzXX5ckxXEUJww8k38Mzpz7DpyCZu\nWHoDJfVHGd2nGyt3FFM3+Fbbw1aWPAAursBp3L+fuk2biL7gApde19NsJRmGU/3rr0iz2dvh+A2V\n9BX/tOQ+sFpg7OMsyz1ERIgWk2Ezt313G0mRScw9fy7pMenejrJN4zLGMeucWeRX5nP9kusZ1ANq\njBZ+KTTB6H/C/p9gw0cuvWfF4sUARJ9/nkuv6w2RI0diraiwPeNXcYpK+or/2b4Eti6EM+7FGpPG\nd7mH6JO1m/t+/Du9Ynsxe9xspwue+YLTEk/jjTFvcLT2KK9u/zuREaV8m3sQBlxre/LXtw9CjWsW\nvUkpKV+0iLDBg9AntLyJzV9EnHoqCKEerNIOKukr/sVYDYvvgfjecNp0NhaWU6r9kR3W1zml6ym8\nee6bXlmS2VE5XXN4e+zb1FvqCEl9jW93rseKgAufh7pyWPawS+5Tv2MHxl27ifHzoR0HbadOhPbr\nR/VPKuk7SyV9xb+sfArK82zJUBfCi6vfJDThc4Z1H86ro18lMiTS2xGesD6d+zB73GzC9Hrq41/m\ns9yfoVtfOO12WDcX9v/c4XtUfL0ItFqixvrwE8XaKWLEcGo3bsRcorYAOUMlfcV/HNoCv8yCAVcj\nU0/jlfWvsKbyPaItg3hl9Esn/gQrH5LZKZO3xryLtITxxB9/4/cDv8MZ90FMKnw9A8zGE762lJKK\nxYuJGD4cXZxn6/a7U8wFF4DFQtm8eW03VlTSV/yE1Qpf3wWGaKyj/8VTq5/i1Q2vYiobxPVZD6Jv\nxwNTfF2f+HSymYk0deLW725lxcHf4fxnoHgr/PLyCV+3dv16TIWFfr02vzmGnj2JGDmS0g8+RBpP\n/I9isFBJX/EP6+ZC/m+YxvyLB/94jg+2fsCA6IupOzCBsX39pyyws87PPomyPTeTHt2Tu76/i4U6\nE/S+EFY+DaX7TuiaFYsWIwwGokaPdm2wPiBuyrWYi4upWKpKe7VFJX3F91UVw7KHqU8bwYzS1Szc\ns5A7BtxB1cHz6N09hpQ491XK9JYx2d3AEsHpUQ8xuNtgHvjpAT7oNRw0WttEdjvX7kuzmYolS4g8\n4wy0kf4779GSiBEjCMnMpGT2HKeeWBbMVNJXfN+yh6gy1XBrl2hWFqzkH8P+waCYy/ljfxkTBiZ7\nOzq3SI4NZ2hGHB/9eojnzvwfZ6eczZObXuPV/ucid35r263bDjW//47lyBG/35DVEqHREHfttdRt\n2ULtH394OxyfppK+4tu2fEHJpk+4sUcf1pVu58lRTzKx90ReWr6TuIgQJg1L9XaEbvPXs7M4WFHH\ngnXF/PfM/3Jxj4t55egankrpiXXRDNuuZCeVL1qEJiKCyDP8r4yys2IuHo8mJoaSOe95OxSfppK+\n4ruKd1Dw9V+5LjWN3dYaXjz7Rc7PPJ8N+WV8v72Ym0ZlEGHQeTtKtxnRszMDUzvx6ve7sVo1PDri\nUa7JvoYPdEYeiNJh/PRap1bzWI1GKr9dRtTo0WhCQz0QuXdowsKIveIKKr/7TlXebIVK+opvqq9i\n4/xJTI6P4WhIGK+PeZ3Tk2291JeW7yImTM+1p6V7N0Y3E0JwxzlZFJbV8sW6AjRCwz2D7+HOgXey\nKNzAVHMe5UvubfM6lUu/xVpZSfSFgTm001js5Emg0VD6/vveDsVnqaSv+B4pWfbFNdwQWkd4RDzv\nX/Ahg7oNAmBzYTnfbT3EjSMziAzgXr7Dmb3i6Z8cw8srdmGyWBFCcFO/m3hq1FNsDAvn6gNLyF/z\nRovnW41Gil98EUPv3kQMH+7ByL1D37070WPHUjZ/vnp+bgtU0ld8ipSSd5fcyoz6XfQO68oHF39G\nRsyf5X9fXr6LqFAdU4aney9IDxJC8Nezs8gvqeWr9X8+Xvr8zPN569w3KdMbmLzxRdZt/7LZ88s+\n+ghTQQFd774bofXeA2Q8KW7KtVirqij/4gtvh+KTVNJXfIbJauLR7+7gucOrGCuieHvCIuJC/9w5\nuv1gJUu2HOT64enEhAXOZqy2nNOnK9kJ0cxasQuL9c/liAMThvL+uW8TLeGmXx5iyc5jk5ylooIj\nr7xKxIgRRNofOBIMwvr3Jywnh5K5c5EWi7fD8Tkq6Ss+ocJYwR3fTmN+0UpuqoWn/7IQg/7Ysgov\nLd9JRIiWG0b674M/ToQQgr+e05O9R6r5emPRMcfSEgfz/qhnObm+nnt+fpg3NrzesE796BtvYKmo\noOvdf/dG2F4VN+VaTHl5VK1c6e1QfI5K+orXbT26lSsXXslvh1bzr6Pl3Dl+Lprwzse02XW4kkWb\nDjBleDqdwkO8FKn3nJvdnZO6RfHS8l1YrcduPurU6zzezJ7GBVXVvLT+Ze5ccScl+3dQ8t5cYsaP\nJ9QPH3zeUVFjxqBLSFDLN5uhkr7iNVJKPt/5OVcvvhpj9WHeLTrIZWc8Bok5x7WdtWI3oTotNwZZ\nL99BoxFMP7snuw5X8c3mg8cdDxk5g//Encq9JWX8mL+Sr++fhEQS/7c7vRCt9wmdjrirJ1Pz22/U\nbtrk7XB8ikr6ilfUmmt5aNVDPPLzIwzSRPDpvj3knHoXDJpyXNu9R6r5an0h15yWRudIgxei9Q3n\n90ugR3wELy3feVxvHyEQl73BNTF9mb35CIPWVbNwkGRB5c9BW5ag0xVXoIuP58A/HsSqCrE1cCrp\nCyHGCSG2CyF2CSHub+a4QQjxif34b0KIdPvr6UKIWiHEevvHa64NX/FH+8r3MXnxZBbsXsCtYZm8\nunMDccP/BmfObLb9rBW70Gs13Dwq08OR+hatRnDH2VlsO1jJt7mHjm9giITJnxK7MR5tiJX8MZn8\n85d/8uCqB6k113o+YC/TRkXR/bFHqd+xgyMvz/J2OD6jzaQvhNACs4DzgGzgKiFEdpNmNwKlUsqe\nwPPAU42O7ZZS5tg/bnFR3IofklLy9Z6vmbhoIsU1xbwSM5jbcr9HO/wOOOdhEOK4c9bllfLFukIm\nDUslPip4e/kOF/ZPIKNLBE8v2UZ1/fEPA69avZHq/fV0HR7DC7tWcWvyuSzcvZDJiyezvWS7FyL2\nrqgzzyRmwmUcfestatev93Y4PsGZnv5QYJeUco+U0gh8DFzcpM3FwBz75/OBc4Ro5v9gJWgdqT3C\nnSvuZOaPM8nqlMW8mCGMXP8ZDLsVxjzWbMIvqzEy/cN1JMSE8rdzenkhat+j02p44tJ+7DtazT++\n2HTM0I20WDj8zDPoU1KIffprtN2yue3nubySPZWjtUeZuGgir214DZPV5MXvwPO6zZyJrns3iu6f\nibU2+N7xNOVM0k8C8ht9XWB/rdk2UkozUA44ll9kCCHWCSFWCiFGNXcDIcRUIcQaIcSa4uLidn0D\nim+TUrJozyIu+eoSVhWu4u+DZjBb34OE396GITfBuP80m/CllNz96QYOV9Yxa9JAYsKDZ11+W07r\n0Zm/je7Fl+uL+GT1n/9rls3/jPrt2+l6198Q0V3hmi+hSy9GLn2ML3PuZXTqaGatn8XkRZPZWbrT\ni9+BZ2kjI0l8/HGM+/ZR/MIL3g7H65xJ+s312JvODLXU5gCQKqUcAMwAPhRCRB/XUMo3pJSDpZSD\n4+PjnQhJ8QdHao/wtxV/4/4f7yctKo1PL/iY6/K3oV31PAycAuc902zCB3j7p718t/UwD5zfh1NS\nOnk4ct93+1k9GZXVhUcWbGHrgQpq16/n0OOPE37qqUSNG2drFB4H134JsRnEzr+JZ+JH8dyZz3Go\n5hBXfH0Fb2x8A7P1+CGiQBRx2mnETppEyZz3qP7td2+H41XOJP0CIKXR18lAUUtthBA6IAYokVLW\nSymPAkgp1wK7AfU+PcBZpZWFuxdy6VeX8lPhT9w16C7eO+N5MhfOgN9esw3pXPgCaJr/9fsjr5Qn\nv9nGuL7duS5Iyi20l1YjeP7KHGLC9Dz4+nfk3T4dXffuJD3/HKLxzzWiC0xZAF2zYd41jNn9G19c\n9BnnpJ7DS+teYvLiyeQezfXeN+JBXe/+O/rUVA488EBQ1+VxJumvBrKEEBlCiBBgIrCgSZsFgGOt\n3V+A5VJKKYSIt08EI4TIBLKAPa4JXfFFG4s3cs3ia3jgpwdIjUrl04s+5YbOg9C+eQ7k/QaXvArn\nPdliwi+rMTL9gz9I6BTKU3/pj5oaalmXSAP/u7Q3138zi9qqGpJfmYUuNvb4hpFd4frFMOBq+OEZ\n4r68nWeHPcR/z/gvB6sPMvHriTzy8yMcqT3i+W/CgzTh4SQ++R9MRUUcfuYZb4fjNW0mffsY/XRg\nKbAVmCel3CKEeFQIMd7e7G2gsxBiF7ZhHMeyztOBjUKIDdgmeG+RUpa4+ptQvO9Q9SFm/jiTyYsn\nU1RdxGMjHmPu+XPJzP8D3h4L0gI3fAM5k1q8htUq+fu8DRRX1dvG8YOovs6JkFYrya8+RWbFQf49\ncBKfH21lp7LOAONfhvOfhV3fwZtnc25EGgsvXcg12dewYNcCLvziQt7Z/A5GS+CuaQ8fOJC466+n\n7JNPqFy+3NvheIXwtY0bgwcPlmvWrPF2GIqT6sx1zNkyh7c3v43FauHavtdyU7+biNAY4LtH4JeX\nIXU4XDHH1uNsxRs/7OaJxdv450XZXDciOHfetsfhF1/k6KuvEX/ffdxl7cNve0v48rYRZCceN212\nrH2r4NMpYKqDy96A3uezr3wfz655lpUFK0mJSuHuwXdzVspZAflOy1pfz/6rJlG/axfJs14mclSz\n60v8jhBirZRycJvtVNJXTkS9pZ7Pd37O25ve5lDNIcakjWHGoBkkRyVD8Q5Y+FfI+wWG3AxjnwBd\n6/VyluUe4pb313JudjdemTwwIJONK5V/vYiiu+8m5i8TSHjsMY5WG7ngfz9i0Gn58OZhJMe28bD4\n8gL45GooWgdDp8E5D4Ehip8Lf+bp1U+zu3w3A7sO5JZTbuHUhFMD7t/DXFpK3o03Yty5i+SXXyLy\njDO8HVKHqaSvuEWtuXT6mq0AACAASURBVJb5O+bz7uZ3Ka4tZkDXAdwx4A6GdB9ie3TfT8/Dj8+C\nPgzGPQU5V7V5zU9W5zHz8030S4ph7k3DiA5Vwzqtqd24kf1XX0NY//6kvvM2IsT2B3VdXilT3vmd\nsBAtc24YSu/ubfT4TbWw7GH4/U2IToIL/gsnjcNsNfPZjs94c9ObHKo5RP/4/tzS/xZGJo0MqORv\nKSsj78abqN+xg6T/vUjUWWd5O6QOUUlfcakaUw3zts/j3S3vUlJXwpDuQ7il/y0M6T7ElgjyfoWF\nd0LxNuh7GYx7EqK6tXpNKSWzVuzi2W93cHqveF6dPDCgn3nrClUrV1L497vRdupE+qfzjpu43X6w\nkmvf+Y0ao4W3pwxhaEZcC1dqJO83+7/dVsi+BM57CqK6Y7QY+XLXl7y16S0OVB+gb+e+TOs/jTNT\nzgyY5G8pLyfvxpuo276d5BdfJOps/038KukrLlFYVci87fP4fOfnlNWXcVrCaUw7ZVrD4wupK4fv\n/glr3oGYFFtvsdfYNq9rsUr+tXAL7/2yn0sHJPH0X/qj16r6fy2RUlLyzrscfvZZDH16kzJrFvqE\nhGbbFpTWcO07v1NQWstLVw1gbN/ubd/AbIRVL8IPT4MuDM59FAZcCxoNJouJhXsW8ubGNymoKqBn\np55c1fsqLsy8kHB9G8NIfsBSUWFL/Nu2kfzC80Sdc463QzohKukrJ8wqrfxS9Asfb/uYlQUrEUJw\nVspZXNf3OnK62sseG2tsiX7VC1BzFIbdAmf9w1b0qw31Zgt3fbKexZsOMvX0TO4f1xuNJjB6ju5g\nra/n4MOPUP7VV0SNG0fiE4+jCW892ZZWG7lhzmo25Jfx2CUnM3lYmnM3O7ITFv4N9v8ECTm2f9Os\nMSAEZquZxXsX837u+2wt2UqkPpLxPcZzZe8ryYzx72J4lspK8m66ibotuSQ9/RTR55/v7ZDaTSV9\npd1K6kr4evfXzNsxj/0V+4kLjWNC1gSuOOkKukfYe4umWlg72zZ2X3UIMk6H0f+EpEFO3aO81sQt\nc9fyy56jPHhBH24K8sqZbTEXF1Mw/Q5qN2ygyx3T6XLbbU4PrdQYzUz/cB3Ltx3mb6OzuPOcLOfO\nlRI2fATf/wfK8iBpsK0Cas9zQAiklGwo3sDH2z9m6b6lmK1mhiUMY+JJEzk9+XRCtP75kBtLZSX5\nU6dRu24dMRMuo9vMmWgj2+7E+AqV9BWn1JhqWJG/gkV7FvFL0S+YpZmc+Bwm9p7ImLQxf/4PbKqD\nP96DH/8LVQch/f/bO/PouK4ywf9u1at9U2nfvElyvAQvSRw7O1mIITEkgR4g3XOGTMM0EwYOMD19\nDnDoZpjuPt0JwzDTfQYampChkwaSDNCJIWFCDEmcuGPHiWM58ZbIq0rWWirVvr16d/64T6WSIsUq\n25IXvd8599xb79336qv7bn3vu+t3o1IES2fve/XZ/QN846m3iKYKfPvj67jniqlbOFlUkt2/n8jn\nv0ApHqf1gQcIfnBz1fcolgy++os3+cWeCJuW1fK3H1tDR8MsFZlegO6fwvZvQ7wX2jfCLV+DjlvK\n22dEs1F++c4veeLtJxhIDxB0Btm8dDNblm3hyqYrsYmLq8tOFgoMf/d7RH/4QxwtLbQ++ADeDafV\noxcEltK3mJGiUWRX/y6ePvo0vzv5O7J6lmZfM3cuu5MtHVu4LFyxU0aiXyn71/8PJPvVnPtbvqYs\n/FkymMjxX5/az//bP8DK5gAP/MFa1lv76cxIKZUm+v1/IPpPj6DV17Poe989K5eHUkoe393L3zxz\nkJxu8MVbu/jsTZ04tVkqZL0AbzyqXviJPmX5X/0f4PJ71CwtQDd0Xjn1Ck8fe5rfn/w9WT1Li6+F\nO5bdwZaOLSyvmWUr4wIhs+cNTn3lKxQjEeo+82nqv/hFbM4LuwVjKX2LSSQLSXb07eD53ud5qe8l\nkoUkAWeAzUs2s6VjC1c1XTVhlRkGHHtB9dkfekatpu24Ba7/EnTcPOMmaVMxDMnPdp/kgd8cIq8b\nfOm25Xz2pg5rwHYGpGGQ+NWvGPz2tykNjxD62Mdo/LP/glY7ixk4s2AomeO/bT3A02/2s6IpwAN/\nsIYrFk+zbcNM6HllAOz6AUTfAU8Y1v9buOqPob6rnG289fjro7/mlVOvUJIlFgcWc/Oim7l50c1c\n0XgFmu3Cn6VlpNMMPvgtxp54AteKFbQ++ADulSvPt1gzYin9BY6Ukkgywva+7bzQ+wKvDbyGLnXC\nrjA3td/ErYtv5Ya2Gyb3vyZOwZs/V1b96FHw1qn9Wq68D+o6q/r+QwMJvvHkfl49Psq1HXX8zcfW\nsKzed45/5aVD9q39DP71X5Pduxf3mjU0//nX8axbNyffte3AIH/x1FsMJHLcd+1SvvyB5dU5m5cS\njr+kjIKDvwJDVy2/q/49XPYhcE4852g2yrYT23gh8gK7+ndRNIoEnUFuar+J9y96P9e2XEvIFTr3\nP/IcknzhBfr//C8ojY4S/PAW6u//HK6OC2/FuKX0FyAj2RF29e8qh1NptRlqR6ijbGWtrV+L3Waf\nuCgegQNb4cCT0LtLHVt8HWz4NKy+S+3ZUgW7j4/ygxePsO3gECGPg69vWcXHr2q/qJr280nhxAmi\nDz3E2M9/gb22lsY//VNCH71n8k6Zc0AyV+Tbzx7mkZ0n8Djs/OHGxXzmhmW01niqvNEg7P1neO3H\nED8JDq+a7bP6blj+wUmzudLFNK+ceoXne59ne2Q7Y/kxBIJVdavY1LKJa5qv4YqmK/BoVcowD+ix\nGNGHHiL2058h83ml/D/3OVzLLhzlbyn9SxwpJafSp+ge6uaNoTfYPbCbI/EjAASdQTY2b2Rjy0au\na72OJcEllRdC9Ai8/Rs48BREdqvjTWvg8rvV4pz65VXJYhiSbQcH+cH2o7x+IkbY6+C+65Zy37VL\nCfsu7H7Q84GUkvSOfyX26KOktm8HTaP2j/6I+i98HnsgMK+yHBpI8IMXj7K1+xQCuGt9K//xpk5W\nNFcph1GCEztUnTqwFdJDoLmh6wOqTnXdpvb3NykZJfaN7GPnqZ3s7N/JvpF96IaOw+ZgXcM6NjRv\nYF3DOtY2rCXoPM3K4nlEj0aJPvxwWfmHPvJh6u6//4JQ/pbSv8TIFDMcjh2me6ib7uFu9g7vLW+F\n69E8XNF4BZtaNrGpZRMrwysnW/OZUTj2Ihz5PRx5QVlkAM1r1WDc6nuq7r4BiGeKPP1mPw/vOEbP\nUIr2sIc/ubGDT2xYhMdpP/0NFhhGOs3YU08R++efUDh6FHtdHeF776Xmk5/A0fjem9HNNZFYhh+9\nfIzHXu0lWyxx68pGPnXtEq7vqq9+DMYoqRXaB55UL4DUACCgdb0aG+q8BRZtmtSKzBQzvDH0Brv6\nd7GzfyeHY4cxpAFAZ6iTdY3r1Eugfi1LQ0vP+5iAHo0S/dHDxH76U2Q+j3fTJkL33E3w9tux+c5P\nN6al9C9i4vk4h0YPcWj0EAeiBzg4epDj8eNI02FZu7+d9Y3rWdewjvWN6+mq6Zr8J0gNQ+RV1V1z\nbDuc2gtIcAVV32vnLdB5G9RWb51kCjrPHRjkV92nePHtYYolyaqWIPe/v4Mta1rQrEHaSRiFAukd\nO0j+9jmSzz2HkUrhvvxyaj/17wjccccFNyMkli7w6M4T/PhfjzOaLlDrc3LnmmY+sraVq5fWVr+I\nzjCg73VlcBx9HnpfVRMDHF5Ycr2a8tu+EVqvAOfEgrN0Mc1bI28pA2doL/tG9hHPxwFw291cFr6M\nVXWrWFW7ipV1K1les/y8rA/Qo1Fijz1G/MmnKPb2IrxegrffTuij9+DduHHOu+kqsZT+RUC6mObI\n2BGOjB2hZ6ynHIYyQ+U8Td4mVtWtYnXtalbWrmRNwxrqPfUTN9ELas+UyG7o3a0UfeyYOmdzqEVT\nnbdA563QeiXYq7eQkrkiO3qiPP1mP9sODJItlmgOuvnw2hbuWt/KmraQ1WdfgZHJkNr+Esnf/pbU\niy9ipNPYAgECt95Czb334lm//oIvr7xe4sXDw2ztPsW2g4Pkikb5md+xpoV17aEze8HnEnD8ZfMl\n8IKaBQRg01TLc9FGFVqvhPDS8kwxKSXHEsfYP7Kfg6MHORg9yKHRQ6SKKQDsws7i4GK6arroqumi\ns6aTrpouFgcX47DN/QZ+Ukqye/YQf/JJEs/8BiOdRmttIXDrbfhvuhHv1Vdj88ztWIWl9C8QiqUi\nvaleTiZOciJxohyOJ45PUu4uu4uOUEe5so5bMLXuiul62RgMvAUDb06E4UNgFNV5X+PEn2bRJrWM\n3uGuWuaCbrC3d4yXe0bY0TPC3t4xSoYk7HVw55oW7lp3hlbfJYosFskdOED61VfJ7N5N5tXdyFwO\ne00N/g/cRnDzZnzXXFPeDfNiI53X2XZwcusu4NK4prOOG7rqub6rns4G35m9yNIjpsHyqgqn9kAx\no865gtD0PmheMxEaVpbrtCEN+pJ9HBg9wOHRw/SM9XBk7Ai9yd5yq1gTGu2BdpYEl7wrNHob52Tx\nmJHNktz2O+K//hWZnbuQ+TzC5cJ79dX4b7wB34034Vy29Jy/+C2lP08USgUGM4MMpAc4lTpFX6qP\nvlQfkWSEvlQfQ5mhcgUEqHHVlCvd0uDSspJv87epfnjDUIugRg6rfVCGD8PI2yqkBie+2N80+c/Q\ndhXULJn1HPpKYukC+/ri7Osd4/WTMV49NkqmUMImYE17DTd01XF9Zz1XL6u15tij+uZzhw6ReX0P\nmd27yb7+OkZGKSpnZye+TZsIbL4d74YNCO3Cn49eDfFMkZd6htnRM8LLPSP0jmYBaA66ubazjvWL\naljbHmJVSxC34wzGdUpFGHwL+rsrjJu3oGj6tBU21QKoX6EmHDSsMNNdat0AyrHPsfgxesZ6OBo/\nWja0TiZOkivlyl/ltDlp9bfS5m9TIaDiVl8rzb5m6jx1Z/1SMHI5MrtfI/XSdtIvvUzhmGqF2xvq\n8a5fj2fdOjzr1uF+3/vOuiVgKf2zREpJopBgKDPEcHaY4cxwOR5IDzCQGWAwPUg0F510nUDQ6G2k\nzd9Ge6CdNn8biwKLyoo+5AqpnSnjfWpfk9hx1R0TOw6jx2DsBOgTFRNXCBoum6jkze9TM21Os23x\nTL9pOJnn7cEUB/sTdEfG2BeJc3I0U87T2eDjuk5lvV3bUUfIu7D3ti/F4+QOHiJ34IAK+/dTOH5c\nzYICnF2d+DZuxLtxI94NG9Dq69/7hpcYJ6MZdhxRL4BdR0cZSeUB0GyClS0B1rbXsLYtxIrmAF2N\nfgJn4ivBMNR/pL8bhg5OGETRHqh07egJqxdCeCmEl02kaxZBsA3D7mAoM1R+CUSSESKpSNlQGx8z\nGEcTGo3eRpp9zTT5mmj2NtPgbaDB01CO6z31Ve00WohESL/8Mpk9e8ju7aZ40pxUYbfjXrEC3403\n0vifv1x9GWEp/WnJ6TliuRixfIyx3BixfIzR3CijuVGi2SjRXJRoNlr+XDDe7SvU5/DR7G2m2dc8\nqTI0+5pp87bQYnPgSEchOaBmLSQH1NL1eJ+aE5/og3xi8k2d/orKulQNsNabit7fWLX1ntdLRGJZ\nTkYzHBlO0TOU4p2hFO8MJknk9HK+thoPa9tDrG2vYV17iPe1hxakAxOp6xQHBigcO0bh6FHyR834\n2DFKIxPOwrWWFtyrV+NevQr35ZfjWbMGra7uPEp+YSGlpD+eY19kjO5InH2RMfb1xknmJ+pca8hN\nV1OA5Y1+ljf6WVrvY3Gtl+agu/ruwpKujKSRt9VLoNKAGjupFo1V4muEUBuE2iHYDsEW8DdDoBkC\nLaTcfvqKSfrT/cqwM427gbQy8AYzgxTHu1Ir8Dv81HnqqHXXUueum5QOu8OE3WFqXDWE3WFCrtCk\nMQZ9dJRsd7cKe7vRasO0fec71ZWDyYJT+ulimscPP048Hyeej5MoJMrpeEHFWT077bWa0NRDGn9Y\nZtzgrqfR4aNeOGmUNupLBt5CCtLDZhiB1NBEOj307ooGamVrqF3tNx80K12oDUKLlYL31lWl2JO5\nIoOJHP1xM4zliMQynBjN0DuaYSCRo/Kxhr0OljcFuKzJz/JG8w/XFKAhUN3Cq4sVI52mODiEPjSE\nPjhAIRKh2HeKYiRCsa+P4sAAlErl/LZQCFdHB86OZbg6OnCtWIl79apzth3CQsIwJCdGM7wzmOSd\noXEDJEnPUIpc0Sjnc9pttNd6WFzrZXGtl7YaD80hNy0hDy0hN41BFy6tiu6ikq4MrNjxCWMr3jth\nfMUjE11GlWge1Yr2NZihXr0sfA1Ibx0Jh4shu2AYg2Ejx3AhwXB2RBmKuSijWRWP5cdmFC3gDFDj\nqiHkDBFyhQi6guX0kuASPtL5kSpKeIIFp/Tj+Tg3PHYDmk2rKNAgQc1H0O4mrLmpEU7CQiMsBWEp\nqdFL1OpFgvk0IhdX3S65MciOqUHT3BhIY/ov1NxmZaifqBz+Jgi0qEoTaFEWhL/ptKtapZQkcjpj\nmQKxTJHRdJ6RZIHhVJ6RVJ7h5EQ8mMiTyr/7xdIUdLG41ssi80+zpG489lHvv7SUu5QSI52hNDZG\nKRZDj45Qio6ij0ZVHI2ijwyjm4reSKXedQ+toQFHezuOtjYV2ttwLVuGs6MDezh8wc+uudgxDEnf\nWJbj0TQnRzOcNA2Wk6MZTkQzJHPvruP1fieNATf1ARf1ficNARcNfhf1ZqjxOqj1OQl7nadfJyIl\n5JNqnCzZr1YWJ/tVyzxdaciZsSxNfx+7Ezy14KkBd0051l0BYi4PMc3BmM1GzCaIUSImdWKlPHEj\nR1zPkCimiOcTxAtxEvkE6xvX88gdj5xRmc5W6V8yo0zBYoFduRo8+RQiH4HCoYlZAO+FsIM7NPmh\n1SxR/YPeWmWFe2pV2lML3rBS9k5f2TovGZJ0QSed10nldJJ5nVRWJzWmk8oNkcgVSWSLxLNFEjm9\nnB7LFhnLFBjLFNGN6V++fpdWruCXNQW4cXkDLSH32VlB5xlpGBiZDEYqhZFOl+NSKoWRTFFKJjAS\nSUrJJEYiQSmZpBSPU4qPURqLU4rHofjuZjaA8HrRamux19Xi6uzEd911aE2NOBob0Zqa0BqbcLS1\nYnNdWi/Ciw2bTbDINFKmY2prdsCMhxI5RlJ5egaTjKQKFErTG2UuzUatz0mN10nIoxF0Owh5HAQ9\nZuzWCLgd+N0BAq4w/tq1+Fs0/G4Nv0vD47BPvPgNQxmA6RHIjiqnQZnRyelxYzHRB4MH0HJjNOQT\nNJyuIIRNde86/RguPzn/3M/wumSUvnB48PqbodYPrgCG009J86FrPooOLwV7gILmJ2f3kbP5ydp8\nZISHtPSQLxnkiiVyxYpYL5FNlciOlsgUS2QLJXJFnUyhn0whQrqgk8mXSBf0Sc3UGeUTEHQ7CFZU\nwOWNfsI+J2Gvg7BXWShhn0rX+100BFxnNgPiDJClErJQKAcjX0AW8upzPo+Rz6s4l0Pm8sjCRNrI\n55DZnPk5i5HNYeSyyExWKfesGZtpmZnNy1hg8/uxBwLYAgHsoRCujk7sNTXYQyEV14Swh2vR6mqx\n19Wj1YZP61HK4uIg4HYQcDvoapx5O4jxFvJIKs9IMk8sUyy3lmOZArF0gVimQCKrcyKaKRtf6cIM\nVnsFQoDPqeF12vG5VOx12vE4NTyOJrzONtwO85jbjjtgw+2w43LYcWsq7baDjwxemcFTSuE2UrhK\naVx6Ckcpjaan0Ypp7MUUopDGVkji9Vc/QaNaZqX0hRAfAv4OsAMPSSkfmHLeBTwCXAVEgU9KKY+b\n574GfAYoAV+UUj57zqSvIFp0cGvPn1DQDQolg9IMljNkzTD8nvdz2MCr2fA7bPgcAq9mw6sJajXB\nIo/AH7Dhddjx2d14HDa8Gvg0Gz4NvJrAp6lrPDaJ12HDYwNhGGCUkHoJjDyylEHqOpRKyLESjKpz\nsqQjdZ2MXiJdKiH1ospT1JElHXRdpfXxUJw4ViyqY5VxORTAzGMUC8hCsazkK/u0zwThcCA8Hmxu\nN8LjxubxYnO7sXm92OvrsHm96pjXDD4fNr8Pm8+H3e83P5tKPhjE5vPN62pGi4sPIQQh03LvnK1j\nGJRjmUS2SDpfIpkvksrppPIqJHI6mbxOulAyY510vkTGjBPZIkOJEplCiaxpDGYKOjOqm3fhBGrN\nMIHDLnDabVy5JMyjs/4lZ8Zplb4Qwg58F7gdiAC7hRBbpZQHKrJ9BohJKbuEEPcCDwKfFEKsBu4F\nLgdagW1CiMuknKmD7MxxZlP84HffwiYlAlmOhVSh/NkwENIA8zhGyYwNFaRUCvAcjHVIIGOGc4bN\nhtA0Nf/b4SinhaYpxevQQHOotHnM5vWa56YEp3Midk58trndCIcT4XIhXE5szvG0C5vLhXC7y7Fw\nubG5XZfcfHSLSxeH3Uad30XdOfSEWDR7C7LFEvmKHoO8XiKvm3HRIK+rc4WSQUFXn8cN1YJu0BKq\nfjFltczmn7oR6JFSHgUQQjwG3A1UKv27gW+a6Z8D/1uoDrG7gceklHngmBCix7zfK+dG/Am8Hhft\nV65B2ITqJ7PZJtJCgN2GGD9ut03OY7ODTSBsdrDZVFrY1DV2O9js5WuE3aby220qv92mLFKbHaHZ\nzftPiTVt4j7alNihqevtGkKzq3x2+4RiN68VmqaOW9avhcUFh8Nuw2G3ndk6hHlmNkq/Deit+BwB\nNs2UR0qpCyHiQJ15fOeUa9/lGFUI8VngswCLFy+ereyTsPv9tP+v/3lG11pYWFgsFGZjNk43d21q\n38dMeWZzLVLKf5RSbpBSbmhoOO14t4WFhYXFGTIbpR8BFlV8bgdOzZRHCKEBIWB0ltdaWFhYWMwT\ns1H6u4HlQohlQggnamB265Q8W4H7zPS/AX4v1aqvrcC9QgiXEGIZsBx49dyIbmFhYWFRLaft0zf7\n6L8APIuasvmwlHK/EOIvgdeklFuBHwGPmgO1o6gXA2a+J1CDvjrw+bmYuWNhYWFhMTsumW0YLCws\nLBYys92GwZr/Z2FhYbGAsJS+hYWFxQLCUvoWFhYWC4gLrk9fCDEMnDiLW9QDI6fNNf9YclWHJVd1\nWHJVx6Uo1xIp5ek39rzQlP7ZIoR4bTaDGfONJVd1WHJVhyVXdSxkuazuHQsLC4sFhKX0LSwsLBYQ\nl6LS/8fzLcAMWHJVhyVXdVhyVceCleuS69O3sLCwsJiZS9HSt7CwsLCYAUvpW1hYWCwgLkqlL4T4\nuBBivxDCEEJsmHLua0KIHiHEYSHEB2e4fpkQYpcQ4h0hxOPm7qHnWsbHhRB7zXBcCLF3hnzHhRBv\nmvnmfNMhIcQ3hRB9FbLdOUO+D5ll2COE+Oo8yPXfhRCHhBD7hBD/IoSomSHfvJTX6X6/uXPs4+b5\nXUKIpXMlS8V3LhJCPC+EOGjW/y9Nk+dmIUS84vl+Y67lMr/3PZ+LUPy9WV77hBBXzoNMKyrKYa8Q\nIiGE+PKUPPNSXkKIh4UQQ0KItyqO1QohnjP10HNCiPAM195n5nlHCHHfdHmqQkp50QVgFbACeAHY\nUHF8NdANuIBlwBHAPs31TwD3munvA5+bY3n/B/CNGc4dB+rnsey+CfzZafLYzbLrQHly7gZWz7Fc\nmwHNTD8IPHi+yms2vx/4T8D3zfS9wOPz8OxagCvNdAB4exq5bgZ+PV/1abbPBbgT+A3KsdI1wK55\nls8ODKAWMM17eQE3AVcCb1Uc+xbwVTP91enqPMqD+lEzDpvp8NnIclFa+lLKg1LKw9OcKvvklVIe\nA8Z98pYxfffeivLlC/BPwD1zJav5fZ8AfjZX3zEHlP0iSykLwLhf5DlDSvlbKaVuftyJcrhzvpjN\n778bVXdA1aXbzGc9Z0gp+6WUe8x0EjjINO5HL1DuBh6Rip1AjRCiZR6//zbgiJTybFb7nzFSyu2o\nbecrqaxDM+mhDwLPSSlHpZQx4DngQ2cjy0Wp9N+D6fz5Tv1T1AFjFQpmWr+955AbgUEp5TsznJfA\nb4UQr5u+gueDL5hN7IdnaFLOphznkk+jrMLpmI/yms3vn+QXGhj3Cz0vmN1JVwC7pjl9rRCiWwjx\nGyHE5fMk0umey/muU/cys+F1PsoLoElK2Q/qhQ40TpPnnJfbbByjnxeEENuA5mlOfV1K+dRMl01z\nbLb+fKtmljL+Ie9t5V8vpTwlhGgEnhNCHDKtgjPmveQC/gH4K9Rv/itU19Onp95immvPem7vbMpL\nCPF1lMOdn8xwm3NeXtOJOs2xOatH1SKE8AO/AL4spUxMOb0H1YWRMsdrnkR5rJtrTvdczmd5OYG7\ngK9Nc/p8lddsOefldsEqfSnlB87gstn45B1BNS0100I7Y7+9p5NRKH/BHwOueo97nDLjISHEv6C6\nFs5Kic227IQQPwR+Pc2pOfFtPIvyug/4MHCbNDs0p7nHOS+vaajGL3RETPYLPacIIRwohf8TKeUv\np56vfAlIKZ8RQnxPCFEvpZzTzcVm8VzOp7/sO4A9UsrBqSfOV3mZDAohWqSU/WZX19A0eSKocYdx\n2lFjmWfMpda9c1qfvKYyeR7lyxeUb9+ZWg5nyweAQ1LKyHQnhRA+IURgPI0azHxrurzniin9qB+d\n4ftm4xf5XMv1IeArwF1SyswMeearvM7GL/ScYY4Z/Ag4KKX8zgx5msfHFoQQG1H/8egcyzWb57IV\n+JQ5i+caID7etTEPzNjaPh/lVUFlHZpJDz0LbBZChM2u2M3msTNnrket5yKglFUEyAODwLMV576O\nmnlxGLij4vgzQKuZ7kC9DHqA/wu45kjOHwP3TznWCjxTIUe3GfajujnmuuweBd4E9pmVrmWqXObn\nO1GzQ47Mk1w9qL7LvWb4/lS55rO8pvv9wF+iXkoAbrPu9Jh1qWMeyugGVNN+X0U53QncP17PgC+Y\nZdONGhC/bh7kVAhDqwAAAIlJREFUmva5TJFLAN81y/NNKmbdzbFsXpQSD1Ucm/fyQr10+oGiqbs+\ngxoD+h3wjhnXmnk3AA9VXPtps571AH98trJY2zBYWFhYLCAute4dCwsLC4v3wFL6FhYWFgsIS+lb\nWFhYLCAspW9hYWGxgLCUvoWFhcUCwlL6FhYWFgsIS+lbWFhYLCD+PwdY96vW8/J0AAAAAElFTkSu\nQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEICAYAAACzliQjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xd8VFX6+PHPmZZOEpIQQhJIAqGX\nAAFFQWVFBVfAFV0RC4pd/O6u/qy7Luxadm3rursidnHFQnFViqIiCliQGnoPkAqkkz4zmfP7Y2Zi\nDCmTZPqc9+uVF5O55577TBKeOfPcc88VUkoURVGUwKDxdACKoiiK+6ikryiKEkBU0lcURQkgKukr\niqIEEJX0FUVRAohK+oqiKAFEJX3FpwkhjgshJrmobymE6Gd7/IoQ4s9O6re3EKJKCKG1ff+tEOI2\nZ/Rt6+9zIcRsZ/Wn+BeV9BWnEULMEkJstSW0QlvyGe/puJxBSnmXlPKJ9to58iYkpcyRUoZLKRu6\nGpcQ4i9CiMXN+p8ipXynq30r/kklfcUphBD3Ay8CfwPigd7Ay8B0T8blbYQQOk/HoAQ2lfSVLhNC\nRAKPA3OllP+TUlZLKU1SypVSygdtbcYKIX4UQpTbPgW8JIQw2Lal2EopuiZ9/qLkIYS4XQixXwhR\nKYTYJ4QY1SSEDCHELiFEhRBiiRAi2LbPHiHE1CZ96IUQxUKIjFZex4O22AqEEHOabVskhHjS9jhW\nCLHK9lpKhRAbhRAaIcS7WN/sVto+7TzU5LXdKoTIAda19HqBvkKIzbbX8KkQorvtWBcJIfKaxXJc\nCDFJCDEZ+CNwre14O5v/7GxxPSaEOCGEOC2E+K/t99X05z5bCJFj+9n8qd1fuOLTVNJXnGEcEAx8\n3EabBuA+INbW/mLgHkc6F0JcA/wFuAnoBkwDSpo0+S0wGUgFhgM3257/L3BDk3aXA4VSyqwWjjEZ\neAC4BEgH2irR/D8gD4jD+qnmj4CUUt4I5ABTbeWbZ5vscyEwCLislT5vAuYAvQAz8O82jg/WA67B\n+slqie14I1podrPtayKQBoQDLzVrMx4YgPV3Mk8IMai9Yyu+SyV9xRligGIppbm1BlLKbVLKTVJK\ns5TyOPAq1kToiNuAZ6WUW6TVESnliSbb/y2lLJBSlgIrAftIfjFwuRCim+37G4F3WznGb4G3pZR7\npJTVWN9kWmMCEoA+tk80G2X7i1j9xfYJqLaV7e82Ofafgd/aT/R20fXAC1LKbCllFfAoMLPZp4y/\nSilrpZQ7gZ1AS28eip9QSV9xhhIgtq16tRCiv60kclIIcQbrCDXWwf6TgaNtbD/Z5HEN1tEsUsoC\n4HtghhAiCpgCvNdKH72A3Cbfn2ilHcBzwBHgSyFEthDikbbDh2Z9t7f9BKDH8Z9PW3rxy9dyAtBh\n/YRi1+LPT/FPKukrzvAjUAdc2UabhcABIF1K2Q1rSUTYtlXb/g1t0r5nk8e5QN9OxvYO1hLPNcCP\nUsr8VtoVYn1zsevdWodSykop5f+TUqYBU4H7hRAX2ze3tls7cTY/tgkoxvqzafy52Eb/cR3otwDo\n06xvM3Cqnf0UP6WSvtJlUsoKYB6wQAhxpRAi1HbSdIoQwl7XjgDOAFVCiIHA3U32LwLygRuEEFrb\nSdSmSf4N4AEhxGhh1U8I0TSRteUTYBTwe6w1/tYsBW4WQgwWQoQC81trKIS4whaDsL2mBtsXWJNp\nmoOxNXVDk2M/Diy3Tek8BAQLIX4thNADjwFBTfY7BaQIIVr7v/wBcJ8QIlUIEc7P5wBaLcUp/k0l\nfcUppJQvAPdjTUpFWEfn92JNumA9SToLqAReB5Y06+J24EGspaIhwA9N+l4GPAW8b9v/E6C7g3HV\nAh9hPcn7vzbafY51yuk6rKWbdW10mw6sBaqwfsp5WUr5rW3b34HHbDN7HnAkRpt3gUVYSy3BwO9s\ncVVgPeH9BtY3xmqsJ5Htltn+LRFCbG+h37dsfW8AjmH9RPZ/HYhL8TNC3URF8XdCiHlAfynlDe02\nVhQ/py4UUfyabb77rVhn7ihKwFPlHcVvCSFux1pm+lxKucHT8SiKN1DlHUVRlACiRvqKoigBxOtq\n+rGxsTIlJcXTYSiKoviUbdu2FUsp49pr53VJPyUlha1bt3o6DEVRFJ8ihGjrKvJGqryjKIoSQFTS\nVxRFCSAq6SuKogQQr6vpt8RkMpGXl0ddXZ2nQ1G8WHBwMElJSej1ek+HoiheyyeSfl5eHhEREaSk\npGBd40pRfklKSUlJCXl5eaSmpno6HEXxWj5R3qmrqyMmJkYlfKVVQghiYmLUp0FFaYdPJH1AJXyl\nXepvRFHa5zNJX1E8ydRgIaekhoLyWtTSJe2TJhNlS5ZiOnXa06EozaikH6A2bNjAqFGj0Ol0LF++\n3NPheL37l+7kgue+4byn17FiZ4Gnw/F6ZUuWcnL+fLKvuIIza9Z4OhylCZX0A1Tv3r1ZtGgRs2bN\n8nQoXq+osp7Pdxdy+bCe9IkJZfEmhy58DFiW2lqKX32F4OHDMfTuTeGf5yGNRk+HpdiopO+gJ554\ngoEDB3LJJZdw3XXX8fzzzwPw+uuvM2bMGEaMGMGMGTOoqakB4Oabb+buu+9m4sSJpKWlsX79eubM\nmcOgQYO4+eabG/sNDw/n4YcfZvTo0UyaNInNmzdz0UUXkZaWxooVKwA4fvw4EyZMYNSoUYwaNYof\nfvjhrPg6KiUlheHDh6PRqD+B9vxvex5mi+T+SwYwa2xvthwv48jpKk+H5bXK3v+AhqJi4h96kNi5\n92CprKR68xZPh6XY+MSUzab+unIv+wrOOLXPwb26MX/qkFa3b926lY8++ogdO3ZgNpsZNWoUo0eP\nBuCqq67i9ttvB+Cxxx7jzTff5P/+z3o3urKyMtatW8eKFSuYOnUq33//PW+88QZjxowhKyuLjIwM\nqqurueiii3jmmWf4zW9+w2OPPcZXX33Fvn37mD17NtOmTaNHjx589dVXBAcHc/jwYa677roW1yea\nMGEClZWVZz3//PPPM2nSJGf8qAKOlJIlW3IZkxJNvx7hRIboee6LgyzdmssfLx/k6fC8UsXKlYSM\nHk1oZiaWujpEaCiVa78ifPz5ng5NwQeTvid89913TJ8+nZCQEACmTp3auG3Pnj089thjlJeXU1VV\nxWWXXda4berUqQghGDZsGPHx8QwbNgyAIUOGcPz4cTIyMjAYDEyePBmAYcOGERQUhF6vZ9iwYRw/\nfhywXpx27733kpWVhVar5dChQy3GuXHjRle8/IC2t+AM2cXV3HWR9T7tcRFB/GpgDz7NyufRKQPV\njKFmGiorqT94kNi5cwHQBAcTPn48VV+vQ86bh1CfLD3O55J+WyNyV2lrtsbNN9/MJ598wogRI1i0\naBHffvtt47agoCAANBpN42P792azGQC9Xt+YOJq2a9rmn//8J/Hx8ezcuROLxUJwcHCLsaiRvvPt\nyCkD4Ly+MY3Pndc3hi/3neLkmToSIkM8FZpXqs3aCVISOmpk43MRl0yi8ssvqdu1i5CMDA9Gp4Cq\n6Ttk/PjxrFy5krq6Oqqqqli9enXjtsrKShISEjCZTLz33nsuOX5FRQUJCQloNBreffddGhoaWmy3\nceNGsrKyzvpSCb/zduZVEBNmIDHq5+Q+PDnKui23wlNhea2a7dtAqyV4+IjG58LGj7du27bNU2Ep\nTaik74AxY8Ywbdo0RowYwVVXXUVmZiaRkZGA9QTvOeecwyWXXMLAgQNdcvx77rmHd955h3PPPZdD\nhw4RFhbW5T63bNlCUlISy5Yt484772TIEPd/gvIFu/LKGZ4U+YsyzuCEbug0gl155R6MzDvVbttO\n8MCBaMN//hvVRUej65VA3f4DHoxMaSSlbPcLmAwcBI4Aj7Sw/S5gN5AFfAcMbrLtUdt+B4HL2jvW\n6NGjZXP79u076zl3q6yslFJKWV1dLUePHi23bdvm4YiUljjzb6WqziRTH1klX/jy4FnbLv/XBjnr\n9R+ddix/YDEa5f4RGbLwyafO2pZz9z3yyOW/9kBUgQPYKh3I5+2O9IUQWmABMAUYDFwnhBjcrNn7\nUsphUsoM4FngBdu+g4GZwBDbG8fLtv58zh133EFGRgajRo1ixowZjBo1ytMhKS62J78Ci4QRyZFn\nbRueFMWuvAosFnV1rl3dgYPIurpf1PPtggcOxHjsGJbaWg9EpjTlyIncscARKWU2gBDiQ2A6sM/e\nQErZdA5lGGD/nzAd+FBKWQ8cE0IcsfX3oxNid6v333/f0yEobrYrz1qzH54Udda2EUmRfLA5h+Ml\n1aTFhbs7NK9Ub5tVFjy4+ZgQggYNBIuF+sOHCRk+3N2hKU04UtNPBHKbfJ9ne+4XhBBzhRBHsY70\nf9eRfRXFG+3KryAxKoTY8KCzttnfCOxvDArUHz2KMBjQJyWdtS14kPWaBlXX9zxHkn5LE5HP+kwr\npVwgpewLPAw81pF9hRB3CCG2CiG2FhUVORCSorjeoZOVDEqIaHFbenw4Oo3g0Kmzp8gGKuPRoxhS\nUhDasyu4+sRENOHh1B3Y74HIlKYcSfp5QHKT75OAtlac+hC4siP7Silfk1JmSikz4+LiHAhJUVyr\nwSI51kbpRq/V0Lt7KMeKq90cmfeqz87G0DetxW1CCIIHDqRejfQ9zpGkvwVIF0KkCiEMWE/Mrmja\nQAiR3uTbXwOHbY9XADOFEEFCiFQgHdjc9bAVxbUKymsxmi2kxrY+PTY1NozsIpX0ASx1dZjy8gjq\n26/VNkEDBlB/+LBamtrD2k36UkozcC/wBbAfWCql3CuEeFwIMc3W7F4hxF4hRBZwPzDbtu9eYCnW\nk75rgLlSypavLFLc6oUXXmDw4MEMHz6ciy++mBMn1MqRTWXbRvBpbST9tLgwjpVU06Bm8GA8dgyk\nJKiVkT6AoU8fLNXVNJSUuDEypTmHlmGQUn4GfNbsuXlNHv++jX2fAp7qbICKa4wcOZKtW7cSGhrK\nwoULeeihh1iyZImnw/Ia2UXWVTTbmpmTFheO0WyhoLyW5O6h7grNK9UfzQbAkNa31TaGlD4AGE+c\nQBcb65a4lLOpK3Id5G9LK0+cOJHQUGuiOvfcc8nLy+tyn/4ku6iaiGAdseGGVtvYPwUcLVLLLBuz\nj4JGgyE1pdU2hj72pJ/jnqCUFvncgmt8/gic3O3cPnsOgylPt7rZ35dWfvPNN5kyZUqHfmT+Lru4\nirS48DZX0bR/CjhWXM1FA9wVmXeqP5qNITkZjaH1N0l9YiLodBhVKdGjfC/pe4A/L628ePFitm7d\nyvr16zu8rz/LLqpmXFpMm21iww1EBOvUyVysNX1DamqbbYROhyExUSV9D/O9pN/GiNxV2ppt4MtL\nK69du5annnqK9evX/yK+QFdjNFNYUUdaXNsL2wkhSIsLJ7s4sMs7UkqMeXmEjTu33bb6Pr1V0vcw\n30v6HjB+/HjuvPNOHn30UcxmM6tXr24s6TRfWjkx0fkXHFdUVJCUlIRGo+Gdd95pc2llR+3YsYM7\n77yTNWvW0KNHD2eF6hfsI3dHllfoGxvGj9mBPRulobQUWVODPim53baGPinUbN2GlFLdgMZD1Ilc\nB/jj0soPPvggVVVVXHPNNWRkZDBt2rT2dwoQOaXWk/F9YtqfkdMnJozCijrqTIE7E9mUa11pRZ98\n9vILzRn69EHW1GBWV957jiNLcbrzSy2trHSFM/5WXvn2iOzz8CpZUWtst+1H23Jln4dXySOnK7t8\nXF9VvmKl3DdgoKw7cqTdtpUbNsp9AwbK6s2b3RBZYMFZSysrVmpp5cCRW1ZDZIiebsH6dtva5+fn\n2j4dBCJTnm2k70Bps+lcfcUzVE3fQWpp5cCRW1pLcnfH7n2bHG1L+mWBu068MTcPXY8eaFqZYNCU\nPiEBtFqM+fluiExpiRrpK0ozuWU1jcm8PT0igjDoNOQF8kg/Nxd9cvsnccE6bVMX3wNzQVtrNiqu\npJK+ojRhsUjyyhxfVkGjESRFhZBbFrhJ35iXh6GFNfRbY+iVqEb6HqSSvqI0UVRVj9FsITnasfIO\nQFL3UHJLA7O8YzEaMZ886fBIH0Cf2AuTGul7jEr6itKE/YRsUgcWUEuODtyRvik/H6TE4MB0TTtd\nr16YT51G2i4+VNxLJf0A9corrzBs2DAyMjIYP348+/bta3+nAGBP3o7W9ME6g6e8xkRlnclVYXkt\nk22hvpZukdgafa9e0NCA6eQpV4WltEEl/QA1a9Ysdu/eTVZWFg899BD333+/p0PyCvYyTVIHyjuN\nM3gCsMRjstXmO5L0DbapnaYCVdf3BJX0HeRvSyt369at8XF1dbW6JN4mt7SGHhFBBOvPvs9ra+zT\nOwOxxGPKLwCdrkPr4+t79bLuq+r6HuFz8/Sf2fwMB0qde5/Ngd0H8vDYh1vd7q9LKy9YsIAXXngB\no9HIunXrOvWz8ze5ZTUdviHKzyP9AEz6hYXoe/Zs8WbordElJFj3VUnfI3wu6XuCvy6tPHfuXObO\nncv777/Pk08+yTvvvNOh/f1Rfnkto3pHd2ifqFA9YQYteQF4gZapoMB6wVUHaIKC0MXFNZaGFPfy\nuaTf1ojcVaSfLq1sN3PmTO6+++5WtweKBouksLyOxOGO1/PBusRyYnQIBeUBmPQLCwkbO7bD++l7\nqWmbnqJq+g4YP348K1eupK6ujqqqKlavXt24rfnSyq5QUVFBQkICGo2Gd999t82llbOyss76ainh\nHz58uPHx6tWrSU9Pd0nsvqSosh6zRdIrqmNJHyAxKoT8AEv60mTCfOoU+sReHd5XzdX3HJ8b6XtC\n06WV+/Tp0+LSyn369GHYsGEtjrS76p577mHGjBksW7aMiRMnOmVp5Zdeeom1a9ei1+uJjo5WpR0g\nv9xak0/sRNLvFRXCjtxyZ4fk1UynToPF0lij7wh9YiKVX61FWiwIjRp7upUjS3G680strax0RVf+\nVj7Nypd9Hl4lD5480+F9F3xzWPZ5eJWsqjN1+vi+pnrzZrlvwEBZ+d13Hd639P335b4BA6Xx5CkX\nRBaYUEsrO5daWtn/5dtOxHa2vAMEVF3fXp6xT8HsiJ+nbaqTue7mUHlHCDEZ+BegBd6QUj7dbPv9\nwG2AGSgC5kgpT9i2NQC7bU1zpJQ+eYsmtbSy/ysoryUyRE94UMernvakn1deS3p8hLND80qNSb8z\n5R170s8vgJEjnRqX0rZ2/7qFEFpgAXAJkAdsEUKskFI2vW5/B5AppawRQtwNPAtca9tWK6XMcHLc\niuJ0+eW1nRrlAyTaruDND6Bpm6aCQrQxMQ6to9+cukDLcxwp74wFjkgps6WURuBDYHrTBlLKb6SU\n9itTNgGOX5OtKF6ioLy2UydxAXpEBKPTiIAr73SmtAOgCQtDGxWlyjse4EjSTwRym3yfZ3uuNbcC\nnzf5PlgIsVUIsUkIcWVLOwgh7rC12VqkbpiseEh+WS2JUR0ftQJoNYKEqOCAmrbZmQuzmtL36mUt\n7yhu5UjSb2lRlhavVhJC3ABkAs81ebq3lDITmAW8KIToe1ZnUr4mpcyUUmbGxcU5EJKiONeZOhOV\n9ebGMk1n9IoMCZjyjpTSugRDJ0f6YJ22qco77udI0s8Dmt4hIQk46zclhJgE/AmYJqWstz8vpSyw\n/ZsNfAuoszZeYMOGDYwaNQqdTsfy5cs9HU6bjh8/TkhICBkZGWRkZHDXXXc5/Rj2skxna/pAQF2V\n21BWhqyr61rSt12VK9u44l1xPkemKWwB0oUQqUA+MBPrqL2REGIk8CowWUp5usnz0UCNlLJeCBEL\nnI/1JK/iYb1792bRokWNq4V6u759+5KVleWy/u0j9M7W9AGSokI4eaYOU4MFvda/Z0ObCgoB0Pfq\nQnknsReytpaGsjJ03bs7KzSlHe3+ZUopzcC9wBfAfmCplHKvEOJxIYR9+uVzQDiwTAiRJYRYYXt+\nELBVCLET+AZ4utmsH5/hb0srp6SkMHz4cDQduBrSkVgXLVrEvffe27jPFVdc8Yv1iLyVfYTelaTf\nKyoEi4STFXXOCstr2U/AdnWkD6i6vps5NCFZSvkZ8Fmz5+Y1edzial5Syh+AYV0JsLmTf/sb9fud\nu7Ry0KCB9PzjH1vd7q9LK3eUI7E66r777uObb7456/mZM2fyyCOPnPX8sWPHGDlyJN26dePJJ59k\nwoQJXXotzeWV12LQaogND2q/cSsap22WO35jdV9lr8V3ZgkGO33jzVQKCBk21ClxKe1Ta+84wF+X\nVu4oR2J11D//+U+H2yYkJJCTk0NMTAzbtm3jyiuvZO/evb+4EUxXFZTXkRAVjEbT+ZvJBNJVuebC\nQkRoKNqoqE738fNIX03bdCefS/ptjchdpa0TTf6wtLKjHIlVp9NhsVga96mra7nU0ZGRflBQUOOx\nRo8eTd++fTl06BCZmZldfk12+WU1XSrtwM8ngQNhBo91jn5Cl+64punWDU1YmJrB42Y+l/Q9Yfz4\n8dx55508+uijmM1mVq9e3VjSab60cmJiW5cwdE5FRQVJSUloNBreeeedNpdWdoaBAwdy4EDnSmgp\nKSm8/PLLWCwW8vPz2bx5c4vtOjLSLyoqonv37mi1WrKzszl8+DBpaWmdiq81BeV1jE93/JZ/LQnW\na4kNNwTEXH1TfgH6hM7X88F6HwK1rr77qaTvAH9cWnnLli385je/oaysjJUrVzJ//nz27t1LcXFx\nl6bQnX/++aSmpjJs2DCGDh3qlIXpNmzYwLx589DpdGi1Wl555RW6O3G2h9Fs4VRlXZdH+hA46+qb\nCgsJHtb103Uq6XuAI0txuvNLLa3sWStXrpT/+te/PB1Gp3XmbyWnpFr2eXiVXLI5p8vHv3vxVjnx\n+W+63I83a6iulvsGDJRFr7za5b4K//pXeWDMWCdEpeDg0spqpO+gO+64g3379lFXV8fs2bP9dmnl\nK664wtMhuJ393rZduRrXLjEqhHUHTiOl7FK925uZCrs+R99O36sXljNnaKiqQhse3uX+lPappO8g\ntbSy/3LG1bh2vaJCqDNZKKk2dmn6pzf7+cKsrtX0m/Zhyi9AO6B/l/tT2uczlw1Kdam20o7O/o3Y\na/AJkZ1bbK2pQJi22ZV19JtTN1NxP59I+sHBwZSUlKjEr7RKSklJSUmr01nbUlBeS2x4EMF6bZfj\nCIR19U35+aDToYuP73JfOrWuvtv5RHknKSmJvLw81LLLSluCg4NJSur4rRzyy2udUs+Hn0f6/jyD\nx1RQgL5nT4S262+SuthYhF6vkr4b+UTS1+v1pKamejoMxU/ll9cysKdzbnEYGaInzKBtPDnsj0z5\n+Y1LKHSV0GjQ9UpQSd+NfKK8oyiuIqUkv6yWpGjnrJUjhPD7JZZN+flOOYlrp+bqu5dK+kpAK6qq\np95sIclJ5R3w7wu0LEYj5qIip430wZr0zbYZQYrrqaSvBDR7GcaZSb+XHyd9c2EhSOn8pF9UhMVo\ndFqfSutU0lcC2s9J33lLISdGh1BeY6K63uy0Pr2FfUVM55Z3rG8g5kI12ncHlfSVgJZbar3pjbPL\nO+Cfc/Ub5+g7eaTftG/FtVTSVwJaXlktMWEGQg3Om8hmT/p5fpj0jfn5oNWi79n1Ofp2+kSV9N1J\nJX0loOWV1Th1lA/+fYGWKT8fXXwPhM55b5L6+HjQaNRtE91EJX0loDlzuqZdj4hgdBrht+UdQy/n\n3jNC6PXoevRQI303UUlfCVgWiySvvNbpI32tRpAQFeyXM3hM+QVOrefbqbn67qOSvhKwiqvqMTp5\njr5dr8gQvyvvSJMJ86lTjTV4Z1JJ331U0lcCVq4LpmvaJUb731x906lTYLG4bqR/8iSylVuBKs7j\nUNIXQkwWQhwUQhwRQjzSwvb7hRD7hBC7hBBfCyH6NNk2Wwhx2PY125nBK0pX5JU5f7qmXVJUCKfO\n1GFqsLTf2EeY8mxz9F2S9BPAbMasFlV0uXaTvhBCCywApgCDgeuEEIObNdsBZEophwPLgWdt+3YH\n5gPnAGOB+UKIaOeFryid58w7ZjWXGB2CRcLJijqn9+0prrgwy07N1XcfR0b6Y4EjUspsKaUR+BCY\n3rSBlPIbKWWN7dtNgH1928uAr6SUpVLKMuArYLJzQleUrskrq3H6HH27ZFvJyH7xlz8wFRSAEOh7\n9nR6303voKW4liNJPxHIbfJ9nu251twKfN6RfYUQdwghtgohtqo18xV3yStz/swdu+TutqRf5kdJ\nPz8fXXw8wmBwet9qpO8+jiT9lu7u3OItrIQQNwCZwHMd2VdK+ZqUMlNKmRkXF+dASIrSdXkumKNv\nlxAZjFYjyC31n5O5zl5SuSlNaCja6GhMeXku6V/5mSNJPw9IbvJ9EnDW27EQYhLwJ2CalLK+I/sq\nirtZLLZ19Lu7ZqSv02pIiAz2r5F+gWvm6Nvpk5Mx5auk72qOJP0tQLoQIlUIYQBmAiuaNhBCjARe\nxZrwTzfZ9AVwqRAi2nYC91Lbc4riUUVV9RgbLC4b6YO1ru8vNX1pNmM6edIlc/TtDElJGPPUDdJd\nrd2kL6U0A/diTdb7gaVSyr1CiMeFENNszZ4DwoFlQogsIcQK276lwBNY3zi2AI/bnlMUj3LldE27\n5O4h5PhJecd86hQ0NLisvAO2kX5BAdLsf0tSexOHpi1IKT8DPmv23Lwmjye1se9bwFudDVBRXME+\nXTPZlUk/OpTiqnpqjQ2EGLp+E3FPcsWSys3pkxLBbMZ08hSGJNcdJ9CpK3KVgNQ4Rz/KheUd2wye\nPD+o6xttc/QNLkz6hmTr6T91Mte1VNJXAlJeWQ2x4QaXjsCTbSeJ/eFkrik3D4RAl5DgsmPok+xJ\nP7edlkpXqKSvBKTc0loSXXgSF5peoOX7dX1jbg66nj3RBAW57Bj6nvGg1WLMVSN9V1JJXwlIrrh5\nSnNxEUEE6TR+MYPHlJPbWH5xFaHTWRdeU+Udl1JJXwk45gYL+eW1jSNxVxFC0Lt7KDl+kPSNubno\ne7s26QMYkpMwqvKOS6mkrwScwoo6TA2S1FjXJn2APjFhnCjx7aTfUFVNQ0kJhuTeLj+WPjHJev5A\ncRmV9JWAc7ykGrAmZFdLiQnRS202AAAgAElEQVTlRGk1FkuLK5f4BPuJVUMfNyT95GQaSktpqKp2\n+bEClUr6SsA5bht5p7gh6feJDaPOZOF0ZX37jb2UMScHsCZkVzP0tr6xmHJzXH6sQKWSvhJwThRX\nE6TT0CPCdTNR7PrY5urbP134IlOubaTf2/UjffunCeMJlfRdRSV9JeCcKK2hT0woGk1Li8A6l/3T\nRI4P1/WNObloo6LQRkS4/Fj2NxbjiRMuP1agUklfCTgnSqrdUs8H6BUVjE4jfHykn4PeDaN8AE1Y\nGLq4OJX0XUglfSWgWCySEyU1pMS4fuYOWJdYTu4e6tMzeIxumKPflL5Pb4w5Kum7ikr6SkA5VVlH\nvdnitpE+QJ+YUJ8d6Uuj0bqOvhvm6NsZ+vRRI30XUklfCSjHi903c8cuxTZXX0rfm7ZpzM0Fi4Wg\n1FS3HdPQJ4WGomI1bdNFVNJXAsqJxjn67invAPTuHkpVvZmSaqPbjuksxuPHATC4M+mraZsupZK+\nElCOFVdj0GnoFeXadXeaSo0Lazy2rzEeOwaAISXFbcc0pPSxHluVeFxCJX0loBwtqiIlJhStG6Zr\n2vWNDbce+3SV247pLPXHj6ONjXXLdE27n6dtqpG+K6ikrwSU7KJq+saFu/WYidEhGHQasn1ypH+8\nceTtLprQUHQ9ejSWlhTnUklfCRimBgs5pTWkxXXiJG7VacjZBLlbwNSx9fG1GkFqTBjZRb430jce\nP+7Wk7h2hrQ0jNnZbj9uIHDoHrmK4g9OlNRgtsiOjfTztsHa+XD8O8A2+0YfBkN/A5P+CmGxDnXT\nt0cY+wsrOx60BzWcOWNdXdON9Xy7oLRUKlauQkqJEO4rxQUClfSVgGEfaac5kvSlhG/+Bhufh/B4\nuPBhSB4Dpjo4/AVkfQAHPoMZr0O/Se12lxYbzhd7T2E0WzDofOMDduPMHQ8kfUNaXyyVlTQUF6OL\ni3P78f2ZSvpKwDhaZK2pt1vesVhg9f2w7W3IuB4mPw3B3X7ePugKOPce+Og2eH8mXP0mDJ7eZpdp\ncWE0WCQ5pdX06+G+k6Jd4YnpmnZBadZj1mcfU0nfyRwacgghJgshDgohjgghHmlh+wVCiO1CCLMQ\n4upm2xqEEFm2rxXOClxROiq7qIq4iCC6Bevbbvj1X60Jf/x9MH3BLxO+XY9BcPNqSBwFy+fAsY1t\ndmkvKdnfeHxBfXY2aLUYkpLcfmxDWhoAxuyjbj+2v2s36QshtMACYAowGLhOCDG4WbMc4Gbg/Ra6\nqJVSZti+pnUxXkXptOziatJi2xnl71wC378Io2+Bi+dDW/XkkCi4fhl0T4OlN0LpsVab2j9dZPtQ\n0jcePYqhTx+EweD2Y+vi49GEhlKf3frPVOkcR0b6Y4EjUspsKaUR+BD4xWdZKeVxKeUuwOKCGBWl\ny6SUHC2qarueX3IUVv0B+pwPlz/XdsK3C46E6z4EaYH/3Q4N5habRQTr6RERxBEfmqtff/gIQX37\neuTYQgjrDJ6jaqTvbI4k/USg6Z2K82zPOSpYCLFVCLFJCHFlSw2EEHfY2mwtKirqQNeK4piiqnrK\na0z0j28l6Vsa4OO7QKuHq163/uuomL7w6xcgb4v1U0Ir0uPDOXLaN2bwWOrrMebkEJTez2MxBPVN\no/6YGuk7myNJv6XhTkdWjuotpcwEZgEvCiHOGjpIKV+TUmZKKTPj1EkbxQUOn7KOsAfEt3IS9adX\nIW8zXP4PiOzImMZm2NUw5Cr49mkoOthik/7xERw+XeUT98s1Hj9uXWitn+eSviE1DXNhIZZq3ymJ\n+QJHkn4e0HRd1SSgwNEDSCkLbP9mA98CIzsQn6I4xcGT1hF2ektJ/0yhdXpmv0usybuzpjwLhlD4\n7AHrlM9m+sdHUGNsIL+8Yxd3eUL94SMAGPp6cKTfzzo+rFclHqdyJOlvAdKFEKlCCAMwE3BoFo4Q\nIloIEWR7HAucD+zrbLCK0lmHTlXSPcxAbHgLJyW/mgcNRrj8Wcfq+K0Jj4OL58GxDbDno7M297e9\n4djfgLxZ/dEj1pk7qSkeiyEoPd0ay6FDHovBH7Wb9KWUZuBe4AtgP7BUSrlXCPG4EGIagBBijBAi\nD7gGeFUIsde2+yBgqxBiJ/AN8LSUUiV9xe0Onqqkf3z42Vd3FuyA3UvhvP+zzsLpqtG3QM9h8PXj\nYP7lUsr28wkHT3l/0jceOYKhd280Hpi5Y6dPTkaEhFCnkr5TOXRxlpTyM+CzZs/Na/J4C9ayT/P9\nfgCGdTFGRekSKSWHT1UxY1QLtfqvH4eQ7nD+75xzMI0WJv0FFs+A7e/A2NsbN0UE60mMCuGQDyT9\n+sNHGkfaniI0GoL69aP+0GGPxuFvfON6cEXpgoKKOqrqzfTv2ayen70ejq6DCf/POvXSWfpeDCkT\nYP0zUP/LKZr948M5dMq7p216w8wdu6D+6aq842Qq6St+75Ctht6/6UlcKa1X3nZLgjG3OfeAQlgv\n7Kougk0Lf7Gpf3wER09XYW7w3kta6g8fsc7c6T/A06EQ3L8/DaWlmIuLPR2K31BJX/F7B+xJv+ma\nN/tXQv42mPgo6IOdf9DkMTDwCvjh31Bd0vh0//gIjA0Wr75Rev2B/QAEDxro4UggqH9/QJ3MdSaV\n9BW/t6/wDIlRIUSG2i64sjTAuichdgAMn+m6A//qMTBWwff/bHxqUIJ1HZ+9BWdcd9wuqjtwEE1o\nKPrk5PYbu5g96auTuc6jkr7i9/YWVDC4V5NF0/avhOKDcNHDoHXhQrM9BsHQq2HLW1BTClivyjVo\nNezz6qS/n6ABAxAaz6cHXUwM2pgYdTLXiTz/W1UUF6quN3OsuJoh9qQvJWz8B8T0g8EtrgriXBPu\nB1N1Y21fr9XQv2e41470pZTUHzhI0EDP1/PtggcOpG7/fk+H4TdU0lf82oGTZ5AShvSyzc45shZO\n7rIum6zRuj6AHoOstf3Nr0KdNdEPSYhkb0EFsoWrdj3NlJ+PpaqK4IGDPB1Ko+AhQ6g/fBiL0dh+\nY6VdKukrfs0+oh7Sq5t1lL/heeuMnWG/dV8QFzwAdRWw5Q1rLIndKKsxUVhR574YHGQfUQd700h/\n8GAwm6k/qOr6zqCSvuLX9uafITpUT0JkMJz4HnI3wfm/B50brzTtNdI6d//HBWCsaSw1eWOJp37/\nARDC4xdmNRU8xHr7jrp96mJ+Z1BJX/FrewsrGNIr0rr8wsZ/QFgcjLrR/YFc8ADUFMP2/zKwZzeE\nsJ5g9ja1e/cQ1K8vmtBQT4fSSJ+UhKZbN5X0nUQlfcVvGc0WDp2sso6s87dZr74dNxf0Ie4Pps95\n0Ps8+OHfhGktpMaGsSffu0b6Ukrqdu8heKh3rZwihCB48GDq9u5tv7HSLpX0Fb914OQZjA0WhidF\nwcYXrEstZN7quYAu+H9wJh92fsCIpCh25ZV71clcU34BDaWlhAz3rqQP1rp+/cGDSJPJ06H4PJX0\nFb+VlVsOQGbYSTiwCsbe2fJNzt2l78WQkAHf/ZORieGcrqz3qpO5dXt2A3jdSB+sdX1pMlF/WM3X\n7yqV9BW/lZVTTlxEED2yXgZ9GJx7t2cDEsJa2y87xoXm76wx2t6YvEHt7t0IvZ7gAf09HcpZQkaM\nAKB2504PR+L7VNJX/FZWbjkXx9cg9iyHzFsgtLunQ4IBv4a4QSTvXUiQ1ruSft2u3QQNGoTw4Br6\nrdEnJqKNiaE2SyX9rlJJX/FLFTUmsourubHhY9DoYNy9ng7JSqOBCfejKTrA7Jj9ZOV4R9KXDQ3U\n7d1LyNChng6lRUIIQjIyqM3K8nQoPk8lfcUvZeWVE08pg06tgozroVuCp0P62ZCrIDqF2ebl7M4v\n94plluuPHMFSU0PIiOGeDqVVIRkjMJ44gbmszNOh+DSV9BW/lJVTzl26lQjZAOP/4Olwfkmrg/P/\nQGLNfkY37Gxc+tmTarZtAyBk9GgPR9I6Vdd3DpX0Fb90OPsIs3TfIEbMhOgUT4dztoxZmMMTmKv9\nlK3HSz0dDbXbtqPr0QN9Ygu3lPQSIUOHglarSjxdpJK+4nfMDRZG5b+HHrP1VojeSBeE7vzfMU67\nj+L9Gz0dDTXbtxMyetTZN473IprQUIIHDKB2+w5Ph+LTVNJX/M6B7ONcy5cUJl8OMX273J+pwcTJ\n6pNkl2eTXZFNaV0pFumEOvzo2VRpIzknf5FHL9IyFRRgLiwkdJT3lnbsQsdkUrtzp1pxswtceAcJ\nRfEM03cLCMFI3a8e6tT+9Q31fJf/HRvzNrKzaCfHKo7RIBt+0SZEF8LA7gPJjM/kouSLGBY7rOOj\nZEMYR9NuYsLh/5C3/yeSBp/bqXi7qmbbdgBCR4/yyPE7InTsWErf+S91u3YRmpnp6XB8kkNJXwgx\nGfgXoAXekFI+3Wz7BcCLwHBgppRyeZNts4HHbN8+KaV8xxmBK0qLassZkPMBG3TjuCh1RId2PV1z\nmrf3vM2nRz+l0lhJuD6ckT1GMjF5IgnhCYTrw7FIC+X15eScyWFvyV7e2vMWr+9+nZRuKVw/6Hqu\nSr8Kg9bxee4RF9zNmUNvYNnwPAxe3v4OLlCzbSua0NDGWxN6s9DRo0EIqjdvVkm/k9pN+kIILbAA\nuATIA7YIIVZIKZsueZcD3Aw80Gzf7sB8IBOQwDbbvmrOleISlk2vECqryUq5nYsc3Od0zWne2vMW\nyw4uo0E2cGnKpVzZ70rG9ByDXqNvc9+K+grW5axj+eHlPPXTU7yx+w1uG3abw8k/NakXb2ou57aT\nH8GpvRA/xMGonafmx02EjhmD0Hn/B39tVBRBAwZQs2WLp0PxWY7U9McCR6SU2VJKI/AhML1pAynl\ncSnlLqB5ofMy4CspZakt0X8FTHZC3IpytrozWDa9zFcNo+k9ZGy7zS3Swvv732fqx1NZcmAJV/S9\ngpW/WcmzFzzLeb3OazfhA0QGRfKb9N+weMpiXr/0dRLDE3nqp6e4euXVbD+1vd39hRDsT72JKkKR\n3/7doZfpTKaCAownThA6zjOlpc4IHTOG2h1Zqq7fSY4k/UQgt8n3ebbnHOHQvkKIO4QQW4UQW4uK\nihzsWlGa2fIGuvoK/mO+kvH9Yttsml2ezezPZ/P3zX8no0cGK65cwV/P+yvJEcmdOrQQgnMTzmXR\n5EW8fPHLGBuMzF4zmyc3PUmVsarNfUcPSOMN82TE/pVQ6N456NU/bgIgbNx5bj1uV4SOHYOsq6NO\nzdfvFEeSfktnpxydauDQvlLK16SUmVLKzLi4OAe7VpQmasvh+3+RFTwGY3wGPboFt9r048Mf89tV\nv+XYmWP8bfzfeGXSKyR361yyb04IwYSkCfxv2v+4YdANLD24lGtXXcuB0gOt7jMhPZa3zFOo10XA\nt0+32s4VqjdtQhsTQ1B/77lTVnvCzjkHtFqqvv/e06H4JEeSfh7Q9H9EElDgYP9d2VdRHPfDf6Cu\nnPmVVzEhveVRfq25lse+e4x5P8wjo0cGn0z/hKl9p7pkbnqoPpSHxz7M25Pfps5cx/Wrr+ejQx+1\nODUzuXsoMbE9WB0+Aw5+Bvntl4WcQUpJ9aYfCTv3XK+en9+ctls3QkaMoPo7lfQ7w5GkvwVIF0Kk\nCiEMwExghYP9fwFcKoSIFkJEA5fanlMU56k6DZsWcrr3r9nZ0Ifx6Wd/Wsyvyuf6z65nxdEV3DXi\nLl6d9CqxIW2XgJxhdPxolk1bxuj40fzlx78w74d5mBrOvhHI+H6x/L30QmRINHzzlMvjAqg/dIiG\nomLCfKiebxc+YTx1e/ZgLinxdCg+p92kL6U0A/diTdb7gaVSyr1CiMeFENMAhBBjhBB5wDXAq0KI\nvbZ9S4EnsL5xbAEetz2nKM6z8R9grmNZt5sw6DSMTfnlEso7i3Yya/UsTladZOGkhczNmItWo3Vb\neN2Du7Nw0kLuGnEXnxz5hNu/up3yul+urjkhPZYiYxA5g+6EI2she73L46r61nqMsAkXuPxYzhY2\nfgIA1T/84OFIfI9DV+RKKT+TUvaXUvaVUj5le26elHKF7fEWKWWSlDJMShkjpRzSZN+3pJT9bF9v\nu+ZlKAGrPAe2voXMuJ5lx4I4Ny2GEMPPCf3zY58zZ80cwvRhLP71Ys5PPN8jYWo1WuZmzOWZCc+w\nu2g3sz6bxbGKY43bz+sXi0Gr4X0mQ2QyfDUPLK5dfbPq228JHjIEfXwPlx7HFYKHDEYbHU3VRs8v\nYeFr1DIMim/75m+A4PiwezleUsMlg+MbNy3et5iHNjzE0NihvHf5e6RFpnkuTpvL0y7nzcvepNpU\nzY2f38iuol0AhAfpGNc3hjUHy5ET/wSFWbDnI5fFYS4rozYri/CJE112DFcSGg1hE8ZTvWEj0mz2\ndDg+RSV9xXflb4edH8C5d7Emx3ph0aRBPZBS8tKOl3hmyzNM6j2J1y99nejgaA8H+7OMHhksnrKY\nCH0Et315G9/nW09IThocz4mSGo4mXA49h8HXj4O53iUxVG/YAFISftFFLunfHSIunkRDeXnjMhKK\nY1TSV3yTlLDmUQiLgwkPsHb/KYYmdiO+WxBP/fQUr+56lavSr+K5C5/r0LII7pLcLZl3L3+XPt36\ncO/X97I6ezWTBlnLLF/uL4JLnoCKHNj8ukuOX7nuG3RxcQQPHuSS/t0hfMJ4RFAQlWvXejoUn6KS\nvuKb9nwEuZvgV3+myBTE9pwyfjUwhkc2PsKSg0u4Zcgt/GXcX9BpvHdpgdiQWN667C1Gxo/kkY2P\nsK7gfwxLjOTLvaeg70ToNwk2PAvVxU49rqWmhqr164m4ZBJC47spQBMaSth551H59VqPrlLqa3z3\nN64ELlMtfDXfWgIZeQOf7ylEYiTL+CKfH/ucP4z6A/dn3u8Tc88jDBEsnLSQSb0n8fTmp+me9DVZ\nuWXkldXAZX8DYzWsne/UY1atX4+sqyNisu+viBIxaRLmgkLq9u5rv7ECqKSv+KIf/gNn8mDyM6DR\n8snOI8T0XcTOkp+YP24+tw671dMRdkiQNojnL3yeGekz2H5mOUE9P2XVznyIGwDj5sKOxZC72WnH\nO7PmC7SxsdYVK31c+K8mgk7Hmc8/83QoPkMlfcW3lByFDc/D4Csh5Xz2nMzlgHgGsz6H5y54jqv7\nX+3pCDtFq9Eyf9x85gydgyF6E28f+Zv1Iq4LHoKIXrD6frA0tN9RO+ylnW6XXoLQuu9aBVfRRUcT\nPn48Z1Z/hnTxFFd/oZK+4jukhFV/AF0wTHmGvMo87vp6DhpDKX8Z+w8uTbnU0xF2iRCC+0bfx/nd\nZ1Oj38rtX8ylVquFy56Ck7th61tdPkbl2rXIujq6TZnihIi9Q7epV2A+eZKaLVs9HYpPUElf8R07\nP4RjG2DSfA6bK7np85s4YzxDYu0f+M2gX3k6Oqf5ywX3Ul94FduKNnHnV3dyJv1iSL0Qvn4CznRt\n6aryjz9Gn5xMiB+UduwiJk5EhIZyZtVKT4fiE1TSV3xDdTF88UdIPoes5JHMXjMbs0VSdexObhjl\ne8sItKVnZDDjevya4NLZ7C7ezZwvbqV40jxoMMLKP1g/8XSCKT+fmk0/EXnldJ+etdOcJjSUbpdM\n4szna7DU1Hg6HK/nP795xb+teRTqK9lwzmxuX3sn3YO7M1r/Z/SWBKaN6OXp6Jzu2jHJFJ0ayO39\nnyKnMoebfppH3gV/gMNfWD/xdELFihUgJZHTr3RytJ4XdfXVWKqqOLNGrefYHpX0Fe+353+weymr\nRs3g99ufJzUylVcvfpu1u0xcPiyByJD273DlayYNiqd7mIHdh+N57ZLXqKivYPbJLznSOxPWPAxn\nCjvUn2xooHzZckLPOQdDkqP3QPIdIZmZGFJTKV+61NOheD2V9BXvVpEPq+5jcfJgHi35gdHxo3nr\nsrf47mAtlfVmrh3jnJufeBuDTsOMUYl8te8UPYMGsmjyIiRwc3AtuzQWWPn7DpV5qtavx1RQQPSs\nWa4L2oOEEET99rfUZmVRd+iQp8PxairpK97LYkF+chf/DtPxjK6KSb0nsWDSAsL0Ybz9/XEG9ozg\nnNTu7ffjo248N4UGKVm86QTp0em8M+UdIoIiua1nHD/mftuhJRrKFr+HrmdPIi72nxPezUVeOR0R\nFETZ4vc8HYpXU0lf8VqmH//Dnyv38Hq3UGakz+D5C58nSBvEj9klHDhZyS3np/jEVbed1TsmlIsH\nxvP+5hzqTA0kRyTz3yn/JSkylXsS4lnx/RNQkNVuP/XZ2VT/8APRM69F6Lx3WYqu0kVHEzl9OhWf\nfoq5VN22ozUq6SteqeLoOu7as4BPI8K5e/hdzB83v/HGJ299d5zoUD3TM/yvNt3cnPNTKK028smO\nfADiQuN4e/LbjIobyZ9ioliw8iZkbUWbfZS8+SYiKIioa65xR8ge1X32Tcj6eso+7NzJ7kCgkr7i\ndXJP7uDGb3/H9qAg/nbOY9wzcm7jiH5/4RnW7j/FTeNSCNb7/hWl7RnXN4ahid14Zf1RzA3WK04j\ngyJ55bI3md7zPF4Jljz60TSMrSzBbDp5kooVK4maMQNdTIw7Q/eIoL59CbvwAsoWv4elttbT4Xgl\nlfQVr7Lz5DZuWHMzJULy2tg/M3Xgtb/YvuCbI4QH6bjl/BTPBOhmQgjunZjO8ZIaVu/+ecaOXqvn\niUtf4XfRo1jdUMrtH11x1i0YAUrfXgQWC93nzHFj1J4Ve8cdNJSWUvbhEk+H4pVU0le8xseHP2bO\nF3MINdezeOi9jBn8219sP3K6itW7C7lxXB+iQr1vjXxXuXRwPP3jw3lp3REaLD/P2BFCcPvURTxr\nSGVPTSEzP5nOwdKDjdtNp05TtmQJkVdc4ZfTNFsTOno0oeeeS8mbb6rRfgtU0lc8ztRg4okfn2De\nD/MYWVvD+71+TerYu89q948vDxKq13Lr+FQPROk5Go3gdxenc/h0FR/bavuNhGDKjA95yxyJqaaY\nG1bP4rNs64qTxa8sRJrNxN471wNRe1bc3HtoKC6m7P0PPB2K11FJX/Go0zWnmfPFHJYeWsot5Wd4\npVsm0ZOfPavd9pwyPt9zkjsu6EtseJAHIvWsy4cmMDwpkhe+PEidqdlqm4ZQRly7nCXlDQyuN/Lw\nxodZsPrPlC9bTtQ1V2NI9s9rGdoSOmYMYRMmUPzqqzSUn132CmQq6Sses/XkVq5ddS0HS/fzXHEF\n94elo7v6TdD88gStlJK/f7af2PAgbpsQWKN8O41G8MjkgRRU1PH298fPbtAtgdiZH/DG6VJmGXWE\nvfoRRo0Fzc3Xnt02QPR48AEsVVUUL1zo6VC8ikNJXwgxWQhxUAhxRAjxSAvbg4QQS2zbfxJCpNie\nTxFC1Aohsmxfrzg3fMUXmS1mXtrxErd+eSuhQst7J0uYrI+F65aAIfSs9p9k5bPleBkPXNqfsCD/\nnWfenvP6xTJpUDz/WXeYwooWatW9RqK/7gP+b8dpzjkk+eR8Lb/ddCcb8ja4P1gvENy/P1EzrqL0\nvfepP3zY0+F4jXaTvhBCCywApgCDgeuEEIObNbsVKJNS9gP+CTzTZNtRKWWG7esuJ8Wt+Kj8qnxu\nXnMzr+56lSsSzmfpsSOka8Pgxv9B2NlTCs/UmXhq9QFGJEfx28zAK1M0N3/qYBoskidX7W9xuyXx\nXE4d6oc+3Mz1o+OJDe7O3K/n8vTmp6lvaHlapz+Lu+8+NGFhFP71r+o+ujaOjPTHAkeklNlSSiPw\nITC9WZvpwDu2x8uBi4U/XyqpdMrnxz7n6hVXc7T8KM8Mm8tT2z8jTBcGs1dCdEqL+/z9s/2UVtfz\n5PShaDTqTyq5eyj3XNSP1bsLWbvv1Fnbi19+GWPeaXr+7hb65W3h/ZJabki/hvf2v8es1bM4Wn7U\nA1F7jq57d3o88P+o3bqNio8+8nQ4XsGRpJ8I5Db5Ps/2XIttpJRmoAKwD9tShRA7hBDrhRATuhiv\n4oOKaoq475v7eGjDQ6RFpbEs8zEu/+pp0IfBzauge8t1+g2Hivhgcy63X5DGsKRIN0ftve6+qC8D\ne0bw6Me7Ka8xNj5ft28fJW+8SeSVVxJ+0x/h6jcJytvCw3vWsWD8MxTXFnPNymt4fdfrmCwmD74C\n94qaMYPQzExO/f1pTPn57e/g5xxJ+i0Nr5p/TmqtTSHQW0o5ErgfeF8I0e2sAwhxhxBiqxBia1FR\nkQMhKb5ASsknRz5h+qfT2ZC3gd+P+j2LUmaStHQOhES3mfDLqo08tHwXfePCuG9SfzdH7t0MOg3P\nXzOC0mojf/pkD1JKLLW15D/wILroaOIfedjacOgMuPY9OLWPC9Y8zkcXLWBi8kT+vePfzFo9i30l\n+zz7QtxEaDQkPP13kJKCP/4p4O+l60jSzwOaFlOTgOb3bGtsI4TQAZFAqZSyXkpZAiCl3AYcBc76\nHyylfE1KmSmlzIyLi+v4q1C8Tn5VPnetvYs/f/9n0qPSWT5tObfVa9Avuwl6DIY5X7aa8KWUPLh8\nJyXV9bx47ciAWG6ho4YmRnL/Jf1ZvauQD7fkcurvT2M8doxezz6DNirq54YDJsP1y6Aij9h3Z/CP\n9Ot58aIXKa4tZtbqWby47UXqzHWeeyFuYkhKIv6Pj1Lz00+UvPqqp8PxKEeS/hYgXQiRKoQwADOB\nFc3arABm2x5fDayTUkohRJztRDBCiDQgHch2TuiKN6ox1fDSjpeY/sl0sk5n8adz/sTbl7xG6vcv\nw6r7oN8k6wg/vPU399c2ZLN2/2kenTJIlXXacPeFfRnfL5YN/36b8qVLibntVsLGjTu7YdqFcOsX\noDXA25dzcVUln0z/hGl9p/HmnjeZ9sk0vjj+hd+f6IycMYNuU6dS9J+XqP7xR0+H4zlSyna/gMuB\nQ1hH6n+yPfc4MM32OBhYBhwBNgNptudnAHuBncB2YGp7xxo9erRUfI/FYpGfZX8mL156sRy6aKh8\ncP2DsrCqUMozJ6V889fkJMMAACAASURBVDIp53eTcs0fpTSb2uxn3YFTMuWRVfKexdukxWJxU/S+\nq2DTVrlz8FC59MJpMrfoTNuNK09L+fok6+/iq/lSmk1yc+FmOePTGXLooqHyljW3yAMlB9wRtsc0\nVFXJo1dcIQ+MGSvrDh/2dDhOBWyVDuRzIb3s3T0zM1Nu3brV02EoHZB1Oot/bvsn209vZ1D3QTwy\n9hFGxY+C7PXw8Z1QWw7TX4JhV7fZz96CCma+uonk7qEsv3scoYbAnZPvCGNuLsdnXkeD3sCt4+YS\n0SOO5XePIyK4jdtHmurg8wdh+3+h9ziY8SYNET356PBH/GfHfzhjPMOM9BncNeIueoT2cN+LcSNT\nfj7HZs5EozfQ58MP0Pfwj9cphNgmpcxst51K+kpn7S/Zz392/IeN+RvpHtyd3438HVf2uxKtxQxf\nPw4/vgQx6XDNIug5tM2+cktruGrhD+g0go/uPo9eUSHueRE+ynT6NDk3zcZcVkbKB++zpaEbN7+9\nmfP6xfLGTZkYdO1Ubnctg1V/sJZ8pv4LBk+jor6ChTsXsuTAErQaLTMHzGTOsDl0D/a/u5PV7tnL\niZtuIiglhT7v/hdNWJinQ+oylfQVlzlSdoSXd77MVye+opuhG3OGzuG6gdcRqg+Fgh3w6b1wag9k\n3gqXPtniVbZNHSuu5vrXN1FtbGDZXePoHx/hplfim0ynTpMzezam06fp/cbrhI4aBcCSLTk8/NFu\nJg3qwYLrRxGka+cEePERWH4LnNxlnekz5TkIiyGvMo+FOxeyKnsVQdogbhh0A7OHzCYyyL/Or1St\nX0/u3fcQOmYMyS8v8PnEr5K+4lRSSraf3s7be95mfd56wvRh3DT4Jm4cfCMRhgior4Jv/gY/LYSw\nOJj6b+vMkXYcOV3JrNd/wmyRvHvrWIb08q/E4mymU6esI/yiIpJff43Q0aN/sf3dH4/z50/3ckH/\nOF67cXT7M58aTPDdi7D+GQiJgsv+bi3DCUF2RTYLsxay5vgaQnQhzEifwU2DbyIhPMF1L9DNKlau\nouCRRwgZOpTk115FG+m7f38q6StO0WBp4Nvcb3lr71vsKtpFdFD0/2/vzKPjKs5E/6u+vXdL3Vot\nyZJsSzY2MhjbMdiGmM1AWMISBggcJoEhIUMSQjLJZJvMZLLMOzOQN3MyZELyksBLwpAEhwnE7GAT\nkgA2xBivkhdZtrVYu9St3teaP+qq1RKS3ZK12Nb9nVOnqu+te/vrutXf/eqrjTvOvoM7Ft+B1+4F\nKWHv0/DqN8HfAqvugfX/rBTICdjT5ueux95BCMGv7l1tWPgnINZ0mJb77iPV20vVT3+Kc+WKUfM9\n+Zdmvva73axZUMT/+/gHyD+ej3+Qzr3w+8+qltq8i+CahzIuuQP9B/j5np/z4uEXkUiuWXANdy+9\nm8WFiyfz580YgU2baPu7L2KtqaH60Z9hLi6eaZEmhKH0DU6KnkgPTx98mqcOPMWx0DEq3ZXcvfRu\nblh4Aw6z7m9v+Qu8/A/Q+g7MOQeu+3eoXpPT/Z/deYwvP7WTAqeVJz65mpoS9xT+mtOf4J/foO2L\nX0RYLFT96BEc55133PxPv9fKl3+7i+oiJz/9+CpqcynfdAreexw2fRuiPlj5cbjka5CvLPuOUAeP\n1z/OUweeIpwMs7J0Jbctvo0r512JVTu9N7UJvvkmrfd/DnNBAXN/8DCOpUtnWqRxYyh9g3GTlmm2\ndWxjw4ENbD66maRMsrp8NR9d/FEur7o8szE5bdvhT9+D/S+Aew5c/o+w/M73LYk8Gqm05P++sp8f\nvX6IVfMKeOSvV1KaZ5/iX3b6IqWk/5e/pPPBh7AtWkTVIz/EMje3XbC2NvXymSe2k0imefiOFVy2\nJMdRKuE+eP3fYNtjYDLD6r+Fiz4PTtWh64/5efrg02w4sIGWQAsFtgJuWnQTtyy6her86on+1Bkn\nsnsPrQ88QKqvj7JvfwvvTTfNtEjjwlD6BjnT5Gvi2aZneb7pedpD7eRb87lx4Y3cetatLPBkzZpt\nfhv+9BA0bgK7F9Z8BtZ+Bmy5uWVa+sJ85aldbGnq5Y4Lqvn2DUtPPMpkFpPs7qb9H/+J4B//iPuK\n9cx98MFxdza29of51C/fpaFjgHvX1fDFK8/KfYZz32F4/V9h1wawOJXlv/az4FUT9NMyzdb2rWzY\nv4HXW14nJVMsK1nG9TXXc/X8q5X77zQj2dtL2xe/RPjtt/HedhtzvvqV06aD11D6BselZaCFzc2b\nefHIi9T31qMJjbUVa7m+5nour74cu1m3vlNJZdG/8xM48mdwFsHa++H8T4L9fcsojYqUkg3bWvju\ncw1IKfnn65dy2/nGMsnHI7BpE+3/9E3S4TClX/oSBX99J8I0sRdkJJ7iO8/V8+t3mllU6uY/bls+\nvpnOnfXw1sOw+7fq8zm3wEUPwJwhF0hXuIvnm55n46GNNPoaMZvMrJu7jqvmX8XFlReTb82trpwK\nyGSS7u9/n95HH8NSUUH5//kXXGtyc1vOJIbSNxiGlJID/QfY3LyZzc2bOdB/AIC6ojo+XPNhrllw\nDcWOrA6sQIeawLPt/0PgGHiqVDN/1T1gzd3yOdAZ4DvP1vNGYw9ragr53i3nUVV4/CGcs5l4i1pH\nJ/jaa9jqzmbuQw9hW7hwUu79+v4uvvo/u+gJxrn7wvk8sH4RHkcOnbyD+Fpg6yPw7i8gEVKTu1be\nBXU3ZoblDtazZw89y4uHX6Qr0oXZZOaCsgtYX72ey6ouo8R5eqyvFd6+nfav/wPxo0fx3norJV/4\nPOai9+/5cKpgKH0Dwokw2zq3seXYFl5veZ3WYCsCwYrSFayvXs/6eeuZ687yDyeicOAlZdEdeAnS\nSai9HM6/F876UE4++0F84Tjf33SQx7cexWXV+NJVi/nYmnnGmvhjkAoG6X30UfoefQzMZoo/fR9F\nd92FsE5uB6k/nOBfX2zgyW0tFDit/P1Vi7ltVSVmbRytiHCf6vB99xfQdwhsHlh2G6y4E8qXg76V\nRlqm2d2zWxkaRzfTHGhGIDiv5DzWVa5jbfla6orqhvqKTkHSkQjdD/+Avscfx2S3U/zp+yj42Mcw\nTfJzmQwMpT8LSaVTNPQ1sOXYFt469hY7uneQTCexabaMpXVp1aUUObKslVQCjr6pFH39RogNgLtM\njdVedQ8U1Y5Lhv5QnEffOMzP3zpCOJ7kztXz+Lsrz6LQder9SU4FUsEQ/U88Qd9jj5Hy+8m/7jpK\nv/JlLHPmTOn37mnz851n63nnSB8Lil3cf9lCblxeMT7lLyUceQO2/0LVnVQMCmtg6Udg6c3K/aO/\nAKSUNPoa2dy8mdeaX6OhT+38lW/NZ3X5ai6suJC1FWuHGyGnELGmJroefIjgH/+IpaKCons/iefm\nmzHZbDMtWgZD6c8Coskoe3r2sKN7B9s7t7OjeweBeACAJYVLWFuxlgsrLmRF6QpsWlbljA7Aoc2w\n7wU4+IoanmfNg7ob4NxbYcHF47LqQXXSPr71KE9sPUo4keLac8p5YP0iFpcZY+9HI9HZRf+vf4Xv\nN0+S8vlwX3IJxfd/Fse5506bDFJKXt7bycObD1LfPsC8Iief/OACbl5ZOf69iMN90PAs7P0dHP4T\nyDQUnwWLr4FFV0HVatCGXEl90T62HtvKlnZloHSFuwCY657LitIVrChdwcrSldR4azCJU6ezP/jm\nm/Q8/AMiO3diLi2l8O678f7VzafEpC5D6Z9hpGWalkAL9b317O3Zy47uHezt3UsynQSgxlPDitIV\nrCpbxdrytSOs+aSadHP4jyo0b4VUHByFcNbVsORateSxZXzr3aTSkjcae3h8y1E27+vEJATXnlvO\n5y5faEy0GgWZThPetg3fht8y8NJLkErhvuwyiu/7WxzLls2cXFKyqaGL/3rtIDtb/eTZzNyyqpI7\nLqie2HMMdkPD76H+93D0LeUmtHlg4eWqns1fBwXzhn1/k7+JLce2sL1rO9s7t9Mb7QVUS2B56XKW\nFS+jrqiOuqK64XV7BpBSEn77bXoe+RHhd95B2O14rv8w3ttvx15Xx0ztFGso/dOYtEzTPNBMfW+9\nCn31NPQ2EEwEAbCYLCwtWsqKOcoaWl6yfPjwuFQSuvbCkTeV1XX0TeW2ATWJquZSWHKdsr7GadFL\nKdnXEeCZHW08814bnQMxilxW7rigmjvXVFPuMRZKG0ns0CEGXnwJ/zPPkGhtxeR24/2rmym4806s\n1afOuHYpJe+1+PjFW0d4YXc7iZTk7PJ8blpewQ3LKyb2bKMD0PQHOPCKalWGlEWPpxrmXwTzP6hm\nABfMH+YKagm0sL1rO+91vcf2zu0cGTiSueUc55zMC2AwDBuEMI1EGxro/9Wv8D/7HDIaxVpbi+fD\n15F/3XXT/mwNpX8akJZp2oJtHPIdotHXSJOviUZfI4f9h4mm1G5GVpOVxYWLh1XwWk8tlqymMv42\naP0LtG2D1neVVZ+MqHOFtcpdU3OJsrBc4/9zpNKSd4/288reDl6p76S5L4zZJLh0cQk3r6xk/dml\nJ17caxYhpSS6Zw+BVzcR2LSJeFMTCIFr7Ro8H/kIeVdcgclxar8ce4Ixntt5jKd3HGNniw8hYPWC\nQq44ew6XLSmlptg1fos2nYbufaof4OgbKg4ri568Cpi7EipWDMWOgsylgXiAfX37hgyh3nqODhxF\n6ju3FtgKqPXWZsJC70JqvbXTtkJoyu9n4MWXGHjuOcK6/rIvW0belVfgvvgSbGctmvIWgKH0TxGk\nlHRHumkeaKYl0JIJRweODlPuoCyYwUq7yLuIuqI6arw1WEy6gk8loOeAWielY7eKO/dAsFOd16xQ\nfh7MXQWVq9SSCJ7KCcnc3Bdmy6Fe3jrUyxuNPfSF4lg1ExctLOKqpWVcWTeHYvep04k10yQ6Oght\n2Up46xZCW7aS7OoCTcN5/vnkXXkFeVdcMeWds1PF4Z4Qz7zXxgu72znYpVqb1YVOLl9SyrpFxaya\nV4jHOY6hn4NICd371fyPlrfVTO++Q0PnC2uU8i+t08PZ4J0H+nyFUCJEQ28DDX0NGcPpkO9QpkUM\n6mWwwLOA6vxqqvOqqcqvoiqviuq8arVQ4BSQaG9n4IUX8D//PLF61WFtLivDvW4drovX4Vy1CnNB\nwQnuMn4MpT9NSCnpj/XTEeqgI9RBe6id9mA7LYEWmgPNtAXbiAxa3YAmNCrcFVTlVVHjqclYJLXe\n2qFKGPFBb6MKPQeH0t37IZ3Qb2SFksXKXVO+HCrPVwtkmceviBOpNPs7ArzX4uO95n7ebuqjzadk\nLsmzcVFtEVfWlXHJ4hLc4+3gOwORiQSxgweJ7NpNZPcuIu9uJ37kCABaQQHONatxX3wJ7ksvmZI/\n90zS0hfm9QPd/GFfF28d6iGaSCMELCnLZ/WCQs6fX8iySg+VBY6JWbaRftVSbduu4vadaiG/QSxO\nVe9L66BkiUoX1oC3Gsw2pJR0hbuGWs/+Jpr8TbQEWuiJ9Az7Kq/Nm3kRVLorKXeVU+4qp8xVRpmr\nTC0VfpIkOjsJ/fnPBP/0Z0Jvvkk6FALAurAW58oP4Fz1ARwrVmCprDzploCh9CeBWCpGb6SXnkhP\nJnSFu5SCD3dkFH0sFRt2ndVkpSqvaphVMRiXucuwpNPgb1WV2dcyFPcfVso91D10M6GpTq+ihcrS\nmXOuGgpXvGjYaIhcCcaS7O8IsL8jwIHOAHva/Oxu8xNLpgEoclm5YEEhF9YWsba2mNqSCTTjzyDS\nkQixQ03EGg8Sa2ggsms30fp6ZEw9c83rxXHeeTjXrMG1dg22s86a8MzZ041oIsWOFh/vHO7jncN9\nvHu0n0giBYDHYeGcufmcU+HhnLkqVBc60SYyTyM6oAyernrlHuqqh659EOzIyiTUBMLC+eolULAA\nCheoY55KcBYTTkWHtbabA3rre6CFjnAHaZke9rX51vzMC2DwZVDsKB4WCmwFOc8zkIkEkV27CG97\nl/C724hsf490ULVKNI8H+znn4FyzmuJ77x1/GWEo/VFJpBP4Y378MT++mA9fzIc/5qc/2k9PpEcp\n+OiQgh8c/piNQFDiLBmqCM6sSuGcwxyLi8J4DFOoW7ldgp1qdutA25CCD3QActhdySsfUu7Fi1Rc\ntEh1cJnHN8Y9nZZ0BqIc6QlztDfEkd4wjV0B9nUEaO0fanW4rBpLyvNZXuXNhAlbaKcxMp0m2d1D\norWFeHML8aYmYo2NxBobSbS2KjcEIOx27HV1OM49F/uyc3EsWzYpFtqZQiKVpv7YAHuO+dnT5mdP\n2wD7OwLEU0qZWs0maopd1Ja4qS11U1viYmGpm+pC5/G3eByLcJ8ykvoOQ1+TMpr6mlQY7CsYRLNC\nfgXkV4JnLuTP1eNKyJtDwlFIt4D2WE+mxd4R6qAz1KnS4Q78Mf/7RDAJEwW2AvUScBZTbFcvgyJH\nEV6bF4/NQ4GtAK/Ni9fuxW1xZ+qLTKWIHThAZOcuonv3ENmzF3NJMdU/+cn4y4JZqPTDiTAbD20c\nUuSxfpWO+jPHAon3K/FBnGZn5u1d5ChSaXsRxZY8ik0WiqSJ4rSkMJnEEvWrChfu0ZV655CCT0bf\nf/PBCuepUs1QT5VatGownT93XIo9nkzTORDlmC9Cuz/KMX+Edl+Udn+Elr4IR/tCRBNDVotFE8wv\ncrG4LI8lZXksLstnSVkec72OWTFDNh2Pk+ruJtHVRbKrm2RHO/GWVhItLcRbW0m0tmYsdwDMZqzz\n52FbtAjbwoXYFi7Ctmgh1upqhNlwb42HeDLNgc4Ae4/5OdQdorEryKHuIC19YdJZqsfjsFBZ4NCD\nMxNXeO3MybdT6LSOr65G/epl4G+FgWMw0KoGPAy0qThwTA0lHYndqzYBcpdmxaXgLiFi99CjafQK\nSY9M0JOO0hPzZQzG7kh3Jp2Uo9wbMAsz+bZ8CmwFeGwevDYvBXaVzrfmU+Wu5KoFHxpnKStmndL3\nRX2se3IdAC6LS71ZbV68FjcesxOvZsdrsuIRZgow4UmDN5VSIRHHmQgpX3qkXyn0SJ+KB33oo2H3\nQl6ZqhhuPc4rU8sND4a8OSrfCazBWDKFL5ygOxCjNxSnJxCjNxSjJxinJ6ji3mCMrkCMnmCMkY/N\n47BQ7rFTWeBkQbGTeUUu5he5mFfkpMLrmFiz+hRFSomMREj195P0+Uj1+0j5fOpzXy/JQeXe1UWy\nq4tUf//77mFyubBUV2OtrMRSVYW1qhJLpR5XVEz68gcGw4kmUhztDWdeAK39EVr7B+NIxk00iGYS\nFLutlObZKcmzUaqHkjwbJXl2Cl1WvE6LCg7riVdvTacg2KVeAsFOlQ5163GXmmsQ0o9F32/hZ7A4\n1SijTPCStnsJ2Fz4rHZ8mgWfSeATEp9M4pNxfKk4/lSE/kQQX3wgY6Qm00nOKzmP/772vydUprkq\n/TPGbPEkk/whWYonFsISC0L0GMQDambgibDmqeWB7R61ZnhRLTjPV5OXnIUj4iKVtntBU8WXTKUJ\nJ1KEYylC8WQmHuhOMNASwh/x4Y8kGNCDf0QYiCaGWebDRDObKHHbKHZbKcu3c06Fh3KvnQqPg3Kv\nnXKPg3KPffwzKGcQKSUyGiUVCJAOhkgHA6SDQVKBIOlgkHQoOOxcKhDMKPXBWMbjo9/cZMJcXIy5\ntBTL3Lk4VizHMmcO5tLSYUHzeg23zAxit2gsLssbdca2lJK+UJzW/ghtvgjdgRhdgagex+jwR9nd\n5qc3GBvWWsjGZdXwOrNeBE4rXodKu20W3DYNt92M21aF27YAd5lZ/2wmz27GZjYN1Y9kTCn/ULcy\nCocF3/DPPY2YIv14In14UnHmjS7eEJoVbHlIm5uILZ94bOqXcT59NMUJEBY7xWYXuMrA7iFtdZO0\n5JE0u4mbXcTNbuKai6jmImpyEREuQsJJWNiJpSCWSBNLpoklU5l0NJYiHEwRjiUJxVOE40lCsW7C\n8XZCMfU5HE9lOkFPRJ7djMdhyYTaErdKOy3k2814nVaKdQVf7LZR5LbitpmnXDlJKZGJBDIeHwqx\nGDIeJ505pp9PqM/paBQZiZCORElHI0PpSBgZiZKOZqUjET2Pno5EIDl68zcb4XBgcrvQ3HloXi+W\nuXOxL12KVuBF83oxFxSgFRSgeb1DsceD0Iw5A6czQgiK3DaK3DbOqxp7Tf5UWtIbitE1EMMfSdAf\njtMfTuDXY184gS8cxxdJ0NA+gD+cwBdJkBrrTZGFZhK4beol4LBqOCwq2K1uHJZ8HJYaHFYNu0XD\nYddw5Gk4rBo2PZ/DbMKlxXCmIzhkCHs6jD0VxpoKYU0FsSRDWJJBtGQILR5ExAI4YwGc07AHQU5K\nXwhxNfCfgAb8TEr5byPO24BfAh8AeoGPSimP6Oe+DnwCSAEPSClfnjTps+hJWLiq+XPEEkoJJ8d8\nsDE99L3/lJSYkAgpsQqJXQOXRcNtEbgsJlxmE+UWgcsmcLpNuMxm7GYLLrMJhwZOs8BuFjg1gV0T\nOM0m3BYTLovAYRaYpIR0CplKI5NRSIWQiSQylYRAEtmfQib1z8kk8WSK3mQSUkk9XwqZTEByKJ9M\nJod9JplE6p8z18XjpBODyjw+XLnH48jEcVxYOSIsFoTTiclux2S3D6WdTrSiIkwOByaHXSlyuwNT\nnhstLw+Ty63SbjcmtxuTOw/N7cLkciEsE+jcM5g1aCZBaZ59XDuvSSmJJdMEokmCsSShWDKTDsYS\nBGMpglGVDsVSBKJJookUkUSKSDzFQCRB18DQ50giRTSRIpHK1U3u0MPw5aWtZhM2zcTyai+P5/xr\nJsYJlb4QQgN+CFwJtAJ/EUJslFLWZ2X7BNAvpVwohLgdeBD4qBCiDrgdWApUAJuEEGdJKYc77CYB\nWzjAD199CE2mMUmJQGKSaUQ6rRR5WqWFlCDTiHQKpESk0sq/J6WaMTjJRPUwKZjNCLMZoWmqQzHr\nMxYzQtM/jzhncrvRrFZEJlgQViumwc+WrHM26/Bzo+WxWpRCdzh0JW43OjgNTguEENgtykIvyZu8\nyYWJVDrzcojG00QSyhMQTyqvQSZOKU9CPDV0bNDDEE+mKfdM/dahufxTLwAapZRNAEKI3wA3AtlK\n/0bgW3r6KeC/hPJJ3Aj8RkoZAw4LIRr1+22ZHPGHcDrtVK1YCiaBMGmgmRDCBJqG0EwgTOqYSQOT\nSY2l1jSESaj1ZzL5TUqJCpO6zqQNv6dJHRt2z9Hya1nfk5VfaCbQzAizrrg1M8IyhiI3WzLn0DTD\nB21gcIpi0UxYNNPEhp5OM7ko/blA1pQ4WoHVY+WRUiaFEH6gSD++dcS171swWwjxKeBTANUTXKRI\nc7up/M/vT+haAwMDg9lCLlMHRzMvRzqwxsqTy7VIKX8ipVwlpVxVUnJ6bKVmYGBgcDqSi9JvBbJ3\nsa4Ejo2VRwhhBjyontJcrjUwMDAwmCZyUfp/ARYJIRYIIayojtmNI/JsBO7S07cAr0k162sjcLsQ\nwiaEWAAsAt6ZHNENDAwMDMbLCX36uo/+fuBl1JDNx6SUe4UQ3wG2SSk3Ao8Cj+sdtX2oFwN6vg2o\nTt8k8NmpGLljYGBgYJAbZ8wyDAYGBgazmVyXYZgda8AaGBgYGACG0jcwMDCYVRhK38DAwGAWccr5\n9IUQ3cDRk7hFMdBzwlzTjyHX+DDkGh+GXOPjTJRrnpTyhBOdTjmlf7IIIbbl0pkx3RhyjQ9DrvFh\nyDU+ZrNchnvHwMDAYBZhKH0DAwODWcSZqPQntqvw1GPINT4MucaHIdf4mLVynXE+fQMDAwODsTkT\nLX0DAwMDgzEwlL6BgYHBLOK0VPpCiFuFEHuFEGkhxKoR574uhGgUQuwXQnxojOsXCCHeFkIcFEI8\nqa8eOtkyPimE2KGHI0KIHWPkOyKE2K3nm/JFh4QQ3xJCtGXJdu0Y+a7Wy7BRCPG1aZDre0KIfUKI\nXUKIp4UQo+4QPV3ldaLfr68c+6R+/m0hxPypkiXrO6uEEH8QQjTo9f/zo+S5VAjhz3q+35xqufTv\nPe5zEYqH9fLaJYRYOQ0yLc4qhx1CiAEhxBdG5JmW8hJCPCaE6BJC7Mk6ViiEeFXXQ68KIQrGuPYu\nPc9BIcRdo+UZF1LK0y4AZwOLgdeBVVnH64CdgA1YABwCtFGu3wDcrqd/DHx6iuX9d+CbY5w7AhRP\nY9l9C/j7E+TR9LKrAax6mdZNsVxXAWY9/SDw4EyVVy6/H/gM8GM9fTvw5DQ8u3JgpZ7OAw6MItel\nwHPTVZ9yfS7AtcCLqI2V1gBvT7N8GtCBmsA07eUFXAysBPZkHXsI+Jqe/tpodR4oBJr0uEBPF5yM\nLKelpS+lbJBS7h/lVGZPXinlYWBwT94M+t69l6P28gX4BXDTVMmqf99twK+n6jumgMy+yFLKODC4\nL/KUIaV8RUqZ1D9uRW24M1Pk8vtvRNUdUHVpvZjiTYyllO1Syu16OgA0MMr2o6coNwK/lIqtgFcI\nUT6N378eOCSlPJnZ/hNGSvkn1LLz2WTXobH00IeAV6WUfVLKfuBV4OqTkeW0VPrHYbT9fEf+KYoA\nX5aCGXXf3klkHdAppTw4xnkJvCKEeFffK3g6uF9vYj82RpMyl3KcSu5BWYWjMR3llcvvH7YvNDC4\nL/S0oLuTVgBvj3J6rRBipxDiRSHE0mkS6UTPZabr1O2MbXjNRHkBzJFStoN6oQOlo+SZ9HLLZWP0\nGUEIsQkoG+XUN6SUvx/rslGO5bqf77jJUcY7OL6Vf5GU8pgQohR4VQixT7cKJszx5AJ+BHwX9Zu/\ni3I93TPyFqNce9Jje3MpLyHEN1Ab7jwxxm0mvbxGE3WUY1NWj8aLEMIN/A/wBSnlwIjT21EujKDe\nX/MMase6qeZEz2Umy8sK3AB8fZTTM1VeuTLp5XbKKn0p5RUTuCyXPXl7UE1Ls26hTXjf3hPJKNR+\nwTcDHzjOPY7p4fjIfAAAAiVJREFUcZcQ4mmUa+GklFiuZSeE+Cnw3CinpmRv4xzK6y7gw8B6qTs0\nR7nHpJfXKIxnX+hWMXxf6ClFCGFBKfwnpJS/G3k++yUgpXxBCPGIEKJYSjmli4vl8Fxmcr/sa4Dt\nUsrOkSdmqrx0OoUQ5VLKdt3V1TVKnlZUv8Mglai+zAlzprl3Trgnr65M/oDayxfU3r5jtRxOliuA\nfVLK1tFOCiFcQoi8wTSqM3PPaHknixF+1I+M8X257Is82XJdDXwVuEFKGR4jz3SV18nsCz1l6H0G\njwINUsr/GCNP2WDfghDiAtR/vHeK5crluWwEPq6P4lkD+AddG9PAmK3tmSivLLLr0Fh66GXgKiFE\nge6KvUo/NnGmutd6KgJKWbUCMaATeDnr3DdQIy/2A9dkHX8BqNDTNaiXQSPwW8A2RXL+HLhvxLEK\n4IUsOXbqYS/KzTHVZfc4sBvYpVe68pFy6Z+vRY0OOTRNcjWifJc79PDjkXJNZ3mN9vuB76BeSgB2\nve406nWpZhrK6IOopv2urHK6FrhvsJ4B9+tlsxPVIX7hNMg16nMZIZcAfqiX526yRt1NsWxOlBL3\nZB2b9vJCvXTagYSuuz6B6gPaDBzU40I97yrgZ1nX3qPXs0bgb05WFmMZBgMDA4NZxJnm3jEwMDAw\nOA6G0jcwMDCYRRhK38DAwGAWYSh9AwMDg1mEofQNDAwMZhGG0jcwMDCYRRhK38DAwGAW8b9QeIeE\nFYXULwAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "
" ] }, "metadata": {}, @@ -924,7 +5521,7 @@ ], "source": [ "plt.title(\"Cauchy distribution\")\n", - "x = np.linspace(-10,10)\n", + "x = np.linspace(-10,10,200)\n", "plt.plot(x, cauchy(0,1)(x), label=\"gamma = 1\")\n", "plt.plot(x, cauchy(0,2)(x), label=\"gamma = 2\")\n", "plt.plot(x, cauchy(0,3)(x), label=\"gamma = 3\")\n", @@ -941,7 +5538,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 55, "metadata": { "ExecuteTime": { "end_time": "2017-09-22T06:29+0000", @@ -951,9 +5548,9 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEICAYAAABrtkJsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3Xd4FVX6wPHvmw4JoSX0ktB7DU2a\nggVsFLsoXXRt6+padtd1bauuP9e6dgGxICICFlAEUekl9A6hJ7QQWgiEtPP74wxwc0kgISFzk7yf\n5+Ehd87cue/MnTvvnJkz54gxBqWUUupS83M7AKWUUqWDJhyllFJFQhOOUkqpIqEJRymlVJHQhKOU\nUqpIaMJRSilVJEp0whGRQSLyi9txnCYiZUTkBxE5KiLfFOJy64jIcRHxL6xl+goR2SEiV7odR16J\nyN9F5JMi+qwz26awP9fZn+o5f38qIi8W4rI/EJF/FtbyPJYrIjJWRA6LyJJCWF6UiBgRCSiM+LyW\n/ayIfJGP+Qv1O3BLnhKOiNwpIrHOTrhXRH4SkW6XOriCMsZ8aYy52u04PNwMVAUqG2Nu8S50dsJ0\nZzsfEZEFItLlQgs1xuwyxoQZYzIvRdC+TERiRORH5yBzRETWi8i/RaSiG/EYY14yxoz01c8Vkd9F\n5ILzOfvTtoLGJSJDRWSe17LvM8a8UNBl56AbcBVQyxjT8RIsv1QRkRdEZI2IZIjIszmU3ykiO0Uk\nRUSmikilCy3zgglHRB4F3gRewh4s6wDvAf3yvQZF6FKclRSCusBmY0zGeeb52hgTBkQC84DJIiJF\nEl0xIyKXAb8D84EmxpgKQB8gA2jtYmjFlo/+bvKqLrDDGJOS3zcW8/W+VOKAJ4Bp3gUi0hz4ELgb\nmxdOYPPC+Rljcv0HlAeOA7ecZ55gbELa4/x7Ewh2yi4H4p2gDwB7gf7AtcBm4BDwd49lPQtMAr4G\nkoHlQGuP8qeArU7ZemCAR9lQ7IHnDWe5LzrT5jnl4pQdAI4Cq4EWHuv5GZAI7ASeBvw8ljsPeA04\nDGwH+p5nezTFHgSPAOuAG53pzwFpQLqzTUfk8N5ngS88XjcHDBCBPTl42onvgBNveWe+KGe+AI+Y\ntznbaTswyJneAPjDWf+D2OR2+rMuA5Y6ZUuByzzKfgdecLZvMvALEJHL+lcEfnS25WHn71p5XRZ2\nB94JJAH/AHYAV+byWfOAdy6wD9cHZjvLOwh8CVTwKDdAA4/XnwIvOn9HOPEfwe5Tcz32iyeBBGcd\nNgG9c/kOvwH2Odt1DtDc67Pexf6gk4HFQP3zrEuu28bzc4EQ4AtnviPO91kV+DeQCaRi98H/eWyD\nB4AtwHbv7eLE+QEw04nzD6BuTvuex3c8EvtbSHU+8zhwxHsbO6/vwR7cDgHfAzW8vp/7nNgOO9tL\nctg2I7w+67k8LjvbenstM9u6AcOADc422Abc6zHv5RTusa6tMy3ZmWcCZ/fL8/7GCvufsy896zXt\nJWC81+8sDSh33mVd4INOny0GnGee54FFQBXsWfkC4AWPLyEDeAYIdL78RGA8UA57QE0F6nl8CenY\nS0+BwF+xB8xAp/wWoAb24HsbkAJUN2cPshnAQ0AAUIbsCecaYBlQAZt8mnq89zPgOyemKGcHGeGx\n3HQndn/gT9jEmtNOH4jduf8OBAG9nB2mcU4Hoxzef6Ycm8j/D9jtvB7uLLseEAZMBj73/mEAocAx\nj8+sjnOQA77CHqj8sAelbs70Stgd925nGXc4ryt7HEC2Ao2c7fo78Eou61AZuAko62zPb4CpXgej\nHJcFNMMeLHo46/+6852ek3Cc9cwELr/APtwAe5klGLt/zgHe9Dro5JZwXsYeaAOdf92x+05jYDfO\nwcvZ/vVz+o6d760cZ0/MVnp91iGgo7PdvwQm5LIe5902ZN937gV+cL4Df6A9EO6x/Ud6Ldtgk0kl\noIz3dnHiTPb47Lc4+7uKIpeE4/H7mef1eZ7buBf2RKCds+x3gDlesf2I/d3WwR4/+uSyjbJ9Vh6X\nnW29vZaXbd2A67AHVgF6Ys/q2xX2sQ577NgJ/MV5fbMz7+ltdt7fWA7rcfqkKad/P57v9+O8P6eE\n8x3wpNe040D78y7rAh80CNh3gXm2Atd6vL4GW609/SWcBPyd1+WcL7CTx/zLgP4eX8IijzI/7JlC\n91w+eyXQz2Nn25XbDujsfJuBzjhnqc50f+AU0Mxj2r3A7x7LiPMoK+usQ7Uc4umOPZv1XP5Xp78s\n8pZw0pwd4QD2zLy9U/YrcL/HvI2dnTCAcxPOEWeHLOO1/M+Aj/A6G8ImmiVe0xYCQz0OIE97lN0P\n/HyhHdWZtw1w2ON1rsvC/lgneJSFOtsjp4RTy1nnJh7TXnXWPcXzM7ze1x9Y4fH6fAnneewPq4HX\nMho438+VOCdDXt9hjt8x9qBpOFsz/RT4xKP8WmBjLu8977Yhe8IZjj3xa5XDcn4n54TTK4dpngnH\n87PDsMm+NgVPOKOBV72WnQ5EecTRzaN8IvBULtso22flcdm9clqWU37OunmVTwX+7Px9OYV0rMMm\n9mwntc73+WIucWT7jRX2P3JOOL8C93lNS+ACJ4AXuoeTBERc4PpmDWw2Pm2nM+3MMszZm9knnf/3\ne5SfxO4Ip+0+/YcxJgtbTa0BICKDRWSlc3P4CNACe9njnPd6M8bMBv6HrZLvF5GPRCTcef/pMwrP\ndajp8Xqfx3JOOH96xnxaDWyNJOs8y7qQicaYCsaYKsaYXsaYZR7L9o4xAHup5Axjr1/fhr0MsVdE\npolIE6f4CezZ2RIRWSciw3NZdk5x7/P4+wQ5rz8iUlZEPnRuJh7D1igqeLWgy21ZNcj+/adg98Gc\nHAaysDW40/M/Yex9nCnYbYOIVBGRCSKS4MTzBdn3mfP5P2yt8hcR2SYiTzmfEwc8gj1oHHCWX8P7\nzSLiLyKviMhW57N3OEWen5+n7Ur+ts3nwAxggojsEZFXRSTw/Kua+2/Hu9wYcxxbMztnnS9Ctn3P\nWXYSF7HvXeSyL7TeZ4hIXxFZJCKHnOPPtWT/LgvrWFcDSDDOUdxxZj3y+Bu71I4D4V7TwrE14Vxd\nKOEsxFYD+59nnj3Ym3Wn1XGmXazap/8QET/smeweEakLfAw8iL3UUwFYiz2Anub5BZ3DGPO2MaY9\ntnrbCHgcW+VOz2EdEi4i9j1AbSfugi4rp2V7x5hB9h0aAGPMDGPMVdiD8UbsdsMYs88Yc48xpga2\nFveeiDTIYdkFifsxbO2rkzEmHHu2Btm/p9zsJfv3XxZ7+eAczgF3MTDwAst8GbtftHLiucsrlhPY\nWutp1Tw+I9kY85gxph5wA/CoiPR2ysYbY7pht5sB/pPDZ9+JbVxzJfY+YdTpVbtAzDnJz7ZJN8Y8\nZ4xphr03dz0w+HRxLss/72/H67PDsJeh9mBrk5DLNszDcrPteyISil2vQv/N5LLsC8V3+r3BwLfY\ne7lVnePPdC7uuzwtx2Md9ruu6dVYqI7H3/n6jTmtio/n8u+ni4x9HR4Nc5wm9MHYq0i5Om/CMcYc\nxVbl3xWR/k5mDXQy/avObF8BT4tIpIhEOPPnuX15DtqLyECnVvUI9nLXIuwlBIO9LoqIDMPWcPJE\nRDqISCfnTC8F5wajc0YyEfi3iJRzEtujF7kOi51lP+Fsp8uxB6oJF7Esb18BfxGRaOcH/xL2pn+2\nFm8iUlVEbnR+XKewZyKZTtktIlLLmfUwdntmYn84jZxmjgEichv2nsGPFxFnOeyZ3BGnmeS/8vHe\nScD1ItJNRIKwl7TOt48+AQwXkadEpAqAs37RXvEcd+KpiT3J8LQSuNOpjfTBXpvHWdb1ItLA+eEf\nw26rTBFpLCK9nINQqrO+OTVJL4f9DpKwB+SX8rYZcpTnbSMiV4hIS+eM9xj2hOp0fPux9wHz61qP\nz34BWGyM2W2MScQewO9ytuFw7H2O0/YDtZz35WQ8MExE2jjb8yVn2TsuIsZLuewg7AE1EcgQkb5A\nQR+5yO1YtxB7Mvmw83sciL3Pd1q+fmPGmL7GNnPP6V/f3N7nHMNCsPtZgIiEeNSivgRuEJHuzrHm\neWCyMaZANRyMMa9jD8BPYzf2bmwtY6ozy4tALLbV1xpsy4qCPKD0HfaS0Omb2AOdM7b1wH+xX8Z+\noCW2pVNehWPP9A9ztqXPa07ZQ9hEsQ3b8mk8MCa/gRtj0oAbgb7YmtN7wGBjzMb8LisHY7CXSuZg\nby6mOnF788OeAe3BXvboib1PAtABWCwix7Etdv5sjNlujEnCngU/ht0uTwDXG2MOXkScb2IbAxzE\n/nh+zusbjTHrsK2GxmPP8g5jLzPkNv887L25HsBm5zLHz9h7CO84sz2HvWl8FNsabLLXYv6MPSk4\ngr1nOdWjrCEwC5uwFgLvGWN+xx54XnHWcR+2wczfcwjxM+y+loBtVbnovBvgPPK5baphE9QxbKuq\nPzh7AvUWcLPY55bezkcI47EHtkPYRgiDPMruwSbyJOzVgwUeZbOxZ8P7ROSc/ckY8yvwT2ztYS82\nWd2ej7hyVZjLdg6kD2NPTg9ja6/fFzDE3I51adia+1Cn7Day77cX/RvLp4+xie0ObGOjk06cp/fH\n+7CJ5wA2Cd6f82LOkuyXCd0l9uGiBsaYu9yORSmlVOEq0V3bKKWU8h2acJRSShUJn7qkppRSquTS\nGo5SSqki4dMd1kVERJioqCi3w1BKqWJl2bJlB40xkW7H4c2nE05UVBSxsbFuh6GUUsWKiHj3HOIT\n9JKaUkqpIqEJRymlVJHQhKOUUqpI+PQ9HKVU6ZWenk58fDypqaluh+KzQkJCqFWrFoGBF+oM3Ddo\nwlFK+aT4+HjKlStHVFQUoqOsn8MYQ1JSEvHx8URHR1/4DT5AL6kppXxSamoqlStX1mSTCxGhcuXK\nxaoGqAlHKeWzNNmcX3HbPnpJTam8yMqEvSvhYBwc3QUIBIVBREOo2R7KVHA7QqV8niYcpc5n31pY\n/D5s+glO5DaiMxDVHdreDc36QWBI0cWnLil/f39atmxJRkYGTZs2Zdy4cZQtWzbX+S+77DIWLFiQ\na3lppwlHlTrGGJ75bh2zNx7IdZ6aWXt5OGMM3bJiOUEIc/06Mj8whi0SzT6JpEHVcrzZvz6hhzfC\nroWw+muYMgpmvwhX/gta3ATF7HKHOleZMmVYuXIlAIMGDeKDDz7g0UcfzXV+TTbnp/dwVKnz0Zxt\nfL5oJ42rlaNzvcrZ/nWJrsDfwmfwZfojtGcDP0WO4KXG3/JLkxdJadifGg1a0zq6GrPjjvHAd7vJ\niOoJV/wdHloBg76FkPLw7Qj4rB8c2+v2qqpC1L17d+Li4gB4/fXXadGiBS1atODNN988M09YWBgA\ne/fupUePHrRp04YWLVowd+5cMjMzGTp0KC1atKBly5a88cYbAKxcuZLOnTvTqlUrBgwYwOHDhwG4\n/PLLefLJJ+nYsSONGjVi7ty5RbzGhU9rOKpUWbg1if/8vJFrW1bj3TvbZb/pevIIfDsSDsyEJtcT\neO1r9A2vTk6DvneIrsQ/pqzlhR/X81y/FuDnBw2vhPpXwLJPYcY/4IOucNMnUL9XUa1eifXcD+tY\nv+dYoS6zWY1w/nVD8zzNm5GRwU8//USfPn1YtmwZY8eOZfHixRhj6NSpEz179qRt27Zn5h8/fjzX\nXHMN//jHP8jMzOTEiROsXLmShIQE1q5dC8CRI0cAGDx4MO+88w49e/bkmWee4bnnnjuTxDIyMliy\nZAnTp0/nueeeY9asWYW6DYqa1nBUqbH/WCoPfbWCqIhQXr25dfZkc3gHfNIbtv0G170Ot38J4dVz\nXdagTnW5p3s04xbu5NP5288W+PlDhxFw7x8QVhW+vAVWfHnpVkpdUidPnqRNmzbExMRQp04dRowY\nwbx58xgwYAChoaGEhYUxcODAc2ofHTp0YOzYsTz77LOsWbOGcuXKUa9ePbZt28ZDDz3Ezz//THh4\nOEePHuXIkSP07NkTgCFDhjBnzpwzyxk4cCAA7du3Z8eOHUW23peK1nBUqZCemcUDXy7nRFoGX93T\nibBgj13/YBx8diOkn4AhP0Ddy/K0zKf6NmVH0gme/3E9dSqXpVeTqmcLIxvD8Bkw8W747n44cRC6\n/rmQ16r0yGtNpLB53sM5LS+DVvbo0YM5c+Ywbdo07r77bh5//HEGDx7MqlWrmDFjBu+++y4TJ048\nc1ktN8HBwYBtvJCRkXHxK+IjtIajSoWXp28kdudh/nNTKxpWLXe2IGkrfHotZJyCIT/mOdkA+PsJ\nb93ehmY1wnlw/IpzL/mEhMOd30DzATDzGVj8YSGtjXJTjx49mDp1KidOnCAlJYUpU6bQvXv3bPPs\n3LmTKlWqcM899zBixAiWL1/OwYMHycrK4qabbuKFF15g+fLllC9fnooVK56pIX3++ednajslUb5q\nOCLSB3gL8Ac+Mca84lXeA3gTaAXcboyZ5ExvA7wPhAOZwL+NMV8XPHylLuzH1XsYM387w7pGcUPr\nGmcLjh+ALwZCVgYMnQ5VmuR72WWDAhg9pAP9353PiHFLmfpAV6qGezSLDgiCgR9DRhr89IR9dqft\noEJYK+WWdu3aMXToUDp27AjAyJEjs92/Afj999/5v//7PwIDAwkLC+Ozzz4jISGBYcOGkZWVBcDL\nL78MwLhx47jvvvs4ceIE9erVY+zYsUW7QkVI8lI9BBARf2AzcBUQDywF7jDGrPeYJwqbVP4KfO+R\ncBoBxhizRURqAMuApsaYI+f7zJiYGKMDsKmC2LI/mX7vzqdp9XC+uqczQQFOpT4tBcZeCwc325pN\nrfYF+pz1e45xywcLiI4MZeK9XSgb5HUul3EKxt8GO+bC4O8gqluBPq802LBhA02bNnU7DJ+X03YS\nkWXGmBiXQspVfi6pdQTijDHbjDFpwASgn+cMxpgdxpjVQJbX9M3GmC3O33uAA4DPDX+qSpbjpzK4\n74tllA3y5907251NNsbAdw/AvtVw89gCJxuwLZ7eubMt6/cc488TVpKZ5XUiFxAMt46DSvXg67vh\n0PacF6RUCZafhFMT2O3xOt6Zli8i0hEIArbmUj5KRGJFJDYxMTG/i1cKsDd2n5y0mu0HU3jnjnZU\nK+9xmWvRe7BuCvT6JzTuU2if2atJVZ65vhkz1+/nlZ82nDtDSHm4YwKYLJgwCNJPFtpnK1Uc5Cfh\n5PTYdN6ux51egEh14HNgmDEmK6d5jDEfGWNijDExkZFaCVIXZ/S87Uxbs5cn+jShS/3KZwt2LoRf\n/glNrodufyn0zx3aNZohXery8dztfLk4h2HlK9eHm0bDgXUw4++F/vlK+bL8JJx4oLbH61rAnry+\nWUTCgWnA08aYRfn4XKXyZcn2Q7z800auaV6Ve3vUO1uQehQmj4IKtaH/+5es65l/Xt+MKxpH8sx3\n65izOYdaesMrbRPp2DGwdvIliUEpX5SfhLMUaCgi0SISBNwOfJ+XNzrzTwE+M8Z8k/8wlcqbA8mp\nPDh+OXUqleX/bvF6uPOnJ+FYgm01FhJ+yWII8PfjnTvb0bBKGA98uZxN+5LPnanXP6FWB/jxEe0C\nR5UaeU44xpgM4EFgBrABmGiMWSciz4vIjQAi0kFE4oFbgA9FZJ3z9luBHsBQEVnp/GtTqGuiSr30\nzCweHL+CY6npvH9XO8JDPIbdXf89rPoKejwOtTte8ljCggMYM7QDZYL8Gf7pUhKTT2WfwT8Q+n9g\nm0v/8GfbkEGpEi5fD34aY6YbYxoZY+obY/7tTHvGGPO98/dSY0wtY0yoMaayMaa5M/0LY0ygMaaN\nx7+V5/sspfLr/2ZsYsn2Q7wysBVNqnnUYFKPwvTHoVor6PHXIounRoUyjB7SgUMpadzzWSyp6ZnZ\nZ4hoYHuW3jIDVmr3N75IRHjsscfOvH7ttdd49tlnizSGoUOHMmnSpCL9zEtFexpQJcJPa/by0Zxt\nDO5Sl/5tvRpPznoOUg7AjW/bmkURalmrPG/e3oZV8Ud4bOIqsrybS3e8F+p2tZ19phws0tjUhQUH\nBzN58mQOHry476YkdEdTmDThqGJva+JxHp+0mja1K/CP67weFNy12N6c73Qf1Gib8wIusWuaV+Pv\nfZsybc1eXvtlU/ZCPz/bWWjacZj5L1fiU7kLCAhg1KhROfZ5tnPnTnr37k2rVq3o3bs3u3btAmyN\n5NFHH+WKK67gySef5Nlnn2XIkCFcffXVREVFMXnyZJ544glatmxJnz59SE9PB+D555+nQ4cOtGjR\nglGjRuWpz7biRjvvVMVayqkM7vt8GUEBfrw3qB3BAf5nC0/fHwmvCVf8w70ggZHdo9l2MIX3ft9K\nVEQot8Z4NPis0gS6PADz34J2g6FOJ/cC9VU/PQX71hTuMqu1hL6vXHC2Bx54gFatWvHEE09km/7g\ngw8yePBghgwZwpgxY3j44YeZOnUqAJs3b2bWrFn4+/vz7LPPsnXrVn777TfWr19Ply5d+Pbbb3n1\n1VcZMGAA06ZNo3///jz44IM888wzANx99938+OOP3HDDDYW7zi7TGo4qtowx/G3yGrYmHuedO9pS\no0KZ7DMsfh8SN8B1r0FwmDtBOkSE5/s1p3vDCP4+eQ2b93u1XOvxhE2M0x6DTL0M40vCw8MZPHgw\nb7/9drbpCxcu5M477wRsgpg3b96ZsltuuQV//7MnP3379iUwMJCWLVuSmZlJnz72geOWLVueGXbg\nt99+o1OnTrRs2ZLZs2ezbt06Shqt4ahia9yCHXy/ag+PX9OYrg0ishceT4Q5r0HDa6BxTkOoFb1A\nfz/eur0tPV79jTdnbea9QR5d6gSHQZ+XYeJgWPoJdL7PvUB9UR5qIpfSI488Qrt27Rg2bFiu83g2\nwQ8NDc1WdnqYAT8/PwIDA8/M6+fnR0ZGBqmpqdx///3ExsZSu3Ztnn32WVJTUy/BmrhLaziqWEpM\nPsVL0zfSu0kV/tSz/rkz/P6y7aDz6heLPrjzqBQaxPCuUUxfs491e45mL2x6I9TvDb+9BCcOuROg\nylGlSpW49dZbGT169Jlpl112GRMmTADgyy+/pFu3i++Q9XRyiYiI4Pjx4yWmVZo3TTiqWPpy8U7S\nMrP4x3VN8fPz6jHgwAZYNtaOvBnZyJ0Az2NE93qEhwTwxszN2QtEbIJMS4a5/3UnOJWrxx57LFtr\ntbfffpuxY8fSqlUrPv/8c956662LXnaFChW45557aNmyJf3796dDhw6FEbLPyfPwBG7Q4QlUTtIy\nsrjsldm0rBnO2GE5PMT5xc2wewk8vAJCK59b7gPe+XUL/525makPdKVN7QrZC797AFZPhAeXQsUo\nV+LzBTo8Qd6U1OEJlPIJ09fs5eDxUwztGn1uYdyvEDcTej7us8kGYFi3aCqWDeR171oOwOV/B/GH\n2b51OVCpgtKEo4oVYwxj52+nXmQo3b0bChgDvz4PFepAx1HuBJhHYcEB3NuzPnM2JxK7w+t+Tfma\n0OV+WPMN7NEOOVTJoQlHFSsrdh9hVfxRhl0Wde69m43TYO9KuPxvdsAzHze4S10iwoL57y851HK6\n/hnKVIKZzxR9YD7Ely/5+4Litn004ahi5dP5OygXHMDAdrWyF2RlwW//hsoNoOWt7gSXT2WDArj/\n8vos3JbEgq1eXaeElLcdjW7/A3bMy3kBJVxISAhJSUnF7qBaVIwxJCUlERIScuGZfYQ+h6OKjX1H\nU5m+Zi9DLosiNNhr1103GQ6st4Ob+Ref3frOTnX4aM42Xv9lM13uq5x9OIWYYTD/Tfj9FRj6o3tB\nuqRWrVrEx8ejI//mLiQkhFq1al14Rh9RfH6ZqtT7cvFOMo1hSJeo7AWZGfa5myrNoPlAV2K7WCGB\n/jzQqwH/nLqWOVsO0rORxyi3gWXsqKQ/PwXb50J0d/cCdUFgYCDR0Tk0DFHFll5SU8VCanom4xfv\noneTqtSpXDZ74ZqJkBRn+0vzK3679G0xtalZoQyv/7Lp3MtH7YdCWDVby1GqmCt+v05VKv2wag9J\nKWkM6xqVvSAr0z4kWa0VNLnOldgKKijAj4d7N2BV/FFmbTiQvfB0LWfnPFvLUaoY04SjfJ4xhk8X\n7KBR1TAuq+/1bM2G723tpvtj9kn9Ympgu1rUrVyW12duPnfMnPZDnFrOy+4Ep1Qh0YSjfN7SHYdZ\nt+cYQy+Lzn5T3RiY+7ptmda0eHfjHujvxyNXNmTD3mP8vG6fV2EZ6PYI7Jxvx/dRqpjShKN83qcL\ntlO+TCADvEfyjPsV9q2Gro+An3/Oby5GbmxdkwZVwnhj5mYyvWs57Qbb53Lmv+lOcEoVAk04yqcl\nHDnJjHX7ub1jbcoEeSWVea/bMWRa3eZOcIXM30945MqGbDlwnB9X78leGBRqe0/YNN12TqpUMaQJ\nR/m0zxfuxBjD3Z3rZi/YtcheYrrsIQgIcie4S+DaFtVpUq0cb87aQkZmVvbCjqMgoAzMfzvnNyvl\n4zThKJ91Mi2TCUt3cXWzatSq6NUUeu7rULayvdRUgvj5CX+5qhHbD6YwZUVC9sJQZ33XTISj8e4E\nqFQB5CvhiEgfEdkkInEi8lQO5T1EZLmIZIjIzV5lQ0Rki/NvSEEDVyXfdysTOHIi/dym0PvWwJYZ\n0OlP9lJTCXN1s6q0rFmet2dvId27ltPlAdtYYuF77gSnVAHkOeGIiD/wLtAXaAbcISLNvGbbBQwF\nxnu9txLwL6AT0BH4l4hUvPiwVUlne4XeQdPq4XSMrpS9cP5bEBQGHUe6E9wlJiI8elUjdh86yTex\nXjWZinWhxU2w7FMdFVQVO/mp4XQE4owx24wxacAEoJ/nDMaYHcaY1YDXaRnXADONMYeMMYeBmUCf\nAsStSriF25LYtD+ZYV2jsjeFPrYH1k2BdkOgTMk9Z7m8cSTt6lTgf7O3cCojM3th1z9DegosHZ3z\nm5XyUflJODWB3R6v451phfpeERklIrEiEqud9pVen87fQaXQIG5sXSN7wZKPwGRBp3vdCayIiAiP\nXd2YPUdTmbBkd/bCai2gwZWw+ANIP+lOgEpdhPwknJwe485rv+F5fq8x5iNjTIwxJiYyMjKnWVQJ\nt/vQCWZu2M8dHWsTEujRFDp8n1iNAAAgAElEQVQtBWLHQpPr7aWlEu6y+pXpFF2J//0Wx8k0r1rO\nZQ/DiYOwZpI7wSl1EfKTcOKB2h6vawF7cpm3MN+rSpnPFu7AT4S7O0dlL1g5HlKP2BvnpcDpWk5i\n8im+WLQze2F0D6jSHBa9bxsRKFUM5CfhLAUaiki0iAQBtwPf5/G9M4CrRaSi01jgameaUtmknMpg\nwtLd9G1RjWrlPQaWysqyB9ca7aB2J/cCLGIdoyvRvWEE7/+xlZRTGWcLRKDzfXBgHezQTj1V8ZDn\nhGOMyQAexCaKDcBEY8w6EXleRG4EEJEOIhIP3AJ8KCLrnPceAl7AJq2lwPPONKWymbwigeTUjHOb\nQm/5BQ5ttbWbYtxJ58V49KpGHEpJ49MFO7IXtLzFPou06H1X4lIqv/I1AJsxZjow3WvaMx5/L8Ve\nLsvpvWOAMRcRoyoljDF8On87rWqVp10drxZoi9613dg065fzm0uwtnUq0qtJFT6as427u9QlPCTQ\nFgSWgfbD7PAMh7ZBpXruBqrUBWhPA8pnzN1ykK2JKQy9zKsp9L41sH0OdLwH/APdC9BFj17ViKMn\n0xkzb3v2gg4jbceliz9yJzCl8kETjvIZny7YQURYMNe1qp69YNEHEFjWjn5ZSrWoWZ4+zasxeu52\njpxIO1sQXh2aD4AVX0DqMfcCVCoPNOEon7D9YAqzNx5gUKc6BAd4NIU+cQjWToJWt5boBz3z4i9X\nNSL5VAbjFni1WOv0J0hLhpVfuhOYUnmkCUf5hHELdhDoLwzqVCd7waoJkJEKMSPcCcyHNK5Wjl5N\nqvD5oh2kpns8l1OrvW25t/gDO+S2Uj5KE45yXXJqOpOWxXNdy+pUCfdoCm0MxI6BWh2geiv3AvQh\nI7pFc/B4Gt+v8nqMrdO9cHgHxM1yJS6l8kITjnLdt8viOX4qg2Fdo7MX7JgLSVsgZrg7gfmgy+pX\npkm1coyZtx3j+cBnkxsgrCos/cS94JS6AE04ylVZWYZxC3fStk4FWteukL0wdgyEVLA3xRVgex8Y\n2b0eG/clMz8u6WxBQJBtVLFlJhzanuv7lXKTJhzlqj82J7L9YMq5tZvk/bDhB2gzyD5vos64oXV1\nIsKC+WTetuwF7YaA+MGyse4EptQFaMJRrhq7YAdVw4Pp26Ja9oIVn0NWBsQMcycwHxYc4M+QLnX5\nfVMicQeSzxaUrwlNroXln0N6qnsBKpULTTjKNdsSjzNncyJ3dapLoL/HrpiVaQcYi+4BEQ1di8+X\nDepcl+AAP0bP25G9oMNIOHkI1k91JS6lzkcTjnLNlBUJ+Anc1qF29oK4WXB0tzYWOI9KoUEMbFeL\nycvjSTp+6mxBdE+o3BCWfOxecErlQhOOcoUxhikrEujaICJ7U2iwjQXCqtpxb1SuRnSL4lRGFl8u\n3nV2ooit5STEwp4V7gWnVA404ShXLNt5mPjDJxnQ1mvg1yO7YPMMaHt3qe03La8aVCnH5Y0j+Wzh\nzuzDULe+3XYFpENQKx+jCUe5YsqKBMoE+nNNc6/GAsvG2bP0UtxvWn6M7FaPg8dP8f1KjwdBy1Sw\nQxesmQQnD7sXnFJeNOGoIpeWkcWPq/dydfOqhAZ7jJCRkQbLP4OGV0OF2rkvQJ3RtYF9EHS094Og\nHUZCxklY+ZV7wSnlRROOKnK/bzrA0ZPp9Pe+nLZpGqQc0MYC+SAiDO8WzcZ9ySzY6vEgaPVWtn+1\npZ/Y0VKV8gGacFSRm7oygcqhQXRvEJG9IHYMlK8DDa50J7Biql+bGvZB0LleD4J2GGlHSd3+uytx\nKeVNE44qUsdS05m14QA3tK5BgOezNwe32EHW2g+xA4qpPAsO8OfuznX5zftB0Gb97BDUsTrQrvIN\nmnBUkfp5zT7SMrLOvZwWOxb8AqDdYHcCK+bu6lyHoAA/xszfcXZiQLDtGmjjdDi2J9f3KlVUNOGo\nIjVlRQLREaG0rlX+7MT0k3bwsKY3QFgV94IrxiqHBXNTu5p8uyyeQykeI4LGDAOTabu7UcplmnBU\nkdlz5CSLtifRv01NRORswbopkHpEGwsU0PCu0fZB0EUeI4JWqgf1e9uugjIzXItNKdCEo4rQ96v2\nYAz0b1sje8HS0bY7lqju7gRWQjSsWo6ejSL5bJHXg6AxwyF5D2z+2b3glCKfCUdE+ojIJhGJE5Gn\ncigPFpGvnfLFIhLlTA8UkXEiskZENojI3wonfFWcTF2RQLs6FahbOfTsxL2rbDcsMcPtA5+qQEZ2\njyYx+RQ/rNp7dmKjPlCuhjYeUK7Lc8IREX/gXaAv0Ay4Q0Saec02AjhsjGkAvAH8x5l+CxBsjGkJ\ntAfuPZ2MVOmwYe8xNu5LPrcrm9ixEBACbe5wJ7ASpluDCBpXLccnc7edfRDUP8C2/tv6Kxzadv4F\nKHUJ5aeG0xGIM8ZsM8akAROAfl7z9APGOX9PAnqLvVhvgFARCQDKAGnAsQJFroqVqSsSCPATrmvl\ncTkt9RisnggtboIyFd0LrgQREUY4D4Iu9HwQtN1gEH97L0cpl+Qn4dQEdnu8jnem5TiPMSYDOApU\nxiafFGAvsAt4zRhz6CJjVsVMZpbhu5V7uLxxJJVCg84WrJkI6SnaWKCQ3dimBhFhQXwyz2Oo6fAa\ndnC2FV9Axqnc36zUJZSfhJPTBXaTx3k6AplADSAaeExE6uX4ISKjRCRWRGITExPzEZ7yVYu3JbHv\nWGr2Z2+MgaVjoForqNneveBKoJBAf+7qXJfZGw8Qd+D42YKY4XAiCdZ/515wqlTLT8KJBzx7VKwF\neD9NdmYe5/JZeeAQcCfwszEm3RhzAJgPxOT0IcaYj4wxMcaYmMjIyHyEp3zVlBUJhAUHcGXTqmcn\n7l4CB9ZpY4FL5K7OdQkK8GPsfI9aTvTltpm0Nh5QLslPwlkKNBSRaBEJAm4Hvvea53tgiPP3zcBs\nY+9c7gJ6iRUKdAY2Fix0VRykpmfy09p99G1RjZBAjy5rYsdAUDnbjb4qdBFhwQxoU5Nvl3s8COrn\nZxP8roWwf527AapSKc8Jx7kn8yAwA9gATDTGrBOR50XkRme20UBlEYkDHgVON51+FwgD1mIT11hj\nzOpCWgflw2Zt2M/xUxnZW6edOGQf9mx9GwSHuRdcCTeiezSp6VmMX+zxIGibQeAfrLUc5YqAC89y\nljFmOjDda9ozHn+nYptAe7/veE7TVck3dUUC1cJD6FSv8tmJK7+EzFPaWOASa1S1HN0bRjBu4U7u\n6VGP4AB/KFsJmg+AVV/Dlc9pwldFSnsaUJfMoZQ0ft+USL82NfD3c+7TZGXZs+vanaFqc3cDLAVG\ndq9HYvIpfvR8EDRmOKQlw5pv3AtMlUqacNQlM231HjKyTPbWadv/sA8fau2mSPRoGEHDKmHZRwSt\n3RGqtoDY0ba1oFJFRBOOumSmrEigSbVyNK0efnZi7BgoU8mO1aIuudMPgq7fe4yF25JOT7QJf98a\nSFjmboCqVNGEoy6JnUkpLN91JHvt5the2DgN2g6CwBD3gitl+retSeXQIEbP9Wgi3epWCAqzHacq\nVUQ04ahLYuqKPYjAja09urJZ8bkdm6X9MPcCK4VOPwj668YDbEt0HgQNLmeTzrrJttWgUkVAE44q\ndMYYpq5MoHN0ZWpUKGMnZmbYfrzqXQGV67saX2l0V+e6BPn7Ze/uJmY4ZKTCqq/cC0yVKppwVKFb\nFX+U7QdTsj97s+UXOJagjQVcElkumIHtajJpWTyJyU5fatVaQq2O9r6aNh5QRUATjip0U1ckEBTg\nR5+W1c5OjB0N5apD477uBVbKjepRj/TMrOzd3XQYAUlxsH2Oe4GpUkMTjipU6ZlZ/LBqD1c1rUp4\nSKCdeGg7xP1qu8j3D3Q3wFKsXmQYfZpX4/NFO0lOTbcTm/W3Q0PEauMBdelpwlGFat6WgySlpGVv\nnbZ8nG2K226we4EpAO7rWZ/k1Ay+WrLLTggMsd3dbJwGyfvcDU6VeJpwVKGasiKBCmUD6dnI6ek7\n4xQs/xwa9YXytdwNTtG6dgUuq1+Z0fO2cyoj006MGQ5ZGfZ7UuoS0oSjCs3xUxn8sn4f17WsTlCA\ns2tt+AFOHNTGAj7kvp712X/sFFNXJNgJletDvcttK8KsTBcjUyWdJhxVaGas3Udqelb21mmxY6BC\nXajfy73AVDbdG0bQvEY4H87ZRlaW0zotZgQci4fNM9wNTpVomnBUoZm6MoFaFcvQvm5FO+HABtg5\nH2KG2bFYlE8QEe7rWZ9tiSn8sn6/ndi4L4RV02EL1CWlRwFVKA4cS2V+3EEGtK2JnB7BM3YM+AdB\n27vdDU6do2+LatSpVJb3/9hqO/X0D4T2QyBuFhze4XZ4qoTShKMKxfer9pBloF8b53LaqeOw8is7\n9kpohLvBqXME+PtxT496rNp9hEXbnK5t2g2xrQmXfepqbKrk0oSjCsXUlQm0qlWeBlWcAb3WTLRj\nrnQY6W5gKle3tK9FRFgQH/yx1U4oX9O2Jlz+uW1dqFQh04SjCmzL/mTWJhyj/+najTG2F+JqLaFW\nB3eDU7kKCfRnWNdo/ticyLo9R+3EDsNtq8INP7gbnCqRNOGoApu6MgF/P+GG0z1D714M+9fa2s3p\n+znKJ93VqS6hQf58+Mc2O6FeL6gYpY0H1CWhCUcVSFaWYeqKPXRrEEFkuWA7celoCA6Hlre4G5y6\noPJlAxnUuS4/rt7DrqQTtjVh+2G2deGBDW6Hp0oYTTiqQGJ3HibhyMmzz94cT4T1U6H1HRAU6m5w\nKk+Gd43G30/4eK5Ty2l7l21dqLUcVcg04agC+SZ2N6FB/lzVrKqdsOJzyEyzvRCrYqFa+RAGtK3J\nxNjdHDx+yrYqbNYPVk2AtBS3w1MliCYcddGOn8pg2pq9XN+qBqHBAbZblNixENUdIhu7HZ7Kh1E9\n6pOWmcW4BTvshJgRcOoYrJnkalyqZMlXwhGRPiKySUTiROSpHMqDReRrp3yxiER5lLUSkYUisk5E\n1oiIDmpfzE1bvYcTaZnc2qG2nRA3C47u0qbQxVCDKmFc3awqny3cyfFTGVCnM1RpZoct0MHZVCHJ\nc8IREX/gXaAv0Ay4Q0Saec02AjhsjGkAvAH8x3lvAPAFcJ8xpjlwOZBe4OiVqybGxlM/MpR2dSrY\nCUs/sd2jNLnO3cDURbmvZ32OnkxnwpJdtnVhzHDYuwr2LHc7NFVC5KeG0xGIM8ZsM8akAROAfl7z\n9APGOX9PAnqL7efkamC1MWYVgDEmyRij3dIWY3EHklm28zC3dahtu7I5tB22zIT2Q3WQtWKqbZ2K\ndK5XiU/mbictIwta3QaBobBUGw+owpGfhFMT2O3xOt6ZluM8xpgM4ChQGWgEGBGZISLLReSJ3D5E\nREaJSKyIxCYmJuYjPFWUvomNJ8BPGNDWGeNm2VgQP9sflyq27utZn33HUvluZQKEhEOrW2Dtt3Dy\nsNuhqRIgPwknpyf4vC/u5jZPANANGOT8P0BEeuf0IcaYj4wxMcaYmMjIyHyEp4pKemYW3y6Pp1eT\nKvbZm/RU2x1Kk2shvIbb4akC6NkokqbVw/ngj6126IKY4ZBx0rZYU6qA8pNw4oHaHq9rAXtym8e5\nb1MeOORM/8MYc9AYcwKYDrS72KCVu37beICDx9O4NcbZHdZOgpOHoMM97gamCswOXVCPrYkpzNqw\nH6q3hpox9pkcbTygCig/CWcp0FBEokUkCLgd+N5rnu+B09dUbgZmG2MMMANoJSJlnUTUE1hfsNCV\nWybG7iayXDCXN460B6FFH9gWTdE93A5NFYLrWlandqUyZ4cuiBkOBzfDjnluh6aKuTwnHOeezIPY\n5LEBmGiMWSciz4vIjc5so4HKIhIHPAo85bz3MPA6NmmtBJYbY6YV3mqoonLgWCq/bUrkpna1CPD3\ns12g7F8Dne7TftNKiAB/P+7pXo8Vu46wZPshaDEQQirYJtJKFUBAfmY2xkzHXg7znPaMx9+pQI4d\naBljvsA2jVbF2LfLE8jMMtwa4zQWWPQ+lKkErW51NzBVqG5pX5u3Zm3hgz+20mlYR2gzCJZ8CMn7\noVxVt8NTxZT2NKDyzBjDN7G76RBVkXqRYXB4J2yabptCB5ZxOzxViMoE+TP0sih+25TIhr3H7DDh\nWRmw/DO3Q1PFmCYclWexOw+z7WDK2cYCSz4CRHsWKKHu7lKXskH+fPjHVohoCPV7wdKPdXA2ddE0\n4ag8+3qp7ajzulbV7RDSyz+3nTyW934cS5UEFcoGcWfHOvywei+7D52ALg/A8f2wdrLboaliShOO\nypPjpzKYtnovN7SuQdmgAFj1FZw6Cp3/5HZo6hIa0T0aP4HR87ZD/d4Q2QQWvatNpNVF0YSj8uTH\nVXs4me501JmVBYs/gBrtdAjpEq56+TL0a1OTCUt3cehEOnS+H/atgR1z3Q5NFUOacFSeTIzdTYMq\nYbStXQG2/gpJcbZ2o02hS7z7etYjNT2LTxfssK0Ry0bAwnfdDksVQ5pw1AXFHUhm+a4j3BbjdNS5\n6H3bK3Sz/m6HpopAgyrluLpZVcbO286hNH87uN7mn+FgnNuhqWJGE466oK+X7rYddbarCYmbbA2n\nwwgICHI7NFVEHr+mMSfSM3lr1mbbKtE/CBa953ZYqpjRhKPOKz0zi8nLE+jdtAoRYcGw4G0ICLHd\nnahSo2HVctzeoTZfLt7F1pNl7aW1lePhxCG3Q1PFiCYcdV6/bjhAUorTUWfyPlg90T51Hhrhdmiq\niP3lqkaEBPrz8vSNtvFAxkk7LIVSeaQJR53XN7G7qVIumJ6NIm3LtKwM+zyGKnUiwoK5/4r6zNqw\nnwXHq0K9K2DxR5CR5nZoqpjQhKNytf9YKr9tOsBN7WsRkJFiR35segNUru92aMolw7tGU7NCGf49\nbQNZnR+A4/vsAG1K5YEmHJWrb5fHk2Wwl9OWjbMPenb9s9thKReFBPrzRJ/GrNtzjMnHmtgHQRe8\now+CqjzRhKNyZDvqjKdjVCWiKzotkup2g5rt3Q5NueyGVjVoXas8r/2ymbROD8GBdbB5htthqWJA\nE47K0dIdh9l+MMX2LLD2WziWoLUbBYCfn/D09c3YdyyVjw63h/K1Yd7rWstRF6QJR+Xo66W7CQsO\n4NoWVWH+2xDZFBpe5XZYykd0iKpEn+bVeG/uTpLb3Qe7F8POBW6HpXycJhx1juTUdKav2csNratT\ndtfv9pLJZQ9pNzYqm6f6NiE9M4tXD3S03d3Me93tkJSP04SjzvHj6r22o872teCPV+0lk5Y5DuSq\nSrGoiFAGd4nii+WJHGg+DOJmwd5VboelfJgmHHWOr5fupmGVMNpkrIb4JdDtEe3GRuXooV4NCA8J\n5J97umCCysG8N90OSfkwTTgqm837k1m5+wi3daiNzPk/KFcd2tzldljKR1UoG8TDvRsyY2squ+rf\nDuunQtJWt8NSPkoTjspmotNR582Ru2HnPNsyLTDE7bCUD7u7c12iKpfl8d3dMH6BMF9rOSpnmnDU\nGWkZWUxZkcCVTatSYckbEBoJ7Ya4HZbycUEBfjzVtwlLDgayueYA26nn4R1uh6V8UL4Sjoj0EZFN\nIhInIk/lUB4sIl875YtFJMqrvI6IHBeRvxYsbHUpzN64n6SUNEbWS4Jtv9mWaUFl3Q5LFQPXNK9G\nx6hKPJJwBUb8Yc5rboekfFCeE46I+APvAn2BZsAdItLMa7YRwGFjTAPgDeA/XuVvAD9dfLjqUpoY\nG0/V8GDa7fgEylSCmBFuh6SKCRHhH9c1ZUNKOZZF9rO1nEPb3A5L+Zj81HA6AnHGmG3GmDRgAtDP\na55+wDjn70lAbxH78IaI9Ae2AesKFrK6FPYdTeX3TQe4v/Fx/LbMgC73Q3CY22GpYqR17Qr0b1OD\nR+KvsPdytJajvOQn4dQEdnu8jnem5TiPMSYDOApUFpFQ4EnguQt9iIiMEpFYEYlNTEzMR3iqIE53\n1HnLsc8gpAJ0HOV2SKoYerxPExKpyB/h18OqCdpiTWWTn4ST02Pm3p0n5TbPc8AbxpjjF/oQY8xH\nxpgYY0xMZGRkPsJTF8t21Lmbu2vuoezOX6HbXyCkvNthqWKoZoUyjOgWzeN7e5HlF2gfHFbKkZ+E\nEw/U9nhdC9iT2zwiEgCUBw4BnYBXRWQH8AjwdxF58CJjVoVs8fZD7EhK4WHzFYRV1dqNKpA/XV4f\nE1aFacHXYdZMhINb3A5J+Yj8JJylQEMRiRaRIOB24Huveb4HTrejvRmYbazuxpgoY0wU8CbwkjHm\nfwWMXRWSLxbt5JrgdUQeWgY9HteWaapAyoUE8siVjXj20JVk+gXD76+4HZLyEXlOOM49mQeBGcAG\nYKIxZp2IPC8iNzqzjcbes4kDHgXOaTqtfMumfclMX5PAc6GToEJdfe5GFYrbO9SmUpWafO13Layd\npH2sKQDE+PAYFjExMSY2NtbtMEq0P32xjJAtP/KGvA4DPoTWt7sdkiohftt0gD+P/Z0l5f5KSO12\nMHiq2yGVGiKyzBgT43Yc3rSngVJsbcJRflmbwNNlJ9uhgrVHaFWILm8USeuGdXk7fYB9kDjuV7dD\nUi7ThFOKvTFzM4NC5lP55A7o9TT4+bsdkipBRIS/X9uU0aeu4HBQDZj5L8jKcjss5SJNOKXUil2H\nWbhxF08GfQO1OkCT690OSZVATauH0799PZ47MRD2r4E1E90OSblIE04p9frMzTxSZjqhaUlwzcs6\nmqe6ZP52bROWlr2cjX71yfr1BUhPdTsk5RJNOKXQku2HiNuyieHyI7S4CWp3cDskVYJVKBvE24Pa\n88KpO/A7Fo9Z8pHbISmXaMIpZYwx/PeXTTxdZhL+YqD3v9wOSZUC7etWovvVA5md2Yb0316F49pt\nVWmkCaeUWbA1iRM7YrnO/IF0uR8q1nU7JFVKjOpej5m1H0LST3Doh6fdDke5QBNOKWKM4b8zNvBy\nyDhMaCR0e9TtkFQp4ucnPD7oRib6X0eFTV+Tsn2x2yGpIqYJpxT5fVMiDfd8RwuzBbn6RQgJdzsk\nVcpUCg2i8W0vctCU58DXf8ZkZbodkipCmnBKCWMMH81Yyt8CJ5BVuzO0us3tkFQpFdO4Lqub/IXo\n1A0smvKu2+GoIqQJp5SYsW4/1yeOJlxO4Hfdf7UZtHJVr1sfYktQUxqufo1N23e6HY4qIppwSoGs\nLMO0n37kjoDZduiBai3cDkmVcn7+/kTc/j8qSDJx4x8j5VSG2yGpIqAJpxSYtmoXf0p+m7SQCPyu\n+Jvb4SgFQMV6MexvNoLr0mcy9ssv8OWOhFXh0IRTwmVkZrH/p1dp5reToBvf0JE8lU+p2f85jgbX\noO+OV/h28Ta3w1GXmCacEm723Hncfepr9tbqg1+zG9wOR6nsgkIJu+kd6vvtZd/0f7N5f7LbEalL\nSBNOCZaekUG1OU+Q5hdMtdvedjscpXLk3+hKUpsM5F6/73jts285kab3c0oqTTgl2KrJr9EqawO7\nOz6NlKvqdjhK5SrkhtcwIRX4S/J/eX7KCrfDUZeIJpwSKm3fBlqu/y/LAtvT9Jp73Q5HqfMLrUzQ\ngP/R1G8Xtda8w+Tl8W5HpC4BTTglUUYax8YPJ8UEkXHD/xA//ZpVMdC4L1mtB3F/wA9MnDqZuAPH\n3Y5IFTI9EpVAGb+9QsSx9Yyp+AgdWzZ1Oxyl8syv7yuYcjX4j997/PXL+aSma9c3JYkmnJJm12L8\n5r/BNxk96H7jcER7FFDFSUg4/gM/oA77uOvQ/3juh3VuR6QKkSackuTEIbImDWMPEfxS9y90qlfZ\n7YiUyr/o7kiPx7nZfw6pseP5bmWC2xGpQpKvhCMifURkk4jEichTOZQHi8jXTvliEYlypl8lIstE\nZI3zf6/CCV+dkZUFU+7FJB/gT6ce5v5r2rodkVIXr+eTZNW5jJeCx/LR5BmsTTjqdkSqEOQ54YiI\nP/Au0BdoBtwhIs28ZhsBHDbGNADeAP7jTD8I3GCMaQkMAT4vaODKy/w3YMsvvGKGUKVxZ9rWqeh2\nREpdPP8A/G4eTVBwWd7wf4uhH/3Bwq1JbkelCig/NZyOQJwxZpsxJg2YAPTzmqcfMM75exLQW0TE\nGLPCGLPHmb4OCBGR4IIErjzsmAezX2RjxNV8nHoFf7mqkdsRKVVw4TXwH/ghDc1OXgn6hCFjFzNj\n3T63o1IFkJ+EUxPY7fE63pmW4zzGmAzgKOB9I+EmYIUx5lT+QlU5OrwTJg4ms2I9hiQOok/z6rSo\nqf2lqRKi0dVIr39wZfofPFX+V/70xTImxu6+8PuUTwrIx7w5NXfy7t71vPOISHPsZbarc/0QkVHA\nKIA6derkI7xS6FQyfHUHZGUwtvZLHNibobUbVfJ0/yvsXc2wjWNIrFWfJybB4ZQ07u1Z3+3IVD7l\np4YTD9T2eF0L2JPbPCISAJQHDjmvawFTgMHGmK25fYgx5iNjTIwxJiYyMjIf4ZUyWVkweRQkbmRt\n17d5ZWkm/VrXoHG1cm5HplThEoH+7yORTXgi+T8Ma5LOyz9t5OWfNuiQBsVMfhLOUqChiESLSBBw\nO/C91zzfYxsFANwMzDbGGBGpAEwD/maMmV/QoBUw61+waTqJ3Z7ljl/LUC8ylOf768BqqoQKDoPb\nxyN+ATxz5J/c2y6UD//YxlPfriEjM8vt6FQe5TnhOPdkHgRmABuAicaYdSLyvIjc6Mw2GqgsInHA\no8DpptMPAg2Af4rISudflUJbi9Jm4buw4G1Oth7KwNjmBAf4M2ZoB8JDAt2OTKlLp1I0DJqIpBzk\nqcP/4rGeNfg6djcPjF+uPRIUE+LLVdKYmBgTGxvrdhi+ZdXXMGUUmU1u4LakUazdl8KEUV1oU7uC\n25EpVTQ2/QwT7oD6vRlb5yWem76FLvUq89Hg9pTTky4ARGSZMSbG7Ti8aU8DxcmWmfDd/Zio7jyW\n8SCxu5N549Y2mmxU6TsGNa0AABDHSURBVNK4D1z3OsTNZNi+f/PmLc1ZuuMQd3y8iIPHtfGrL9OE\nU1zE/QoTBkGVZrwT+RxT1ybxVN8m9G1Z3e3IlCp6McPgqhdg/VT67/g3H9/VlrgDx7nlg4XEHz7h\ndnQqF5pwioO4Wbb5c0Qjvmv1Lq/P3cftHWpzb496bkemlHu6Pgy9noY1E7li84t8MbwDScdPcfP7\nC3Woah+lCcfXbZkJX90JkY1Y2vNT/jotnm4NInihfwvtCVqpHo9Djydg5RfELP8bX4+MIdMYbvlg\nIct3HXY7OuVFE44vWz0RvrodIhuz/bqvGPnNNqIqh/LuoHYE+utXpxQAV/wdev0T1kyk6Zz7mTyy\nLeXLBDLo48X8sTnR7eiUBz1q+aoF78Dke6BOFw7fMpmhE+II8BPGDO1A+TLaEkepM0Sgx1/huv/C\n5hnUnn433w5rRlREKCPHLeXjOdtI12d1fIImHF+TmQE//w1+eRqa9Sf1toncM3EL+46m8vGQGGpX\nKut2hEr5pg4j4aZPYPcSIidcx8SbI+nWIIJ/T99A37fmMkdrO67ThONLThyCL2+GRe9Bp/swN4/h\nye82EbvzMK/f2oZ2OuSAUufX8mYY/B2cSKLc59cwpucJPhkcQ1pGFoPHLOGez2LZlaSt2NyiCcdX\n7F8HH/9/e3ceXWV5J3D8+8tyISHkhoQluSFhUYIQNlEQXCoddlzQ1gqd8dQZPVqLjKWtHu3xjHUc\nT1vqcTx1qmO1rm2PWNFqRFpAUHQoUpYJW1gSIAxZCJBALiQkZHnmj+cF7wn3QnLJfW9u/H3OuSfv\nfd/nzfs7z7v83ve5z/u+34SD6+CW52H2Yp5bvY8PCyt4ZOZwbhqj3Z+VapfB18F9a6B3JvKHbzPt\nxLusXHQDj8wczrqSY0x7bi3PrNhNXWNztCP92tGEE23GwKbX4ZWp0NQA/7wcrrqb97eU8fzqYu68\neiALpuhTcZXqkPQhcO8qyJsFKx+n59K7ePCadNb8ZAo3jc7ihU/3MfXZtXxYWK4PAHWRJpxoqq+B\nd+6CZYsg9xr4/lrImcCG/dU8+t42Jg/N4OnbRmv3Z6XC0TMV5v0BZi2297K9dAOZxzfx3LxxLH1g\nMn17e/jhkkLu/O16fYW1S/RZatGy+2P4+CdQdwym/QwmPQhxcRw4VsftL64jo5eH939wHd5k7ZGm\n1CUr3wJL74HjB2DCfTDtSVoSe/HupkP8asUejtefYf6EXB6ekUdGSuy/jLirPktNE47bTh6G5Y/A\nrgLonw+3vQi+cYB9qdTtL67D39DMBwuuIzdDe6Qp1WnO1MHq/4ANL0Fajn0e27Dp1J5u4tefFPPm\n+lJ6eeL58fQ87po0iIQYvtdNE04YulXCaW6EDb+Fz5+xw1MehWsfgnh7BVN2vJ5FSwrZVl7L2/dd\nw1WD0qMcsFLd1MH1ULAQqksgbzbM+jmkD6W46iT//lER/1NyjLwBKfzslnyuu7xvtKMNiyacMHSL\nhGOMvZpZ9QQcL4VhM2DmL6Dv5QCcqD/DC5+W8ObfDiICz945lpvH+KIbs1LdXfMZe/vB589ASxNM\nvA+u/zEmOZ2VRVU8/XERh2pOM3loBrdd6WNWflZMNW9rwglDTCec1lbY8zGsXQyHt0P/kTDjabh8\nKgANTS28tb6U36wp4WRjM3eMH8iPpufhS0uKbtxKfZ34K2H1U7BtCSQmw6QFMHkBDQmpvL6ulCUb\n/4+D1fUkxgs35vXjlrE+po0YQK8eCdGO/II04YQhJhNOUwPseM+ePVXtgPTL7AMGR38H4hNobTV8\nUFjOsyv3Un7iNN8c3o9HZ1/BFZmp0Y5cqa+vI7vhs59D0YeQ2AuuvAsm/QDTZzDby2spKKxg2bZK\nDvsbSEqMZ+qI/twy1seU4f3okRAf7ejPowknDDGVcE4cgk2vwuY34XQN9BsB1/8IRn0b4u3Z0BfF\nR/nF8t0UVfoZne3lp7Ov4NoYbSNWqls6vN2+wn37UmhthhE3215tg2+gFWFjaQ0FWytYvr2S4/VN\n9O6ZwMz8TG4d6+PayzK6TEcDTThh6PIJp8EPu5fZpzofWGvHDZ8D13wfBt9gHyoI7CivZfFfd/NF\n8TFy0pN4eMZwbhnjIy5O769RqkvyV8LGV2DTa3D6OHhzYMw8GPePkHEZTS2trCs5RsHWClburOJU\nYzMZvTzMGZ3FreN8XJXbJ6r7tyacMHTJhFNfY9++uXsZ7P0rNDdAn8G2yWz89yAt91zRsuP1PLty\nLx8UluNNSuRf/2EYd03K7ZKX4EqpIJpO23vmtr4N+9aAaYWscXDFTfbkckA+Dc2tfLbnCB9treST\nXVU0Nrfi8/Zk+sgBjMr2Mirby+X9U1x9pYgmnDB0iYTTfAYqt9ormOKVULbRbnS9+kH+7TbRDJxw\n7moGoLa+iRc+K+GNdaWIwD3XD+GBGy/T1wooFcv8lbD9T7DrI3scAHuCOWyGbdEYfD2nEtL4pKiK\ngq0VrN9XzemmFgA8CXEMH9CbfF+q/WR7GZGZSpInMiefmnDC4HrCMQZOVtp23PLNcPBvULYJmk/b\n6VnjIG8mDJsJvish7qszlpZWw4FjdazeVcWLn+3D39CkPc+U6q5OVtkWjj3L4cAX0FRnx/cfCbmT\nIGscLZljORCXy86q0+ys8LOzopadFX5O1DcBECcwtF8K+b5URvm8TjLydkr3a004YYhYwjEG6o5C\n9T6o2QdH98DhbTbR1FfbMhIHmaMh91oYNBlyJ0NKfwDqGpvZffgkRZV+iir8FFX62XPYT0OTfcmT\n9jxT6mukpQkqCqH0C/sp2wyNzrPZ4j0wIB8yx0DfYZiMy6lKzGFbXRo7DtdT5CShytqGc/8uOy2J\nUdmp/NvNIxnYJ7ynjXSLhCMis4BfA/HA74wxv2wzvQfwFnAVUA3MM8aUOtN+CtwLtAAPGWNWXGx5\nYSecxlP2SsVfcf7f2kNQvR/OnPyqfLzHnplkjrYbRtYYGJCP8aRw5GTjuaRSVOlnV4WfA9V1nK02\nb1IiI7J6MzLLy0hfKmMGeskb0LvjMSuluofWVvvMtspCm4gq/heOFH11MgsQlwh9BkFqNqRmU5+U\nSXlLH/Y2eNnmT2LTUQ+vPTgbb6/wnusW8wlHROKBvcB0oAzYCHzXGFMUUGYBMMYY84CIzAduN8bM\nE5GRwNvARMAHfALkGWNaLrTMsBPO63Pse2UCmB6ptKZk0ZTiozF1MHUpgziZPIgTSTmc8GRS1yzU\nn2nh9JkWjp5qZJdz9VJdd+bc/8hJT2JkVuq55DLSl4rP21Of5qyUurj6Gvs4neoSOFYMNfvtSbC/\n3J4QmzavwV64+dwTSTqqqyacjtwuOxEoMcbsBxCRJcBcoCigzFzgSWd4KfAbsUfjucASY0wjcEBE\nSpz/t/7Swg/uDXMTZT0mUN6cxqHmNEqbvJxq6AFBn0B+xPl8xRMfR15mClNH9LcJxufliqzepPbU\nH/2VUmFKTofkiZAz8fxpLc1wquqrBFR3FFK73yOuOpJwsoFDAd/LgGtClTHGNItILZDhjP+yzbzZ\nwRYiIvcD9wPk5uYGK3JR/kEzOJp8ijRPPFmJCdzoiSPZk0BSYjzJnniSPPHOcAJJHmdcwLRkTwLx\neo+MUsot8QngzbYfJkQ7mojpSMIJdgRu2x4Xqkx75rUjjXkZeBlsk1oH4jvnoanDwplNKaVUBHXk\nTqQyICfg+0CgIlQZEUkAvEBNO+dVSinVjXUk4WwEhonIEBHxAPOBgjZlCoC7neE7gDXG9kooAOaL\nSA8RGQIMA/5+aaErpZSKJe1uUnN+k1kIrMB2i37NGLNTRJ4CNhljCoBXgd87nQJqsEkJp9yfsB0M\nmoEHL9ZDTSmlVPfy9bzxUymlurGu2i26azxLWymlVLenCUcppZQrNOEopZRyhSYcpZRSrujSnQZE\n5ChwMMzZ+wLHOjGczqJxdYzG1TEaV8d017gGGWP6dVYwnaVLJ5xLISKbumIvDY2rYzSujtG4Okbj\ncpc2qSmllHKFJhyllFKu6M4J5+VoBxCCxtUxGlfHaFwdo3G5qNv+hqOUUqpr6c5XOEoppboQTThK\nKaVcEfMJR0RmicgeESkRkceCTO8hIu840zeIyGAXYsoRkU9FZJeI7BSRHwYpM0VEakWk0Pk8Eem4\nnOWWish2Z5nnPRlVrOed+tomIuNdiGl4QD0UiohfRBa1KeNKfYnIayJyRER2BIxLF5FVIlLs/O0T\nYt67nTLFInJ3sDKdHNczIrLbWU9/FpG0EPNecJ1HIK4nRaQ8YF3NCTHvBffdCMT1TkBMpSJSGGLe\nSNZX0GNDV9jGXGGMidkP9jUJ+4ChgAfYCoxsU2YB8JIzPB94x4W4soDxznBvYG+QuKYAy6JQZ6VA\n3wtMnwP8BfuW1knAhiis08PYG9dcry/gG8B4YEfAuF8BjznDjwGLg8yXDux3/vZxhvtEOK4ZQIIz\nvDhYXO1Z5xGI60ng4Xas5wvuu50dV5vpzwJPRKG+gh4busI25sYn1q9wJgIlxpj9xpgzwBJgbpsy\nc4E3neGlwFQRCfbK605jjKk0xmxxhk8Cu4DsSC6zE80F3jLWl0CaiGS5uPypwD5jTLhPmLgkxpjP\nse9yChS4Db0J3BZk1pnAKmNMjTHmOLAKmBXJuIwxK40xzc7XL7Fv0nVViPpqj/bsuxGJy9n/7wTe\n7qzltdcFjg1R38bcEOsJJxs4FPC9jPMP7OfKODtnLZDhSnSA04R3JbAhyOTJIrJVRP4iIvkuhWSA\nlSKyWUTuDzK9PXUaSfMJfSCIRn0BDDDGVII9YAD9g5SJdr3dg70yDeZi6zwSFjpNfa+FaB6KZn3d\nAFQZY4pDTHelvtocG2JhG7tksZ5wgl2ptO3n3Z4yESEiKcB7wCJjjL/N5C3YZqOxwH8BH7gRE3Cd\nMWY8MBt4UES+0WZ6NOvLA9wKvBtkcrTqq72iWW+PY9+k+8cQRS62zjvbfwOXAeOASmzzVVtRqy/g\nu1z46ibi9XWRY0PI2YKMi6n7WmI94ZQBOQHfBwIVocqISALgJbwmgA4RkUTsBvVHY8z7bacbY/zG\nmFPO8HIgUUT6RjouY0yF8/cI8Gds00ag9tRppMwGthhjqtpOiFZ9OarONis6f48EKROVenN+OL4Z\n+CfjNPS31Y513qmMMVXGmBZjTCvwSojlRau+EoBvAe+EKhPp+gpxbOiy21hnivWEsxEYJiJDnLPj\n+UBBmzIFwNneHHcAa0LtmJ3FaSN+FdhljPnPEGUyz/6WJCITseuiOsJx9RKR3meHsT8672hTrAD4\nnliTgNqzl/ouCHnmGY36ChC4Dd0NfBikzApghoj0cZqQZjjjIkZEZgGPArcaY+pDlGnPOu/suAJ/\n87s9xPLas+9GwjRgtzGmLNjESNfXBY4NXXIb63TR7rVwqR9sr6q92B4vjzvjnsLuhAA9sU00JcDf\ngaEuxHQ99lJ3G1DofOYADwAPOGUWAjuxvXO+BK51Ia6hzvK2Oss+W1+BcQnwglOf24GrXVqPydgE\n4g0Y53p9YRNeJdCEPaO8F/ub32qg2Pmb7pS9GvhdwLz3ONtZCfAvLsRVgm3TP7uNne2N6QOWX2id\nRziu3zvbzjbsgTSrbVzO9/P23UjG5Yx/4+w2FVDWzfoKdWyI+jbmxkcfbaOUUsoVsd6kppRSKkZo\nwlFKKeUKTThKKaVcoQlHKaWUKzThKKWUcoUmHKWUUq7QhKOUUsoV/w+F9SAHQQO0KwAAAABJRU5E\nrkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEICAYAAABrtkJsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xd4FVX6wPHvmw4JoSX0ktB7DU2a\nggVsFLsoXXRt6+padtd1bauuP9e6dgGxICICFlAEUekl9A6hJ7QQWgiEtPP74wxwc0kgISFzk7yf\n5+Ehd87cue/MnTvvnJkz54gxBqWUUupS83M7AKWUUqWDJhyllFJFQhOOUkqpIqEJRymlVJHQhKOU\nUqpIaMJRSilVJEp0whGRQSLyi9txnCYiZUTkBxE5KiLfFOJy64jIcRHxL6xl+goR2SEiV7odR16J\nyN9F5JMi+qwz26awP9fZn+o5f38qIi8W4rI/EJF/FtbyPJYrIjJWRA6LyJJCWF6UiBgRCSiM+LyW\n/ayIfJGP+Qv1O3BLnhKOiNwpIrHOTrhXRH4SkW6XOriCMsZ8aYy52u04PNwMVAUqG2Nu8S50dsJ0\nZzsfEZEFItLlQgs1xuwyxoQZYzIvRdC+TERiRORH5yBzRETWi8i/RaSiG/EYY14yxoz01c8Vkd9F\n5ILzOfvTtoLGJSJDRWSe17LvM8a8UNBl56AbcBVQyxjT8RIsv1QRkRdEZI2IZIjIszmU3ykiO0Uk\nRUSmikilCy3zgglHRB4F3gRewh4s6wDvAf3yvQZF6FKclRSCusBmY0zGeeb52hgTBkQC84DJIiJF\nEl0xIyKXAb8D84EmxpgKQB8gA2jtYmjFlo/+bvKqLrDDGJOS3zcW8/W+VOKAJ4Bp3gUi0hz4ELgb\nmxdOYPPC+Rljcv0HlAeOA7ecZ55gbELa4/x7Ewh2yi4H4p2gDwB7gf7AtcBm4BDwd49lPQtMAr4G\nkoHlQGuP8qeArU7ZemCAR9lQ7IHnDWe5LzrT5jnl4pQdAI4Cq4EWHuv5GZAI7ASeBvw8ljsPeA04\nDGwH+p5nezTFHgSPAOuAG53pzwFpQLqzTUfk8N5ngS88XjcHDBCBPTl42onvgBNveWe+KGe+AI+Y\ntznbaTswyJneAPjDWf+D2OR2+rMuA5Y6ZUuByzzKfgdecLZvMvALEJHL+lcEfnS25WHn71p5XRZ2\nB94JJAH/AHYAV+byWfOAdy6wD9cHZjvLOwh8CVTwKDdAA4/XnwIvOn9HOPEfwe5Tcz32iyeBBGcd\nNgG9c/kOvwH2Odt1DtDc67Pexf6gk4HFQP3zrEuu28bzc4EQ4AtnviPO91kV+DeQCaRi98H/eWyD\nB4AtwHbv7eLE+QEw04nzD6BuTvuex3c8EvtbSHU+8zhwxHsbO6/vwR7cDgHfAzW8vp/7nNgOO9tL\nctg2I7w+67k8LjvbenstM9u6AcOADc422Abc6zHv5RTusa6tMy3ZmWcCZ/fL8/7GCvufsy896zXt\nJWC81+8sDSh33mVd4INOny0GnGee54FFQBXsWfkC4AWPLyEDeAYIdL78RGA8UA57QE0F6nl8CenY\nS0+BwF+xB8xAp/wWoAb24HsbkAJUN2cPshnAQ0AAUIbsCecaYBlQAZt8mnq89zPgOyemKGcHGeGx\n3HQndn/gT9jEmtNOH4jduf8OBAG9nB2mcU4Hoxzef6Ycm8j/D9jtvB7uLLseEAZMBj73/mEAocAx\nj8+sjnOQA77CHqj8sAelbs70Stgd925nGXc4ryt7HEC2Ao2c7fo78Eou61AZuAko62zPb4CpXgej\nHJcFNMMeLHo46/+6852ek3Cc9cwELr/APtwAe5klGLt/zgHe9Dro5JZwXsYeaAOdf92x+05jYDfO\nwcvZ/vVz+o6d760cZ0/MVnp91iGgo7PdvwQm5LIe5902ZN937gV+cL4Df6A9EO6x/Ud6Ldtgk0kl\noIz3dnHiTPb47Lc4+7uKIpeE4/H7mef1eZ7buBf2RKCds+x3gDlesf2I/d3WwR4/+uSyjbJ9Vh6X\nnW29vZaXbd2A67AHVgF6Ys/q2xX2sQ577NgJ/MV5fbMz7+ltdt7fWA7rcfqkKad/P57v9+O8P6eE\n8x3wpNe040D78y7rAh80CNh3gXm2Atd6vL4GW609/SWcBPyd1+WcL7CTx/zLgP4eX8IijzI/7JlC\n91w+eyXQz2Nn25XbDujsfJuBzjhnqc50f+AU0Mxj2r3A7x7LiPMoK+usQ7Uc4umOPZv1XP5Xp78s\n8pZw0pwd4QD2zLy9U/YrcL/HvI2dnTCAcxPOEWeHLOO1/M+Aj/A6G8ImmiVe0xYCQz0OIE97lN0P\n/HyhHdWZtw1w2ON1rsvC/lgneJSFOtsjp4RTy1nnJh7TXnXWPcXzM7ze1x9Y4fH6fAnneewPq4HX\nMho438+VOCdDXt9hjt8x9qBpOFsz/RT4xKP8WmBjLu8977Yhe8IZjj3xa5XDcn4n54TTK4dpngnH\n87PDsMm+NgVPOKOBV72WnQ5EecTRzaN8IvBULtso22flcdm9clqWU37OunmVTwX+7Px9OYV0rMMm\n9mwntc73+WIucWT7jRX2P3JOOL8C93lNS+ACJ4AXuoeTBERc4PpmDWw2Pm2nM+3MMszZm9knnf/3\ne5SfxO4Ip+0+/YcxJgtbTa0BICKDRWSlc3P4CNACe9njnPd6M8bMBv6HrZLvF5GPRCTcef/pMwrP\ndajp8Xqfx3JOOH96xnxaDWyNJOs8y7qQicaYCsaYKsaYXsaYZR7L9o4xAHup5Axjr1/fhr0MsVdE\npolIE6f4CezZ2RIRWSciw3NZdk5x7/P4+wQ5rz8iUlZEPnRuJh7D1igqeLWgy21ZNcj+/adg98Gc\nHAaysDW40/M/Yex9nCnYbYOIVBGRCSKS4MTzBdn3mfP5P2yt8hcR2SYiTzmfEwc8gj1oHHCWX8P7\nzSLiLyKviMhW57N3OEWen5+n7Ur+ts3nwAxggojsEZFXRSTw/Kua+2/Hu9wYcxxbMztnnS9Ctn3P\nWXYSF7HvXeSyL7TeZ4hIXxFZJCKHnOPPtWT/LgvrWFcDSDDOUdxxZj3y+Bu71I4D4V7TwrE14Vxd\nKOEsxFYD+59nnj3Ym3Wn1XGmXazap/8QET/smeweEakLfAw8iL3UUwFYiz2Anub5BZ3DGPO2MaY9\ntnrbCHgcW+VOz2EdEi4i9j1AbSfugi4rp2V7x5hB9h0aAGPMDGPMVdiD8UbsdsMYs88Yc48xpga2\nFveeiDTIYdkFifsxbO2rkzEmHHu2Btm/p9zsJfv3XxZ7+eAczgF3MTDwAst8GbtftHLiucsrlhPY\nWutp1Tw+I9kY85gxph5wA/CoiPR2ysYbY7pht5sB/pPDZ9+JbVxzJfY+YdTpVbtAzDnJz7ZJN8Y8\nZ4xphr03dz0w+HRxLss/72/H67PDsJeh9mBrk5DLNszDcrPteyISil2vQv/N5LLsC8V3+r3BwLfY\ne7lVnePPdC7uuzwtx2Md9ruu6dVYqI7H3/n6jTmtio/n8u+ni4x9HR4Nc5wm9MHYq0i5Om/CMcYc\nxVbl3xWR/k5mDXQy/avObF8BT4tIpIhEOPPnuX15DtqLyECnVvUI9nLXIuwlBIO9LoqIDMPWcPJE\nRDqISCfnTC8F5wajc0YyEfi3iJRzEtujF7kOi51lP+Fsp8uxB6oJF7Esb18BfxGRaOcH/xL2pn+2\nFm8iUlVEbnR+XKewZyKZTtktIlLLmfUwdntmYn84jZxmjgEichv2nsGPFxFnOeyZ3BGnmeS/8vHe\nScD1ItJNRIKwl7TOt48+AQwXkadEpAqAs37RXvEcd+KpiT3J8LQSuNOpjfTBXpvHWdb1ItLA+eEf\nw26rTBFpLCK9nINQqrO+OTVJL4f9DpKwB+SX8rYZcpTnbSMiV4hIS+eM9xj2hOp0fPux9wHz61qP\nz34BWGyM2W2MScQewO9ytuFw7H2O0/YDtZz35WQ8MExE2jjb8yVn2TsuIsZLuewg7AE1EcgQkb5A\nQR+5yO1YtxB7Mvmw83sciL3Pd1q+fmPGmL7GNnPP6V/f3N7nHMNCsPtZgIiEeNSivgRuEJHuzrHm\neWCyMaZANRyMMa9jD8BPYzf2bmwtY6ozy4tALLbV1xpsy4qCPKD0HfaS0Omb2AOdM7b1wH+xX8Z+\noCW2pVNehWPP9A9ztqXPa07ZQ9hEsQ3b8mk8MCa/gRtj0oAbgb7YmtN7wGBjzMb8LisHY7CXSuZg\nby6mOnF788OeAe3BXvboib1PAtABWCwix7Etdv5sjNlujEnCngU/ht0uTwDXG2MOXkScb2IbAxzE\n/nh+zusbjTHrsK2GxmPP8g5jLzPkNv887L25HsBm5zLHz9h7CO84sz2HvWl8FNsabLLXYv6MPSk4\ngr1nOdWjrCEwC5uwFgLvGWN+xx54XnHWcR+2wczfcwjxM+y+loBtVbnovBvgPPK5baphE9QxbKuq\nPzh7AvUWcLPY55bezkcI47EHtkPYRgiDPMruwSbyJOzVgwUeZbOxZ8P7ROSc/ckY8yvwT2ztYS82\nWd2ej7hyVZjLdg6kD2NPTg9ja6/fFzDE3I51adia+1Cn7Day77cX/RvLp4+xie0ObGOjk06cp/fH\n+7CJ5wA2Cd6f82LOkuyXCd0l9uGiBsaYu9yORSmlVOEq0V3bKKWU8h2acJRSShUJn7qkppRSquTS\nGo5SSqki4dMd1kVERJioqCi3w1BKqWJl2bJlB40xkW7H4c2nE05UVBSxsbFuh6GUUsWKiHj3HOIT\n9JKaUkqpIqEJRymlVJHQhKOUUqpI+PQ9HKVU6ZWenk58fDypqaluh+KzQkJCqFWrFoGBF+oM3Ddo\nwlFK+aT4+HjKlStHVFQUoqOsn8MYQ1JSEvHx8URHR1/4DT5AL6kppXxSamoqlStX1mSTCxGhcuXK\nxaoGqAlHKeWzNNmcX3HbPnpJTam8yMqEvSvhYBwc3QUIBIVBREOo2R7KVHA7QqV8niYcpc5n31pY\n/D5s+glO5DaiMxDVHdreDc36QWBI0cWnLil/f39atmxJRkYGTZs2Zdy4cZQtWzbX+S+77DIWLFiQ\na3lppwlHlTrGGJ75bh2zNx7IdZ6aWXt5OGMM3bJiOUEIc/06Mj8whi0SzT6JpEHVcrzZvz6hhzfC\nroWw+muYMgpmvwhX/gta3ATF7HKHOleZMmVYuXIlAIMGDeKDDz7g0UcfzXV+TTbnp/dwVKnz0Zxt\nfL5oJ42rlaNzvcrZ/nWJrsDfwmfwZfojtGcDP0WO4KXG3/JLkxdJadifGg1a0zq6GrPjjvHAd7vJ\niOoJV/wdHloBg76FkPLw7Qj4rB8c2+v2qqpC1L17d+Li4gB4/fXXadGiBS1atODNN988M09YWBgA\ne/fupUePHrRp04YWLVowd+5cMjMzGTp0KC1atKBly5a88cYbAKxcuZLOnTvTqlUrBgwYwOHDhwG4\n/PLLefLJJ+nYsSONGjVi7ty5RbzGhU9rOKpUWbg1if/8vJFrW1bj3TvbZb/pevIIfDsSDsyEJtcT\neO1r9A2vTk6DvneIrsQ/pqzlhR/X81y/FuDnBw2vhPpXwLJPYcY/4IOucNMnUL9XUa1eifXcD+tY\nv+dYoS6zWY1w/nVD8zzNm5GRwU8//USfPn1YtmwZY8eOZfHixRhj6NSpEz179qRt27Zn5h8/fjzX\nXHMN//jHP8jMzOTEiROsXLmShIQE1q5dC8CRI0cAGDx4MO+88w49e/bkmWee4bnnnjuTxDIyMliy\nZAnTp0/nueeeY9asWYW6DYqa1nBUqbH/WCoPfbWCqIhQXr25dfZkc3gHfNIbtv0G170Ot38J4dVz\nXdagTnW5p3s04xbu5NP5288W+PlDhxFw7x8QVhW+vAVWfHnpVkpdUidPnqRNmzbExMRQp04dRowY\nwbx58xgwYAChoaGEhYUxcODAc2ofHTp0YOzYsTz77LOsWbOGcuXKUa9ePbZt28ZDDz3Ezz//THh4\nOEePHuXIkSP07NkTgCFDhjBnzpwzyxk4cCAA7du3Z8eOHUW23peK1nBUqZCemcUDXy7nRFoGX93T\nibBgj13/YBx8diOkn4AhP0Ddy/K0zKf6NmVH0gme/3E9dSqXpVeTqmcLIxvD8Bkw8W747n44cRC6\n/rmQ16r0yGtNpLB53sM5LS+DVvbo0YM5c+Ywbdo07r77bh5//HEGDx7MqlWrmDFjBu+++y4TJ048\nc1ktN8HBwYBtvJCRkXHxK+IjtIajSoWXp28kdudh/nNTKxpWLXe2IGkrfHotZJyCIT/mOdkA+PsJ\nb93ehmY1wnlw/IpzL/mEhMOd30DzATDzGVj8YSGtjXJTjx49mDp1KidOnCAlJYUpU6bQvXv3bPPs\n3LmTKlWqcM899zBixAiWL1/OwYMHycrK4qabbuKFF15g+fLllC9fnooVK56pIX3++ednajslUb5q\nOCLSB3gL8Ac+Mca84lXeA3gTaAXcboyZ5ExvA7wPhAOZwL+NMV8XPHylLuzH1XsYM387w7pGcUPr\nGmcLjh+ALwZCVgYMnQ5VmuR72WWDAhg9pAP9353PiHFLmfpAV6qGezSLDgiCgR9DRhr89IR9dqft\noEJYK+WWdu3aMXToUDp27AjAyJEjs92/Afj999/5v//7PwIDAwkLC+Ozzz4jISGBYcOGkZWVBcDL\nL78MwLhx47jvvvs4ceIE9erVY+zYsUW7QkVI8lI9BBARf2AzcBUQDywF7jDGrPeYJwqbVP4KfO+R\ncBoBxhizRURqAMuApsaYI+f7zJiYGKMDsKmC2LI/mX7vzqdp9XC+uqczQQFOpT4tBcZeCwc325pN\nrfYF+pz1e45xywcLiI4MZeK9XSgb5HUul3EKxt8GO+bC4O8gqluBPq802LBhA02bNnU7DJ+X03YS\nkWXGmBiXQspVfi6pdQTijDHbjDFpwASgn+cMxpgdxpjVQJbX9M3GmC3O33uAA4DPDX+qSpbjpzK4\n74tllA3y5907251NNsbAdw/AvtVw89gCJxuwLZ7eubMt6/cc488TVpKZ5XUiFxAMt46DSvXg67vh\n0PacF6RUCZafhFMT2O3xOt6Zli8i0hEIArbmUj5KRGJFJDYxMTG/i1cKsDd2n5y0mu0HU3jnjnZU\nK+9xmWvRe7BuCvT6JzTuU2if2atJVZ65vhkz1+/nlZ82nDtDSHm4YwKYLJgwCNJPFtpnK1Uc5Cfh\n5PTYdN6ux51egEh14HNgmDEmK6d5jDEfGWNijDExkZFaCVIXZ/S87Uxbs5cn+jShS/3KZwt2LoRf\n/glNrodufyn0zx3aNZohXery8dztfLk4h2HlK9eHm0bDgXUw4++F/vlK+bL8JJx4oLbH61rAnry+\nWUTCgWnA08aYRfn4XKXyZcn2Q7z800auaV6Ve3vUO1uQehQmj4IKtaH/+5es65l/Xt+MKxpH8sx3\n65izOYdaesMrbRPp2DGwdvIliUEpX5SfhLMUaCgi0SISBNwOfJ+XNzrzTwE+M8Z8k/8wlcqbA8mp\nPDh+OXUqleX/bvF6uPOnJ+FYgm01FhJ+yWII8PfjnTvb0bBKGA98uZxN+5LPnanXP6FWB/jxEe0C\nR5UaeU44xpgM4EFgBrABmGiMWSciz4vIjQAi0kFE4oFbgA9FZJ3z9luBHsBQEVnp/GtTqGuiSr30\nzCweHL+CY6npvH9XO8JDPIbdXf89rPoKejwOtTte8ljCggMYM7QDZYL8Gf7pUhKTT2WfwT8Q+n9g\nm0v/8GfbkEGpEi5fD34aY6YbYxoZY+obY/7tTHvGGPO98/dSY0wtY0yoMaayMaa5M/0LY0ygMaaN\nx7+V5/sspfLr/2ZsYsn2Q7wysBVNqnnUYFKPwvTHoVor6PHXIounRoUyjB7SgUMpadzzWSyp6ZnZ\nZ4hoYHuW3jIDVmr3N75IRHjsscfOvH7ttdd49tlnizSGoUOHMmnSpCL9zEtFexpQJcJPa/by0Zxt\nDO5Sl/5tvRpPznoOUg7AjW/bmkURalmrPG/e3oZV8Ud4bOIqsrybS3e8F+p2tZ19phws0tjUhQUH\nBzN58mQOHry476YkdEdTmDThqGJva+JxHp+0mja1K/CP67weFNy12N6c73Qf1Gib8wIusWuaV+Pv\nfZsybc1eXvtlU/ZCPz/bWWjacZj5L1fiU7kLCAhg1KhROfZ5tnPnTnr37k2rVq3o3bs3u3btAmyN\n5NFHH+WKK67gySef5Nlnn2XIkCFcffXVREVFMXnyZJ544glatmxJnz59SE9PB+D555+nQ4cOtGjR\nglGjRuWpz7biRjvvVMVayqkM7vt8GUEBfrw3qB3BAf5nC0/fHwmvCVf8w70ggZHdo9l2MIX3ft9K\nVEQot8Z4NPis0gS6PADz34J2g6FOJ/cC9VU/PQX71hTuMqu1hL6vXHC2Bx54gFatWvHEE09km/7g\ngw8yePBghgwZwpgxY3j44YeZOnUqAJs3b2bWrFn4+/vz7LPPsnXrVn777TfWr19Ply5d+Pbbb3n1\n1VcZMGAA06ZNo3///jz44IM888wzANx99938+OOP3HDDDYW7zi7TGo4qtowx/G3yGrYmHuedO9pS\no0KZ7DMsfh8SN8B1r0FwmDtBOkSE5/s1p3vDCP4+eQ2b93u1XOvxhE2M0x6DTL0M40vCw8MZPHgw\nb7/9drbpCxcu5M477wRsgpg3b96ZsltuuQV//7MnP3379iUwMJCWLVuSmZlJnz72geOWLVueGXbg\nt99+o1OnTrRs2ZLZs2ezbt06Shqt4ahia9yCHXy/ag+PX9OYrg0ishceT4Q5r0HDa6BxTkOoFb1A\nfz/eur0tPV79jTdnbea9QR5d6gSHQZ+XYeJgWPoJdL7PvUB9UR5qIpfSI488Qrt27Rg2bFiu83g2\nwQ8NDc1WdnqYAT8/PwIDA8/M6+fnR0ZGBqmpqdx///3ExsZSu3Ztnn32WVJTUy/BmrhLaziqWEpM\nPsVL0zfSu0kV/tSz/rkz/P6y7aDz6heLPrjzqBQaxPCuUUxfs491e45mL2x6I9TvDb+9BCcOuROg\nylGlSpW49dZbGT169Jlpl112GRMmTADgyy+/pFu3i++Q9XRyiYiI4Pjx4yWmVZo3TTiqWPpy8U7S\nMrP4x3VN8fPz6jHgwAZYNtaOvBnZyJ0Az2NE93qEhwTwxszN2QtEbIJMS4a5/3UnOJWrxx57LFtr\ntbfffpuxY8fSqlUrPv/8c956662LXnaFChW45557aNmyJf3796dDhw6FEbLPyfPwBG7Q4QlUTtIy\nsrjsldm0rBnO2GE5PMT5xc2wewk8vAJCK59b7gPe+XUL/525makPdKVN7QrZC797AFZPhAeXQsUo\nV+LzBTo8Qd6U1OEJlPIJ09fs5eDxUwztGn1uYdyvEDcTej7us8kGYFi3aCqWDeR171oOwOV/B/GH\n2b51OVCpgtKEo4oVYwxj52+nXmQo3b0bChgDvz4PFepAx1HuBJhHYcEB3NuzPnM2JxK7w+t+Tfma\n0OV+WPMN7NEOOVTJoQlHFSsrdh9hVfxRhl0Wde69m43TYO9KuPxvdsAzHze4S10iwoL57y851HK6\n/hnKVIKZzxR9YD7Ely/5+4Litn004ahi5dP5OygXHMDAdrWyF2RlwW//hsoNoOWt7gSXT2WDArj/\n8vos3JbEgq1eXaeElLcdjW7/A3bMy3kBJVxISAhJSUnF7qBaVIwxJCUlERIScuGZfYQ+h6OKjX1H\nU5m+Zi9DLosiNNhr1103GQ6st4Ob+Ref3frOTnX4aM42Xv9lM13uq5x9OIWYYTD/Tfj9FRj6o3tB\nuqRWrVrEx8ejI//mLiQkhFq1al14Rh9RfH6ZqtT7cvFOMo1hSJeo7AWZGfa5myrNoPlAV2K7WCGB\n/jzQqwH/nLqWOVsO0rORxyi3gWXsqKQ/PwXb50J0d/cCdUFgYCDR0Tk0DFHFll5SU8VCanom4xfv\noneTqtSpXDZ74ZqJkBRn+0vzK3679G0xtalZoQyv/7Lp3MtH7YdCWDVby1GqmCt+v05VKv2wag9J\nKWkM6xqVvSAr0z4kWa0VNLnOldgKKijAj4d7N2BV/FFmbTiQvfB0LWfnPFvLUaoY04SjfJ4xhk8X\n7KBR1TAuq+/1bM2G723tpvtj9kn9Ympgu1rUrVyW12duPnfMnPZDnFrOy+4Ep1Qh0YSjfN7SHYdZ\nt+cYQy+Lzn5T3RiY+7ptmda0eHfjHujvxyNXNmTD3mP8vG6fV2EZ6PYI7Jxvx/dRqpjShKN83qcL\ntlO+TCADvEfyjPsV9q2Gro+An3/Oby5GbmxdkwZVwnhj5mYyvWs57Qbb53Lmv+lOcEoVAk04yqcl\nHDnJjHX7ub1jbcoEeSWVea/bMWRa3eZOcIXM30945MqGbDlwnB9X78leGBRqe0/YNN12TqpUMaQJ\nR/m0zxfuxBjD3Z3rZi/YtcheYrrsIQgIcie4S+DaFtVpUq0cb87aQkZmVvbCjqMgoAzMfzvnNyvl\n4zThKJ91Mi2TCUt3cXWzatSq6NUUeu7rULayvdRUgvj5CX+5qhHbD6YwZUVC9sJQZ33XTISj8e4E\nqFQB5CvhiEgfEdkkInEi8lQO5T1EZLmIZIjIzV5lQ0Rki/NvSEEDVyXfdysTOHIi/dym0PvWwJYZ\n0OlP9lJTCXN1s6q0rFmet2dvId27ltPlAdtYYuF77gSnVAHkOeGIiD/wLtAXaAbcISLNvGbbBQwF\nxnu9txLwL6AT0BH4l4hUvPiwVUlne4XeQdPq4XSMrpS9cP5bEBQGHUe6E9wlJiI8elUjdh86yTex\nXjWZinWhxU2w7FMdFVQVO/mp4XQE4owx24wxacAEoJ/nDMaYHcaY1YDXaRnXADONMYeMMYeBmUCf\nAsStSriF25LYtD+ZYV2jsjeFPrYH1k2BdkOgTMk9Z7m8cSTt6lTgf7O3cCojM3th1z9DegosHZ3z\nm5XyUflJODWB3R6v451phfpeERklIrEiEqud9pVen87fQaXQIG5sXSN7wZKPwGRBp3vdCayIiAiP\nXd2YPUdTmbBkd/bCai2gwZWw+ANIP+lOgEpdhPwknJwe485rv+F5fq8x5iNjTIwxJiYyMjKnWVQJ\nt/vQCWZu2M8dHWsTEujRFDp8n1iNAAAgAElEQVQtBWLHQpPr7aWlEu6y+pXpFF2J//0Wx8k0r1rO\nZQ/DiYOwZpI7wSl1EfKTcOKB2h6vawF7cpm3MN+rSpnPFu7AT4S7O0dlL1g5HlKP2BvnpcDpWk5i\n8im+WLQze2F0D6jSHBa9bxsRKFUM5CfhLAUaiki0iAQBtwPf5/G9M4CrRaSi01jgameaUtmknMpg\nwtLd9G1RjWrlPQaWysqyB9ca7aB2J/cCLGIdoyvRvWEE7/+xlZRTGWcLRKDzfXBgHezQTj1V8ZDn\nhGOMyQAexCaKDcBEY8w6EXleRG4EEJEOIhIP3AJ8KCLrnPceAl7AJq2lwPPONKWymbwigeTUjHOb\nQm/5BQ5ttbWbYtxJ58V49KpGHEpJ49MFO7IXtLzFPou06H1X4lIqv/I1AJsxZjow3WvaMx5/L8Ve\nLsvpvWOAMRcRoyoljDF8On87rWqVp10drxZoi9613dg065fzm0uwtnUq0qtJFT6as427u9QlPCTQ\nFgSWgfbD7PAMh7ZBpXruBqrUBWhPA8pnzN1ykK2JKQy9zKsp9L41sH0OdLwH/APdC9BFj17ViKMn\n0xkzb3v2gg4jbceliz9yJzCl8kETjvIZny7YQURYMNe1qp69YNEHEFjWjn5ZSrWoWZ4+zasxeu52\njpxIO1sQXh2aD4AVX0DqMfcCVCoPNOEon7D9YAqzNx5gUKc6BAd4NIU+cQjWToJWt5boBz3z4i9X\nNSL5VAbjFni1WOv0J0hLhpVfuhOYUnmkCUf5hHELdhDoLwzqVCd7waoJkJEKMSPcCcyHNK5Wjl5N\nqvD5oh2kpns8l1OrvW25t/gDO+S2Uj5KE45yXXJqOpOWxXNdy+pUCfdoCm0MxI6BWh2geiv3AvQh\nI7pFc/B4Gt+v8nqMrdO9cHgHxM1yJS6l8kITjnLdt8viOX4qg2Fdo7MX7JgLSVsgZrg7gfmgy+pX\npkm1coyZtx3j+cBnkxsgrCos/cS94JS6AE04ylVZWYZxC3fStk4FWteukL0wdgyEVLA3xRVgex8Y\n2b0eG/clMz8u6WxBQJBtVLFlJhzanuv7lXKTJhzlqj82J7L9YMq5tZvk/bDhB2gzyD5vos64oXV1\nIsKC+WTetuwF7YaA+MGyse4EptQFaMJRrhq7YAdVw4Pp26Ja9oIVn0NWBsQMcycwHxYc4M+QLnX5\nfVMicQeSzxaUrwlNroXln0N6qnsBKpULTTjKNdsSjzNncyJ3dapLoL/HrpiVaQcYi+4BEQ1di8+X\nDepcl+AAP0bP25G9oMNIOHkI1k91JS6lzkcTjnLNlBUJ+Anc1qF29oK4WXB0tzYWOI9KoUEMbFeL\nycvjSTp+6mxBdE+o3BCWfOxecErlQhOOcoUxhikrEujaICJ7U2iwjQXCqtpxb1SuRnSL4lRGFl8u\n3nV2ooit5STEwp4V7gWnVA404ShXLNt5mPjDJxnQ1mvg1yO7YPMMaHt3qe03La8aVCnH5Y0j+Wzh\nzuzDULe+3XYFpENQKx+jCUe5YsqKBMoE+nNNc6/GAsvG2bP0UtxvWn6M7FaPg8dP8f1KjwdBy1Sw\nQxesmQQnD7sXnFJeNOGoIpeWkcWPq/dydfOqhAZ7jJCRkQbLP4OGV0OF2rkvQJ3RtYF9EHS094Og\nHUZCxklY+ZV7wSnlRROOKnK/bzrA0ZPp9Pe+nLZpGqQc0MYC+SAiDO8WzcZ9ySzY6vEgaPVWtn+1\npZ/Y0VKV8gGacFSRm7oygcqhQXRvEJG9IHYMlK8DDa50J7Biql+bGvZB0LleD4J2GGlHSd3+uytx\nKeVNE44qUsdS05m14QA3tK5BgOezNwe32EHW2g+xA4qpPAsO8OfuznX5zftB0Gb97BDUsTrQrvIN\nmnBUkfp5zT7SMrLOvZwWOxb8AqDdYHcCK+bu6lyHoAA/xszfcXZiQLDtGmjjdDi2J9f3KlVUNOGo\nIjVlRQLREaG0rlX+7MT0k3bwsKY3QFgV94IrxiqHBXNTu5p8uyyeQykeI4LGDAOTabu7UcplmnBU\nkdlz5CSLtifRv01NRORswbopkHpEGwsU0PCu0fZB0EUeI4JWqgf1e9uugjIzXItNKdCEo4rQ96v2\nYAz0b1sje8HS0bY7lqju7gRWQjSsWo6ejSL5bJHXg6AxwyF5D2z+2b3glCKfCUdE+ojIJhGJE5Gn\ncigPFpGvnfLFIhLlTA8UkXEiskZENojI3wonfFWcTF2RQLs6FahbOfTsxL2rbDcsMcPtA5+qQEZ2\njyYx+RQ/rNp7dmKjPlCuhjYeUK7Lc8IREX/gXaAv0Ay4Q0Saec02AjhsjGkAvAH8x5l+CxBsjGkJ\ntAfuPZ2MVOmwYe8xNu5LPrcrm9ixEBACbe5wJ7ASpluDCBpXLccnc7edfRDUP8C2/tv6Kxzadv4F\nKHUJ5aeG0xGIM8ZsM8akAROAfl7z9APGOX9PAnqLvVhvgFARCQDKAGnAsQJFroqVqSsSCPATrmvl\ncTkt9RisnggtboIyFd0LrgQREUY4D4Iu9HwQtN1gEH97L0cpl+Qn4dQEdnu8jnem5TiPMSYDOApU\nxiafFGAvsAt4zRhz6CJjVsVMZpbhu5V7uLxxJJVCg84WrJkI6SnaWKCQ3dimBhFhQXwyz2Oo6fAa\ndnC2FV9Axqnc36zUJZSfhJPTBXaTx3k6AplADSAaeExE6uX4ISKjRCRWRGITExPzEZ7yVYu3JbHv\nWGr2Z2+MgaVjoForqNneveBKoJBAf+7qXJfZGw8Qd+D42YKY4XAiCdZ/515wqlTLT8KJBzx7VKwF\neD9NdmYe5/JZeeAQcCfwszEm3RhzAJgPxOT0IcaYj4wxMcaYmMjIyHyEp3zVlBUJhAUHcGXTqmcn\n7l4CB9ZpY4FL5K7OdQkK8GPsfI9aTvTltpm0Nh5QLslPwlkKNBSRaBEJAm4Hvvea53tgiPP3zcBs\nY+9c7gJ6iRUKdAY2Fix0VRykpmfy09p99G1RjZBAjy5rYsdAUDnbjb4qdBFhwQxoU5Nvl3s8COrn\nZxP8roWwf527AapSKc8Jx7kn8yAwA9gATDTGrBOR50XkRme20UBlEYkDHgVON51+FwgD1mIT11hj\nzOpCWgflw2Zt2M/xUxnZW6edOGQf9mx9GwSHuRdcCTeiezSp6VmMX+zxIGibQeAfrLUc5YqAC89y\nljFmOjDda9ozHn+nYptAe7/veE7TVck3dUUC1cJD6FSv8tmJK7+EzFPaWOASa1S1HN0bRjBu4U7u\n6VGP4AB/KFsJmg+AVV/Dlc9pwldFSnsaUJfMoZQ0ft+USL82NfD3c+7TZGXZs+vanaFqc3cDLAVG\ndq9HYvIpfvR8EDRmOKQlw5pv3AtMlUqacNQlM231HjKyTPbWadv/sA8fau2mSPRoGEHDKmHZRwSt\n3RGqtoDY0ba1oFJFRBOOumSmrEigSbVyNK0efnZi7BgoU8mO1aIuudMPgq7fe4yF25JOT7QJf98a\nSFjmboCqVNGEoy6JnUkpLN91JHvt5the2DgN2g6CwBD3gitl+retSeXQIEbP9Wgi3epWCAqzHacq\nVUQ04ahLYuqKPYjAja09urJZ8bkdm6X9MPcCK4VOPwj668YDbEt0HgQNLmeTzrrJttWgUkVAE44q\ndMYYpq5MoHN0ZWpUKGMnZmbYfrzqXQGV67saX2l0V+e6BPn7Ze/uJmY4ZKTCqq/cC0yVKppwVKFb\nFX+U7QdTsj97s+UXOJagjQVcElkumIHtajJpWTyJyU5fatVaQq2O9r6aNh5QRUATjip0U1ckEBTg\nR5+W1c5OjB0N5apD477uBVbKjepRj/TMrOzd3XQYAUlxsH2Oe4GpUkMTjipU6ZlZ/LBqD1c1rUp4\nSKCdeGg7xP1qu8j3D3Q3wFKsXmQYfZpX4/NFO0lOTbcTm/W3Q0PEauMBdelpwlGFat6WgySlpGVv\nnbZ8nG2K226we4EpAO7rWZ/k1Ay+WrLLTggMsd3dbJwGyfvcDU6VeJpwVKGasiKBCmUD6dnI6ek7\n4xQs/xwa9YXytdwNTtG6dgUuq1+Z0fO2cyoj006MGQ5ZGfZ7UuoS0oSjCs3xUxn8sn4f17WsTlCA\ns2tt+AFOHNTGAj7kvp712X/sFFNXJNgJletDvcttK8KsTBcjUyWdJhxVaGas3Udqelb21mmxY6BC\nXajfy73AVDbdG0bQvEY4H87ZRlaW0zotZgQci4fNM9wNTpVomnBUoZm6MoFaFcvQvm5FO+HABtg5\nH2KG2bFYlE8QEe7rWZ9tiSn8sn6/ndi4L4RV02EL1CWlRwFVKA4cS2V+3EEGtK2JnB7BM3YM+AdB\n27vdDU6do2+LatSpVJb3/9hqO/X0D4T2QyBuFhze4XZ4qoTShKMKxfer9pBloF8b53LaqeOw8is7\n9kpohLvBqXME+PtxT496rNp9hEXbnK5t2g2xrQmXfepqbKrk0oSjCsXUlQm0qlWeBlWcAb3WTLRj\nrnQY6W5gKle3tK9FRFgQH/yx1U4oX9O2Jlz+uW1dqFQh04SjCmzL/mTWJhyj/+najTG2F+JqLaFW\nB3eDU7kKCfRnWNdo/ticyLo9R+3EDsNtq8INP7gbnCqRNOGoApu6MgF/P+GG0z1D714M+9fa2s3p\n+znKJ93VqS6hQf58+Mc2O6FeL6gYpY0H1CWhCUcVSFaWYeqKPXRrEEFkuWA7celoCA6Hlre4G5y6\noPJlAxnUuS4/rt7DrqQTtjVh+2G2deGBDW6Hp0oYTTiqQGJ3HibhyMmzz94cT4T1U6H1HRAU6m5w\nKk+Gd43G30/4eK5Ty2l7l21dqLUcVcg04agC+SZ2N6FB/lzVrKqdsOJzyEyzvRCrYqFa+RAGtK3J\nxNjdHDx+yrYqbNYPVk2AtBS3w1MliCYcddGOn8pg2pq9XN+qBqHBAbZblNixENUdIhu7HZ7Kh1E9\n6pOWmcW4BTvshJgRcOoYrJnkalyqZMlXwhGRPiKySUTiROSpHMqDReRrp3yxiER5lLUSkYUisk5E\n1oiIDmpfzE1bvYcTaZnc2qG2nRA3C47u0qbQxVCDKmFc3awqny3cyfFTGVCnM1RpZoct0MHZVCHJ\nc8IREX/gXaAv0Ay4Q0Saec02AjhsjGkAvAH8x3lvAPAFcJ8xpjlwOZBe4OiVqybGxlM/MpR2dSrY\nCUs/sd2jNLnO3cDURbmvZ32OnkxnwpJdtnVhzHDYuwr2LHc7NFVC5KeG0xGIM8ZsM8akAROAfl7z\n9APGOX9PAnqL7efkamC1MWYVgDEmyRij3dIWY3EHklm28zC3dahtu7I5tB22zIT2Q3WQtWKqbZ2K\ndK5XiU/mbictIwta3QaBobBUGw+owpGfhFMT2O3xOt6ZluM8xpgM4ChQGWgEGBGZISLLReSJ3D5E\nREaJSKyIxCYmJuYjPFWUvomNJ8BPGNDWGeNm2VgQP9sflyq27utZn33HUvluZQKEhEOrW2Dtt3Dy\nsNuhqRIgPwknpyf4vC/u5jZPANANGOT8P0BEeuf0IcaYj4wxMcaYmMjIyHyEp4pKemYW3y6Pp1eT\nKvbZm/RU2x1Kk2shvIbb4akC6NkokqbVw/ngj6126IKY4ZBx0rZYU6qA8pNw4oHaHq9rAXtym8e5\nb1MeOORM/8MYc9AYcwKYDrS72KCVu37beICDx9O4NcbZHdZOgpOHoMM97gamCswOXVCPrYkpzNqw\nH6q3hpox9pkcbTygCig/CWcp0FBEokUkCLgd+N5rnu+B09dUbgZmG2MMMANoJSJlnUTUE1hfsNCV\nWybG7iayXDCXN460B6FFH9gWTdE93A5NFYLrWlandqUyZ4cuiBkOBzfDjnluh6aKuTwnHOeezIPY\n5LEBmGiMWSciz4vIjc5so4HKIhIHPAo85bz3MPA6NmmtBJYbY6YV3mqoonLgWCq/bUrkpna1CPD3\ns12g7F8Dne7TftNKiAB/P+7pXo8Vu46wZPshaDEQQirYJtJKFUBAfmY2xkzHXg7znPaMx9+pQI4d\naBljvsA2jVbF2LfLE8jMMtwa4zQWWPQ+lKkErW51NzBVqG5pX5u3Zm3hgz+20mlYR2gzCJZ8CMn7\noVxVt8NTxZT2NKDyzBjDN7G76RBVkXqRYXB4J2yabptCB5ZxOzxViMoE+TP0sih+25TIhr3H7DDh\nWRmw/DO3Q1PFmCYclWexOw+z7WDK2cYCSz4CRHsWKKHu7lKXskH+fPjHVohoCPV7wdKPdXA2ddE0\n4ag8+3qp7ajzulbV7RDSyz+3nTyW934cS5UEFcoGcWfHOvywei+7D52ALg/A8f2wdrLboaliShOO\nypPjpzKYtnovN7SuQdmgAFj1FZw6Cp3/5HZo6hIa0T0aP4HR87ZD/d4Q2QQWvatNpNVF0YSj8uTH\nVXs4me501JmVBYs/gBrtdAjpEq56+TL0a1OTCUt3cehEOnS+H/atgR1z3Q5NFUOacFSeTIzdTYMq\nYbStXQG2/gpJcbZ2o02hS7z7etYjNT2LTxfssK0Ry0bAwnfdDksVQ5pw1AXFHUhm+a4j3BbjdNS5\n6H3bK3Sz/m6HpopAgyrluLpZVcbO286hNH87uN7mn+FgnNuhqWJGE466oK+X7rYddbarCYmbbA2n\nwwgICHI7NFVEHr+mMSfSM3lr1mbbKtE/CBa953ZYqpjRhKPOKz0zi8nLE+jdtAoRYcGw4G0ICLHd\nnahSo2HVctzeoTZfLt7F1pNl7aW1lePhxCG3Q1PFiCYcdV6/bjhAUorTUWfyPlg90T51Hhrhdmiq\niP3lqkaEBPrz8vSNtvFAxkk7LIVSeaQJR53XN7G7qVIumJ6NIm3LtKwM+zyGKnUiwoK5/4r6zNqw\nnwXHq0K9K2DxR5CR5nZoqpjQhKNytf9YKr9tOsBN7WsRkJFiR35segNUru92aMolw7tGU7NCGf49\nbQNZnR+A4/vsAG1K5YEmHJWrb5fHk2Wwl9OWjbMPenb9s9thKReFBPrzRJ/GrNtzjMnHmtgHQRe8\now+CqjzRhKNyZDvqjKdjVCWiKzotkup2g5rt3Q5NueyGVjVoXas8r/2ymbROD8GBdbB5htthqWJA\nE47K0dIdh9l+MMX2LLD2WziWoLUbBYCfn/D09c3YdyyVjw63h/K1Yd7rWstRF6QJR+Xo66W7CQsO\n4NoWVWH+2xDZFBpe5XZYykd0iKpEn+bVeG/uTpLb3Qe7F8POBW6HpXycJhx1juTUdKav2csNratT\ndtfv9pLJZQ9pNzYqm6f6NiE9M4tXD3S03d3Me93tkJSP04SjzvHj6r22o872teCPV+0lk5Y5DuSq\nSrGoiFAGd4nii+WJHGg+DOJmwd5VboelfJgmHHWOr5fupmGVMNpkrIb4JdDtEe3GRuXooV4NCA8J\n5J97umCCysG8N90OSfkwTTgqm837k1m5+wi3daiNzPk/KFcd2tzldljKR1UoG8TDvRsyY2squ+rf\nDuunQtJWt8NSPkoTjspmotNR582Ru2HnPNsyLTDE7bCUD7u7c12iKpfl8d3dMH6BMF9rOSpnmnDU\nGWkZWUxZkcCVTatSYckbEBoJ7Ya4HZbycUEBfjzVtwlLDgayueYA26nn4R1uh6V8UL4Sjoj0EZFN\nIhInIk/lUB4sIl875YtFJMqrvI6IHBeRvxYsbHUpzN64n6SUNEbWS4Jtv9mWaUFl3Q5LFQPXNK9G\nx6hKPJJwBUb8Yc5rboekfFCeE46I+APvAn2BZsAdItLMa7YRwGFjTAPgDeA/XuVvAD9dfLjqUpoY\nG0/V8GDa7fgEylSCmBFuh6SKCRHhH9c1ZUNKOZZF9rO1nEPb3A5L+Zj81HA6AnHGmG3GmDRgAtDP\na55+wDjn70lAbxH78IaI9Ae2AesKFrK6FPYdTeX3TQe4v/Fx/LbMgC73Q3CY22GpYqR17Qr0b1OD\nR+KvsPdytJajvOQn4dQEdnu8jnem5TiPMSYDOApUFpFQ4EnguQt9iIiMEpFYEYlNTEzMR3iqIE53\n1HnLsc8gpAJ0HOV2SKoYerxPExKpyB/h18OqCdpiTWWTn4ST02Pm3p0n5TbPc8AbxpjjF/oQY8xH\nxpgYY0xMZGRkPsJTF8t21Lmbu2vuoezOX6HbXyCkvNthqWKoZoUyjOgWzeN7e5HlF2gfHFbKkZ+E\nEw/U9nhdC9iT2zwiEgCUBw4BnYBXRWQH8AjwdxF58CJjVoVs8fZD7EhK4WHzFYRV1dqNKpA/XV4f\nE1aFacHXYdZMhINb3A5J+Yj8JJylQEMRiRaRIOB24Huveb4HTrejvRmYbazuxpgoY0wU8CbwkjHm\nfwWMXRWSLxbt5JrgdUQeWgY9HteWaapAyoUE8siVjXj20JVk+gXD76+4HZLyEXlOOM49mQeBGcAG\nYKIxZp2IPC8iNzqzjcbes4kDHgXOaTqtfMumfclMX5PAc6GToEJdfe5GFYrbO9SmUpWafO13Layd\npH2sKQDE+PAYFjExMSY2NtbtMEq0P32xjJAtP/KGvA4DPoTWt7sdkiohftt0gD+P/Z0l5f5KSO12\nMHiq2yGVGiKyzBgT43Yc3rSngVJsbcJRflmbwNNlJ9uhgrVHaFWILm8USeuGdXk7fYB9kDjuV7dD\nUi7ThFOKvTFzM4NC5lP55A7o9TT4+bsdkipBRIS/X9uU0aeu4HBQDZj5L8jKcjss5SJNOKXUil2H\nWbhxF08GfQO1OkCT690OSZVATauH0799PZ47MRD2r4E1E90OSblIE04p9frMzTxSZjqhaUlwzcs6\nmqe6ZP52bROWlr2cjX71yfr1BUhPdTsk5RJNOKXQku2HiNuyieHyI7S4CWp3cDskVYJVKBvE24Pa\n88KpO/A7Fo9Z8pHbISmXaMIpZYwx/PeXTTxdZhL+YqD3v9wOSZUC7etWovvVA5md2Yb0316F49pt\nVWmkCaeUWbA1iRM7YrnO/IF0uR8q1nU7JFVKjOpej5m1H0LST3Doh6fdDke5QBNOKWKM4b8zNvBy\nyDhMaCR0e9TtkFQp4ucnPD7oRib6X0eFTV+Tsn2x2yGpIqYJpxT5fVMiDfd8RwuzBbn6RQgJdzsk\nVcpUCg2i8W0vctCU58DXf8ZkZbodkipCmnBKCWMMH81Yyt8CJ5BVuzO0us3tkFQpFdO4Lqub/IXo\n1A0smvKu2+GoIqQJp5SYsW4/1yeOJlxO4Hfdf7UZtHJVr1sfYktQUxqufo1N23e6HY4qIppwSoGs\nLMO0n37kjoDZduiBai3cDkmVcn7+/kTc/j8qSDJx4x8j5VSG2yGpIqAJpxSYtmoXf0p+m7SQCPyu\n+Jvb4SgFQMV6MexvNoLr0mcy9ssv8OWOhFXh0IRTwmVkZrH/p1dp5reToBvf0JE8lU+p2f85jgbX\noO+OV/h28Ta3w1GXmCacEm723Hncfepr9tbqg1+zG9wOR6nsgkIJu+kd6vvtZd/0f7N5f7LbEalL\nSBNOCZaekUG1OU+Q5hdMtdvedjscpXLk3+hKUpsM5F6/73jts285kab3c0oqTTgl2KrJr9EqawO7\nOz6NlKvqdjhK5SrkhtcwIRX4S/J/eX7KCrfDUZeIJpwSKm3fBlqu/y/LAtvT9Jp73Q5HqfMLrUzQ\ngP/R1G8Xtda8w+Tl8W5HpC4BTTglUUYax8YPJ8UEkXHD/xA//ZpVMdC4L1mtB3F/wA9MnDqZuAPH\n3Y5IFTI9EpVAGb+9QsSx9Yyp+AgdWzZ1Oxyl8syv7yuYcjX4j997/PXL+aSma9c3JYkmnJJm12L8\n5r/BNxk96H7jcER7FFDFSUg4/gM/oA77uOvQ/3juh3VuR6QKkSackuTEIbImDWMPEfxS9y90qlfZ\n7YiUyr/o7kiPx7nZfw6pseP5bmWC2xGpQpKvhCMifURkk4jEichTOZQHi8jXTvliEYlypl8lIstE\nZI3zf6/CCV+dkZUFU+7FJB/gT6ce5v5r2rodkVIXr+eTZNW5jJeCx/LR5BmsTTjqdkSqEOQ54YiI\nP/Au0BdoBtwhIs28ZhsBHDbGNADeAP7jTD8I3GCMaQkMAT4vaODKy/w3YMsvvGKGUKVxZ9rWqeh2\nREpdPP8A/G4eTVBwWd7wf4uhH/3Bwq1JbkelCig/NZyOQJwxZpsxJg2YAPTzmqcfMM75exLQW0TE\nGLPCGLPHmb4OCBGR4IIErjzsmAezX2RjxNV8nHoFf7mqkdsRKVVw4TXwH/ghDc1OXgn6hCFjFzNj\n3T63o1IFkJ+EUxPY7fE63pmW4zzGmAzgKOB9I+EmYIUx5lT+QlU5OrwTJg4ms2I9hiQOok/z6rSo\nqf2lqRKi0dVIr39wZfofPFX+V/70xTImxu6+8PuUTwrIx7w5NXfy7t71vPOISHPsZbarc/0QkVHA\nKIA6derkI7xS6FQyfHUHZGUwtvZLHNibobUbVfJ0/yvsXc2wjWNIrFWfJybB4ZQ07u1Z3+3IVD7l\np4YTD9T2eF0L2JPbPCISAJQHDjmvawFTgMHGmK25fYgx5iNjTIwxJiYyMjIf4ZUyWVkweRQkbmRt\n17d5ZWkm/VrXoHG1cm5HplThEoH+7yORTXgi+T8Ma5LOyz9t5OWfNuiQBsVMfhLOUqChiESLSBBw\nO/C91zzfYxsFANwMzDbGGBGpAEwD/maMmV/QoBUw61+waTqJ3Z7ljl/LUC8ylOf768BqqoQKDoPb\nxyN+ATxz5J/c2y6UD//YxlPfriEjM8vt6FQe5TnhOPdkHgRmABuAicaYdSLyvIjc6Mw2GqgsInHA\no8DpptMPAg2Af4rISudflUJbi9Jm4buw4G1Oth7KwNjmBAf4M2ZoB8JDAt2OTKlLp1I0DJqIpBzk\nqcP/4rGeNfg6djcPjF+uPRIUE+LLVdKYmBgTGxvrdhi+ZdXXMGUUmU1u4LakUazdl8KEUV1oU7uC\n25EpVTQ2/QwT7oD6vRlb5yWem76FLvUq89Hg9pTTky4ARGSZMSbG7Ti8aU8DxcmWmfDd/Zio7jyW\n8SCxu5N549Y2mmxU6TsGNa0AABDHSURBVNK4D1z3OsTNZNi+f/PmLc1ZuuMQd3y8iIPHtfGrL9OE\nU1zE/QoTBkGVZrwT+RxT1ybxVN8m9G1Z3e3IlCp6McPgqhdg/VT67/g3H9/VlrgDx7nlg4XEHz7h\ndnQqF5pwioO4Wbb5c0Qjvmv1Lq/P3cftHWpzb496bkemlHu6Pgy9noY1E7li84t8MbwDScdPcfP7\nC3Woah+lCcfXbZkJX90JkY1Y2vNT/jotnm4NInihfwvtCVqpHo9Djydg5RfELP8bX4+MIdMYbvlg\nIct3HXY7OuVFE44vWz0RvrodIhuz/bqvGPnNNqIqh/LuoHYE+utXpxQAV/wdev0T1kyk6Zz7mTyy\nLeXLBDLo48X8sTnR7eiUBz1q+aoF78Dke6BOFw7fMpmhE+II8BPGDO1A+TLaEkepM0Sgx1/huv/C\n5hnUnn433w5rRlREKCPHLeXjOdtI12d1fIImHF+TmQE//w1+eRqa9Sf1toncM3EL+46m8vGQGGpX\nKut2hEr5pg4j4aZPYPcSIidcx8SbI+nWIIJ/T99A37fmMkdrO67ThONLThyCL2+GRe9Bp/swN4/h\nye82EbvzMK/f2oZ2OuSAUufX8mYY/B2cSKLc59cwpucJPhkcQ1pGFoPHLOGez2LZlaSt2NyiCcdX\n7F8HH/9/e3ceXWV5J3D8+8tyISHkhoQluSFhUYIQNlEQXCoddlzQ1gqd8dQZPVqLjKWtHu3xjHUc\nT1vqcTx1qmO1rm2PWNFqRFpAUHQoUpYJW1gSIAxZCJBALiQkZHnmj+cF7wn3QnLJfW9u/H3OuSfv\nfd/nzfs7z7v83ve5z/u+34SD6+CW52H2Yp5bvY8PCyt4ZOZwbhqj3Z+VapfB18F9a6B3JvKHbzPt\nxLusXHQDj8wczrqSY0x7bi3PrNhNXWNztCP92tGEE23GwKbX4ZWp0NQA/7wcrrqb97eU8fzqYu68\neiALpuhTcZXqkPQhcO8qyJsFKx+n59K7ePCadNb8ZAo3jc7ihU/3MfXZtXxYWK4PAHWRJpxoqq+B\nd+6CZYsg9xr4/lrImcCG/dU8+t42Jg/N4OnbRmv3Z6XC0TMV5v0BZi2297K9dAOZxzfx3LxxLH1g\nMn17e/jhkkLu/O16fYW1S/RZatGy+2P4+CdQdwym/QwmPQhxcRw4VsftL64jo5eH939wHd5k7ZGm\n1CUr3wJL74HjB2DCfTDtSVoSe/HupkP8asUejtefYf6EXB6ekUdGSuy/jLirPktNE47bTh6G5Y/A\nrgLonw+3vQi+cYB9qdTtL67D39DMBwuuIzdDe6Qp1WnO1MHq/4ANL0Fajn0e27Dp1J5u4tefFPPm\n+lJ6eeL58fQ87po0iIQYvtdNE04YulXCaW6EDb+Fz5+xw1MehWsfgnh7BVN2vJ5FSwrZVl7L2/dd\nw1WD0qMcsFLd1MH1ULAQqksgbzbM+jmkD6W46iT//lER/1NyjLwBKfzslnyuu7xvtKMNiyacMHSL\nhGOMvZpZ9QQcL4VhM2DmL6Dv5QCcqD/DC5+W8ObfDiICz945lpvH+KIbs1LdXfMZe/vB589ASxNM\nvA+u/zEmOZ2VRVU8/XERh2pOM3loBrdd6WNWflZMNW9rwglDTCec1lbY8zGsXQyHt0P/kTDjabh8\nKgANTS28tb6U36wp4WRjM3eMH8iPpufhS0uKbtxKfZ34K2H1U7BtCSQmw6QFMHkBDQmpvL6ulCUb\n/4+D1fUkxgs35vXjlrE+po0YQK8eCdGO/II04YQhJhNOUwPseM+ePVXtgPTL7AMGR38H4hNobTV8\nUFjOsyv3Un7iNN8c3o9HZ1/BFZmp0Y5cqa+vI7vhs59D0YeQ2AuuvAsm/QDTZzDby2spKKxg2bZK\nDvsbSEqMZ+qI/twy1seU4f3okRAf7ejPowknDDGVcE4cgk2vwuY34XQN9BsB1/8IRn0b4u3Z0BfF\nR/nF8t0UVfoZne3lp7Ov4NoYbSNWqls6vN2+wn37UmhthhE3215tg2+gFWFjaQ0FWytYvr2S4/VN\n9O6ZwMz8TG4d6+PayzK6TEcDTThh6PIJp8EPu5fZpzofWGvHDZ8D13wfBt9gHyoI7CivZfFfd/NF\n8TFy0pN4eMZwbhnjIy5O769RqkvyV8LGV2DTa3D6OHhzYMw8GPePkHEZTS2trCs5RsHWClburOJU\nYzMZvTzMGZ3FreN8XJXbJ6r7tyacMHTJhFNfY9++uXsZ7P0rNDdAn8G2yWz89yAt91zRsuP1PLty\nLx8UluNNSuRf/2EYd03K7ZKX4EqpIJpO23vmtr4N+9aAaYWscXDFTfbkckA+Dc2tfLbnCB9treST\nXVU0Nrfi8/Zk+sgBjMr2Mirby+X9U1x9pYgmnDB0iYTTfAYqt9ormOKVULbRbnS9+kH+7TbRDJxw\n7moGoLa+iRc+K+GNdaWIwD3XD+GBGy/T1wooFcv8lbD9T7DrI3scAHuCOWyGbdEYfD2nEtL4pKiK\ngq0VrN9XzemmFgA8CXEMH9CbfF+q/WR7GZGZSpInMiefmnDC4HrCMQZOVtp23PLNcPBvULYJmk/b\n6VnjIG8mDJsJvish7qszlpZWw4FjdazeVcWLn+3D39CkPc+U6q5OVtkWjj3L4cAX0FRnx/cfCbmT\nIGscLZljORCXy86q0+ys8LOzopadFX5O1DcBECcwtF8K+b5URvm8TjLydkr3a004YYhYwjEG6o5C\n9T6o2QdH98DhbTbR1FfbMhIHmaMh91oYNBlyJ0NKfwDqGpvZffgkRZV+iir8FFX62XPYT0OTfcmT\n9jxT6mukpQkqCqH0C/sp2wyNzrPZ4j0wIB8yx0DfYZiMy6lKzGFbXRo7DtdT5CShytqGc/8uOy2J\nUdmp/NvNIxnYJ7ynjXSLhCMis4BfA/HA74wxv2wzvQfwFnAVUA3MM8aUOtN+CtwLtAAPGWNWXGx5\nYSecxlP2SsVfcf7f2kNQvR/OnPyqfLzHnplkjrYbRtYYGJCP8aRw5GTjuaRSVOlnV4WfA9V1nK02\nb1IiI7J6MzLLy0hfKmMGeskb0LvjMSuluofWVvvMtspCm4gq/heOFH11MgsQlwh9BkFqNqRmU5+U\nSXlLH/Y2eNnmT2LTUQ+vPTgbb6/wnusW8wlHROKBvcB0oAzYCHzXGFMUUGYBMMYY84CIzAduN8bM\nE5GRwNvARMAHfALkGWNaLrTMsBPO63Pse2UCmB6ptKZk0ZTiozF1MHUpgziZPIgTSTmc8GRS1yzU\nn2nh9JkWjp5qZJdz9VJdd+bc/8hJT2JkVuq55DLSl4rP21Of5qyUurj6Gvs4neoSOFYMNfvtSbC/\n3J4QmzavwV64+dwTSTqqqyacjtwuOxEoMcbsBxCRJcBcoCigzFzgSWd4KfAbsUfjucASY0wjcEBE\nSpz/t/7Swg/uDXMTZT0mUN6cxqHmNEqbvJxq6AFBn0B+xPl8xRMfR15mClNH9LcJxufliqzepPbU\nH/2VUmFKTofkiZAz8fxpLc1wquqrBFR3FFK73yOuOpJwsoFDAd/LgGtClTHGNItILZDhjP+yzbzZ\nwRYiIvcD9wPk5uYGK3JR/kEzOJp8ijRPPFmJCdzoiSPZk0BSYjzJnniSPPHOcAJJHmdcwLRkTwLx\neo+MUsot8QngzbYfJkQ7mojpSMIJdgRu2x4Xqkx75rUjjXkZeBlsk1oH4jvnoanDwplNKaVUBHXk\nTqQyICfg+0CgIlQZEUkAvEBNO+dVSinVjXUk4WwEhonIEBHxAPOBgjZlCoC7neE7gDXG9kooAOaL\nSA8RGQIMA/5+aaErpZSKJe1uUnN+k1kIrMB2i37NGLNTRJ4CNhljCoBXgd87nQJqsEkJp9yfsB0M\nmoEHL9ZDTSmlVPfy9bzxUymlurGu2i26azxLWymlVLenCUcppZQrNOEopZRyhSYcpZRSrujSnQZE\n5ChwMMzZ+wLHOjGczqJxdYzG1TEaV8d017gGGWP6dVYwnaVLJ5xLISKbumIvDY2rYzSujtG4Okbj\ncpc2qSmllHKFJhyllFKu6M4J5+VoBxCCxtUxGlfHaFwdo3G5qNv+hqOUUqpr6c5XOEoppboQTThK\nKaVcEfMJR0RmicgeESkRkceCTO8hIu840zeIyGAXYsoRkU9FZJeI7BSRHwYpM0VEakWk0Pk8Eem4\nnOWWish2Z5nnPRlVrOed+tomIuNdiGl4QD0UiohfRBa1KeNKfYnIayJyRER2BIxLF5FVIlLs/O0T\nYt67nTLFInJ3sDKdHNczIrLbWU9/FpG0EPNecJ1HIK4nRaQ8YF3NCTHvBffdCMT1TkBMpSJSGGLe\nSNZX0GNDV9jGXGGMidkP9jUJ+4ChgAfYCoxsU2YB8JIzPB94x4W4soDxznBvYG+QuKYAy6JQZ6VA\n3wtMnwP8BfuW1knAhiis08PYG9dcry/gG8B4YEfAuF8BjznDjwGLg8yXDux3/vZxhvtEOK4ZQIIz\nvDhYXO1Z5xGI60ng4Xas5wvuu50dV5vpzwJPRKG+gh4busI25sYn1q9wJgIlxpj9xpgzwBJgbpsy\nc4E3neGlwFQRCfbK605jjKk0xmxxhk8Cu4DsSC6zE80F3jLWl0CaiGS5uPypwD5jTLhPmLgkxpjP\nse9yChS4Db0J3BZk1pnAKmNMjTHmOLAKmBXJuIwxK40xzc7XL7Fv0nVViPpqj/bsuxGJy9n/7wTe\n7qzltdcFjg1R38bcEOsJJxs4FPC9jPMP7OfKODtnLZDhSnSA04R3JbAhyOTJIrJVRP4iIvkuhWSA\nlSKyWUTuDzK9PXUaSfMJfSCIRn0BDDDGVII9YAD9g5SJdr3dg70yDeZi6zwSFjpNfa+FaB6KZn3d\nAFQZY4pDTHelvtocG2JhG7tksZ5wgl2ptO3n3Z4yESEiKcB7wCJjjL/N5C3YZqOxwH8BH7gRE3Cd\nMWY8MBt4UES+0WZ6NOvLA9wKvBtkcrTqq72iWW+PY9+k+8cQRS62zjvbfwOXAeOASmzzVVtRqy/g\nu1z46ibi9XWRY0PI2YKMi6n7WmI94ZQBOQHfBwIVocqISALgJbwmgA4RkUTsBvVHY8z7bacbY/zG\nmFPO8HIgUUT6RjouY0yF8/cI8Gds00ag9tRppMwGthhjqtpOiFZ9OarONis6f48EKROVenN+OL4Z\n+CfjNPS31Y513qmMMVXGmBZjTCvwSojlRau+EoBvAe+EKhPp+gpxbOiy21hnivWEsxEYJiJDnLPj\n+UBBmzIFwNneHHcAa0LtmJ3FaSN+FdhljPnPEGUyz/6WJCITseuiOsJx9RKR3meHsT8672hTrAD4\nnliTgNqzl/ouCHnmGY36ChC4Dd0NfBikzApghoj0cZqQZjjjIkZEZgGPArcaY+pDlGnPOu/suAJ/\n87s9xPLas+9GwjRgtzGmLNjESNfXBY4NXXIb63TR7rVwqR9sr6q92B4vjzvjnsLuhAA9sU00JcDf\ngaEuxHQ99lJ3G1DofOYADwAPOGUWAjuxvXO+BK51Ia6hzvK2Oss+W1+BcQnwglOf24GrXVqPydgE\n4g0Y53p9YRNeJdCEPaO8F/ub32qg2Pmb7pS9GvhdwLz3ONtZCfAvLsRVgm3TP7uNne2N6QOWX2id\nRziu3zvbzjbsgTSrbVzO9/P23UjG5Yx/4+w2FVDWzfoKdWyI+jbmxkcfbaOUUsoVsd6kppRSKkZo\nwlFKKeUKTThKKaVcoQlHKaWUKzThKKWUcoUmHKWUUq7QhKOUUsoV/w+F9SAHQQO0KwAAAABJRU5E\nrkJggg==\n", "text/plain": [ - "" + "
" ] }, "metadata": {}, @@ -973,7 +5570,7 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 29, "metadata": { "ExecuteTime": { "end_time": "2017-09-22T06:29+0000", @@ -983,9 +5580,9 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEICAYAAACzliQjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3Xl8VNX5+PHPk30hkBUQkrAJKgoi\nAiJWa6210Kqo1RZ3rRWtUr991W9bu2it1X792d2lVq1a61LqLlrUUpdaKyhBEQUF2QlryALZ1+f3\nx7kDwzBJJslkZpJ53q9XXpm5c+6dZ2buPHPuueeeI6qKMcaY+JAQ7QCMMcZEjiV9Y4yJI5b0jTEm\njljSN8aYOGJJ3xhj4oglfWOMiSOW9GOciFwoIv+Mdhw+IpIuIi+KyB4ReSra8YQi1t7D9ojIX0Tk\n1mjH4U9ELhORt3tp2zeLyGPe7WIRqRGRxDBt+08icqN3+2QRKQ3Hdr3tnSgiq8O1vUiLm6QvIheI\nSIm3Y20XkZdF5HPRjqszqvq4qp4W7Tj8nAsMAfJU9bxgBURkrIjMF5EyEdkrIp+JyF0iUhjZUJ0Y\nfA+7RUQOEZEHvf23WkQ+FZGfi0hmtGPrKVXdrKoDVLW1o3Kh/gip6tWq+otwxCYiKiKH+m37P6p6\nWDi2HQ1xkfRF5HvA74Ff4hJWMfBHYHY04+qMiCRFO4YgRgBrVLUl2IPel+NdYBtwjKoOBE4A1gEx\n/yMbq0QkF1gMpAPHq2oW8CUgGxgTzdhiTbiOFvotVe3Xf8AgoAY4r4MyqbgfhW3e3++BVO+xk4FS\n4AfALmA7cBbwFWANUAH82G9bNwNPA38HqoH3gaP9Hr8BlwCrgVXA2X6PXQb8F/idt91bvWVve4+L\n99guYA+wAjjK73X+FSgDNgE/BRL8tvs28GugEtgAzOrg/TgCeBOoAlYCZ3rLfw40Ac3ee3pFkHUf\nA17s5DPJAV7yYq30bhf6Pb4RODXgPX3Mu53mPUe5F99SYIjf61zvvbcbgAv9X7/f9v4AbAH2AsuA\nEwOe60nvvaz2Xv+UDl5Lt7cFHOPtH9Xe/jIfuLWd57kV+Mj3mXYjlr/4bxtvv/a7XwQ8630m5cDd\nne07wHnAsoAYrgeebye+UcC/vde7CLjb73MdCSiQ1N5nidsvG4BW3P5X5ffa7gUWArXAqf6vl/3f\n4R8Du3H714V+cb0JfCvge+j7zr3lxVXrPec3grx3Qb8vfrHdA/zDey3vAmOimRPjoaZ/PC5RPNdB\nmZ8A04FJwNHANFzS9BnqbWM4cBPwAHARcCxwInCTiIz2Kz8beArIBZ4AnheRZO+xdd46g3BJ9DER\nOcRv3eNwO/tg4LaAOE8DTgLG4Wp438B9QQHu8rY5Gvg8cAlwecB2VwP5wB3AgyIigW+EF+eLwD+9\nGL4DPC4ih6nqz3BHS39Xdyj+YOD6uC/cM0GW+0sAHsYdNRQD9bgEEIpLvddZBOQBVwP1XhPHnbiE\nlAXMAJa3s42luM/a9/k8JSJpfo+fiUvA2cCCTmLr1rZEJAV4HnjUW/cp4GsdPM+pwLOq2taDWILy\nasYv4SoLI3H7+Xy/Iu3tOwuAUSJyhF/Zi7zXFMwTuB+jfOAXuM8yWDxBP0tV/QT3eS/29r9sv9Uu\nwH1fsnA/UoGGes873Hve+0Wk0yYaVT3Ju3m095x/D4i13e+LX7Hzcd/1HGAtB3+vIyoekn4esFvb\naY7wXAjcoqq7VLUM9wFd7Pd4M3Cbqjbjvgz5wB9UtVpVV+J+3Sf6lV+mqk975X+L+8GYDqCqT6nq\nNlVt83agz3A/Mj7bVPUuVW1R1fqAOJtxO/XhgKjqJ6q63fvSfgP4kRfTRuA3Aa9hk6o+oK7N9BHg\nEFxTV6DpwADgdlVtUtXXcQnh/A7eP3/5wA7fHRGZJyJV3rmUB7z3oFxVn1HVOlWtxn0JPh/i9ptx\nn+mhqtqqqstUda/3WBtwlIikq+p277M5iKo+5sXQoqq/wR3p+X9J31bVhd579SiuIhBUD7Y1HUgG\nfq+qzar6NC5ptycPd5TZrhBiac80YBjwfVWtVdUGVfVPnEH3HVVtxB2hXAQgIkfifjReCnwCESkG\npgI3qmqjqr6FS5btCemz9POCqv7X+141tFPG99z/xtW8v97JNkMRyvflWVV9z8tBj+N+mKMmHpJ+\nOZDfSfv4MFwtx2eTt2zfNnT/CSZfIt7p93g97oP32eK74dXMSn3bE5FLRGS5lwirgKNwifKgdQN5\nO9TduMPFnSJyv4gM9NZPCfIahvvd3+G3nTrvpn/MPsOALQE1ysBtdaQclxR8z3W3VyP7PS7JISIZ\nInKfiGwSkb24Q+jsENtiHwVeBeaLyDYRuUNEklW1FvfDdzWwXUT+ISKHB9uAiFwvIp94PZCqcEcO\n/p/BDr/bdUBae/tPD7Y1DNiqXhuAx//zC3TA+9rNWNpThEvs7VWMOtp3HgEu8Gr+FwNPej8GgYYB\nld7n5BP09Xbls/TT7vfGE+y5h7VXuAtC+b4E7gPBvncREw9JfzGuHfCsDspswzU1+BR7y7qryHdD\nRBKAQmCbiIzANQ3Nw/V+yQY+xrXV+3Q47Kmq3qmqxwJH4pp5vo9rp2wO8hq2diP2bUCRF3d3tvUa\ncE4nZa7H1UCPU3ei13cI7XsfaoEMv/JDfTe8WvHPVXU87rD/dFxTFqr6qqp+CZccP8W91wcQkROB\nH+JqeTneZ7CHAz+DkPRwW9uB4QFNbMUdlP8XcHbA59KVWNp9T3EJs7g7HQdUdQnuPM+JuCaW9pp2\ntgM5AT2N2n29HXyW7X0/OhsuONhz+77jHb03nenp9yXi+n3SV9U9uHb4e0TkLK+WmSwis0TkDq/Y\n34CfikiBiOR75R/rwdMeKyLneF+i7wKNwBIgE7dzlgGIyOW4mn5IRGSqiBzntSPW4p3U8o5CngRu\nE5Es78fle918De962/6B9z6dDJzBgW28HbkZOFFEfisiw72483Enu3yycEdHVV6vlJ8FbGM5MMd7\n/im4bqJ42/qCiEzwjgr24n7sWkVkiIic6X2xG3En3YJ1/8sCWnCfQZKI3AQMDPG1hXNbi711rxOR\nJBE5hwOb+QL91tv2I97ni4gM997niSHEshz4iojkishQ3H7p8x4uKd8uIpkikiYiJ4T4OsCdqL4b\naAloFtpHVTcBJcDPRSRFXHfpM4KV7eSz3AkUeudEusr33CfiKgu+60yWA+d4ueFQ4IqA9XbizpUF\n09PvS8T1+6QPoKq/xSXBn+K+FFtwte3nvSK34nbIFbgeEu97y7rrBdzhaSXukPccr4a6CtfWvhi3\nI03A9dYJ1UBcjacSdwhZjutVAe4EUi3uJPDbuJNmD3U1cFVtwp18nIU7gvgjcImqfhri+mtw7ZyF\nwIciUo17jduAG71iv8d1PdyN+zF8JWAzN+K6IVbizq884ffYUFzvqL3AJ7jeII/h9uXrveepwJ0j\nuCZIiK8CL+N6Xm3C/XB21jTQnm5vy3ufz8H1FKnE7S/PdlC+Andk0wy8672vr+Fq82tDiOVR4ENc\nz5V/4trifdtuxSWqQ4HNuObIb4TyOvy2fRTt1/J9LsCdFK7A/dD/tZ1yHX2Wr+POoe0Qkd1diHEH\n7n3ehmtXv9pvn/4d7mhlJ6656vGAdW/G/dhWicgB5wF6+n2JBjmwSdH0lIjcjDvJeFG0YzEmEkQk\nHdeNeLKqfhbteEzH4qKmb4zpVd8GllrC7xti8YpPY0wfISIbcSeLO+ooYWKINe8YY0wcseYdY4yJ\nIzHXvJOfn68jR46MdhjGGNOnLFu2bLeqFnRWLuaS/siRIykpKYl2GMYY06eISEdXdO9jzTvGGBNH\nLOkbY0wcsaRvjDFxJOba9I0x8a25uZnS0lIaGtobITm+paWlUVhYSHJycueFgwgp6YvITNysPInA\nn1X19nbKnYsbxGiqqpZ4y36EG8CoFbhOVV/tVqTGmLhQWlpKVlYWI0eORA6e5yeuqSrl5eWUlpYy\natSobm2j0+YdbzTDe3ADCo0HzheR8UHKZQHX4Uad8y0bD8zBDQM8E/hjiGOmG2PiVENDA3l5eZbw\ngxAR8vLyenQUFEqb/jRgraqu90aUm0/wCcV/gZtKzT+a2cB8b7aaDbjRADsaPtYYYyzhd6Cn700o\nzTvDOXCI1lLc8Kj+QRwDFKnqSyLyvwHrLglY96AZmERkLjAXoLi4o3kkjIk8VeWxJZsoq3YTQh03\nOo8TDg1lQipjYk8oNf1gPyv7BuzxZoz5HW786y6tu2+B6v2qOkVVpxQUdHpBmTER9dZnu7nxhZXc\n+fpa7nx9Ldc8/j61jR1NuWz6OhHh+uv3p7Rf//rX3HzzzRGN4bLLLuPpp58O+3ZDSfql+E3/hzf1\nn9/9LNwECm96I+5NBxZ4Mx51tq4xMe+Bt9YzZGAqa26dxTPfnsGe+maeKunuvCumL0hNTeXZZ59l\n9+6uzNOyX0tL7FYKQmneWQqMFZFRuHkf5+BmwAH2TUe471hXRN4E/ldVS0SkHnhCRH6Lm0B4LG5q\nNmP6hI+37uHttbu5YdbhpCQlcOyIHKaMyOHPb2/goukjSEq0S136o6SkJObOncvvfvc7brvttgMe\n27RpE9/85jcpKyujoKCAhx9+mOLiYi677DJyc3P54IMPmDx5MllZWWzYsIHt27ezZs0afvvb37Jk\nyRJefvllhg8fzosvvkhycjK33HILL774IvX19cyYMYP77ruvV89pdJr0VbVFRObhpmNLBB5S1ZUi\ncgtQoqoLOlh3pYg8CazCzd95rTc1mzF9wp//s57MlETOn7b/XNOVJ43mqkeX8crKHZw+cVgUo+v/\nfv7iSlZt2xvWbY4fNpCfnXFkp+WuvfZaJk6cyA9+8IMDls+bN49LLrmESy+9lIceeojrrruO5593\nM6+uWbOGf/3rXyQmJnLzzTezbt063njjDVatWsXxxx/PM888wx133MHZZ5/NP/7xD8466yzmzZvH\nTTfdBMDFF1/MSy+9xBlnBJ0+OCxCqqao6kJVHaeqY1T1Nm/ZTcESvqqe7Ouj792/zVvvMFV9OXyh\nG9O7tlbV8+KK7Zw/rZhB6fsvhPnSEUMYlZ/J/W+tx+aj6L8GDhzIJZdcwp133nnA8sWLF3PBBa6x\n4+KLL+btt/fPBX/eeeeRmLi/V/qsWbNITk5mwoQJtLa2MnPmTAAmTJjAxo0bAXjjjTc47rjjmDBh\nAq+//jorV67s1ddlV+Qa047n3i+lTZXLP3fgRTAJCcI3TxjJjS+s5NMd1RxxyMAoRdj/hVIj703f\n/e53mTx5Mpdffnm7ZfybYjIzMw94LDU1FYCEhASSk5P3lU1ISKClpYWGhgauueYaSkpKKCoq4uab\nb+71K5GtQdKYdry7oYLDhmQxPDv9oMdOPmwwAEs3VkQ6LBNBubm5fP3rX+fBBx/ct2zGjBnMnz8f\ngMcff5zPfe5z3d6+L8Hn5+dTU1PTK711AlnSNyaIltY23t9UydSRuUEfL8xJ55BBaby3wZJ+f3f9\n9dcf0Ivnzjvv5OGHH2bixIk8+uij/OEPf+j2trOzs7nyyiuZMGECZ511FlOnTg1HyB2KuTlyp0yZ\nojaJiom2j7fu4fS73ubO84/hzKODn6y97m8f8O6Gcpb86It2BWkYffLJJxxxxBHRDiOmBXuPRGSZ\nqk7pbF2r6RsThK8GP3VkTrtlpo7MYefeRkor6yMVljE9ZknfmCBKNlV4TTgHt+f7TB3lmn6sXd/0\nJZb0jQmgqry3of32fJ9xg7MYmJZkSd/0KZb0jQmwsbyO3TWNnSb9hARhyshcO5lr+hRL+sYE8NXc\np41qvz3fZ+rIXNaV1VJe09jbYRkTFpb0jQmwdEMFORnJjCkY0GlZ34nekk2VvR2WMWFhSd+YAB9s\nqeLYETkhdcOcUDiIlMQEPthcFYHITCTt2LGDOXPmMGbMGMaPH89XvvIV1qxZE5Ztv/nmm5x++ulh\n2VZXWdI3xk9jSysbdtdy+NDQhlZITUpkdEEma3ZW93JkJpJUlbPPPpuTTz6ZdevWsWrVKn75y1+y\nc+fOaIfWY5b0jfGzYXctrW3KuKFZIa8zbkiWJf1+5o033iA5OZmrr75637JJkyZxzDHH8MUvfpHJ\nkyczYcIEXnjhBQA2btzIUUcdta+s/6Qra9eu5dRTT+Xoo49m8uTJrFu3DoCamhrOPfdcDj/8cC68\n8EJUlddee42zzz5733YWLVrEOeecE9bXZgOuGeNnzc4aAMYN6bw932fckAEs+HAbtY0tZKbaVyqs\nXr4BdnwU3m0OnQCzbu+wyMcff8yxxx570PK0tDSee+45Bg4cyO7du5k+fTpnnnlmh9u68MILueGG\nGzj77LNpaGigra2NLVu28MEHH7By5UqGDRvGCSecwH//+19OOeUUrr322gPG6u9osLfusJq+MX7W\n7KgmMUEYlZ/ZeWHP2CHuqOCzXTW9FZaJEarKj3/8YyZOnMipp57K1q1bO2zyqa6uZuvWrftq72lp\naWRkZAAwbdo0CgsLSUhIYNKkSWzcuBER4eKLL+axxx6jqqqKxYsXM2vWrLC+BquWGONnzc5qRuZl\nkJqU2Hlhzzgv6a/ZWc2kouzeCi0+dVIj7y1HHnlk0BEvH3/8ccrKyli2bBnJycmMHDmShoYGkpKS\naGtr21fON3pmR2Ob+YZdBkhMTNw3xeLll1/OGWecQVpaGueddx5JSeFN0yHV9EVkpoisFpG1InJD\nkMevFpGPRGS5iLwtIuO95SNFpN5bvlxE/hTW6I0Js8921exL4qEqzs0gNSmBz6xdv9845ZRTaGxs\n5IEHHti3bOnSpWzatInBgweTnJzMG2+8waZNmwAYMmQIu3btory8nMbGRl566SXATcRSWFi4b2at\nxsZG6urqOnzuYcOGMWzYMG699VYuu+yysL+2TpO+iCQC9wCzgPHA+b6k7ucJVZ2gqpOAO4Df+j22\nTlUneX9XY0yMamhuZVN57b7mmlAlJghjCgbsOx9g+j4R4bnnnmPRokWMGTOGI488kptvvpmvfOUr\nlJSUMGXKFB5//HEOP/xwAJKTk7nppps47rjjOP300/ctB3j00Ue58847mThxIjNmzGDHjh2dPv+F\nF15IUVER48cHptqeC+W4YRqwVlXXA4jIfGA2bt5bAFTVfxLLTCC2xms2JgTrympoUzisi0kf4LCh\nWSxZX94LUZloGTZsGE8++eRByxcvXhy0/HXXXcd111130PKxY8fy+uuvH7Bs9OjRnHzyyfvu3333\n3Qc8/vbbb3PllVd2I+rOhdK8MxzY4ne/1Ft2ABG5VkTW4Wr6/q98lIh8ICL/FpETgz2BiMwVkRIR\nKSkrK+tC+MaEz2fd6LnjM3bIALbvaWBvQ3O4wzJx5thjj2XFihVcdNFFvbL9UJJ+sMsSD6rJq+o9\nqjoG+CHwU2/xdqBYVY8Bvgc8ISIHXfWiqver6hRVnVJQUBB69MaE0Zqd1SQnCiO70HPHZ9xgrweP\nNfGYHlq2bBlvvfXWASd6wymUpF8KFPndLwS2dVB+PnAWgKo2qmq5d3sZsA4Y171Qjelda3ZWMyo/\nk+TErvdk9p38tZO54RFrM/rFkp6+N6Hs3UuBsSIySkRSgDnAAv8CIjLW7+5Xgc+85QXeiWBEZDQw\nFljfo4iN6SVrdtZ0+SSuT2FOOunJiay2pN9jaWlplJeXW+IPQlUpLy8nLS2t29vo9ESuqraIyDzg\nVSAReEhVV4rILUCJqi4A5onIqUAzUAlc6q1+EnCLiLQArcDVqmqDj5uYU9/UypbKOr42ubBb6yck\nCIcOHmDNO2FQWFhIaWkpdn4vuLS0NAoLu7efQogXZ6nqQmBhwLKb/G7/TzvrPQM80+3ojImQdWU1\nqLoTst01dsgA/rt2dxijik/JycmMGjUq2mH0WzYMgzHApnJ3wUxXhl8INCovk517G6lvag1XWMaE\nnSV9Y4CN5bWAu7q2u4rz3LqbKzq+4tKYaLKkbwywqbyWgqzUHo2SOTIvc9+2jIlVlvSNwTXvjOhB\nLR9ghFfT9zUVGROLLOkbg5f087rfng+QnZHCoPRkNlVYTd/ELkv6Ju41NLeyY28DI/N6VtMHGJmX\nYTV9E9Ms6Zu45zvxWhyGpF+cl7nvpLAxsciSvol7G3e7JD2yh807bhsZbK2sp6mlrfPCxkSBJX0T\n93w1/RHhqOnnZtCmsLWqvsfbMqY3WNI3cW9jeS2D0pPJzkjp8bZ8I3Rat00Tqyzpm7jneu70vJYP\n7Ov2aSdzTayypG/iXji6a/oUZKWSnpxoSd/ELEv6Jq41t7axtaq+xxdm+YgII/IyrHnHxCxL+iau\nba2sp7VNw9a8A+6E8CYbf8fEKEv6Jq75+tSHq3nHt63NFXW0tdkkICb2WNI3cc3XXTMcV+P6jMjL\noKmljR17G8K2TWPCJaSkLyIzRWS1iKwVkRuCPH61iHwkIstF5G0RGe/32I+89VaLyJfDGbwxPbWp\nvI605AQKssI3CfWIXHfUYFfmmljUadL35ri9B5gFjAfO90/qnidUdYKqTgLuAH7rrTseN6fukcBM\n4I++OXONiQWllXUU5WQgImHbZlFuOuDOFxgTa0Kp6U8D1qrqelVtAuYDs/0LqOpev7uZgK8xczYw\nX1UbVXUDsNbbnjExobSynsKc9LBu85BB6Yi4bRsTa0JJ+sOBLX73S71lBxCRa0VkHa6mf10X150r\nIiUiUmKTIZtIckk/fO35AClJCQwdmGZJ38SkUJJ+sOPeg7olqOo9qjoG+CHw0y6ue7+qTlHVKQUF\nBSGEZEzP7W1oZk99c9hr+gCFOemUVlq3TRN7Qkn6pUCR3/1CYFsH5ecDZ3VzXWMiprTC1cTDXdP3\nbdNq+iYWhZL0lwJjRWSUiKTgTswu8C8gImP97n4V+My7vQCYIyKpIjIKGAu81/Owjek5X028t2r6\n2/fU09xqQyyb2NLpLNCq2iIi84BXgUTgIVVdKSK3ACWqugCYJyKnAs1AJXCpt+5KEXkSWAW0ANeq\namsvvRZjusRXE++tpN+msGNPA0VhGuLBmHDoNOkDqOpCYGHAspv8bv9PB+veBtzW3QCN6S2llfVk\npCSSm9nzIZUDFXlNRlsq6yzpm5hiV+SauFVaWUdhTnpY++j7+M4TWLu+iTWW9E3c6o3umj5DB6WR\nYH31TQyypG/ilq+m3xv299W3bpsmtljSN3FpT30zextaei3pg3XbNLHJkr6JS1sre6+Pvk9hTrqN\nv2NijiV9E5d6s4++j/XVN7HIkr6JS6URqeln7Ourb0yssKRv4pKvj35ORnKvPYfvKGKLncw1McSS\nvolLvdlH38f66ptYZEnfxKXe7KPvY331TSyypG/iUmllHcOze+8kLvj11a+w5h0TOyzpm7hT3dD7\nffR9hueks7XKavomdljSN3HHl4SHRyLpZ1vSN7HFkr6JO74Lpnq7eQfcD8uOPQ20th00YZwxUWFJ\n38SdfTX9SCT97Axa2pSde62vvokNISV9EZkpIqtFZK2I3BDk8e+JyCoRWSEir4nICL/HWkVkufe3\nIHBdYyJta2U9KYkJ5A9I7fXn8jUhWROPiRWdJn0RSQTuAWYB44HzRWR8QLEPgCmqOhF4GrjD77F6\nVZ3k/Z0ZpriN6bbSqnqGZaeRkNB7ffR9hmenAdgYPCZmhFLTnwasVdX1qtqEm/h8tn8BVX1DVX39\n0pbgJkA3JiZtrayPyElcgGHZVtM3sSWUpD8c2OJ3v9Rb1p4rgJf97qeJSImILBGRs7oRozFhtbWq\nPiLt+QAZKUnkZqbYBVomZoQyR26wY+CgXRFE5CJgCvB5v8XFqrpNREYDr4vIR6q6LmC9ucBcgOLi\n4pACN6Y7GltaKatuZHh25OattW6bJpaEUtMvBYr87hcC2wILicipwE+AM1W10bdcVbd5/9cDbwLH\nBK6rqver6hRVnVJQUNClF2BMV2yvcr1oItW8A17St0HXTIwIJekvBcaKyCgRSQHmAAf0whGRY4D7\ncAl/l9/yHBFJ9W7nAycAq8IVvDFdFcnumj6+q3JVra++ib5Om3dUtUVE5gGvAonAQ6q6UkRuAUpU\ndQHwK2AA8JQ3auFmr6fOEcB9ItKG+4G5XVUt6ZuoieSFWT7Ds9NpaG6joraJvAh0EzWmI6G06aOq\nC4GFActu8rt9ajvrvQNM6EmAxoRTaVU9Im4EzEjx76tvSd9Em12Ra+LK1sp6hmSlkZIUuV3fd1Rh\nffVNLLCkb+LK1qq6iJ7Ehf0zaFkPHhMLLOmbuBLJPvo+g9KTyUxJtKRvYoIlfRM3WtuUHXsaIl7T\nFxHXg8ead0wMsKRv4kZZdSPNrRrxmj7YBVomdljSN3Fja5W7QCrSNX3fc1rSN7HAkr6JG6VR6KPv\nMzw7g6q6ZmoaWyL+3Mb4s6Rv4oYv6UdibtxA+/rqW7u+iTJL+iZubK2qJzczhYyUkK5JDKv93TZt\nDB4TXZb0TdworYx8d02fQu95bYhlE22W9E3c2FpZF5WmHYD8AamkJCVY846JOkv6Ji6oalQuzPJJ\nSBCGZ6dbTd9EnSV9ExfKa5toaG6LWk0fXLt+qXXbNFFmSd/EhX3dNXMiN2NWIDeZiiV9E12W9E1c\n2BrF7po+hTnp7K5ppKG5NWoxGGNJ38SF0sroXY3rM9xG2zQxIKSkLyIzRWS1iKwVkRuCPP49EVkl\nIitE5DURGeH32KUi8pn3d2k4gzcmVFur6hmYlsTAtOSoxeCbjN1O5ppo6jTpi0gicA8wCxgPnC8i\n4wOKfQBMUdWJwNPAHd66ucDPgOOAacDPRCQnfOEbE5rSyvqotueD3wValvRNFIVS058GrFXV9ara\nBMwHZvsXUNU3VNV3qeESoNC7/WVgkapWqGolsAiYGZ7QjQnd1sr6qLbnAwwZmEZSguxrajImGkJJ\n+sOBLX73S71l7bkCeLmb6xoTdqpKaRQvzPJJTBAOyU6zNn0TVaEMQiJBlmnQgiIXAVOAz3dlXRGZ\nC8wFKC4uDiEkY0K3p76Z2qbWqF2Y5c8u0DLRFkpNvxQo8rtfCGwLLCQipwI/Ac5U1caurKuq96vq\nFFWdUlBQEGrsxoRk/+ia0W1esvgVAAAgAElEQVTT98VgbfommkJJ+kuBsSIySkRSgDnAAv8CInIM\ncB8u4e/ye+hV4DQRyfFO4J7mLTMmYnxt6NFu3gFX099Z3UBTS1u0QzFxqtOkr6otwDxcsv4EeFJV\nV4rILSJyplfsV8AA4CkRWS4iC7x1K4Bf4H44lgK3eMuMiZhojqMfqDAnHVXYvsdq+yY6QhpYXFUX\nAgsDlt3kd/vUDtZ9CHiouwEa01OllfVkpiQyKD16ffR9fBdolVbWMyIvM8rRmHhkV+Safq+0sp7C\nnAxEgvUriKyiHN8FWtZt00SHJX3T75VW1lGUG/2TuACHDEojMUHYUmHNOyY6LOmbfk1V2VxRR1Fu\n9NvzAZISExiWncbmCqvpm+iwpG/6tfLaJuqaWimOkZo+QHFuhiV9EzWRnyHamAja4iXXbiX9xhqY\nfwGUrw3++KQL4JSfdnmzxbkZLFq1s+vxGBMGlvRNv+arUXerTf9fN8OGt2DiNyAx4KtStRne+hUU\nT4dD2+28FlRhTga7a5qobWwhM9W+giaybI8z/Zqvpl/U1atxN74NSx+A474Ns24/+PHmBrjvJFjw\nP3DNYkgbGPKmfUcdWyrrOHxo6OsZEw7Wpm/6tS0V9eQPSCU9JTH0lZrq4IV5kDMSvnhj8DLJaTD7\nHqjeBotuCl6mHb6jDuvBY6LBkr7p1zZX1FHc1Z47r/8CKjfAmXdDSgcXUBVNhenXwLKHYf2/Q968\nr6ZvJ3NNNFjSN/2aS/pdaNrZvASW3AtTroBRJ3Ze/gs/gdzRsGCeO/EbgpyMZAakJu1rejImkizp\nm36rubWN7XvqQz+J21wPL1wLg4rgSz8PbZ2UDNfMU7UFXrslpFVEhMKcdKvpm6iwpG/6rW1V9bRp\nF3ruvPl/rnvmmX+A1KzQn2jEDJg2F967Dza9E9IqxbkZVtM3UWFJ3/Rbm7vSR790GbxzF0y+BMac\n0vUnO/VnkD3CHSk0dZ7MfRdoqQadj8iYXmNJ3/RbIffRb2l0yTrrEDjt1u49WUomzL4bKtbDG7d1\nWrwoN4PGljbKqhs7LWtMOFnSN/3Wlop6khOFoQPTOi744Xwo+wS++htIG9T9Jxx1kjtSePdPsGdr\nh0X9++obE0mW9E2/taWijsKcDBITOhhSWRUW3wNDJ8C4mT1/0hOvB22D9+7vsFiRdds0URJS0heR\nmSKyWkTWisgNQR4/SUTeF5EWETk34LFWbzatfTNqGRMJmyvqOp8ta+1rsHs1HP8dCMd4+zkj4Ygz\nXd/9Drpw+uLaXG4XaJnI6jTpi0gicA8wCxgPnC8i4wOKbQYuA54Isol6VZ3k/Z0Z5HFjesWWyhD6\n6C++y7XlH3l2+J74+HnQsAeWP95ukbTkRIYMTLXmHRNxodT0pwFrVXW9qjYB84HZ/gVUdaOqrgBs\ntmcTE/bUNVNV19xx0t/xMax/03W3TEoJ35MXTYXCabDkj9DW2m6x4twMNpXXhu95jQlBKEl/OLDF\n736ptyxUaSJSIiJLROSsYAVEZK5XpqSsrKwLmzYmuA1eMh2V38EwCkv+CMkZMOXy8AcwYx5UboTV\nC9stMio/kw27raZvIiuUpB+sobMrnYuLVXUKcAHwexEZc9DGVO9X1SmqOqWgoKALmzYmuI27O0n6\n1TtgxZNwzEWQnhP+AA4/3fXbf+fudouMzM9kd00j1Q3N4X9+Y9oRStIvBYr87hcC20J9AlXd5v1f\nD7wJHNOF+IzplvW7axGB4rx2mnfeewDaWuC4q3sngIREmP5t2LIESkuCFhnt/SBttNq+iaBQkv5S\nYKyIjBKRFGAOEFIvHBHJEZFU73Y+cAKwqrvBGhOqjbtrGZ6dTmpSkCGVm2qh5EE4/KuQd9CBZ/gc\ncxGkDoLFwWv7I72kv8Ha9U0EdZr0VbUFmAe8CnwCPKmqK0XkFhE5E0BEpopIKXAecJ+IrPRWPwIo\nEZEPgTeA21XVkr7pdRt217bftPPh36C+0vWy6U2pWXDspbDqBajcdNDDI/O8pF9mSd9ETkgzZ6nq\nQmBhwLKb/G4vxTX7BK73DjChhzEa0yWqysbdtZw9OUh/g7Y2WPxHGDbZTXXY2467yp0wfu9++PKB\nwzOkJScybFAaG62mbyLIrsg1/c7umiaqG1uC1/TXvAIV61zvmnBcjNWZQYXuGoBlj7i++wFGFWSy\nfrclfRM5lvRNv+OrOY8MlvQX3+PGyz9i9sGP9Zbp10BTNbz/6EEPjczLZENZjY22aSLGkr7pd3xt\n5KMDk/62D2DT267JJTGkls3wGD4ZRpzgBmJrbTngoVH5mextaKGyzrptmsiwpG/6nQ3ltSQnCsOz\nA8bdeeduSMlyI2FG2vHzYM8WWPX8AYtHF3gnc62Jx0SIJX3T72woq6UoN4OkRL/du2ozrHzO9abp\nyfDJ3TVuJuSNhXfudCN7evb14LGkbyLEkr7pdzaW1x7ctLPkXnfidvq3oxNUQoI7ebz9Q9j4n32L\ni3Ld0M8bLembCLGkb/qVtjZlw+7afTVowPXJX/YIHPU115smWibOgcwC+O+d+xYlJyZQlJNuNX0T\nMZb0Tb+yY28DjS1tjCrwS/olD0NzLcz4TvQCA0hOg2lXwdpFsHP/NYpu4DVL+iYyLOmbfsWXPEf5\navotja7XzOgvuNmxom3qFW5kT7+hGUbmZ7KxvNa6bZqIsKRv+pX1ZW62qn01/Y+egpqdcMJ1UYzK\nT0auG5NnxZOwdzsAowsGUNfUyo69DVEOzsQDS/qmX1mzs4as1CQ3GXpbG7xzFwyZ4Gr6sWL6NaCt\n7ggEGDt4AOBiN6a3WdI3/cqandWMHTIAEYG1/4KyT11bfiSGXAhV7ig3j27Jw9BYzbghWQB8trM6\nyoGZeGBJ3/QbqsqandUcNtQlUd65EwYOh6POiW5gwcy4Dhr3wPt/JTczhfwBqazeYUnf9D5L+qbf\n2F3TRGVdM2MHZ8HW911/+OnfhsTkaId2sMJj3dAMS+6F1mbGDRnAml3WvGN6nyV902+s8ZpHDhua\n5dryUwfC5EujHFUHZnzHDc2w8nnGDcnis53VtLVZDx7Tuyzpm35jX9JPq3Bj3Bx7GaQNjG5QHRn7\nZcgfB+/cybjBrgfP1qr6aEdl+rmQkr6IzBSR1SKyVkRuCPL4SSLyvoi0iMi5AY9dKiKfeX8xXO0y\nfd2andVkZyST9+H9IAm9N/9tuCQkuIHYdqxgSusHwP4fLmN6S6dJX0QSgXuAWcB44HwRGR9QbDNw\nGfBEwLq5wM+A44BpwM9EJKfnYRtzsDU7azgxrxpZ9jBMuhAGBZk5K9YcPQcGFTNmxa8R2qzbpul1\nodT0pwFrVXW9qjYB84EDZqBQ1Y2qugJoC1j3y8AiVa1Q1UpgETAzDHEbcwBVZc2OauY2PwqJqfCF\nH0c7pNAkpcIXbyRx50dcmrnUavqm14WS9IcDW/zul3rLQhHSuiIyV0RKRKSkrKwsxE0bs9+OvQ0c\n2vQJE6recCdIs4ZGO6TQHXUuHHI08/gbG3aURzsa08+FkvSDXdUSaheDkNZV1ftVdYqqTikoKAhx\n08bst2ZHNT9OfpymtPzoD6zWVQkJcNqt5Lfu4oTdT9NqPXhMLwol6ZcCRX73C4FtIW6/J+saE7Km\njxcwNWENzSfeAKkDoh1O1406iW0FJ3JVwvOUbi2NdjSmHwsl6S8FxorIKBFJAeYAC0Lc/qvAaSKS\n453APc1bZkz4tDZz9Orfs55CMqdfHu1oum3viTeRST361q+iHYrpxzpN+qraAszDJetPgCdVdaWI\n3CIiZwKIyFQRKQXOA+4TkZXeuhXAL3A/HEuBW7xlxoTPsr8wuGkLz+ZdGdkJz8Os6LDJPNV2MkVr\nH4eK9dEOx/RTIX1DVHUhsDBg2U1+t5fimm6CrfsQ8FAPYjSmfQ170Tdv5722I2gZ8+VoR9MjmalJ\nPDfoEs6uXUzia7fAeX+JdkimH7Irck3f9s6dSN1ubmu+gIlF2dGOpseGF43mUTndTeJeWhLtcEw/\nZEnf9F17t8E7d7Nh6ExW6BgmDB8U7Yh6bELhIH5XN4vWjHz4541gs2mZMLOkb/qu128DbWX+wMvI\nzUyhMCc92hH12MTCbGpJZ/Xh82DzO/DpS9EOyfQzlvRN37TmVVj+GEz/Nv/elcmE4YPcxCl93PhD\nBpKYILySehoMHg//uB5qd0c7LNOPWNI3fU/NLnj+GhhyFPUn/JDPdtUwsbDvN+0ApKckMnbwAJZv\nrYVzHoD6KnhhnjXzmLCxpG/6FlWX8Jtq4Gt/ZlVZI61tysTCvn8S1+fowmw+Kq1ChxwJX/o5rHkZ\nSh6Mdlimn7Ckb/qWd++DtYvgtFth8BGsKN0D0G9q+uBO5lbWNVNaWQ/TroIxX4RXfwK7Po12aKYf\nsKRv+o6dK2HRTW7ykanfAuCj0j0MzkplyMC0KAcXPr4fsI+27nHj8px1L6RkwjPfgpbGKEdn+jpL\n+qZvaK53SS9tEMy+B7yTtiu27ulXtXxw0z0mJ8q+oxiyhsDsP8LOj+C1W6IbnOnzLOmbvmHRz2DX\nKlfrHeBGYq1pbGFdWU2/as8HSE1K5IhDBrKitGr/wsNmuqObxXfD2teiF5zp8yzpm9i35p/w3n1w\n3Ldh7Kn7FpdsrEAVJhf3v8nYJhfn8MHmKppa/OYlOu1WyD8Mnv821Nq4+6Z7LOmb2FaxAV64BgYf\nCafefMBDi9eXk5woHDui/yX96aPzqG9uPbC2n5wO5z4I9ZXw7JXQ0hS9AE2fZUnfxK49W+GvZ0Jb\nC5z3MCQfeLJ2ybpyjinKIT0lMUoB9p7po3MRgcXrAmr0QyfAV38D616D5+ZCW2t0AjR9liV9E5tq\nyuCvs6GuEi56FgoOO+DhvQ3NfLR1D9NH50YpwN6VnZHC4UMHsnh9kGacyZe4pp6Vz8GC66AtcGpq\nY9rXdwcfN/1XfSU8ejbsKYWLn4Xhkw8qsnRDBW0K08fkRSHAyDh+dB6Pv7uJxpZWUpMCjmZmfAca\na+Dft7vunLP+374eTcZ0xGr6JrY0VsPj58Hu1TDncRgxI2ixxevKSUlK6JcncX2OH5NHY0sbH2yu\nCl7g5Bvg+HnuJPfrv4hscKbPCinpi8hMEVktImtF5IYgj6eKyN+9x98VkZHe8pEiUi8iy72/P4U3\nfNOvNDfA386Hre/DuQ/BoV9st+ji9eVMLs4mLbn/tef7TBuVS0Kwdn0fEdfMM/lS+M9v4D+/jWyA\npk/qNOmLSCJwDzALGA+cLyLjA4pdAVSq6qHA74D/5/fYOlWd5P1dHaa4TX/T0ghPXQob33Z98Y84\no92iVXVNrNq+l+NH50cwwMgblJ7MkcMGBW/X9xGB038HE86D134O794fuQBNnxRKTX8asFZV16tq\nEzAfmB1QZjbwiHf7aeCL0h/GuTWRsXcb/OWrsOYV1zPl6G90WPzdDa5//vH9uD3f5/gxeSzfXEVD\ncwe9dBIS3Q/lYV+Fl78PL98Arc2RC9L0KaEk/eHAFr/7pd6yoGW8idT3AL5v5CgR+UBE/i0iJwZ7\nAhGZKyIlIlJSVlbWpRdg+rhN78B9n4ddn8DX/wpTr+h0lTdXl5GZksjRRf1r+IVgTjg0n6bWNv67\ntpMx9ROT4euPwPRr4N174a9nuSGojQkQStIPVmMPHNy7vTLbgWJVPQb4HvCEiAw8qKDq/ao6RVWn\nFBQUhBCS6fNUYcmf4JEzIG0gfOs1GB94AHmwltY2/rlyB6ccMeTgHi390PGj88hKS+Llj3d0Xjgx\nGWb+nxuHf+sy92Nq8+yaAKEk/VKgyO9+IbCtvTIikgQMAipUtVFVywFUdRmwDhjX06BNH9dUB89d\nBa/8EMaeBle+DoMPD2nV9zZWUF7bxKyjhvZykLEhJSmBLx0xhEWrdtLcGmJ//Ilfh28tcj8CD8+C\nkod7N0jTp4SS9JcCY0VklIikAHOABQFlFgCXerfPBV5XVRWRAu9EMCIyGhgLrA9P6KZP2r0WHjoN\nVjwJX/gpfONxN3JmiF75eAdpyQmcfFj8HBHOmnAIe+qb2+/FE8zQCTD3TRh5Irz0XTf7VmNNb4Vo\n+pBOk77XRj8PeBX4BHhSVVeKyC0icqZX7EEgT0TW4ppxfN06TwJWiMiHuBO8V6tqRbhfhOkDmmrd\nsMD3Hg9Vm+HCp+Dz33fjxYeorU15+eMdfOGwwWSkxM91hSeOzSczJZGXP97etRUzct37fOL/wgeP\nwt1T4eNnbOrFOBfSN0dVFwILA5bd5He7ATgvyHrPAM/0MEbTl6nCJwvglR/D3lKYOAe+dIsbI76L\nlm2upKy6kVkTDumFQGNXWnIiXzxiCK+u3MkvZreRlNiFayoTEuGLN8K4L7tJ1p/+Jiz7C8z6VchN\naqZ/sStyTe/Z/ZkbTuHJSyA9Gy5/Bc65r1sJH+Dlj3aQkpTAKYcPDnOgsW/WUUOpqG3ivY3dPFAu\nmuaae77ya9j+IfzpBPjnT90V0CauWNI34Ve1BV75EfzxeNeLZNYdMPffMOL4bm+yqaWNl1Zs46Sx\nBQxIjZ+mHZ+TDxtMenIiz72/tfsbSUiEaVfCd96Ho8+Hd+5yTT7vPeBOrpu4YEnfhM/OlfDsVXDn\nJDeB+cRvwHeWwXFXQWLPEvXLH29nV3UjFx5XHKZg+5b0lETOnjycFz7cRnlND+fJzcyH2Xe7brKD\nimDh/8Lvj4I3b7fJWeKAJX3TM6qw4S147Fy4dwZ88iJMmwv/sxzOugcGhKcp5qH/bmR0fiafHxc/\nvXYCXT5jJE0tbfztvc3h2WDhFLjin3D5y1A4Dd78P/jdkbDw+1C5MTzPYWJO/B0nm/Co3uF6gnz4\nN9jxEWQWwCk3wpRvul4jYfT+5ko+3FLFLbOPJCEhfkf3GDskixPH5vPokk1c9fkxJHflhG57RNxI\npiNmwK5PXZNPycOw9M8wbqYb0+ewWW7WLtMvWNI3oWushk9eghV/hw3/Bm2DYcfA6b93bcQBM1uF\ny8P/3UhWWhJfm1zYK9vvS755wigu/8tSFn60ndmTAkdD6aHBh7ujs1N+Au/dDx/Oh9ULISXLXS09\n8TzX7z+h/18J3Z9Z0jcdqymDda+7wdBWvwwt9ZA9wvX9nvh1yB/bq09fWlnHwo+2880TRpIZhydw\nA31+XAGj8zP58382cObRw+iVcQ0HDnPzEZ9yoxv1dMWTsOoFWP4YZB0C489yE9SP+Fyv/dCb3mPf\nInOg1hbYWgKfLYK1/4Lty93yjHyYdIE7OVs0LWKzNP1y4SckJwqXnzAqIs8X6xIShKtPHsMPnl7B\ncx9s5ZzePPpJSITRn3d/X/21+9H/6CkoecgN6paUDiM/B4ee6v7yxtjsXX2AJf1411gD296HLe/C\nlvdg87vQuAck0SX3U37qvtBDj+7S1bPh8PZnu1n40Q6u/9I4hmVbm7LPuZMLeeLdzfxy4aecOn4I\nA9OSe/9Jk9PhqHPcX1OdGx11rVcxeOWHrkx2MRRNd/tN0XEw5EhrCopBojF2SfaUKVO0pMRGBuwV\nLY1Q9ins+NjV4Le8626rN1Z7wRHuCzvmFBh9srugKkqaWtqY+Ye3aG1TXv3uSf16hqzuWFFaxex7\n/svlM0Zx0xmBcxpFWMUGWPcarH/TVRxqdrrlKQNg+LFunxo6EYYeBdkjI155iBciskxVp3RWzmr6\n/VFbK1RtcoOblX3iEvvOj2H3GmhrcWWSM12XvROvd7WywmMhPXbmm733zXWsL6vlocumWMIPYmJh\nNnOmFvPI4o3MnjSMo4ui9wNN7ijI/RZM/Zbrwlu12SX/Le+6v//8xp30B/dDMORIGHKU+xHIP8yd\nF8ossKahCLGafl/V0uTGsqna7P7K10H5Wjf0QeUGaG3aX3bg8P1fsiFHuREYc0fH7KH3Kx9v5+rH\n3mf2pGH8Yc4x0Q4nZlXWNnH6XW/T3NrGC/NO4JBBMdoE1lR3YOXD979x7/4yqYPcOYH8sZB3qNs/\ns4vdX+ZgOzoIQag1fUv6sai12R0i790O1dsO/L9ni0vye7dxwFw2iSnui5J3qPvy5HlfnoLDwt5v\nvjd9VLqH8+57h8OHDmT+3OlWy+/E6h3VfO3edyjOzeCpq4/vOz2cfEcE5Z+5I9Lyte52+Tq3j/tL\nTIXsIvcDMKgQsoZB1lDXyyjrEPc/Iy/ujxQs6ceS1maoq4D6Cve/rty7Xe66RNbugtqy/bfrKjho\ncrKEZLeD+2o/B/wVwcDCHg91EG3LNlVy1aMlpCYl8ty1MxicZd0BQ/HGp7u44pGlTB2Zy70XHUtu\nZkq0Q+qZprr9R7BVm/xub4Y9pe67Euz7kVkAAwrc/8zB3u3BrtKTnuv+Z+S5Zsy07H539GBJP1xa\nGt1Y8I3V0FTj3d4LDXvdssZqd7+xGhr2QH0VNFT53d4DTR2MZJiStX/nzMx3wxZkDoaBh7gk76vJ\npOf2u53U35NLt/DT5z/mkOw0Hrx0KocOHhDtkPqUF5Zv5ftPr6BgQCoPXDKF8cMOmpW0/wg8Eq7e\nAdXbvUqTV3HyVaD8mzn9SYKbvCdtkPsBSBvkOi6kZbvpO1MHQWqW+0sbuP92ygDvL9P9j6GKVvwl\n/ZYmNxxAS4O7gKilEZq9/y310Nzg3a93/5vrvGW17n5TnbvdVOcea6p1f23NoT1/yoD9O9C+ncfb\nkdJz3F9G3sG1jji/vH3Vtr38v1c+5d9ryjhxbD53nX8M2Rl9vKYaJR9uqeKqR5dRUdvEJceP4Nov\nHEpOX6/194Sqq5DVVQQ/0vZV0HyVM9/txr0uj4QiKd37AciAZO8vJdP7791PSnPf8+QMdzGbb1lS\nmruf5PeXntPteQ7CmvRFZCbwByAR+LOq3h7weCrwV+BYoBz4hqpu9B77EXAF0Apcp6qvdvRc3U76\nNWXw60M7LyeJ3pufvv8DOOiD8j5E/1/0VP/bAw+sAaQMiNmTorGovqmVf32ykxeWb+O1T3cyMC2Z\neV84lMtPGNm1CULMQcqqG/nVq5/y9LJSMlOTOGvScM6cNIxji3PietyiLmtpckf2DXsOPKJvqvU7\n4q/xbtd4Fcdar8LoX4EMqGh2ZvgUuPK1boUctqTvzXG7BvgSbgL0pcD5qrrKr8w1wERVvVpE5gBn\nq+o3RGQ88DdgGjAM+BcwTtXXMfxg3U76rc1uuICkVPfrm5TqEntS6oG/tIkRuJDF0Nam7Klvpry2\niR17GthcUcfaXTUs31LJx9v20tTSxpCBqZx7bCFzTxzDoAz7XMJpzc5q7np9LYtW7aChuY2cjGQm\nFWUzsTCbkfkZFOdmUDAgjdwBKWSmJPbOcA7mQKpeC0Sd1yLR4FobWvz+kjOgeHq3Nh/OfvrTgLWq\nut7b8HxgNrDKr8xs4Gbv9tPA3eL2otnAfFVtBDZ4c+hOAxaH+kJClpjspoQzEXfhn5ewtbKe5lal\nsaWV2sZW6psP/l1PTUpgYuEgLj1+BKccPoRpo3JJtNpnrxg3JIu7zj+GmsYW/rVqJ4vXlfPBlkre\nXFN20BS5CQKZKUmkpySSkpRASmIC50wezrxTendcpbgj4rUuRLeDQihJfzjg34eqFDiuvTKq2iIi\ne4A8b/mSgHUPGhpQROYCcwGKi+Nzkoy+bHT+APIyU0lOTCA1OYGM5EQyUpPIyUgmNzOFwVlpjMjL\nYMjANEvyETYgNYmzjhnOWce4r11DcyullfVsqahjd00jFbVN7G1opq6plfqmVppa2mhqbbOeU/1Y\nKEk/2Lc0sE2ovTKhrIuq3g/cD655J4SYTAz5xVlHRTsEE6K05EQOHTzAekfFsVDOmpUCRX73C4Ft\n7ZURkSRgEFAR4rrGGGMiJJSkvxQYKyKjRCQFmAMsCCizALjUu30u8Lq6M8QLgDkikioio4CxwHvh\nCd0YY0xXddq847XRzwNexXXZfEhVV4rILUCJqi4AHgQe9U7UVuB+GPDKPYk76dsCXNtRzx1jjDG9\nq/9cnGWMMXEs1C6bdiWMMcbEEUv6xhgTRyzpG2NMHLGkb4wxcSTmTuSKSBmwqZc2nw/s7qVt9wf2\n/nTO3qOO2fvTud56j0aoakFnhWIu6fcmESkJ5ex2vLL3p3P2HnXM3p/ORfs9suYdY4yJI5b0jTEm\njsRb0r8/2gHEOHt/OmfvUcfs/elcVN+juGrTN8aYeBdvNX1jjIlrlvSNMSaOxEXSF5HzRGSliLSJ\nyJSAx34kImtFZLWIxP18iyJys4hsFZHl3t9Xoh1TLBCRmd4+slZEboh2PLFIRDaKyEfefmOjJgIi\n8pCI7BKRj/2W5YrIIhH5zPufE8mY4iLpAx8D5wBv+S/0Jm6fAxwJzAT+6E0EH+9+p6qTvL+F0Q4m\n2rx94h5gFjAeON/bd8zBvuDtN9ZX3/kLLrf4uwF4TVXHAq959yMmLpK+qn6iqquDPLRv4nZV3QD4\nJm43xt80YK2qrlfVJmA+bt8xpkOq+hZujhF/s4FHvNuPAGdFMqa4SPodCDbp+0ETt8eheSKywjs0\njeihZ4yy/SQ0CvxTRJaJyNxoBxPDhqjqdgDv/+BIPnkoE6P3CSLyL2BokId+oqovtLdakGX9vg9r\nR+8VcC/wC9z78AvgN8A3IxddTIrL/aQbTlDVbSIyGFgkIp96NV0TQ/pN0lfVU7uxWlxO3B7qeyUi\nDwAv9XI4fUFc7iddparbvP+7ROQ5XLOYJf2D7RSRQ1R1u4gcAuyK5JPHe/OOTdwewNsJfc7GnQSP\nd0uBsSIySkRScCf/F0Q5ppgiIpkikuW7DZyG7TvtWQBc6t2+FGivJaJX9JuafkdE5GzgLqAA+IeI\nLFfVL9vE7UHdISKTcM0XG4GrohtO9Klqi4jMA14FEoGHVHVllMOKNUOA50QEXF55QlVfiW5I0Sci\nfwNOBvJFpBT4GXA78KSIXAFsBs6LaEw2DIMxxsSPeG/eMcaYuGJJ3xhj4oglfWOMiSOW9I0xJo5Y\n0jfGmDhiSd8YY+KIJct132AAAAALSURBVH1jjIkj/x+HVB5xvwMNagAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEICAYAAACzliQjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl8VNX5+PHPk30hkBUQkrAJKgoi\nAiJWa6210Kqo1RZ3rRWtUr991W9bu2it1X792d2lVq1a61LqLlrUUpdaKyhBEQUF2QlryALZ1+f3\nx7kDwzBJJslkZpJ53q9XXpm5c+6dZ2buPHPuueeeI6qKMcaY+JAQ7QCMMcZEjiV9Y4yJI5b0jTEm\njljSN8aYOGJJ3xhj4oglfWOMiSOW9GOciFwoIv+Mdhw+IpIuIi+KyB4ReSra8YQi1t7D9ojIX0Tk\n1mjH4U9ELhORt3tp2zeLyGPe7WIRqRGRxDBt+08icqN3+2QRKQ3Hdr3tnSgiq8O1vUiLm6QvIheI\nSIm3Y20XkZdF5HPRjqszqvq4qp4W7Tj8nAsMAfJU9bxgBURkrIjMF5EyEdkrIp+JyF0iUhjZUJ0Y\nfA+7RUQOEZEHvf23WkQ+FZGfi0hmtGPrKVXdrKoDVLW1o3Kh/gip6tWq+otwxCYiKiKH+m37P6p6\nWDi2HQ1xkfRF5HvA74Ff4hJWMfBHYHY04+qMiCRFO4YgRgBrVLUl2IPel+NdYBtwjKoOBE4A1gEx\n/yMbq0QkF1gMpAPHq2oW8CUgGxgTzdhiTbiOFvotVe3Xf8AgoAY4r4MyqbgfhW3e3++BVO+xk4FS\n4AfALmA7cBbwFWANUAH82G9bNwNPA38HqoH3gaP9Hr8BlwCrgVXA2X6PXQb8F/idt91bvWVve4+L\n99guYA+wAjjK73X+FSgDNgE/BRL8tvs28GugEtgAzOrg/TgCeBOoAlYCZ3rLfw40Ac3ee3pFkHUf\nA17s5DPJAV7yYq30bhf6Pb4RODXgPX3Mu53mPUe5F99SYIjf61zvvbcbgAv9X7/f9v4AbAH2AsuA\nEwOe60nvvaz2Xv+UDl5Lt7cFHOPtH9Xe/jIfuLWd57kV+Mj3mXYjlr/4bxtvv/a7XwQ8630m5cDd\nne07wHnAsoAYrgeebye+UcC/vde7CLjb73MdCSiQ1N5nidsvG4BW3P5X5ffa7gUWArXAqf6vl/3f\n4R8Du3H714V+cb0JfCvge+j7zr3lxVXrPec3grx3Qb8vfrHdA/zDey3vAmOimRPjoaZ/PC5RPNdB\nmZ8A04FJwNHANFzS9BnqbWM4cBPwAHARcCxwInCTiIz2Kz8beArIBZ4AnheRZO+xdd46g3BJ9DER\nOcRv3eNwO/tg4LaAOE8DTgLG4Wp438B9QQHu8rY5Gvg8cAlwecB2VwP5wB3AgyIigW+EF+eLwD+9\nGL4DPC4ih6nqz3BHS39Xdyj+YOD6uC/cM0GW+0sAHsYdNRQD9bgEEIpLvddZBOQBVwP1XhPHnbiE\nlAXMAJa3s42luM/a9/k8JSJpfo+fiUvA2cCCTmLr1rZEJAV4HnjUW/cp4GsdPM+pwLOq2taDWILy\nasYv4SoLI3H7+Xy/Iu3tOwuAUSJyhF/Zi7zXFMwTuB+jfOAXuM8yWDxBP0tV/QT3eS/29r9sv9Uu\nwH1fsnA/UoGGes873Hve+0Wk0yYaVT3Ju3m095x/D4i13e+LX7Hzcd/1HGAtB3+vIyoekn4esFvb\naY7wXAjcoqq7VLUM9wFd7Pd4M3Cbqjbjvgz5wB9UtVpVV+J+3Sf6lV+mqk975X+L+8GYDqCqT6nq\nNlVt83agz3A/Mj7bVPUuVW1R1fqAOJtxO/XhgKjqJ6q63fvSfgP4kRfTRuA3Aa9hk6o+oK7N9BHg\nEFxTV6DpwADgdlVtUtXXcQnh/A7eP3/5wA7fHRGZJyJV3rmUB7z3oFxVn1HVOlWtxn0JPh/i9ptx\nn+mhqtqqqstUda/3WBtwlIikq+p277M5iKo+5sXQoqq/wR3p+X9J31bVhd579SiuIhBUD7Y1HUgG\nfq+qzar6NC5ptycPd5TZrhBiac80YBjwfVWtVdUGVfVPnEH3HVVtxB2hXAQgIkfifjReCnwCESkG\npgI3qmqjqr6FS5btCemz9POCqv7X+141tFPG99z/xtW8v97JNkMRyvflWVV9z8tBj+N+mKMmHpJ+\nOZDfSfv4MFwtx2eTt2zfNnT/CSZfIt7p93g97oP32eK74dXMSn3bE5FLRGS5lwirgKNwifKgdQN5\nO9TduMPFnSJyv4gM9NZPCfIahvvd3+G3nTrvpn/MPsOALQE1ysBtdaQclxR8z3W3VyP7PS7JISIZ\nInKfiGwSkb24Q+jsENtiHwVeBeaLyDYRuUNEklW1FvfDdzWwXUT+ISKHB9uAiFwvIp94PZCqcEcO\n/p/BDr/bdUBae/tPD7Y1DNiqXhuAx//zC3TA+9rNWNpThEvs7VWMOtp3HgEu8Gr+FwNPej8GgYYB\nld7n5BP09Xbls/TT7vfGE+y5h7VXuAtC+b4E7gPBvncREw9JfzGuHfCsDspswzU1+BR7y7qryHdD\nRBKAQmCbiIzANQ3Nw/V+yQY+xrXV+3Q47Kmq3qmqxwJH4pp5vo9rp2wO8hq2diP2bUCRF3d3tvUa\ncE4nZa7H1UCPU3ei13cI7XsfaoEMv/JDfTe8WvHPVXU87rD/dFxTFqr6qqp+CZccP8W91wcQkROB\nH+JqeTneZ7CHAz+DkPRwW9uB4QFNbMUdlP8XcHbA59KVWNp9T3EJs7g7HQdUdQnuPM+JuCaW9pp2\ntgM5AT2N2n29HXyW7X0/OhsuONhz+77jHb03nenp9yXi+n3SV9U9uHb4e0TkLK+WmSwis0TkDq/Y\n34CfikiBiOR75R/rwdMeKyLneF+i7wKNwBIgE7dzlgGIyOW4mn5IRGSqiBzntSPW4p3U8o5CngRu\nE5Es78fle918De962/6B9z6dDJzBgW28HbkZOFFEfisiw72483Enu3yycEdHVV6vlJ8FbGM5MMd7\n/im4bqJ42/qCiEzwjgr24n7sWkVkiIic6X2xG3En3YJ1/8sCWnCfQZKI3AQMDPG1hXNbi711rxOR\nJBE5hwOb+QL91tv2I97ni4gM997niSHEshz4iojkishQ3H7p8x4uKd8uIpkikiYiJ4T4OsCdqL4b\naAloFtpHVTcBJcDPRSRFXHfpM4KV7eSz3AkUeudEusr33CfiKgu+60yWA+d4ueFQ4IqA9XbizpUF\n09PvS8T1+6QPoKq/xSXBn+K+FFtwte3nvSK34nbIFbgeEu97y7rrBdzhaSXukPccr4a6CtfWvhi3\nI03A9dYJ1UBcjacSdwhZjutVAe4EUi3uJPDbuJNmD3U1cFVtwp18nIU7gvgjcImqfhri+mtw7ZyF\nwIciUo17jduAG71iv8d1PdyN+zF8JWAzN+K6IVbizq884ffYUFzvqL3AJ7jeII/h9uXrveepwJ0j\nuCZIiK8CL+N6Xm3C/XB21jTQnm5vy3ufz8H1FKnE7S/PdlC+Andk0wy8672vr+Fq82tDiOVR4ENc\nz5V/4trifdtuxSWqQ4HNuObIb4TyOvy2fRTt1/J9LsCdFK7A/dD/tZ1yHX2Wr+POoe0Qkd1diHEH\n7n3ehmtXv9pvn/4d7mhlJ6656vGAdW/G/dhWicgB5wF6+n2JBjmwSdH0lIjcjDvJeFG0YzEmEkQk\nHdeNeLKqfhbteEzH4qKmb4zpVd8GllrC7xti8YpPY0wfISIbcSeLO+ooYWKINe8YY0wcseYdY4yJ\nIzHXvJOfn68jR46MdhjGGNOnLFu2bLeqFnRWLuaS/siRIykpKYl2GMYY06eISEdXdO9jzTvGGBNH\nLOkbY0wcsaRvjDFxJOba9I0x8a25uZnS0lIaGtobITm+paWlUVhYSHJycueFgwgp6YvITNysPInA\nn1X19nbKnYsbxGiqqpZ4y36EG8CoFbhOVV/tVqTGmLhQWlpKVlYWI0eORA6e5yeuqSrl5eWUlpYy\natSobm2j0+YdbzTDe3ADCo0HzheR8UHKZQHX4Uad8y0bD8zBDQM8E/hjiGOmG2PiVENDA3l5eZbw\ngxAR8vLyenQUFEqb/jRgraqu90aUm0/wCcV/gZtKzT+a2cB8b7aaDbjRADsaPtYYYyzhd6Cn700o\nzTvDOXCI1lLc8Kj+QRwDFKnqSyLyvwHrLglY96AZmERkLjAXoLi4o3kkjIk8VeWxJZsoq3YTQh03\nOo8TDg1lQipjYk8oNf1gPyv7BuzxZoz5HW786y6tu2+B6v2qOkVVpxQUdHpBmTER9dZnu7nxhZXc\n+fpa7nx9Ldc8/j61jR1NuWz6OhHh+uv3p7Rf//rX3HzzzRGN4bLLLuPpp58O+3ZDSfql+E3/hzf1\nn9/9LNwECm96I+5NBxZ4Mx51tq4xMe+Bt9YzZGAqa26dxTPfnsGe+maeKunuvCumL0hNTeXZZ59l\n9+6uzNOyX0tL7FYKQmneWQqMFZFRuHkf5+BmwAH2TUe471hXRN4E/ldVS0SkHnhCRH6Lm0B4LG5q\nNmP6hI+37uHttbu5YdbhpCQlcOyIHKaMyOHPb2/goukjSEq0S136o6SkJObOncvvfvc7brvttgMe\n27RpE9/85jcpKyujoKCAhx9+mOLiYi677DJyc3P54IMPmDx5MllZWWzYsIHt27ezZs0afvvb37Jk\nyRJefvllhg8fzosvvkhycjK33HILL774IvX19cyYMYP77ruvV89pdJr0VbVFRObhpmNLBB5S1ZUi\ncgtQoqoLOlh3pYg8CazCzd95rTc1mzF9wp//s57MlETOn7b/XNOVJ43mqkeX8crKHZw+cVgUo+v/\nfv7iSlZt2xvWbY4fNpCfnXFkp+WuvfZaJk6cyA9+8IMDls+bN49LLrmESy+9lIceeojrrruO5593\nM6+uWbOGf/3rXyQmJnLzzTezbt063njjDVatWsXxxx/PM888wx133MHZZ5/NP/7xD8466yzmzZvH\nTTfdBMDFF1/MSy+9xBlnBJ0+OCxCqqao6kJVHaeqY1T1Nm/ZTcESvqqe7Ouj792/zVvvMFV9OXyh\nG9O7tlbV8+KK7Zw/rZhB6fsvhPnSEUMYlZ/J/W+tx+aj6L8GDhzIJZdcwp133nnA8sWLF3PBBa6x\n4+KLL+btt/fPBX/eeeeRmLi/V/qsWbNITk5mwoQJtLa2MnPmTAAmTJjAxo0bAXjjjTc47rjjmDBh\nAq+//jorV67s1ddlV+Qa047n3i+lTZXLP3fgRTAJCcI3TxjJjS+s5NMd1RxxyMAoRdj/hVIj703f\n/e53mTx5Mpdffnm7ZfybYjIzMw94LDU1FYCEhASSk5P3lU1ISKClpYWGhgauueYaSkpKKCoq4uab\nb+71K5GtQdKYdry7oYLDhmQxPDv9oMdOPmwwAEs3VkQ6LBNBubm5fP3rX+fBBx/ct2zGjBnMnz8f\ngMcff5zPfe5z3d6+L8Hn5+dTU1PTK711AlnSNyaIltY23t9UydSRuUEfL8xJ55BBaby3wZJ+f3f9\n9dcf0Ivnzjvv5OGHH2bixIk8+uij/OEPf+j2trOzs7nyyiuZMGECZ511FlOnTg1HyB2KuTlyp0yZ\nojaJiom2j7fu4fS73ubO84/hzKODn6y97m8f8O6Gcpb86It2BWkYffLJJxxxxBHRDiOmBXuPRGSZ\nqk7pbF2r6RsThK8GP3VkTrtlpo7MYefeRkor6yMVljE9ZknfmCBKNlV4TTgHt+f7TB3lmn6sXd/0\nJZb0jQmgqry3of32fJ9xg7MYmJZkSd/0KZb0jQmwsbyO3TWNnSb9hARhyshcO5lr+hRL+sYE8NXc\np41qvz3fZ+rIXNaV1VJe09jbYRkTFpb0jQmwdEMFORnJjCkY0GlZ34nekk2VvR2WMWFhSd+YAB9s\nqeLYETkhdcOcUDiIlMQEPthcFYHITCTt2LGDOXPmMGbMGMaPH89XvvIV1qxZE5Ztv/nmm5x++ulh\n2VZXWdI3xk9jSysbdtdy+NDQhlZITUpkdEEma3ZW93JkJpJUlbPPPpuTTz6ZdevWsWrVKn75y1+y\nc+fOaIfWY5b0jfGzYXctrW3KuKFZIa8zbkiWJf1+5o033iA5OZmrr75637JJkyZxzDHH8MUvfpHJ\nkyczYcIEXnjhBQA2btzIUUcdta+s/6Qra9eu5dRTT+Xoo49m8uTJrFu3DoCamhrOPfdcDj/8cC68\n8EJUlddee42zzz5733YWLVrEOeecE9bXZgOuGeNnzc4aAMYN6bw932fckAEs+HAbtY0tZKbaVyqs\nXr4BdnwU3m0OnQCzbu+wyMcff8yxxx570PK0tDSee+45Bg4cyO7du5k+fTpnnnlmh9u68MILueGG\nGzj77LNpaGigra2NLVu28MEHH7By5UqGDRvGCSecwH//+19OOeUUrr322gPG6u9osLfusJq+MX7W\n7KgmMUEYlZ/ZeWHP2CHuqOCzXTW9FZaJEarKj3/8YyZOnMipp57K1q1bO2zyqa6uZuvWrftq72lp\naWRkZAAwbdo0CgsLSUhIYNKkSWzcuBER4eKLL+axxx6jqqqKxYsXM2vWrLC+BquWGONnzc5qRuZl\nkJqU2Hlhzzgv6a/ZWc2kouzeCi0+dVIj7y1HHnlk0BEvH3/8ccrKyli2bBnJycmMHDmShoYGkpKS\naGtr21fON3pmR2Ob+YZdBkhMTNw3xeLll1/OGWecQVpaGueddx5JSeFN0yHV9EVkpoisFpG1InJD\nkMevFpGPRGS5iLwtIuO95SNFpN5bvlxE/hTW6I0Js8921exL4qEqzs0gNSmBz6xdv9845ZRTaGxs\n5IEHHti3bOnSpWzatInBgweTnJzMG2+8waZNmwAYMmQIu3btory8nMbGRl566SXATcRSWFi4b2at\nxsZG6urqOnzuYcOGMWzYMG699VYuu+yysL+2TpO+iCQC9wCzgPHA+b6k7ucJVZ2gqpOAO4Df+j22\nTlUneX9XY0yMamhuZVN57b7mmlAlJghjCgbsOx9g+j4R4bnnnmPRokWMGTOGI488kptvvpmvfOUr\nlJSUMGXKFB5//HEOP/xwAJKTk7nppps47rjjOP300/ctB3j00Ue58847mThxIjNmzGDHjh2dPv+F\nF15IUVER48cHptqeC+W4YRqwVlXXA4jIfGA2bt5bAFTVfxLLTCC2xms2JgTrympoUzisi0kf4LCh\nWSxZX94LUZloGTZsGE8++eRByxcvXhy0/HXXXcd111130PKxY8fy+uuvH7Bs9OjRnHzyyfvu3333\n3Qc8/vbbb3PllVd2I+rOhdK8MxzY4ne/1Ft2ABG5VkTW4Wr6/q98lIh8ICL/FpETgz2BiMwVkRIR\nKSkrK+tC+MaEz2fd6LnjM3bIALbvaWBvQ3O4wzJx5thjj2XFihVcdNFFvbL9UJJ+sMsSD6rJq+o9\nqjoG+CHwU2/xdqBYVY8Bvgc8ISIHXfWiqver6hRVnVJQUBB69MaE0Zqd1SQnCiO70HPHZ9xgrweP\nNfGYHlq2bBlvvfXWASd6wymUpF8KFPndLwS2dVB+PnAWgKo2qmq5d3sZsA4Y171Qjelda3ZWMyo/\nk+TErvdk9p38tZO54RFrM/rFkp6+N6Hs3UuBsSIySkRSgDnAAv8CIjLW7+5Xgc+85QXeiWBEZDQw\nFljfo4iN6SVrdtZ0+SSuT2FOOunJiay2pN9jaWlplJeXW+IPQlUpLy8nLS2t29vo9ESuqraIyDzg\nVSAReEhVV4rILUCJqi4A5onIqUAzUAlc6q1+EnCLiLQArcDVqmqDj5uYU9/UypbKOr42ubBb6yck\nCIcOHmDNO2FQWFhIaWkpdn4vuLS0NAoLu7efQogXZ6nqQmBhwLKb/G7/TzvrPQM80+3ojImQdWU1\nqLoTst01dsgA/rt2dxijik/JycmMGjUq2mH0WzYMgzHApnJ3wUxXhl8INCovk517G6lvag1XWMaE\nnSV9Y4CN5bWAu7q2u4rz3LqbKzq+4tKYaLKkbwywqbyWgqzUHo2SOTIvc9+2jIlVlvSNwTXvjOhB\nLR9ghFfT9zUVGROLLOkbg5f087rfng+QnZHCoPRkNlVYTd/ELkv6Ju41NLeyY28DI/N6VtMHGJmX\nYTV9E9Ms6Zu45zvxWhyGpF+cl7nvpLAxsciSvol7G3e7JD2yh807bhsZbK2sp6mlrfPCxkSBJX0T\n93w1/RHhqOnnZtCmsLWqvsfbMqY3WNI3cW9jeS2D0pPJzkjp8bZ8I3Rat00Tqyzpm7jneu70vJYP\n7Ov2aSdzTayypG/iXji6a/oUZKWSnpxoSd/ELEv6Jq41t7axtaq+xxdm+YgII/IyrHnHxCxL+iau\nba2sp7VNw9a8A+6E8CYbf8fEKEv6Jq75+tSHq3nHt63NFXW0tdkkICb2WNI3cc3XXTMcV+P6jMjL\noKmljR17G8K2TWPCJaSkLyIzRWS1iKwVkRuCPH61iHwkIstF5G0RGe/32I+89VaLyJfDGbwxPbWp\nvI605AQKssI3CfWIXHfUYFfmmljUadL35ri9B5gFjAfO90/qnidUdYKqTgLuAH7rrTseN6fukcBM\n4I++OXONiQWllXUU5WQgImHbZlFuOuDOFxgTa0Kp6U8D1qrqelVtAuYDs/0LqOpev7uZgK8xczYw\nX1UbVXUDsNbbnjExobSynsKc9LBu85BB6Yi4bRsTa0JJ+sOBLX73S71lBxCRa0VkHa6mf10X150r\nIiUiUmKTIZtIckk/fO35AClJCQwdmGZJ38SkUJJ+sOPeg7olqOo9qjoG+CHw0y6ue7+qTlHVKQUF\nBSGEZEzP7W1oZk99c9hr+gCFOemUVlq3TRN7Qkn6pUCR3/1CYFsH5ecDZ3VzXWMiprTC1cTDXdP3\nbdNq+iYWhZL0lwJjRWSUiKTgTswu8C8gImP97n4V+My7vQCYIyKpIjIKGAu81/Owjek5X028t2r6\n2/fU09xqQyyb2NLpLNCq2iIi84BXgUTgIVVdKSK3ACWqugCYJyKnAs1AJXCpt+5KEXkSWAW0ANeq\namsvvRZjusRXE++tpN+msGNPA0VhGuLBmHDoNOkDqOpCYGHAspv8bv9PB+veBtzW3QCN6S2llfVk\npCSSm9nzIZUDFXlNRlsq6yzpm5hiV+SauFVaWUdhTnpY++j7+M4TWLu+iTWW9E3c6o3umj5DB6WR\nYH31TQyypG/ilq+m3xv299W3bpsmtljSN3FpT30zextaei3pg3XbNLHJkr6JS1sre6+Pvk9hTrqN\nv2NijiV9E5d6s4++j/XVN7HIkr6JS6URqeln7Ourb0yssKRv4pKvj35ORnKvPYfvKGKLncw1McSS\nvolLvdlH38f66ptYZEnfxKXe7KPvY331TSyypG/iUmllHcOze+8kLvj11a+w5h0TOyzpm7hT3dD7\nffR9hueks7XKavomdljSN3HHl4SHRyLpZ1vSN7HFkr6JO74Lpnq7eQfcD8uOPQ20th00YZwxUWFJ\n38SdfTX9SCT97Axa2pSde62vvokNISV9EZkpIqtFZK2I3BDk8e+JyCoRWSEir4nICL/HWkVkufe3\nIHBdYyJta2U9KYkJ5A9I7fXn8jUhWROPiRWdJn0RSQTuAWYB44HzRWR8QLEPgCmqOhF4GrjD77F6\nVZ3k/Z0ZpriN6bbSqnqGZaeRkNB7ffR9hmenAdgYPCZmhFLTnwasVdX1qtqEm/h8tn8BVX1DVX39\n0pbgJkA3JiZtrayPyElcgGHZVtM3sSWUpD8c2OJ3v9Rb1p4rgJf97qeJSImILBGRs7oRozFhtbWq\nPiLt+QAZKUnkZqbYBVomZoQyR26wY+CgXRFE5CJgCvB5v8XFqrpNREYDr4vIR6q6LmC9ucBcgOLi\n4pACN6Y7GltaKatuZHh25OattW6bJpaEUtMvBYr87hcC2wILicipwE+AM1W10bdcVbd5/9cDbwLH\nBK6rqver6hRVnVJQUNClF2BMV2yvcr1oItW8A17St0HXTIwIJekvBcaKyCgRSQHmAAf0whGRY4D7\ncAl/l9/yHBFJ9W7nAycAq8IVvDFdFcnumj6+q3JVra++ib5Om3dUtUVE5gGvAonAQ6q6UkRuAUpU\ndQHwK2AA8JQ3auFmr6fOEcB9ItKG+4G5XVUt6ZuoieSFWT7Ds9NpaG6joraJvAh0EzWmI6G06aOq\nC4GFActu8rt9ajvrvQNM6EmAxoRTaVU9Im4EzEjx76tvSd9Em12Ra+LK1sp6hmSlkZIUuV3fd1Rh\nffVNLLCkb+LK1qq6iJ7Ehf0zaFkPHhMLLOmbuBLJPvo+g9KTyUxJtKRvYoIlfRM3WtuUHXsaIl7T\nFxHXg8ead0wMsKRv4kZZdSPNrRrxmj7YBVomdljSN3Fja5W7QCrSNX3fc1rSN7HAkr6JG6VR6KPv\nMzw7g6q6ZmoaWyL+3Mb4s6Rv4oYv6UdibtxA+/rqW7u+iTJL+iZubK2qJzczhYyUkK5JDKv93TZt\nDB4TXZb0TdworYx8d02fQu95bYhlE22W9E3c2FpZF5WmHYD8AamkJCVY846JOkv6Ji6oalQuzPJJ\nSBCGZ6dbTd9EnSV9ExfKa5toaG6LWk0fXLt+qXXbNFFmSd/EhX3dNXMiN2NWIDeZiiV9E12W9E1c\n2BrF7po+hTnp7K5ppKG5NWoxGGNJ38SF0sroXY3rM9xG2zQxIKSkLyIzRWS1iKwVkRuCPP49EVkl\nIitE5DURGeH32KUi8pn3d2k4gzcmVFur6hmYlsTAtOSoxeCbjN1O5ppo6jTpi0gicA8wCxgPnC8i\n4wOKfQBMUdWJwNPAHd66ucDPgOOAacDPRCQnfOEbE5rSyvqotueD3wValvRNFIVS058GrFXV9ara\nBMwHZvsXUNU3VNV3qeESoNC7/WVgkapWqGolsAiYGZ7QjQnd1sr6qLbnAwwZmEZSguxrajImGkJJ\n+sOBLX73S71l7bkCeLmb6xoTdqpKaRQvzPJJTBAOyU6zNn0TVaEMQiJBlmnQgiIXAVOAz3dlXRGZ\nC8wFKC4uDiEkY0K3p76Z2qbWqF2Y5c8u0DLRFkpNvxQo8rtfCGwLLCQipwI/Ac5U1caurKuq96vq\nFFWdUlBQEGrsxoRk/+ia0W1esvgVAAAgAElEQVTT98VgbfommkJJ+kuBsSIySkRSgDnAAv8CInIM\ncB8u4e/ye+hV4DQRyfFO4J7mLTMmYnxt6NFu3gFX099Z3UBTS1u0QzFxqtOkr6otwDxcsv4EeFJV\nV4rILSJyplfsV8AA4CkRWS4iC7x1K4Bf4H44lgK3eMuMiZhojqMfqDAnHVXYvsdq+yY6QhpYXFUX\nAgsDlt3kd/vUDtZ9CHiouwEa01OllfVkpiQyKD16ffR9fBdolVbWMyIvM8rRmHhkV+Safq+0sp7C\nnAxEgvUriKyiHN8FWtZt00SHJX3T75VW1lGUG/2TuACHDEojMUHYUmHNOyY6LOmbfk1V2VxRR1Fu\n9NvzAZISExiWncbmCqvpm+iwpG/6tfLaJuqaWimOkZo+QHFuhiV9EzWRnyHamAja4iXXbiX9xhqY\nfwGUrw3++KQL4JSfdnmzxbkZLFq1s+vxGBMGlvRNv+arUXerTf9fN8OGt2DiNyAx4KtStRne+hUU\nT4dD2+28FlRhTga7a5qobWwhM9W+giaybI8z/Zqvpl/U1atxN74NSx+A474Ns24/+PHmBrjvJFjw\nP3DNYkgbGPKmfUcdWyrrOHxo6OsZEw7Wpm/6tS0V9eQPSCU9JTH0lZrq4IV5kDMSvnhj8DLJaTD7\nHqjeBotuCl6mHb6jDuvBY6LBkr7p1zZX1FHc1Z47r/8CKjfAmXdDSgcXUBVNhenXwLKHYf2/Q968\nr6ZvJ3NNNFjSN/2aS/pdaNrZvASW3AtTroBRJ3Ze/gs/gdzRsGCeO/EbgpyMZAakJu1rejImkizp\nm36rubWN7XvqQz+J21wPL1wLg4rgSz8PbZ2UDNfMU7UFXrslpFVEhMKcdKvpm6iwpG/6rW1V9bRp\nF3ruvPl/rnvmmX+A1KzQn2jEDJg2F967Dza9E9IqxbkZVtM3UWFJ3/Rbm7vSR790GbxzF0y+BMac\n0vUnO/VnkD3CHSk0dZ7MfRdoqQadj8iYXmNJ3/RbIffRb2l0yTrrEDjt1u49WUomzL4bKtbDG7d1\nWrwoN4PGljbKqhs7LWtMOFnSN/3Wlop6khOFoQPTOi744Xwo+wS++htIG9T9Jxx1kjtSePdPsGdr\nh0X9++obE0mW9E2/taWijsKcDBITOhhSWRUW3wNDJ8C4mT1/0hOvB22D9+7vsFiRdds0URJS0heR\nmSKyWkTWisgNQR4/SUTeF5EWETk34LFWbzatfTNqGRMJmyvqOp8ta+1rsHs1HP8dCMd4+zkj4Ygz\nXd/9Drpw+uLaXG4XaJnI6jTpi0gicA8wCxgPnC8i4wOKbQYuA54Isol6VZ3k/Z0Z5HFjesWWyhD6\n6C++y7XlH3l2+J74+HnQsAeWP95ukbTkRIYMTLXmHRNxodT0pwFrVXW9qjYB84HZ/gVUdaOqrgBs\ntmcTE/bUNVNV19xx0t/xMax/03W3TEoJ35MXTYXCabDkj9DW2m6x4twMNpXXhu95jQlBKEl/OLDF\n736ptyxUaSJSIiJLROSsYAVEZK5XpqSsrKwLmzYmuA1eMh2V38EwCkv+CMkZMOXy8AcwYx5UboTV\nC9stMio/kw27raZvIiuUpB+sobMrnYuLVXUKcAHwexEZc9DGVO9X1SmqOqWgoKALmzYmuI27O0n6\n1TtgxZNwzEWQnhP+AA4/3fXbf+fudouMzM9kd00j1Q3N4X9+Y9oRStIvBYr87hcC20J9AlXd5v1f\nD7wJHNOF+IzplvW7axGB4rx2mnfeewDaWuC4q3sngIREmP5t2LIESkuCFhnt/SBttNq+iaBQkv5S\nYKyIjBKRFGAOEFIvHBHJEZFU73Y+cAKwqrvBGhOqjbtrGZ6dTmpSkCGVm2qh5EE4/KuQd9CBZ/gc\ncxGkDoLFwWv7I72kv8Ha9U0EdZr0VbUFmAe8CnwCPKmqK0XkFhE5E0BEpopIKXAecJ+IrPRWPwIo\nEZEPgTeA21XVkr7pdRt217bftPPh36C+0vWy6U2pWXDspbDqBajcdNDDI/O8pF9mSd9ETkgzZ6nq\nQmBhwLKb/G4vxTX7BK73DjChhzEa0yWqysbdtZw9OUh/g7Y2WPxHGDbZTXXY2467yp0wfu9++PKB\nwzOkJScybFAaG62mbyLIrsg1/c7umiaqG1uC1/TXvAIV61zvmnBcjNWZQYXuGoBlj7i++wFGFWSy\nfrclfRM5lvRNv+OrOY8MlvQX3+PGyz9i9sGP9Zbp10BTNbz/6EEPjczLZENZjY22aSLGkr7pd3xt\n5KMDk/62D2DT267JJTGkls3wGD4ZRpzgBmJrbTngoVH5mextaKGyzrptmsiwpG/6nQ3ltSQnCsOz\nA8bdeeduSMlyI2FG2vHzYM8WWPX8AYtHF3gnc62Jx0SIJX3T72woq6UoN4OkRL/du2ozrHzO9abp\nyfDJ3TVuJuSNhXfudCN7evb14LGkbyLEkr7pdzaW1x7ctLPkXnfidvq3oxNUQoI7ebz9Q9j4n32L\ni3Ld0M8bLembCLGkb/qVtjZlw+7afTVowPXJX/YIHPU115smWibOgcwC+O+d+xYlJyZQlJNuNX0T\nMZb0Tb+yY28DjS1tjCrwS/olD0NzLcz4TvQCA0hOg2lXwdpFsHP/NYpu4DVL+iYyLOmbfsWXPEf5\navotja7XzOgvuNmxom3qFW5kT7+hGUbmZ7KxvNa6bZqIsKRv+pX1ZW62qn01/Y+egpqdcMJ1UYzK\nT0auG5NnxZOwdzsAowsGUNfUyo69DVEOzsQDS/qmX1mzs4as1CQ3GXpbG7xzFwyZ4Gr6sWL6NaCt\n7ggEGDt4AOBiN6a3WdI3/cqandWMHTIAEYG1/4KyT11bfiSGXAhV7ig3j27Jw9BYzbghWQB8trM6\nyoGZeGBJ3/QbqsqandUcNtQlUd65EwYOh6POiW5gwcy4Dhr3wPt/JTczhfwBqazeYUnf9D5L+qbf\n2F3TRGVdM2MHZ8HW911/+OnfhsTkaId2sMJj3dAMS+6F1mbGDRnAml3WvGN6nyV902+s8ZpHDhua\n5dryUwfC5EujHFUHZnzHDc2w8nnGDcnis53VtLVZDx7Tuyzpm35jX9JPq3Bj3Bx7GaQNjG5QHRn7\nZcgfB+/cybjBrgfP1qr6aEdl+rmQkr6IzBSR1SKyVkRuCPL4SSLyvoi0iMi5AY9dKiKfeX8xXO0y\nfd2andVkZyST9+H9IAm9N/9tuCQkuIHYdqxgSusHwP4fLmN6S6dJX0QSgXuAWcB44HwRGR9QbDNw\nGfBEwLq5wM+A44BpwM9EJKfnYRtzsDU7azgxrxpZ9jBMuhAGBZk5K9YcPQcGFTNmxa8R2qzbpul1\nodT0pwFrVXW9qjYB84EDZqBQ1Y2qugJoC1j3y8AiVa1Q1UpgETAzDHEbcwBVZc2OauY2PwqJqfCF\nH0c7pNAkpcIXbyRx50dcmrnUavqm14WS9IcDW/zul3rLQhHSuiIyV0RKRKSkrKwsxE0bs9+OvQ0c\n2vQJE6recCdIs4ZGO6TQHXUuHHI08/gbG3aURzsa08+FkvSDXdUSaheDkNZV1ftVdYqqTikoKAhx\n08bst2ZHNT9OfpymtPzoD6zWVQkJcNqt5Lfu4oTdT9NqPXhMLwol6ZcCRX73C4FtIW6/J+saE7Km\njxcwNWENzSfeAKkDoh1O1406iW0FJ3JVwvOUbi2NdjSmHwsl6S8FxorIKBFJAeYAC0Lc/qvAaSKS\n453APc1bZkz4tDZz9Orfs55CMqdfHu1oum3viTeRST361q+iHYrpxzpN+qraAszDJetPgCdVdaWI\n3CIiZwKIyFQRKQXOA+4TkZXeuhXAL3A/HEuBW7xlxoTPsr8wuGkLz+ZdGdkJz8Os6LDJPNV2MkVr\nH4eK9dEOx/RTIX1DVHUhsDBg2U1+t5fimm6CrfsQ8FAPYjSmfQ170Tdv5722I2gZ8+VoR9MjmalJ\nPDfoEs6uXUzia7fAeX+JdkimH7Irck3f9s6dSN1ubmu+gIlF2dGOpseGF43mUTndTeJeWhLtcEw/\nZEnf9F17t8E7d7Nh6ExW6BgmDB8U7Yh6bELhIH5XN4vWjHz4541gs2mZMLOkb/qu128DbWX+wMvI\nzUyhMCc92hH12MTCbGpJZ/Xh82DzO/DpS9EOyfQzlvRN37TmVVj+GEz/Nv/elcmE4YPcxCl93PhD\nBpKYILySehoMHg//uB5qd0c7LNOPWNI3fU/NLnj+GhhyFPUn/JDPdtUwsbDvN+0ApKckMnbwAJZv\nrYVzHoD6KnhhnjXzmLCxpG/6FlWX8Jtq4Gt/ZlVZI61tysTCvn8S1+fowmw+Kq1ChxwJX/o5rHkZ\nSh6Mdlimn7Ckb/qWd++DtYvgtFth8BGsKN0D0G9q+uBO5lbWNVNaWQ/TroIxX4RXfwK7Po12aKYf\nsKRv+o6dK2HRTW7ykanfAuCj0j0MzkplyMC0KAcXPr4fsI+27nHj8px1L6RkwjPfgpbGKEdn+jpL\n+qZvaK53SS9tEMy+B7yTtiu27ulXtXxw0z0mJ8q+oxiyhsDsP8LOj+C1W6IbnOnzLOmbvmHRz2DX\nKlfrHeBGYq1pbGFdWU2/as8HSE1K5IhDBrKitGr/wsNmuqObxXfD2teiF5zp8yzpm9i35p/w3n1w\n3Ldh7Kn7FpdsrEAVJhf3v8nYJhfn8MHmKppa/OYlOu1WyD8Mnv821Nq4+6Z7LOmb2FaxAV64BgYf\nCafefMBDi9eXk5woHDui/yX96aPzqG9uPbC2n5wO5z4I9ZXw7JXQ0hS9AE2fZUnfxK49W+GvZ0Jb\nC5z3MCQfeLJ2ybpyjinKIT0lMUoB9p7po3MRgcXrAmr0QyfAV38D616D5+ZCW2t0AjR9liV9E5tq\nyuCvs6GuEi56FgoOO+DhvQ3NfLR1D9NH50YpwN6VnZHC4UMHsnh9kGacyZe4pp6Vz8GC66AtcGpq\nY9rXdwcfN/1XfSU8ejbsKYWLn4Xhkw8qsnRDBW0K08fkRSHAyDh+dB6Pv7uJxpZWUpMCjmZmfAca\na+Dft7vunLP+374eTcZ0xGr6JrY0VsPj58Hu1TDncRgxI2ixxevKSUlK6JcncX2OH5NHY0sbH2yu\nCl7g5Bvg+HnuJPfrv4hscKbPCinpi8hMEVktImtF5IYgj6eKyN+9x98VkZHe8pEiUi8iy72/P4U3\nfNOvNDfA386Hre/DuQ/BoV9st+ji9eVMLs4mLbn/tef7TBuVS0Kwdn0fEdfMM/lS+M9v4D+/jWyA\npk/qNOmLSCJwDzALGA+cLyLjA4pdAVSq6qHA74D/5/fYOlWd5P1dHaa4TX/T0ghPXQob33Z98Y84\no92iVXVNrNq+l+NH50cwwMgblJ7MkcMGBW/X9xGB038HE86D134O794fuQBNnxRKTX8asFZV16tq\nEzAfmB1QZjbwiHf7aeCL0h/GuTWRsXcb/OWrsOYV1zPl6G90WPzdDa5//vH9uD3f5/gxeSzfXEVD\ncwe9dBIS3Q/lYV+Fl78PL98Arc2RC9L0KaEk/eHAFr/7pd6yoGW8idT3AL5v5CgR+UBE/i0iJwZ7\nAhGZKyIlIlJSVlbWpRdg+rhN78B9n4ddn8DX/wpTr+h0lTdXl5GZksjRRf1r+IVgTjg0n6bWNv67\ntpMx9ROT4euPwPRr4N174a9nuSGojQkQStIPVmMPHNy7vTLbgWJVPQb4HvCEiAw8qKDq/ao6RVWn\nFBQUhBCS6fNUYcmf4JEzIG0gfOs1GB94AHmwltY2/rlyB6ccMeTgHi390PGj88hKS+Llj3d0Xjgx\nGWb+nxuHf+sy92Nq8+yaAKEk/VKgyO9+IbCtvTIikgQMAipUtVFVywFUdRmwDhjX06BNH9dUB89d\nBa/8EMaeBle+DoMPD2nV9zZWUF7bxKyjhvZykLEhJSmBLx0xhEWrdtLcGmJ//Ilfh28tcj8CD8+C\nkod7N0jTp4SS9JcCY0VklIikAHOABQFlFgCXerfPBV5XVRWRAu9EMCIyGhgLrA9P6KZP2r0WHjoN\nVjwJX/gpfONxN3JmiF75eAdpyQmcfFj8HBHOmnAIe+qb2+/FE8zQCTD3TRh5Irz0XTf7VmNNb4Vo\n+pBOk77XRj8PeBX4BHhSVVeKyC0icqZX7EEgT0TW4ppxfN06TwJWiMiHuBO8V6tqRbhfhOkDmmrd\nsMD3Hg9Vm+HCp+Dz33fjxYeorU15+eMdfOGwwWSkxM91hSeOzSczJZGXP97etRUzct37fOL/wgeP\nwt1T4eNnbOrFOBfSN0dVFwILA5bd5He7ATgvyHrPAM/0MEbTl6nCJwvglR/D3lKYOAe+dIsbI76L\nlm2upKy6kVkTDumFQGNXWnIiXzxiCK+u3MkvZreRlNiFayoTEuGLN8K4L7tJ1p/+Jiz7C8z6VchN\naqZ/sStyTe/Z/ZkbTuHJSyA9Gy5/Bc65r1sJH+Dlj3aQkpTAKYcPDnOgsW/WUUOpqG3ivY3dPFAu\nmuaae77ya9j+IfzpBPjnT90V0CauWNI34Ve1BV75EfzxeNeLZNYdMPffMOL4bm+yqaWNl1Zs46Sx\nBQxIjZ+mHZ+TDxtMenIiz72/tfsbSUiEaVfCd96Ho8+Hd+5yTT7vPeBOrpu4YEnfhM/OlfDsVXDn\nJDeB+cRvwHeWwXFXQWLPEvXLH29nV3UjFx5XHKZg+5b0lETOnjycFz7cRnlND+fJzcyH2Xe7brKD\nimDh/8Lvj4I3b7fJWeKAJX3TM6qw4S147Fy4dwZ88iJMmwv/sxzOugcGhKcp5qH/bmR0fiafHxc/\nvXYCXT5jJE0tbfztvc3h2WDhFLjin3D5y1A4Dd78P/jdkbDw+1C5MTzPYWJO/B0nm/Co3uF6gnz4\nN9jxEWQWwCk3wpRvul4jYfT+5ko+3FLFLbOPJCEhfkf3GDskixPH5vPokk1c9fkxJHflhG57RNxI\npiNmwK5PXZNPycOw9M8wbqYb0+ewWW7WLtMvWNI3oWushk9eghV/hw3/Bm2DYcfA6b93bcQBM1uF\ny8P/3UhWWhJfm1zYK9vvS755wigu/8tSFn60ndmTAkdD6aHBh7ujs1N+Au/dDx/Oh9ULISXLXS09\n8TzX7z+h/18J3Z9Z0jcdqymDda+7wdBWvwwt9ZA9wvX9nvh1yB/bq09fWlnHwo+2880TRpIZhydw\nA31+XAGj8zP58382cObRw+iVcQ0HDnPzEZ9yoxv1dMWTsOoFWP4YZB0C489yE9SP+Fyv/dCb3mPf\nInOg1hbYWgKfLYK1/4Lty93yjHyYdIE7OVs0LWKzNP1y4SckJwqXnzAqIs8X6xIShKtPHsMPnl7B\ncx9s5ZzePPpJSITRn3d/X/21+9H/6CkoecgN6paUDiM/B4ee6v7yxtjsXX2AJf1411gD296HLe/C\nlvdg87vQuAck0SX3U37qvtBDj+7S1bPh8PZnu1n40Q6u/9I4hmVbm7LPuZMLeeLdzfxy4aecOn4I\nA9OSe/9Jk9PhqHPcX1OdGx11rVcxeOWHrkx2MRRNd/tN0XEw5EhrCopBojF2SfaUKVO0pMRGBuwV\nLY1Q9ins+NjV4Le8626rN1Z7wRHuCzvmFBh9srugKkqaWtqY+Ye3aG1TXv3uSf16hqzuWFFaxex7\n/svlM0Zx0xmBcxpFWMUGWPcarH/TVRxqdrrlKQNg+LFunxo6EYYeBdkjI155iBciskxVp3RWzmr6\n/VFbK1RtcoOblX3iEvvOj2H3GmhrcWWSM12XvROvd7WywmMhPXbmm733zXWsL6vlocumWMIPYmJh\nNnOmFvPI4o3MnjSMo4ui9wNN7ijI/RZM/Zbrwlu12SX/Le+6v//8xp30B/dDMORIGHKU+xHIP8yd\nF8ossKahCLGafl/V0uTGsqna7P7K10H5Wjf0QeUGaG3aX3bg8P1fsiFHuREYc0fH7KH3Kx9v5+rH\n3mf2pGH8Yc4x0Q4nZlXWNnH6XW/T3NrGC/NO4JBBMdoE1lR3YOXD979x7/4yqYPcOYH8sZB3qNs/\ns4vdX+ZgOzoIQag1fUv6sai12R0i790O1dsO/L9ni0vye7dxwFw2iSnui5J3qPvy5HlfnoLDwt5v\nvjd9VLqH8+57h8OHDmT+3OlWy+/E6h3VfO3edyjOzeCpq4/vOz2cfEcE5Z+5I9Lyte52+Tq3j/tL\nTIXsIvcDMKgQsoZB1lDXyyjrEPc/Iy/ujxQs6ceS1maoq4D6Cve/rty7Xe66RNbugtqy/bfrKjho\ncrKEZLeD+2o/B/wVwcDCHg91EG3LNlVy1aMlpCYl8ty1MxicZd0BQ/HGp7u44pGlTB2Zy70XHUtu\nZkq0Q+qZprr9R7BVm/xub4Y9pe67Euz7kVkAAwrc/8zB3u3BrtKTnuv+Z+S5Zsy07H539GBJP1xa\nGt1Y8I3V0FTj3d4LDXvdssZqd7+xGhr2QH0VNFT53d4DTR2MZJiStX/nzMx3wxZkDoaBh7gk76vJ\npOf2u53U35NLt/DT5z/mkOw0Hrx0KocOHhDtkPqUF5Zv5ftPr6BgQCoPXDKF8cMOmpW0/wg8Eq7e\nAdXbvUqTV3HyVaD8mzn9SYKbvCdtkPsBSBvkOi6kZbvpO1MHQWqW+0sbuP92ygDvL9P9j6GKVvwl\n/ZYmNxxAS4O7gKilEZq9/y310Nzg3a93/5vrvGW17n5TnbvdVOcea6p1f23NoT1/yoD9O9C+ncfb\nkdJz3F9G3sG1jji/vH3Vtr38v1c+5d9ryjhxbD53nX8M2Rl9vKYaJR9uqeKqR5dRUdvEJceP4Nov\nHEpOX6/194Sqq5DVVQQ/0vZV0HyVM9/txr0uj4QiKd37AciAZO8vJdP7791PSnPf8+QMdzGbb1lS\nmruf5PeXntPteQ7CmvRFZCbwByAR+LOq3h7weCrwV+BYoBz4hqpu9B77EXAF0Apcp6qvdvRc3U76\nNWXw60M7LyeJ3pufvv8DOOiD8j5E/1/0VP/bAw+sAaQMiNmTorGovqmVf32ykxeWb+O1T3cyMC2Z\neV84lMtPGNm1CULMQcqqG/nVq5/y9LJSMlOTOGvScM6cNIxji3PietyiLmtpckf2DXsOPKJvqvU7\n4q/xbtd4Fcdar8LoX4EMqGh2ZvgUuPK1boUctqTvzXG7BvgSbgL0pcD5qrrKr8w1wERVvVpE5gBn\nq+o3RGQ88DdgGjAM+BcwTtXXMfxg3U76rc1uuICkVPfrm5TqEntS6oG/tIkRuJDF0Nam7Klvpry2\niR17GthcUcfaXTUs31LJx9v20tTSxpCBqZx7bCFzTxzDoAz7XMJpzc5q7np9LYtW7aChuY2cjGQm\nFWUzsTCbkfkZFOdmUDAgjdwBKWSmJPbOcA7mQKpeC0Sd1yLR4FobWvz+kjOgeHq3Nh/OfvrTgLWq\nut7b8HxgNrDKr8xs4Gbv9tPA3eL2otnAfFVtBDZ4c+hOAxaH+kJClpjspoQzEXfhn5ewtbKe5lal\nsaWV2sZW6psP/l1PTUpgYuEgLj1+BKccPoRpo3JJtNpnrxg3JIu7zj+GmsYW/rVqJ4vXlfPBlkre\nXFN20BS5CQKZKUmkpySSkpRASmIC50wezrxTendcpbgj4rUuRLeDQihJfzjg34eqFDiuvTKq2iIi\ne4A8b/mSgHUPGhpQROYCcwGKi+Nzkoy+bHT+APIyU0lOTCA1OYGM5EQyUpPIyUgmNzOFwVlpjMjL\nYMjANEvyETYgNYmzjhnOWce4r11DcyullfVsqahjd00jFbVN7G1opq6plfqmVppa2mhqbbOeU/1Y\nKEk/2Lc0sE2ovTKhrIuq3g/cD655J4SYTAz5xVlHRTsEE6K05EQOHTzAekfFsVDOmpUCRX73C4Ft\n7ZURkSRgEFAR4rrGGGMiJJSkvxQYKyKjRCQFmAMsCCizALjUu30u8Lq6M8QLgDkikioio4CxwHvh\nCd0YY0xXddq847XRzwNexXXZfEhVV4rILUCJqi4AHgQe9U7UVuB+GPDKPYk76dsCXNtRzx1jjDG9\nq/9cnGWMMXEs1C6bdiWMMcbEEUv6xhgTRyzpG2NMHLGkb4wxcSTmTuSKSBmwqZc2nw/s7qVt9wf2\n/nTO3qOO2fvTud56j0aoakFnhWIu6fcmESkJ5ex2vLL3p3P2HnXM3p/ORfs9suYdY4yJI5b0jTEm\njsRb0r8/2gHEOHt/OmfvUcfs/elcVN+juGrTN8aYeBdvNX1jjIlrlvSNMSaOxEXSF5HzRGSliLSJ\nyJSAx34kImtFZLWIxP18iyJys4hsFZHl3t9Xoh1TLBCRmd4+slZEboh2PLFIRDaKyEfefmOjJgIi\n8pCI7BKRj/2W5YrIIhH5zPufE8mY4iLpAx8D5wBv+S/0Jm6fAxwJzAT+6E0EH+9+p6qTvL+F0Q4m\n2rx94h5gFjAeON/bd8zBvuDtN9ZX3/kLLrf4uwF4TVXHAq959yMmLpK+qn6iqquDPLRv4nZV3QD4\nJm43xt80YK2qrlfVJmA+bt8xpkOq+hZujhF/s4FHvNuPAGdFMqa4SPodCDbp+0ETt8eheSKywjs0\njeihZ4yy/SQ0CvxTRJaJyNxoBxPDhqjqdgDv/+BIPnkoE6P3CSLyL2BokId+oqovtLdakGX9vg9r\nR+8VcC/wC9z78AvgN8A3IxddTIrL/aQbTlDVbSIyGFgkIp96NV0TQ/pN0lfVU7uxWlxO3B7qeyUi\nDwAv9XI4fUFc7iddparbvP+7ROQ5XLOYJf2D7RSRQ1R1u4gcAuyK5JPHe/OOTdwewNsJfc7GnQSP\nd0uBsSIySkRScCf/F0Q5ppgiIpkikuW7DZyG7TvtWQBc6t2+FGivJaJX9JuafkdE5GzgLqAA+IeI\nLFfVL9vE7UHdISKTcM0XG4GrohtO9Klqi4jMA14FEoGHVHVllMOKNUOA50QEXF55QlVfiW5I0Sci\nfwNOBvJFpBT4GXA78KSIXAFsBs6LaEw2DIMxxsSPeG/eMcaYuGJJ3xhj4oglfWOMiSOW9I0xJo5Y\n0jfGmDhiSd8YY+KIJct132AAAAALSURBVH1jjIkj/x+HVB5xvwMNagAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "
" ] }, "metadata": {}, @@ -1022,7 +5619,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 30, "metadata": { "ExecuteTime": { "end_time": "2017-09-22T06:29+0000", @@ -1032,9 +5629,9 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEICAYAAACktLTqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3Xl4VdW5+PHvOkPmeYQkkAEyEJIQ\nICCDAooDIs5a9dpWe6vWa1uv7a9Wa3tba69ebb23k9o6tbR1AIuCE9QRUCYhzFOAAEnIROZ5OsP6\n/XFOQoAMB0hykpP38zw8Sc5ee+13J+HNOmuv/W6ltUYIIYRnMbg7ACGEEANPkrsQQnggSe5CCOGB\nJLkLIYQHkuQuhBAeSJK7EEJ4IEnuYkRSSi1QShX3sV0rpSY6P/+zUuq/zvM4jymlXjnfOJ19rFNK\n3XMhfQhxriS5i14ppf5NKZWrlGpSSpUppdYopS4egH4fV0q9NhAxukJrfb/W+lfnue9TWut7AJRS\nCc4/Gqbe2g/1uQnRG0nuokdKqR8CvwOeAqKB8cALwPVDcGyllJLfzXPU1x8dMfrIfyBxFqVUMPAE\n8F2t9Tta62attUVr/b7W+mFnG4NS6lGl1FGlVLVS6i2lVJhzW+cI9y6lVJFSqkop9VPntkXAY8Bt\nzncEu52vr1NKPamU2gi0AElKqW8ppQ4qpRqVUseUUt85z/NZqpT6b+fnC5RSxUqpHyulKpzvSG5Q\nSi1WSh1WStUopR7rtm/3kfgXzo91zthnn3GcHs/NKV4ptdF5Lh8rpSK67TdLKbVJKVWnlNqtlFrQ\nbVuMUuo9Z1z5Sql7z4hthVLqNaVUA3C3iz+XbymlTiilapVS9yulZiil9jiP/9z5fI/FMKS1ln/y\n77R/wCLACpj6aPMQsAWIA7yBF4E3ndsSAA28DPgCU4B2YJJz++PAa2f0tw4oAiYDJsAMXANMABQw\nH0fSn+ZsvwAo7iM+DUx0fr4U+O9u+1mBnzuPcS9QCbwBBDqP3wYknRlrt/Pq6/vS27kdBVKc3491\nwNPObbFANbAYx2DrCufXkc7t63G8Y/IBsp2xLux2LAtwg3NfXxd/Ln929nel81xXAVHOWCqA+e7+\nHZR/F/5PRu6iJ+FAldba2keb7wA/1VoXa63bcSSaW86YGvil1rpVa70b2I0jyfdlqdZ6v9baqh3v\nFD7UWh/VDuuBj4FLzv+0uliAJ7XWFmAZEAH8XmvdqLXeD+wHsgbgON39VWt9WGvdCryFI1EDfB1Y\nrbVerbW2a60/AXKBxUqpccDFwCNa6zat9S7gFeAb3frdrLVe5dy3Fdd+Lr9y9vcx0Iwj+VdorUuA\nL4GpA3zuwg1kjk70pBqIUEqZ+kjw8cBKpZS922s2HPPzncq7fd4CBPRz3BPdv1BKXQ38AseI1wD4\nAXv7D79f1Vprm/PzVufHk922t9J/rOeqt+9FPHCrUurabtvNwFogBqjRWjd221YI5HT7+rTvGa79\nXM4818E+d+EGMnIXPdmM4+36DX20OQFcrbUO6fbPxzn6609vpUi7XldKeQNvA88C0VrrEGA1jika\nd3GlhOq5llk9AfzjjO+jv9b6aaAUCFNKBXZrPx7o/j0+83gX8nMRHkSSuziL1roex5z0886LjX5K\nKbNS6mql1K+dzf4MPKmUigdQSkUqpVxdSXMSSOhnRYwXjjnjSsDqHMVfeV4nNHAqATuQ1EcbV86t\nu9eAa5VSVymljEopH+dF3zit9QlgE/A/ztezgG8Dr/fR34X8XIQHkeQueqS1/j/gh8DPcCS1E8D3\ncFx8A/g98B7wsVKqEcdFvItc7P6fzo/VSqkdvRy/EXgQx/x0LfBvzuO5jda6BXgS2OhcWTKrh2b9\nntsZfZ7Asbz0MU59nx/m1P/NO3BcCC0FVgK/cM7L9+ZCfi7Cgyit5WEdQgjhaWTkLoQQHkiSuxBC\neCBJ7kII4YEkuQshhAdy201MEREROiEhwV2HF0KIEWn79u1VWuvI/tq5LbknJCSQm5vrrsMLIcSI\npJQqdKWdTMsIIYQHkuQuhBAeSJK7EEJ4IKkKKcQIYrFYKC4upq2tzd2hiEHm4+NDXFwcZrP5vPaX\n5C7ECFJcXExgYCAJCQko5c4CmWIwaa2prq6muLiYxMTE8+qj32kZpdRfnI8j29fLdqWU+oPzEWB7\nlFLTzisSIUS/2traCA8Pl8Tu4ZRShIeHX9A7NFfm3JfieOxab64Gkp3/7gP+dN7RCCH6JYl9dLjQ\nn3O/0zJa6y+UUgl9NLke+Lt2lJfcopQKUUqN1VqXXVBkQgyAj/aXs7+kftCPMzU+lEtTowb9OEK4\naiDm3GM5/VFfxc7XzkruSqn7cIzuGT9+/AAcWoi+/XTlPqqa2jmXQZDCzrk8XlhrSIzwHzXJPSAg\ngKampj7b3HPPPfzwhz8kPT2dp556iscee6xr25w5c9i0adMFH+Pxxx8nICCAH/3oR/z85z9n3rx5\nXH755T22XbVqFSkpKaSnp/e4/c9//jN+fn5885vfZMGCBTz77LPk5OT02PZMdXV1vPHGGzzwwAMA\nlJaW8uCDD7JixQqX9h8sA5Hce/pv02OReK31S8BLADk5OVJIXgw6u9Z8Y1Y8v7ohw7Ud9r0Nb98L\ndyyDFNce/PSD5bvYXlh7AVF6nldeeaXr8zOTe3+J/Xw88cQTfW5ftWoVS5Ys6TG5W61W7r///vM+\ndl1dHS+88EJXco+JiXF7YoeBWedeDIzr9nUcjqfGCDHyHFsH2gYFX7o7kmFv3bp1LFiwgFtuuYW0\ntDTuvPNOOh/+s2DBAnJzc3n00UdpbW0lOzubO++8E3CMygGamppYuHAh06ZNIzMzk3fffbffYz75\n5JOkpqZy+eWXc+jQoa7X77777q6E+uijj5Kenk5WVhY/+tGP2LRpE++99x4PP/ww2dnZHD16lAUL\nFvDYY48xf/58fv/73/P444/z7LPPdvX32muvMWfOHDIyMti6dSvAWW0yMjIoKCjg0Ucf5ejRo2Rn\nZ/Pwww9TUFBARoZjMNHW1sa3vvUtMjMzmTp1KmvXrgVg6dKl3HTTTSxatIjk5GR+/OMfn/fPoTcD\nMXJ/D/ieUmoZjsd51ct8uxixqvIdHysP9d1uGPjl+/s5UNowoH2mxwTxi2snu9x+586d7N+/n5iY\nGObOncvGjRu5+OKLu7Y//fTTPPfcc+zateusfX18fFi5ciVBQUFUVVUxa9Ysrrvuul4vJG7fvp1l\ny5axc+dOrFYr06ZNY/r06ae1qampYeXKleTl5aGUoq6ujpCQEK677jqWLFnCLbfc0tW2rq6O9evX\nA47E3V1zczObNm3iiy++4N///d/Zt6/HxYJd57hv376ucywoKOja9vzzzwOwd+9e8vLyuPLKKzl8\n+DAAu3btYufOnXh7e5Oamsr3v/99xo0bd1b/58uVpZBvApuBVKVUsVLq20qp+5VSne9jVgPHgHzg\nZeCBAYtOiAt0zo+RrCs6/aOrx+l5JtLjzZw5k7i4OAwGA9nZ2acltv5orXnsscfIysri8ssvp6Sk\nhJMnT/ba/ssvv+TGG2/Ez8+PoKAgrrvuurPaBAUF4ePjwz333MM777yDn59fr/3ddtttvW674447\nAJg3bx4NDQ3U1dW5fF7dbdiwgW984xsApKWlER8f35XcFy5cSHBwMD4+PqSnp1NY6FI9MJe5slrm\njn62a+C7AxaREO5is0Kj801nQ4l7Y3HBuYywB4u3t3fX50ajEavV6vK+r7/+OpWVlWzfvh2z2UxC\nQkK/67r7Wx5oMpnYunUrn332GcuWLeO5557j888/77Gtv7+/y8dRSmEymbDb7V2vubIGva/BxYV8\n71whtWWEx3N5pUxTuWO+PSwJ2hugzbUllLLqvG9msxmLxXLW6/X19URFRWE2m1m7dm2/I9d58+ax\ncuVKWltbaWxs5P333z+rTVNTE/X19SxevJjf/e53XVMlgYGBNDY2uhzz8uXLAcfIOzg4mODgYBIS\nEtixYwcAO3bs4Pjx4/32PW/ePF5//XUADh8+TFFREampqS7HcSEkuQvRqd45Wh930elfiwty3333\nkZWV1XVBtdOdd95Jbm4uOTk5vP7666SlpfXZz7Rp07jtttvIzs7m5ptv5pJLLjmrTWNjI0uWLCEr\nK4v58+fz29/+FoDbb7+d3/zmN0ydOpWjR4/2G3NoaChz5szh/vvv59VXXwXg5ptvpqamhuzsbP70\npz+RkpICQHh4OHPnziUjI4OHH374tH4eeOABbDYbmZmZ3HbbbSxduvS0EftgUuc8JzlAcnJytDys\nQwy2qU98zLVTYnjieheWQu57G1b8Oyz5LXzwA7hzBSRf0e9uP1y+i22FNXz548sGIOK+HTx4kEmT\nJg36ccTw0NPPWym1XWvd7yJ8GbkLj3ZOQ5c6571442Y5v3b9oqqbxkhC9EqSu/B4Ls+JVx2GgGiI\nTAOzv+PrAT2AEENHkrsQnSrzHIndYIDIVKg46O6IhDhvktyF6FR3AkLjHZ+HxkP9ib7bCzGMSXIX\nHs3luXBrOzRXQLDzDsHgOGgodbkDmXMXw40kdyHg1E1LQbHOj3FgbYOWavfFJMQFkOQuPJ5LDz3o\nXNMeHHv6x/ri/vsfZVdUy8vLuf3225kwYQLp6eksXry465b6wZaQkEBVVVWfbZYuXUpp6anahffc\ncw8HDhy44GPn5eUxe/ZsvL29TysgNlzJM1SFgG4j9zjnx27JPSbbPTENQ1prbrzxRu666y6WLVsG\nOApgnTx5suumHndbunQpGRkZxMTEAKeXH74QYWFh/OEPf2DVqlUD0t9gk5G7EHBqjXuQIyF0zb3L\nRdXTrF27FrPZfFr98+zsbC655BK01jz88MNkZGSQmZnZdQt/b6WB16xZw9e+9rWuftatW8e1114L\nwJtvvklmZiYZGRk88sgjZ8XRvawuwLPPPsvjjz/OihUryM3N5c477yQ7O5vW1tau8sN99RsQEMBP\nf/pTpkyZwqxZs3osYBYVFcWMGTMwm80X+F0cGjJyFx7N5TuwK/MgZDx4OasI+keAb+jwLv275lEo\n3zuwfY7JhKuf7nXzvn37ziqz2+mdd95h165d7N69m6qqKmbMmMG8efOAnksDX3HFFXznO9+hubkZ\nf39/li9fzm233UZpaSmPPPII27dvJzQ0lCuvvJJVq1Zxww039Bv+LbfcwnPPPdfjk5T66re5uZlZ\ns2bx5JNP8uMf/5iXX36Zn/3sZ+fwjRt+ZOQuBDiSeGS32iZKQeQkR9Lvhzyv2mHDhg3ccccdGI1G\noqOjmT9/Ptu2bQN6Lg1sMplYtGgR77//PlarlQ8//JDrr7+ebdu2sWDBAiIjIzGZTNx555188cUX\nFxxfX/16eXmxZMkSAKZPn35OpYuHKxm5CwFQXwTjZ53+Wsh4KNzonnhc0ccIe7BMnjy510fInU95\n29tuu43nn3+esLAwZsyYQWBgoEvvtga6/K7ZbO668D4Y5XfdQUbuQrQ3Osr7dq6Q6dS51t1uc09c\nw9Bll11Ge3s7L7/8ctdr27ZtY/369cybN4/ly5djs9morKzkiy++YObMmX32t2DBAnbs2MHLL7/c\n9fCMiy66iPXr11NVVYXNZuPNN99k/vz5p+0XHR1NRUUF1dXVtLe388EHH3Rt660Eryv9ehIZuQtR\nf8ZKmU7BsY767o3lZyf+M7iruupQU0qxcuVKHnroIZ5++ml8fHxISEjgd7/7HfPmzWPz5s1MmTIF\npRS//vWvGTNmDHl5vU9tGY1GlixZwtKlS/nb3/4GwNixY/mf//kfLr30UrTWLF68mOuvv/60/cxm\nMz//+c+56KKLSExMPK1c8N13383999+Pr68vmzdv7nrdlX77Ul5eTk5ODg0NDRgMBn73u99x4MAB\ngoKCXO5jKEnJX+HRMh//iJunxfH4dX08tSj/U3jtZvjWGoifc+r1wx/DG7fCtz+Bcb2PQH/0z91s\nyq9i008WDmDkPZOSv6OLlPwVog/9XvDsuoGph5E79Hsjk1xPFcORJHch6opAGSBw7Omvdyb7uoF9\ncLEQQ0GSuxCVeRA2AYxn3JziE+xI+MN5rbsQvZDkLjybK5eUKg856rf3JDLNpeQ+Oi6nipFEkrvw\neH0W9tLaMacemtDz9pBx/c+5y6S7GIYkuYvRrbUWrK2nCoWdKSjOUefd2j60cQlxgSS5i9GtszBY\nb+vYOy+qdlaNFKO25O/rr79OVlYWWVlZzJkzh927d19wn4NJbmISo1tvNzB16loOWQJhSb12M0ru\nYRrVJX8TExNZv349oaGhrFmzhvvuu4+vvvpqQPoeDDJyFx6t35zb0Msa906dSd+Fh3aMBqO55O+c\nOXMIDQ0FYNasWRQXD+/fCRm5C4/X5wXPukIweoN/ZM/bO0fufax1d9eTmJ7Z+gx5Nf1XrTwXaWFp\nPDLz7GTaSUr+Orz66qtcffXV/cbjTjJyF6NbRR5EpoChl/8KZl/HShoXSv+OdqOl5O/atWt59dVX\neeaZZy44psEkI3cxulUdgri+KxcSmQZVR4YmnnPQ1wh7sIz2kr979uzhnnvuYc2aNYSHh/d7THeS\nkbvwaH0mCrvNUdI3ZHzfnQSP6/dxe3qU3MY0mkv+FhUVcdNNN/GPf/xj2Fw87otLyV0ptUgpdUgp\nla+UerSH7eOVUmuVUjuVUnuUUosHPlQhzk+vM+JNFWC39lvOl+BYR7339qae+x9FNzF1lvz95JNP\nmDBhApMnT+bxxx8nJiaGG2+8kaysLKZMmcJll13WVfK3L50lf9esWdM1LdK9NO+UKVOYNm1anyV/\nlyxZ0mPJ384Lqp1c6bcvTzzxBNXV1TzwwANkZ2efNac/7Git+/wHGIGjQBLgBewG0s9o8xLwH87P\n04GC/vqdPn26FmKwpf/XGv2r9/f3vPHENq1/EaR13pq+O9n9lqNdRV6Pmx9ZsVvPfPKTC4zUNQcO\nHBiS44jhoaefN5Cr+8mvWmuXRu4zgXyt9TGtdQewDDjzz50GOivWBwOlCDHcdS5v7G0ZZKdgWQ4p\nRh5Xknss0H3Csdj5WnePA19XShUDq4Hv99SRUuo+pVSuUiq3srLyPMIVYgB1JXcXpmW6t+/BaLmJ\nSYwcriT3nmYUz/xVvgNYqrWOAxYD/1BKndW31volrXWO1jonMrKXdcVCDKA+c25dIXgFgk9I350E\njgWDSeq6ixHFleReDIzr9nUcZ0+7fBt4C0BrvRnwASIGIkAhLlSvFzwrDkJUWv9XRI1mCJ/oWBN/\nLv0L4UauJPdtQLJSKlEp5QXcDrx3RpsiYCGAUmoSjuQu8y5ieKs6AhG91HE/U0SKY028ECNEv8ld\na20Fvgd8BBwE3tJa71dKPaGUus7Z7P8B9yqldgNvAnc7r+oKMTxZO6DppKNeuytCxjuKh/Xyay2/\n7GK4cWmdu9Z6tdY6RWs9QWv9pPO1n2ut33N+fkBrPVdrPUVrna21/ngwgxbigjWWArr3Ou5nCop1\n1H1vrR3UsEaC0Vry99133yUrK6trjfuGDRsuuM/BJOUHhEfTmq7byk/TWeq3v5UynbqvmPELO2Pj\n6Jl016O45O/ChQu57rrrUEqxZ88evva1r5GXN3xrDkn5ATE6dS5r7K2O+5mk9C8wukv+BgQEdA0U\nmpubex40DCMychejU8PZa9y11qw7sY791fvJjspmbszcU/+BO9sNoycylT/1FO0HB3bk6D0pjTGP\nPdbr9tFe8nflypX85Cc/oaKigg8//LDfeNxJRu5idKotAL9w8PIHHIn9F5t+wYNrH+TFPS/yH5/+\nB09seeJU4TH/KDD5OPbrgSwfGB0lf2+88Uby8vJYtWoV//Vf/3XBMQ0mGbkLj9ZrtcaKPIic1PXl\nq/teZWX+Su7NvJfvTPkOz+98nr/u/yvp4encmnKro957RIpjbfww0dcIe7CM9pK/nebNm8fRo0ep\nqqoiImJ43tIjI3fh8XqcGa3Oh4hkAMqayvjz7j9zRfwVfH/q9/E2evPQ9IeYPXY2v9n2G6panasz\nIlN7rOs+zKdeB9RoLvmbn5/f9Qdix44ddHR0DOua7pLcxejT0QKtNV1r3F/Y/QIAD+c83DV6MygD\nP531U9pt7fxt/98c+wXHOZZQ2m1uCXs4GM0lf99++20yMjLIzs7mu9/9LsuXLx/eF1VdKR05GP+k\n5K8YCqk/W62f+vCMsqmVhx0lfHct09Wt1Xra36fpX23+VY/7P/LFI3rGazN0fXu91l+95NivvvS0\nNj95Z4+e/quPB+sUTiMlf0eXwS75K4Rn6VYN8p0j79Bh7+COtDt6bPr1SV+n1drKRwUfnSr9O4xW\nzAjRG0nuwqNpzdmT7t3quH947EOmRU1jQsiEHvefHD6ZiSETeTf/3V7rug/jN+ZiFJPkLkafhhJA\ncdTeRn5dPlclXNVrU6UU1024jt2Vuyk2GrrtL8TwJsldjD41xyFwLB+d+ByF4sqEK/tsfvn4ywFY\nX7kTvIOg5thQRCnEBZHkLkafigMQNYkvir9gSuQUInz7Xqc8LmgcE4InsLZ4HUSm9VjXXW5iEsON\nJHfh0c7KuVpD9VFqwuI5UH2Ai2MvdqmfBeMWsL18O43hSY418kIMc5LchcdT3S95ttWBpZnNRjsa\nzdzYuS71MTd2LlZtZbuXyVEH3tpxqv9RdkV1tJb87bRt2zaMRmOvd+oOF5LcxejiLPW72VpLiHcI\nk8Im9bODQ1ZkFl4GL7bqZkBDY9kgBjl8aWfJ3wULFnD06FEOHDjAU0891WMVRXc5M7m/8sorpKen\nD0jfNpuNRx55hKuu6v0i/HAhyV2MLs5ljDtbSpgWNQ2jwejSbt5Gb6ZGTWVrW/lp/XQaLVPuo7nk\nL8Af//hHbr75ZqKioi7guzg0pHCYGF0aiqk2GChqreCWqOxz2nXGmBk8V/4VdQYDIcNgOeSXbx2m\n6kTTgPYZMS6AS77W+0M3RnPJ35KSElauXMnnn3/eVe1yOJORu/Bs+ow58foSdvn6ATA1aupZzS3l\n5TStX4+18uznu3e23+ftddrIXcltTIDnl/x96KGHeOaZZzAaXXu3524ychejS80xdgWFYTaYmRR+\n+nx79V/+SsX//i/YbGA2M+axnxB6x6myBJMjJqNQ7A0I5eKao0Md+Vn6GmEPltFc8jc3N5fbb78d\ngKqqKlavXo3JZHLpHYU7yMhdjC4VB9nl68fk8Ml4G08lnLq336bi178m8LLLGL90Kf5zZlP+yydo\nWLOmq42/2Z8JIRPY6x/U41r30WA0l/w9fvw4BQUFFBQUcMstt/DCCy8M28QOktzFaGK30157nP26\njexu8+2W0lLKn3wKv9mziP3t/+E/6yLi/vhHfKdMoezxX2LttvQuMyKTvQYr+oyRuyujTU8wmkv+\njjiulI4cjH9S8lcMhYmPfaifXnPQ8UVDud79VITOWJqhPyn4pKtN6c9+pg9mZumO4uLT9m07elQf\nSJ+sy//n6a7Xluct1xlLM3TRr8K0bm/WWmv9s5V7dfYvPxr8k9FS8ne0kZK/QvSh63JnQzF5Xl4A\nXfPtlpIS6la9S8gtt2COjT1tP++kJIKXXEPt8uVYq6sBx3p3gL3eXl0FxEbbTUxiZJDkLkaP+hIO\neZkJNPkR4x8DOC6iAoTfe0+Pu4R/5zvotjZq/vZ3ACaGTMTHYHYk9/oTQxO3EOdBkrsYPRpKyPPy\nIjUkGaUU9rY26t97j6BFizCPHdvjLt5JSQRceil177yDtloxGUykBCdxyMur625XGD03MYmRQ5K7\nGDVsdSc44uVFWmQmAI2ffoa9sZGQm2/qc7+Qm27EVlVF04YNACSHp3PYy4yuk5G7GL4kuQuPprvd\nxFRUk0erQZEW5lhZUb9yJaaYsfj1s1wvYP58jGFh1K9cBUBKWBr1RiOV1YcAeRKTGJ4kuYtRI6/O\nUao3LSwNa2UlzZs2EXz99ShD3/8NlNlM8LVLaPr8c2yNjSSHJgNwuGZ0rnUXI4MkdzE62KzkWesx\nYSApOInGtWtBa4IWLXJp98CrrkJbLDR/+SUpoY47Q4+0V43Kp3SM1pK/69atIzg4mOzsbLKzs3ni\niScuuM/B5FL5AaXUIuD3gBF4RWv9dA9tvgY8juPa0m6t9b8NYJxCXJjGMg6bzUzwCcdsNNP42WeY\n4+LwTnHtFn7fKVMwhoXR+OlnxC5eTJTJn8PGZmirB0ZPjtfOkr933XUXy5YtA2DXrl2cPHmSFBe/\nl4Nt6dKlZGRkEBPjWBH1yiuvDFjfl1xyyWl3ww5n/Y7clVJG4HngaiAduEMplX5Gm2TgJ8BcrfVk\n4KFBiFWI81dfzDGzmaSAcdiammnZtJnAhQu76ol0snbYaKhqxWaxn/a6MhoJuOxSmr74At3RQYpf\nDEfM5rNK/3q60V7ydyRxZeQ+E8jXWh8DUEotA64Hur/PuRd4XmtdC6C1rhjoQIU4HxpH1caW2uOU\nmk3cGJpM84YNaIuFwMsXdrWzWmxsff84e9eXYG23YfYxMmXhOHIWJ2A0OsZAgQsXUr/ibZq3biM5\nZCJb6g9jqStCqXi3nNvapS9RUTiwD+uOik/i0rvv63X7aC75C7B582amTJlCTEwMzz77LJMnT+43\nJndxZc49Fui+5qvY+Vp3KUCKUmqjUmqLcxrnLEqp+5RSuUqp3MoeSqoKMVgKqh1jkaSoTJo3bsAQ\nGIjvVEcJX2uHjQ+f38POj4tIyo7g0q+nMT49nNwPC/jXi/uw2RyjeP/Zs1FeXjRv2EByZCZWpSis\n3Oe2cxpuPL3k77Rp0ygsLGT37t18//vfH9ZFw8C1kXtPK73OnGE0AcnAAiAO+FIplaG1rjttJ61f\nAl4CyMnJGSWzlGI4OFZ/HIDEsHSaNv4e/1kXoUyOX/8vlh2mOK+WhXdNIm2242am9Itj2LuumC+W\nHWbTinwuuS0Fg48PvtOn0bxxI0nf/m8ACp0rcLQbJt37GmEPltFc8jcoKKjr88WLF/PAAw9QVVVF\nREREv8d2B1dG7sXAuG5fxwGlPbR5V2tt0VofBw7hSPZCDAvHGk9g1BBTC9bSMvznzHG8vquSg5vK\nyFmc0JXYO2UuiCPrsjj2rC1RddKOAAAgAElEQVTmRF4NAP5z5tB+5AhxHY7/6McbCob0PNxtNJf8\nLS8v7/oDsXXrVux2O+Hh4S7vP9RcSe7bgGSlVKJSygu4HXjvjDargEsBlFIROKZpBnYyUIjzoLVG\nKTjeXs04ow/tW7YC4D93LtYOG18uP0x4rD851yT0uP/sGyYQFOnLF28exmazEzB3rmND7m4iMVHQ\nMvIvvJ2L0Vzyd8WKFWRkZDBlyhQefPBBli1bdtYF+eFEufIWSCm1GPgdjqWQf9FaP6mUegJH6cn3\nlOMM/xdYBNiAJ7XWy/rqMycnR3dewRZisCT95EP+c14cnxffRnxwEg+vT6L90CEmfvoJuz4tYuOK\nfG74wVRiU0N77eP47kpW/2kvC+5MJX3uWI5cfAkBl1zMz7K30tFYSnL0Ct7eWcqex68a9PM5ePAg\nkyZN6r+h8Ag9/byVUtu11jm97NLFpZuYtNartdYpWusJWusnna/9XGv9nvNzrbX+odY6XWud2V9i\nF2Io+baXUWQ2keQfS0tuLn4XzcRmtbPz4yLGTQrtM7EDJGRFEJ0YxI6PCtEo/GbMoHnbNhL8xlBg\nMuJvrR2iMxHCdXKHqvB41vZDWJUirTUSe309ftNzyN9eQUtDB9lXjO93f6UU2ZePp6GqjcK9VfhN\nn461tIwUayT1RiPm9uNSFVIMO5Lchcdr63CslIktdfy6++VMZ8/aYkKi/RiXFuZSH0nZEQSEerNn\nbTF+OY513olljhUgFsuRQYi6d+5YmSOG3oX+nCW5C4+mgSaLo+56wNFaTJGR1FiDqChoIOvSOJTh\n1AWxqhOFfPnm31j93P+y8a3XqCk9Va/dYDSQMT+W4rxamoPiMAQEEFbkWH7XYi0asvPx8fGhurpa\nEryH01pTXV2Nj4/PeffhUm0ZIUayens1/tix7j6Ab850Dm4sw+xtJHWWYyWHttvZ+NbrbF31T5RB\nERgeQd6G9WxdtYI5t/4bM2+4FaUU6RfHsPX94xzcfJLxU6di2X8cc7qmwT50K2bi4uIoLi5GbgL0\nfD4+PsTFxZ33/pLchcer0XVkNJqxlpfjPTWHozsrScqOxMvHhNaaT155nr2ffcTk+Zcz7+vfwi8o\nmOa6WtYufYkNy/5Oa2MDC755D74BXsRnhJOfe5KUadNp/vJL0lrM1JprhuxRTGazmcTExKE5mBjR\nZFpGeLwK1ca0Msfb25rwdNpbrCTPjAZg+wcr2fvZR8y84Vau+o//xC8oGAD/kFCu+c8fk33VErZ/\nuIo9n/4LgOQZ0TTXd9AYOwWA6WU+VKsWN5yVEH2T5C48WoBuotRkYEKpGUNgIMdLTPgEmIlLC6Wi\n4Bhfvvk3kmfO4eLbv3nWDSlKKS69+17is6aydulL1JaVkJAVgdnbSGFtIMpsJqXMTJkRDJx9u7oQ\n7iTJXXi0SHMhVqWIOtGOeWoOhXurmTg9CqU0H7/4B3wCArnivu/1eqehwWBk0X88hNHLzMcv/RGT\n2UBidgTHdldjzspm7AkbLQYDEYYzK3II4V6S3IVHC/Euxrdd413eSF3CLKwWO8k5URz8ch0nj+U7\n5tIDg/rsIyAsnEvuuJviA/vI37qZ5OnRtLdYaZo4B7+SRow2TbC5YGhOSAgXSXIXHs3Hq5ykMo3S\ncNI4Hm9/E5Hj/di4/DXGTEwhba5rhaMyL7uS8LjxfPnm34hJCcJkNlDpNwFltZNwEnxNMnIXw4sk\nd+HRDOYaUks1dmWg9KQiPiOcw1s20FhdyZxb73S58JPBaGT2LXdQW1ZC4Z5c4iaFUVLjjQYmlmqM\nZlmaKIYXSe7Co1nMjWSUaFpSZtPWYiMhM5xt771NxPgEEqZMO6e+kmfOITh6DNvefZuErHCa6q20\nxk0mo8SOzVzXfwdCDCFJ7sKjtZibSSiDmvhZGIwKu6WA6uIiZlx38zmXazUYjeRccyNl+Yfw9nE8\nSbIueT4TyqDN1DQY4Qtx3iS5C4+l7XZsrXYCmqHCOI6Y5BB2fbSKwPBIUmdfcl59Tl6wEN/AIPZ+\n9h5RCUFU+E4gohbabR0DHL0QF0aSu/BY9bXHiDmpaPMOoaHVTERsB8UH95F91TUYTed3c7bZ24cp\nVy7m2M5cxiQoalp8sJh8CT2p6GirH+AzEOL8SXIXHqvo5C6SSzXVYY6n9DRW7UIZDEyev/CC+s1Y\ncDloTWvjXgBqQ1KYUAalJ3dfcMxCDBRJ7sJjnajJY2KppjJmCj4BBo7v/JKkaTPxD+n74Rz9CY4a\nw7jJWRTt2YDRy8DJsVkkl2qKK/cPUORCXDhJ7sJjFdceJ+Ek1AckExxeQUt9nWPUPQAyLr2C+opy\nwqLqqAtJI6lcU1w7tHXdheiLJHfhsepOFGE3jcWmfGlr3ItfcAiJU/t99KRLkmfOxsvXD0vbXizG\nEHysoVSWFgxI30IMBEnuwmPpohpqQ1PR9jYqC/Yw6ZJLz/tC6pnM3j6kzrmEqsJdaG2hJjQVy7Gy\nAelbiIEgyV14LP/SNqrD0rAZjmG32UibM29A+0+bMw9rRzs2XUBtaBpexY0D2r8QF0KSu/BIbe1N\nRJ1U1IUkY7PlExQZTXTSxAE9RtykDPyCQ7DqfKrDUgk9aZPH34lhQ5K78EjFJ3cR2RyPTWl04zFS\nZ198znek9sdgNJI8cza6KR+LyZfo+hiq6o4N6DGEOF+S3IVHKj2wiTb/FGwdR0HbSZl18aAcJ2XW\nJSi7BbvlOHbvVIoOfjkoxxHiXElyFx6pft9u6oInYrEcgMCwAZ+S6RSXPhntE4C14wB1wROo3rV1\nUI4jxLmS5C48kjW/hPrAGLCWYkicMuBTMp0MBiP28RnYLUXUBiXQdih/UI4jxLmS5C48kjoZgEWf\nRGFHxU8e1GPZxk9GYaXdUAcl8l9KDA/ymyg8jtYaY9t47JYCOpQXKjphcI83ZgJWZcZuOYZqjhvU\nYwnhKknuwuO0l5fR4peE3XKMQt84DAbjoB5PGc0U+8Vh78inzXsClurqQT2eEK6Q5C48Tvm2L6gJ\nDEPrFgr9xg/JMQsDEtC6mZqgMGrkoqoYBiS5C49Tum0XHTielFTkOzTJ/YR/AgBtqpoTmyW5C/dz\nKbkrpRYppQ4ppfKVUo/20e4WpZRWSg1MdSYhzkNNoRWbpYDAiDCaTf5DcswWox9BkWHYLMeozJdH\n7gn36ze5K6WMwPPA1UA6cIdSKr2HdoHAg8BXAx2kEOeiqS0UbS0hOXvKkB43bWom2lZOfcvQ/EER\noi+ujNxnAvla62Na6w5gGXB9D+1+BfwaaBvA+IQ4J9bqamq9vABN0gxHobBBWuJ+irP/1DmXAVBn\nMmKrqxvkgwrRN1eSeyxwotvXxc7XuiilpgLjtNYf9NWRUuo+pVSuUiq3srLynIMVoj/VuQdoV9Vo\npYieNLQj98jUqWijkVZDFbU7DgzpsYU4kyvJvadxT1fpO6WUAfgt8P/660hr/ZLWOkdrnRMZGel6\nlEK4qHhHITZLASpED1jtdlcpgwEdYsNuKaRwmxQQE+7lSnIvBsZ1+zoOKO32dSCQAaxTShUAs4D3\n5KKqcIdjx8pANxESP7TH7RztBCRaACtH8wuHNgAhzuBKct8GJCulEpVSXsDtwHudG7XW9VrrCK11\ngtY6AdgCXKe1zh2UiIXoQ1VLPQAT05K6XhusujJd/Xd7c5s0IQ4wUNlSM6jHFKI//SZ3rbUV+B7w\nEXAQeEtrvV8p9YRS6rrBDlAIV7WUVdOqK9FGb1LHZeGO52YkRKWgTb602ytoraof+gCEcHJpnbvW\nerXWOkVrPUFr/aTztZ9rrd/roe0CGbULdzi6dhfaVkZDQAdREWluiSE+PIOawFa0vZZDaza7JQYh\nQO5QFR7kSO5uwE5VTCmGkKG5M7WL812CT1gCJeNLADi8fcfQxiBEN5Lchcc4WXUChQm/8DoIHOue\nIIJi8Q2px4AfldUn+m8vxCCR5C48gqXdSktHGUblR4LJG4zmITv2addrfYJJ1AqT8qWto5y2Frmn\nT7iHJHfhEfK+2Am6iVbvNhK8QgHQuOGKqlIkmgJp8WkCLOz7VObdhXtIchceIW/degCORReTEDzB\nrbEkBI7naHQRYOTIhg1ujUWMXpLchUc4WXwYIyEcjG8hITpryI/f/V1CYlQmh2NbMasIKksPD3ks\nQoAkd+EBWhsbaW8rx9/ui8nHTkB48mnbB7tw2JndR4Sl0B5gJ8Dqg8VSS93Jk4MbgBA9kOQuRrx9\n678C7HgZ2oi3WCDIvc8xVcFxJFiteBuaAdi/bpNb4xGjkyR3MeId2bIF8KIioIBEiwWCHcndHXeo\nAhA8jsQOK1X+BWAI4uj2bW4KRIxmktzFiKa1prJgH2bDGA6MqWGi1Q7+Q19x9LQ/JEExJFos7I+u\nxEuNpfpEHjarZchjEqObJHcxolUWHsdqaSKo3cSxMYoJ5mAwuPnX2suPBOXNsWhFcJsBu72D4oP7\n3RuTGHUkuYsR7cCXWwCIbG2hJhAm+see1Ub1+EiCgdPTBdskv2gqQiGyuQEwcmiTPH1SDC1J7mJE\nO7YjF2WMxBhUS5DWhEdMcndIAIwPS8MIeAXWYjDFcnzXdneHJEYZSe5ixGpvaaG2LB+zGktxeDUT\nOzpQUe5J7mdeuzVHp5NgsXAyogazIYammlIaquTRkmLoSHIXI1bh3p2g7YS0we6wRiZ0WGCoq0H2\nJng8yR0W9oc3E9LiSP0FMnoXQ0iSuxixDm/5CvAiuraSfVHtTLBYILiHOfdBv4mphwMExzGxw8L2\nsEYi6svAEMiRbVsHNxAhupHkLkYkrTWFe3ZgMMcTbC2lKgjHyD3o7OTuFsGxTLBYKA2DkNYTGE2J\nnNi/W5ZEiiEjyV2MSFVFBbQ11WE2xaLHalCKidoEvqFdbdx2ExNA4FiSO6xog8IUZcFkHofN0k5J\n3kE3BiVGE0nuYkTqXH0S1myjLNaHIIyEB4wd/DmYXugz/5IYzcT6RuCDgYo4P0JbbKAMHN8lT6AU\nQ0OSuxiR8nO3oYyRhNcWcTDSwkS7Qg2Xi6lOxuBxJGkTR6JshNYew2CM5dgOSe5iaEhyFyNOe0sL\n5fl5GMwJhNTnsyW4ggktjRDZ8zLIwR7L9/pmITKViW0tbA+uJaQ+H4M5kZqSIlkSKYaEJHcx4hTu\n2YG22/AyjyeAOo77NZPW1gqRKae1c8uTmLqLTGNiayN7AmoIai3BaI4HoGC3LIkUg0+Suxhxju3Y\nhjL4EGa1Y5nomGdP7eiA4HFui6nHPyPO5ZA2o4KksYRqO0ZzEMd3SnIXg0+SuxhR7HYbR3dsQ5kS\nCCnbQ3lCIApI7rC4Nbn3KHicIy6gJjGMkJN7wRBP4d5dsiRSDDpJ7mJEKc8/QltjA0ZzEqHVBzkY\nbSPeHISf1j3ewARD/ySmLsGxRNtshBp9yI9RhFbuw2BKxNLWSukhWRIpBpckdzGiHNuxDZQBH+9x\nBDYVsym0ilTlCz4h4OXv7vBO5x+FMphJMwWxNayOoIbjmL3HoZRRComJQSfJXYwox3ZsxewdS4Rq\nwBQzhjzKSLXau56+1J1bb2ICR135oLGk2Y18ZSrEHOhPhKkZs984qTMjBp0kdzFiNFRVUFl4HK0S\nCSnbTXuqY117anOD2wuG9fqHJCSeSa0tWLUN+6QkQqoPYrePo7KogMaaqiGNUYwuktzFiNF5A5DB\nnERQwVeUxwcBkFZdCJFp7gytd5FppFWfAKAqMZSg/E0YzAkAFOza4cbAhKeT5C5GjGM7tuLlG46/\nfyh+rRXkjbUR6hVEpKUDIlN73W+wn8TU5xXbyFTiW+rwNfpweKwisKEQb58IzD7BUopADCqXkrtS\napFS6pBSKl8p9WgP23+olDqglNqjlPpMKRU/8KGK0czS1kbRvt1gTCDKqxZlNPJVYCWpfmMdqbuH\nZZDunnIHIHgcBiA1II5toTUoNFH+zRi9Eincswub1eruCIWH6je5K6WMwPPA1UA6cIdSKv2MZjuB\nHK11FrAC+PVABypGt4K9O7FZLGgSCK06iHdqCgebj5JmckzN9LYM0u2ccaV5hbOz4yjm8eMJq8/H\nZhtHR2sLJXny4GwxOFwZuc8E8rXWx7TWHcAy4PruDbTWa7XWLc4vtwBnL10Q4gLkf7UJk5cfBlMc\n/vs+oy09kQ57B5n4AAoCY9wdYs+c9eUnGXxosbZgz0wl8OA6DOYEDCYzR7ZucnOAwlO5ktxjgRPd\nvi52vtabbwNretqglLpPKZWrlMqtrJTiScI1NquFo9u34hOUSnikF94NJylMcqxpz+jogIAoMHn1\nur/bbmICR315sx9pFjsAJ5PD8C4/QlCIL34hKRzZuhlttw9ugGJUciW59/S72+N0plLq60AO8Jue\ntmutX9Ja52itcyIjI12PUoxqRfv20N7STEd7PGPM1QDkRjcT5hPG2IbKHte4DxtKQXAcyc31eBu9\n2RNrQQFjAxqxdMTTXFtD6ZFD7o5SeCBXknsx0P1qVRxQemYjpdTlwE+B67TW7QMTnhBwZOsmjGZv\nlHE8oWU78YqPJ9eST2ZEJqqusNeaMmc9QMNdQsZjrisiPTydzYYCjBERhNfsB0MiymCUqRkxKFxJ\n7tuAZKVUolLKC7gdeK97A6XUVOBFHIm9YuDDFKOV3W4jf9sWAiPS8PH3wXvnZ5inTeF4/XEyQlOh\ntgCieq7jPtR6/WMSmQZVh8mKyORgTR4+06bit+dTzF6+BEWmcOSrTcPnD5HwGP0md621Ffge8BFw\nEHhLa71fKfWEUuo6Z7PfAAHAP5VSu5RS7/XSnRDnpPjAflob6rFYEogdZ4b6WqpSotBoMr3CAA0R\nye4Os2+RqWBtI9NvLB32DhonxaFLThCT4IudJBoqT1Jx/Ki7oxQexuRKI631amD1Ga/9vNvnlw9w\nXEIAkLdpPSYvb6zW8USrcgAOOCcGM5Svo1Gwe0sP9HvB1rliZooxGIBD441MAqK9aihsG4/BaOTg\nxvVEJ00c3EDFqCJ3qIphy2qxcGTLRsLislAGMyFF2zBFRbHdeILxgeMJbqlxNByua9w7Oa8JRLe3\nEOUbxbaACgwBAYSV70IZfAmLm8yhjeux221uDlR4EknuYtgq2L2DtuYmNClExwdi3folfjNnsKd6\nLxkRGVBfAgYTBET3uP9Qz2L3Om3u/OOjGkrIisxid/Ve/GbMgK1rCR3jh9ErjabaGkoOyg1NYuBI\nchfDVt6GdfgEBNFQE0FcDNiqqrBMT6eipYKsyCxoKHHcvGQwujvUvnn5O+rNO5P7icYTqIumYjlx\ngvEJXjRUj8Hk7cPBjevdHanwIJLcxbDU0drC0e1biRifjVJGohscTy46kOS4WWl69HTHyN2FKRk1\nyHcxuVSYLDgO6ovJjMgEoCAtBIDo1ny0NhGVmM2RLRuxWuTxe2JgSHIXw9LhrzZh7WjHrpMJi/HH\nuPMLvCZOYJv9KAHmAJJDkqH2uNvruLssJB5qjjM5YjImg4lt5mLM48fjvXstAWHeGEyptDU3cWzH\nVndHKjyEJHcxLO39/GOCo2OoKQ8iMTOMltxc/OfMYcfJHWRHZWNsb3RMy/Sxxn1YLR2PSoOao/hi\nICM8g9yTuQRcPJeWrVtJygqnpjwc/9Bw9n3+sbsjFR5CkrsYdqqLT1B66ABjJswCFDGqBN3eDhdN\n5Vj9MceUTI1zXXhEiltj7a7PvyURKWC3Ql0ROWNyOFB1ANOsGeiWFmJ9q7HbICZ1Nsd376ChSuou\niQsnyV0MO3vXfozBaKStdSIh0X6YdqzD4OfH/njH3Pa0qGmO+XYY3nVluuuMs76YnOgcrNrK4SQv\nMJnwP7wZ/2AvbNrxLmTf2k/cGKjwFJLcxbBis1o4sP4z4rNmcLLASsrMaJrXrcV/7lxya3bjbfR2\nLINscCb3oP6T+yAXhXSt6qTzRiYaShzTSspIbsN+/KZPp2ndOpJnjqE8307cpCz2rftE1ryLCybJ\nXQwrR7ZuprWxgYCIqQDEhzZiragg4LLL2FK2hWlR0/AyekF9MZh8wC/MzRG7KMhZb76+BH+zP5PD\nJ5N7MpfAK66g4+hREmOt2O2asNgZNFZVUrBbnq8qLowkdzGs7PjwXULGjKXyRBhjJwbD1s/BYKBt\nZjr5dfnMjpntaFhf7Jjq6GvYPMQXVPss/mXydtxsVe94NELOmBz2Vu7FON9xPl671hMeG0Bd5Rj8\nQ8PYsVrKM4kLI8ldDBulhw9Sln+IlFlXUXeylZSZ0TSsWYPfRTPZ2pYHwKyxsxyNG0pOTXWMFEGx\nXdNJc2PmYtVWduhCfKZk0fjJJ6RcFE1FYQuT5l5F4Z6dVBYVuDdeMaJJchfDxvYPVuHt709720RM\nZgNx/rVYCosIWryYLaVbCPUOJTUs1bHGseYYhLr2HHa3Pompu9AEqHas8pkaNRVfky8bSzcSdMUV\ntO3fT1KcDYNBoY2TMXl5s2P1u4MVshgFJLmLYaG+4iRHtm5m8vyrOLqzjuSZ0bR//i8wmQi8/HK2\nlG3horEXYVAGaK6ElmqIOvM57cNc1CSoK4T2JsxGMxeNvYgNJRsIXLwYlMKydg2J2ZHk5zYw6ZLL\nOLhhHc11te6OWoxQktzFsLDtvRUogwH/sBlYO+xMvngsDR+uxn/uHA7by6hsrWROzBxHY+fol/C+\n67jrIS8d1o/OuvO1BYBjaqakqYSyAAt+M2dS/957ZMyLob3FSti4OdisVrZ/uMp98YoRTZK7cLv6\nipPs/fwTMi+9gvwdLUTFB+J/Yg/W8nJCbrqZtSfWYlAG5o+b79ihYXiuce/3T0nnss3OeffYuQBs\nKNlA8HXXYSksIqy1kNAxfhzfbSNt7nx2fvSBjN7FeZHkLtxuyzvLUQZFzKQrqC1rJvPSOOpWvI0x\nLIzASxew7sQ6siOzCfNxLnusL3Z8HO513M/UGa8z/nGB45gYMpHPij4j8KorUX5+1L39NpkL4qgo\naGBCzjXYLBa2vrvCjUGLkUqSu3Cr2vJS9q//lKyFizi4qZHAMB8SE000fv45wddfT1lHFXk1eVw6\n7tJTO9UXg3cweAe6dIxhcRMTOJZCGkyn/jgBC8cvZPvJ7dSbOgi+9loaPviQlAx/fAPNHNnWTvq8\ny9j9yWoaa6oGJ3jhsSS5C7f64rW/YDSbiZ9yJeXH6sm+YjwNby0Hq5WQr93K2hNrAVgwbsGpnRpc\nK/U77BiMjvrzndNKwOXxl2PXdtYWrSX0jtvRbW00ffAuUxaOo+hADSmzrwWt2fDG39wYuBiJJLkL\ntzm+M5f8bVuYddNt7F1fi2+gmdTpodS++SYBCxbgnZjIv47/i4khE0kITji1Y32xS2vch7oqpEvH\nC449VRcHSA1NJTYglk+LPsUnLQ3fadOofe11Js8dg5ePkYObmsm59iYOfLmW4jx5UpNwnSR34RZW\ni4XPl75IaEwckfHzKDlUR87iRFr+9SG2mhrC7r6b4sZidlXu4pqka07t2LXGPcFtsV+Q0IRTFS1x\nPEjkivgr2FK2hdq2WsLv+TaW4mLa133CtEXxFOypYlzGFQSGR/L5q3/CbpOaM8I1ktyFW2x5exl1\n5WVcete9bHm3gJBoP9JnRVD95xfxycjA76KZrD6+GoDFiYtP7Vh/AjqaINr1Ne6D/iSmc+k/ahI0\nlkHnw72BJUlLsNqtrD6+2vGOJTmZqhdfJGtBLAGh3mx9v5j53/g2lUUF5H6wchDOQHgiSe5iyBUf\n2MdXq95i8vzLqa+KpLa8hdk3TqBx1UospaVE/ueDAHx47EOmR08nJiDm1M41xx0fwya4IfIBED7R\n8bH2eNdLqWGpTAqbxKr8VSiDgfDvfIeO/KO0fPIRs26YQEVhIxZLAskXzWHj8n9QfvSIm4IXI4kk\ndzGk2pqaWP3c/xI6ZizTl3yTLe8eIyErgvETfKh84QV8p03D/+KL2Vmxk2P1x7g26drTOxima9xd\n1nmtoNu8O8ANE28gryaPvJo8ghZfjXf6JCp++39MzAohNjWETe8cZfat9+IXEsrqP/6GjrZWNwQv\nRhJJ7mLI2KxWPvj9MzTX1bDogf/Hl8uPYzIbWHBnKtXPv4CtqpronzyKUorXD75OkFcQi5MWn95J\nZ1J05YLqIJxD38dz4YjBp9/I1OmapGvwMnjxz0P/RBkMRP/4x1hLy6hd+lcu+8YktIbNK0u4+oEf\nUltexprn/k9qvos+SXIXQ0JrzaevPE/hnp1cfu93ObbLQNnReubdnoKx5Cg1//gHIbfeim9mJuXN\n5XxW9Bk3p9yMr8n39I7qT4B/JJh9XD72YBcOOyd+4Y469N3WugMEewdz7YRreffou1S3VuM/axaB\nixZR9cKf8K4rYe7NEzlxoIay4wFc+s17yN+2mfV/f9VNJyFGAknuYtBprfni9b+yb+0nzLr5Dkze\nmez+/ARZl8UxMTOYkh89jCk8nMgfPATAGwffQKO5PfX2szsbiaV+u1PqtNK/3d01+S46bB28kfcG\nAGN+9lMM/v6U/uQxJl0UQdqcseR+WEBQ9GymLb6eHWveY9M/3+i7jrwYtSS5i0Flt9n4+MU/kPv+\nO0y58hoiExey9h8HiUsLZc5NEyh//Jd0HD9OzDNPYwoNpaq1imWHlrEoYdHpF1I71ZeM3Pn2TsGx\nZ43cARKDE7ls/GUsy1tGfXs9pogIxjzxS9r27qXymWdYcEcqY5KC+OQv+4mfcj3p8y5j84o3WLv0\nJbTd7oYTEcOZJHcxaBprqnj7qf9i39pPmH3LHYxJvpZP/3KAsRNDuPr+TGpeepH6d98l4nvfxX+2\n44lEL+5+kQ5bBw9kP3B2h3bbOa1xH+oRrcuHC0tyVLbsYYf7p9xPk6WJP+3+EwBBV15J2Lf/ndo3\n3qTu9b+z5HtTiIgL4KOX95M4/XamX3MDO//1Piuf+SUt9XUDeDZipJPkLgactts58OVa/v7w9yk9\ncojL732Q9vbprH/jMNGHaRcAAApfSURBVOMmhXHNA5nU/+Ulqv7wR4Kvv56IBxyJfH/1ft46/BZf\nS/0a8UE9PIij5jjY2iF68hCf0QCLSofWGmg6edamtLA0bkm+hWV5yzhS61jyGPWDHxB41VVUPP0M\nzSve5Lr/zGZMUjCfLc3D6D2PBXfdR9H+/9/evQdHWZ1xHP/+djcXAyExFy6SAIIo3rgoYtGBQcRL\n1cK01aqdUqu2tkyJ4lSqgFpvFQod0Zm2f3SETodqvaBVqFa0A3VAgQKKUkUUA0ogEAokgSC57D79\nY5eyhOxms2GzF8/nr/fd97x7nofdffbsIe97PuTP06fy6ZpVbprGAcCX7ACczBEI+Nn2/nreffFZ\narZ9Tq9Bgzlv/I/YuPwQh/bv4oKr+nPRhF7UPHQ/da8uoWDSJPr8+jEkcbj5MDNXzqQ4t5iKERVt\nd3Agvr9xT5kbhx11NP4D2yG/9wmHK0ZUsOyLZcxaNYtF1ywix5dD33lz2Rnws+fx2RRWVnLdPdNZ\n/dpOPlxRRUFpKZfd+iAb31jA0vlz6DP4LC65/vv0HzoCedz47esqplde0tWStkjaKum+No7nSHo+\ndHytpAEnO1AnNVkgQPVnW1j13CIW3PkTXpn7KIfr6jl/wq14cm7kncX7yMrx8e27h3FO9idsmzSR\nuiVLKZk6lT6zH0c+H83+Zu5deS/b67czZ8wc8rMj3O0xXW/121qrW/+2VphbyGOXPsbm/Zt54J0H\n8Af8KDubvk8+SdHtt1H73PN88d3vMLxgGxPvHAbAqhcPkFs4mfPG/5D6vXt5afavWDjtp7z74rPs\nqdzqRvNfQ+2O3CV5gd8DVwBVwDpJS8zs47BmtwMHzOwMSTcBvwFuTETATtcyM5obj9DY0MCRhkM0\n7N9Hbc0eavdUU7Otkj2Vn9H01WGQ6FE6mNKB4zhYexqfbfBQ1MvPmNEeSncu59CUGdTtqiZnyBD6\nzptH3oUXArC9bjuPrHmEdbvXMeviWYzqMypyMHU7QB7ofuJoN638/0KmHRGbjCsfx90X3s38DfOp\nb6rn/ovvpyy/jF7Tp9N9zFh2P/wwO6dNI6u8nAlXX0P1wOF8XNnC1vdLkGcyJQOqaGzYyOrFf2X1\n4mfJPiWPnqcPotfAMyjuW05+UTHdi0vI61FAVm4uvuychN+mwelaau8bXdJo4CEzuyq0PwPAzGaH\ntVkWarNakg/YDZRalCcfOXKkrV+/vsMBb1rxJuuXhu6v0erpj9s77piFPdwqJAvfDO5YwGiobYz0\nzK26jZRilH9XO9YPxPpXDtGeL3o7a+/8qP20RDjXi7xFeLx98Pj64skagAcf3Rp2UFC3hZ41Gyms\nr0JAsxc+7SdWDhcfnCHMEywiJjggyDOY1ZjNxJboY43GfV+yndOY2v2JmDLxB4zK/zbw6KRzmTx6\nQEznxOMP/9rK3De2MKi0G54YC+SCQ1PoqXpyi6L/CnnB18y8nGaOCPoGRG7opVDAGPqJMXJTgIFf\nGh4Lvkq1Bf2o7j2cg/mDOJzXnwDNBJq3E2jZRcBfg/n3Am1d/CTAh/AGtyWOTmiJo9vRclPCp7/w\neJDXm+heyC/JTfgX3ejrb2bIJWPjOlfSBjMb2V67WObc+wLhQ4wq4OJIbcysRVIdUAwct8KApDuA\nOwD69esXQ9cnOiW/gJLysP9sa/UiHLcXdizai3XcMYlAS4Dd2+ojt4l2fngEJ5wSHg/4a+uw5ubQ\n43asTYSuTvj4RNw9tuU3P03+5ojt2yz5Yfl48CD5kMeHlIVH2Xi9p+CR8KoRj47gYQtZh17Fx37k\nCcCpsLtUfF6Yz8EiL/vLsvFniWJgfFgeAvoom2/5iuiZl9V20mGqVcYy35UM7ta93bZHnV9WwNgz\nS2NuH48rzu7F5uqD+Dvw54ivdZvCtfY2/Yryorb7HjA20MRS/34q7QiNYSOLg8NgxTBY2WSU7mqm\nqMZPt0N7yT28jKJGKPrKh1/FtOT1o8VTSMDbGz/9aEEErBm/NWLWguEnYAEMP1iA4DDHOPbuCN9u\nm1fe4OLlCaSsLDzduiW0D4CSsh7Ik9jintuB93C8Yhm53wBcZWY/Du1PBkaZWUVYm49CbapC+5+H\n2uyL9Lzxjtwdx3G+zmIducfyVVsFlIftlwG7IrUJTcsUAPtxHMdxkiKW4r4OGCzpdEnZwE3AklZt\nlgC3hLavB5ZHm293HMdxEqvdOffQHPpUYBngBRaa2UeSHgHWm9kSYAGwSNJWgiP2Nm4K4jiO43SV\nmC5iMrPXgddbPfZg2PYR4IaTG5rjOI4TL3f5muM4TgZyxd1xHCcDueLuOI6TgVxxdxzHyUDtXsSU\nsI6lvcAXcZ5eQqurX9OYyyX1ZEoe4HJJVZ3Jpb+ZtXvZddKKe2dIWh/LFVrpwOWSejIlD3C5pKqu\nyMVNyziO42QgV9wdx3EyULoW9z8mO4CTyOWSejIlD3C5pKqE55KWc+6O4zhOdOk6cnccx3GicMXd\ncRwnA6V1cZdUEVq4+yNJc5MdT2dJukeSSSpJdizxkDRP0ieSPpT0N0mFyY6po9pbDD5dSCqXtELS\n5tDn465kx9QZkryS3pf092TH0hmSCiUtDn1ONoeWMU2ItC3uki4DJgFDzexc4LdJDqlTJJUTXIT8\ny2TH0glvAeeZ2VDgU2BGkuPpkLDF4L8JnAPcLOmc5EYVtxbgF2Z2NvAN4OdpnAvAXcDmZAdxEjwF\nvGFmQ4BhJDCntC3uwBRgjpk1AphZTZLj6az5wC+JfSXrlGNmb5pZS2h3DcFVu9LJKGCrmVWaWRPw\nHMEBRNoxs2ozey+0fZBgEYm+GneKklQGXAs8nexYOkNSD2AswfUvMLMmM6tNVH/pXNzPBMZIWivp\nbUkXJTugeEmaCOw0sw+SHctJdBvwj2QH0UFtLQaflgUxnKQBwAhgbXIjiduTBAc+sa9AnpoGAnuB\nP4WmmJ6WlLAVv2NarCNZJP0T6N3GoVkEYz+V4E/Oi4AXJA1M1eX92sllJnBl10YUn2h5mNmroTaz\nCE4LPNOVsZ0EbS15n5Lvp1hJ6g68BEwzs/pkx9NRkq4Dasxsg6RxyY6nk3zABUCFma2V9BRwH/BA\nojpLWWY2IdIxSVOAl0PF/N+SAgRvxrO3q+LriEi5SDofOB34QBIEpzLekzTKzHZ3YYgxifaaAEi6\nBbgOuDxVv2ijiGUx+LQhKYtgYX/GzF5OdjxxuhSYKOkaIBfoIekvZvaDJMcVjyqgysyO/oJaTLC4\nJ0Q6T8u8AowHkHQmkE0a3jHOzDaZWU8zG2BmAwi+AS5IxcLeHklXA/cCE83scLLjiUMsi8GnBQVH\nCguAzWb2RLLjiZeZzTCzstBn4yZgeZoWdkKf6R2Szgo9dDnwcaL6S+mRezsWAgsl/QdoAm5Jw5Fi\npvkdkAO8FfoVssbMfpbckGIXaTH4JIcVr0uBycAmSRtDj80MrYfsJE8F8Exo8FAJ3JqojtztBxzH\ncTJQOk/LOI7jOBG44u44jpOBXHF3HMfJQK64O47jZCBX3B3HcTKQK+6O4zgZyBV3x3GcDPQ/9YSb\n93fp4WQAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEICAYAAACktLTqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xl81NW9+P/XmSXbZF8hZGVJIIQk\nQkBEWRRcoIhrXa/VVmu92vZ626rUtl5rq7XV36291d5erS39VitaK6gV3JBNFiFhJ4QlEEII2fd9\nlvP7YyYhQJYBkkwyeT8fjzwmM5/zOZ/zyfKeM+dzzvujtNYIIYTwLgZPN0AIIUT/k+AuhBBeSIK7\nEEJ4IQnuQgjhhSS4CyGEF5LgLoQQXkiCuxiWlFLzlFLFvWzXSqnxru//qJT62QUe50ml1J8utJ2u\nOtYppR64mDqEOF8S3EWPlFJ3KaVylFKNSqlTSqnVSqkr+qHep5VSb/RHG92htX5Ia/2LC9z3Oa31\nAwBKqSTXm4app/KDfW5C9ESCu+iWUuoHwEvAc0AMkAD8AbhhEI6tlFLyt3meenvTESOP/AOJcyil\nQoBngEe01u9prZu01lat9Yda68dcZQxKqaVKqQKlVJVS6h2lVLhrW0cP916lVJFSqlIp9RPXtuuA\nJ4HbXZ8IdrteX6eUelYptQloBsYqpb6plDqglGpQSh1VSn3nAs9nmVLql67v5ymlipVSjyulyl2f\nSG5USi1SSh1SSlUrpZ7ssm/XnvgG12Otq+2XnXWcbs/NJVEptcl1Lp8qpSK77DdTKbVZKVWrlNqt\nlJrXZVusUuoDV7uOKKW+fVbb3lVKvaGUqgfuc/P38k2l1AmlVI1S6iGl1HSl1B7X8V++kJ+xGIK0\n1vIlX2d8AdcBNsDUS5lHga1AHOAL/B/wlmtbEqCB1wB/IBNoAya5tj8NvHFWfeuAImAyYALMwNeA\ncYAC5uIM+lNd5ecBxb20TwPjXd8vA37ZZT8b8JTrGN8GKoC/A0Gu47cCY89ua5fz6u3n0tO5FQAp\nrp/HOuB517YxQBWwCGdn62rX8yjX9vU4PzH5AVmuts7vciwrcKNrX383fy9/dNV3jetcVwLRrraU\nA3M9/TcoXxf/JT130Z0IoFJrbeulzHeAn2iti7XWbTgDza1nDQ38XGvdorXeDezGGeR7s0xrvV9r\nbdPOTwofaa0LtNN64FNg9oWfVicr8KzW2gosByKB32mtG7TW+4H9QEY/HKerv2itD2mtW4B3cAZq\ngH8DVmmtV2mtHVrrz4AcYJFSKh64AnhCa92qtd4F/Am4p0u9W7TWK137tuDe7+UXrvo+BZpwBv9y\nrfVJYCNwST+fu/AAGaMT3akCIpVSpl4CfCKwQinl6PKaHef4fIfSLt83A4F9HPdE1ydKqYXAf+Hs\n8RqAAGBv383vU5XW2u76vsX1WNZlewt9t/V89fSzSAS+rpS6vst2M7AWiAWqtdYNXbYdB7K7PD/j\nZ4Z7v5ezz3Wgz114gPTcRXe24Py4fmMvZU4AC7XWoV2+/Fy9v770lIq083WllC/wT+BFIEZrHQqs\nwjlE4ynupFA93zSrJ4C/nfVztGitnwdKgHClVFCX8glA15/x2ce7mN+L8CIS3MU5tNZ1OMekX3Fd\nbAxQSpmVUguVUr9xFfsj8KxSKhFAKRWllHJ3Jk0ZkNTHjBgfnGPGFYDN1Yu/5oJOqP9UAA5gbC9l\n3Dm3rt4ArldKXauUMiql/FwXfeO01ieAzcCvXK9nAPcDb/ZS38X8XoQXkeAuuqW1/m/gB8BPcQa1\nE8B3cV58A/gd8AHwqVKqAedFvEvdrP4frscqpdSOHo7fAHwf5/h0DXCX63geo7VuBp4FNrlmlszs\nplif53ZWnSdwTi99ktM/58c4/b95J84LoSXACuC/XOPyPbmY34vwIkpruVmHEEJ4G+m5CyGEF5Lg\nLoQQXkiCuxBCeCEJ7kII4YU8togpMjJSJyUleerwQggxLOXm5lZqraP6Kuex4J6UlEROTo6nDi+E\nEMOSUuq4O+VkWEYIIbyQBHchhPBCEtyFEMILSVZIIYYRq9VKcXExra2tnm6KGGB+fn7ExcVhNpsv\naH8J7kIMI8XFxQQFBZGUlIRSnkyQKQaS1pqqqiqKi4tJTk6+oDr6HJZRSv3ZdTuyfT1sV0qp/3Hd\nAmyPUmrqBbVECNGn1tZWIiIiJLB7OaUUERERF/UJzZ0x92U4b7vWk4XABNfXg8D/XnBrhBB9ksA+\nMlzs77nPYRmt9QalVFIvRW4A/p92ppfcqpQKVUqN1lqfuqiWCdEPPtlfyv6TdQN+nEsSw7gyNXrA\njyOEu/pjzH0MZ97qq9j12jnBXSn1IM7ePQkJCf1waCF695MV+6hsbGMgO7taQ3KkZcQE98DAQBob\nG3st88ADD/CDH/yAtLQ0nnvuOZ588snObbNmzWLz5s0XfYynn36awMBAfvSjH/HUU08xZ84cFixY\n0G3ZlStXkpKSQlpaWrfb//jHPxIQEMA3vvEN5s2bx4svvkh2dna3Zc9WW1vL3//+dx5++GEASkpK\n+P73v8+7777r1v4DpT+Ce3f/Nt0middavwq8CpCdnS2J5MWAc2jNPTMT+cWN6e7tcGwDHNsI4xdA\ngnv3uPjPt3eRe7zmIlrpff70pz91fn92cO8rsF+IZ555ptftK1euZPHixd0Gd5vNxkMPPXTBx66t\nreUPf/hDZ3CPjY31eGCH/pnnXgzEd3keh/OuMUIMP5/8BDb8Btb83NMtGfLWrVvHvHnzuPXWW5k4\ncSJ33303HTf/mTdvHjk5OSxdupSWlhaysrK4++67AWevHKCxsZH58+czdepUpkyZwvvvv9/nMZ99\n9llSU1NZsGABBw8e7Hz9vvvu6wyoS5cuJS0tjYyMDH70ox+xefNmPvjgAx577DGysrIoKChg3rx5\nPPnkk8ydO5ff/e53PP3007z44oud9b3xxhvMmjWL9PR0tm3bBnBOmfT0dAoLC1m6dCkFBQVkZWXx\n2GOPUVhYSHq6szPR2trKN7/5TaZMmcIll1zC2rVrAVi2bBk333wz1113HRMmTODxxx+/4N9DT/qj\n5/4B8F2l1HKct/Oqk/F2MWw1VZz5OIT9/MP95JXU92udabHB/Nf1k90uv3PnTvbv309sbCyXX345\nmzZt4oorrujc/vzzz/Pyyy+za9euc/b18/NjxYoVBAcHU1lZycyZM1myZEmPFxJzc3NZvnw5O3fu\nxGazMXXqVKZNm3ZGmerqalasWEF+fj5KKWprawkNDWXJkiUsXryYW2+9tbNsbW0t69evB5yBu6um\npiY2b97Mhg0b+Na3vsW+fd1OFuw8x3379nWeY2FhYee2V155BYC9e/eSn5/PNddcw6FDhwDYtWsX\nO3fuxNfXl9TUVL73ve8RHx9/Tv0Xyp2pkG8BW4BUpVSxUup+pdRDSqmOzzGrgKPAEeA14OF+a50Q\nF+m8biOp9QUHd939SKTXmzFjBnFxcRgMBrKyss4IbH3RWvPkk0+SkZHBggULOHnyJGVlZT2W37hx\nIzfddBMBAQEEBwezZMmSc8oEBwfj5+fHAw88wHvvvUdAQECP9d1+++09brvzzjsBmDNnDvX19dTW\n1rp9Xl19+eWX3HPPPQBMnDiRxMTEzuA+f/58QkJC8PPzIy0tjePH3coH5jZ3Zsvc2cd2DTzSby0S\nwlNaa8FhA78QaKkBuxWMF7Y6cDCcTw97oPj6+nZ+bzQasdlsbu/75ptvUlFRQW5uLmazmaSkpD7n\ndfc1PdBkMrFt2zbWrFnD8uXLefnll/niiy+6LWuxWNw+jlIKk8mEw+HofM2dOei9dS4u5mfnDskt\nI7ye2zNlmiqdj1GTnI/NVe7Vf/5NGlHMZjNWq/Wc1+vq6oiOjsZsNrN27do+e65z5sxhxYoVtLS0\n0NDQwIcffnhOmcbGRurq6li0aBEvvfRS51BJUFAQDQ0Nbrf57bffBpw975CQEEJCQkhKSmLHjh0A\n7Nixg2PHjvVZ95w5c3jzzTcBOHToEEVFRaSmprrdjoshwV2IDh1DMdGTznwuLsqDDz5IRkZG5wXV\nDnfffTc5OTlkZ2fz5ptvMnHixF7rmTp1KrfffjtZWVnccsstzJ49+5wyDQ0NLF68mIyMDObOnctv\nf/tbAO644w5eeOEFLrnkEgoKCvpsc1hYGLNmzeKhhx7i9ddfB+CWW26hurqarKws/vd//5eUlBQA\nIiIiuPzyy0lPT+exxx47o56HH34Yu93OlClTuP3221m2bNkZPfaBpM5rTLIfZWdna7lZhxholzzz\nKddnxvLMDW5Mhcz7AN65Bxb+BlY/DveshHFX9rnbD97exfbj1Wx8/Kp+aHHvDhw4wKRJkwb8OGJo\n6O73rZTK1Vr3OQlfeu7Cq51X1+WA62N+lKsHeXC1+8cZmddTxRAmwV14PbfHxEt2Oh9jL3E+Fm/v\n5wMIMXgkuAvRoaUasr8FfsEw5evO50IMUxLchQBw2KG5Giyum8pbok7PnhFiGJLgLrya22PhzdWA\nhoBI5/OACGhvBGtL/x5HiEEiwV0IOD3t0eIK7h09eOm9i2FKgrvwem7d9KDZFcS7DsuAW3Pd1Qi7\nolpaWsodd9zBuHHjSEtLY9GiRZ1L6gdaUlISlZW9v+EuW7aMkpLTuQsfeOAB8vLyLvrY+fn5XHbZ\nZfj6+p6RQGyoknuoCgFdeu5nB3fpuXelteamm27i3nvvZfny5YAzAVZZWVnnoh5PW7ZsGenp6cTG\nxgJnph++GOHh4fzP//wPK1eu7Jf6Bpr03IUAyHOlm+0clolwPub/yzPtGaLWrl2L2Ww+I/95VlYW\ns2fPRmvNY489Rnp6OlOmTOlcwt9TauDVq1dz2223ddazbt06rr/+egDeeustpkyZQnp6Ok888cQ5\n7eiaVhfgxRdf5Omnn+bdd98lJyeHu+++m6ysLFpaWjrTD/dWb2BgID/5yU/IzMxk5syZ3SYwi46O\nZvr06ZjNQzffUFfScxdeze0V2Kf2OB/9w5yPwWOcjx1z34ei1UuhdG//1jlqCix8vsfN+/btOyfN\nbof33nuPXbt2sXv3biorK5k+fTpz5swBuk8NfPXVV/Od73yHpqYmLBYLb7/9NrfffjslJSU88cQT\n5ObmEhYWxjXXXMPKlSu58cYb+2z+rbfeyssvv9ztnZR6q7epqYmZM2fy7LPP8vjjj/Paa6/x05/+\n9Dx+cEOP9NyFAOec9hnfAYPR+dzkC5l3ObND9kHuV+305Zdfcuedd2I0GomJiWHu3Lls3+5cCNZd\namCTycR1113Hhx9+iM1m46OPPuKGG25g+/btzJs3j6ioKEwmE3fffTcbNmy46Pb1Vq+Pjw+LFy8G\nYNq0aeeVuniokp67ELZ2aK07PSTTwRLhHIvXemhG8F562ANl8uTJPd5C7kLS295+++288sorhIeH\nM336dIKCgtz6tNXf6XfNZnPnhfeBSL/rCdJzF6JzpszZwT0KbK3O+e4CgKuuuoq2tjZee+21zte2\nb9/O+vXrmTNnDm+//TZ2u52Kigo2bNjAjBkzeq1v3rx57Nixg9dee63z5hmXXnop69evp7KyErvd\nzltvvcXcuXPP2C8mJoby8nKqqqpoa2vjX/86fW2kpxS87tTrTaTnLkTTWdMgO3SdMeMb1GsVnsqu\nOtiUUqxYsYJHH32U559/Hj8/P5KSknjppZeYM2cOW7ZsITMzE6UUv/nNbxg1ahT5+fk91mc0Glm8\neDHLli3jr3/9KwCjR4/mV7/6FVdeeSVaaxYtWsQNN9xwxn5ms5mnnnqKSy+9lOTk5DPSBd933308\n9NBD+Pv7s2XLls7X3am3N6WlpWRnZ1NfX4/BYOCll14iLy+P4OBgt+sYTJLyV3i1KU9/wi1T43h6\nSS93LTqyBt64Gb75MSRedvr1Q5/C378O938O8dN73P1H/9jN5iOVbP7x/H5sefck5e/IIil/hehF\nn8PlPfbcXcM0fSxkGoKj8UJIcBeC/e85H7sbc4fTc+CFGEYkuAtRtt/56Bdy5utBo5yPpXsGtz1C\n9AMJ7sK7uXNJqbkaZj5y7viN0QyX3OPKGHnxhxFiMElwF16v18Re7U1gbTp3SKaDJco5VbLLnOpz\n6pdBdzEESXAXI1tPF1M7WKLAYYPW2sFrkxD9QIK7GNncCe5dy4kRm/L3zTffJCMjg4yMDGbNmsXu\n3bsvus6BJIuYxMjW0+rUDh3ZIZsrgZ5T2o6QNUwjOuVvcnIy69evJywsjNWrV/Pggw/y1Vdf9Uvd\nA0F67sKr9Rlzz74D09nO46YdI8FITvk7a9YswsKcWUNnzpxJcXHxxfwoB5z03IXX6/WC515XEqy+\nhmX2r4C07peqe+pOTL/e9mvyq3te2n8hJoZP5IkZ5wbTDpLy1+n1119n4cKFfbbHk6TnLka28gPO\nRx9L99s7gnvpvsFpzzA2UlL+rl27ltdff51f//rXF92mgSQ9dzFyae3M4375f/RcxmCE7Pshb+jd\nWq23HvZAGekpf/fs2cMDDzzA6tWriYiI6POYniQ9d+HVeg0UbQ1gb+95SKaDJdK5kMnec45vPUKW\nMY3klL9FRUXcfPPN/O1vfxsyF49741ZwV0pdp5Q6qJQ6opRa2s32BKXUWqXUTqXUHqXUov5vqhAX\npscR8bNvit0TSxTg6uV3V/8IWsTUkfL3s88+Y9y4cUyePJmnn36a2NhYbrrpJjIyMsjMzOSqq67q\nTPnbm46Uv6tXr+4cFumamjczM5OpU6f2mvJ38eLF3ab87big2sGdenvzzDPPUFVVxcMPP0xWVtY5\nY/pDjta61y/ACBQAYwEfYDeQdlaZV4F/d32fBhT2Ve+0adO0EAMt7Wer9S8+3N/9xuNbtf6vYK0P\nfdZ7Jfvec5Yr7b6eJ97drWc820cd/SQvL29QjiOGhu5+30CO7iO+aq3d6rnPAI5orY9qrduB5cDZ\nb3ca6MhYHwKUIMRQ19c0yA4yHVIMQ+4E9zHAiS7Pi12vdfU08G9KqWJgFfC97ipSSj2olMpRSuVU\nVMg/ivCw8xqWodfgPlIWMYnhw53g3t2I4tl/yncCy7TWccAi4G9KqXPq1lq/qrXO1lpnR0X18Q8l\nRD/oNebu/Yfzsa+ee4Br+773+qNJQgwKd4J7MRDf5Xkc5w673A+8A6C13gL4AX38xwgxOHq84Fnh\nWgBk8u2hgIu/c1Ui5d3nJxlJF1TF8OFOcN8OTFBKJSulfIA7gA/OKlMEzAdQSk3CGdxl3EUMXQ4H\ntNTA7B/1XdZggEsfciuvuxBDRZ/BXWttA74LfAIcAN7RWu9XSj2jlFriKvZD4NtKqd3AW8B9rqu6\nQgxNLTWgHX2Pt3cIiIS2OrC1dbtZ/tjFUOPWPHet9SqtdYrWepzW+lnXa09prT9wfZ+ntb5ca52p\ntc7SWn86kI0W4qL1lQ3ybB3lmqsGpj3DyEhN+fv++++TkZHROcf9yy+/vOg6B5KkHxBeTWs6l5Wf\noYdpkA7toLatljDfsDP36zpjJjj2rMpGzqC7HsEpf+fPn8+SJUtQSrFnzx5uu+028vP7N3Fbf5L0\nA2Jk6mYaZG5ZLoveW8Tct+dy/crr2V3R5WYMHW8CI3yu+0hO+RsYGNj5ht/U1NR9p2EIkZ67GJnO\nugNTfnU+j6x5hCj/KH4w7Qe8c/AdHvz0Qd69/l3ig+OH5B2ZSp97jrYD/dtz9J00kVFPPtnj9pGe\n8nfFihX8+Mc/pry8nI8++qjP9niS9NzFyLTbOaSAfzh2h52ffvlTLGYLf7rmT3wz/Zv85bq/YDQY\nWfrlUhzacbrnvuedbquT6QMjI+XvTTfdRH5+PitXruRnP/vZRbdpIEnPXXi1HrM1Vh4CZQSjifcP\nv8fBmoO8MPcFYiwxAIyyjOLx6Y/zs00/44uiL1iQMN+5X8XBQWp533rrYQ+UkZ7yt8OcOXMoKCig\nsrKSyMihuaRHeu7C650zMmq3Qls9zH0ch3bwl31/YXLEZK5NvPaMYovHLiYhKIFX97zqfIu47Lvd\nZoYc4kOv/Wokp/w9cuRI5xvEjh07aG9vH9I53SW4i5GnYzGSJZKtJVsprC/k7kl3n3OBzGQw8c30\nb3Kg+oDz4qolEqzN0N7kgUYPDSM55e8///lP0tPTycrK4pFHHuHtt98e0hdVlafWGmVnZ+uOK9hC\nDJSJP1vNvZcl8eNFk06/uHs5rPgO3Pb/+GH5BraXbufzr3+Oj9HnnP2brE1c+c6VLB67mKf8xsL7\nj8Bd70DK6V7+kyv28un+UnJ+evWAn8+BAweYNGlS3wWFV+ju962UytVa95lMXnruYuQ5vgmA5sgU\nNhRv4Jqka7oN7AAWs4X5CfP5+NjHtI+a4nzx6PrBaqkQF0yCu/BqWnPuoHtTFcSks7G5iFZ7K9cm\nXdvdrp0WJi+kwdrAdkcjhCacs0p16H4wFyOZBHcx8jRVgCWSNcfXEO4XztToqb0Wv3T0pfib/Fl7\nYq1zvvsIX8gkhgcJ7mLkaarA7h/BllNbuGLMFRgNxl6L+xp9uWz0ZawvXo8OiJTgLoYFCe5i5Gmq\nJN/Xh9q2WmbFznJrlzlxcyhtKuWYv6XbVaqyiEkMNRLchVc7J+ZaW6G9gc00AzBz9Ey36pk+ajoA\nOUa7s+cu0VwMcRLchddTXS95ulL9bmuvIjUslQh/9xahxAfFE+0fTY6tHhyuRVAd9Y+wK6ojNeVv\nh+3bt2M0GntcqTtUSHAXI8vhz7ABu1tKuST6Erd3U0oxbdQ0clrLnJ8GRuh0yI6Uv/PmzaOgoIC8\nvDyee+65brMoesrZwf1Pf/oTaWlp/VK33W7niSee4Npre59hNRRIcBcjy4mvOORjpsXRfk5w1zYb\nte++y6mf/5y6999H2+1nbM+OyabC1kiRyQSFG8/cd8AbPjSM5JS/AL///e+55ZZbiI6Ovoif4uCQ\nxGFiZGmqZGf0OKD5jODuaG+n+KF/p2nzZpS/P7VvLaf+08+Ie+m3KLMZgOxRzkWBORHxJA6B1L8b\n3zlE5YnGfq0zMj6Q2bf1fNONkZzy9+TJk6xYsYIvvviiM9vlUCY9d+Hd9Flj4s2V7PIxEhMQw+jA\n0Z0vlz//PE2bNzPqmZ+TmptD9NInaFyzhvLfvtRZJjk4mXC/cHb4+Zy+TR9njemPYN6e8vfRRx/l\n17/+NUZj71NnhwrpuYsRRTdVssPPl6nRl3e+1rJ/PzVvLSfsG/cQ5homiLjvPtqPFVL9l78Qsvhr\n+KWloZRiSuQU9p3cCo2e77n31sMeKCM55W9OTg533HEHAJWVlaxatQqTyeTWJwpPkJ67GDm0prS1\ninLdTlZ0luslTdlzv8IYFkbUd797RvHoH/0QQ1AQFX/4Q+drkyMnc0y30dQ8MhcyjeSUv8eOHaOw\nsJDCwkJuvfVW/vCHPwzZwA4S3MVI0t5IntHZe5sS6UwC1rJjBy25uUR+9xGMwcFnFDcGBRF+zz00\nfr6G1oPOqX7pEeloIM/eCI7TF1w9lV11sI3klL/DjtbaI1/Tpk3TQgy08U9+pJ9ffcD5pKpAv/Lb\neJ2xbIputjZrrbUu/s8f6PzpM7S9qanb/W01NTp/6jR98vHHtdZaV7dU6/Rl6frP/z1G68YKrbXW\nP12xV2f9/JOBPxmtdV5e3qAcRwwN3f2+gRztRoyVnrvwep2XOw99Sr6PmUT/KPxN/ljLy6n/9FNC\nb74ZQ0BAt/saQ0MJvn4x9Z98ir2xkTC/MMb4hJLn4wMFXzjrl+upYgiS4C5GjpM5HPTxYWKEc0FL\n/QcfgM1G2J139Lpb6E03oVtbafj4YwAmhKVwyMcHjm8e8CYLcaEkuIsRo66xjBKziVTXxdT6Vavx\ny8jAJzGx1/38MjLwGTuW2pUrAUiJyeK42UxbU3lnmZEx4i6GEwnuYsQ41Oqc4TIxfCLtx4/TmpdH\n8MKFfe6nlCJkyRJacnKxlpaSEpaCXcHR5qGz5F6Is0lwF15Nd1nElG9zJvtKDU+lfrVziCX4Ovdy\nhARdvQCAxrVrSQlzzi8/1O680bYMuYuhSIK7GBm0Jp82Ig1+RPpH0vD55/hnZmIePfqMYg6HprXR\nisNx5kCLz9ix+CQm0vD5GhKCEvDFwCF702CegRDnRYK7GBlaazliNjLBLxJbZSWt+/YReOW8zs0O\nu4Oc1YX85fEvef1HG1m2dBO7Pi/qDPJKKQLnz6dp2zZoamacTyiHjA6wWz10Qp4zUlP+rlu3jpCQ\nELKyssjKyuKZZ5656DoHklvBXSl1nVLqoFLqiFJqaQ9lblNK5Sml9iul/t6/zRTi4jgayzlmNjPW\nEkvjxi8BCHQltbLbHXzy2n6+ev8oo8aGcPmt44mMC2TTu0dY89e8zgAfNP8qsFpp+vJLUgJGOWfM\nuG6WPULWMI34lL+zZ89m165d7Nq1i6eeeqpf6hwofQZ3pZQReAVYCKQBdyql0s4qMwH4MXC51noy\n8OgAtFWIC1a27x+0GAyMDU6iaeMGjFGR+E6aBMCW9wo4uquCK74+ga89nEHWggSu/14mly5J5tBX\nZeR8dAwA/8xMDEFBNG3eTEpQEtVGI5V5Kz15WoNupKf8HU7cSRw2AziitT4KoJRaDtwAdP2c823g\nFa11DYDWuvycWoTwAI0za+PR0lwAxo6aQeOXTxG0YAFKKYoP1rB7zQmmzIsjc358535KKaYtTKKu\nvIXtqwpJnBJJTFIwlpmX0rRpM+P+7XtwYhXHTnyJ8pntkXNbu+xVyo8f7dc6oxPHcuV9D/a4fSSn\n/AXYsmULmZmZxMbG8uKLLzJ58uQ+2+Qp7gzLjAFOdHle7HqtqxQgRSm1SSm1VSl1XXcVKaUeVErl\nKKVyKipGZuIl4RlH25zDJ/G1gTjq67FcPguH3cGGtw4SHOnHrJvHnbOPUorZt6cQEOzD+r8fRDs0\nllmzsJaUEG+PBaCwVf6OO3h7yt+pU6dy/Phxdu/ezfe+970hnTQM3Ou5dzfT6+wRRhMwAZgHxAEb\nlVLpWuvaM3bS+lXgVYDs7OwRMkophoICWz2hZiOm3QcBsMyYQf7WUmpKm1n40BRMPt3n6PbxNzHr\npnF8vuwABTsrSJg1C4CAnYctzl6LAAAgAElEQVTxQ1HY7vwT1x4YdO+thz1QRnLK3+AuieUWLVrE\nww8/TGVlJZGRkX0e2xPc6bkXA/FdnscBJd2UeV9rbdVaHwMO4gz2QgwJx3Q7Y01BNG/bhk9yMoaI\nSHJXFxKdGERyZu//nBNmjCJsVAA5qwoxxcdjHjOGlq1bSTD4U+hoHqQzGBpGcsrf0tLSzjeIbdu2\n4XA4iIhw7wbrnuBOcN8OTFBKJSulfIA7gA/OKrMSuBJAKRWJc5imfwcDhbgAzux4do4aYaw5nObc\nXAKmT6doXxX1la1kXZ3Q2WPricGgyFqQQNXJRkoL6giYPp3mnFySTMEUKnuv+3qbkZzy99133yU9\nPZ3MzEy+//3vs3z58j7/djxJufMRSCm1CHgJMAJ/1lo/q5R6BmfqyQ+U8wz/P+A6wA48q7Ve3lud\n2dnZuuMKthADZeyPP+KRy8wsq/kh/9WWyeT/ziX2hRfYcCyOqpON3PPcLIzG032clsYGmqqrCIyI\nxM8S2Pm6td3OX5duIm5iODPD8zn105+x6YdpvGw+yE0hf+afu2vY87R7q10vxoEDB5jkmuUjvF93\nv2+lVK7WOruHXTq5dZs9rfUqYNVZrz3V5XsN/MD1JcSQ0tJ2GIDEYmcQbx+bQdFHR5hxfXJnYK+v\nrGDdX1/jyPataO3AYDQy4dLLufLeb2MJDcPsY2TS5bHsXnOCGd/JBGDCKRP2RIXDegQYuh/Pxcgk\nK1SF1/NtcC5aCjnWgDkxgUP57RgMirQrnDNeyo4V8MbS/+DY7lymL7mZxY8u5ZKFSziyfQtvLP0P\nqoqdk8WmzB2D1pqCYhPG8HAii5yrUy2N6yUrpBhyJLgLr9dsLcbocKAPnsQ/ezpHcspImByOJcSX\n+opy/vnszzD5+nLP879j9l33kXrZFcy7537ufva/cTgcvPvLn9BUW0NwpD+x40M5vL0M/6lTMR+t\nAcDafmRQz8cTM3PE4LvY37MEd+HVNFBJE5dUmnDUN9A0/lIaa9oYnx2Dw27nw9/+CrvNxq0/+SXh\nsXFn7BuVmMwtTz5Da1MTH/3PC2iHgwnZ0dSUNtM2cSb2klLG1kOFahy08/Hz86OqqkoCvJfTWlNV\nVYWfn98F1+HWmLsQw1m5oZ1Zp3yBdk5aR2MyN5KcGUnuRyspLTjM4kefIDz27HV5TtFJzhWbn736\ne/as+ZiUmQvY8PZhTvmMJRKYedLEvnF9z7HuL3FxcRQXFyOLAL2fn58fcXFxfRfsgQR34fVKjJrx\npwyo0HCOHW4hcUok7c11bH7374zLnknKzCt63X/KVddwcPN6Nr71V1Ium038xDCOFTYR6e/PxJMG\nPp9gHbRbMZnNZpKTkwfnYGJYk2EZ4dXMhkZqjQZGldhpybyKlgYrE6ZHs/ndv+Ow2Zl3z/19zlVW\nSjHv3gdpa27mqxXvMD47hobqNtqzrmTMSTsVRkC1D84JCeEmCe7Cq4WYThDQqgkoa6EyOhOjyUBo\ntJ396z4nY8F1hI4a3XclQFRCEmmzr2T3p6uISTaDgurR0wgsbcNkA39T6QCfiRDnR4K78GqBviWM\nO+UcMylti2BMaij71q5Ga0324pvOq67pS27B1t7Gwc2fMSo5hDIdg3JoksogwFQ8EM0X4oJJcBde\nbZzvflJOQnNADPX1mrhUC3s+/5iUSy8nJDrmvOqKjE8kOWsauz75iPi0YKpqFG0+IYw/pRln3jNA\nZyDEhZHgLryawVxF2kkHtROcecWbanbS3tJM9vU3X1B92dffTHNdLfa2AwDUJF3KxJMOfGRYRgwx\nEtyFV6s3tTGuBCqjMwkb7c+BjR8Tl5bOqHEXlrQ0fnIG0UnjOLh5NZYwH6rHzGDCKWgwD950SCHc\nIcFdeLcmO77tPlTbQgmNqqa+opzMqxddcHVKKTKvWURV8Qmi4lqoVDGE1xlos468G2WLoU2Cu/Ba\nVruVkEqoDR2PQyuaanbja7EwPnvmRdWbetkVmHx8aW3Yg81hoCEokaBKLatGxZAiwV14rZLaIySV\nQXVYKkq1U5Kfw8RZczD5+FxUvb4BFsZPn8mpg9vR2kZ1WCqJp6CqubKfWi7ExZPgLrxWceUBkkuh\nKnISlpAT2NrbSZszv1/qnjxvAW3NjViCS6iMmsT4Ek1x1YF+qVuI/iDBXXitourDxFf60+wXS3vT\nPsJi4xg9IbVf6k5IzyAwIhJH+34aLUkklZsorjrYL3UL0R8kuAuvVbl/PTa/FLRupL68gLTZV/bb\nbdEMBiNpV8yjruwgDm0F8zjK9n3WL3UL0R8kuAuvZTtWRk1YKnbrIYA+E4Sdr5SZV6C1A7u1gOqw\nVNqOFPVr/UJcDAnuwmuZS1upDkvFrguITEjqMa3vhYpOHkdwVAx2fYSa0FRMJ5v7tX4hLoYEd+GV\ntNaEVgbT7GdBt5wk5dLL+/0YSilSZl6Obi2kPjCawHJzvx9DiAslwV14paqWSoJbU7C3HwE0KTP7\nP7gDTJgxC7QDh/UYwS0TaLXJSlUxNEhwF16puGA7Nt/xOKz5EBpDRFzCgBxn9PgUdEAIdushHD7j\nOHl874AcR4jzJcFdeKWqHZupCY7DYStBJWUM2HGUwYA9IR2H9Tg1wUmU56wbsGMJcT4kuAuv1Lj/\nGE1m5wVOQ1L6gB7LETcJsFPv76Bhb96AHksId0lwF17JWmTEbj2K1eCLirrwmwy7Q48ah0MZsVuP\n01LQNqDHEsJdEtyFV7K3j8FhPcaxgASUGuA/c6OJ0oAx2K3HsLXEDuyxhHCTBHfhdewNDTT6BAPt\nHA4YOyjHLAgcB7qBRt8o7PX1g3JMIXojwV14naqdO2k0NwOKE/4DOyTTociSCECdr5Wm/TLuLjxP\ngrvwOgVb92O3FeIXasFq8KF/ssn0TAHNJgumAD9s9hMc27pvgI8oRN8kuAuvc/JwGdpRw5jUyEE9\nbmRyINpWwomD5YN6XCG6I8FdeJ2aJucq0cwpkwb1uJMnJwOasvqmQT2uEN1xK7grpa5TSh1USh1R\nSi3tpdytSimtlMruvyYK4T57UzNNqhGUD3GJgxfctYa01AxQJhpVE/YmCfDCs/oM7kopI/AKsBBI\nA+5USqV1Uy4I+D7wVX83Ugh3lWzei91Wgt0PVFD0oB7bJzgWq58Jm72YU5tl3F14ljs99xnAEa31\nUa11O7AcuKGbcr8AfgNI5iThMfmbdgLttEdWQLhzGmQ/3Z+jZx31x6TRFlkJupWDm3YN8EGF6J07\nwX0McKLL82LXa52UUpcA8Vrrf/VWkVLqQaVUjlIqp6Ki4rwbK0RfThQVAorgSb5ok9/gHtw3iIAJ\ndlc7jg/usYU4izvBvbt+j+7c6Fz+91vgh31VpLV+VWudrbXOjoqKcr+VQripvqUMowokOdQzf1+J\nIeEYVBB1rTJjRniWO8G9GIjv8jwOKOnyPAhIB9YppQqBmcAHclFVDLbyo6ewOyqwmxSJgf1716W+\ndPR2EgNicJgUNns5VUUS4IXnuBPctwMTlFLJSikf4A7gg46NWus6rXWk1jpJa50EbAWWaK1zBqTF\nQvRg77+cN6guC6smMSSp8/X+uil2T1SXD7eJwQmUhdQADvZ8+PmAHleI3vQZ3LXWNuC7wCfAAeAd\nrfV+pdQzSqklA91AIdx1PG8v4ENh/AlCguPRus9d+l10cCL5iScAE0X75cYdwnNM7hTSWq8CVp31\n2lM9lJ138c0S4vxoramrO4EvYfgHt4PFM2PuhsBofEKs+BBGTW2RR9ogBMgKVeElyo4ex+FoxMcB\niTYbBAxu6oHOQfeASBLsNny0wm6vo+rkqcFthxAuEtyFV9i3dhMAjX6VJFqtEJbkmYZETyTRaqXZ\nt9rZri82e6YdYsST4C68wvFdOShDKMeiikiKnQEmn0E79hnXa30sJERM4ljkCVAWjuVuG7R2CNGV\nBHcx7NmsVuoqj+Grwzk62kqSxXk3JI0HrqgCSf5RFMS24UskNWUFOBx2j7RDjGwS3MWwV5y3D61t\nhLbCqXBNfHCCR9uTHBjPyQgIaTPgcLRSWnDEo+0RI5MEdzHsHdi0DTAQqOqJ0XZ8LDGD3oaunxJC\ng8YQgoMg5cwMeWCj5NITg0+Cuxj2ivbtQpliqQ06QaLVds40yIFOHHZO9ZYoxrZbaQw6iTJGUbhn\n58A2QIhuSHAXw1pzXS2NVSfw1RHsj6hgrNXqsTnunSyRjLVayQsvx4doaksLaG9t8WybxIgjwV0M\na4W7nb3i8GYHh6IdjG+3gsU5x90TK1QBZ8/dauVAlJXQFkA7OCGrVcUgk+AuhrVDX20D5U9UXSlF\nUTh77iHxfe/Yz854I4lMIbndRlE0RNVXASYOfbV90NskRjYJ7mLY0lpzIm83BlMCfv7VWM2Ksak3\ngtGtrBoDx+zHuMS5tJsVgb41GExjKNorN+8Qg0uCuxi2KosKaW+ux8cwippRrUTb7AQHjjqnnOr2\nlgT9p7sLttGW0VgcmoaYFkzGMTRWn6K+Um5QIwaPBHcxbBXu3gFAWGM7h6KtjLO2d463e5oKjGas\n1cqxGE1os3PMpqO9QgwGCe5i2CrIzUUZIoisKyYntIZx7Z6bKXPOtVtLFMnt7ewKrSOyrhRUIEdz\n5RYHYvBIcBfDkrWtlVOH8zCYkwhtOMqhSCvjhsI0yA6WCMZZrewKqye07ihGcxJF+3bhsEsqAjE4\nJLiLYan4wH4cdhtmUxx+4XbazcrZcw+IOKfswC9i6uYAlijGttto9lMEBbZgNCdgbWvh1JFDA9sY\nIVwkuIthqXD3DlBGwltt1CaFAQyNBUwdLFHOTxJAU1I4oXYzoCjcnevZdokRQ4K7GJaO7dqBwRhH\nSNUhCkcbiXIoQhwagmM7y3hsERNA+DjG2Gz4a0XxaDOhFQUYTKM5tlOCuxgcEtzFsNNQVUlNyQkM\n5kRC6wrYG9HMWJsdpn4DDEaPtEmf/U5i8sEw+SYm2CEvooXQugIMpkTKjh2hub7OI20UI4sEdzHs\nFO5xTik0mRMIbixii6WECa3Ng39rvb4ERJLS1sbmoDJC6o5iMCeB1hyXBU1iEEhwF8PO8d07MZoD\nCVUKU8Io6gxtpLS19TjePsDXU3u+YGuJYkJLI8U+jfiE+hNsDsBg8ue4zHcXg0CCuxhWHA47x/fs\nAkMioVUHaBwbDUBqe/s5wd1Td2LqZIkkxXVRtXVCHOGuoZlju3ecO4wjRD+T4C6GlbKjR2htasBg\nSiC0ZDfFY3wxYnDNcffcsEy3odoSxYT2dgBKk4IILsoFQyLNtTVUHD82qO0TI48EdzGsHN2xHZTC\n5JNESF0B+yNaSfKLxFczdKZBdrBEEeLQxPiEkj/aQWjdYYzmREBSEYiBJ8FdDCtHc7fjGxBPhL8d\no3KwOfAUKa3Nzo099NwH/U5MHVztSbE5+CqkEh9bM2EBJnwCYiS4iwEnwV0MGw3VlZQXFmB3JBDW\nUIB5wjiKrGWktrU6C1iiPdvAs4UlAZBitZHfVoQ5OZnwliI0CZzMz6O9pdmz7RNeTYK7GDaO7XAm\n3jKYxxJ0ZAvNqXEApDY3Qvb9YDjzz9nj1yyNZphyGxNamrFpG7ZJSQQd3w6GJBx2m0yJFANKgrsY\nNgp2bMM3IByTTyRB5Qc4mRgIQGpDlcfH23t8I7FEkdLkXLRUlhRCcPFOjOYxmHwCKMj5avAaKEYc\nCe5iWLC2t1G0bzcm/3FEhVgxOmzsj2kn3DeUSLt9yORxP4clguTmOvyMvuTF2DDbWggPAd+g8RTs\n2C5ZIsWAkeAuhoXi/XuxtbXR3hZPRGsxhpAQcswlpATGOy9o9hLcB/pOTL1esbVEYQJSg5PZFnAK\n5etLpC7F2p5Aa0M9JQcPDGzbxIjlVnBXSl2nlDqolDqilFrazfYfKKXylFJ7lFJrlFKJ/d9UMZIV\n7NiO0eyLwRRHcFEOflMmc7juCBP9XBdRuxmW8fSQO9DZrjRLHPvrDuI7OY2QU3tQxiQMRhNHcmVo\nRgyMPoO7UsoIvAIsBNKAO5VSaWcV2wlka60zgHeB3/R3Q8XIpbXm6I5tBIaPx9ffF7+8L2lKiaPd\n0c5kH2e6X0+PufeoI7j7RtBia8GamoRl31pMZl+CIsdTkLNVVquKAeFOz30GcERrfVRr3Q4sB27o\nWkBrvVZr3TGvaysQ17/NFCNZZVEhDZUV2OyJjB4FBoeNwjgfANILNjkLDdng7hwumnzcOa/9ZGIA\nhpZGRo02o1UytaWnqD55wpMtFF7KneA+Buj611fseq0n9wOru9uglHpQKZWjlMqpqJA7wQv3HN62\nGZTCZo0n2nYSlGJnZAOhvqGMaSh3FvIP63F/jy1iAgiJByC5sQI/ox97YpzpCKKN5bS1OPtAR2TW\njBgA7gT37v52u/0cqZT6NyAbeKG77VrrV7XW2Vrr7KioIdrTEkPOoa2bCI0ZjzJYCDm6Gd+UFHa0\nHmZy5GRUUzXM+M7AR/ALZTBC1t2YmqpJDU9lB8cxjxlDWHEOyhBEcFQCBTlbPd1K4YXcCe7FQHyX\n53FAydmFlFILgJ8AS7TWbf3TPDHSVZcUU1VchMkvhfDYAPTOzfhMy6KgtoD0sEnQVtfjkMyQGcu2\nREJTBZMjJnOg+gD+2dMw5K4jKNwPH0sKp44coqm2xtOtFF7GneC+HZiglEpWSvkAdwAfdC2glLoE\n+D+cgb28/5spRqrDX20GoLFuDGOiHOiWFqomjsKu7aRbXJd2hsgc9x7fTAIiwd5GWnAyLbYWmtKT\ncNTUMCbeRHNjHGjdeZ5C9Jc+g7vW2gZ8F/gEOAC8o7Xer5R6Rim1xFXsBSAQ+IdSapdS6oMeqhPi\nvBzauonwMeOAQCKajwKQ54rp6X6uoD5UL6Z26Jgx4x8DQEGyHwBRtmLstjCCo2I5uGWjx5onvJPJ\nnUJa61XAqrNee6rL9wv6uV1CUFtWSnlhAXGTr6fdbsRyaBP2sWPZaTtKTEAMkTbnjTA83XPvc7jf\nFdzHGvyxmC3kGosZHxOD/9GtGI0LCYnJ4MT+T2ioriQofGh8ChHDn6xQFUPWwc0bAGhuiCcuJZS2\n3BwCpk9nf+V+0iPToanSWXDI99wjADA2V5ERmcGuit0EZGdjzdnKqPEhtLYmg9Yc2rLJww0V3kSC\nuxiStNbkbVxLdHIqzQ1+xEVZcTQ24shMpaihiCmRU2Dba87CPfTcB/tyam/JwwDI+TOZ0Zkcrj2M\ncWoGtooKEuKNNFT5Ez4mkYNbNgxaW4X3k+AuhqTywqNUnzxBUFQWSkFk9T4ADiaaAZgWMw0ay8Bg\nBt9gTza1b0Gxzsf6U2RFZeHQDorGBwEQ3XgIgNDRmZw6fJC68jJPtVJ4GQnuYkg68OU6DEYTzfXx\njB4fin3bBnzGjyPHcRRfoy+TIyZDcxVc2vccdzXAc+D7TExmMMDUb0BzJVOipgCww7cUc2ws5Kwn\nMj6Q9raxABzYuHZA2ypGDgnuYshxOOzkb1pP/OQsasocJKWF0Lw9h8ArZrOjbAdTIqdgtreDtdnj\nF1PdZomCpkqCTYGMDx3PrsrdWObMpnnLFpLTw6k8aSA2NZ3969cMnfn5YliT4C6GnKJ9e2iqqSYo\nMguA0Y4TaKsV02XZ5FfnMzVmKjS50lf0cjF1SMVISxRoO7TWkhmVyZ7yPQTMno2juZnRpjLQEB6X\nTW3ZKU7m7/d0a4UXkOAuhpy9az7BLzCI2ooYohKCYOcmlJ8fBxNN2LWdadHToKnKWXgIzZTp9b2k\no51NFUwfNZ0GawPFKaEosxnz3k2ERPvTVB+H2c+f/evXDEZzhZeT4C6GlKbaGo5s38K47DlUFrcw\nYXo0jevXEzBjOjtq9mJQBjKjM7v03IfLsIyrnU0VzBg1A4Cv6nYTMH06TRs3kDI9hlMFzYydehkH\nt3yJtbXVg40V3kCCuxhS9q9fg8Nuxy84CxQkhDdjPXGCoKvms6N8B6lhqVjMltPBPaDv4D7QKcXc\nul7b0c6mSqICohgbMpZtp7ZhmTOb9oICkhIUaAiMuARrawv5m2VapLg4EtzFkKEdDvau+YQxkyZz\n8pBiTEoojq/WglL4zLuCvRV7nVMgAbb9n/Nx2PTcXcMy2/8EwIxRM9hRvgO/K2YBYNq7maiEIMqL\nLEQlJLHz4w/lwqq4KBLcxZBxfN9uastOkZQ5j9qyZiZkx9D4+Rr8MzPZq0/Qam/lstjLnIWbKsFs\nAR9LzxUOcmzsNRgHum4H2Oicx37p6EtpsbVwKLgJn/HjaPjkEyZMj6GiqJGUWddQcfwYJw/IhVVx\n4SS4iyEj96OVBISE0tQQh8lsIGG0nda8PIIWzGdzyWZMBhPZMdnOaTBNlTDj255usvuUguz7O1Mm\nZMdko1B8deorgq+9juacHMaONWIwKNrbx+NnCWTnxx96uNFiOJPgLoaEiqJCCnflkrHgaxTkVjN+\nWjRtaz4GIOi6hWw+uZlLoi8hwBwArXXgsLo9U8ajd2LqyhIFLdVgtxHqF8rE8IlsK91G8HXXgtbY\nt64jKSOSIzlVTJ53NYe3b6G+Uu5YJi6MBHcxJOR8+B4mX18sEdlY2+xMumI09f/6EP+pU6mP8OVg\nzUFmxTrHp2keetMg3dJxfaClGnAOzewq34UtKRaf8eOoX72atNmxtDRYCY9zDj/lfrTSU60Vw5wE\nd+FxDVWV5G9az5Qrr+Hw9jrCRlsIs5XRdvgIwYu/xpaSLQCng3vnNMiIXuvVg546rA9dpkMCzImb\ng9VhZUvJFkKuX0JLTi4xlkaCwv04tqeNtNlXseez1XKXJnFBJLgLj9v2/rtorYlPv4rywnrS58RS\nv/J9MJkIXriQ9cXrifCLYGL4ROcObqxO9YQ+30q6LGQCyIrOIsgniHUn1hFy4w1gMNDwwftMnhNL\ncX4NqbO+ht1mI+dfKwa03cI7SXAXHlVXXsqezz929tpzWvANMJE6LYK6FSsImj8fR7CFjcUbuTLh\nSgzK9ec6RIN7nzqDu/Oiqtlg5ooxV7Dx5EYMUZFYZs2iduVK0i4fjcnXSMEuK6mzZrP701U019d5\nsOFiOJLgLjxq8ztvYjAYSJt7I8f2VJI+dwyt69dgr6sj7Pbb2HpqK822Zq6Kv+r0Tlv/6HwM6H1Y\npsOQWMQEp4P7V//X+dK8uHlUt1azt3IvobfcjK3kFLbcLaTNGs3hbWVkLLgJW3s7X614p/8bLrya\nBHfhMZVFheR9uY6s6xZzaFsDBqMi48p4apa/jTkhgYCZM/mi6AsCTAFcOvrS0zs2V4JfKJh8Pdf4\nC+EfBsp4+pMHcPmYyzEpE2uK1hC0YAGm6Ghq/vYGmfPj0VpzPE8z5apr2PXJv6g6ecKDjRfDjQR3\n4RFaa9b8+Y/4BgSQctkiDmwpZfIVY1BH82jJzSXsrjtxoFl7Yi2z42bjY/Rx7uiwQ0uNW3PcB3uB\nZ5/HU8rZ7o7ZPkCIbwiXxV7Gx4Ufo01Gwu66k6ZNm/CtKyH10lHsW3eSzGu+jsnHl/V/e31gT0B4\nFQnuwiP2r/uc4gP7mHP3t9i9pgKj2UD2oiSqXn8dQ0gIYV//OltPbaW6tZqrE68+vWNLDWjH8Btv\n72CJhLZ6sJ5ODLZo7CJKm0rZVb6L0NtuQ/n6UvX6n5l+fTIazb4N1cy85Q6O7cyhIHebBxsvhhMJ\n7mLQNdfXsf7NvzBmYhpRSTMo2FFB1oJ4jOVFNHy+hrA778BgsfB+wfsE+wQzL37e6Z07b4rtfk6Z\nAb8T0/nU3/Gm1FzZ+dJV8VfhZ/Rj1bFVmMLDCb39Nurefx+/5kqmzIkjf8spEjOuIiIugc9ee5mW\nxoZ+PgPhjSS4i0GlteazV39Pe3MzV33rYdb//TCWEB8uWZBA+UsvYQgIIPzee2lob+CLoi9YmLwQ\nX2OXsfXzyAY5JHXJDtn5kjmAufFz+bTwU6x2KxH3P4AyGqn83z8ybVEivgFmNr5dwHUP/yct9XV8\n8ec/eqjxYjiR4C4G1Y5VH3Bk+1bm3H0fJw5A1clG5tyZiu3AXho/X0PEA/djCgvj08JPabO3sWTc\nkjMr6OjxDtthmTOnQ3a4cfyN1LTV8NnxzzDHRBN2553UrViBOlHA5V8fT+nROipO+DPzljvI37Re\n7rUq+iTBXQyakkMH2PDmXxg/fSbxU65i+78KGXtJFMnpYZT98peYoqIIv/detNa8ffBtxoWMY0rk\nlDMraXI/uA/2+lS3VsSetUq1w6zYWSQEJbD84HIAIh/+d4yhoZQ++ywpM2KInxTGlhUFpMz8GmMm\nTubT//s9p44c7O9TEF5EgrsYFFXFJ1jx62cIioxk3r2P8Mmr+/CzmJh7ZyrVb7xBa14eMT95EkNA\nADvKd3Cg+gB3Tbrr3PHsLS87HwPC3T72QCcOOy8db0pb/3DGywZl4PbU29lZvpMDVQcwhoQQ9eij\ntOTkUvfPf3LlPZMwmg18+voBFn73CQJCw3j/xWclsZjokQR3MeDqyst499mfYjSZuOmJn7PhreM0\nVrdx7YNTMJQWUvHS7wicN4+ga68FYNm+ZYT4hnD9uOvPraylBgJjwGAc5LPoJ75BYA5wnsdZbhh/\nA/4mf/6a91cAQr9+KwEzZ1L+q+fxba7kmvsnU32qic3vneSGH/0Ua2sL/3jmSeorygf7LMQwIMFd\nDKiyo0d466nHsLa1ctPSp9n+r2qK8qqZe1cq0TEmTj76nxiCAhn9y1+glGJ/1X7WFa/jG2nfwN/k\nf2Zldqsz3W/2/Z45mf6gFGR/yzm8dNbE+BDfEO5IvYPVx1ZztO4oymAg9rlnwWik+PvfZ0yiH1fc\nOoGjOyvYs66FW578BS0N9Sx/+gmqS0566ITEUCXBXQyY/M0bWP70ExiMRm558jlyVjVSsLOCK74+\ngYkzIin+3ndpP36cMS+8iCkyEq01v839LcE+wdw18a5zK+xM9eveTJnBvk2d24ezRIGtBdqbztl0\nX/p9+Bp9+V3u7wAwxzHyRmkAAAq+SURBVMYy5sUXaDuQT8kTS8mYO5oZ1ydzcGspe9ZZuenHv8Da\n1sabTz7Koa829ePZiOFOgrvod021NXz42+f56He/ISohiYWP/IJ1f6/k+P/f3r0HR1XdARz//nY3\nD8iLBDSEZ0CJgCIFUXlUaEFBEVFbrTgKlLbD1BFKba2KaHWsVE07KlO1atVOH3Qc342CIC209QHR\nYFRKEIUgkGDk1ZCQBJLd/fWP3dCQx+6yyWYf/X3+2t17cs/vTO7+7tlz7z1n62Emzylg1ITeVP5o\nCfUbN5G3/H7SxvumFli7ey3FXxazaMwi0pPT29lx84RhcXobZLN27nVvlpOaw8JzF7J+73reqXwH\ngPQpU8hdupTadeuovPVnnHdxPyZ86wx2lh7g3ZeOMPsnvySn/0Bef/gB1vz2UZsi2ADginYAJnHU\nH6mmZNVrlK55Ha/bw/hv34jDNZY3Hv+clJ4urlg0mtz0o+yeN59jZWX0vfceel11FQBVdVUs37Sc\nETkjuLbg2vYrCHM2yJiZOKxZy9shs/PbbJ43ch5FO4u45917eHH2i+Sk5pAzby7q8bD/oYfYU1XF\nqEcfITt3FH//wzZWPfEFY6bfRL+z3uajNUV8Xvwe42ZdzejpM+mZmdXp9pn4FFJyF5FLgRWAE3hG\nVR9stT0F+CNwHnAIuE5Vv+jaUE0saqitYfcnpWzf+DblH36A1+tl6JiJZJw+mbKNHhobKii4MJeJ\nM/vT8OrzlD/9O8TlYsBjvyFjqm+mx9rGWpZsWMJxz3EKJxficnRwWNbF6QpMrTUvMlLX/p0uyc5k\nCicXcsOqG7hlwy08ecmT9HD1oPeC75LUN5d9y+6i/PJZ9Ln5ZubcdjXvFO2lZPVeUtOGMXrGbRzc\ns5b3XlxJ8WsvcOa48Qy7cBL5o8eQ0jPAYuIm4QRN7iLiBB4HLgEqgA9EpEhVy1oU+z7wH1U9U0Tm\nAA8B10UiYNO9PG43jccaaKyvp676MDUHD1BzYD+HKvbwVflODlXuAVWSe2TQe9Ak3O7h7NuVjmN3\nI4ML0hjR5wAp2/5Cxcy1eOvqSJ82jb53LSMpLw+ArQe3cvd7d7Orehcrpq4gPyu/42BOPJ0a2lS/\nMauDB5laGp4znOUXLef2f93OgjULuG/SfRRkF5B52WWkjhxJ1f3L2V9YiOOppxg9fToFU75O2b40\nPt1Uh+oUsgeeh1O2UF76Eds3vg0i9B4wmL5DzyA7rz/Zef3I6H0aqenppKZnkJKWhiNe70Ay7ZJg\nF51EZAJwr6rO8L9fCqCqD7Qos9ZfZqOIuIAq4DQNsPNx48ZpSUnJKQe8Zf1blLz+yon3bSpoU6W2\n2qyBNqMo6lXqqo+3U7ue/Kpt5e3G3GEsXu8pTl14qhcIW7e91TbpsKifG/C0v2vpicN5Og5XHo6k\nfMSZS5K7jrSj5WQd2caAylJSm44CUJ8CpcOEDWMd7OonJ6pToE4gxwsPHEtioidwcqmv3k+Ku4YZ\n6S+jEvxykcerfHGonl9ceTZzJ+QHLR+uJ/6xg8I12xnaJy2kIZpkPc6bR79DXVIOaVmBrx+sd3m4\nK7WJWoFcL/TU/1UwuNLLxM1eRuxUUpp8nzWkZLIv72tUZxVwNGMYbmdP1F2J112B170Pr+cgaNsL\nuT5OwIHgAASkxeugun7wS1rv0yHgjPwJKLNPj4gP5U245nqGT5oS1t+KyGZVHResXCjDMv2BlhNJ\nVwAXdlRGVd0icgToDZzUNRGRhcBCgEGDBoVQdVs9MrPoM3jISZ+1+Ue0+oYFm9ip9XavR6naVdPB\n7lrtq3VdwWJBThTyHDmCNjYFjq3NToMcdnJyCY/XQ6O3qeXmE3m84z0JiCI4EHEh4kTEhUOScTpS\ncDhTcIri1AYcHMbJXlJqy3By1JcfcoTygQ4aMrOozkuiJtcFDuEcYJS/1ua6B0gKV7hyyEwPfih+\n5cznY89gzsrpFbRsszGDsplcENlhnEtG5LK9qha3N/ST7+qD8zgn5SvScnoGLDcVWKVuityH+Mzb\nwHG8/9s4BDYPgVK3krPfTe8qN2k1blLr3yezqZjMavA4svD0GIqbXniTMvEm5+LGicfbhJdGvOrG\nqx5Um1C8KM0dDvW9PnEaDswlLqTNCbdr71aSpCQc6e1caO9ifQZmII7I3muSmpEZ0f1DaD33a4EZ\nqvoD//u5wAWqurhFma3+MhX+9zv9ZQ61t08Iv+dujDH/z0LtuYdyeqoABrZ4PwDY11EZ/7BMFnA4\ntFCNMcZ0tVCS+wfAMBEZIiLJwBygqFWZImC+//U1wPpA4+3GGGMiK+hAp38MfRGwFt+I6nOqulVE\n7gNKVLUIeBb4k4jswNdjnxPJoI0xxgQW0n3uqroaWN3qs5+3eH0M6ODJE2OMMd3Nph8wxpgEZMnd\nGGMSkCV3Y4xJQJbcjTEmAQV9iCliFYscAHaH+ed9aPX0axyztsSeRGkHWFtiVWfaMlhVgz52HbXk\n3hkiUhLKE1rxwNoSexKlHWBtiVXd0RYbljHGmARkyd0YYxJQvCb3p6MdQBeytsSeRGkHWFtiVcTb\nEpdj7sYYYwKL1567McaYACy5G2NMAorr5C4ii0Vku4hsFZHCaMfTWSJyq4ioiAReey1GicivRORT\nEflERF4VkdCXTIoRInKp/5jaISJ3RDuecInIQBHZICLb/N+PJdGOqTNExCkipSLyRrRj6QwR6SUi\nL/m/J9v8y5hGRNwmdxH5JnAlcK6qng38OsohdYqIDMS3CPmeaMfSCeuAc1T1XOAzYGmU4zklLRaD\nvwwYCVwvIiOjG1XY3MBPVXUEMB64OY7bArAE2BbtILrACmCNqg4HRhPBNsVtcgduAh5U1eMAqro/\nyvF01iPAbXT1wpPdSFXfUlW3/+0mfKt2xZMLgB2qWq6qjcDz+DoQcUdVv1TVD/2va/Elkf7RjSo8\nIjIAuBx4JtqxdIaIZAKT8a1/gao2qmp1pOqL5+ReAFwkIsUi8k8ROT/aAYVLRGYDlar6cbRj6ULf\nA96MdhCnqL3F4OMyIbYkIvnAGKA4upGE7VF8HR9vsIIxbihwAPi9f4jpGRFJi1RlIS3WES0i8jeg\nbzubluGLPRvfT87zgRdEZGisLu8XpC13AtO7N6LwBGqHqv7VX2YZvmGBld0ZWxeQdj6LyeMpVCKS\nDrwM/FhVa6Idz6kSkVnAflXdLCLfiHY8neQCxgKLVbVYRFYAdwB3R6qymKWqF3e0TURuAl7xJ/P3\nRcSLbzKeA90V36noqC0iMgoYAnwsIuAbyvhQRC5Q1apuDDEkgf4nACIyH5gFTIvVE20AoSwGHzdE\nJAlfYl+pqq9EO54wTQJmi8hMIBXIFJE/q+qNUY4rHBVAhao2/4J6CV9yj4h4HpZ5DZgKICIFQDJx\nOGOcqm5R1dNVNV9V8/EdAGNjMbEHIyKXArcDs1W1PtrxhCGUxeDjgvh6Cs8C21T14WjHEy5VXaqq\nA/zfjTnA+jhN7Pi/03tF5Cz/R9OAskjVF9M99yCeA54TkX8DjcD8OOwpJprHgBRgnf9XyCZV/WF0\nQwpdR4vBRzmscE0C5gJbROQj/2d3+tdDNtGzGFjp7zyUAwsiVZFNP2CMMQkonodljDHGdMCSuzHG\nJCBL7sYYk4AsuRtjTAKy5G6MMQnIkrsxxiQgS+7GGJOA/gur4mij/FHluAAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "
" ] }, "metadata": {}, @@ -1063,10 +5660,49 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 56, "metadata": { - "collapsed": true + "collapsed": true, + "jupyter": { + "outputs_hidden": true + } }, + "outputs": [ + { + "ename": "TypeError", + "evalue": "unsupported operand type(s) for +: 'vectorize' and 'vectorize'", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mTypeError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m()\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mf\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0muniform\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m-\u001b[0m\u001b[1;36m0.5\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m-\u001b[0m\u001b[1;36m0.3\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;33m+\u001b[0m \u001b[0muniform\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;36m0.3\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;36m0.5\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m;\u001b[0m\u001b[1;31m# Распределение, над которым мы экспериментируем\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 2\u001b[0m \u001b[0mwind\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;36m1\u001b[0m\u001b[1;33m;\u001b[0m \u001b[1;31m# ширина окна интегрирования\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 3\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 4\u001b[0m \u001b[0mfs\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;33m[\u001b[0m\u001b[0mf\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m;\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 5\u001b[0m \u001b[0mx\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mlinspace\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m-\u001b[0m\u001b[0mwind\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mwind\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;36m300\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;31mTypeError\u001b[0m: unsupported operand type(s) for +: 'vectorize' and 'vectorize'" + ] + } + ], + "source": [ + "f = uniform(-0.5,-0.3) + uniform(0.3,0.5);# Распределение, над которым мы экспериментируем\n", + "wind = 1; # ширина окна интегрирования\n", + "\n", + "fs = [f];\n", + "x = np.linspace(-wind, wind, 300)\n", + "traces = []\n", + "traces.append(go.Scatter(x = x, y = f(x),name=\"Initial distribution\"))\n", + "\n", + "\n", + "for i in range(1,6):\n", + " wi = (i+1)*wind\n", + " fs.append(interpolate(convolute(fs[i-1],f,-wind,wind),-wi,wi))\n", + " x = np.linspace(-wi, wi, 300, endpoint=True)\n", + " traces.append(go.Scatter(x = x, y = fs[i](x), name = \"Convolution \"+str(i)))\n", + "\n", + "iplot(traces)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, "outputs": [], "source": [] } @@ -1098,7 +5734,20 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.2" + "version": "3.7.4" + }, + "toc": { + "base_numbering": 1, + "nav_menu": {}, + "number_sections": false, + "sideBar": false, + "skip_h1_title": false, + "title_cell": "Table of Contents", + "title_sidebar": "Contents", + "toc_cell": false, + "toc_position": {}, + "toc_section_display": false, + "toc_window_display": false }, "varInspector": { "cols": { @@ -94638,5 +99287,5 @@ } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 4 } diff --git a/notebooks/python/fitting.ipynb b/notebooks/python/fitting.ipynb new file mode 100644 index 0000000..1c479f0 --- /dev/null +++ b/notebooks/python/fitting.ipynb @@ -0,0 +1,893 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "# Общий случай" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "source": [ + "## Постановка задачи" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "source": [ + "Пусть есть параметрическая модель $M\\left( \\theta \\right)$, где $\\theta$ - параметры." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "source": [ + "Функция правдоподобия $L\\left( X | M\\left( \\theta \\right) \\right)$ определят достоверность получения набора данных $X$ при заданном наборе параметров и данной модели." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "source": [ + "**Задача**: определить такой набор параметров $\\theta$, для которого функция принимает наибольшее значение." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "source": [ + "## Классификация\n", + "\n", + "По порядку производной:\n", + "\n", + "* Не использует производных $L$\n", + "\n", + "* Использует первую производную $\\frac{\\partial L}{\\partial \\theta_i}$ (градиент)\n", + "\n", + "* Использует вторые прозиводные $\\frac{\\partial^2 L}{\\partial \\theta_i \\partial \\theta_j}$ (гессиан)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "## Без производных" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "source": [ + "### Прямой перебор\n", + "(brute force)\n", + "* Строим сетку и ищем на ней максимум. \n", + "* Возможен только для одномерных, максимум двумерных задач. \n", + "* Точность ограничена размером ячкйки сетки." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "source": [ + "### Симплекс методы \n", + "1. Строим многоугольник в пространстве параметров с $n+1$ вершинами, где $n$ - размерность пространства. \n", + "2. Орпделеляем значения функции в каждой вершине. \n", + "3. Находим вершину с наименьшим значением и двигаем ее к центру масс многоугольника." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "source": [ + "![Nelder-mead](images/Nelder_Mead1.gif)" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Optimization terminated successfully.\n", + " Current function value: 0.000000\n", + " Iterations: 339\n", + " Function evaluations: 571\n" + ] + }, + { + "data": { + "text/plain": [ + " final_simplex: (array([[1. , 1. , 1. , 1. , 1. ],\n", + " [1. , 1. , 1. , 1. , 1. ],\n", + " [1. , 1. , 1. , 1.00000001, 1.00000001],\n", + " [1. , 1. , 1. , 1. , 1. ],\n", + " [1. , 1. , 1. , 1. , 1. ],\n", + " [1. , 1. , 1. , 1. , 0.99999999]]), array([4.86115343e-17, 7.65182843e-17, 8.11395684e-17, 8.63263255e-17,\n", + " 8.64080682e-17, 2.17927418e-16]))\n", + " fun: 4.861153433422115e-17\n", + " message: 'Optimization terminated successfully.'\n", + " nfev: 571\n", + " nit: 339\n", + " status: 0\n", + " success: True\n", + " x: array([1., 1., 1., 1., 1.])" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import numpy as np\n", + "from scipy.optimize import minimize\n", + "\n", + "\n", + "def rosen(x):\n", + " \"\"\"The Rosenbrock function\"\"\"\n", + " return sum(100.0*(x[1:]-x[:-1]**2.0)**2.0 + (1-x[:-1])**2.0)\n", + "\n", + "x0 = np.array([1.3, 0.7, 0.8, 1.9, 1.2])\n", + "minimize(rosen, x0, method='nelder-mead', options={'xtol': 1e-8, 'disp': True})" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Help on function minimize in module scipy.optimize._minimize:\n", + "\n", + "minimize(fun, x0, args=(), method=None, jac=None, hess=None, hessp=None, bounds=None, constraints=(), tol=None, callback=None, options=None)\n", + " Minimization of scalar function of one or more variables.\n", + " \n", + " Parameters\n", + " ----------\n", + " fun : callable\n", + " The objective function to be minimized.\n", + " \n", + " ``fun(x, *args) -> float``\n", + " \n", + " where x is an 1-D array with shape (n,) and `args`\n", + " is a tuple of the fixed parameters needed to completely\n", + " specify the function.\n", + " x0 : ndarray, shape (n,)\n", + " Initial guess. Array of real elements of size (n,),\n", + " where 'n' is the number of independent variables.\n", + " args : tuple, optional\n", + " Extra arguments passed to the objective function and its\n", + " derivatives (`fun`, `jac` and `hess` functions).\n", + " method : str or callable, optional\n", + " Type of solver. Should be one of\n", + " \n", + " - 'Nelder-Mead' :ref:`(see here) `\n", + " - 'Powell' :ref:`(see here) `\n", + " - 'CG' :ref:`(see here) `\n", + " - 'BFGS' :ref:`(see here) `\n", + " - 'Newton-CG' :ref:`(see here) `\n", + " - 'L-BFGS-B' :ref:`(see here) `\n", + " - 'TNC' :ref:`(see here) `\n", + " - 'COBYLA' :ref:`(see here) `\n", + " - 'SLSQP' :ref:`(see here) `\n", + " - 'trust-constr':ref:`(see here) `\n", + " - 'dogleg' :ref:`(see here) `\n", + " - 'trust-ncg' :ref:`(see here) `\n", + " - 'trust-exact' :ref:`(see here) `\n", + " - 'trust-krylov' :ref:`(see here) `\n", + " - custom - a callable object (added in version 0.14.0),\n", + " see below for description.\n", + " \n", + " If not given, chosen to be one of ``BFGS``, ``L-BFGS-B``, ``SLSQP``,\n", + " depending if the problem has constraints or bounds.\n", + " jac : {callable, '2-point', '3-point', 'cs', bool}, optional\n", + " Method for computing the gradient vector. Only for CG, BFGS,\n", + " Newton-CG, L-BFGS-B, TNC, SLSQP, dogleg, trust-ncg, trust-krylov,\n", + " trust-exact and trust-constr. If it is a callable, it should be a\n", + " function that returns the gradient vector:\n", + " \n", + " ``jac(x, *args) -> array_like, shape (n,)``\n", + " \n", + " where x is an array with shape (n,) and `args` is a tuple with\n", + " the fixed parameters. Alternatively, the keywords\n", + " {'2-point', '3-point', 'cs'} select a finite\n", + " difference scheme for numerical estimation of the gradient. Options\n", + " '3-point' and 'cs' are available only to 'trust-constr'.\n", + " If `jac` is a Boolean and is True, `fun` is assumed to return the\n", + " gradient along with the objective function. If False, the gradient\n", + " will be estimated using '2-point' finite difference estimation.\n", + " hess : {callable, '2-point', '3-point', 'cs', HessianUpdateStrategy}, optional\n", + " Method for computing the Hessian matrix. Only for Newton-CG, dogleg,\n", + " trust-ncg, trust-krylov, trust-exact and trust-constr. If it is\n", + " callable, it should return the Hessian matrix:\n", + " \n", + " ``hess(x, *args) -> {LinearOperator, spmatrix, array}, (n, n)``\n", + " \n", + " where x is a (n,) ndarray and `args` is a tuple with the fixed\n", + " parameters. LinearOperator and sparse matrix returns are\n", + " allowed only for 'trust-constr' method. Alternatively, the keywords\n", + " {'2-point', '3-point', 'cs'} select a finite difference scheme\n", + " for numerical estimation. Or, objects implementing\n", + " `HessianUpdateStrategy` interface can be used to approximate\n", + " the Hessian. Available quasi-Newton methods implementing\n", + " this interface are:\n", + " \n", + " - `BFGS`;\n", + " - `SR1`.\n", + " \n", + " Whenever the gradient is estimated via finite-differences,\n", + " the Hessian cannot be estimated with options\n", + " {'2-point', '3-point', 'cs'} and needs to be\n", + " estimated using one of the quasi-Newton strategies.\n", + " Finite-difference options {'2-point', '3-point', 'cs'} and\n", + " `HessianUpdateStrategy` are available only for 'trust-constr' method.\n", + " hessp : callable, optional\n", + " Hessian of objective function times an arbitrary vector p. Only for\n", + " Newton-CG, trust-ncg, trust-krylov, trust-constr.\n", + " Only one of `hessp` or `hess` needs to be given. If `hess` is\n", + " provided, then `hessp` will be ignored. `hessp` must compute the\n", + " Hessian times an arbitrary vector:\n", + " \n", + " ``hessp(x, p, *args) -> ndarray shape (n,)``\n", + " \n", + " where x is a (n,) ndarray, p is an arbitrary vector with\n", + " dimension (n,) and `args` is a tuple with the fixed\n", + " parameters.\n", + " bounds : sequence or `Bounds`, optional\n", + " Bounds on variables for L-BFGS-B, TNC, SLSQP and\n", + " trust-constr methods. There are two ways to specify the bounds:\n", + " \n", + " 1. Instance of `Bounds` class.\n", + " 2. Sequence of ``(min, max)`` pairs for each element in `x`. None\n", + " is used to specify no bound.\n", + " \n", + " constraints : {Constraint, dict} or List of {Constraint, dict}, optional\n", + " Constraints definition (only for COBYLA, SLSQP and trust-constr).\n", + " Constraints for 'trust-constr' are defined as a single object or a\n", + " list of objects specifying constraints to the optimization problem.\n", + " Available constraints are:\n", + " \n", + " - `LinearConstraint`\n", + " - `NonlinearConstraint`\n", + " \n", + " Constraints for COBYLA, SLSQP are defined as a list of dictionaries.\n", + " Each dictionary with fields:\n", + " \n", + " type : str\n", + " Constraint type: 'eq' for equality, 'ineq' for inequality.\n", + " fun : callable\n", + " The function defining the constraint.\n", + " jac : callable, optional\n", + " The Jacobian of `fun` (only for SLSQP).\n", + " args : sequence, optional\n", + " Extra arguments to be passed to the function and Jacobian.\n", + " \n", + " Equality constraint means that the constraint function result is to\n", + " be zero whereas inequality means that it is to be non-negative.\n", + " Note that COBYLA only supports inequality constraints.\n", + " tol : float, optional\n", + " Tolerance for termination. For detailed control, use solver-specific\n", + " options.\n", + " options : dict, optional\n", + " A dictionary of solver options. All methods accept the following\n", + " generic options:\n", + " \n", + " maxiter : int\n", + " Maximum number of iterations to perform.\n", + " disp : bool\n", + " Set to True to print convergence messages.\n", + " \n", + " For method-specific options, see :func:`show_options()`.\n", + " callback : callable, optional\n", + " Called after each iteration. For 'trust-constr' it is a callable with\n", + " the signature:\n", + " \n", + " ``callback(xk, OptimizeResult state) -> bool``\n", + " \n", + " where ``xk`` is the current parameter vector. and ``state``\n", + " is an `OptimizeResult` object, with the same fields\n", + " as the ones from the return. If callback returns True\n", + " the algorithm execution is terminated.\n", + " For all the other methods, the signature is:\n", + " \n", + " ``callback(xk)``\n", + " \n", + " where ``xk`` is the current parameter vector.\n", + " \n", + " Returns\n", + " -------\n", + " res : OptimizeResult\n", + " The optimization result represented as a ``OptimizeResult`` object.\n", + " Important attributes are: ``x`` the solution array, ``success`` a\n", + " Boolean flag indicating if the optimizer exited successfully and\n", + " ``message`` which describes the cause of the termination. See\n", + " `OptimizeResult` for a description of other attributes.\n", + " \n", + " \n", + " See also\n", + " --------\n", + " minimize_scalar : Interface to minimization algorithms for scalar\n", + " univariate functions\n", + " show_options : Additional options accepted by the solvers\n", + " \n", + " Notes\n", + " -----\n", + " This section describes the available solvers that can be selected by the\n", + " 'method' parameter. The default method is *BFGS*.\n", + " \n", + " **Unconstrained minimization**\n", + " \n", + " Method :ref:`Nelder-Mead ` uses the\n", + " Simplex algorithm [1]_, [2]_. This algorithm is robust in many\n", + " applications. However, if numerical computation of derivative can be\n", + " trusted, other algorithms using the first and/or second derivatives\n", + " information might be preferred for their better performance in\n", + " general.\n", + " \n", + " Method :ref:`Powell ` is a modification\n", + " of Powell's method [3]_, [4]_ which is a conjugate direction\n", + " method. It performs sequential one-dimensional minimizations along\n", + " each vector of the directions set (`direc` field in `options` and\n", + " `info`), which is updated at each iteration of the main\n", + " minimization loop. The function need not be differentiable, and no\n", + " derivatives are taken.\n", + " \n", + " Method :ref:`CG ` uses a nonlinear conjugate\n", + " gradient algorithm by Polak and Ribiere, a variant of the\n", + " Fletcher-Reeves method described in [5]_ pp. 120-122. Only the\n", + " first derivatives are used.\n", + " \n", + " Method :ref:`BFGS ` uses the quasi-Newton\n", + " method of Broyden, Fletcher, Goldfarb, and Shanno (BFGS) [5]_\n", + " pp. 136. It uses the first derivatives only. BFGS has proven good\n", + " performance even for non-smooth optimizations. This method also\n", + " returns an approximation of the Hessian inverse, stored as\n", + " `hess_inv` in the OptimizeResult object.\n", + " \n", + " Method :ref:`Newton-CG ` uses a\n", + " Newton-CG algorithm [5]_ pp. 168 (also known as the truncated\n", + " Newton method). It uses a CG method to the compute the search\n", + " direction. See also *TNC* method for a box-constrained\n", + " minimization with a similar algorithm. Suitable for large-scale\n", + " problems.\n", + " \n", + " Method :ref:`dogleg ` uses the dog-leg\n", + " trust-region algorithm [5]_ for unconstrained minimization. This\n", + " algorithm requires the gradient and Hessian; furthermore the\n", + " Hessian is required to be positive definite.\n", + " \n", + " Method :ref:`trust-ncg ` uses the\n", + " Newton conjugate gradient trust-region algorithm [5]_ for\n", + " unconstrained minimization. This algorithm requires the gradient\n", + " and either the Hessian or a function that computes the product of\n", + " the Hessian with a given vector. Suitable for large-scale problems.\n", + " \n", + " Method :ref:`trust-krylov ` uses\n", + " the Newton GLTR trust-region algorithm [14]_, [15]_ for unconstrained\n", + " minimization. This algorithm requires the gradient\n", + " and either the Hessian or a function that computes the product of\n", + " the Hessian with a given vector. Suitable for large-scale problems.\n", + " On indefinite problems it requires usually less iterations than the\n", + " `trust-ncg` method and is recommended for medium and large-scale problems.\n", + " \n", + " Method :ref:`trust-exact `\n", + " is a trust-region method for unconstrained minimization in which\n", + " quadratic subproblems are solved almost exactly [13]_. This\n", + " algorithm requires the gradient and the Hessian (which is\n", + " *not* required to be positive definite). It is, in many\n", + " situations, the Newton method to converge in fewer iteraction\n", + " and the most recommended for small and medium-size problems.\n", + " \n", + " **Bound-Constrained minimization**\n", + " \n", + " Method :ref:`L-BFGS-B ` uses the L-BFGS-B\n", + " algorithm [6]_, [7]_ for bound constrained minimization.\n", + " \n", + " Method :ref:`TNC ` uses a truncated Newton\n", + " algorithm [5]_, [8]_ to minimize a function with variables subject\n", + " to bounds. This algorithm uses gradient information; it is also\n", + " called Newton Conjugate-Gradient. It differs from the *Newton-CG*\n", + " method described above as it wraps a C implementation and allows\n", + " each variable to be given upper and lower bounds.\n", + " \n", + " **Constrained Minimization**\n", + " \n", + " Method :ref:`COBYLA ` uses the\n", + " Constrained Optimization BY Linear Approximation (COBYLA) method\n", + " [9]_, [10]_, [11]_. The algorithm is based on linear\n", + " approximations to the objective function and each constraint. The\n", + " method wraps a FORTRAN implementation of the algorithm. The\n", + " constraints functions 'fun' may return either a single number\n", + " or an array or list of numbers.\n", + " \n", + " Method :ref:`SLSQP ` uses Sequential\n", + " Least SQuares Programming to minimize a function of several\n", + " variables with any combination of bounds, equality and inequality\n", + " constraints. The method wraps the SLSQP Optimization subroutine\n", + " originally implemented by Dieter Kraft [12]_. Note that the\n", + " wrapper handles infinite values in bounds by converting them into\n", + " large floating values.\n", + " \n", + " Method :ref:`trust-constr ` is a\n", + " trust-region algorithm for constrained optimization. It swiches\n", + " between two implementations depending on the problem definition.\n", + " It is the most versatile constrained minimization algorithm\n", + " implemented in SciPy and the most appropriate for large-scale problems.\n", + " For equality constrained problems it is an implementation of Byrd-Omojokun\n", + " Trust-Region SQP method described in [17]_ and in [5]_, p. 549. When\n", + " inequality constraints are imposed as well, it swiches to the trust-region\n", + " interior point method described in [16]_. This interior point algorithm,\n", + " in turn, solves inequality constraints by introducing slack variables\n", + " and solving a sequence of equality-constrained barrier problems\n", + " for progressively smaller values of the barrier parameter.\n", + " The previously described equality constrained SQP method is\n", + " used to solve the subproblems with increasing levels of accuracy\n", + " as the iterate gets closer to a solution.\n", + " \n", + " **Finite-Difference Options**\n", + " \n", + " For Method :ref:`trust-constr `\n", + " the gradient and the Hessian may be approximated using\n", + " three finite-difference schemes: {'2-point', '3-point', 'cs'}.\n", + " The scheme 'cs' is, potentially, the most accurate but it\n", + " requires the function to correctly handles complex inputs and to\n", + " be differentiable in the complex plane. The scheme '3-point' is more\n", + " accurate than '2-point' but requires twice as much operations.\n", + " \n", + " **Custom minimizers**\n", + " \n", + " It may be useful to pass a custom minimization method, for example\n", + " when using a frontend to this method such as `scipy.optimize.basinhopping`\n", + " or a different library. You can simply pass a callable as the ``method``\n", + " parameter.\n", + " \n", + " The callable is called as ``method(fun, x0, args, **kwargs, **options)``\n", + " where ``kwargs`` corresponds to any other parameters passed to `minimize`\n", + " (such as `callback`, `hess`, etc.), except the `options` dict, which has\n", + " its contents also passed as `method` parameters pair by pair. Also, if\n", + " `jac` has been passed as a bool type, `jac` and `fun` are mangled so that\n", + " `fun` returns just the function values and `jac` is converted to a function\n", + " returning the Jacobian. The method shall return an ``OptimizeResult``\n", + " object.\n", + " \n", + " The provided `method` callable must be able to accept (and possibly ignore)\n", + " arbitrary parameters; the set of parameters accepted by `minimize` may\n", + " expand in future versions and then these parameters will be passed to\n", + " the method. You can find an example in the scipy.optimize tutorial.\n", + " \n", + " .. versionadded:: 0.11.0\n", + " \n", + " References\n", + " ----------\n", + " .. [1] Nelder, J A, and R Mead. 1965. A Simplex Method for Function\n", + " Minimization. The Computer Journal 7: 308-13.\n", + " .. [2] Wright M H. 1996. Direct search methods: Once scorned, now\n", + " respectable, in Numerical Analysis 1995: Proceedings of the 1995\n", + " Dundee Biennial Conference in Numerical Analysis (Eds. D F\n", + " Griffiths and G A Watson). Addison Wesley Longman, Harlow, UK.\n", + " 191-208.\n", + " .. [3] Powell, M J D. 1964. An efficient method for finding the minimum of\n", + " a function of several variables without calculating derivatives. The\n", + " Computer Journal 7: 155-162.\n", + " .. [4] Press W, S A Teukolsky, W T Vetterling and B P Flannery.\n", + " Numerical Recipes (any edition), Cambridge University Press.\n", + " .. [5] Nocedal, J, and S J Wright. 2006. Numerical Optimization.\n", + " Springer New York.\n", + " .. [6] Byrd, R H and P Lu and J. Nocedal. 1995. A Limited Memory\n", + " Algorithm for Bound Constrained Optimization. SIAM Journal on\n", + " Scientific and Statistical Computing 16 (5): 1190-1208.\n", + " .. [7] Zhu, C and R H Byrd and J Nocedal. 1997. L-BFGS-B: Algorithm\n", + " 778: L-BFGS-B, FORTRAN routines for large scale bound constrained\n", + " optimization. ACM Transactions on Mathematical Software 23 (4):\n", + " 550-560.\n", + " .. [8] Nash, S G. Newton-Type Minimization Via the Lanczos Method.\n", + " 1984. SIAM Journal of Numerical Analysis 21: 770-778.\n", + " .. [9] Powell, M J D. A direct search optimization method that models\n", + " the objective and constraint functions by linear interpolation.\n", + " 1994. Advances in Optimization and Numerical Analysis, eds. S. Gomez\n", + " and J-P Hennart, Kluwer Academic (Dordrecht), 51-67.\n", + " .. [10] Powell M J D. Direct search algorithms for optimization\n", + " calculations. 1998. Acta Numerica 7: 287-336.\n", + " .. [11] Powell M J D. A view of algorithms for optimization without\n", + " derivatives. 2007.Cambridge University Technical Report DAMTP\n", + " 2007/NA03\n", + " .. [12] Kraft, D. A software package for sequential quadratic\n", + " programming. 1988. Tech. Rep. DFVLR-FB 88-28, DLR German Aerospace\n", + " Center -- Institute for Flight Mechanics, Koln, Germany.\n", + " .. [13] Conn, A. R., Gould, N. I., and Toint, P. L.\n", + " Trust region methods. 2000. Siam. pp. 169-200.\n", + " .. [14] F. Lenders, C. Kirches, A. Potschka: \"trlib: A vector-free\n", + " implementation of the GLTR method for iterative solution of\n", + " the trust region problem\", https://arxiv.org/abs/1611.04718\n", + " .. [15] N. Gould, S. Lucidi, M. Roma, P. Toint: \"Solving the\n", + " Trust-Region Subproblem using the Lanczos Method\",\n", + " SIAM J. Optim., 9(2), 504--525, (1999).\n", + " .. [16] Byrd, Richard H., Mary E. Hribar, and Jorge Nocedal. 1999.\n", + " An interior point algorithm for large-scale nonlinear programming.\n", + " SIAM Journal on Optimization 9.4: 877-900.\n", + " .. [17] Lalee, Marucha, Jorge Nocedal, and Todd Plantega. 1998. On the\n", + " implementation of an algorithm for large-scale equality constrained\n", + " optimization. SIAM Journal on Optimization 8.3: 682-706.\n", + " \n", + " Examples\n", + " --------\n", + " Let us consider the problem of minimizing the Rosenbrock function. This\n", + " function (and its respective derivatives) is implemented in `rosen`\n", + " (resp. `rosen_der`, `rosen_hess`) in the `scipy.optimize`.\n", + " \n", + " >>> from scipy.optimize import minimize, rosen, rosen_der\n", + " \n", + " A simple application of the *Nelder-Mead* method is:\n", + " \n", + " >>> x0 = [1.3, 0.7, 0.8, 1.9, 1.2]\n", + " >>> res = minimize(rosen, x0, method='Nelder-Mead', tol=1e-6)\n", + " >>> res.x\n", + " array([ 1., 1., 1., 1., 1.])\n", + " \n", + " Now using the *BFGS* algorithm, using the first derivative and a few\n", + " options:\n", + " \n", + " >>> res = minimize(rosen, x0, method='BFGS', jac=rosen_der,\n", + " ... options={'gtol': 1e-6, 'disp': True})\n", + " Optimization terminated successfully.\n", + " Current function value: 0.000000\n", + " Iterations: 26\n", + " Function evaluations: 31\n", + " Gradient evaluations: 31\n", + " >>> res.x\n", + " array([ 1., 1., 1., 1., 1.])\n", + " >>> print(res.message)\n", + " Optimization terminated successfully.\n", + " >>> res.hess_inv\n", + " array([[ 0.00749589, 0.01255155, 0.02396251, 0.04750988, 0.09495377], # may vary\n", + " [ 0.01255155, 0.02510441, 0.04794055, 0.09502834, 0.18996269],\n", + " [ 0.02396251, 0.04794055, 0.09631614, 0.19092151, 0.38165151],\n", + " [ 0.04750988, 0.09502834, 0.19092151, 0.38341252, 0.7664427 ],\n", + " [ 0.09495377, 0.18996269, 0.38165151, 0.7664427, 1.53713523]])\n", + " \n", + " \n", + " Next, consider a minimization problem with several constraints (namely\n", + " Example 16.4 from [5]_). The objective function is:\n", + " \n", + " >>> fun = lambda x: (x[0] - 1)**2 + (x[1] - 2.5)**2\n", + " \n", + " There are three constraints defined as:\n", + " \n", + " >>> cons = ({'type': 'ineq', 'fun': lambda x: x[0] - 2 * x[1] + 2},\n", + " ... {'type': 'ineq', 'fun': lambda x: -x[0] - 2 * x[1] + 6},\n", + " ... {'type': 'ineq', 'fun': lambda x: -x[0] + 2 * x[1] + 2})\n", + " \n", + " And variables must be positive, hence the following bounds:\n", + " \n", + " >>> bnds = ((0, None), (0, None))\n", + " \n", + " The optimization problem is solved using the SLSQP method as:\n", + " \n", + " >>> res = minimize(fun, (2, 0), method='SLSQP', bounds=bnds,\n", + " ... constraints=cons)\n", + " \n", + " It should converge to the theoretical solution (1.4 ,1.7).\n", + "\n" + ] + } + ], + "source": [ + "help(minimize)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "## Первые производные" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "source": [ + "### Наискорейший подъем (спуск)\n", + "Направление на максимум всегда в направлении градиента функции:\n", + "\n", + "$$ \\theta_{k+1} = \\theta_k + \\beta_k \\nabla L $$\n", + "\n", + "* Не понятно, как определять $\\beta$\n", + "* Не понятно, когда останавливаться." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "source": [ + "Модификация метода - метод сопряженных градиентов на самом деле требует второй производной." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "## Вторые производные" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "source": [ + "Главная формула:\n", + "\n", + "$$ L(\\theta) = L(\\theta_0) + \\nabla L( \\theta - \\theta_0) + \\frac{1}{2} (\\theta-\\theta_0)^T H (\\theta-\\theta_0) + o(\\theta-\\theta_0)$$" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "source": [ + "### Метод Ньютона\n", + "\n", + "$$\\nabla f(\\theta_k) + H(\\theta_k)(\\theta_{k+1} - \\theta_k) = 0$$\n", + "\n", + "$$ \\theta_{k+1} = \\theta_k - H^{-1}(\\theta_k)\\nabla L(\\theta_k) $$" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "source": [ + "Можно добавить выбор шага:\n", + "\n", + "$$ \\theta_{k+1} = \\theta_k - \\lambda_i H^{-1}(\\theta_k)\\nabla L(\\theta_k) $$" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "slideshow": { + "slide_type": "fragment" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "1.0000000000000016" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from scipy import optimize\n", + "optimize.newton(lambda x: x**3 - 1, 1.5)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "source": [ + "### Методы с переменной метрикой\n", + "\n", + "* Вычислять $\\nabla L$ и $H$ очень дорого\n", + "* Давайте вычислять их итеративно.\n", + "\n", + "Примеры: \n", + "* MINUIT\n", + "* scipy `minimize(method=’L-BFGS-B’)`" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "slide" + } + }, + "source": [ + "# Случай наименьших квадратов" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "source": [ + "В случае анализа спектров имеем:\n", + "\n", + "$$ L(X | \\theta) = \\prod p_i (x_i | \\theta)$$\n", + "\n", + "Или:\n", + "\n", + "$$\\ln{ L(X | \\theta)} = \\sum \\ln{ p_i (x_i | \\theta)}$$\n", + "\n", + "В случае нормальных распределений:\n", + "\n", + "$$\\ln{ L(X | \\theta)} \\sim \\sum{ \\left( \\frac{y_i - \\mu(x_i, \\theta)}{\\sigma_i} \\right)^2 }$$" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "source": [ + "### Метод Гаусса-Ньютона\n", + "Пусть:\n", + "$$r_i = \\frac{y_i - \\mu(x_i, \\theta)}{\\sigma_i}$$ \n", + "$$J_{ij} = \\frac{\\partial r_i}{\\partial \\theta_j} = - \\frac{\\partial \\mu(x_i, \\theta)}{\\sigma_i \\partial \\theta_j}$$\n", + "\n", + "Тогда:\n", + "\n", + "$$ \\theta_{(k+1)} = \\theta_{(k)} - \\left( J^TJ \\right)^{-1}J^Tr(\\theta)$$" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "source": [ + "### Алгоритм Левенберга — Марквардта\n", + "\n", + "$$ \\theta_{(k+1)} = \\theta_{(k)} + \\delta$$\n", + "\n", + "$$ (J^TJ + \\lambda I)\\delta = J^Tr(\\theta)$$\n", + "\n", + "При этом $\\lambda$ - фактор регуляризации, выбирается произвольным образом." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "slideshow": { + "slide_type": "subslide" + } + }, + "source": [ + "### Метод квазиоптимальных весов\n", + "Идея:\n", + " Есть некоторая статистика (функция данных) $f(x)$. Для оптимального решения среднее от этой функции по экспериментальным данным и по модели должны совпадать:\n", + "$$ E_\\theta(f(x)) = \\sum_i{f(x_i)} $$\n", + "\n", + "Можно показать, что оптимальная эффективность получается когда\n", + "\n", + "$$ f = \\frac{\\partial \\ln L}{\\partial \\theta} $$\n", + "\n", + "В этом случае и если ошибки распределены по Гауссу или Пуассону, решение для оптмального $\\theta$ можно получить как:\n", + "\n", + "$$ \n", + "\\sum_{i}{\\frac{\\mu_{i}\\left( \\mathbf{\\theta},E_{i} \\right) - x_{i}}{\\sigma_{i}^{2}}\\left. \\ \\frac{\\partial\\mu_{i}\\left( \\mathbf{\\theta},E_{i} \\right)}{\\partial\\mathbf{\\theta}} \\right|_{\\mathbf{\\theta}_{\\mathbf{0}}}} = 0. \n", + "$$" + ] + } + ], + "metadata": { + "celltoolbar": "Slideshow", + "hide_input": false, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.4" + }, + "toc": { + "base_numbering": 1, + "nav_menu": {}, + "number_sections": false, + "sideBar": false, + "skip_h1_title": false, + "title_cell": "Table of Contents", + "title_sidebar": "Contents", + "toc_cell": false, + "toc_position": {}, + "toc_section_display": false, + "toc_window_display": false + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/notebooks/python/hypotesis.ipynb b/notebooks/python/hypotesis.ipynb new file mode 100644 index 0000000..4ef619b --- /dev/null +++ b/notebooks/python/hypotesis.ipynb @@ -0,0 +1,136 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Проверка статистических гипотез\n", + "\n", + "Задача: есть некоторое статистическое утверждение (гипотеза) $H$ и есть набор экспериментальных данных $X$. Требуется сделать утверждение о степени достоверности гипотезы **H** при заданном наборе $X$.\n", + "\n", + "В большинстве случаев речь идет о проверке единственной гипотезы, которую принято называть нулевой $H_0$. В отдельных случаях стоит также задача выбора наиболее подходящей гипотезы из набора $H_0,~H_1,~H_2,~...$\n", + "\n", + "Для формализации процесса проверки гипотезы требуется ввести ФПВ: $f(X|H_0)$, характеризующее вероятность получить заданные наблюдаемые результаты в случае, если гипотеза верна.\n", + "\n", + "**Замечание** Вообще говоря, уже этого распределеня достаточно для того, чтобы понять, верна гипотеза или нет. Если вероятность получить набор данных велика, то гипотеза наверное не верна. С другой стороны, возникает проблема с тем, что сложно понять, на сколько именно (с какой достоверностью) верна или не верна гипотеза нормировки распределений часто вычисляются не верно.\n", + "\n", + "Для упрощения процесс принятия решения, используют функцию, называемую проверочной статистикой: $T(X)$, где T - число. Для такой статистики довольно легко построит ФПВ: $g(T|H_0)$." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "![](images/two_hypothsis.png)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Для критерия $T$ вводится понятие критического значения или критической области $T_0$. В случае, если значение $T$ превышает критическое значение (или выходит из критической области), то гипотеза считается не верной. Если значение в области, гипотеза считается верной.\n", + "\n", + "Величина\n", + "$$\n", + " \\alpha = \\int_{T_0}^\\inf {g(T|H_0)}\n", + "$$\n", + "показывает вероятность **ошибки I рода**. То есть вероятность отвергнуть гипотезу, когда она верна. Величину $1-\\alpha$ называют уровнем достоверности критерия.\n", + "\n", + "В случае, если существует единственная альтернативная (исключающая $H_0$) гипотеза $H_1$, то также можно определить величину **ошибки II рода**, то есть вероятность принять $H_0$ в случае если она не верна:\n", + "$$\n", + " \\beta = \\int_{-\\inf}^{T_0} {g(T|H_1)}\n", + "$$\n", + "\n", + "Величину $1-\\beta$ называют мощностью критерия при заданной достоверности $1-\\alpha$.\n", + "\n", + "Среди двух критериев предпочтительным является тот, для которого мощность при той же значимости выше. Критерий, который будет более мощным для всех возможных состояний природы, называют равномерно более мощным критерием." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Построение критической области критерия\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Визуально подбро критической области критерия можно сделать следующим образом: \n", + "\n", + "* Берем распределение $g(T|H_0)$.\n", + "* Интегрируем его и получаем интегральное распределение: $G(T|H_0) = \\int{g(T|H_0)}$. При необходимости перенормируем в диапазон [0,1].\n", + "* Проводим линию на уровне нужного уровня значимости (например C. L. 95%).\n", + "* Пересечение этой линии с графиком проектируется на ось T и это значение и будет означать критическую область." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Качество фита (стандартные критерии)\n", + "\n", + "### Критерий Пирсона\n", + "Проверочная статистика:\n", + "$$\n", + "\\chi^2 = \\sum{\\frac{ (O_i-E_i)^2}{E_i}}\n", + "$$\n", + "\n", + "Асимпототически приближается к $\\chi^2$ распределению.\n", + "\n", + "![](images/Chi-square_cdf.svg)\n", + "\n", + "### Критерий соотношения правдоподобия\n", + "\n", + "Пусть $\\Theta$ - пространство параметров $\\theta$, а $\\Omega*$ - область пространства парамеров, на принадлежность которой мы хотим проверить данные. В качестве проверочной статиситки выбирается:\n", + "$$\n", + "\\lambda = \\frac{L(X|\\theta \\in \\Omega)}{L(X|\\theta \\in \\Theta)}\n", + "$$\n", + "\n", + "Величина $-2ln\\lambda$ распределена как $\\chi^2(r)$, где r - количество фиксированных параметров в $\\Omega$" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Сложные гипотезы\n", + "Положим что есть семейство гипотез $H_i$, среди которых надо выбрать наиболее достоверную. Выбор можно сделать двумя способами:\n", + "\n", + "* Выбираем ту гипотезу, для которой $g(T|H_i)$ максимален.\n", + "* Выбираем ту гипотезу, для которой $\\int_T^\\inf{g(T|H_i)}$ максимален.\n", + "\n", + "Если принять $T = L(X|\\theta)$, то решение по первому методу сводится к методу максимуму правдоподобия." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.4" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/notebooks/python/images/Chi-square_cdf.svg b/notebooks/python/images/Chi-square_cdf.svg new file mode 100644 index 0000000..20e13d9 --- /dev/null +++ b/notebooks/python/images/Chi-square_cdf.svg @@ -0,0 +1,268 @@ + + + + Cumulative chi-Square distribution + + chi-square distribution + F_k(x) = \int_0^x t^(n/2-1) * exp(-t/2) / (2^(n/2) * gamma(n/2)) dt + + from Wikimedia Commons + plot-range: 0 to 8 + plotted with cubic bezier-curves + the bezier-controll-points are calculated to give a very accurate result. + accuracy is 0.00001 units + symbols in "Computer Modern" (TeX) font embedded + created with a plain text editor using GNU/Linux + + about: http://commons.wikimedia.org/wiki/Image:chi-square_cdf.svg + source: http://commons.wikimedia.org/ + rights: GNU Free Documentation license, + Creative Commons Attribution ShareAlike license + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/notebooks/python/images/Nelder_Mead1.gif b/notebooks/python/images/Nelder_Mead1.gif new file mode 100644 index 0000000..a26953b Binary files /dev/null and b/notebooks/python/images/Nelder_Mead1.gif differ diff --git a/notebooks/python/images/two_hypothsis.png b/notebooks/python/images/two_hypothsis.png new file mode 100644 index 0000000..d4a9a13 Binary files /dev/null and b/notebooks/python/images/two_hypothsis.png differ diff --git a/Теория вероятности/Теория вероятности.pptx b/Теория вероятности/Теория вероятности.pptx new file mode 100644 index 0000000..d6a3506 Binary files /dev/null and b/Теория вероятности/Теория вероятности.pptx differ diff --git a/Теория оценок/estimates.docx b/Теория оценок/estimates.docx new file mode 100644 index 0000000..409e173 Binary files /dev/null and b/Теория оценок/estimates.docx differ diff --git a/Теория оценок/estimates.md b/Теория оценок/estimates.md new file mode 100644 index 0000000..14e7d01 --- /dev/null +++ b/Теория оценок/estimates.md @@ -0,0 +1,66 @@ +# Понятие о точечной оценке + +Математическая статистика имеет огромное количество разнообразнейших применений, но с точки зрения экспериментальной физики (и как следствие студентов, изучающих эту науку) наиболее интересным применением является оценка параметров закономерностей. Пусть есть некоторое явление природы, которое можно описать при помощи модели $M(\theta)$. Здесь $\theta$ - это некоторый набор параметров модели, которые могут принимать различные значения. На этом этапе мы не оговариваем, как именно модель описывает процесс и что мы можем принимать в качестве параметров. Положим теперь, что существует некоторый выделенный набор параметров $\theta_0$, который соответствует некоторому "истинному" состоянию природы. Далее мы будем исходить из того предположения, что при попытке предпринять некоторые измерения, мы будем получать результаты, соответствующие нашей модели именно с этим набором параметров. + +
+**Замечание** +Тут важно заметить, что мы также негласно предполагаем, что природа вообще действует согласно нашей модели, но этот вопрос мы пока оставим за кадром. В какой-то мере мы вернемся к нему, в главе 5, когда будем обсуждать теорию проверки гипотез. +
+ +Предоставим теперь, что мы провели некоторую серию экспериментов $X = \{X_0, X_1,...X_N\}$, в которых мы тем или иным способом изучаем состояние природы (будем дальше называть результаты этих экспериментов экспериментальной выборкой). Нашей задачей в этой главе будет описание процедуры, при помощи которой можно на основе выборки сделать вывод об истинном состоянии природы $\theta_0$. Важно понимать, что в общем случае, результаты измерений являются случайными величинами, поэтому полученное нами на основании этих данных состояние природы также будет случайной величиной в противовес истинному состоянию природы $\theta_0$, которое вообще говоря, истинно случайной величиной не является. Полученную величину будем называть *точечной оценкой* состояния природы $\hat{\theta}$ или просто оценкой. Саму процедуру, в процессе которой получена оценка, будем называть оцениванием. + +
+**Пример** +Положим, что знания студента в области физики являются состоянием природы (а точнее данного конкретного студента). Очевидно, что досконально проверить этот факт не представляется возможным, поэтому для измерения этой величины мы проводим эксперимент - экзамен. То, что по результатам экзамена оказывается в ведомости является оценкой не только с точки зрения деканата, но и с точки зрения математической статистики. +
+ +В дальнейшем будем считать, что состояния природы описываются действительным числом или набором действительных чисел. Сама по себе теория этого не требует, но в противном случае довольно сложно сравнивать состояния между собой (требуется определять понятие близости в произвольном пространстве). В этом случае наша процедура оценивания: +$$ + \hat{\theta} = f(X) +$$ +является действительной функцией на пространстве векторов $X$, состоящих из случайных переменных. Такие функции еще называют статистиками. Очевидно, что далеко не людая такая функция будет давать тот результат, которого мы хотим. Поэтому вводятся дополнительные обязательные свойства оценок. + +##Свойства точечных оценок + +### Состоятельность +Естественное пожелание к оценщику, заключается в том, что качество оценки должно зависеть от объема выборки, числа измерений $n$ случайных переменных $X$: чем больше выборка, тем качественней оценка $\hat{\theta}$. Иными словами, мы хотим, чтобы с ростом объема выборки значение оценки приближалось к истинному значению параметра. При использовании сходимости по вероятности оценку $\hat{\theta}$ определяют как состоятельную, если при любых $\varepsilon > 0$ и $\eta > 0$, найдется такое $N$, что $P \left( \left| \hat{\theta} - \theta \right| \right) < \eta $ при всех $n > N$. + +
+**Замечание** +Нужно заметить, что на практике оценки являются состоятельными только когда при построении оценки не учитывается систематическая ошибка. В противном случае, может наблюдаться сходимость по вероятности не к нулю, а к некоторой фиксированной константе. +
+ +### Несмещенность +Рассмотрим набор измерений, каждое из которых состоит из $k$ наблюдений $X$, характеризуемый функцией плотности вероятности $P(\hat\theta | \theta)$ при фиксированном $k$ и определим смещение как отклонение среднего по этому набору $\hat{\theta_k}$ от истинного + $$ + b = E[\hat{\theta_k}] - \theta + $$ +Оценка называется несмещенной, если $b = 0$. + +Заметим, что смещение не зависит от измеренных величин, но зависит от размера образца, формы оценщика и от истинных (в общем случае неизвестных) свойств ФПВ $f(x)$, включая истинное значение параметра. Если смещение исчезает в пределе $n \to \infty$, говорят об асимптотически несмещенной оценке. Заметим, что из состоятельности оценки не следует несмещенность. Это означает, что даже если $\hat{\theta}$ сходится к истинной величине $\theta$ в единичном эксперименте с большим числом измерений, нельзя утверждать, что среднее $\hat{\theta}$ по бесконечному числу повторений эксперимента с конечным числом измерений $n$ будет сходится к истинному $\theta$. Несмещенные оценки пригодны для комбинирования результатов разных экспериментов. В большинстве практических случаев смещение должно быть мало по сравнению со статистической ошибкой и им пренебрегают. + +### Эффективность +Для сравнения разных методов оценки, очень важным свойством является эффективность. Говоря простым языком, эффективность - это величина, обратная разбросу значений $\hat{\theta}$ при применении к разным наборам данных. Для того, чтобы хорошо разобраться в этом свойстве, надо вспомнить, что оценка, как случайная величина, распределена с плотностью $P(\hat\theta | \theta)$. Вид этого распределения может быть не известен полностью, но знать его свойства – низшие моменты – необходимо. Среднее по нему суть смещение, а дисперсия $\sigma_{\hat\theta}^2 = \int{ (\hat\theta - \theta} ) P(\hat\theta | \theta) d\hat\theta$ суть мера ошибки в определении оценки. Выбирая между различными методами, мы, естественно, хотим, чтобы ошибка параметра была минимальной из всех доступных нам способов его определения для фиксированного эксперимента. Разные методы обладают разной эффективностью и в общем случае при конечной статистике дисперсия распределения оценки никогда не будет равна нулю. Разумеется, встает вопрос о том, можно ли построить оценку с максимальной возможной эффективностью. + +## Интервальные оценки + +На практике применение точечных оценок сильно затруднено тем, что не известно, на сколько каждая такая оценка точна. Действительно, мы можем спокойно утверждать, что слон весит один килограмм если разброс нашей оценки составляет больше массы слона. Для того, чтобы решить эту проблему есть два пути. +Первый путь - это на ряду с точечной оценки указывать меру эффективности этой оценки или ее разброс$\sigma_{\hat\theta}$. Но тут любой внимательный слушатель заметит, что для определения эффективности, вообще говоря, надо знать истинное значение параметра $\theta$, которого мы, разумеется не знаем. Следовательно приходится использовать не эффективность, а оценку этой эффективности, которая сама по себе является случайной величиной. Кроме того, часто случается, что распределение оценки является не симметричным и описать его одним числом не удается. + +Более корректным способом является построение интервальной оценки (доверительного интервала). Формально определение интервальной оценки будет отличаться в зависимости от того, какое определение вероятности вы будете использовать. + +**Частотная интерпретация**: интервальной оценкой параметра или группы параметров $\theta$ с уровнем достоверности $\alpha$ называется такая область на пространстве параметров (в одномерном случае - интервал), которая при многократном повторении эксперимента с вероятностью (частотой) $\alpha$ перекрывает истинное значение $\theta$. + +**Субъективная интерпретация**: доверительным интервалом для параметров $\theta$ будем называть такую область в пространстве параметров, в которой интегральная апостериорная вероятность нахождения истинного значения параметра равна $\alpha$. + +Для точного описания результата проведения анализа как правило в качестве результата приводят как точечную оценку, так и интервальную оценку с некоторым уровнем достоверности (в английском варианте Confidence Level или C. L.). В некоторых случаях приводят несколько интервальных оценок с разным уровнем достоверности. В случае, когда речь идет об определении верхней или нижней границы какого-то параметра, точечная оценка как правило не имеет смысла и в качестве результата дается только интервальная оценка. + +
+**Замечание** +Точечная оценка также не имеет смысла в случае, когда распределение оценки, скажем имеет вид однородного распределения на отрезке. В этом случае все параметры на этом отрезке равновероятны и не понятно, какой из них называть результатом. +
+ +
+**Замечание** +Вполне очевидно, что для одних и тех же данных с использованием одного и того же метода оценивания можно построить бесконечное множество интервальных оценок с фиксированным уровнем достоверности. Действительно, мы можем двигать интервал в разные стороны таким образом, чтобы его вероятностное содержание не менялось. Обычно, если не оговорено иначе, используются так называемые центральные доверительные интервалы, в которых вероятностные содержание за границами интервалов с обеих сторон равны. **Добавить картинку** +
diff --git a/Теория решений/stat.pptx b/Теория решений/stat.pptx new file mode 100644 index 0000000..f0354e3 Binary files /dev/null and b/Теория решений/stat.pptx differ diff --git a/Теория решений/vaskin.png b/Теория решений/vaskin.png new file mode 100644 index 0000000..11bd2df Binary files /dev/null and b/Теория решений/vaskin.png differ diff --git a/Теория решений/vaskin1.png b/Теория решений/vaskin1.png new file mode 100644 index 0000000..23957c9 Binary files /dev/null and b/Теория решений/vaskin1.png differ diff --git a/Теория решений/теория решений.docx b/Теория решений/теория решений.docx new file mode 100644 index 0000000..33d3cda Binary files /dev/null and b/Теория решений/теория решений.docx differ