
Numerical Methods, Fall 2022
Assignment 1 [Vector and matrix norms. Orthogonal matrices. NumPy]

Total: 60, Deadline: 7 Oct

SUGGESTED READING

• Lectures 1-3 of [1]

• Lectures 1-2 of [2]

• From Python to Numpy

• 100 Numpy exercises

EXERCISES

1. (5) Consider the matrix H(v) = 1 − 2vv∗, where v is a unit column vector. What is the rank of the matrix
H(v)? Prove that its unitary.

2. (5) Prove the following inequalities and provide examples of x and A when they turn into equalities:

• ‖x‖2 ≤
√
m ‖x‖∞

• ‖A‖∞ ≤
√
n ‖A‖2

where x is a vector of m components and A is m× n matrix.

3. (5) Assuming u and v and m-vectors, consider the matrix A = 1 + uv∗ which is a rank-one perturbation
of identity. Can it be singular? Assuming it is not, compute its inverse. You may look for it in a form of
A−1 = 1 + αuv∗ for some scalar α and evaluate α.

4. (5) Prove that for any unitary matrix U one has ‖UA‖F = ‖AU‖F = ‖A‖F .

5. (5) Consider a 2-dimensional vector space r = (x, y) and plot the unit disk ‖x‖p ≤ 1 for p = 1, 2, 3 (use the
matplotlib library).

6. (15) Consider a function mapping six tensors to one tensor: Z
(
λ(1), λ(2), λ(3),Γ(1),Γ(2), U

)
, with

Zahij =
∑

bcdefg

λ(1)abΓ
(1)

cbdλ
(2)

deΓ
(2)

fegλ
(3)

ghUijcf .

Assume than all indices of the tensors appearing above take values from 1 to χ. Running the numerical
experiments, explore the values of χ in the range 3–50 (from slowest to fastest implementation).

• In the notebook convolution.ipynb you may find implemented a stupid way to compute this convolution,
which takes χ4 × χ6 = χ10 flops. In fact, this can be computed much faster!

• Using the function numpy.einsum (its crucial to use the optimize argument), you can actually achieve a
much faster implementation. In order to understand what it is doing under the hood, explore the function
numpy.einsum path. What is the minimal number of flops required for computation of Z?

• Using the understanding of the output of numpy.einsum path, implement an algorithm to compute Z,
which is as effective as numpy.einsum, but relying only on more elementary numpy.dot and numpy.tensor dot.

7. (10) In this exercise your goal will be to study and speed-up an implementation of K-means algorithm. In the
notebook kmeans.ipynb, you can find a naive implementation. Explore the code, make sure you understand it.
You will find there two functions dist i and dist ij which are (on purpose) implemented in a rather inefficient
way. Improve them by getting rid of the loops in the favor of a proper numpy vectorized implementation and
measure the speed-up of the full algorithm for N = 10000.

https://www.labri.fr/perso/nrougier/from-python-to-numpy/
https://github.com/rougier/numpy-100/blob/master/100_Numpy_exercises.md
https://en.wikipedia.org/wiki/K-means_clustering


2

8. (10) Some things just can not be vectorized but still can be speed-up compared to naive implementation. For
example, consider computation of the Hofstadter-Conway sequence a(n) such that a(1) = 1, a(2) = 1 and

a(n) = a(a(n− 1)) + a(n− a(n− 1)), n > 2

Write three functions, computing the sequence up to n-th element in three ways: i) pre-allocating numpy array
and filling it using for loop, ii) cumulatively appending python list and converting it to numpy array, iii) same
as i) but compiled (jit) version. Time the resulting implementations and conclude which is preferable. With
the optimal one, compute a(108).

REFERENCES

[1] Lloyd N Trefethen and David Bau III. Numerical linear algebra. Vol. 50. Siam, 1997.

[2] Eugene E Tyrtyshnikov. A brief introduction to numerical analysis. Springer Science & Business Media, 2012.

https://mathworld.wolfram.com/Hofstadter-Conway10000-DollarSequence.html

	Numerical Methods, Fall 2022 Assignment 1 [Vector and matrix norms. Orthogonal matrices. NumPy]Total: 60, Deadline: 7 Oct
	Suggested Reading
	Exercises
	References


