default branch written in kotlin
This commit is contained in:
parent
ca59a325f3
commit
ef77e6a134
@ -3,7 +3,7 @@
|
||||
\.chg\..*$
|
||||
\.rej$
|
||||
\.conflict\~$
|
||||
.gradle
|
||||
.gradle/
|
||||
build/
|
||||
.idea/*
|
||||
!gradle-wrapper.jar
|
||||
|
47
build.gradle
47
build.gradle
@ -1,26 +1,15 @@
|
||||
apply plugin: 'java'
|
||||
//apply plugin: 'c'
|
||||
apply plugin: 'idea'
|
||||
apply plugin: 'application'
|
||||
|
||||
|
||||
mainClassName = "inr.numass.trapping.Trapping"
|
||||
plugins {
|
||||
id "org.jetbrains.kotlin.jvm" version "1.2.21"
|
||||
id "java"
|
||||
id "application"
|
||||
}
|
||||
|
||||
group = 'inr.numass'
|
||||
version = 'dev'
|
||||
|
||||
description = "Numass trapping simulation"
|
||||
|
||||
sourceCompatibility = 1.8
|
||||
targetCompatibility = 1.8
|
||||
|
||||
tasks.withType(JavaCompile) {
|
||||
options.encoding = 'UTF-8'
|
||||
}
|
||||
|
||||
tasks.withType(JavaExec) {
|
||||
enableAssertions = true
|
||||
}
|
||||
mainClassName = "inr.numass.trapping.TrappingKt"
|
||||
|
||||
repositories {
|
||||
mavenCentral()
|
||||
@ -28,9 +17,14 @@ repositories {
|
||||
|
||||
dependencies {
|
||||
compile group: 'org.apache.commons', name: 'commons-math3', version: '3.6.1'
|
||||
compile "org.jetbrains.kotlin:kotlin-stdlib-jdk8"
|
||||
testCompile group: 'junit', name: 'junit', version: '4.12'
|
||||
}
|
||||
|
||||
compileKotlin {
|
||||
kotlinOptions.jvmTarget = "1.8"
|
||||
}
|
||||
|
||||
task runTrap(type: JavaExec) {
|
||||
classpath = sourceSets.main.runtimeClasspath
|
||||
|
||||
@ -40,22 +34,3 @@ task runTrap(type: JavaExec) {
|
||||
args 'D:\\Work\\Numass\\trapping\\trap.out'
|
||||
}
|
||||
|
||||
// native component
|
||||
|
||||
//model {
|
||||
// components {
|
||||
// scatter(NativeLibrarySpec)
|
||||
// }
|
||||
// toolChains {
|
||||
// visualCpp(VisualCpp) {
|
||||
// // Specify the installDir if Visual Studio cannot be located
|
||||
// // installDir "C:/Apps/Microsoft Visual Studio 10.0"
|
||||
// installDir "C:\\Program Files (x86)\\Microsoft Visual Studio 12.0"
|
||||
// }
|
||||
// gcc(Gcc) {
|
||||
// // Uncomment to use a GCC install that is not in the PATH
|
||||
// // path "/usr/bin/gcc"
|
||||
// }
|
||||
//
|
||||
// }
|
||||
//}
|
||||
|
@ -1,104 +0,0 @@
|
||||
/*
|
||||
* Copyright 2015 Alexander Nozik.
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
package inr.numass.trapping;
|
||||
|
||||
import java.io.PrintStream;
|
||||
import static java.lang.Integer.valueOf;
|
||||
import java.util.HashMap;
|
||||
import java.util.Map;
|
||||
|
||||
/**
|
||||
* TODO есть объект MultiDimensionalCounter, исползовать его?
|
||||
*
|
||||
* @author Alexander Nozik
|
||||
* @version $Id: $Id
|
||||
*/
|
||||
public class MultiCounter {
|
||||
|
||||
private HashMap<String, Integer> counts = new HashMap<>();
|
||||
String name;
|
||||
|
||||
/**
|
||||
* <p>Constructor for MultiCounter.</p>
|
||||
*
|
||||
* @param name a {@link java.lang.String} object.
|
||||
*/
|
||||
public MultiCounter(String name) {
|
||||
this.name = name;
|
||||
}
|
||||
|
||||
/**
|
||||
* <p>getCount.</p>
|
||||
*
|
||||
* @param name a {@link java.lang.String} object.
|
||||
* @return a int.
|
||||
*/
|
||||
public int getCount(String name) {
|
||||
if (counts.containsKey(name)) {
|
||||
return counts.get(name);
|
||||
} else {
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* <p>increase.</p>
|
||||
*
|
||||
* @param name a {@link java.lang.String} object.
|
||||
*/
|
||||
public synchronized void increase(String name) {
|
||||
if (counts.containsKey(name)) {
|
||||
Integer count = counts.get(name);
|
||||
counts.remove(name);
|
||||
counts.put(name, count + 1);
|
||||
} else {
|
||||
counts.put(name, valueOf(1));
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* <p>print.</p>
|
||||
*
|
||||
* @param out a {@link java.io.PrintWriter} object.
|
||||
*/
|
||||
public void print(PrintStream out) {
|
||||
out.printf("%nValues for counter %s%n%n", this.name);
|
||||
for (Map.Entry<String, Integer> entry : counts.entrySet()) {
|
||||
|
||||
String keyName = entry.getKey();
|
||||
Integer value = entry.getValue();
|
||||
out.printf("%s : %d%n", keyName, value);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* <p>reset.</p>
|
||||
*
|
||||
* @param name a {@link java.lang.String} object.
|
||||
*/
|
||||
public synchronized void reset(String name) {
|
||||
if (counts.containsKey(name)) {
|
||||
counts.remove(name);
|
||||
}
|
||||
}
|
||||
/**
|
||||
* <p>resetAll.</p>
|
||||
*/
|
||||
public synchronized void resetAll() {
|
||||
this.counts = new HashMap<>();
|
||||
}
|
||||
}
|
@ -1,904 +0,0 @@
|
||||
/*
|
||||
* written by Sebastian Voecking <seb.voeck@uni-muenster.de>
|
||||
*
|
||||
* See scatter.h for details
|
||||
*
|
||||
* Included in this file are function from Ferenc Glueck for calculation of
|
||||
* cross sections.
|
||||
*/
|
||||
package inr.numass.trapping;
|
||||
|
||||
import static org.apache.commons.math3.util.FastMath.*;
|
||||
import org.apache.commons.math3.random.RandomGenerator;
|
||||
import org.apache.commons.math3.util.Pair;
|
||||
|
||||
/**
|
||||
*
|
||||
* @author Darksnake
|
||||
*/
|
||||
public class Scatter {
|
||||
|
||||
static final double a02 = 28e-22; // Bohr radius squared
|
||||
static final double clight = 137; // velocity of light in atomic units
|
||||
static final double emass = 18780; // Electron mass in atomic units
|
||||
static final double R = 13.6; // Ryberg energy in eV
|
||||
private final RandomGenerator generator;
|
||||
|
||||
boolean debug = false;
|
||||
|
||||
MultiCounter counter = new MultiCounter("Accept-reject calls");
|
||||
|
||||
private double fmax = 0;
|
||||
|
||||
public Scatter(RandomGenerator generator) {
|
||||
this.generator = generator;
|
||||
}
|
||||
|
||||
private void count(String counterName){
|
||||
if(debug){
|
||||
counter.increase(counterName);
|
||||
}
|
||||
}
|
||||
|
||||
public Pair<Double, Double> randomel(double E) {
|
||||
// This subroutine generates energy loss and polar scatt. angle according to
|
||||
// electron elastic scattering in molecular hydrogen.
|
||||
// Input:
|
||||
// E: incident electron energy in eV.
|
||||
// Output:
|
||||
// *Eloss: energy loss in eV
|
||||
// *theta: change of polar angle in degrees
|
||||
double H2molmass = 69.e6;
|
||||
double T, c = 1, b, G, a, gam, K2, Gmax;
|
||||
double[] u = new double[3];
|
||||
int i;
|
||||
|
||||
count("randomel-calls");
|
||||
if (E >= 250.) {
|
||||
Gmax = 1.e-19;
|
||||
} else if (E < 250. && E >= 150.) {
|
||||
Gmax = 2.5e-19;
|
||||
} else {
|
||||
Gmax = 1.e-18;
|
||||
}
|
||||
T = E / 27.2;
|
||||
gam = 1. + T / (clight * clight); // relativistic correction factor
|
||||
b = 2. / (1. + gam) / T;
|
||||
for (i = 1; i < 5000; i++) {
|
||||
count("randomel");
|
||||
c = 1. + b - b * (2. + b) / (b + 2. * generator.nextDouble());
|
||||
K2 = 2. * T * (1. + gam) * abs(1d - c); // momentum transfer squared
|
||||
a = (4. + K2) * (4. + K2) / (gam * gam);
|
||||
G = a * Del(E, c);
|
||||
if (G > Gmax * generator.nextDouble()) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
return new Pair<>(2d * emass / H2molmass * (1d - c) * E, acos(c) * 180d / Math.PI);
|
||||
}
|
||||
|
||||
Pair<Double, Double> randomexc(double E) {
|
||||
// This subroutine generates energy loss and polar scatt. angle according to
|
||||
// electron excitation scattering in molecular hydrogen.
|
||||
// Input:
|
||||
// E: incident electron energy in eV.
|
||||
// Output:
|
||||
// *Eloss: energy loss in eV
|
||||
// *theta: change of polar angle in degrees
|
||||
|
||||
double Ecen = 12.6 / 27.21;
|
||||
double[] sum = new double[1001];
|
||||
double T, c = 0., K, xmin, ymin, ymax, x, y, fy, dy, pmax;
|
||||
double D, Dmax;
|
||||
int i, j, n = 0, N, v = 0;
|
||||
// Energy values of the excited electronic states:
|
||||
// (from Mol. Phys. 41 (1980) 1501, in Hartree atomic units)
|
||||
double[] En = {12.73 / 27.2, 13.2 / 27.2, 14.77 / 27.2, 15.3 / 27.2,
|
||||
14.93 / 27.2, 15.4 / 27.2, 13.06 / 27.2};
|
||||
// Probability numbers of the electronic states:
|
||||
// (from testelectron7.c calculation )
|
||||
double[] p = {35.86, 40.05, 6.58, 2.26, 9.61, 4.08, 1.54};
|
||||
// Energy values of the B vibrational states:
|
||||
// (from: Phys. Rev. A51 (1995) 3745 , in Hartree atomic units)
|
||||
double[] EB = {0.411, 0.417, 0.423, 0.428, 0.434, 0.439, 0.444, 0.449,
|
||||
0.454, 0.459, 0.464, 0.468, 0.473, 0.477, 0.481, 0.485,
|
||||
0.489, 0.493, 0.496, 0.500, 0.503, 0.507, 0.510, 0.513,
|
||||
0.516, 0.519, 0.521, 0.524};
|
||||
// Energy values of the C vibrational states:
|
||||
// (from: Phys. Rev. A51 (1995) 3745 , in Hartree atomic units)
|
||||
double[] EC = {0.452, 0.462, 0.472, 0.481, 0.490, 0.498, 0.506, 0.513,
|
||||
0.519, 0.525, 0.530, 0.534, 0.537, 0.539};
|
||||
// Franck-Condon factors of the B vibrational states:
|
||||
// (from: Phys. Rev. A51 (1995) 3745 )
|
||||
double[] pB = {4.2e-3, 1.5e-2, 3.0e-2, 4.7e-2, 6.3e-2, 7.3e-2, 7.9e-2,
|
||||
8.0e-2, 7.8e-2, 7.3e-2, 6.6e-2, 5.8e-2, 5.1e-2, 4.4e-2,
|
||||
3.7e-2, 3.1e-2, 2.6e-2, 2.2e-2, 1.8e-2, 1.5e-2, 1.3e-2,
|
||||
1.1e-2, 8.9e-3, 7.4e-3, 6.2e-3, 5.2e-3, 4.3e-3, 3.6e-3};
|
||||
// Franck-Condon factors of the C vibrational states:
|
||||
// (from: Phys. Rev. A51 (1995) 3745 )
|
||||
double[] pC = {1.2e-1, 1.9e-1, 1.9e-1, 1.5e-1, 1.1e-1, 7.5e-2, 5.0e-2,
|
||||
3.3e-2, 2.2e-2, 1.4e-2, 9.3e-3, 6.0e-3, 3.7e-3, 1.8e-3};
|
||||
count("randomexc-calls");
|
||||
T = 20000. / 27.2;
|
||||
//
|
||||
xmin = Ecen * Ecen / (2. * T);
|
||||
ymin = log(xmin);
|
||||
ymax = log(8. * T + xmin);
|
||||
dy = (ymax - ymin) / 1000.;
|
||||
|
||||
// Initialization of the sum[] vector, and fmax calculation:
|
||||
if (fmax == 0) {
|
||||
synchronized (this) {
|
||||
for (i = 0; i <= 1000; i++) {
|
||||
y = ymin + dy * i;
|
||||
K = exp(y / 2.);
|
||||
sum[i] = sumexc(K);
|
||||
if (sum[i] > fmax) {
|
||||
fmax = sum[i];
|
||||
}
|
||||
}
|
||||
fmax = 1.05 * fmax;
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
// Scattering angle *theta generation:
|
||||
//
|
||||
T = E / 27.2;
|
||||
double theta;
|
||||
if (E >= 100.) {
|
||||
xmin = Ecen * Ecen / (2. * T);
|
||||
ymin = log(xmin);
|
||||
ymax = log(8. * T + xmin);
|
||||
// dy = (ymax - ymin) / 1000.;
|
||||
// Generation of y values with the Neumann acceptance-rejection method:
|
||||
y = ymin;
|
||||
for (j = 1; j < 5000; j++) {
|
||||
count("randomexc1");
|
||||
y = ymin + (ymax - ymin) * generator.nextDouble();
|
||||
K = exp(y / 2.);
|
||||
fy = sumexc(K);
|
||||
if (fmax * generator.nextDouble() < fy) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
// Calculation of c=cos(theta) and theta:
|
||||
x = exp(y);
|
||||
c = 1. - (x - xmin) / (4. * T);
|
||||
theta = acos(c) * 180. / Math.PI;
|
||||
} else {
|
||||
if (E <= 25.) {
|
||||
Dmax = 60.;
|
||||
} else if (E > 25. && E <= 35.) {
|
||||
Dmax = 95.;
|
||||
} else if (E > 35. && E <= 50.) {
|
||||
Dmax = 150.;
|
||||
} else {
|
||||
Dmax = 400.;
|
||||
}
|
||||
for (j = 1; j < 5000; j++) {
|
||||
count("randomexc2");
|
||||
c = -1. + 2. * generator.nextDouble();
|
||||
D = Dexc(E, c) * 1.e22;
|
||||
if (Dmax * generator.nextDouble() < D) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
theta = acos(c) * 180. / Math.PI;
|
||||
}
|
||||
// Energy loss *Eloss generation:
|
||||
|
||||
// First we generate the electronic state, using the Neumann
|
||||
// acceptance-rejection method for discrete distribution:
|
||||
N = 7; // the number of electronic states in our calculation
|
||||
pmax = p[1]; // the maximum of the p[] values
|
||||
for (j = 1; j < 5000; j++) {
|
||||
count("randomexc3");
|
||||
n = (int) (N * generator.nextDouble());
|
||||
if (generator.nextDouble() * pmax < p[n]) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (n < 0) {
|
||||
n = 0;
|
||||
}
|
||||
if (n > 6) {
|
||||
n = 6;
|
||||
}
|
||||
if (n > 1) {
|
||||
|
||||
}
|
||||
double Eloss;
|
||||
switch (n) {
|
||||
case 0:
|
||||
// B state; we generate now a vibrational state,
|
||||
// using the Frank-Condon factors
|
||||
N = 28; // the number of B vibrational states in our calculation
|
||||
pmax = pB[7]; // maximum of the pB[] values
|
||||
for (j = 1; j < 5000; j++) {
|
||||
count("randomexc4");
|
||||
v = (int) (N * generator.nextDouble());
|
||||
if (generator.nextDouble() * pmax < pB[v]) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (v < 0) {
|
||||
v = 0;
|
||||
}
|
||||
if (v > 27) {
|
||||
v = 27;
|
||||
}
|
||||
Eloss = EB[v] * 27.2;
|
||||
break;
|
||||
case 1:
|
||||
// C state; we generate now a vibrational state,
|
||||
// using the Franck-Condon factors
|
||||
N = 14; // the number of C vibrational states in our calculation
|
||||
pmax = pC[1]; // maximum of the pC[] values
|
||||
for (j = 1; j < 5000; j++) {
|
||||
count("randomexc4");
|
||||
v = (int) (N * generator.nextDouble());
|
||||
if (generator.nextDouble() * pmax < pC[v]) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (v < 0) {
|
||||
v = 0;
|
||||
}
|
||||
if (v > 13) {
|
||||
v = 13;
|
||||
}
|
||||
Eloss = EC[v] * 27.2;
|
||||
break;
|
||||
default:
|
||||
// Bp, Bpp, D, Dp, EF states
|
||||
Eloss = En[n] * 27.2;
|
||||
break;
|
||||
}
|
||||
return new Pair<>(Eloss, theta);
|
||||
}
|
||||
|
||||
Pair<Double, Double> randomion(double E) {
|
||||
// This subroutine generates energy loss and polar scatt. angle according to
|
||||
// electron ionization scattering in molecular hydrogen.
|
||||
// Input:
|
||||
// E: incident electron energy in eV.
|
||||
// Output:
|
||||
// *Eloss: energy loss in eV
|
||||
// *theta: change of polar angle in degrees
|
||||
// The kinetic energy of the secondary electron is: Eloss-15.4 eV
|
||||
//
|
||||
double Ei = 15.45 / 27.21;
|
||||
double c, b, K, xmin, ymin, ymax, x, y, T, G, W, Gmax;
|
||||
double q, h, F, Fmin, Fmax, Gp, Elmin, Elmax, qmin, qmax, El, wmax;
|
||||
double WcE, Jstarq, WcstarE, w, D2ion;
|
||||
int j;
|
||||
double K2, KK, fE, kej, ki, kf, Rex, arg, arctg;
|
||||
int i;
|
||||
double st1, st2;
|
||||
count("randomion-calls");
|
||||
//
|
||||
// I. Generation of theta
|
||||
// -----------------------
|
||||
Gmax = 1.e-20;
|
||||
if (E < 200.) {
|
||||
Gmax = 2.e-20;
|
||||
}
|
||||
T = E / 27.2;
|
||||
xmin = Ei * Ei / (2. * T);
|
||||
b = xmin / (4. * T);
|
||||
ymin = log(xmin);
|
||||
ymax = log(8. * T + xmin);
|
||||
// Generation of y values with the Neumann acceptance-rejection method:
|
||||
y = ymin;
|
||||
for (j = 1; j < 5000; j++) {
|
||||
count("randomion1");
|
||||
y = ymin + (ymax - ymin) * generator.nextDouble();
|
||||
K = exp(y / 2.);
|
||||
c = 1. + b - K * K / (4. * T);
|
||||
G = K * K * (Dinel(E, c) - Dexc(E, c));
|
||||
if (Gmax * generator.nextDouble() < G) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
// y --> x --> c --> theta
|
||||
x = exp(y);
|
||||
c = 1. - (x - xmin) / (4. * T);
|
||||
double theta = acos(c) * 180. / Math.PI;
|
||||
//
|
||||
// II. Generation of Eloss, for fixed theta
|
||||
// ----------------------------------------
|
||||
//
|
||||
// For E<=100 eV we use subr. gensecelen
|
||||
// (in this case no correlation between theta and Eloss)
|
||||
if (E <= 100.) {
|
||||
return new Pair<>(15.45 + gensecelen(E), theta);
|
||||
}
|
||||
// For theta>=20 the free electron model is used
|
||||
// (with full correlation between theta and Eloss)
|
||||
if (theta >= 20.) {
|
||||
return new Pair<>(E * (1. - c * c), theta);
|
||||
}
|
||||
// For E>100 eV and theta<20: analytical first Born approximation
|
||||
// formula of Bethe for H atom (with modification for H2)
|
||||
//
|
||||
// Calc. of wmax:
|
||||
if (theta >= 0.7) {
|
||||
wmax = 1.1;
|
||||
} else if (theta <= 0.7 && theta > 0.2) {
|
||||
wmax = 2.;
|
||||
} else if (theta <= 0.2 && theta > 0.05) {
|
||||
wmax = 4.;
|
||||
} else {
|
||||
wmax = 8.;
|
||||
}
|
||||
// We generate the q value according to the Jstarq pdf. We have to
|
||||
// define the qmin and qmax limits for this generation:
|
||||
K = sqrt(4. * T * (1. - Ei / (2. * T) - sqrt(1. - Ei / T) * c));
|
||||
Elmin = Ei;
|
||||
Elmax = (E + 15.45) / 2. / 27.2;
|
||||
qmin = Elmin / K - K / 2.;
|
||||
qmax = Elmax / K - K / 2.;
|
||||
//
|
||||
q = qmax;
|
||||
Fmax = 1. / 2. + 1. / Math.PI * (q / (1. + q * q) + atan(q));
|
||||
q = qmin;
|
||||
Fmin = 1. / 2. + 1. / Math.PI * (q / (1. + q * q) + atan(q));
|
||||
h = Fmax - Fmin;
|
||||
// Generation of Eloss with the Neumann acceptance-rejection method:
|
||||
El = 0;
|
||||
for (j = 1; j < 5000; j++) {
|
||||
// Generation of q with inverse transform method
|
||||
// (we use the Newton-Raphson method in order to solve the nonlinear eq.
|
||||
// for the inversion) :
|
||||
count("randomion2");
|
||||
F = Fmin + h * generator.nextDouble();
|
||||
y = 0.;
|
||||
for (i = 1; i <= 30; i++) {
|
||||
G = 1. / 2. + (y + sin(2. * y) / 2.) / Math.PI;
|
||||
Gp = (1. + cos(2. * y)) / Math.PI;
|
||||
y = y - (G - F) / Gp;
|
||||
if (abs(G - F) < 1.e-8) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
q = tan(y);
|
||||
// We have the q value, so we can define El, and calculate the weight:
|
||||
El = q * K + K * K / 2.;
|
||||
// First Born approximation formula of Bethe for e-H ionization:
|
||||
KK = K;
|
||||
ki = sqrt(2. * T);
|
||||
kf = sqrt(2. * (T - El));
|
||||
K2 = 4. * T * (1. - El / (2. * T) - sqrt(1. - El / T) * c);
|
||||
if (K2 < 1.e-9) {
|
||||
K2 = 1.e-9;
|
||||
}
|
||||
K = sqrt(K2); // momentum transfer
|
||||
Rex = 1. - K * K / (kf * kf) + K2 * K2 / (kf * kf * kf * kf);
|
||||
kej = sqrt(2. * abs(El - Ei) + 1.e-8);
|
||||
st1 = K2 - 2. * El + 2.;
|
||||
if (abs(st1) < 1.e-9) {
|
||||
st1 = 1.e-9;
|
||||
}
|
||||
arg = 2. * kej / st1;
|
||||
if (arg >= 0.) {
|
||||
arctg = atan(arg);
|
||||
} else {
|
||||
arctg = atan(arg) + Math.PI;
|
||||
}
|
||||
st1 = (K + kej) * (K + kej) + 1.;
|
||||
st2 = (K - kej) * (K - kej) + 1.;
|
||||
fE = 1024. * El * (K2 + 2. / 3. * El) / (st1 * st1 * st1 * st2 * st2 * st2)
|
||||
* exp(-2. / kej * arctg) / (1. - exp(-2. * Math.PI / kej));
|
||||
D2ion = 2. * kf / ki * Rex / (El * K2) * fE;
|
||||
K = KK;
|
||||
//
|
||||
WcE = D2ion;
|
||||
Jstarq = 16. / (3. * Math.PI * (1. + q * q) * (1. + q * q));
|
||||
WcstarE = 4. / (K * K * K * K * K) * Jstarq;
|
||||
w = WcE / WcstarE;
|
||||
if (wmax * generator.nextDouble() < w) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return new Pair<>(El * 27.2, theta);
|
||||
}
|
||||
|
||||
double gensecelen(double E) {
|
||||
// This subroutine generates secondary electron energy W
|
||||
// from ionization of incident electron energy E, by using
|
||||
// the Lorentzian of Aseev et al. (Eq. 8).
|
||||
// E and W in eV.
|
||||
double Ei = 15.45, eps2 = 14.3, b = 6.25;
|
||||
double B;
|
||||
double D, A, eps, a, u, epsmax;
|
||||
int iff = 0;
|
||||
B = 0;
|
||||
if (iff == 0) {
|
||||
B = atan((Ei - eps2) / b);
|
||||
iff = 1;
|
||||
}
|
||||
epsmax = (E + Ei) / 2.;
|
||||
A = atan((epsmax - eps2) / b);
|
||||
D = b / (A - B);
|
||||
u = generator.nextDouble();
|
||||
a = b / D * (u + D / b * B);
|
||||
eps = eps2 + b * tan(a);
|
||||
return eps - Ei;
|
||||
}
|
||||
|
||||
double Del(double E, double c) {
|
||||
// This subroutine computes the differential cross section
|
||||
// Del= d sigma/d Omega of elastic electron scattering
|
||||
// on molecular hydrogen.
|
||||
// See: Nishimura et al., J. Phys. Soc. Jpn. 54 (1985) 1757.
|
||||
// Input: E= electron kinetic energy in eV
|
||||
// c= cos(theta), where theta is the polar scatt. angle
|
||||
// Del: in m^2/steradian
|
||||
double[] Cel = {
|
||||
-0.512, -0.512, -0.509, -0.505, -0.499,
|
||||
-0.491, -0.476, -0.473, -0.462, -0.452,
|
||||
-0.438, -0.422, -0.406, -0.388, -0.370,
|
||||
-0.352, -0.333, -0.314, -0.296, -0.277,
|
||||
-0.258, -0.239, -0.221, -0.202, -0.185,
|
||||
-0.167, -0.151, -0.135, -0.120, -0.105,
|
||||
-0.092, -0.070, -0.053, -0.039, -0.030,
|
||||
-0.024, -0.019, -0.016, -0.014, -0.013,
|
||||
-0.012, -0.009, -0.008, -0.006, -0.005,
|
||||
-0.004, -0.003, -0.002, -0.002, -0.001
|
||||
};
|
||||
double[] e = {0., 3., 6., 12., 20., 32., 55., 85., 150., 250.};
|
||||
double[] t = {0., 10., 20., 30., 40., 60., 80., 100., 140., 180.};
|
||||
double[][] D = {
|
||||
{2.9, 2.7, 2.5, 2.1, 1.8, 1.2, 0.9, 1., 1.6, 1.9},
|
||||
{4.2, 3.6, 3.1, 2.5, 1.9, 1.1, 0.8, 0.9, 1.3, 1.4},
|
||||
{6., 4.4, 3.2, 2.3, 1.8, 1.1, 0.7, 0.54, 0.5, 0.6},
|
||||
{6., 4.1, 2.8, 1.9, 1.3, 0.6, 0.3, 0.17, 0.16, 0.23},
|
||||
{4.9, 3.2, 2., 1.2, 0.8, 0.3, 0.15, 0.09, 0.05, 0.05},
|
||||
{5.2, 2.5, 1.2, 0.64, 0.36, 0.13, 0.05, 0.03, 0.016, 0.02},
|
||||
{4., 1.7, 0.7, 0.3, 0.16, 0.05, 0.02, 0.013, 0.01, 0.01},
|
||||
{2.8, 1.1, 0.4, 0.15, 0.07, 0.02, 0.01, 0.007, 0.004, 0.003},
|
||||
{1.2, 0.53, 0.2, 0.08, 0.03, 0.0074, 0.003, 0.0016, 0.001, 0.0008}
|
||||
};
|
||||
double T, K2, K, d, st1, st2, DH, gam, Delreturn = 0., CelK, Ki, theta;
|
||||
int i, j;
|
||||
T = E / 27.2;
|
||||
if (E >= 250.) {
|
||||
gam = 1. + T / (clight * clight); // relativistic correction factor
|
||||
K2 = 2. * T * (1. + gam) * (1. - c);
|
||||
if (K2 < 0.) {
|
||||
K2 = 1.e-30;
|
||||
}
|
||||
K = sqrt(K2);
|
||||
if (K < 1.e-9) {
|
||||
K = 1.e-9; // momentum transfer
|
||||
}
|
||||
d = 1.4009; // distance of protons in H2
|
||||
st1 = 8. + K2;
|
||||
st2 = 4. + K2;
|
||||
// DH is the diff. cross section for elastic electron scatt.
|
||||
// on atomic hydrogen within the first Born approximation :
|
||||
DH = 4. * st1 * st1 / (st2 * st2 * st2 * st2) * a02;
|
||||
// CelK calculation with linear interpolation.
|
||||
// CelK is the correction of the elastic electron
|
||||
// scatt. on molecular hydrogen compared to the independent atom
|
||||
// model.
|
||||
if (K < 3.) {
|
||||
i = (int) (K / 0.1);
|
||||
Ki = i * 0.1;
|
||||
CelK = Cel[i] + (K - Ki) / 0.1 * (Cel[i + 1] - Cel[i]);
|
||||
} else if (K >= 3. && K < 5.) {
|
||||
i = (int) (30 + (K - 3.) / 0.2);
|
||||
Ki = 3. + (i - 30) * 0.2;
|
||||
CelK = Cel[i] + (K - Ki) / 0.2 * (Cel[i + 1] - Cel[i]);
|
||||
} else if (K >= 5. && K < 9.49) {
|
||||
i = (int) (40 + (K - 5.) / 0.5);
|
||||
Ki = 5. + (i - 40) * 0.5;
|
||||
CelK = Cel[i] + (K - Ki) / 0.5 * (Cel[i + 1] - Cel[i]);
|
||||
} else {
|
||||
CelK = 0.;
|
||||
}
|
||||
Delreturn = 2. * gam * gam * DH * (1. + sin(K * d) / (K * d)) * (1. + CelK);
|
||||
} else {
|
||||
theta = acos(c) * 180. / Math.PI;
|
||||
for (i = 0; i <= 8; i++) {
|
||||
if (E >= e[i] && E < e[i + 1]) {
|
||||
for (j = 0; j <= 8; j++) {
|
||||
if (theta >= t[j] && theta < t[j + 1]) {
|
||||
Delreturn = 1.e-20 * (D[i][j] + (D[i][j + 1] - D[i][j])
|
||||
* (theta - t[j]) / (t[j + 1] - t[j]));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return Delreturn;
|
||||
}
|
||||
|
||||
double Dexc(double E, double c) {
|
||||
// This subroutine computes the differential cross section
|
||||
// Del= d sigma/d Omega of excitation electron scattering
|
||||
// on molecular hydrogen.
|
||||
// Input: E= electron kinetic energy in eV
|
||||
// c= cos(theta), where theta is the polar scatt. angle
|
||||
// Dexc: in m^2/steradian
|
||||
double K2, K, sigma = 0., T, theta;
|
||||
double EE = 12.6 / 27.2;
|
||||
double[] e = {0., 25., 35., 50., 100.};
|
||||
double[] t = {0., 10., 20., 30., 40., 60., 80., 100., 180.};
|
||||
double[][] D = {
|
||||
{60., 43., 27., 18., 13., 8., 6., 6., 6.},
|
||||
{95., 70., 21., 9., 6., 3., 2., 2., 2.,},
|
||||
{150., 120., 32., 8., 3.7, 1.9, 1.2, 0.8, 0.8},
|
||||
{400., 200., 12., 2., 1.4, 0.7, 0.3, 0.2, 0.2}
|
||||
};
|
||||
int i, j;
|
||||
//
|
||||
T = E / 27.2;
|
||||
if (E >= 100.) {
|
||||
K2 = 4. * T * (1. - EE / (2. * T) - sqrt(1. - EE / T) * c);
|
||||
if (K2 < 1.e-9) {
|
||||
K2 = 1.e-9;
|
||||
}
|
||||
K = sqrt(K2); // momentum transfer
|
||||
sigma = 2. / K2 * sumexc(K) * a02;
|
||||
} else if (E <= 10.) {
|
||||
sigma = 0.;
|
||||
} else {
|
||||
theta = acos(c) * 180. / Math.PI;
|
||||
for (i = 0; i <= 3; i++) {
|
||||
if (E >= e[i] && E < e[i + 1]) {
|
||||
for (j = 0; j <= 7; j++) {
|
||||
if (theta >= t[j] && theta < t[j + 1]) {
|
||||
sigma = 1.e-22 * (D[i][j] + (D[i][j + 1] - D[i][j])
|
||||
* (theta - t[j]) / (t[j + 1] - t[j]));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return sigma;
|
||||
}
|
||||
|
||||
double Dinel(double E, double c) {
|
||||
// This subroutine computes the differential cross section
|
||||
// Dinel= d sigma/d Omega of inelastic electron scattering
|
||||
// on molecular hydrogen, within the first Born approximation.
|
||||
// Input: E= electron kinetic energy in eV
|
||||
// c= cos(theta), where theta is the polar scatt. angle
|
||||
// Dinel: in m2/steradian
|
||||
double[] Cinel = {
|
||||
-0.246, -0.244, -0.239, -0.234, -0.227,
|
||||
-0.219, -0.211, -0.201, -0.190, -0.179,
|
||||
-0.167, -0.155, -0.142, -0.130, -0.118,
|
||||
-0.107, -0.096, -0.085, -0.076, -0.067,
|
||||
-0.059, -0.051, -0.045, -0.039, -0.034,
|
||||
-0.029, -0.025, -0.022, -0.019, -0.016,
|
||||
-0.014, -0.010, -0.008, -0.006, -0.004,
|
||||
-0.003, -0.003, -0.002, -0.002, -0.001,
|
||||
-0.001, -0.001, 0.000, 0.000, 0.000,
|
||||
0.000, 0.000, 0.000, 0.000, 0.000
|
||||
};
|
||||
double Ei = 0.568;
|
||||
double T, K2, K, st1, F, DH, Dinelreturn, CinelK, Ki;
|
||||
int i;
|
||||
if (E < 16.) {
|
||||
return Dexc(E, c);
|
||||
}
|
||||
T = E / 27.2;
|
||||
K2 = 4. * T * (1. - Ei / (2. * T) - sqrt(1. - Ei / T) * c);
|
||||
if (K2 < 1.e-9) {
|
||||
K2 = 1.e-9;
|
||||
}
|
||||
K = sqrt(K2); // momentum transfer
|
||||
st1 = 1. + K2 / 4.;
|
||||
F = 1. / (st1 * st1); // scatt. formfactor of hydrogen atom
|
||||
// DH is the diff. cross section for inelastic electron scatt.
|
||||
// on atomic hydrogen within the first Born approximation :
|
||||
DH = 4. / (K2 * K2) * (1. - F * F) * a02;
|
||||
// CinelK calculation with linear interpolation.
|
||||
// CinelK is the correction of the inelastic electron
|
||||
// scatt. on molecular hydrogen compared to the independent atom
|
||||
// model.
|
||||
if (K < 3.) {
|
||||
i = (int) (K / 0.1);
|
||||
Ki = i * 0.1;
|
||||
CinelK = Cinel[i] + (K - Ki) / 0.1 * (Cinel[i + 1] - Cinel[i]);
|
||||
} else if (K >= 3. && K < 5.) {
|
||||
i = (int) (30 + (K - 3.) / 0.2);
|
||||
Ki = 3. + (i - 30) * 0.2;
|
||||
CinelK = Cinel[i] + (K - Ki) / 0.2 * (Cinel[i + 1] - Cinel[i]);
|
||||
} else if (K >= 5. && K < 9.49) {
|
||||
i = (int) (40 + (K - 5.) / 0.5);
|
||||
Ki = 5. + (i - 40) * 0.5;
|
||||
CinelK = Cinel[i] + (K - Ki) / 0.5 * (Cinel[i + 1] - Cinel[i]);
|
||||
} else {
|
||||
CinelK = 0.;
|
||||
}
|
||||
Dinelreturn = 2. * DH * (1. + CinelK);
|
||||
return Dinelreturn;
|
||||
}
|
||||
|
||||
double sumexc(double K) {
|
||||
double[] Kvec = {0., 0.1, 0.2, 0.4, 0.6, 0.8, 1., 1.2, 1.5, 1.8, 2., 2.5, 3., 4., 5.};
|
||||
double[][] fvec = {
|
||||
{2.907e-1, 2.845e-1, 2.665e-1, 2.072e-1, 1.389e-1, // B
|
||||
8.238e-2, 4.454e-2, 2.269e-2, 7.789e-3, 2.619e-3,
|
||||
1.273e-3, 2.218e-4, 4.372e-5, 2.889e-6, 4.247e-7},
|
||||
{3.492e-1, 3.367e-1, 3.124e-1, 2.351e-1, 1.507e-1, // C
|
||||
8.406e-2, 4.214e-2, 1.966e-2, 5.799e-3, 1.632e-3,
|
||||
6.929e-4, 8.082e-5, 9.574e-6, 1.526e-7, 7.058e-9},
|
||||
{6.112e-2, 5.945e-2, 5.830e-2, 5.072e-2, 3.821e-2, // Bp
|
||||
2.579e-2, 1.567e-2, 8.737e-3, 3.305e-3, 1.191e-3,
|
||||
6.011e-4, 1.132e-4, 2.362e-5, 1.603e-6, 2.215e-7},
|
||||
{2.066e-2, 2.127e-2, 2.137e-2, 1.928e-2, 1.552e-2, // Bpp
|
||||
1.108e-2, 7.058e-3, 4.069e-3, 1.590e-3, 5.900e-4,
|
||||
3.046e-4, 6.142e-5, 1.369e-5, 9.650e-7, 1.244e-7},
|
||||
{9.405e-2, 9.049e-2, 8.613e-2, 7.301e-2, 5.144e-2, // D
|
||||
3.201e-2, 1.775e-2, 8.952e-3, 2.855e-3, 8.429e-4,
|
||||
3.655e-4, 4.389e-5, 5.252e-6, 9.010e-8, 7.130e-9},
|
||||
{4.273e-2, 3.862e-2, 3.985e-2, 3.362e-2, 2.486e-2, // Dp
|
||||
1.612e-2, 9.309e-3, 4.856e-3, 1.602e-3, 4.811e-4,
|
||||
2.096e-4, 2.498e-5, 2.905e-6, 5.077e-8, 6.583e-9},
|
||||
{0.000e-3, 2.042e-3, 7.439e-3, 2.200e-2, 3.164e-2, // EF
|
||||
3.161e-2, 2.486e-2, 1.664e-2, 7.562e-3, 3.044e-3,
|
||||
1.608e-3, 3.225e-4, 7.120e-5, 6.290e-6, 1.066e-6}};
|
||||
double[] EeV = {12.73, 13.20, 14.77, 15.3, 14.93, 15.4, 13.06};
|
||||
int n, j, jmin = 0, nmax;
|
||||
double En, sum;
|
||||
double[] f = new double[7];
|
||||
double[] x4 = new double[4];
|
||||
double[] f4 = new double[4];
|
||||
|
||||
//
|
||||
sum = 0.;
|
||||
nmax = 6;
|
||||
for (n = 0; n <= nmax; n++) {
|
||||
En = EeV[n] / 27.21; // En is the excitation energy in Hartree atomic units
|
||||
if (K >= 5.) {
|
||||
f[n] = 0.;
|
||||
} else if (K >= 3. && K <= 4.) {
|
||||
f[n] = fvec[n][12] + (K - 3.) * (fvec[n][13] - fvec[n][12]);
|
||||
} else if (K >= 4. && K <= 5.) {
|
||||
f[n] = fvec[n][13] + (K - 4.) * (fvec[n][14] - fvec[n][13]);
|
||||
} else {
|
||||
for (j = 0; j < 14; j++) {
|
||||
if (K >= Kvec[j] && K <= Kvec[j + 1]) {
|
||||
jmin = j - 1;
|
||||
}
|
||||
}
|
||||
if (jmin < 0) {
|
||||
jmin = 0;
|
||||
}
|
||||
if (jmin > 11) {
|
||||
jmin = 11;
|
||||
}
|
||||
for (j = 0; j <= 3; j++) {
|
||||
x4[j] = Kvec[jmin + j];
|
||||
f4[j] = fvec[n][jmin + j];
|
||||
}
|
||||
f[n] = lagrange(4, x4, f4, K);
|
||||
}
|
||||
sum += f[n] / En;
|
||||
}
|
||||
return sum;
|
||||
}
|
||||
|
||||
double lagrange(int n, double[] xn, double[] fn, double x) {
|
||||
int i, j;
|
||||
double f, aa, bb;
|
||||
double[] a = new double[100];
|
||||
double[] b = new double[100];
|
||||
f = 0.;
|
||||
for (j = 0; j < n; j++) {
|
||||
for (i = 0; i < n; i++) {
|
||||
a[i] = x - xn[i];
|
||||
b[i] = xn[j] - xn[i];
|
||||
}
|
||||
a[j] = b[j] = aa = bb = 1.;
|
||||
for (i = 0; i < n; i++) {
|
||||
aa = aa * a[i];
|
||||
bb = bb * b[i];
|
||||
}
|
||||
f += fn[j] * aa / bb;
|
||||
}
|
||||
return f;
|
||||
}
|
||||
|
||||
double sigmael(double E) {
|
||||
// This function computes the total elastic cross section of
|
||||
// electron scatt. on molecular hydrogen.
|
||||
// See: Liu, Phys. Rev. A35 (1987) 591,
|
||||
// Trajmar, Phys Reports 97 (1983) 221.
|
||||
// E: incident electron energy in eV
|
||||
// sigmael: cross section in m^2
|
||||
double[] e = {0., 1.5, 5., 7., 10., 15., 20., 30., 60., 100., 150., 200., 300., 400.};
|
||||
double[] s = {9.6, 13., 15., 12., 10., 7., 5.6, 3.3, 1.1, 0.9, 0.5, 0.36, 0.23, 0.15};
|
||||
double gam, sigma = 0., T;
|
||||
int i;
|
||||
T = E / 27.2;
|
||||
if (E >= 400.) {
|
||||
gam = (emass + T) / emass;
|
||||
sigma = gam * gam * Math.PI / (2. * T) * (4.2106 - 1. / T) * a02;
|
||||
} else {
|
||||
for (i = 0; i <= 12; i++) {
|
||||
if (E >= e[i] && E < e[i + 1]) {
|
||||
sigma = 1.e-20 * (s[i] + (s[i + 1] - s[i]) * (E - e[i]) / (e[i + 1] - e[i]));
|
||||
}
|
||||
}
|
||||
}
|
||||
return sigma;
|
||||
}
|
||||
|
||||
double sigmaexc(double E) {
|
||||
// This function computes the electronic excitation cross section of
|
||||
// electron scatt. on molecular hydrogen.
|
||||
// E: incident electron energy in eV,
|
||||
// sigmaexc: cross section in m^2
|
||||
double sigma;
|
||||
if (E < 9.8) {
|
||||
sigma = 1.e-40;
|
||||
} else if (E >= 9.8 && E <= 250.) {
|
||||
sigma = sigmaBC(E) + sigmadiss10(E) + sigmadiss15(E);
|
||||
} else {
|
||||
sigma = 4. * Math.PI * a02 * R / E * (0.80 * log(E / R) + 0.28);
|
||||
}
|
||||
// sigma=sigmainel(E)-sigmaion(E);
|
||||
return sigma;
|
||||
}
|
||||
|
||||
double sigmaion(double E) {
|
||||
// This function computes the total ionization cross section of
|
||||
// electron scatt. on molecular hydrogen.
|
||||
// E: incident electron energy in eV,
|
||||
// sigmaion: total ionization cross section of
|
||||
// e+H2 --> e+e+H2^+ or e+e+H^+ +H
|
||||
// process in m^2.
|
||||
//
|
||||
// E<250 eV: Eq. 5 of J. Chem. Phys. 104 (1996) 2956
|
||||
// E>250: sigma_i formula on page 107 in
|
||||
// Phys. Rev. A7 (1973) 103.
|
||||
// Good agreement with measured results of
|
||||
// PR A 54 (1996) 2146, and
|
||||
// Physica 31 (1965) 94.
|
||||
//
|
||||
double B = 15.43, U = 15.98;
|
||||
double sigma, t, u, S, r, lnt;
|
||||
if (E < 16.) {
|
||||
sigma = 1.e-40;
|
||||
} else if (E >= 16. && E
|
||||
<= 250.) {
|
||||
t = E / B;
|
||||
u = U / B;
|
||||
r = R / B;
|
||||
S = 4. * Math.PI * a02 * 2. * r * r;
|
||||
lnt = log(t);
|
||||
sigma = S / (t + u + 1.) * (lnt / 2. * (1. - 1. / (t * t)) + 1. - 1. / t - lnt / (t + 1.));
|
||||
} else {
|
||||
sigma = 4. * Math.PI * a02 * R / E * (0.82 * log(E / R) + 1.3);
|
||||
}
|
||||
return sigma;
|
||||
}
|
||||
|
||||
double sigmaBC(double E) {
|
||||
// This function computes the sigmaexc electronic excitation
|
||||
// cross section to the B and C states, with energy loss
|
||||
// about 12.5 eV.
|
||||
// E is incident electron energy in eV,
|
||||
// sigmaexc in m^2
|
||||
double[] aB = {-4.2935194e2, 5.1122109e2, -2.8481279e2,
|
||||
8.8310338e1, -1.6659591e1, 1.9579609,
|
||||
-1.4012824e-1, 5.5911348e-3, -9.5370103e-5};
|
||||
double[] aC = {-8.1942684e2, 9.8705099e2, -5.3095543e2,
|
||||
1.5917023e2, -2.9121036e1, 3.3321027,
|
||||
-2.3305961e-1, 9.1191781e-3, -1.5298950e-4};
|
||||
double lnsigma, lnE, lnEn, sigmaB, Emin, sigma, sigmaC;
|
||||
int n;
|
||||
sigma = 0.;
|
||||
Emin = 12.5;
|
||||
lnE = log(E);
|
||||
lnEn = 1.;
|
||||
lnsigma = 0.;
|
||||
if (E < Emin) {
|
||||
sigmaB = 0.;
|
||||
} else {
|
||||
for (n = 0; n <= 8; n++) {
|
||||
lnsigma += aB[n] * lnEn;
|
||||
lnEn = lnEn * lnE;
|
||||
}
|
||||
sigmaB = exp(lnsigma);
|
||||
}
|
||||
sigma += sigmaB;
|
||||
// sigma=0.;
|
||||
// C state:
|
||||
Emin = 15.8;
|
||||
lnE = log(E);
|
||||
lnEn = 1.;
|
||||
lnsigma = 0.;
|
||||
if (E < Emin) {
|
||||
sigmaC = 0.;
|
||||
} else {
|
||||
for (n = 0; n <= 8; n++) {
|
||||
lnsigma += aC[n] * lnEn;
|
||||
lnEn = lnEn * lnE;
|
||||
}
|
||||
sigmaC = exp(lnsigma);
|
||||
}
|
||||
sigma += sigmaC;
|
||||
return sigma * 1.e-4;
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////
|
||||
double sigmadiss10(double E) {
|
||||
// This function computes the sigmadiss10 electronic
|
||||
// dissociative excitation
|
||||
// cross section, with energy loss
|
||||
// about 10 eV.
|
||||
// E is incident electron energy in eV,
|
||||
// sigmadiss10 in m^2
|
||||
double[] a = {-2.297914361e5, 5.303988579e5, -5.316636672e5,
|
||||
3.022690779e5, -1.066224144e5, 2.389841369e4,
|
||||
-3.324526406e3, 2.624761592e2, -9.006246604};
|
||||
double lnsigma, lnE, lnEn, Emin, sigma;
|
||||
int n;
|
||||
// E is in eV
|
||||
sigma = 0.;
|
||||
Emin = 9.8;
|
||||
lnE = log(E);
|
||||
lnEn = 1.;
|
||||
lnsigma = 0.;
|
||||
if (E < Emin) {
|
||||
sigma = 0.;
|
||||
} else {
|
||||
for (n = 0; n <= 8; n++) {
|
||||
lnsigma += a[n] * lnEn;
|
||||
lnEn = lnEn * lnE;
|
||||
}
|
||||
sigma = exp(lnsigma);
|
||||
}
|
||||
return sigma * 1.e-4;
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////
|
||||
double sigmadiss15(double E) {
|
||||
// This function computes the sigmadiss15 electronic
|
||||
// dissociative excitation
|
||||
// cross section, with energy loss
|
||||
// about 15 eV.
|
||||
// E is incident electron energy in eV,
|
||||
// sigmadiss15 in m^2
|
||||
double[] a = {-1.157041752e3, 1.501936271e3, -8.6119387e2,
|
||||
2.754926257e2, -5.380465012e1, 6.573972423,
|
||||
-4.912318139e-1, 2.054926773e-2, -3.689035889e-4};
|
||||
double lnsigma, lnE, lnEn, Emin, sigma;
|
||||
int n;
|
||||
// E is in eV
|
||||
sigma = 0.;
|
||||
Emin = 16.5;
|
||||
lnE = log(E);
|
||||
lnEn = 1.;
|
||||
lnsigma = 0.;
|
||||
if (E < Emin) {
|
||||
sigma = 0.;
|
||||
} else {
|
||||
for (n = 0; n <= 8; n++) {
|
||||
lnsigma += a[n] * lnEn;
|
||||
lnEn = lnEn * lnE;
|
||||
}
|
||||
sigma = exp(lnsigma);
|
||||
}
|
||||
return sigma * 1.e-4;
|
||||
}
|
||||
|
||||
/**
|
||||
* Полное сечение с учетом квазиупругих столкновений
|
||||
*
|
||||
* @param E
|
||||
* @return
|
||||
*/
|
||||
public double sigmaTotal(double E) {
|
||||
return sigmael(E) + sigmaexc(E) + sigmaion(E);
|
||||
|
||||
}
|
||||
}
|
@ -1,219 +0,0 @@
|
||||
package inr.numass.trapping;
|
||||
|
||||
import org.apache.commons.math3.analysis.UnivariateFunction;
|
||||
import org.apache.commons.math3.analysis.interpolation.LinearInterpolator;
|
||||
import org.apache.commons.math3.random.ISAACRandom;
|
||||
import org.apache.commons.math3.random.JDKRandomGenerator;
|
||||
import org.apache.commons.math3.random.RandomGenerator;
|
||||
import org.apache.commons.math3.random.SynchronizedRandomGenerator;
|
||||
|
||||
import java.io.*;
|
||||
import java.util.Map;
|
||||
import java.util.function.Function;
|
||||
import java.util.function.Predicate;
|
||||
import java.util.stream.Stream;
|
||||
|
||||
/**
|
||||
* Created by darksnake on 04-Jun-16.
|
||||
*/
|
||||
public class SimulationManager {
|
||||
|
||||
RandomGenerator generator = new JDKRandomGenerator();
|
||||
Simulator simulator = new Simulator();
|
||||
|
||||
private double initialE = 18000;
|
||||
private double range = 4000;
|
||||
|
||||
private PrintStream output = System.out;
|
||||
private PrintStream statisticOutput = System.out;
|
||||
private Predicate<Simulator.SimulationResult> reportFileter = (res) -> res.state == Simulator.EndState.ACCEPTED;
|
||||
|
||||
// public SimulationManager withParameters(double bSource, double bTransport, double bPinch, double initialE, double energyRange) {
|
||||
// this.simulator = new Simulator(bSource, bTransport, bPinch, initialE - energyRange);
|
||||
// this.initialE = initialE;
|
||||
// return this;
|
||||
// }
|
||||
|
||||
public SimulationManager withInitialE(double initialE){
|
||||
this.initialE = initialE;
|
||||
simulator.setELow(initialE-range);
|
||||
return this;
|
||||
}
|
||||
|
||||
public SimulationManager withRange(double range){
|
||||
this.range = range;
|
||||
simulator.setELow(initialE-range);
|
||||
return this;
|
||||
}
|
||||
|
||||
public SimulationManager withFields(double bSource, double bTransport, double bPinch){
|
||||
this.simulator.setFields(bSource,bTransport,bPinch);
|
||||
return this;
|
||||
}
|
||||
|
||||
public SimulationManager withOutputFile(String fileName) throws IOException {
|
||||
File outputFile = new File(fileName);
|
||||
if (!outputFile.exists()) {
|
||||
outputFile.getParentFile().mkdirs();
|
||||
outputFile.createNewFile();
|
||||
}
|
||||
this.output = new PrintStream(new FileOutputStream(outputFile));
|
||||
return this;
|
||||
}
|
||||
|
||||
/**
|
||||
* Select output for accepted events
|
||||
*
|
||||
* @param output
|
||||
* @return
|
||||
*/
|
||||
public SimulationManager withOutput(PrintStream output) {
|
||||
this.output = output;
|
||||
return this;
|
||||
}
|
||||
|
||||
/**
|
||||
* Select output for statistics
|
||||
*
|
||||
* @param statisticOutput
|
||||
* @return
|
||||
*/
|
||||
public SimulationManager withStatisticOutput(PrintStream statisticOutput) {
|
||||
this.statisticOutput = statisticOutput;
|
||||
return this;
|
||||
}
|
||||
|
||||
public SimulationManager withReportFilter(Predicate<Simulator.SimulationResult> filter) {
|
||||
this.reportFileter = filter;
|
||||
return this;
|
||||
}
|
||||
|
||||
/**
|
||||
* Set field map as function
|
||||
*
|
||||
* @param fieldMap
|
||||
* @return
|
||||
*/
|
||||
public SimulationManager withFieldMap(UnivariateFunction fieldMap) {
|
||||
this.simulator.setFieldFunc(fieldMap);
|
||||
return this;
|
||||
}
|
||||
|
||||
/**
|
||||
* Set field map from values
|
||||
*
|
||||
* @param z
|
||||
* @param b
|
||||
* @return
|
||||
*/
|
||||
public SimulationManager withFieldMap(double[] z, double[] b) {
|
||||
this.simulator.setFieldFunc(new LinearInterpolator().interpolate(z, b));
|
||||
return this;
|
||||
}
|
||||
|
||||
/**
|
||||
* Set source density
|
||||
* PENDING replace by source thickness?
|
||||
*
|
||||
* @param density
|
||||
* @return
|
||||
*/
|
||||
public SimulationManager withGasDensity(double density) {
|
||||
this.simulator.setGasDensity(density);
|
||||
return this;
|
||||
}
|
||||
|
||||
/**
|
||||
* Симулируем пролет num электронов.
|
||||
*
|
||||
* @param num
|
||||
* @return
|
||||
*/
|
||||
public synchronized Counter simulateAll(int num) {
|
||||
Counter counter = new Counter();
|
||||
System.out.printf("%nStarting sumulation with initial energy %g and %d electrons.%n%n", initialE, num);
|
||||
output.printf("%s\t%s\t%s\t%s\t%s\t%s%n", "E", "theta", "theta_start", "colNum", "L", "state");
|
||||
Stream.generate(() -> getRandomTheta()).limit(num).parallel()
|
||||
.forEach((theta) -> {
|
||||
double initZ = (generator.nextDouble() - 0.5) * Simulator.SOURCE_LENGTH;
|
||||
Simulator.SimulationResult res = simulator.simulate(initialE, theta, initZ);
|
||||
if (reportFileter.test(res)) {
|
||||
if (output != null) {
|
||||
printOne(output, res);
|
||||
}
|
||||
}
|
||||
counter.count(res);
|
||||
});
|
||||
printStatistics(counter);
|
||||
return counter;
|
||||
}
|
||||
|
||||
private double getRandomTheta() {
|
||||
double x = generator.nextDouble();
|
||||
// from 0 to Pi
|
||||
return Math.acos(1 - 2 * x);
|
||||
}
|
||||
|
||||
private void printStatistics(Counter counter) {
|
||||
output.println();
|
||||
output.println("***RESULT***");
|
||||
output.printf("The total number of events is %d.%n%n", counter.count);
|
||||
output.printf("The spectrometer acceptance angle is %g.%n", simulator.thetaPinch * 180 / Math.PI);
|
||||
output.printf("The transport reflection angle is %g.%n", simulator.thetaTransport * 180 / Math.PI);
|
||||
output.printf("The starting energy is %g.%n", initialE);
|
||||
output.printf("The lower energy boundary is %g.%n", simulator.eLow);
|
||||
output.printf("The source density is %g.%n", simulator.gasDensity);
|
||||
|
||||
output.println();
|
||||
output.printf("The total number of ACCEPTED events is %d.%n", counter.accepted);
|
||||
output.printf("The total number of PASS events is %d.%n", counter.pass);
|
||||
output.printf("The total number of REJECTED events is %d.%n", counter.rejected);
|
||||
output.printf("The total number of LOWENERGY events is %d.%n%n", counter.lowE);
|
||||
}
|
||||
|
||||
private void printOne(PrintStream out, Simulator.SimulationResult res) {
|
||||
out.printf("%g\t%g\t%g\t%d\t%g\t%s%n", res.E, res.theta * 180 / Math.PI, res.initTheta * 180 / Math.PI, res.collisionNumber, res.l, res.state.toString());
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Statistic counter
|
||||
*/
|
||||
public static class Counter {
|
||||
int accepted = 0;
|
||||
int pass = 0;
|
||||
int rejected = 0;
|
||||
int lowE = 0;
|
||||
int count = 0;
|
||||
|
||||
public synchronized Simulator.SimulationResult count(Simulator.SimulationResult res) {
|
||||
count++;
|
||||
switch (res.state) {
|
||||
case ACCEPTED:
|
||||
accepted++;
|
||||
break;
|
||||
case LOWENERGY:
|
||||
lowE++;
|
||||
break;
|
||||
case PASS:
|
||||
pass++;
|
||||
break;
|
||||
case REJECTED:
|
||||
rejected++;
|
||||
break;
|
||||
case NONE:
|
||||
throw new IllegalStateException();
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
public synchronized void reset() {
|
||||
count = 0;
|
||||
accepted = 0;
|
||||
pass = 0;
|
||||
rejected = 0;
|
||||
lowE = 0;
|
||||
}
|
||||
|
||||
}
|
||||
}
|
@ -1,522 +0,0 @@
|
||||
/*
|
||||
* To change this template, choose Tools | Templates
|
||||
* and open the template in the editor.
|
||||
*/
|
||||
package inr.numass.trapping;
|
||||
|
||||
import org.apache.commons.math3.analysis.UnivariateFunction;
|
||||
import org.apache.commons.math3.distribution.ExponentialDistribution;
|
||||
import org.apache.commons.math3.geometry.euclidean.threed.Rotation;
|
||||
import org.apache.commons.math3.geometry.euclidean.threed.SphericalCoordinates;
|
||||
import org.apache.commons.math3.geometry.euclidean.threed.Vector3D;
|
||||
import org.apache.commons.math3.random.JDKRandomGenerator;
|
||||
import org.apache.commons.math3.random.RandomGenerator;
|
||||
import org.apache.commons.math3.util.Pair;
|
||||
import org.apache.commons.math3.util.Precision;
|
||||
|
||||
import static org.apache.commons.math3.util.FastMath.*;
|
||||
|
||||
/**
|
||||
* @author Darksnake
|
||||
*/
|
||||
public class Simulator {
|
||||
|
||||
public static final double SOURCE_LENGTH = 3d;
|
||||
private static final double DELTA_L = 0.1; //step for propagate calculation
|
||||
|
||||
private RandomGenerator generator;
|
||||
private Scatter scatter;
|
||||
double eLow = 14000d;//default value
|
||||
double thetaTransport = 24.107064 / 180 * Math.PI;// default value
|
||||
double thetaPinch = 19.481097 / 180 * Math.PI;// default value
|
||||
double gasDensity = 5e20;// m^-3
|
||||
double bSource = 0.6;
|
||||
private UnivariateFunction magneticField;
|
||||
|
||||
|
||||
public Simulator() {
|
||||
generator = new JDKRandomGenerator();// Be careful here since it is not synchronized
|
||||
scatter = new Scatter(generator);
|
||||
}
|
||||
|
||||
public Simulator(double Bsource, double Btransport, double Bpinch, double Elow) {
|
||||
this();
|
||||
setFields(Bsource, Btransport, Bpinch);
|
||||
setELow(Elow);
|
||||
}
|
||||
|
||||
public enum EndState {
|
||||
|
||||
ACCEPTED,//трэппинговый электрон попал в аксептанс
|
||||
REJECTED,//трэппинговый электрон вылетел через заднюю пробку
|
||||
LOWENERGY,//потерял слишком много энергии
|
||||
PASS,//электрон никогда не запирался и прошел напрямую, нужно для нормировки
|
||||
NONE
|
||||
}
|
||||
|
||||
public final void setELow(double eLow) {
|
||||
this.eLow = eLow;
|
||||
}
|
||||
|
||||
public final void setFields(double Bsource, double Btransport, double Bpinch) {
|
||||
this.bSource = Bsource;
|
||||
this.thetaTransport = Math.asin(Math.sqrt(Bsource / Btransport));
|
||||
this.thetaPinch = Math.asin(Math.sqrt(Bsource / Bpinch));
|
||||
}
|
||||
|
||||
/**
|
||||
* Set gas density in 1/m^3
|
||||
*
|
||||
* @param gasDensity
|
||||
*/
|
||||
public void setGasDensity(double gasDensity) {
|
||||
this.gasDensity = gasDensity;
|
||||
}
|
||||
|
||||
/**
|
||||
* Longitudal magnetic field distribution
|
||||
*
|
||||
* @param magneticField
|
||||
*/
|
||||
public void setFieldFunc(UnivariateFunction magneticField) {
|
||||
this.magneticField = magneticField;
|
||||
}
|
||||
|
||||
/**
|
||||
* Perform scattering in the given position
|
||||
*
|
||||
* @param pos
|
||||
* @return
|
||||
*/
|
||||
private State scatter(State pos) {
|
||||
//Вычисляем сечения и нормируем их на полное сечение
|
||||
double sigmaIon = scatter.sigmaion(pos.e);
|
||||
double sigmaEl = scatter.sigmael(pos.e);
|
||||
double sigmaExc = scatter.sigmaexc(pos.e);
|
||||
double sigmaTotal = sigmaEl + sigmaIon + sigmaExc;
|
||||
sigmaIon /= sigmaTotal;
|
||||
sigmaEl /= sigmaTotal;
|
||||
sigmaExc /= sigmaTotal;
|
||||
|
||||
//проверяем нормировку
|
||||
assert Precision.equals(sigmaEl + sigmaExc + sigmaIon, 1, 1e-2);
|
||||
|
||||
double alpha = generator.nextDouble();
|
||||
|
||||
Pair<Double, Double> delta;
|
||||
if (alpha > sigmaEl) {
|
||||
if (alpha > sigmaEl + sigmaExc) {
|
||||
//ionization case
|
||||
delta = scatter.randomion(pos.e);
|
||||
} else {
|
||||
//excitation case
|
||||
delta = scatter.randomexc(pos.e);
|
||||
}
|
||||
} else {
|
||||
// elastic
|
||||
delta = scatter.randomel(pos.e);
|
||||
}
|
||||
|
||||
//Обновляем значени угла и энергии независимо ни от чего
|
||||
pos.substractE(delta.getFirst());
|
||||
//Изменение угла
|
||||
pos.addTheta(delta.getSecond() / 180 * Math.PI);
|
||||
|
||||
return pos;
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculate distance to the next scattering
|
||||
*
|
||||
* @param e
|
||||
* @return
|
||||
*/
|
||||
private double freePath(double e) {
|
||||
//FIXME redundant cross-section calculation
|
||||
//All cross-sections are in m^2
|
||||
return new ExponentialDistribution(generator, 1d / scatter.sigmaTotal(e) / gasDensity).sample();
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculate propagated position before scattering
|
||||
*
|
||||
* @param deltaL
|
||||
* @return z shift and reflection counter
|
||||
*/
|
||||
private State propagate(State pos, double deltaL) {
|
||||
// if magnetic field not defined, consider it to be uniform and equal bSource
|
||||
if (magneticField == null) {
|
||||
double deltaZ = deltaL * cos(pos.theta); // direction already included in cos(theta)
|
||||
// double z0 = pos.z;
|
||||
pos.addZ(deltaZ);
|
||||
pos.l += deltaL;
|
||||
|
||||
// //if we are crossing source boundary, check for end condition
|
||||
// while (abs(deltaZ + pos.z) > SOURCE_LENGTH / 2d && !pos.isFinished()) {
|
||||
//
|
||||
// pos.checkEndState();
|
||||
// }
|
||||
//
|
||||
// // if track is finished apply boundary position
|
||||
// if (pos.isFinished()) {
|
||||
// // remembering old z to correctly calculate total l
|
||||
// double oldz = pos.z;
|
||||
// pos.z = pos.direction() * SOURCE_LENGTH / 2d;
|
||||
// pos.l += (pos.z - oldz) / cos(pos.theta);
|
||||
// } else {
|
||||
// //else just add z
|
||||
// pos.l += deltaL;
|
||||
// pos.addZ(deltaZ);
|
||||
// }
|
||||
|
||||
return pos;
|
||||
} else {
|
||||
double curL = 0;
|
||||
double sin2 = sin(pos.theta) * sin(pos.theta);
|
||||
|
||||
while (curL <= deltaL - 0.01 && !pos.isFinished()) {
|
||||
//an l step
|
||||
double delta = min(deltaL - curL, DELTA_L);
|
||||
|
||||
double b = field(pos.z);
|
||||
|
||||
double root = 1 - sin2 * b / bSource;
|
||||
//preliminary reflection
|
||||
if (root < 0) {
|
||||
pos.flip();
|
||||
}
|
||||
pos.addZ(pos.direction() * delta * sqrt(abs(root)));
|
||||
// // change direction in case of reflection. Loss of precision here?
|
||||
// if (root < 0) {
|
||||
// // check if end state occurred. seem to never happen since it is reflection case
|
||||
// pos.checkEndState();
|
||||
// // finish if it does
|
||||
// if (pos.isFinished()) {
|
||||
// //TODO check if it happens
|
||||
// return pos;
|
||||
// } else {
|
||||
// //flip direction
|
||||
// pos.flip();
|
||||
// // move in reversed direction
|
||||
// pos.z += pos.direction() * delta * sqrt(-root);
|
||||
// }
|
||||
//
|
||||
// } else {
|
||||
// // move forward
|
||||
// pos.z += pos.direction() * delta * sqrt(root);
|
||||
// //check if it is exit case
|
||||
// if (abs(pos.z) > SOURCE_LENGTH / 2d) {
|
||||
// // check if electron is out
|
||||
// pos.checkEndState();
|
||||
// // finish if it is
|
||||
// if (pos.isFinished()) {
|
||||
// return pos;
|
||||
// }
|
||||
// // PENDING no need to apply reflection, it is applied automatically when root < 0
|
||||
// pos.z = signum(pos.z) * SOURCE_LENGTH / 2d;
|
||||
// if (signum(pos.z) == pos.direction()) {
|
||||
// pos.flip();
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
|
||||
|
||||
curL += delta;
|
||||
pos.l += delta;
|
||||
}
|
||||
return pos;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Magnetic field in the z point
|
||||
*
|
||||
* @param z
|
||||
* @return
|
||||
*/
|
||||
private double field(double z) {
|
||||
if (magneticField == null) {
|
||||
return bSource;
|
||||
} else {
|
||||
return magneticField.value(z);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Симулируем один пробег электрона от начального значения и до вылетания из
|
||||
* иточника или до того момента, как энергия становится меньше eLow.
|
||||
*/
|
||||
public SimulationResult simulate(double initEnergy, double initTheta, double initZ) {
|
||||
assert initEnergy > 0;
|
||||
assert initTheta > 0 && initTheta < Math.PI;
|
||||
assert abs(initZ) <= SOURCE_LENGTH / 2d;
|
||||
|
||||
State pos = new State(initEnergy, initTheta, initZ);
|
||||
|
||||
while (!pos.isFinished()) {
|
||||
double dl = freePath(pos.e); // path to next scattering
|
||||
// propagate to next scattering position
|
||||
propagate(pos, dl);
|
||||
|
||||
if (!pos.isFinished()) {
|
||||
// perform scatter
|
||||
scatter(pos);
|
||||
// increase collision number
|
||||
pos.colNum++;
|
||||
if (pos.e < eLow) {
|
||||
//Если энергия стала слишком маленькой
|
||||
pos.setEndState(EndState.LOWENERGY);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
SimulationResult res = new SimulationResult(pos.endState, pos.e, pos.theta, initTheta, pos.colNum, pos.l);
|
||||
return res;
|
||||
}
|
||||
|
||||
public void resetDebugCounters() {
|
||||
scatter.debug = true;
|
||||
scatter.counter.resetAll();
|
||||
}
|
||||
|
||||
public void printDebugCounters() {
|
||||
if (scatter.debug) {
|
||||
scatter.counter.print(System.out);
|
||||
} else {
|
||||
throw new RuntimeException("Debug not initiated");
|
||||
}
|
||||
}
|
||||
|
||||
public static class SimulationResult {
|
||||
|
||||
public SimulationResult(EndState state, double E, double theta, double initTheta, int collisionNumber, double l) {
|
||||
this.state = state;
|
||||
this.E = E;
|
||||
this.theta = theta;
|
||||
this.initTheta = initTheta;
|
||||
this.collisionNumber = collisionNumber;
|
||||
this.l = l;
|
||||
}
|
||||
|
||||
public EndState state;
|
||||
public double E;
|
||||
public double initTheta;
|
||||
public double theta;
|
||||
public int collisionNumber;
|
||||
public double l;
|
||||
}
|
||||
|
||||
/**
|
||||
* Current electron position in simulation. Not thread safe!
|
||||
*/
|
||||
private class State {
|
||||
public State(double e, double theta, double z) {
|
||||
this.e = e;
|
||||
this.theta = theta;
|
||||
this.z = z;
|
||||
}
|
||||
|
||||
/**
|
||||
* Current energy
|
||||
*/
|
||||
double e;
|
||||
/**
|
||||
* Current theta recalculated to the field in the center of the source
|
||||
*/
|
||||
double theta;
|
||||
/**
|
||||
* Current total path
|
||||
*/
|
||||
double l = 0;
|
||||
|
||||
/**
|
||||
* Number of scatterings
|
||||
*/
|
||||
int colNum = 0;
|
||||
|
||||
/**
|
||||
* current z. Zero is the center of the source
|
||||
*/
|
||||
double z;
|
||||
|
||||
EndState endState = EndState.NONE;
|
||||
|
||||
/**
|
||||
* @param dE
|
||||
* @return resulting E
|
||||
*/
|
||||
double substractE(double dE) {
|
||||
this.e -= dE;
|
||||
return e;
|
||||
}
|
||||
|
||||
boolean isForward() {
|
||||
return theta <= Math.PI / 2;
|
||||
}
|
||||
|
||||
double direction() {
|
||||
return isForward() ? 1 : -1;
|
||||
}
|
||||
|
||||
boolean isFinished() {
|
||||
return this.endState != EndState.NONE;
|
||||
}
|
||||
|
||||
void setEndState(EndState state) {
|
||||
this.endState = state;
|
||||
}
|
||||
|
||||
/**
|
||||
* add Z and calculate direction change
|
||||
*
|
||||
* @param dZ
|
||||
* @return
|
||||
*/
|
||||
double addZ(double dZ) {
|
||||
this.z += dZ;
|
||||
while (abs(this.z) > SOURCE_LENGTH / 2d && !isFinished()) {
|
||||
// reflecting from back wall
|
||||
if (z < 0) {
|
||||
if (theta >= PI - thetaTransport) {
|
||||
setEndState(EndState.REJECTED);
|
||||
}
|
||||
if (isFinished()) {
|
||||
z = -SOURCE_LENGTH / 2d;
|
||||
} else {
|
||||
// reflecting from rear pinch
|
||||
z = -SOURCE_LENGTH - z;
|
||||
}
|
||||
} else {
|
||||
if (theta < thetaPinch) {
|
||||
if (colNum == 0) {
|
||||
//counting pass electrons
|
||||
setEndState(EndState.PASS);
|
||||
} else {
|
||||
setEndState(EndState.ACCEPTED);
|
||||
}
|
||||
}
|
||||
if (isFinished()) {
|
||||
z = SOURCE_LENGTH / 2d;
|
||||
} else {
|
||||
// reflecting from forward transport magnet
|
||||
z = SOURCE_LENGTH - z;
|
||||
}
|
||||
}
|
||||
if (!isFinished()) {
|
||||
flip();
|
||||
}
|
||||
}
|
||||
return z;
|
||||
}
|
||||
|
||||
// /**
|
||||
// * Check if this position is an end state and apply it if necessary. Does not check z position.
|
||||
// *
|
||||
// * @return
|
||||
// */
|
||||
// private void checkEndState() {
|
||||
// //accepted by spectrometer
|
||||
// if (theta < thetaPinch) {
|
||||
// if (colNum == 0) {
|
||||
// //counting pass electrons
|
||||
// setEndState(EndState.PASS);
|
||||
// } else {
|
||||
// setEndState(EndState.ACCEPTED);
|
||||
// }
|
||||
// }
|
||||
//
|
||||
// //through the rear magnetic pinch
|
||||
// if (theta >= PI - thetaTransport) {
|
||||
// setEndState(EndState.REJECTED);
|
||||
// }
|
||||
// }
|
||||
|
||||
/**
|
||||
* Reverse electron direction
|
||||
*/
|
||||
void flip() {
|
||||
if(theta<0||theta>PI){
|
||||
throw new Error();
|
||||
}
|
||||
theta = PI - theta;
|
||||
}
|
||||
|
||||
/**
|
||||
* Magnetic field in the current point
|
||||
*
|
||||
* @return
|
||||
*/
|
||||
double field() {
|
||||
return Simulator.this.field(z);
|
||||
}
|
||||
|
||||
/**
|
||||
* Real theta angle in current point
|
||||
*
|
||||
* @return
|
||||
*/
|
||||
double realTheta() {
|
||||
if (magneticField == null) {
|
||||
return theta;
|
||||
} else {
|
||||
double newTheta = asin(min(abs(sin(theta)) * sqrt(field() / bSource), 1));
|
||||
if (theta > PI / 2) {
|
||||
newTheta = PI - newTheta;
|
||||
}
|
||||
|
||||
assert !Double.isNaN(newTheta);
|
||||
return newTheta;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Сложение вектора с учетом случайно распределения по фи
|
||||
*
|
||||
* @param dTheta
|
||||
* @return resulting angle
|
||||
*/
|
||||
double addTheta(double dTheta) {
|
||||
//Генерируем случайный фи
|
||||
double phi = generator.nextDouble() * 2 * Math.PI;
|
||||
|
||||
//change to real angles
|
||||
double realTheta = realTheta();
|
||||
//Создаем начальный вектор в сферических координатах
|
||||
SphericalCoordinates init = new SphericalCoordinates(1, 0, realTheta + dTheta);
|
||||
// Задаем вращение относительно оси, перпендикулярной исходному вектору
|
||||
SphericalCoordinates rotate = new SphericalCoordinates(1, 0, realTheta);
|
||||
// поворачиваем исходный вектор на dTheta
|
||||
Rotation rot = new Rotation(rotate.getCartesian(), phi, null);
|
||||
|
||||
Vector3D result = rot.applyTo(init.getCartesian());
|
||||
|
||||
double newtheta = acos(result.getZ());
|
||||
|
||||
// //следим чтобы угол был от 0 до Pi
|
||||
// if (newtheta < 0) {
|
||||
// newtheta = -newtheta;
|
||||
// }
|
||||
// if (newtheta > Math.PI) {
|
||||
// newtheta = 2 * Math.PI - newtheta;
|
||||
// }
|
||||
|
||||
//change back to virtual angles
|
||||
if (magneticField == null) {
|
||||
theta = newtheta;
|
||||
} else {
|
||||
theta = asin(sin(newtheta) * sqrt(bSource / field()));
|
||||
if (newtheta > PI / 2) {
|
||||
theta = PI - theta;
|
||||
}
|
||||
}
|
||||
|
||||
assert !Double.isNaN(theta);
|
||||
|
||||
return theta;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
}
|
@ -1,27 +0,0 @@
|
||||
package inr.numass.trapping;
|
||||
|
||||
import java.io.IOException;
|
||||
import java.time.Duration;
|
||||
import java.time.Instant;
|
||||
import java.util.function.Predicate;
|
||||
|
||||
public class Trapping {
|
||||
public static void main(String[] args) throws IOException {
|
||||
double[] z = {-1.736, -1.27, -0.754, -0.238, 0.278, 0.794, 1.31, 1.776};
|
||||
double[] b = {3.70754, 0.62786, 0.60474, 0.60325, 0.60333, 0.60503, 0.6285, 3.70478};
|
||||
// System.out.println("Press any key to start...");
|
||||
// System.in.read();
|
||||
Instant startTime = Instant.now();
|
||||
System.out.printf("Starting at %s%n%n", startTime.toString());
|
||||
new SimulationManager()
|
||||
.withOutputFile("D:\\Work\\Numass\\trapping\\test1.out")
|
||||
.withFields(0.6, 3.7, 7.2)
|
||||
// .withFieldMap(z, b)
|
||||
.withGasDensity(1e19) // per m^3
|
||||
.withReportFilter(res -> true)
|
||||
.simulateAll((int) 1e6);
|
||||
Instant finishTime = Instant.now();
|
||||
System.out.printf("%nFinished at %s%n", finishTime.toString());
|
||||
System.out.printf("Calculation took %s%n", Duration.between(startTime, finishTime).toString());
|
||||
}
|
||||
}
|
96
src/main/kotlin/inr/numass/trapping/MultiCounter.kt
Normal file
96
src/main/kotlin/inr/numass/trapping/MultiCounter.kt
Normal file
@ -0,0 +1,96 @@
|
||||
/*
|
||||
* Copyright 2015 Alexander Nozik.
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
package inr.numass.trapping
|
||||
|
||||
import java.io.PrintStream
|
||||
import java.lang.Integer.valueOf
|
||||
import java.util.HashMap
|
||||
|
||||
/**
|
||||
* TODO есть объект MultiDimensionalCounter, исползовать его?
|
||||
*
|
||||
* @author Alexander Nozik
|
||||
* @version $Id: $Id
|
||||
*/
|
||||
class MultiCounter(private var name: String) {
|
||||
|
||||
private var counts = HashMap<String, Int>()
|
||||
|
||||
/**
|
||||
*
|
||||
* getCount.
|
||||
*
|
||||
* @param name a [java.lang.String] object.
|
||||
* @return a int.
|
||||
*/
|
||||
fun getCount(name: String): Int? {
|
||||
return counts[name]
|
||||
}
|
||||
|
||||
/**
|
||||
*
|
||||
* increase.
|
||||
*
|
||||
* @param name a [java.lang.String] object.
|
||||
*/
|
||||
@Synchronized
|
||||
fun increase(name: String) {
|
||||
if (counts.containsKey(name)) {
|
||||
val count = counts[name]
|
||||
counts.remove(name)
|
||||
counts[name] = count!! + 1
|
||||
} else {
|
||||
counts[name] = valueOf(1)
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
*
|
||||
* print.
|
||||
*
|
||||
* @param out a [java.io.PrintWriter] object.
|
||||
*/
|
||||
fun print(out: PrintStream) {
|
||||
out.printf("%nValues for counter %s%n%n", this.name)
|
||||
for ((keyName, value) in counts) {
|
||||
|
||||
out.printf("%s : %d%n", keyName, value)
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
*
|
||||
* reset.
|
||||
*
|
||||
* @param name a [java.lang.String] object.
|
||||
*/
|
||||
@Synchronized
|
||||
fun reset(name: String) {
|
||||
if (counts.containsKey(name)) {
|
||||
counts.remove(name)
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
*
|
||||
* resetAll.
|
||||
*/
|
||||
@Synchronized
|
||||
fun resetAll() {
|
||||
this.counts = HashMap()
|
||||
}
|
||||
}
|
963
src/main/kotlin/inr/numass/trapping/Scatter.kt
Normal file
963
src/main/kotlin/inr/numass/trapping/Scatter.kt
Normal file
@ -0,0 +1,963 @@
|
||||
/*
|
||||
* written by Sebastian Voecking <seb.voeck@uni-muenster.de>
|
||||
*
|
||||
* See scatter.h for details
|
||||
*
|
||||
* Included in this file are function from Ferenc Glueck for calculation of
|
||||
* cross sections.
|
||||
*/
|
||||
package inr.numass.trapping
|
||||
|
||||
import org.apache.commons.math3.random.JDKRandomGenerator
|
||||
import org.apache.commons.math3.util.FastMath.*
|
||||
import org.apache.commons.math3.random.RandomGenerator
|
||||
import org.apache.commons.math3.util.Pair
|
||||
|
||||
|
||||
//var generator: RandomGenerator = JDKRandomGenerator()
|
||||
|
||||
var debug = false
|
||||
|
||||
var counter = MultiCounter("Accept-reject calls")
|
||||
|
||||
/**
|
||||
* Using top level object instead of class
|
||||
* @author Darksnake
|
||||
*/
|
||||
object Scatter {
|
||||
|
||||
private var fmax = 0.0
|
||||
|
||||
private val a02 = 28e-22 // Bohr radius squared
|
||||
private val clight = 137.0 // velocity of light in atomic units
|
||||
private val emass = 18780.0 // Electron mass in atomic units
|
||||
private val R = 13.6 // Ryberg energy in eV
|
||||
|
||||
private fun count(counterName: String) {
|
||||
if (debug) {
|
||||
counter.increase(counterName)
|
||||
}
|
||||
}
|
||||
|
||||
fun randomel(E: Double, generator: RandomGenerator): Pair<Double, Double> {
|
||||
// This subroutine generates energy loss and polar scatt. angle according to
|
||||
// electron elastic scattering in molecular hydrogen.
|
||||
// Input:
|
||||
// E: incident electron energy in eV.
|
||||
// Output:
|
||||
// *Eloss: energy loss in eV
|
||||
// *theta: change of polar angle in degrees
|
||||
val H2molmass = 69e6
|
||||
val T: Double = E / 27.2
|
||||
var c = 1.0
|
||||
val b: Double
|
||||
var G: Double
|
||||
var a: Double
|
||||
val gam: Double
|
||||
var K2: Double
|
||||
val Gmax: Double = when {
|
||||
E >= 250.0 -> 1e-19
|
||||
E < 250.0 && E >= 150.0 -> 2.5e-19
|
||||
else -> 1e-18
|
||||
}
|
||||
var i: Int = 1
|
||||
|
||||
count("randomel-calls")
|
||||
gam = 1.0 + T / (clight * clight) // relativistic correction factor
|
||||
b = 2.0 / (1.0 + gam) / T
|
||||
while (i < 5000) {
|
||||
count("randomel")
|
||||
c = 1.0 + b - b * (2.0 + b) / (b + 2.0 * generator.nextDouble())
|
||||
K2 = 2.0 * T * (1.0 + gam) * abs(1.0 - c) // momentum transfer squared
|
||||
a = (4.0 + K2) * (4.0 + K2) / (gam * gam)
|
||||
G = a * Del(E, c)
|
||||
if (G > Gmax * generator.nextDouble()) {
|
||||
break
|
||||
}
|
||||
i++
|
||||
}
|
||||
return Pair(2.0 * emass / H2molmass * (1.0 - c) * E, acos(c) * 180.0 / Math.PI)
|
||||
}
|
||||
|
||||
internal fun randomexc(E: Double, generator: RandomGenerator): Pair<Double, Double> {
|
||||
// This subroutine generates energy loss and polar scatt. angle according to
|
||||
// electron excitation scattering in molecular hydrogen.
|
||||
// Input:
|
||||
// E: incident electron energy in eV.
|
||||
// Output:
|
||||
// *Eloss: energy loss in eV
|
||||
// *theta: change of polar angle in degrees
|
||||
|
||||
val Ecen = 12.6 / 27.21
|
||||
val sum = DoubleArray(1001)
|
||||
var T: Double = 20000.0 / 27.2
|
||||
var c = 0.0
|
||||
var K: Double
|
||||
var xmin: Double
|
||||
var ymin: Double
|
||||
var ymax: Double
|
||||
val x: Double
|
||||
var y: Double
|
||||
var fy: Double
|
||||
val dy: Double
|
||||
var pmax: Double
|
||||
var D: Double
|
||||
val Dmax: Double
|
||||
var i: Int
|
||||
var j: Int
|
||||
var n = 0
|
||||
var N: Int
|
||||
var v = 0
|
||||
// Energy values of the excited electronic states:
|
||||
// (from Mol. Phys. 41 (1980) 1501, in Hartree atomic units)
|
||||
val En = doubleArrayOf(12.73 / 27.2, 13.2 / 27.2, 14.77 / 27.2, 15.3 / 27.2, 14.93 / 27.2, 15.4 / 27.2, 13.06 / 27.2)
|
||||
// Probability numbers of the electronic states:
|
||||
// (from testelectron7.c calculation )
|
||||
val p = doubleArrayOf(35.86, 40.05, 6.58, 2.26, 9.61, 4.08, 1.54)
|
||||
// Energy values of the B vibrational states:
|
||||
// (from: Phys. Rev. A51 (1995) 3745 , in Hartree atomic units)
|
||||
val EB = doubleArrayOf(0.411, 0.417, 0.423, 0.428, 0.434, 0.439, 0.444, 0.449, 0.454, 0.459, 0.464, 0.468, 0.473, 0.477, 0.481, 0.485, 0.489, 0.493, 0.496, 0.500, 0.503, 0.507, 0.510, 0.513, 0.516, 0.519, 0.521, 0.524)
|
||||
// Energy values of the C vibrational states:
|
||||
// (from: Phys. Rev. A51 (1995) 3745 , in Hartree atomic units)
|
||||
val EC = doubleArrayOf(0.452, 0.462, 0.472, 0.481, 0.490, 0.498, 0.506, 0.513, 0.519, 0.525, 0.530, 0.534, 0.537, 0.539)
|
||||
// Franck-Condon factors of the B vibrational states:
|
||||
// (from: Phys. Rev. A51 (1995) 3745 )
|
||||
val pB = doubleArrayOf(4.2e-3, 1.5e-2, 3.0e-2, 4.7e-2, 6.3e-2, 7.3e-2, 7.9e-2, 8.0e-2, 7.8e-2, 7.3e-2, 6.6e-2, 5.8e-2, 5.1e-2, 4.4e-2, 3.7e-2, 3.1e-2, 2.6e-2, 2.2e-2, 1.8e-2, 1.5e-2, 1.3e-2, 1.1e-2, 8.9e-3, 7.4e-3, 6.2e-3, 5.2e-3, 4.3e-3, 3.6e-3)
|
||||
// Franck-Condon factors of the C vibrational states:
|
||||
// (from: Phys. Rev. A51 (1995) 3745 )
|
||||
val pC = doubleArrayOf(1.2e-1, 1.9e-1, 1.9e-1, 1.5e-1, 1.1e-1, 7.5e-2, 5.0e-2, 3.3e-2, 2.2e-2, 1.4e-2, 9.3e-3, 6.0e-3, 3.7e-3, 1.8e-3)
|
||||
count("randomexc-calls")
|
||||
//
|
||||
xmin = Ecen * Ecen / (2.0 * T)
|
||||
ymin = log(xmin)
|
||||
ymax = log(8.0 * T + xmin)
|
||||
dy = (ymax - ymin) / 1000.0
|
||||
|
||||
// Initialization of the sum[] vector, and fmax calculation:
|
||||
synchronized(this) {
|
||||
if (fmax == 0.0) {
|
||||
i = 0
|
||||
while (i <= 1000) {
|
||||
y = ymin + dy * i
|
||||
K = exp(y / 2.0)
|
||||
sum[i] = sumexc(K)
|
||||
if (sum[i] > fmax) {
|
||||
fmax = sum[i]
|
||||
}
|
||||
i++
|
||||
}
|
||||
fmax *= 1.05
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
// Scattering angle *theta generation:
|
||||
//
|
||||
T = E / 27.2
|
||||
val theta: Double
|
||||
if (E >= 100.0) {
|
||||
xmin = Ecen * Ecen / (2.0 * T)
|
||||
ymin = log(xmin)
|
||||
ymax = log(8.0 * T + xmin)
|
||||
// dy = (ymax - ymin) / 1000.;
|
||||
// Generation of y values with the Neumann acceptance-rejection method:
|
||||
y = ymin
|
||||
j = 1
|
||||
while (j < 5000) {
|
||||
count("randomexc1")
|
||||
y = ymin + (ymax - ymin) * generator.nextDouble()
|
||||
K = exp(y / 2.0)
|
||||
fy = sumexc(K)
|
||||
if (fmax * generator.nextDouble() < fy) {
|
||||
break
|
||||
}
|
||||
j++
|
||||
}
|
||||
// Calculation of c=cos(theta) and theta:
|
||||
x = exp(y)
|
||||
c = 1.0 - (x - xmin) / (4.0 * T)
|
||||
theta = acos(c) * 180.0 / Math.PI
|
||||
} else {
|
||||
Dmax = when {
|
||||
E <= 25.0 -> 60.0
|
||||
E > 25.0 && E <= 35.0 -> 95.0
|
||||
E > 35.0 && E <= 50.0 -> 150.0
|
||||
else -> 400.0
|
||||
}
|
||||
j = 1
|
||||
|
||||
while (j < 5000) {
|
||||
count("randomexc2")
|
||||
c = -1.0 + 2.0 * generator.nextDouble()
|
||||
D = Dexc(E, c) * 1e22
|
||||
if (Dmax * generator.nextDouble() < D) {
|
||||
break
|
||||
}
|
||||
j++
|
||||
}
|
||||
theta = acos(c) * 180.0 / Math.PI
|
||||
}
|
||||
// Energy loss *Eloss generation:
|
||||
|
||||
// First we generate the electronic state, using the Neumann
|
||||
// acceptance-rejection method for discrete distribution:
|
||||
N = 7 // the number of electronic states in our calculation
|
||||
pmax = p[1] // the maximum of the p[] values
|
||||
j = 1
|
||||
while (j < 5000) {
|
||||
count("randomexc3")
|
||||
n = (N * generator.nextDouble()).toInt()
|
||||
if (generator.nextDouble() * pmax < p[n]) {
|
||||
break
|
||||
}
|
||||
j++
|
||||
}
|
||||
if (n < 0) {
|
||||
n = 0
|
||||
}
|
||||
if (n > 6) {
|
||||
n = 6
|
||||
}
|
||||
if (n > 1) {
|
||||
|
||||
}
|
||||
val Eloss: Double
|
||||
when (n) {
|
||||
0 -> {
|
||||
// B state; we generate now a vibrational state,
|
||||
// using the Frank-Condon factors
|
||||
N = 28 // the number of B vibrational states in our calculation
|
||||
pmax = pB[7] // maximum of the pB[] values
|
||||
j = 1
|
||||
while (j < 5000) {
|
||||
count("randomexc4")
|
||||
v = (N * generator.nextDouble()).toInt()
|
||||
if (generator.nextDouble() * pmax < pB[v]) {
|
||||
break
|
||||
}
|
||||
j++
|
||||
}
|
||||
if (v < 0) {
|
||||
v = 0
|
||||
}
|
||||
if (v > 27) {
|
||||
v = 27
|
||||
}
|
||||
Eloss = EB[v] * 27.2
|
||||
}
|
||||
1 -> {
|
||||
// C state; we generate now a vibrational state,
|
||||
// using the Franck-Condon factors
|
||||
N = 14 // the number of C vibrational states in our calculation
|
||||
pmax = pC[1] // maximum of the pC[] values
|
||||
j = 1
|
||||
while (j < 5000) {
|
||||
count("randomexc4")
|
||||
v = (N * generator.nextDouble()).toInt()
|
||||
if (generator.nextDouble() * pmax < pC[v]) {
|
||||
break
|
||||
}
|
||||
j++
|
||||
}
|
||||
if (v < 0) {
|
||||
v = 0
|
||||
}
|
||||
if (v > 13) {
|
||||
v = 13
|
||||
}
|
||||
Eloss = EC[v] * 27.2
|
||||
}
|
||||
else ->
|
||||
// Bp, Bpp, D, Dp, EF states
|
||||
Eloss = En[n] * 27.2
|
||||
}
|
||||
return Pair(Eloss, theta)
|
||||
}
|
||||
|
||||
internal fun randomion(E: Double, generator: RandomGenerator): Pair<Double, Double> {
|
||||
// This subroutine generates energy loss and polar scatt. angle according to
|
||||
// electron ionization scattering in molecular hydrogen.
|
||||
// Input:
|
||||
// E: incident electron energy in eV.
|
||||
// Output:
|
||||
// *Eloss: energy loss in eV
|
||||
// *theta: change of polar angle in degrees
|
||||
// The kinetic energy of the secondary electron is: Eloss-15.4 eV
|
||||
//
|
||||
val Ei = 15.45 / 27.21
|
||||
var c: Double
|
||||
val b: Double
|
||||
var K: Double
|
||||
val xmin: Double
|
||||
val ymin: Double
|
||||
val ymax: Double
|
||||
val x: Double
|
||||
var y: Double
|
||||
val T: Double = E / 27.2
|
||||
var G: Double
|
||||
var Gmax: Double
|
||||
var q: Double
|
||||
val h: Double
|
||||
var F: Double
|
||||
val Fmin: Double
|
||||
val Fmax: Double
|
||||
var Gp: Double
|
||||
val Elmin: Double
|
||||
val Elmax: Double = (E + 15.45) / 2.0 / 27.2
|
||||
val qmin: Double
|
||||
val qmax: Double
|
||||
var El: Double
|
||||
val wmax: Double
|
||||
var WcE: Double
|
||||
var Jstarq: Double
|
||||
var WcstarE: Double
|
||||
var w: Double
|
||||
var D2ion: Double
|
||||
var j: Int = 1
|
||||
var K2: Double
|
||||
var KK: Double
|
||||
var fE: Double
|
||||
var kej: Double
|
||||
var ki: Double
|
||||
var kf: Double
|
||||
var Rex: Double
|
||||
var arg: Double
|
||||
var arctg: Double
|
||||
var i: Int
|
||||
var st1: Double
|
||||
var st2: Double
|
||||
count("randomion-calls")
|
||||
//
|
||||
// I. Generation of theta
|
||||
// -----------------------
|
||||
Gmax = 1e-20
|
||||
if (E < 200.0) {
|
||||
Gmax = 2e-20
|
||||
}
|
||||
xmin = Ei * Ei / (2.0 * T)
|
||||
b = xmin / (4.0 * T)
|
||||
ymin = log(xmin)
|
||||
ymax = log(8.0 * T + xmin)
|
||||
// Generation of y values with the Neumann acceptance-rejection method:
|
||||
y = ymin
|
||||
while (j < 5000) {
|
||||
count("randomion1")
|
||||
y = ymin + (ymax - ymin) * generator.nextDouble()
|
||||
K = exp(y / 2.0)
|
||||
c = 1.0 + b - K * K / (4.0 * T)
|
||||
G = K * K * (Dinel(E, c) - Dexc(E, c))
|
||||
if (Gmax * generator.nextDouble() < G) {
|
||||
break
|
||||
}
|
||||
j++
|
||||
}
|
||||
// y --> x --> c --> theta
|
||||
x = exp(y)
|
||||
c = 1.0 - (x - xmin) / (4.0 * T)
|
||||
val theta = acos(c) * 180.0 / Math.PI
|
||||
//
|
||||
// II. Generation of Eloss, for fixed theta
|
||||
// ----------------------------------------
|
||||
//
|
||||
// For E<=100 eV we use subr. gensecelen
|
||||
// (in this case no correlation between theta and Eloss)
|
||||
if (E <= 100.0) {
|
||||
return Pair(15.45 + gensecelen(E, generator), theta)
|
||||
}
|
||||
// For theta>=20 the free electron model is used
|
||||
// (with full correlation between theta and Eloss)
|
||||
if (theta >= 20.0) {
|
||||
return Pair(E * (1.0 - c * c), theta)
|
||||
}
|
||||
// For E>100 eV and theta<20: analytical first Born approximation
|
||||
// formula of Bethe for H atom (with modification for H2)
|
||||
//
|
||||
// Calc. of wmax:
|
||||
if (theta >= 0.7) {
|
||||
wmax = 1.1
|
||||
} else if (theta <= 0.7 && theta > 0.2) {
|
||||
wmax = 2.0
|
||||
} else if (theta <= 0.2 && theta > 0.05) {
|
||||
wmax = 4.0
|
||||
} else {
|
||||
wmax = 8.0
|
||||
}
|
||||
// We generate the q value according to the Jstarq pdf. We have to
|
||||
// define the qmin and qmax limits for this generation:
|
||||
K = sqrt(4.0 * T * (1.0 - Ei / (2.0 * T) - sqrt(1.0 - Ei / T) * c))
|
||||
Elmin = Ei
|
||||
qmin = Elmin / K - K / 2.0
|
||||
qmax = Elmax / K - K / 2.0
|
||||
//
|
||||
q = qmax
|
||||
Fmax = 1.0 / 2.0 + 1.0 / Math.PI * (q / (1.0 + q * q) + atan(q))
|
||||
q = qmin
|
||||
Fmin = 1.0 / 2.0 + 1.0 / Math.PI * (q / (1.0 + q * q) + atan(q))
|
||||
h = Fmax - Fmin
|
||||
// Generation of Eloss with the Neumann acceptance-rejection method:
|
||||
El = 0.0
|
||||
j = 1
|
||||
while (j < 5000) {
|
||||
// Generation of q with inverse transform method
|
||||
// (we use the Newton-Raphson method in order to solve the nonlinear eq.
|
||||
// for the inversion) :
|
||||
count("randomion2")
|
||||
F = Fmin + h * generator.nextDouble()
|
||||
y = 0.0
|
||||
i = 1
|
||||
while (i <= 30) {
|
||||
G = 1.0 / 2.0 + (y + sin(2.0 * y) / 2.0) / Math.PI
|
||||
Gp = (1.0 + cos(2.0 * y)) / Math.PI
|
||||
y = y - (G - F) / Gp
|
||||
if (abs(G - F) < 1e-8) {
|
||||
break
|
||||
}
|
||||
i++
|
||||
}
|
||||
q = tan(y)
|
||||
// We have the q value, so we can define El, and calculate the weight:
|
||||
El = q * K + K * K / 2.0
|
||||
// First Born approximation formula of Bethe for e-H ionization:
|
||||
KK = K
|
||||
ki = sqrt(2.0 * T)
|
||||
kf = sqrt(2.0 * (T - El))
|
||||
K2 = 4.0 * T * (1.0 - El / (2.0 * T) - sqrt(1.0 - El / T) * c)
|
||||
if (K2 < 1e-9) {
|
||||
K2 = 1e-9
|
||||
}
|
||||
K = sqrt(K2) // momentum transfer
|
||||
Rex = 1.0 - K * K / (kf * kf) + K2 * K2 / (kf * kf * kf * kf)
|
||||
kej = sqrt(2.0 * abs(El - Ei) + 1e-8)
|
||||
st1 = K2 - 2.0 * El + 2.0
|
||||
if (abs(st1) < 1e-9) {
|
||||
st1 = 1e-9
|
||||
}
|
||||
arg = 2.0 * kej / st1
|
||||
arctg = if (arg >= 0.0) {
|
||||
atan(arg)
|
||||
} else {
|
||||
atan(arg) + Math.PI
|
||||
}
|
||||
st1 = (K + kej) * (K + kej) + 1.0
|
||||
st2 = (K - kej) * (K - kej) + 1.0
|
||||
fE = 1024.0 * El * (K2 + 2.0 / 3.0 * El) / (st1 * st1 * st1 * st2 * st2 * st2) * exp(-2.0 / kej * arctg) / (1.0 - exp(-2.0 * Math.PI / kej))
|
||||
D2ion = 2.0 * kf / ki * Rex / (El * K2) * fE
|
||||
K = KK
|
||||
//
|
||||
WcE = D2ion
|
||||
Jstarq = 16.0 / (3.0 * Math.PI * (1.0 + q * q) * (1.0 + q * q))
|
||||
WcstarE = 4.0 / (K * K * K * K * K) * Jstarq
|
||||
w = WcE / WcstarE
|
||||
if (wmax * generator.nextDouble() < w) {
|
||||
break
|
||||
}
|
||||
j++
|
||||
}
|
||||
|
||||
return Pair(El * 27.2, theta)
|
||||
}
|
||||
|
||||
internal fun gensecelen(E: Double, generator: RandomGenerator): Double {
|
||||
// This subroutine generates secondary electron energy W
|
||||
// from ionization of incident electron energy E, by using
|
||||
// the Lorentzian of Aseev et al. (Eq. 8).
|
||||
// E and W in eV.
|
||||
val Ei = 15.45
|
||||
val eps2 = 14.3
|
||||
val b = 6.25
|
||||
val B: Double = atan((Ei - eps2) / b)
|
||||
val D: Double
|
||||
val A: Double
|
||||
val eps: Double
|
||||
val a: Double
|
||||
val u: Double = generator.nextDouble()
|
||||
val epsmax: Double
|
||||
|
||||
epsmax = (E + Ei) / 2.0
|
||||
A = atan((epsmax - eps2) / b)
|
||||
D = b / (A - B)
|
||||
a = b / D * (u + D / b * B)
|
||||
eps = eps2 + b * tan(a)
|
||||
return eps - Ei
|
||||
}
|
||||
|
||||
internal fun Del(E: Double, c: Double): Double {
|
||||
// This subroutine computes the differential cross section
|
||||
// Del= d sigma/d Omega of elastic electron scattering
|
||||
// on molecular hydrogen.
|
||||
// See: Nishimura et al., J. Phys. Soc. Jpn. 54 (1985) 1757.
|
||||
// Input: E= electron kinetic energy in eV
|
||||
// c= cos(theta), where theta is the polar scatt. angle
|
||||
// Del: in m^2/steradian
|
||||
val Cel = doubleArrayOf(-0.512, -0.512, -0.509, -0.505, -0.499, -0.491, -0.476, -0.473, -0.462, -0.452, -0.438, -0.422, -0.406, -0.388, -0.370, -0.352, -0.333, -0.314, -0.296, -0.277, -0.258, -0.239, -0.221, -0.202, -0.185, -0.167, -0.151, -0.135, -0.120, -0.105, -0.092, -0.070, -0.053, -0.039, -0.030, -0.024, -0.019, -0.016, -0.014, -0.013, -0.012, -0.009, -0.008, -0.006, -0.005, -0.004, -0.003, -0.002, -0.002, -0.001)
|
||||
val e = doubleArrayOf(0.0, 3.0, 6.0, 12.0, 20.0, 32.0, 55.0, 85.0, 150.0, 250.0)
|
||||
val t = doubleArrayOf(0.0, 10.0, 20.0, 30.0, 40.0, 60.0, 80.0, 100.0, 140.0, 180.0)
|
||||
val D = arrayOf(doubleArrayOf(2.9, 2.7, 2.5, 2.1, 1.8, 1.2, 0.9, 1.0, 1.6, 1.9), doubleArrayOf(4.2, 3.6, 3.1, 2.5, 1.9, 1.1, 0.8, 0.9, 1.3, 1.4), doubleArrayOf(6.0, 4.4, 3.2, 2.3, 1.8, 1.1, 0.7, 0.54, 0.5, 0.6), doubleArrayOf(6.0, 4.1, 2.8, 1.9, 1.3, 0.6, 0.3, 0.17, 0.16, 0.23), doubleArrayOf(4.9, 3.2, 2.0, 1.2, 0.8, 0.3, 0.15, 0.09, 0.05, 0.05), doubleArrayOf(5.2, 2.5, 1.2, 0.64, 0.36, 0.13, 0.05, 0.03, 0.016, 0.02), doubleArrayOf(4.0, 1.7, 0.7, 0.3, 0.16, 0.05, 0.02, 0.013, 0.01, 0.01), doubleArrayOf(2.8, 1.1, 0.4, 0.15, 0.07, 0.02, 0.01, 0.007, 0.004, 0.003), doubleArrayOf(1.2, 0.53, 0.2, 0.08, 0.03, 0.0074, 0.003, 0.0016, 0.001, 0.0008))
|
||||
val T: Double = E / 27.2
|
||||
var K2: Double
|
||||
var K: Double
|
||||
val d: Double
|
||||
val st1: Double
|
||||
val st2: Double
|
||||
val DH: Double
|
||||
val gam: Double
|
||||
var Delreturn = 0.0
|
||||
val CelK: Double
|
||||
val Ki: Double
|
||||
val theta: Double
|
||||
var i: Int
|
||||
var j: Int
|
||||
if (E >= 250.0) {
|
||||
gam = 1.0 + T / (clight * clight) // relativistic correction factor
|
||||
K2 = 2.0 * T * (1.0 + gam) * (1.0 - c)
|
||||
if (K2 < 0.0) {
|
||||
K2 = 1e-30
|
||||
}
|
||||
K = sqrt(K2)
|
||||
if (K < 1e-9) {
|
||||
K = 1e-9 // momentum transfer
|
||||
}
|
||||
d = 1.4009 // distance of protons in H2
|
||||
st1 = 8.0 + K2
|
||||
st2 = 4.0 + K2
|
||||
// DH is the diff. cross section for elastic electron scatt.
|
||||
// on atomic hydrogen within the first Born approximation :
|
||||
DH = 4.0 * st1 * st1 / (st2 * st2 * st2 * st2) * a02
|
||||
// CelK calculation with linear interpolation.
|
||||
// CelK is the correction of the elastic electron
|
||||
// scatt. on molecular hydrogen compared to the independent atom
|
||||
// model.
|
||||
when {
|
||||
K < 3.0 -> {
|
||||
i = (K / 0.1).toInt()
|
||||
Ki = i * 0.1
|
||||
CelK = Cel[i] + (K - Ki) / 0.1 * (Cel[i + 1] - Cel[i])
|
||||
}
|
||||
K >= 3.0 && K < 5.0 -> {
|
||||
i = (30 + (K - 3.0) / 0.2).toInt()
|
||||
Ki = 3.0 + (i - 30) * 0.2
|
||||
CelK = Cel[i] + (K - Ki) / 0.2 * (Cel[i + 1] - Cel[i])
|
||||
}
|
||||
K >= 5.0 && K < 9.49 -> {
|
||||
i = (40 + (K - 5.0) / 0.5).toInt()
|
||||
Ki = 5.0 + (i - 40) * 0.5
|
||||
CelK = Cel[i] + (K - Ki) / 0.5 * (Cel[i + 1] - Cel[i])
|
||||
}
|
||||
else -> CelK = 0.0
|
||||
}
|
||||
Delreturn = 2.0 * gam * gam * DH * (1.0 + sin(K * d) / (K * d)) * (1.0 + CelK)
|
||||
} else {
|
||||
theta = acos(c) * 180.0 / Math.PI
|
||||
i = 0
|
||||
while (i <= 8) {
|
||||
if (E >= e[i] && E < e[i + 1]) {
|
||||
j = 0
|
||||
while (j <= 8) {
|
||||
if (theta >= t[j] && theta < t[j + 1]) {
|
||||
Delreturn = 1e-20 * (D[i][j] + (D[i][j + 1] - D[i][j]) * (theta - t[j]) / (t[j + 1] - t[j]))
|
||||
}
|
||||
j++
|
||||
}
|
||||
}
|
||||
i++
|
||||
}
|
||||
}
|
||||
return Delreturn
|
||||
}
|
||||
|
||||
internal fun Dexc(E: Double, c: Double): Double {
|
||||
// This subroutine computes the differential cross section
|
||||
// Del= d sigma/d Omega of excitation electron scattering
|
||||
// on molecular hydrogen.
|
||||
// Input: E= electron kinetic energy in eV
|
||||
// c= cos(theta), where theta is the polar scatt. angle
|
||||
// Dexc: in m^2/steradian
|
||||
var K2: Double
|
||||
val K: Double
|
||||
var sigma = 0.0
|
||||
val T: Double = E / 27.2
|
||||
val theta: Double
|
||||
val EE = 12.6 / 27.2
|
||||
val e = doubleArrayOf(0.0, 25.0, 35.0, 50.0, 100.0)
|
||||
val t = doubleArrayOf(0.0, 10.0, 20.0, 30.0, 40.0, 60.0, 80.0, 100.0, 180.0)
|
||||
val D = arrayOf(doubleArrayOf(60.0, 43.0, 27.0, 18.0, 13.0, 8.0, 6.0, 6.0, 6.0), doubleArrayOf(95.0, 70.0, 21.0, 9.0, 6.0, 3.0, 2.0, 2.0, 2.0), doubleArrayOf(150.0, 120.0, 32.0, 8.0, 3.7, 1.9, 1.2, 0.8, 0.8), doubleArrayOf(400.0, 200.0, 12.0, 2.0, 1.4, 0.7, 0.3, 0.2, 0.2))
|
||||
var i: Int
|
||||
var j: Int
|
||||
//
|
||||
if (E >= 100.0) {
|
||||
K2 = 4.0 * T * (1.0 - EE / (2.0 * T) - sqrt(1.0 - EE / T) * c)
|
||||
if (K2 < 1e-9) {
|
||||
K2 = 1e-9
|
||||
}
|
||||
K = sqrt(K2) // momentum transfer
|
||||
sigma = 2.0 / K2 * sumexc(K) * a02
|
||||
} else if (E <= 10.0) {
|
||||
sigma = 0.0
|
||||
} else {
|
||||
theta = acos(c) * 180.0 / Math.PI
|
||||
i = 0
|
||||
while (i <= 3) {
|
||||
if (E >= e[i] && E < e[i + 1]) {
|
||||
j = 0
|
||||
while (j <= 7) {
|
||||
if (theta >= t[j] && theta < t[j + 1]) {
|
||||
sigma = 1e-22 * (D[i][j] + (D[i][j + 1] - D[i][j]) * (theta - t[j]) / (t[j + 1] - t[j]))
|
||||
}
|
||||
j++
|
||||
}
|
||||
}
|
||||
i++
|
||||
}
|
||||
}
|
||||
return sigma
|
||||
}
|
||||
|
||||
internal fun Dinel(E: Double, c: Double): Double {
|
||||
// This subroutine computes the differential cross section
|
||||
// Dinel= d sigma/d Omega of inelastic electron scattering
|
||||
// on molecular hydrogen, within the first Born approximation.
|
||||
// Input: E= electron kinetic energy in eV
|
||||
// c= cos(theta), where theta is the polar scatt. angle
|
||||
// Dinel: in m2/steradian
|
||||
val Cinel = doubleArrayOf(-0.246, -0.244, -0.239, -0.234, -0.227, -0.219, -0.211, -0.201, -0.190, -0.179, -0.167, -0.155, -0.142, -0.130, -0.118, -0.107, -0.096, -0.085, -0.076, -0.067, -0.059, -0.051, -0.045, -0.039, -0.034, -0.029, -0.025, -0.022, -0.019, -0.016, -0.014, -0.010, -0.008, -0.006, -0.004, -0.003, -0.003, -0.002, -0.002, -0.001, -0.001, -0.001, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000)
|
||||
val Ei = 0.568
|
||||
val T: Double = E / 27.2
|
||||
var K2: Double
|
||||
val K: Double
|
||||
val st1: Double
|
||||
val F: Double
|
||||
val DH: Double
|
||||
val Dinelreturn: Double
|
||||
val CinelK: Double
|
||||
val Ki: Double
|
||||
val i: Int
|
||||
if (E < 16.0) {
|
||||
return Dexc(E, c)
|
||||
}
|
||||
K2 = 4.0 * T * (1.0 - Ei / (2.0 * T) - sqrt(1.0 - Ei / T) * c)
|
||||
if (K2 < 1e-9) {
|
||||
K2 = 1e-9
|
||||
}
|
||||
K = sqrt(K2) // momentum transfer
|
||||
st1 = 1.0 + K2 / 4.0
|
||||
F = 1.0 / (st1 * st1) // scatt. formfactor of hydrogen atom
|
||||
// DH is the diff. cross section for inelastic electron scatt.
|
||||
// on atomic hydrogen within the first Born approximation :
|
||||
DH = 4.0 / (K2 * K2) * (1.0 - F * F) * a02
|
||||
// CinelK calculation with linear interpolation.
|
||||
// CinelK is the correction of the inelastic electron
|
||||
// scatt. on molecular hydrogen compared to the independent atom
|
||||
// model.
|
||||
if (K < 3.0) {
|
||||
i = (K / 0.1).toInt()
|
||||
Ki = i * 0.1
|
||||
CinelK = Cinel[i] + (K - Ki) / 0.1 * (Cinel[i + 1] - Cinel[i])
|
||||
} else if (K >= 3.0 && K < 5.0) {
|
||||
i = (30 + (K - 3.0) / 0.2).toInt()
|
||||
Ki = 3.0 + (i - 30) * 0.2
|
||||
CinelK = Cinel[i] + (K - Ki) / 0.2 * (Cinel[i + 1] - Cinel[i])
|
||||
} else if (K >= 5.0 && K < 9.49) {
|
||||
i = (40 + (K - 5.0) / 0.5).toInt()
|
||||
Ki = 5.0 + (i - 40) * 0.5
|
||||
CinelK = Cinel[i] + (K - Ki) / 0.5 * (Cinel[i + 1] - Cinel[i])
|
||||
} else {
|
||||
CinelK = 0.0
|
||||
}
|
||||
Dinelreturn = 2.0 * DH * (1.0 + CinelK)
|
||||
return Dinelreturn
|
||||
}
|
||||
|
||||
private fun sumexc(K: Double): Double {
|
||||
val Kvec = doubleArrayOf(0.0, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.5, 1.8, 2.0, 2.5, 3.0, 4.0, 5.0)
|
||||
val fvec = arrayOf(doubleArrayOf(2.907e-1, 2.845e-1, 2.665e-1, 2.072e-1, 1.389e-1, // B
|
||||
8.238e-2, 4.454e-2, 2.269e-2, 7.789e-3, 2.619e-3, 1.273e-3, 2.218e-4, 4.372e-5, 2.889e-6, 4.247e-7), doubleArrayOf(3.492e-1, 3.367e-1, 3.124e-1, 2.351e-1, 1.507e-1, // C
|
||||
8.406e-2, 4.214e-2, 1.966e-2, 5.799e-3, 1.632e-3, 6.929e-4, 8.082e-5, 9.574e-6, 1.526e-7, 7.058e-9), doubleArrayOf(6.112e-2, 5.945e-2, 5.830e-2, 5.072e-2, 3.821e-2, // Bp
|
||||
2.579e-2, 1.567e-2, 8.737e-3, 3.305e-3, 1.191e-3, 6.011e-4, 1.132e-4, 2.362e-5, 1.603e-6, 2.215e-7), doubleArrayOf(2.066e-2, 2.127e-2, 2.137e-2, 1.928e-2, 1.552e-2, // Bpp
|
||||
1.108e-2, 7.058e-3, 4.069e-3, 1.590e-3, 5.900e-4, 3.046e-4, 6.142e-5, 1.369e-5, 9.650e-7, 1.244e-7), doubleArrayOf(9.405e-2, 9.049e-2, 8.613e-2, 7.301e-2, 5.144e-2, // D
|
||||
3.201e-2, 1.775e-2, 8.952e-3, 2.855e-3, 8.429e-4, 3.655e-4, 4.389e-5, 5.252e-6, 9.010e-8, 7.130e-9), doubleArrayOf(4.273e-2, 3.862e-2, 3.985e-2, 3.362e-2, 2.486e-2, // Dp
|
||||
1.612e-2, 9.309e-3, 4.856e-3, 1.602e-3, 4.811e-4, 2.096e-4, 2.498e-5, 2.905e-6, 5.077e-8, 6.583e-9), doubleArrayOf(0.000e-3, 2.042e-3, 7.439e-3, 2.200e-2, 3.164e-2, // EF
|
||||
3.161e-2, 2.486e-2, 1.664e-2, 7.562e-3, 3.044e-3, 1.608e-3, 3.225e-4, 7.120e-5, 6.290e-6, 1.066e-6))
|
||||
val EeV = doubleArrayOf(12.73, 13.20, 14.77, 15.3, 14.93, 15.4, 13.06)
|
||||
var n: Int = 0
|
||||
var j: Int
|
||||
var jmin = 0
|
||||
val nmax: Int = 6
|
||||
var En: Double
|
||||
var sum: Double = 0.0
|
||||
val f = DoubleArray(7)
|
||||
val x4 = DoubleArray(4)
|
||||
val f4 = DoubleArray(4)
|
||||
|
||||
//
|
||||
while (n <= nmax) {
|
||||
En = EeV[n] / 27.21 // En is the excitation energy in Hartree atomic units
|
||||
if (K >= 5.0) {
|
||||
f[n] = 0.0
|
||||
} else if (K >= 3.0 && K <= 4.0) {
|
||||
f[n] = fvec[n][12] + (K - 3.0) * (fvec[n][13] - fvec[n][12])
|
||||
} else if (K >= 4.0 && K <= 5.0) {
|
||||
f[n] = fvec[n][13] + (K - 4.0) * (fvec[n][14] - fvec[n][13])
|
||||
} else {
|
||||
j = 0
|
||||
while (j < 14) {
|
||||
if (K >= Kvec[j] && K <= Kvec[j + 1]) {
|
||||
jmin = j - 1
|
||||
}
|
||||
j++
|
||||
}
|
||||
if (jmin < 0) {
|
||||
jmin = 0
|
||||
}
|
||||
if (jmin > 11) {
|
||||
jmin = 11
|
||||
}
|
||||
j = 0
|
||||
while (j <= 3) {
|
||||
x4[j] = Kvec[jmin + j]
|
||||
f4[j] = fvec[n][jmin + j]
|
||||
j++
|
||||
}
|
||||
f[n] = lagrange(4, x4, f4, K)
|
||||
}
|
||||
sum += f[n] / En
|
||||
n++
|
||||
}
|
||||
return sum
|
||||
}
|
||||
|
||||
internal fun lagrange(n: Int, xn: DoubleArray, fn: DoubleArray, x: Double): Double {
|
||||
var i: Int
|
||||
var j: Int
|
||||
var f: Double = 0.0
|
||||
var aa: Double
|
||||
var bb: Double
|
||||
val a = DoubleArray(100)
|
||||
val b = DoubleArray(100)
|
||||
j = 0
|
||||
while (j < n) {
|
||||
i = 0
|
||||
while (i < n) {
|
||||
a[i] = x - xn[i]
|
||||
b[i] = xn[j] - xn[i]
|
||||
i++
|
||||
}
|
||||
bb = 1.0
|
||||
aa = bb
|
||||
b[j] = aa
|
||||
a[j] = b[j]
|
||||
i = 0
|
||||
while (i < n) {
|
||||
aa *= a[i]
|
||||
bb *= b[i]
|
||||
i++
|
||||
}
|
||||
f += fn[j] * aa / bb
|
||||
j++
|
||||
}
|
||||
return f
|
||||
}
|
||||
|
||||
internal fun sigmael(E: Double): Double {
|
||||
// This function computes the total elastic cross section of
|
||||
// electron scatt. on molecular hydrogen.
|
||||
// See: Liu, Phys. Rev. A35 (1987) 591,
|
||||
// Trajmar, Phys Reports 97 (1983) 221.
|
||||
// E: incident electron energy in eV
|
||||
// sigmael: cross section in m^2
|
||||
val e = doubleArrayOf(0.0, 1.5, 5.0, 7.0, 10.0, 15.0, 20.0, 30.0, 60.0, 100.0, 150.0, 200.0, 300.0, 400.0)
|
||||
val s = doubleArrayOf(9.6, 13.0, 15.0, 12.0, 10.0, 7.0, 5.6, 3.3, 1.1, 0.9, 0.5, 0.36, 0.23, 0.15)
|
||||
val gam: Double
|
||||
var sigma = 0.0
|
||||
val T: Double = E / 27.2
|
||||
var i: Int
|
||||
if (E >= 400.0) {
|
||||
gam = (emass + T) / emass
|
||||
sigma = gam * gam * Math.PI / (2.0 * T) * (4.2106 - 1.0 / T) * a02
|
||||
} else {
|
||||
i = 0
|
||||
while (i <= 12) {
|
||||
if (E >= e[i] && E < e[i + 1]) {
|
||||
sigma = 1e-20 * (s[i] + (s[i + 1] - s[i]) * (E - e[i]) / (e[i + 1] - e[i]))
|
||||
}
|
||||
i++
|
||||
}
|
||||
}
|
||||
return sigma
|
||||
}
|
||||
|
||||
internal fun sigmaexc(E: Double): Double {
|
||||
// This function computes the electronic excitation cross section of
|
||||
// electron scatt. on molecular hydrogen.
|
||||
// E: incident electron energy in eV,
|
||||
// sigmaexc: cross section in m^2
|
||||
val sigma: Double
|
||||
if (E < 9.8) {
|
||||
sigma = 1e-40
|
||||
} else if (E in 9.8..250.0) {
|
||||
sigma = sigmaBC(E) + sigmadiss10(E) + sigmadiss15(E)
|
||||
} else {
|
||||
sigma = 4.0 * Math.PI * a02 * R / E * (0.80 * log(E / R) + 0.28)
|
||||
}
|
||||
// sigma=sigmainel(E)-sigmaion(E);
|
||||
return sigma
|
||||
}
|
||||
|
||||
internal fun sigmaion(E: Double): Double {
|
||||
// This function computes the total ionization cross section of
|
||||
// electron scatt. on molecular hydrogen.
|
||||
// E: incident electron energy in eV,
|
||||
// sigmaion: total ionization cross section of
|
||||
// e+H2 --> e+e+H2^+ or e+e+H^+ +H
|
||||
// process in m^2.
|
||||
//
|
||||
// E<250 eV: Eq. 5 of J. Chem. Phys. 104 (1996) 2956
|
||||
// E>250: sigma_i formula on page 107 in
|
||||
// Phys. Rev. A7 (1973) 103.
|
||||
// Good agreement with measured results of
|
||||
// PR A 54 (1996) 2146, and
|
||||
// Physica 31 (1965) 94.
|
||||
//
|
||||
val B = 15.43
|
||||
val U = 15.98
|
||||
val sigma: Double
|
||||
val t: Double
|
||||
val u: Double
|
||||
val S: Double
|
||||
val r: Double
|
||||
val lnt: Double
|
||||
if (E < 16.0) {
|
||||
sigma = 1e-40
|
||||
} else if (E >= 16.0 && E <= 250.0) {
|
||||
t = E / B
|
||||
u = U / B
|
||||
r = R / B
|
||||
S = 4.0 * Math.PI * a02 * 2.0 * r * r
|
||||
lnt = log(t)
|
||||
sigma = S / (t + u + 1.0) * (lnt / 2.0 * (1.0 - 1.0 / (t * t)) + 1.0 - 1.0 / t - lnt / (t + 1.0))
|
||||
} else {
|
||||
sigma = 4.0 * Math.PI * a02 * R / E * (0.82 * log(E / R) + 1.3)
|
||||
}
|
||||
return sigma
|
||||
}
|
||||
|
||||
internal fun sigmaBC(E: Double): Double {
|
||||
// This function computes the sigmaexc electronic excitation
|
||||
// cross section to the B and C states, with energy loss
|
||||
// about 12.5 eV.
|
||||
// E is incident electron energy in eV,
|
||||
// sigmaexc in m^2
|
||||
val aB = doubleArrayOf(-4.2935194e2, 5.1122109e2, -2.8481279e2, 8.8310338e1, -1.6659591e1, 1.9579609, -1.4012824e-1, 5.5911348e-3, -9.5370103e-5)
|
||||
val aC = doubleArrayOf(-8.1942684e2, 9.8705099e2, -5.3095543e2, 1.5917023e2, -2.9121036e1, 3.3321027, -2.3305961e-1, 9.1191781e-3, -1.5298950e-4)
|
||||
var lnsigma: Double = 0.0
|
||||
var lnE: Double = log(E)
|
||||
var lnEn: Double = 1.0
|
||||
val sigmaB: Double
|
||||
var Emin: Double = 12.5
|
||||
var sigma: Double = 0.0
|
||||
val sigmaC: Double
|
||||
var n: Int
|
||||
if (E < Emin) {
|
||||
sigmaB = 0.0
|
||||
} else {
|
||||
n = 0
|
||||
while (n <= 8) {
|
||||
lnsigma += aB[n] * lnEn
|
||||
lnEn *= lnE
|
||||
n++
|
||||
}
|
||||
sigmaB = exp(lnsigma)
|
||||
}
|
||||
sigma += sigmaB
|
||||
// sigma=0.;
|
||||
// C state:
|
||||
Emin = 15.8
|
||||
lnE = log(E)
|
||||
lnEn = 1.0
|
||||
lnsigma = 0.0
|
||||
if (E < Emin) {
|
||||
sigmaC = 0.0
|
||||
} else {
|
||||
n = 0
|
||||
while (n <= 8) {
|
||||
lnsigma += aC[n] * lnEn
|
||||
lnEn *= lnE
|
||||
n++
|
||||
}
|
||||
sigmaC = exp(lnsigma)
|
||||
}
|
||||
sigma += sigmaC
|
||||
return sigma * 1e-4
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////
|
||||
internal fun sigmadiss10(E: Double): Double {
|
||||
// This function computes the sigmadiss10 electronic
|
||||
// dissociative excitation
|
||||
// cross section, with energy loss
|
||||
// about 10 eV.
|
||||
// E is incident electron energy in eV,
|
||||
// sigmadiss10 in m^2
|
||||
val a = doubleArrayOf(-2.297914361e5, 5.303988579e5, -5.316636672e5, 3.022690779e5, -1.066224144e5, 2.389841369e4, -3.324526406e3, 2.624761592e2, -9.006246604)
|
||||
var lnsigma: Double = 0.0
|
||||
val lnE: Double = log(E)
|
||||
var lnEn: Double = 1.0
|
||||
val Emin = 9.8
|
||||
var n: Int
|
||||
// E is in eV
|
||||
val sigma = if (E < Emin) {
|
||||
0.0
|
||||
} else {
|
||||
n = 0
|
||||
while (n <= 8) {
|
||||
lnsigma += a[n] * lnEn
|
||||
lnEn *= lnE
|
||||
n++
|
||||
}
|
||||
exp(lnsigma)
|
||||
}
|
||||
return sigma * 1e-4
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////
|
||||
internal fun sigmadiss15(E: Double): Double {
|
||||
// This function computes the sigmadiss15 electronic
|
||||
// dissociative excitation
|
||||
// cross section, with energy loss
|
||||
// about 15 eV.
|
||||
// E is incident electron energy in eV,
|
||||
// sigmadiss15 in m^2
|
||||
val a = doubleArrayOf(-1.157041752e3, 1.501936271e3, -8.6119387e2, 2.754926257e2, -5.380465012e1, 6.573972423, -4.912318139e-1, 2.054926773e-2, -3.689035889e-4)
|
||||
var lnsigma: Double = 0.0
|
||||
val lnE: Double = log(E)
|
||||
var lnEn: Double
|
||||
val Emin: Double = 16.5
|
||||
var sigma: Double
|
||||
var n: Int
|
||||
// E is in eV
|
||||
sigma = 0.0
|
||||
lnEn = 1.0
|
||||
if (E < Emin) {
|
||||
sigma = 0.0
|
||||
} else {
|
||||
n = 0
|
||||
while (n <= 8) {
|
||||
lnsigma += a[n] * lnEn
|
||||
lnEn *= lnE
|
||||
n++
|
||||
}
|
||||
sigma = exp(lnsigma)
|
||||
}
|
||||
return sigma * 1e-4
|
||||
}
|
||||
|
||||
/**
|
||||
* Полное сечение с учетом квазиупругих столкновений
|
||||
*
|
||||
* @param E
|
||||
* @return
|
||||
*/
|
||||
fun sigmaTotal(E: Double): Double {
|
||||
return sigmael(E) + sigmaexc(E) + sigmaion(E)
|
||||
|
||||
}
|
||||
}
|
169
src/main/kotlin/inr/numass/trapping/SimulationManager.kt
Normal file
169
src/main/kotlin/inr/numass/trapping/SimulationManager.kt
Normal file
@ -0,0 +1,169 @@
|
||||
package inr.numass.trapping
|
||||
|
||||
import org.apache.commons.math3.analysis.UnivariateFunction
|
||||
import org.apache.commons.math3.analysis.interpolation.LinearInterpolator
|
||||
import org.apache.commons.math3.random.JDKRandomGenerator
|
||||
import org.apache.commons.math3.random.RandomGenerator
|
||||
|
||||
import java.io.*
|
||||
import java.util.stream.Stream
|
||||
|
||||
/**
|
||||
* Created by darksnake on 04-Jun-16.
|
||||
*/
|
||||
class SimulationManager {
|
||||
|
||||
var generator: RandomGenerator = JDKRandomGenerator()
|
||||
|
||||
/**
|
||||
* output for accepted events
|
||||
*/
|
||||
var output: PrintStream = System.out
|
||||
/**
|
||||
* output for statistics
|
||||
*/
|
||||
var statisticOutput = System.out
|
||||
var reportFilter: (Simulator.SimulationResult) -> Boolean = { it.state == Simulator.EndState.ACCEPTED }
|
||||
|
||||
var initialE = 18000.0
|
||||
var eLow: Double = 14000.0
|
||||
var thetaTransport: Double = 24.107064 / 180 * Math.PI
|
||||
var thetaPinch: Double = 19.481097 / 180 * Math.PI
|
||||
var gasDensity: Double = 5e20// m^-3
|
||||
var bSource: Double = 0.6
|
||||
var magneticField: ((Double) -> Double)? = null
|
||||
|
||||
/**
|
||||
* A syntentic property which allows to set lower energy by specifying range instead of energy itself
|
||||
*/
|
||||
var range: Double
|
||||
get() = initialE - eLow
|
||||
set(value) {
|
||||
eLow = initialE - value
|
||||
}
|
||||
|
||||
|
||||
// from 0 to Pi
|
||||
private fun getRandomTheta(): Double {
|
||||
val x = generator.nextDouble()
|
||||
return Math.acos(1 - 2 * x)
|
||||
}
|
||||
|
||||
fun setOutputFile(fileName: String) {
|
||||
val outputFile = File(fileName)
|
||||
if (!outputFile.exists()) {
|
||||
outputFile.parentFile.mkdirs()
|
||||
outputFile.createNewFile()
|
||||
}
|
||||
this.output = PrintStream(FileOutputStream(outputFile))
|
||||
}
|
||||
|
||||
|
||||
fun withReportFilter(filter: (Simulator.SimulationResult) -> Boolean): SimulationManager {
|
||||
this.reportFilter = filter
|
||||
return this
|
||||
}
|
||||
|
||||
fun setFields(Bsource: Double, Btransport: Double, Bpinch: Double) {
|
||||
this.bSource = Bsource
|
||||
this.thetaTransport = Math.asin(Math.sqrt(Bsource / Btransport))
|
||||
this.thetaPinch = Math.asin(Math.sqrt(Bsource / Bpinch))
|
||||
}
|
||||
|
||||
/**
|
||||
* Set field map from values
|
||||
*
|
||||
* @param z
|
||||
* @param b
|
||||
* @return
|
||||
*/
|
||||
fun setFieldMap(z: DoubleArray, b: DoubleArray) {
|
||||
this.magneticField = { LinearInterpolator().interpolate(z, b).value(it) }
|
||||
}
|
||||
|
||||
/**
|
||||
* Симулируем пролет num электронов.
|
||||
*
|
||||
* @param num
|
||||
* @return
|
||||
*/
|
||||
@Synchronized
|
||||
fun simulateAll(num: Int): Counter {
|
||||
val counter = Counter()
|
||||
val simulator = Simulator(eLow, thetaTransport, thetaPinch, gasDensity, bSource, magneticField, generator)
|
||||
|
||||
System.out.printf("%nStarting sumulation with initial energy %g and %d electrons.%n%n", initialE, num)
|
||||
output.printf("%s\t%s\t%s\t%s\t%s\t%s%n", "E", "theta", "theta_start", "colNum", "L", "state")
|
||||
Stream.generate { getRandomTheta() }.limit(num.toLong()).parallel()
|
||||
.forEach { theta ->
|
||||
val initZ = (generator.nextDouble() - 0.5) * Simulator.SOURCE_LENGTH
|
||||
val res = simulator.simulate(initialE, theta, initZ)
|
||||
if (reportFilter(res)) {
|
||||
printOne(output, res)
|
||||
}
|
||||
counter.count(res)
|
||||
}
|
||||
printStatistics(statisticOutput, simulator, counter)
|
||||
return counter
|
||||
}
|
||||
|
||||
private fun printStatistics(output: PrintStream, simulator: Simulator, counter: Counter) {
|
||||
output.apply {
|
||||
println()
|
||||
println("***RESULT***")
|
||||
printf("The total number of events is %d.%n%n", counter.count)
|
||||
printf("The spectrometer acceptance angle is %g.%n", simulator.thetaPinch * 180 / Math.PI)
|
||||
printf("The transport reflection angle is %g.%n", simulator.thetaTransport * 180 / Math.PI)
|
||||
printf("The starting energy is %g.%n", initialE)
|
||||
printf("The lower energy boundary is %g.%n", simulator.eLow)
|
||||
printf("The source density is %g.%n", simulator.gasDensity)
|
||||
|
||||
println()
|
||||
printf("The total number of ACCEPTED events is %d.%n", counter.accepted)
|
||||
printf("The total number of PASS events is %d.%n", counter.pass)
|
||||
printf("The total number of REJECTED events is %d.%n", counter.rejected)
|
||||
printf("The total number of LOWENERGY events is %d.%n%n", counter.lowE)
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
private fun printOne(out: PrintStream, res: Simulator.SimulationResult) {
|
||||
out.printf("%g\t%g\t%g\t%d\t%g\t%s%n", res.E, res.theta * 180 / Math.PI, res.initTheta * 180 / Math.PI, res.collisionNumber, res.l, res.state.toString())
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Statistic counter
|
||||
*/
|
||||
class Counter {
|
||||
internal var accepted = 0
|
||||
internal var pass = 0
|
||||
internal var rejected = 0
|
||||
internal var lowE = 0
|
||||
internal var count = 0
|
||||
|
||||
fun count(res: Simulator.SimulationResult): Simulator.SimulationResult {
|
||||
synchronized(this) {
|
||||
count++
|
||||
when (res.state) {
|
||||
Simulator.EndState.ACCEPTED -> accepted++
|
||||
Simulator.EndState.LOWENERGY -> lowE++
|
||||
Simulator.EndState.PASS -> pass++
|
||||
Simulator.EndState.REJECTED -> rejected++
|
||||
Simulator.EndState.NONE -> throw IllegalStateException()
|
||||
}
|
||||
}
|
||||
return res
|
||||
}
|
||||
|
||||
@Synchronized
|
||||
fun reset() {
|
||||
count = 0
|
||||
accepted = 0
|
||||
pass = 0
|
||||
rejected = 0
|
||||
lowE = 0
|
||||
}
|
||||
|
||||
}
|
||||
}
|
443
src/main/kotlin/inr/numass/trapping/Simulator.kt
Normal file
443
src/main/kotlin/inr/numass/trapping/Simulator.kt
Normal file
@ -0,0 +1,443 @@
|
||||
/*
|
||||
* To change this template, choose Tools | Templates
|
||||
* and open the template in the editor.
|
||||
*/
|
||||
package inr.numass.trapping
|
||||
|
||||
import org.apache.commons.math3.distribution.ExponentialDistribution
|
||||
import org.apache.commons.math3.geometry.euclidean.threed.Rotation
|
||||
import org.apache.commons.math3.geometry.euclidean.threed.SphericalCoordinates
|
||||
import org.apache.commons.math3.random.RandomGenerator
|
||||
import org.apache.commons.math3.util.FastMath.*
|
||||
import org.apache.commons.math3.util.Pair
|
||||
import org.apache.commons.math3.util.Precision
|
||||
|
||||
/**
|
||||
* @author Darksnake
|
||||
* @property magneticField Longitudal magnetic field distribution
|
||||
* @property gasDensity gas density in 1/m^3
|
||||
*/
|
||||
class Simulator(
|
||||
val eLow: Double,
|
||||
val thetaTransport: Double,
|
||||
val thetaPinch: Double,
|
||||
val gasDensity: Double,// m^-3
|
||||
val bSource: Double,
|
||||
val magneticField: ((Double) -> Double)?,
|
||||
val generator: RandomGenerator) {
|
||||
|
||||
enum class EndState {
|
||||
|
||||
ACCEPTED, //трэппинговый электрон попал в аксептанс
|
||||
REJECTED, //трэппинговый электрон вылетел через заднюю пробку
|
||||
LOWENERGY, //потерял слишком много энергии
|
||||
PASS, //электрон никогда не запирался и прошел напрямую, нужно для нормировки
|
||||
NONE
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Perform scattering in the given position
|
||||
*
|
||||
* @param pos
|
||||
* @return
|
||||
*/
|
||||
private fun scatter(pos: State): State {
|
||||
//Вычисляем сечения и нормируем их на полное сечение
|
||||
var sigmaIon = Scatter.sigmaion(pos.e)
|
||||
var sigmaEl = Scatter.sigmael(pos.e)
|
||||
var sigmaExc = Scatter.sigmaexc(pos.e)
|
||||
val sigmaTotal = sigmaEl + sigmaIon + sigmaExc
|
||||
sigmaIon /= sigmaTotal
|
||||
sigmaEl /= sigmaTotal
|
||||
sigmaExc /= sigmaTotal
|
||||
|
||||
//проверяем нормировку
|
||||
assert(Precision.equals(sigmaEl + sigmaExc + sigmaIon, 1.0, 1e-2))
|
||||
|
||||
val alpha = generator.nextDouble()
|
||||
|
||||
val delta: Pair<Double, Double>
|
||||
if (alpha > sigmaEl) {
|
||||
if (alpha > sigmaEl + sigmaExc) {
|
||||
//ionization case
|
||||
delta = Scatter.randomion(pos.e, generator)
|
||||
} else {
|
||||
//excitation case
|
||||
delta = Scatter.randomexc(pos.e, generator)
|
||||
}
|
||||
} else {
|
||||
// elastic
|
||||
delta = Scatter.randomel(pos.e, generator)
|
||||
}
|
||||
|
||||
//Обновляем значени угла и энергии независимо ни от чего
|
||||
pos.substractE(delta.first)
|
||||
//Изменение угла
|
||||
pos.addTheta(delta.second / 180 * Math.PI)
|
||||
|
||||
return pos
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculate distance to the next scattering
|
||||
*
|
||||
* @param e
|
||||
* @return
|
||||
*/
|
||||
private fun freePath(e: Double): Double {
|
||||
//FIXME redundant cross-section calculation
|
||||
//All cross-sections are in m^2
|
||||
return ExponentialDistribution(generator, 1.0 / Scatter.sigmaTotal(e) / gasDensity).sample()
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculate propagated position before scattering
|
||||
*
|
||||
* @param deltaL
|
||||
* @return z shift and reflection counter
|
||||
*/
|
||||
private fun propagate(pos: State, deltaL: Double): State {
|
||||
// if magnetic field not defined, consider it to be uniform and equal bSource
|
||||
if (magneticField == null) {
|
||||
val deltaZ = deltaL * cos(pos.theta) // direction already included in cos(theta)
|
||||
// double z0 = pos.z;
|
||||
pos.addZ(deltaZ)
|
||||
pos.l += deltaL
|
||||
|
||||
// //if we are crossing source boundary, check for end condition
|
||||
// while (abs(deltaZ + pos.z) > SOURCE_LENGTH / 2d && !pos.isFinished()) {
|
||||
//
|
||||
// pos.checkEndState();
|
||||
// }
|
||||
//
|
||||
// // if track is finished apply boundary position
|
||||
// if (pos.isFinished()) {
|
||||
// // remembering old z to correctly calculate total l
|
||||
// double oldz = pos.z;
|
||||
// pos.z = pos.direction() * SOURCE_LENGTH / 2d;
|
||||
// pos.l += (pos.z - oldz) / cos(pos.theta);
|
||||
// } else {
|
||||
// //else just add z
|
||||
// pos.l += deltaL;
|
||||
// pos.addZ(deltaZ);
|
||||
// }
|
||||
|
||||
return pos
|
||||
} else {
|
||||
var curL = 0.0
|
||||
val sin2 = sin(pos.theta) * sin(pos.theta)
|
||||
|
||||
while (curL <= deltaL - 0.01 && !pos.isFinished) {
|
||||
//an l step
|
||||
val delta = min(deltaL - curL, DELTA_L)
|
||||
|
||||
val b = field(pos.z)
|
||||
|
||||
val root = 1 - sin2 * b / bSource
|
||||
//preliminary reflection
|
||||
if (root < 0) {
|
||||
pos.flip()
|
||||
}
|
||||
pos.addZ(pos.direction() * delta * sqrt(abs(root)))
|
||||
// // change direction in case of reflection. Loss of precision here?
|
||||
// if (root < 0) {
|
||||
// // check if end state occurred. seem to never happen since it is reflection case
|
||||
// pos.checkEndState();
|
||||
// // finish if it does
|
||||
// if (pos.isFinished()) {
|
||||
// //TODO check if it happens
|
||||
// return pos;
|
||||
// } else {
|
||||
// //flip direction
|
||||
// pos.flip();
|
||||
// // move in reversed direction
|
||||
// pos.z += pos.direction() * delta * sqrt(-root);
|
||||
// }
|
||||
//
|
||||
// } else {
|
||||
// // move forward
|
||||
// pos.z += pos.direction() * delta * sqrt(root);
|
||||
// //check if it is exit case
|
||||
// if (abs(pos.z) > SOURCE_LENGTH / 2d) {
|
||||
// // check if electron is out
|
||||
// pos.checkEndState();
|
||||
// // finish if it is
|
||||
// if (pos.isFinished()) {
|
||||
// return pos;
|
||||
// }
|
||||
// // PENDING no need to apply reflection, it is applied automatically when root < 0
|
||||
// pos.z = signum(pos.z) * SOURCE_LENGTH / 2d;
|
||||
// if (signum(pos.z) == pos.direction()) {
|
||||
// pos.flip();
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
|
||||
|
||||
curL += delta
|
||||
pos.l += delta
|
||||
}
|
||||
return pos
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Magnetic field in the z point
|
||||
*
|
||||
* @param z
|
||||
* @return
|
||||
*/
|
||||
private fun field(z: Double): Double {
|
||||
return magneticField?.invoke(z) ?: bSource
|
||||
}
|
||||
|
||||
/**
|
||||
* Симулируем один пробег электрона от начального значения и до вылетания из
|
||||
* иточника или до того момента, как энергия становится меньше eLow.
|
||||
*/
|
||||
fun simulate(initEnergy: Double, initTheta: Double, initZ: Double): SimulationResult {
|
||||
assert(initEnergy > 0)
|
||||
assert(initTheta > 0 && initTheta < Math.PI)
|
||||
assert(abs(initZ) <= SOURCE_LENGTH / 2.0)
|
||||
|
||||
val pos = State(initEnergy, initTheta, initZ)
|
||||
|
||||
while (!pos.isFinished) {
|
||||
val dl = freePath(pos.e) // path to next scattering
|
||||
// propagate to next scattering position
|
||||
propagate(pos, dl)
|
||||
|
||||
if (!pos.isFinished) {
|
||||
// perform scatter
|
||||
scatter(pos)
|
||||
// increase collision number
|
||||
pos.colNum++
|
||||
if (pos.e < eLow) {
|
||||
//Если энергия стала слишком маленькой
|
||||
pos.setEndState(EndState.LOWENERGY)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return SimulationResult(pos.endState, pos.e, pos.theta, initTheta, pos.colNum, pos.l)
|
||||
}
|
||||
|
||||
fun resetDebugCounters() {
|
||||
debug = true
|
||||
counter.resetAll()
|
||||
}
|
||||
|
||||
fun printDebugCounters() {
|
||||
if (debug) {
|
||||
counter.print(System.out)
|
||||
} else {
|
||||
throw RuntimeException("Debug not initiated")
|
||||
}
|
||||
}
|
||||
|
||||
class SimulationResult(var state: EndState, var E: Double, var theta: Double, var initTheta: Double, var collisionNumber: Int, var l: Double)
|
||||
|
||||
/**
|
||||
* Current electron position in simulation. Not thread safe!
|
||||
*
|
||||
* @property e Current energy
|
||||
* @property theta Current theta recalculated to the field in the center of the source
|
||||
* @property z current z. Zero is the center of the source
|
||||
*/
|
||||
private inner class State(internal var e: Double, internal var theta: Double, internal var z: Double) {
|
||||
/**
|
||||
* Current total path
|
||||
*/
|
||||
var l = 0.0
|
||||
|
||||
/**
|
||||
* Number of scatterings
|
||||
*/
|
||||
var colNum = 0
|
||||
|
||||
var endState = EndState.NONE
|
||||
|
||||
internal val isForward: Boolean
|
||||
get() = theta <= Math.PI / 2
|
||||
|
||||
internal val isFinished: Boolean
|
||||
get() = this.endState != EndState.NONE
|
||||
|
||||
/**
|
||||
* @param dE
|
||||
* @return resulting E
|
||||
*/
|
||||
internal fun substractE(dE: Double): Double {
|
||||
this.e -= dE
|
||||
return e
|
||||
}
|
||||
|
||||
internal fun direction(): Double {
|
||||
return (if (isForward) 1 else -1).toDouble()
|
||||
}
|
||||
|
||||
internal fun setEndState(state: EndState) {
|
||||
this.endState = state
|
||||
}
|
||||
|
||||
/**
|
||||
* add Z and calculate direction change
|
||||
*
|
||||
* @param dZ
|
||||
* @return
|
||||
*/
|
||||
internal fun addZ(dZ: Double): Double {
|
||||
this.z += dZ
|
||||
while (abs(this.z) > SOURCE_LENGTH / 2.0 && !isFinished) {
|
||||
// reflecting from back wall
|
||||
if (z < 0) {
|
||||
if (theta >= PI - thetaTransport) {
|
||||
setEndState(EndState.REJECTED)
|
||||
}
|
||||
z = if (isFinished) {
|
||||
-SOURCE_LENGTH / 2.0
|
||||
} else {
|
||||
// reflecting from rear pinch
|
||||
-SOURCE_LENGTH - z
|
||||
}
|
||||
} else {
|
||||
if (theta < thetaPinch) {
|
||||
if (colNum == 0) {
|
||||
//counting pass electrons
|
||||
setEndState(EndState.PASS)
|
||||
} else {
|
||||
setEndState(EndState.ACCEPTED)
|
||||
}
|
||||
}
|
||||
z = if (isFinished) {
|
||||
SOURCE_LENGTH / 2.0
|
||||
} else {
|
||||
// reflecting from forward transport magnet
|
||||
SOURCE_LENGTH - z
|
||||
}
|
||||
}
|
||||
if (!isFinished) {
|
||||
flip()
|
||||
}
|
||||
}
|
||||
return z
|
||||
}
|
||||
|
||||
// /**
|
||||
// * Check if this position is an end state and apply it if necessary. Does not check z position.
|
||||
// *
|
||||
// * @return
|
||||
// */
|
||||
// private void checkEndState() {
|
||||
// //accepted by spectrometer
|
||||
// if (theta < thetaPinch) {
|
||||
// if (colNum == 0) {
|
||||
// //counting pass electrons
|
||||
// setEndState(EndState.PASS);
|
||||
// } else {
|
||||
// setEndState(EndState.ACCEPTED);
|
||||
// }
|
||||
// }
|
||||
//
|
||||
// //through the rear magnetic pinch
|
||||
// if (theta >= PI - thetaTransport) {
|
||||
// setEndState(EndState.REJECTED);
|
||||
// }
|
||||
// }
|
||||
|
||||
/**
|
||||
* Reverse electron direction
|
||||
*/
|
||||
internal fun flip() {
|
||||
if (theta < 0 || theta > PI) {
|
||||
throw Error()
|
||||
}
|
||||
theta = PI - theta
|
||||
}
|
||||
|
||||
/**
|
||||
* Magnetic field in the current point
|
||||
*
|
||||
* @return
|
||||
*/
|
||||
internal fun field(): Double {
|
||||
return this@Simulator.field(z)
|
||||
}
|
||||
|
||||
/**
|
||||
* Real theta angle in current point
|
||||
*
|
||||
* @return
|
||||
*/
|
||||
internal fun realTheta(): Double {
|
||||
if (magneticField == null) {
|
||||
return theta
|
||||
} else {
|
||||
var newTheta = asin(min(abs(sin(theta)) * sqrt(field() / bSource), 1.0))
|
||||
if (theta > PI / 2) {
|
||||
newTheta = PI - newTheta
|
||||
}
|
||||
|
||||
assert(!java.lang.Double.isNaN(newTheta))
|
||||
return newTheta
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Сложение вектора с учетом случайно распределения по фи
|
||||
*
|
||||
* @param dTheta
|
||||
* @return resulting angle
|
||||
*/
|
||||
internal fun addTheta(dTheta: Double): Double {
|
||||
//Генерируем случайный фи
|
||||
val phi = generator.nextDouble() * 2.0 * Math.PI
|
||||
|
||||
//change to real angles
|
||||
val realTheta = realTheta()
|
||||
//Создаем начальный вектор в сферических координатах
|
||||
val init = SphericalCoordinates(1.0, 0.0, realTheta + dTheta)
|
||||
// Задаем вращение относительно оси, перпендикулярной исходному вектору
|
||||
val rotate = SphericalCoordinates(1.0, 0.0, realTheta)
|
||||
// поворачиваем исходный вектор на dTheta
|
||||
val rot = Rotation(rotate.cartesian, phi, null)
|
||||
|
||||
val result = rot.applyTo(init.cartesian)
|
||||
|
||||
val newtheta = acos(result.z)
|
||||
|
||||
// //следим чтобы угол был от 0 до Pi
|
||||
// if (newtheta < 0) {
|
||||
// newtheta = -newtheta;
|
||||
// }
|
||||
// if (newtheta > Math.PI) {
|
||||
// newtheta = 2 * Math.PI - newtheta;
|
||||
// }
|
||||
|
||||
//change back to virtual angles
|
||||
if (magneticField == null) {
|
||||
theta = newtheta
|
||||
} else {
|
||||
theta = asin(sin(newtheta) * sqrt(bSource / field()))
|
||||
if (newtheta > PI / 2) {
|
||||
theta = PI - theta
|
||||
}
|
||||
}
|
||||
|
||||
assert(!java.lang.Double.isNaN(theta))
|
||||
|
||||
return theta
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
companion object {
|
||||
|
||||
val SOURCE_LENGTH = 3.0
|
||||
private val DELTA_L = 0.1 //step for propagate calculation
|
||||
}
|
||||
|
||||
|
||||
}
|
26
src/main/kotlin/inr/numass/trapping/Trapping.kt
Normal file
26
src/main/kotlin/inr/numass/trapping/Trapping.kt
Normal file
@ -0,0 +1,26 @@
|
||||
package inr.numass.trapping
|
||||
|
||||
import java.time.Duration
|
||||
import java.time.Instant
|
||||
|
||||
|
||||
fun main(args: Array<String>) {
|
||||
val z = doubleArrayOf(-1.736, -1.27, -0.754, -0.238, 0.278, 0.794, 1.31, 1.776)
|
||||
val b = doubleArrayOf(3.70754, 0.62786, 0.60474, 0.60325, 0.60333, 0.60503, 0.6285, 3.70478)
|
||||
// System.out.println("Press any key to start...");
|
||||
// System.in.read();
|
||||
val startTime = Instant.now()
|
||||
|
||||
System.out.printf("Starting at %s%n%n", startTime.toString())
|
||||
SimulationManager().apply {
|
||||
setOutputFile("D:\\Work\\Numass\\trapping\\test1.out")
|
||||
setFields(0.6, 3.7, 7.2)
|
||||
gasDensity = 1e19
|
||||
reportFilter = {true}
|
||||
}.simulateAll(1e5.toInt())
|
||||
|
||||
val finishTime = Instant.now()
|
||||
System.out.printf("%nFinished at %s%n", finishTime.toString())
|
||||
System.out.printf("Calculation took %s%n", Duration.between(startTime, finishTime).toString())
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user