
Numerical Methods: Lecture 4. Conditioning.

Floating point arithmetic and stability. Systems

of linear equations.

Konstantin Tikhonov

November 2, 2022

1 Suggested Reading

• Lectures 12-19, 20-23 of [1]

• Lectures 6-7 of [2]

2 Exercises

Deadline: 18 Nov

1. (3) Propose a numerically stable way to compute the function f(x, a) =√
x+ a−

√
x for positive x, a.

2. (2) Consider numerical evaluation C = tan(10100) with the help of arbitrary-
precision arithmetic module mpmath, which can be called as follows:

from mpmath import *

mp.dps = 64 # precision (in decimal places)

mp.pretty = True

+pi

What is the relative condition number of evaluating C w.r.t the input
number 10100? How many digits do you need to keep at intermediate
steps to evaluate C with 7-digit accuracy?

3. (4) Implement the function solve_quad(b, c), receiving coefficients b
and c of a quadratic polynomial x2 + bx + c, and returning a pair of
equation roots. Your function should always return two roots, even for
a degenerate case (for example, a call solve_quad(-2, 1) should result
into (1, 1)). Additionally, your function is expected to return complex
roots.

After checking ensuring that your algorithm sort of works, try it on the
following 5 tests. Make sure that all of them pass.

1

tests = [{’b’: 4.0, ’c’: 3.0},

{’b’: 2.0, ’c’: 1.0},

{’b’: 0.5, ’c’: 4.0},

{’b’: 1e10 , ’c’: 3.0},

{’b’: -1e10 , ’c’: 4.0}]

4. (5) Consider the polynomial

w(x) = Π20
r=1(x− r) =

20∑
i=0

aix
i

and investigate the condition number of roots of this polynomial w.r.t
the coefficients ai. Perform the following experiment, using numpy root-
finding algorithm. Randomly perturb w(x) by replacing the coefficients
ai → niai, where ni is drawn from a normal distribution of mean 1 and
variance exp(−10). Show the results of 100 such experiments in a single
plot, along with the roots of the unperturbed polynomial w(x). Using one
of the experiments, estimate the relative and absolute condition number
of the problem of finding the roots of w(x) w.r.t. polynomial coefficients.

5. (10) Consider the least squares problem Ax ≈ b at

A =

1 1
1 1.00001
1 1.00001

 , b =

 2
0.00001
4.00001

 .

• Formally, solution is given by

x = (ATA)−1AT b. (1)

Using this equation, compute the solution analytically.

• Implement Eq. (1) in numpy in single and double precision; compare
the results to the analytical one.

• Instead of Eq. (1), implement SVD-based solution to least squares.
Which approach is numerically more stable?

• Use np.linalg.lstsq to solve the same equation. Which method
does this function use?

• What are the four condition numbers of this problem, mentioned in
Theorem 18.1 of Ref. [1]? Give examples of perturbations δb and δA
that approximately attain those condition numbers?

6. (7) Let

A =

ϵ 1 0
1 1 1
0 1 1

2

• Find analytically LU decomposition with and without pivoting for
the matrix A.

• Explain, why can the LU decomposition fail to approximate factors
L and U for |ϵ| ≪ 1 in finite-precision arithmetic?

7. (6) Consider computing the function f(n, α) defined by f(0, α) = ln(1 +
1/α) and recurrent relation

f(n, α) =
1

n
− αf(n− 1, α). (2)

Compute f(20, 0.1) and f(20, 10) in standard (double) precision. Now, do
the same exercise in arbitrary precision arithmetic:

from mpmath import mp , mpf

mp.dps = 64 # precision (in decimal places)

f = mp.zeros(1, n)

f[0] = mp.log (1+1/ mpf(alpha))

for i in range(1, n):

f[i] = 1/mpf(i) - mpf(alpha)*f[i-1]

Plot the relative difference between exact and approximate results, in units of
machine epsilon np.finfo(float).eps for α = 0.1 and α = 10 as function of
n. How would you evaluate f(30, 10) without relying on the arbitrary precision
arithmetic?

References

[1] Lloyd N Trefethen and David Bau III. Numerical linear algebra. Vol. 50.
Siam, 1997.

[2] Eugene E Tyrtyshnikov. A brief introduction to numerical analysis. Springer
Science & Business Media, 2012.

3

	Suggested Reading
	Exercises

