2057 lines
53 KiB
Plaintext
2057 lines
53 KiB
Plaintext
|
{
|
|||
|
"cells": [
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "slide"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"# PART I: NumPy."
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "slide"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"# Programming in python"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"## Writing code\n",
|
|||
|
"\n",
|
|||
|
"* code should be readable\n",
|
|||
|
"\n",
|
|||
|
"* style guides\n",
|
|||
|
" * PEP8 (PEP = Python Enhancement Proposal) http://legacy.python.org/dev/peps/pep-0008/\n",
|
|||
|
" * writing idiomatic code https://david.goodger.org/projects/pycon/2007/idiomatic/handout.html ('idiomatic' means 'conforming to the natural mode of expression in a given context')"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"## Avoiding worst practices\n",
|
|||
|
"http://docs.quantifiedcode.com/python-anti-patterns/"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "slide"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"# NumPy: beginner's references\n",
|
|||
|
"\n",
|
|||
|
"* From Python to NumPy\n",
|
|||
|
"https://www.labri.fr/perso/nrougier/from-python-to-numpy/\n",
|
|||
|
" \n",
|
|||
|
"* 100 NumPy Exercises\n",
|
|||
|
"https://github.com/rougier/numpy-100/blob/master/100_Numpy_exercises.md"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "slide"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"# NumPy"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"## Constructing matrices and vectors "
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 1,
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"A = \n",
|
|||
|
"[[3 3 0]\n",
|
|||
|
" [2 1 1]\n",
|
|||
|
" [1 1 0]\n",
|
|||
|
" [3 0 2]]\n",
|
|||
|
"\n",
|
|||
|
" b = \n",
|
|||
|
"[3 2 0]\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"import numpy as np\n",
|
|||
|
"\n",
|
|||
|
"A = np.array([[3, 3, 0],\n",
|
|||
|
" [2, 1, 1],\n",
|
|||
|
" [1, 1, 0],\n",
|
|||
|
" [3, 0, 2]])\n",
|
|||
|
"\n",
|
|||
|
"b = np.array([3, 2, 0])\n",
|
|||
|
"\n",
|
|||
|
"print(f'A = \\n{A}\\n\\n b = \\n{b}')"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"## Initializers "
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 2,
|
|||
|
"metadata": {
|
|||
|
"scrolled": true,
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"[0. 0. 0.]\n",
|
|||
|
"[1. 1. 1.]\n",
|
|||
|
"[[1. 0. 0.]\n",
|
|||
|
" [0. 1. 0.]\n",
|
|||
|
" [0. 0. 1.]]\n",
|
|||
|
"[0 1 2]\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"print(np.zeros(3))\n",
|
|||
|
"print(np.ones(3))\n",
|
|||
|
"print(np.eye(3))\n",
|
|||
|
"print(np.arange(3))"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "slide"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"## Use numpy arrays, not lists"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 3,
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"4.75 µs ± 348 ns per loop (mean ± std. dev. of 7 runs, 100 loops each)\n",
|
|||
|
"173 µs ± 3.06 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"n = 10000\n",
|
|||
|
"%timeit -n 100 np.ones(n)\n",
|
|||
|
"%timeit -n 100 [1 for i in range(n)]"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "slide"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"## Basic operations "
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 4,
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/plain": [
|
|||
|
"array([15, 8, 5, 9])"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 4,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"# matrix-vector multiplication: .dot()\n",
|
|||
|
"A.dot(b)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 5,
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/plain": [
|
|||
|
"array([15, 8, 5, 9])"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 5,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"# same as\n",
|
|||
|
"A @ b"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "slide"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"## Broadcasting\n",
|
|||
|
"https://numpy.org/doc/stable/user/basics.broadcasting.html"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"Broadcasting is very important for writing concise and efficient code. "
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "slide"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"## Data types"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 6,
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/plain": [
|
|||
|
"dtype('float32')"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 6,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"vector32 = np.array([1.2, 3.2, 4.9, 1.8], dtype=np.single)\n",
|
|||
|
"vector32.dtype"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 7,
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/plain": [
|
|||
|
"dtype('float64')"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 7,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"vector64 = np.array([1.2, 3.2, 4.9, 1.8], dtype=np.double)\n",
|
|||
|
"vector64.dtype"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"Double-precision calculations are usually MUCH slower on GPU. On CPU, float32 is a bit faster than float64 can be preferred for memory reasons. Normally, you should use single for machine learning applications and double for scientific computations (especially for not-so-well conditioned problems)."
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 8,
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"404 µs ± 5.89 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"b = np.random.normal(size=(1000, 1000)).astype(np.float32)\n",
|
|||
|
"%timeit -n 100 np.sum(b**2)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 9,
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"927 µs ± 7.27 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"b = np.random.normal(size=(1000, 1000)).astype(np.float64)\n",
|
|||
|
"%timeit -n 100 np.sum(b**2)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "slide"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"## Shapes"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 10,
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"vector [[1 2 3]] has dimensionality (1, 3)\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"b = np.array([[1,2,3]])\n",
|
|||
|
"print(f'vector {b} has dimensionality {b.shape}')"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 11,
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"[1 2 3]\n",
|
|||
|
"(3,)\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"# remove axis of length 1\n",
|
|||
|
"b = b.squeeze()\n",
|
|||
|
"print(b)\n",
|
|||
|
"print(b.shape)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "slide"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"## More on broadcasting"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 12,
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/plain": [
|
|||
|
"array([[1, 2, 3],\n",
|
|||
|
" [2, 3, 4],\n",
|
|||
|
" [3, 4, 5]])"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 12,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"A = np.array([[1,2,3],[2,3,4],[3,4,5]])\n",
|
|||
|
"A"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 13,
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/plain": [
|
|||
|
"array([1, 2, 3])"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 13,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"b"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 14,
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/plain": [
|
|||
|
"array([[ 1, 4, 9],\n",
|
|||
|
" [ 2, 6, 12],\n",
|
|||
|
" [ 3, 8, 15]])"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 14,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"# multiply matrix by a vector row-wise \n",
|
|||
|
"A*b"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 15,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/plain": [
|
|||
|
"array([[ 1, 4, 9],\n",
|
|||
|
" [ 2, 6, 12],\n",
|
|||
|
" [ 3, 8, 15]])"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 15,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"# this is the same, of course\n",
|
|||
|
"b*A"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 16,
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/plain": [
|
|||
|
"array([[ 1, 2, 3],\n",
|
|||
|
" [ 4, 6, 8],\n",
|
|||
|
" [ 9, 12, 15]])"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 16,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"# multiply matrix by a vector row-wise \n",
|
|||
|
"A*b[:,None]"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "slide"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"## Indexing (slicing) vectors "
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 17,
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/plain": [
|
|||
|
"array([0, 1, 2, 3, 4, 5])"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 17,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"b = np.arange(6)\n",
|
|||
|
"b"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"What is the output?"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 18,
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"[0 1 2]\n",
|
|||
|
"5\n",
|
|||
|
"[0 1 2 3]\n",
|
|||
|
"[2 3]\n",
|
|||
|
"[0 2 4]\n",
|
|||
|
"[5 3 1]\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"print(b[:3])\n",
|
|||
|
"print(b[-1])\n",
|
|||
|
"print(b[:-2])\n",
|
|||
|
"print(b[2:4])\n",
|
|||
|
"print(b[::2])\n",
|
|||
|
"print(b[::-2])"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "slide"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"## Indexing (slicing) matrices"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 19,
|
|||
|
"metadata": {
|
|||
|
"scrolled": true,
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/plain": [
|
|||
|
"array([[0, 1, 2],\n",
|
|||
|
" [3, 4, 5]])"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 19,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"A = b.reshape(2, 3)\n",
|
|||
|
"A"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"What is the output?"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 20,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/plain": [
|
|||
|
"array([[0, 1, 2],\n",
|
|||
|
" [3, 4, 5]])"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 20,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"A"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 21,
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"[0 3]\n",
|
|||
|
"[3 4 5]\n",
|
|||
|
"[[0 2]\n",
|
|||
|
" [3 5]]\n",
|
|||
|
"[[0 1]\n",
|
|||
|
" [3 4]]\n",
|
|||
|
"[]\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"print(A[:, 0])\n",
|
|||
|
"print(A[-1, :])\n",
|
|||
|
"print(A[:,::2])\n",
|
|||
|
"print(A[:3, :-1])\n",
|
|||
|
"print(A[3:, 1])"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 22,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/plain": [
|
|||
|
"array([[0, 1, 2],\n",
|
|||
|
" [3, 4, 5]])"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 22,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"A"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 23,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/plain": [
|
|||
|
"array([[0, 1],\n",
|
|||
|
" [3, 4]])"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 23,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"A[:2, :2]"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "slide"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"## View vs Copy"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 24,
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/plain": [
|
|||
|
"array([[1, 2, 3],\n",
|
|||
|
" [2, 3, 4],\n",
|
|||
|
" [3, 4, 5]])"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 24,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"A = np.array([[1,2,3],[2,3,4],[3,4,5]])\n",
|
|||
|
"A"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 25,
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/plain": [
|
|||
|
"array([1, 2, 3])"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 25,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"sub_A = A[:,0]\n",
|
|||
|
"sub_A"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 26,
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/plain": [
|
|||
|
"array([[1, 2, 3],\n",
|
|||
|
" [1, 3, 4],\n",
|
|||
|
" [1, 4, 5]])"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 26,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"A[:,0] = 1\n",
|
|||
|
"A"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 27,
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/plain": [
|
|||
|
"array([1, 1, 1])"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 27,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"sub_A"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 28,
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"# copies have to be created explicitly\n",
|
|||
|
"A_copy = A.copy()"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "slide"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"# More benchmarks"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "slide"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"## Computing convolutions: einsum"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 29,
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"n = 100\n",
|
|||
|
"a = np.random.normal(size=(n, n))\n",
|
|||
|
"b = np.random.normal(size=(n, n))"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"Consider computation of $\\sum_{ij}a_{ij}b_{ji}$"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 30,
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"The slowest run took 10.02 times longer than the fastest. This could mean that an intermediate result is being cached.\n",
|
|||
|
"62.8 µs ± 86.4 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"%timeit -n 100 np.trace(np.dot(a, b))"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 31,
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"17.9 µs ± 7.12 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"%timeit -n 100 np.einsum('ij,ji->', a, b)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"Tensor convolutions can be very tricky and may admit real optimizations. Trivial example:\n",
|
|||
|
"$$\n",
|
|||
|
"\\sum_{ijkl}A_{ij}B_{ji}B_{kl}A_{lk}\n",
|
|||
|
"$$\n",
|
|||
|
"How many FLOPs does it take to compute this sum?"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "slide"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"## Memory access and performance"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 32,
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"a = np.zeros(shape= 64 * 1024 * 1024, dtype=np.int64)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"Which of the assignments should run faster?"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 33,
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"37.2 ms ± 376 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"%timeit a[::1] += 2"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 34,
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"37.2 ms ± 29 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"%timeit a[::8] += 2"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 35,
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "slide"
|
|||
|
}
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"from timeit import timeit\n",
|
|||
|
"def t(k):\n",
|
|||
|
" return timeit(f'a[::{k}]+=2', setup='import numpy as np; a = np.zeros(shape=64 * 1024 * 1024, dtype=np.int64)', number=32)/32"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 36,
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"ks = 2**np.arange(10)\n",
|
|||
|
"ts = [t(k) for k in ks]"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 37,
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAiNUlEQVR4nO3deXxU5dn/8c81kw2SECAJCAkYCAFFdgIEqIpLLfpYkboAVlGrIgJq+7N9aluttbWL9nEvLrjjviK4VIsVbWUPIDuBsIdFEpZA2ELI/fsjI8U0wCQkOTOT7/v1mpfOOffMXONtvjm55sx9zDmHiIhELp/XBYiISN1S0IuIRDgFvYhIhFPQi4hEOAW9iEiEU9CLiES4KK8LqEpKSorLyMjwugwRkbAxb968IudcalX7QjLoMzIyyM3N9boMEZGwYWbrj7UvqNaNmQ02szwzyzezO6vYb2b2WGD/IjPrddS+dWa22My+NjOlt4hIPTvhEb2Z+YHxwPeBAmCumU1xzi07atiFQFbg1g94MvDPb53jnCuqtapFRCRowRzR9wXynXNrnHOlwBvAkEpjhgATXYVZQFMza1XLtYqISA0EE/RpwMaj7hcEtgU7xgH/MLN5ZjbqWC9iZqPMLNfMcgsLC4MoS0REghFM0FsV2yqvhHa8MQOdc72oaO+MNbOzqnoR59wE51y2cy47NbXKD45FRKQGggn6AqDNUffTgc3BjnHOffvPbcAkKlpBIiJST4IJ+rlAlpm1M7MYYDgwpdKYKcDIwNk3OUCxc26LmcWbWSKAmcUDFwBLarH+kOOcY+HGXZSWlXtdiogIEMRZN865MjMbB3wK+IHnnXNLzWx0YP9TwMfARUA+sA+4PvDwlsAkM/v2tV5zzn1S6+8iRBwsO8zd7y/hrdwC+mY05+lretMsPsbrskSkgbNQvPBIdna2C7cvTBWVHOSWV+Yxd91OLu3Rmo+XbKV1UhzPX9eH9qkJXpcnIhHOzOY557Kr2qe1bmrB8i27GfK36SwqKObxET15ZHhPXr8phz0Hyhj6xAxmrdnudYki0oAp6E/SP5Zu5bInZ1BWXs7bo/vzw+6tAeh9ajPeHzuQ1MRYrnluNu/MK/C4UhFpqBT0NeSc44kv8rn5lXlktUhgyrjv0S296XfGtGnemHdvGUC/dsn8/O2F/N+neZSXh16rTEQim4K+Bg4cOszP3vyaBz7J44fdWvPmzf1p2SSuyrFJjaJ54fo+jOjbhr9Ny+fWNxZw4NDheq5YRBqykFy9MpRt232AUS/P4+uNu/jFDzoxZlAmgbOKjina7+NPQ7vSLiWeP/99BZt27ueZkdmkJsbWU9Ui0pDpiL4almwqZsj46az8Zg9PXd2bsed0OGHIf8vMGHVWJk/+uDcrtu5m6BMVzyMiUtcU9EH6aNEWLn9qBj4z3hk9gMFdTqnR8wzucgpv3dyfg2XlXPbEDP69Suv6iEjdUtCfQHm545HPVjL2tfl0aZ3E5HED6dy6yUk9Z7f0pkweO5C0Zo247oW5vDZ7Qy1VKyLy3xT0x7G/9DC3vr6ARz5bxeW903n1pn6kJNROX71100a8c8sAzsxK4deTFvPHj5ZxWGfkiEgd0Iexx7CleD83Tcxl6ebd/Oai07nxzHZB9+ODlRAbxbMjs7nvo+U88++1rN++j0eG96BxjKZFRGqPjuirsGDDTi7523TWFe3j+Wv7cNNZ7Ws95L8V5ffxu0vO4Hc/7Mxny79h2NOz+Gb3gTp5LRFpmBT0lUxaUMCwCbNoFO1n0pgBnHNai3p53esGtuPZa7NZU1jCpeOns2zz7np5XRGJfAr6gPJyx/2frOBnby6kV9uKD0uzWibWaw3nntaSt0cPAODyp2bw+Ypv6vX1RSQyKeiBkoNljHp5Hk9+sZqr+rXl5Rv6eba8cOfWTZg8diCZqQnc+FIuL0xf60kdIhI5GnzQb9yxj8ufnMG0vG3ce8kZ/PHSLkT7vf3P0qJJHG/enMP5p7fk3g+Wcc/kJZQd1oVMRKRmGnTQz1m7gyHjp7N5135evL4P1w7IqLMPXaurcUwUT13dm1Fnteelmeu5cWIuew4c8rosEQlDDTbo35y7gR8/O4umjaJ5f+xAzswKvQuS+3zGry86nT8N7cq/VxVxxVMz2bRrv9dliUiYaXBBX3a4nD98uIxfvruYnPbJTBozMOSvAHVVv7a8eH0fNu3cz6Xjp7OoYJfXJYlIGGlQQb/7wCFueCmX575ay3UDMnjhuj4kNY72uqygnJmVyntjBhAb5ePKp2fyyZKtXpckImGiwQT92qK9DB0/nen5RfxpaFd+d8kZRHn8oWt1ZbVMZNKYgZzeqgm3vDqPp79cTShe81dEQkt4JV0NTc8v4tLx09mxt5RXbuzHVf3ael1SjaUmxvL6TTlc1LUVf/77Cn713mIO6YwcETmOiF9U5eWZ6/jdB8vITI3n2ZF9aJvc2OuSTlpctJ/Hh/ekXXI8f5uWz8ad+3jix71JahQebSgRqV8Re0R/6HA5d72/mLsnL2VQx1TevWVARIT8t3w+4+c/6MT/XdGdOWt38KMnprNh+z6vyxKREBSRQb9rXynXPj+HV2Zt4Oaz2zNhZDaJcZF5tHt573Qm/qQfRSWlDH1iOvPW7/C6JBEJMREX9Pnb9jBk/HRy1+3kwSu686sLT8fvC40vQdWV/pnJTBozgMS4KEY8M5spCzd7XZKIhJCICvppedsYOn4Gew+W8fqoHC7rne51SfWmfWoC740ZSI/0ptz2+gIe/+cqnZEjIkAEBf2ufaWMe3U+bZo3ZvK479H71GZel1TvmsfH8PKNfRnaM40Hp67k9je+ZsbqInZr6QSRBs1C8agvOzvb5ebmVvtxc9ft4IzWTRr8FZqcczz+eT6PfLaSb69O2D4lnq7pSXRNS6JbelPOaN2E+NiG/d9JJJKY2TznXHaV+yIp6OW7du4tZfGmYhYV7GJRQTGLNxWzpbji6lU+gw4tEuia1pRu6Ul0S0/i9FZNiIv2e1y1iNSEgl6O2LbnAEs2FbNwY/GRXwJFJaUARPmMji0T6ZaeRNf0JLqlNaXTKYnEREVMh08kYino5Zicc2zdfSAQ/P858t+1r6KvH+P3cXqrxCPB3zU9iawWCWG3fIRIpFPQS7U45yjYuZ9FBf9p+yzZVMyeg2UAxEX7OKP1t/3+ilu7lISIP41VJJQp6OWklZc71m3fGwj/iqP/JZt2s//QYQDiY/x0CQR/1/SmdEtL4tTkxiFzIReRSKeglzpxuNyxurCEhRt3Bfr9xSzbspvSsopF1prERdEtvSmDOqVyw/faKfRF6tDxgl7n10mN+QMf3nZsmcgV2W2AijWG8rbuORL8Czbs5L6PlhMT5WNk/wxvCxZpoBT0Uqui/T66pCXRJS2JEX0rWj43vDSX+z5cTq+2zeiSluR1iSINjk6dkDrl8xkPXtmD5vExjH1tvr6lK+KBoILezAabWZ6Z5ZvZnVXsNzN7LLB/kZn1qrTfb2YLzOzD2ipcwkfz+Bgev6onBTv386t3F2sNHpF6dsKgNzM/MB64EOgMjDCzzpWGXQhkBW6jgCcr7b8dWH7S1UrY6pPRnJ9f0ImPFm/hldkbvC5HpEEJ5oi+L5DvnFvjnCsF3gCGVBozBJjoKswCmppZKwAzSwf+B3i2FuuWMHTzWe0Z1CmVP3ywjCWbir0uR6TBCCbo04CNR90vCGwLdswjwP8Cx72wqZmNMrNcM8stLCwMoiwJNz6f8eAV3Y/06/eoXy9SL4IJ+qpOfq7cZK1yjJldDGxzzs070Ys45yY457Kdc9mpqalBlCXhKDkh9ki//s731K8XqQ/BBH0B0Oao++lA5UsYHWvMQOASM1tHRcvnXDN7pcbVSkTok9GcOy7oyEeLtvCq+vUidS6YoJ8LZJlZOzOLAYYDUyqNmQKMDJx9kwMUO+e2OOd+5ZxLd85lBB73uXPu6tp8AxKeRp+VydkdU/n9h+rXi9S1Ewa9c64MGAd8SsWZM28555aa2WgzGx0Y9jGwBsgHngHG1FG9EiF8PuOhK7vTrHE049SvF6l
|
|||
|
"text/plain": [
|
|||
|
"<Figure size 432x288 with 1 Axes>"
|
|||
|
]
|
|||
|
},
|
|||
|
"metadata": {
|
|||
|
"needs_background": "light"
|
|||
|
},
|
|||
|
"output_type": "display_data"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"import matplotlib.pyplot as plt\n",
|
|||
|
"plt.plot(ks, ts)\n",
|
|||
|
"plt.xscale('log')"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"Modern CPUs do not access memory byte by byte. Instead, they fetch memory in chunks of (typically) 64 bytes, called cache lines. When you read a particular memory location, the entire cache line is fetched from the main memory into the cache. And, accessing other values from the same cache line is cheap!\n",
|
|||
|
"\n",
|
|||
|
"Since 16 ints take up 64 bytes (one cache line), for-loops with a step between 1 and 16 have to touch the same number of cache lines: all of the cache lines in the array. But once the step is 32, we’ll only touch roughly every other cache line, and once it is 64, only every fourth."
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"More: http://igoro.com/archive/gallery-of-processor-cache-effects/"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "slide"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"## More performance tips"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"https://shihchinw.github.io/2019/03/performance-tips-of-numpy-ndarray.html"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "slide"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"## JIT"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"JIT = Just-In-Time compilation"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 38,
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"import numpy as np\n",
|
|||
|
"def matmul(a, b):\n",
|
|||
|
" n = a.shape[0]\n",
|
|||
|
" k = a.shape[1]\n",
|
|||
|
" m = b.shape[1] \n",
|
|||
|
" c = np.zeros((n, m))\n",
|
|||
|
" for i in range(n):\n",
|
|||
|
" for j in range(m):\n",
|
|||
|
" for s in range(k):\n",
|
|||
|
" c[i, j] += a[i, s] * b[s, j]\n",
|
|||
|
" \n",
|
|||
|
" return c"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 39,
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"import numpy as np\n",
|
|||
|
"from numba import jit\n",
|
|||
|
"\n",
|
|||
|
"@jit(nopython=True)\n",
|
|||
|
"def numba_matmul(a, b):\n",
|
|||
|
" n = a.shape[0]\n",
|
|||
|
" k = a.shape[1]\n",
|
|||
|
" m = b.shape[1]\n",
|
|||
|
" c = np.zeros((n, m))\n",
|
|||
|
" for i in range(n):\n",
|
|||
|
" for j in range(m):\n",
|
|||
|
" for s in range(k):\n",
|
|||
|
" c[i, j] += a[i, s] * b[s, j]\n",
|
|||
|
" return c"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "slide"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"Let us compare computational times."
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 40,
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"392 ms ± 33.4 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n",
|
|||
|
"The slowest run took 162.76 times longer than the fastest. This could mean that an intermediate result is being cached.\n",
|
|||
|
"23.4 ms ± 55 ms per loop (mean ± std. dev. of 7 runs, 2 loops each)\n",
|
|||
|
"59.4 µs ± 19.2 µs per loop (mean ± std. dev. of 7 runs, 4 loops each)\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"n = 100\n",
|
|||
|
"a = np.random.randn(n, n)\n",
|
|||
|
"b = np.random.randn(n, n)\n",
|
|||
|
"\n",
|
|||
|
"%timeit -n 1 matmul(a, b)\n",
|
|||
|
"%timeit -n 2 numba_matmul(a, b)\n",
|
|||
|
"%timeit -n 4 np.dot(a, b)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "slide"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"## Enter JAX"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"JAX $\\approx$ Just After eXecution"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 41,
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"import jax.numpy as jnp\n",
|
|||
|
"import numpy as np"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 42,
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"size = (1000, 1000)\n",
|
|||
|
"a = np.random.normal(size=size)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 43,
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"17.5 ms ± 61 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"%timeit -n 10 np.sum(a**3)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 44,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"1.55 ms ± 120 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"%timeit -n 10 np.sum(a*a*a)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 45,
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stderr",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"WARNING:absl:No GPU/TPU found, falling back to CPU. (Set TF_CPP_MIN_LOG_LEVEL=0 and rerun for more info.)\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"a = jnp.asarray(a)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 46,
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"544 µs ± 5.9 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"%timeit jnp.sum(a**3).block_until_ready()"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"Simply replacing numpy with jax.numpy, we got a 20x speed-up. \n",
|
|||
|
"jax.numpy can be even faster than pure C code due to very clever optimizations. We will discuss jax in more details in Lecture 7.\n",
|
|||
|
"Meanwhile: https://github.com/google/jax/discussions/11078"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "slide"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"# Part II: Vector and matrix norms. Orthogonal matrices."
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "slide"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"# Vector and matrix norms. Orthonogal matrices. "
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"## Reading\n",
|
|||
|
"- Trefethen NLA, Lectures 1 - 3\n",
|
|||
|
"- Tyrtyshnikov, Lecture 1"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "slide"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"## Notations\n",
|
|||
|
"\n",
|
|||
|
"We use notation (for matrix of $m$ rows and $n$ columns) \n",
|
|||
|
"\n",
|
|||
|
"$$A= \\begin{bmatrix} a_{11} & \\dots & a_{1n} \\\\ \\vdots & \\ddots & \\vdots \\\\ a_{m1} & \\dots & a_{mn} \\end{bmatrix}.$$"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "slide"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"## Matrix-vector multiplication "
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"Let matrix $A$ be composed from columns $a_i$: $A = \\bigg[a_1\\bigg|a_2\\bigg|...\\bigg|a_n\\bigg]$ \n",
|
|||
|
"\n",
|
|||
|
"Then matrix-vector multiplication can be understood as follows:\n",
|
|||
|
"$$\n",
|
|||
|
"Ax = \\bigg[a_1\\bigg|a_2\\bigg|...\\bigg|a_n\\bigg]x = x_1 \\bigg[a_1\\bigg] + x_2 \\bigg[a_2\\bigg] + ... + x_n \\bigg[a_n\\bigg],\n",
|
|||
|
"$$\n",
|
|||
|
"that is column vector $b=Ax$ is a linear combination of columns of $A$."
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"## Matrix-vector multiplication: complexity\n",
|
|||
|
"\n",
|
|||
|
"Multiplication of an $n\\times n$ matrix $A$ by a vector $x$ of size $n\\times 1$ ($y=Ax$):\n",
|
|||
|
"\n",
|
|||
|
"$$\n",
|
|||
|
"y_{i} = \\sum_{i=1}^n a_{ij} x_j\n",
|
|||
|
"$$\n",
|
|||
|
"\n",
|
|||
|
"requires $n^2$ mutliplications and $n(n-1)$ additions. Thus, the overall complexity is $\\mathcal{O}(n^2)$ "
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"## Matrix-matrix product\n",
|
|||
|
"A product of an $n \\times k$ matrix $A$ and a $k \\times m$ matrix $B$ is a $n \\times m$ matrix $C$ with the elements \n",
|
|||
|
"$$\n",
|
|||
|
" c_{ij} = \\sum_{s=1}^k a_{is} b_{sj}, \\quad i = 1, \\ldots, n, \\quad j = 1, \\ldots, m \n",
|
|||
|
"$$\n",
|
|||
|
"For $m=k=n$ complexity of a naive algorithm is $\\mathcal{O}(n^3)$. \n",
|
|||
|
"\n",
|
|||
|
"The rather elementary https://en.wikipedia.org/wiki/Strassen_algorithm allows to achieve $\\approx O(N^{2.81})$. Theoretically even faster algorithms (the best is $\\mathcal{O}(n^{2.37})$) exist, see a popular article https://www.quantamagazine.org/mathematicians-inch-closer-to-matrix-multiplication-goal-20210323/\n"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "slide"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"## Range and nullspace "
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"- range(A) is the set of vectors, which can be expressed as $Ax$\n",
|
|||
|
"- range(A) is the space spanned by the columns of $A$\n",
|
|||
|
"- null(A) is the set of $x$ such that $Ax=0$"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "slide"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"## Column and row rank "
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"- column rank is dimension of the column space\n",
|
|||
|
"- row rank is dimension of the row space\n",
|
|||
|
"- column rank is always equal to row rank"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "slide"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"## Full rank matrix and inverse"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"- The highest rank for a $m\\times n$ matrix is $\\min(m, n)$\n",
|
|||
|
"- The $m\\times n$ matrix of a rank $\\min(m, n)$ is called full rank matrix\n",
|
|||
|
"- Square $m\\times m$ matrix of a full rank is called non-singular matrix\n",
|
|||
|
"- Non-singular matrix has an inverse $A^{-1}$ such that $A A^{-1} = A^{-1} A = 1$"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"## Inverse matrix times a vector "
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"Geometric interpretation: Consider $x=A^{-1}b$. Its equivalent to $b=Ax$, hence $x$ is a vector of coefficients of expansion of $b$ over columns of $A$.\n",
|
|||
|
"In practice, if your algorithm needs to compute a matrix inverse, you are probably doing it wrong (for example, applying inverse of a matrix to a vector is better implemented as solution of the linear system)."
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "slide"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"# Vector norm\n",
|
|||
|
"\n",
|
|||
|
"- The notions of size and distance in vector space are captured by norms \n",
|
|||
|
"\n",
|
|||
|
"- Norm is a measure of magnitude of a vector, denoted as $\\Vert x \\Vert$.\n",
|
|||
|
"\n",
|
|||
|
"The norm should satisfy certain properties:\n",
|
|||
|
"\n",
|
|||
|
"- $\\Vert \\alpha x \\Vert = |\\alpha| \\Vert x \\Vert$\n",
|
|||
|
"- $\\Vert x + y \\Vert \\leq \\Vert x \\Vert + \\Vert y \\Vert$ (triangle inequality)\n",
|
|||
|
"- If $\\Vert x \\Vert = 0$ then $x = 0$"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"The distance between two vectors is then defined as\n",
|
|||
|
"\n",
|
|||
|
"$$ d(x, y) = \\Vert x - y \\Vert. $$\n",
|
|||
|
"\n",
|
|||
|
"The most well-known and widely used norm is euclidean norm:\n",
|
|||
|
"\n",
|
|||
|
"$$\\Vert x \\Vert_2 = \\sqrt{\\sum_{i=1}^n |x_i|^2},$$"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "slide"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"## $p$-norm\n",
|
|||
|
"Euclidean norm, or $2$-norm, is a subclass of an important class of $p$-norms:\n",
|
|||
|
"\n",
|
|||
|
"$$ \\Vert x \\Vert_p = \\Big(\\sum_{i=1}^n |x_i|^p\\Big)^{1/p}. $$"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "slide"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"## Equivalence of the norms\n",
|
|||
|
"All norms are equivalent in the sense that\n",
|
|||
|
"\n",
|
|||
|
"$$ C_1 \\Vert x \\Vert_* \\leq \\Vert x \\Vert_{**} \\leq C_2 \\Vert x \\Vert_* $$ \n",
|
|||
|
"\n",
|
|||
|
"for some positive constants $C_1(n), C_2(n)$, $x \\in \\mathbb{R}^n$ for any pairs of norms $\\Vert \\cdot \\Vert_*$ and $\\Vert \\cdot \\Vert_{**}$. The equivalence of the norms means that if the vector is small in one norm, it is small in another norm. However, the constants can be large."
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "slide"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"## Computing norms in Python"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 47,
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"Relative error in L1 norm: 0.0007970883810244821\n",
|
|||
|
"Relative error in L2 norm: 0.001010323277420861\n",
|
|||
|
"Relative error in L_{inf} norm: 0.0033282301825079508\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"import numpy as np\n",
|
|||
|
"n = 100\n",
|
|||
|
"a = np.ones(n)\n",
|
|||
|
"b = a + 1e-3 * np.random.randn(n)\n",
|
|||
|
"print('Relative error in L1 norm:', np.linalg.norm(a - b, 1) / np.linalg.norm(b, 1))\n",
|
|||
|
"print('Relative error in L2 norm:', np.linalg.norm(a - b) / np.linalg.norm(b))\n",
|
|||
|
"print('Relative error in L_{inf} norm:', np.linalg.norm(a - b, np.inf) / np.linalg.norm(b, np.inf))"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "slide"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"## Why $L_1$-norm can be important?\n",
|
|||
|
"\n",
|
|||
|
"$L_1$ norm has sparsifying property. Consider underdetermined system of equations:\n",
|
|||
|
"\n",
|
|||
|
"$$Ax = f,$$ where $A$ is an $n \\times m$ matrix, $A$ is known and $n\\ll m$.\n",
|
|||
|
"\n",
|
|||
|
"The question: can we find the solution $x$?"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"Solution is not unique; a natural approach is to find the solution that is 'minimal' in some sense:\n",
|
|||
|
"\n",
|
|||
|
"\\begin{align*}\n",
|
|||
|
"& \\Vert x \\Vert \\rightarrow \\min_x \\mbox{ subject to } Ax = f\n",
|
|||
|
"\\end{align*}\n",
|
|||
|
"\n",
|
|||
|
"- Typical choice of $\\Vert x \\Vert = \\Vert x \\Vert_2$ leads to the solution vector of a minimal length \n",
|
|||
|
"\n",
|
|||
|
"- The choice $\\Vert x \\Vert = \\Vert x \\Vert_1$ typically yields the most sparse solution vector"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "slide"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"## Matrix norms\n",
|
|||
|
"$\\Vert \\cdot \\Vert$ is called a matrix norm if it is a vector norm on the vector space of $m \\times n$ matrices:\n",
|
|||
|
"1. $|A| \\geq 0$ and if $|A| = 0$ then $A = 0$\n",
|
|||
|
"2. $|\\alpha A| = |\\alpha| |A|$\n",
|
|||
|
"3. $|A+B| \\leq |A| + |B|$ (triangle inequality)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"### Example: Frobenius norm"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"$$\n",
|
|||
|
"\\|A\\|_{\\text{F}}={\\sqrt {\\sum _{i=1}^{m}\\sum _{j=1}^{n}|a_{ij}|^{2}}}={\\sqrt {\\operatorname {trace} \\left(A^{*}A\\right)}}\n",
|
|||
|
"$$"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "slide"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"## Induced norms\n",
|
|||
|
"\n",
|
|||
|
"- The most important class of the matrix norms is the class of induced norms. They are defined as\n",
|
|||
|
"\n",
|
|||
|
"$$ \\Vert A \\Vert_{*} = \\sup_{x \\ne 0} \\frac{\\Vert A x \\Vert_*}{\\Vert x \\Vert_*}, $$\n",
|
|||
|
"\n",
|
|||
|
"where $\\Vert \\cdot \\Vert_*$ is a certain vector norm.\n",
|
|||
|
"\n",
|
|||
|
"- Frobenius norm is a matrix norm, but not an induced norm, i.e. you can not find $\\Vert \\cdot \\Vert_*$ which induces it."
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "slide"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"## Induced $p$-norms\n",
|
|||
|
"\n",
|
|||
|
"Important case of operator norms are matrix $p$-norms, which are defined for $\\|\\cdot\\|_* = \\|\\cdot\\|_p$. <br>\n",
|
|||
|
"\n",
|
|||
|
"Among all $p$-norms three norms are the most common ones: \n",
|
|||
|
"\n",
|
|||
|
"- $p = 1, \\quad \\Vert A \\Vert_{1} = \\displaystyle{\\max_j \\sum_{i=1}^n} |a_{ij}|$.\n",
|
|||
|
"\n",
|
|||
|
"- $p = 2, \\quad$ spectral norm, denoted by $\\Vert A \\Vert_2$.\n",
|
|||
|
"\n",
|
|||
|
"- $p = \\infty, \\quad \\Vert A \\Vert_{\\infty} = \\displaystyle{\\max_i \\sum_{j=1}^m} |a_{ij}|$."
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "slide"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"## Spectral norm\n",
|
|||
|
"\n",
|
|||
|
"- Spectral norm, $\\Vert A \\Vert_2$ is one of the most used matrix norms (along with the Frobenius norm). \n",
|
|||
|
"- It can not be computed directly from the entries using a simple formula, like the Frobenius norm, however, there are efficient algorithms to compute it. \n",
|
|||
|
"- It is directly related to the singular value decomposition (SVD) of the matrix (next lectures)."
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "slide"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"# Orthogonal vectors and matrices "
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"- A pair of vectors $x$ and $y$ is orthogonal if $x^*y=0$\n",
|
|||
|
"- A set of non-zero vectors is orthogonal if its elements are pairwise orthogonal\n",
|
|||
|
"- A set of non-zero vectors is orthonormal if it is orthogonal and all vectors have unit length $x^* x = 1$"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"- A square complex matrix $Q$ is called unitary (orthogonal in real case) if $Q^* Q = 1$ \n",
|
|||
|
"- In terms of columns: $q_i^*q_j=\\delta_{ij}$ and the columns of $Q$ form an orthonormal basis\n",
|
|||
|
"- Unitary matrices preserve vector length:\n",
|
|||
|
"$$\n",
|
|||
|
"||Qx||_2 = ||x||_2\n",
|
|||
|
"$$"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"- For rectangular matrices of size $m\\times n$ ($n\\not= m$) only one of the equalities can hold\n",
|
|||
|
"\n",
|
|||
|
" - $ Q^*Q = I_n$ – left unitary for $m>n$\n",
|
|||
|
" - $ QQ^* = I_m$ – right unitary for $m<n$\n",
|
|||
|
"\n",
|
|||
|
"- In the case of real matrices $Q^* = Q^T$ and matrices such that\n",
|
|||
|
"\n",
|
|||
|
"$$ Q^TQ = QQ^T = I $$\n",
|
|||
|
"\n",
|
|||
|
"are called orthogonal."
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "fragment"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"Important property: a product of two unitary matrices is a unitary matrix: \n",
|
|||
|
"\n",
|
|||
|
"$$(UV)^* UV = V^* (U^* U) V = V^* V = I,$$"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "markdown",
|
|||
|
"metadata": {
|
|||
|
"slideshow": {
|
|||
|
"slide_type": "slide"
|
|||
|
}
|
|||
|
},
|
|||
|
"source": [
|
|||
|
"## Unitary invariance of $\\|\\cdot\\|_2$ and $\\|\\cdot\\|_F$ norms\n",
|
|||
|
"\n",
|
|||
|
"- For vector 2-norm we have already discussed that $\\Vert U z \\Vert_2 = \\Vert z \\Vert_2$ for any unitary $U$.\n",
|
|||
|
"\n",
|
|||
|
"- One can show that unitary matrices also do not change matrix norms $\\|\\cdot\\|_2$ and $\\|\\cdot\\|_F$, i.e. for any square $A$ and unitary $U$,$V$: \n",
|
|||
|
"\n",
|
|||
|
"$$ \\| UAV\\|_2 = \\| A \\|_2 \\qquad \\| UAV\\|_F = \\| A \\|_F.$$"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"metadata": {
|
|||
|
"celltoolbar": "Слайд-шоу",
|
|||
|
"kernelspec": {
|
|||
|
"display_name": "Python 3 (ipykernel)",
|
|||
|
"language": "python",
|
|||
|
"name": "python3"
|
|||
|
},
|
|||
|
"language_info": {
|
|||
|
"codemirror_mode": {
|
|||
|
"name": "ipython",
|
|||
|
"version": 3
|
|||
|
},
|
|||
|
"file_extension": ".py",
|
|||
|
"mimetype": "text/x-python",
|
|||
|
"name": "python",
|
|||
|
"nbconvert_exporter": "python",
|
|||
|
"pygments_lexer": "ipython3",
|
|||
|
"version": "3.9.12"
|
|||
|
}
|
|||
|
},
|
|||
|
"nbformat": 4,
|
|||
|
"nbformat_minor": 4
|
|||
|
}
|