[no commit message]

This commit is contained in:
Alexander Nozik 2016-04-03 16:47:08 +03:00
parent 42ffb6c8c3
commit 9bb67f5691
13 changed files with 2434 additions and 219 deletions

View File

@ -7,7 +7,7 @@
<goal>org.codehaus.mojo:exec-maven-plugin:1.2.1:exec</goal>
</goals>
<properties>
<exec.args>-ea -classpath %classpath hep.dataforge.trapping.Trapping D:\\PlayGround\\Trapping.res</exec.args>
<exec.args>-ea -classpath %classpath inr.numass.trapping.Trapping</exec.args>
<exec.executable>java</exec.executable>
</properties>
</action>
@ -18,7 +18,7 @@
<goal>org.codehaus.mojo:exec-maven-plugin:1.2.1:exec</goal>
</goals>
<properties>
<exec.args>-Xdebug -Xrunjdwp:transport=dt_socket,server=n,address=${jpda.address} -ea -classpath %classpath ${packageClassName} D:\\PlayGround\\Trapping.res</exec.args>
<exec.args>-Xdebug -Xrunjdwp:transport=dt_socket,server=n,address=${jpda.address} -ea -classpath %classpath inr.numass.trapping.Trapping</exec.args>
<exec.executable>java</exec.executable>
<jpda.listen>true</jpda.listen>
</properties>
@ -27,11 +27,11 @@
<actionName>profile</actionName>
<goals>
<goal>process-classes</goal>
<goal>org.codehaus.mojo:exec-maven-plugin:1.2.1:exec</goal>
<goal>org.codehaus.mojo:exec-maven-plugin:1.4.0:exec</goal>
</goals>
<properties>
<exec.args>${profiler.args} -ea -classpath %classpath ${packageClassName} D:\\PlayGround\\Trapping.res</exec.args>
<exec.executable>${profiler.java}</exec.executable>
<exec.args>-ea -classpath %classpath inr.numass.trapping.Trapping</exec.args>
<exec.executable>java</exec.executable>
</properties>
</action>
</actions>

112
pom.xml
View File

@ -1,57 +1,71 @@
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>hep.DataForge</groupId>
<artifactId>Trapping</artifactId>
<version>1.0-SNAPSHOT</version>
<packaging>jar</packaging>
<groupId>inr.numass</groupId>
<artifactId>trapping</artifactId>
<version>1.0-SNAPSHOT</version>
<packaging>jar</packaging>
<name>Trapping</name>
<url>http://maven.apache.org</url>
<name>trapping</name>
<url>http://maven.apache.org</url>
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
</properties>
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
</properties>
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-resources-plugin</artifactId>
<version>2.7</version>
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-resources-plugin</artifactId>
<version>2.7</version>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.5.1</version>
<configuration>
<source>1.8</source>
<target>1.8</target>
<showDeprecation>true</showDeprecation>
</configuration>
</plugin>
<plugin>
<groupId>org.codehaus.mojo</groupId>
<artifactId>exec-maven-plugin</artifactId>
<version>1.4.0</version>
<executions>
<execution>
<goals>
<goal>java</goal>
</goals>
</execution>
</executions>
<configuration>
<mainClass>inr.numass.trapping.Trapping</mainClass>
</configuration>
</plugin>
</plugins>
</build>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>2.5.1</version>
<configuration>
<source>1.8</source>
<target>1.8</target>
<showDeprecation>true</showDeprecation>
</configuration>
</plugin>
</plugins>
</build>
<dependencies>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.apache.commons</groupId>
<artifactId>commons-math3</artifactId>
<version>3.5</version>
</dependency>
<dependency>
<groupId>net.java.dev.jna</groupId>
<artifactId>jna</artifactId>
<version>3.5.2</version>
</dependency>
</dependencies>
<dependencies>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.12</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.apache.commons</groupId>
<artifactId>commons-math3</artifactId>
<version>3.6.1</version>
</dependency>
<dependency>
<groupId>net.java.dev.jna</groupId>
<artifactId>jna</artifactId>
<version>4.2.2</version>
</dependency>
</dependencies>
</project>

View File

@ -1,100 +0,0 @@
/*
* To change this template, choose Tools | Templates
* and open the template in the editor.
*/
package hep.dataforge.trapping;
import com.sun.jna.Library;
import com.sun.jna.Native;
import com.sun.jna.ptr.DoubleByReference;
/**
*
* @author Darksnake
*/
public class Scatter {
public interface LibScatter extends Library {
public void randomel(double E, DoubleByReference Eloss, DoubleByReference theta);
public void randomexc(double E, DoubleByReference Eloss, DoubleByReference theta);
public void randomion(double E, DoubleByReference Eloss, DoubleByReference theta);
public double sigmael(double E);
public double sigmaexc(double E);
public double sigmaion(double E);
}
/**
* PENDING переделать, чтобы возвращались нормальные значения
* @param E
* @param Eloss
* @param theta
*/
static void randomel(double E, DoubleValue Eloss, DoubleValue theta) {
LibScatter lib = (LibScatter) Native.loadLibrary("libScatter", LibScatter.class);
DoubleByReference ElossPointer = new DoubleByReference(Eloss.getValue());
DoubleByReference thetaPointer = new DoubleByReference(theta.getValue());
lib.randomel(E, ElossPointer, thetaPointer);
Eloss.setValue(ElossPointer.getValue());
theta.setValue(thetaPointer.getValue());
}
static void randomexc(double E, DoubleValue Eloss, DoubleValue theta) {
LibScatter lib = (LibScatter) Native.loadLibrary("libScatter", LibScatter.class);
DoubleByReference ElossPointer = new DoubleByReference(Eloss.getValue());
DoubleByReference thetaPointer = new DoubleByReference(theta.getValue());
lib.randomexc(E, ElossPointer, thetaPointer);
Eloss.setValue(ElossPointer.getValue());
theta.setValue(thetaPointer.getValue());
}
static void randomion(double E, DoubleValue Eloss, DoubleValue theta) {
LibScatter lib = (LibScatter) Native.loadLibrary("libScatter", LibScatter.class);
DoubleByReference ElossPointer = new DoubleByReference(Eloss.getValue());
DoubleByReference thetaPointer = new DoubleByReference(theta.getValue());
lib.randomion(E, ElossPointer, thetaPointer);
Eloss.setValue(ElossPointer.getValue());
theta.setValue(thetaPointer.getValue());
}
/**
* Все сечения в м^2
* @param E
* @return
*/
public static double sigmael(double E) {
LibScatter lib = (LibScatter) Native.loadLibrary("libScatter", LibScatter.class);
return lib.sigmael(E);
}
public static double sigmaexc(double E) {
LibScatter lib = (LibScatter) Native.loadLibrary("libScatter", LibScatter.class);
return lib.sigmaexc(E);
}
public static double sigmaion(double E) {
LibScatter lib = (LibScatter) Native.loadLibrary("libScatter", LibScatter.class);
return lib.sigmaion(E);
}
/**
* Полное сечение с учетом квазиупругих столкновений
* @param E
* @return
*/
public static double sigmaTotal(double E){
LibScatter lib = (LibScatter) Native.loadLibrary("libScatter", LibScatter.class);
return lib.sigmael(E)+lib.sigmaexc(E)+lib.sigmaion(E);
}
}

View File

@ -1,44 +0,0 @@
/*
* To change this template, choose Tools | Templates
* and open the template in the editor.
*/
package hep.dataforge.trapping;
import org.apache.commons.math3.random.MersenneTwister;
import org.apache.commons.math3.random.RandomGenerator;
import org.apache.commons.math3.random.SynchronizedRandomGenerator;
/**
*
* @author Darksnake
*/
public class TrappingRandomGenerator {
RandomGenerator generator;
public TrappingRandomGenerator() {
this.generator = new SynchronizedRandomGenerator(new MersenneTwister());
}
public TrappingRandomGenerator(RandomGenerator generator) {
this.generator = generator;
}
/**
* heads-tails random.
* @return
*/
public boolean heads(){
return generator.nextBoolean();
}
/**
* next uniform in [0;1]
* @return
*/
public double next(){
return generator.nextDouble();
}
}

View File

@ -2,7 +2,7 @@
* To change this template, choose Tools | Templates
* and open the template in the editor.
*/
package hep.dataforge.trapping;
package inr.numass.trapping;
/**
* Класс нужен исключительно чтобы сделать простой доступ к Сишным экспортам

View File

@ -2,7 +2,7 @@
* To change this template, choose Tools | Templates
* and open the template in the editor.
*/
package hep.dataforge.trapping;
package inr.numass.trapping;
import java.io.PrintStream;
import java.util.List;
@ -11,6 +11,11 @@ import java.util.stream.Stream;
import org.apache.commons.math3.geometry.euclidean.threed.Rotation;
import org.apache.commons.math3.geometry.euclidean.threed.SphericalCoordinates;
import org.apache.commons.math3.geometry.euclidean.threed.Vector3D;
import org.apache.commons.math3.random.JDKRandomGenerator;
import org.apache.commons.math3.random.MersenneTwister;
import org.apache.commons.math3.random.RandomGenerator;
import org.apache.commons.math3.random.SynchronizedRandomGenerator;
import org.apache.commons.math3.util.Pair;
import org.apache.commons.math3.util.Precision;
/**
@ -19,12 +24,16 @@ import org.apache.commons.math3.util.Precision;
*/
public class ElectronTrappingSimulator {
private TrappingRandomGenerator generator = new TrappingRandomGenerator();
private RandomGenerator generator;
Scatter scatter;
double Elow = 14000d;
double thetaTransport = 24.107064 / 180 * Math.PI;
double thetaPinch = 19.481097 / 180 * Math.PI;
public ElectronTrappingSimulator() {
generator = new SynchronizedRandomGenerator(new MersenneTwister());
scatter = new Scatter(generator);
}
public static enum EndState {
@ -54,7 +63,7 @@ public class ElectronTrappingSimulator {
assert initTheta > 0 && initTheta < Math.PI / 2;
if (initTheta < this.thetaPinch) {
if (generator.heads()) {
if (generator.nextBoolean()) {
return new SimulaionResult(EndState.PASS, initEnergy, initTheta, initTheta, 0);
} else {
return new SimulaionResult(EndState.REJECTED, initEnergy, initTheta, initTheta, 0);
@ -72,13 +81,12 @@ public class ElectronTrappingSimulator {
while (!stopflag) {
colNum++;
DoubleValue dE = new DoubleValue(0);
DoubleValue dTheta = new DoubleValue(0);
Pair<Double,Double> delta;
//Вычисляем сечения и нормируем их на полное сечение
double sigmaIon = Scatter.sigmaion(E);
double sigmaEl = Scatter.sigmael(E);
double sigmaexc = Scatter.sigmaexc(E);
double sigmaIon = scatter.sigmaion(E);
double sigmaEl = scatter.sigmael(E);
double sigmaexc = scatter.sigmaexc(E);
double sigmaTotal = sigmaEl + sigmaIon + sigmaexc;
sigmaIon /= sigmaTotal;
sigmaEl /= sigmaTotal;
@ -86,31 +94,31 @@ public class ElectronTrappingSimulator {
//проверяем нормировку
assert Precision.equals(sigmaEl + sigmaexc + sigmaIon, 1, 1e-2);
double alpha = generator.next();
double alpha = generator.nextDouble();
if (alpha > sigmaEl) {
if (alpha > sigmaEl + sigmaexc) {
//ionization case
Scatter.randomion(E, dE, dTheta);
delta = scatter.randomion(E);
} else {
//excitation case
Scatter.randomexc(E, dE, dTheta);
delta = scatter.randomexc(E);
}
} else {
// elastic
Scatter.randomel(E, dE, dTheta);
delta = scatter.randomel(E);
}
//Обновляем значени угла и энергии независимо ни от чего
E -= dE.getValue();
E -= delta.getFirst();
//Изменение угла
theta = addTheta(theta, dTheta.getValue() / 180 * Math.PI);
theta = addTheta(theta, delta.getSecond() / 180 * Math.PI);
//следим чтобы угол был от 0 до 90, если он перекинется через границу, считаем что электрон остается в потоке
theta = normalizeTheta(theta);
if (theta < thetaPinch) {
stopflag = true;
if (generator.heads()) {
if (generator.nextBoolean()) {
//Учитываем тот факт, что электрон мог вылететь в правильный угол, но назад
state = EndState.ACCEPTED;
} else {
@ -148,7 +156,7 @@ public class ElectronTrappingSimulator {
*/
double addTheta(double theta, double dTheta) {
//Генерируем случайный фи
double phi = generator.next() * 2 * Math.PI;
double phi = generator.nextDouble()* 2 * Math.PI;
//Создаем начальный вектор в сферических координатах
SphericalCoordinates init = new SphericalCoordinates(1, 0, theta + dTheta);
// Задаем вращение относительно оси, перпендикулярной исходному вектору
@ -171,7 +179,6 @@ public class ElectronTrappingSimulator {
*/
public List<SimulaionResult> simulateAll(double E, int num) {
System.out.printf("%nStarting sumulation with initial energy %g and %d electrons.%n%n", E, num);
return Stream.generate(() -> getRandomTheta()).limit(num).parallel()
.map(theta -> simulateOne(E, theta))
.collect(Collectors.toList());
@ -198,7 +205,7 @@ public class ElectronTrappingSimulator {
}
public double getRandomTheta() {
double x = generator.next();
double x = generator.nextDouble();
return Math.acos(x);
}

View File

@ -0,0 +1,105 @@
/*
* Copyright 2015 Alexander Nozik.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package inr.numass.trapping;
import java.io.PrintStream;
import java.io.PrintWriter;
import static java.lang.Integer.valueOf;
import java.util.HashMap;
import java.util.Map;
/**
* TODO есть объект MultiDimensionalCounter, исползовать его?
*
* @author Alexander Nozik
* @version $Id: $Id
*/
public class MultiCounter {
private HashMap<String, Integer> counts = new HashMap<>();
String name;
/**
* <p>Constructor for MultiCounter.</p>
*
* @param name a {@link java.lang.String} object.
*/
public MultiCounter(String name) {
this.name = name;
}
/**
* <p>getCount.</p>
*
* @param name a {@link java.lang.String} object.
* @return a int.
*/
public int getCount(String name) {
if (counts.containsKey(name)) {
return counts.get(name);
} else {
return -1;
}
}
/**
* <p>increase.</p>
*
* @param name a {@link java.lang.String} object.
*/
public synchronized void increase(String name) {
if (counts.containsKey(name)) {
Integer count = counts.get(name);
counts.remove(name);
counts.put(name, count + 1);
} else {
counts.put(name, valueOf(1));
}
}
/**
* <p>print.</p>
*
* @param out a {@link java.io.PrintWriter} object.
*/
public void print(PrintStream out) {
out.printf("%nValues for counter %s%n%n", this.name);
for (Map.Entry<String, Integer> entry : counts.entrySet()) {
String keyName = entry.getKey();
Integer value = entry.getValue();
out.printf("%s : %d%n", keyName, value);
}
}
/**
* <p>reset.</p>
*
* @param name a {@link java.lang.String} object.
*/
public synchronized void reset(String name) {
if (counts.containsKey(name)) {
counts.remove(name);
}
}
/**
* <p>resetAll.</p>
*/
public synchronized void resetAll() {
this.counts = new HashMap<>();
}
}

View File

@ -0,0 +1,903 @@
/*
* written by Sebastian Voecking <seb.voeck@uni-muenster.de>
*
* See scatter.h for details
*
* Included in this file are function from Ferenc Glueck for calculation of
* cross sections.
*/
package inr.numass.trapping;
import static java.lang.Math.abs;
import static java.lang.Math.acos;
import static java.lang.Math.atan;
import static java.lang.Math.cos;
import static java.lang.Math.exp;
import static java.lang.Math.log;
import static java.lang.Math.sin;
import static java.lang.Math.sqrt;
import static java.lang.Math.tan;
import org.apache.commons.math3.random.RandomGenerator;
import org.apache.commons.math3.util.Pair;
/**
*
* @author Darksnake
*/
public class Scatter {
static final double a02 = 28e-22; // Bohr radius squared
static final double clight = 137; // velocity of light in atomic units
static final double emass = 18780; // Electron mass in atomic units
static final double R = 13.6; // Ryberg energy in eV
private final RandomGenerator generator;
MultiCounter counter = new MultiCounter("Accept-reject calls");
private double fmax = 0;
public Scatter(RandomGenerator generator) {
this.generator = generator;
}
public Pair<Double, Double> randomel(double E) {
// This subroutine generates energy loss and polar scatt. angle according to
// electron elastic scattering in molecular hydrogen.
// Input:
// E: incident electron energy in eV.
// Output:
// *Eloss: energy loss in eV
// *theta: change of polar angle in degrees
double H2molmass = 69.e6;
double T, c = 1, b, G, a, gam, K2, Gmax;
double[] u = new double[3];
int i;
counter.increase("randomel-calls");
if (E >= 250.) {
Gmax = 1.e-19;
} else if (E < 250. && E >= 150.) {
Gmax = 2.5e-19;
} else {
Gmax = 1.e-18;
}
T = E / 27.2;
gam = 1. + T / (clight * clight); // relativistic correction factor
b = 2. / (1. + gam) / T;
for (i = 1; i < 5000; i++) {
counter.increase("randomel");
c = 1. + b - b * (2. + b) / (b + 2. * generator.nextDouble());
K2 = 2. * T * (1. + gam) * abs(1d - c); // momentum transfer squared
a = (4. + K2) * (4. + K2) / (gam * gam);
G = a * Del(E, c);
if (G > Gmax * generator.nextDouble()) {
break;
}
}
return new Pair<>(2d * emass / H2molmass * (1d - c) * E, acos(c) * 180d / Math.PI);
}
Pair<Double, Double> randomexc(double E) {
// This subroutine generates energy loss and polar scatt. angle according to
// electron excitation scattering in molecular hydrogen.
// Input:
// E: incident electron energy in eV.
// Output:
// *Eloss: energy loss in eV
// *theta: change of polar angle in degrees
double Ecen = 12.6 / 27.21;
double[] sum = new double[1001];
double T, c = 0., K, xmin, ymin, ymax, x, y, fy, dy, pmax;
double D, Dmax;
int i, j, n = 0, N, v = 0;
// Energy values of the excited electronic states:
// (from Mol. Phys. 41 (1980) 1501, in Hartree atomic units)
double[] En = {12.73 / 27.2, 13.2 / 27.2, 14.77 / 27.2, 15.3 / 27.2,
14.93 / 27.2, 15.4 / 27.2, 13.06 / 27.2};
// Probability numbers of the electronic states:
// (from testelectron7.c calculation )
double[] p = {35.86, 40.05, 6.58, 2.26, 9.61, 4.08, 1.54};
// Energy values of the B vibrational states:
// (from: Phys. Rev. A51 (1995) 3745 , in Hartree atomic units)
double[] EB = {0.411, 0.417, 0.423, 0.428, 0.434, 0.439, 0.444, 0.449,
0.454, 0.459, 0.464, 0.468, 0.473, 0.477, 0.481, 0.485,
0.489, 0.493, 0.496, 0.500, 0.503, 0.507, 0.510, 0.513,
0.516, 0.519, 0.521, 0.524};
// Energy values of the C vibrational states:
// (from: Phys. Rev. A51 (1995) 3745 , in Hartree atomic units)
double[] EC = {0.452, 0.462, 0.472, 0.481, 0.490, 0.498, 0.506, 0.513,
0.519, 0.525, 0.530, 0.534, 0.537, 0.539};
// Franck-Condon factors of the B vibrational states:
// (from: Phys. Rev. A51 (1995) 3745 )
double[] pB = {4.2e-3, 1.5e-2, 3.0e-2, 4.7e-2, 6.3e-2, 7.3e-2, 7.9e-2,
8.0e-2, 7.8e-2, 7.3e-2, 6.6e-2, 5.8e-2, 5.1e-2, 4.4e-2,
3.7e-2, 3.1e-2, 2.6e-2, 2.2e-2, 1.8e-2, 1.5e-2, 1.3e-2,
1.1e-2, 8.9e-3, 7.4e-3, 6.2e-3, 5.2e-3, 4.3e-3, 3.6e-3};
// Franck-Condon factors of the C vibrational states:
// (from: Phys. Rev. A51 (1995) 3745 )
double[] pC = {1.2e-1, 1.9e-1, 1.9e-1, 1.5e-1, 1.1e-1, 7.5e-2, 5.0e-2,
3.3e-2, 2.2e-2, 1.4e-2, 9.3e-3, 6.0e-3, 3.7e-3, 1.8e-3};
counter.increase("randomexc-calls");
T = 20000. / 27.2;
//
xmin = Ecen * Ecen / (2. * T);
ymin = log(xmin);
ymax = log(8. * T + xmin);
dy = (ymax - ymin) / 1000.;
// Initialization of the sum[] vector, and fmax calculation:
if (fmax == 0) {
synchronized (this) {
for (i = 0; i <= 1000; i++) {
y = ymin + dy * i;
K = exp(y / 2.);
sum[i] = sumexc(K);
if (sum[i] > fmax) {
fmax = sum[i];
}
}
fmax = 1.05 * fmax;
}
}
//
// Scattering angle *theta generation:
//
T = E / 27.2;
double theta;
if (E >= 100.) {
xmin = Ecen * Ecen / (2. * T);
ymin = log(xmin);
ymax = log(8. * T + xmin);
// dy = (ymax - ymin) / 1000.;
// Generation of y values with the Neumann acceptance-rejection method:
y = ymin;
for (j = 1; j < 5000; j++) {
counter.increase("randomexc1");
y = ymin + (ymax - ymin) * generator.nextDouble();
K = exp(y / 2.);
fy = sumexc(K);
if (fmax * generator.nextDouble() < fy) {
break;
}
}
// Calculation of c=cos(theta) and theta:
x = exp(y);
c = 1. - (x - xmin) / (4. * T);
theta = acos(c) * 180. / Math.PI;
} else {
if (E <= 25.) {
Dmax = 60.;
} else if (E > 25. && E <= 35.) {
Dmax = 95.;
} else if (E > 35. && E <= 50.) {
Dmax = 150.;
} else {
Dmax = 400.;
}
for (j = 1; j < 5000; j++) {
counter.increase("randomexc2");
c = -1. + 2. * generator.nextDouble();
D = Dexc(E, c) * 1.e22;
if (Dmax * generator.nextDouble() < D) {
break;
}
}
theta = acos(c) * 180. / Math.PI;
}
// Energy loss *Eloss generation:
// First we generate the electronic state, using the Neumann
// acceptance-rejection method for discrete distribution:
N = 7; // the number of electronic states in our calculation
pmax = p[1]; // the maximum of the p[] values
for (j = 1; j < 5000; j++) {
counter.increase("randomexc3");
n = (int) (N * generator.nextDouble());
if (generator.nextDouble() * pmax < p[n]) {
break;
}
}
if (n < 0) {
n = 0;
}
if (n > 6) {
n = 6;
}
if (n > 1) {
}
double Eloss;
switch (n) {
case 0:
// B state; we generate now a vibrational state,
// using the Frank-Condon factors
N = 28; // the number of B vibrational states in our calculation
pmax = pB[7]; // maximum of the pB[] values
for (j = 1; j < 5000; j++) {
counter.increase("randomexc4");
v = (int) (N * generator.nextDouble());
if (generator.nextDouble() * pmax < pB[v]) {
break;
}
}
if (v < 0) {
v = 0;
}
if (v > 27) {
v = 27;
}
Eloss = EB[v] * 27.2;
break;
case 1:
// C state; we generate now a vibrational state,
// using the Franck-Condon factors
N = 14; // the number of C vibrational states in our calculation
pmax = pC[1]; // maximum of the pC[] values
for (j = 1; j < 5000; j++) {
counter.increase("randomexc4");
v = (int) (N * generator.nextDouble());
if (generator.nextDouble() * pmax < pC[v]) {
break;
}
}
if (v < 0) {
v = 0;
}
if (v > 13) {
v = 13;
}
Eloss = EC[v] * 27.2;
break;
default:
// Bp, Bpp, D, Dp, EF states
Eloss = En[n] * 27.2;
break;
}
return new Pair<>(Eloss, theta);
}
Pair<Double, Double> randomion(double E) {
// This subroutine generates energy loss and polar scatt. angle according to
// electron ionization scattering in molecular hydrogen.
// Input:
// E: incident electron energy in eV.
// Output:
// *Eloss: energy loss in eV
// *theta: change of polar angle in degrees
// The kinetic energy of the secondary electron is: Eloss-15.4 eV
//
double Ei = 15.45 / 27.21;
double c, b, K, xmin, ymin, ymax, x, y, T, G, W, Gmax;
double q, h, F, Fmin, Fmax, Gp, Elmin, Elmax, qmin, qmax, El, wmax;
double WcE, Jstarq, WcstarE, w, D2ion;
int j;
double K2, KK, fE, kej, ki, kf, Rex, arg, arctg;
int i;
double st1, st2;
counter.increase("randomion-calls");
//
// I. Generation of theta
// -----------------------
Gmax = 1.e-20;
if (E < 200.) {
Gmax = 2.e-20;
}
T = E / 27.2;
xmin = Ei * Ei / (2. * T);
b = xmin / (4. * T);
ymin = log(xmin);
ymax = log(8. * T + xmin);
// Generation of y values with the Neumann acceptance-rejection method:
y = ymin;
for (j = 1; j < 5000; j++) {
counter.increase("randomion1");
y = ymin + (ymax - ymin) * generator.nextDouble();
K = exp(y / 2.);
c = 1. + b - K * K / (4. * T);
G = K * K * (Dinel(E, c) - Dexc(E, c));
if (Gmax * generator.nextDouble() < G) {
break;
}
}
// y --> x --> c --> theta
x = exp(y);
c = 1. - (x - xmin) / (4. * T);
double theta = acos(c) * 180. / Math.PI;
//
// II. Generation of Eloss, for fixed theta
// ----------------------------------------
//
// For E<=100 eV we use subr. gensecelen
// (in this case no correlation between theta and Eloss)
if (E <= 100.) {
return new Pair<>(15.45 + gensecelen(E), theta);
}
// For theta>=20 the free electron model is used
// (with full correlation between theta and Eloss)
if (theta >= 20.) {
return new Pair<>(E * (1. - c * c), theta);
}
// For E>100 eV and theta<20: analytical first Born approximation
// formula of Bethe for H atom (with modification for H2)
//
// Calc. of wmax:
if (theta >= 0.7) {
wmax = 1.1;
} else if (theta <= 0.7 && theta > 0.2) {
wmax = 2.;
} else if (theta <= 0.2 && theta > 0.05) {
wmax = 4.;
} else {
wmax = 8.;
}
// We generate the q value according to the Jstarq pdf. We have to
// define the qmin and qmax limits for this generation:
K = sqrt(4. * T * (1. - Ei / (2. * T) - sqrt(1. - Ei / T) * c));
Elmin = Ei;
Elmax = (E + 15.45) / 2. / 27.2;
qmin = Elmin / K - K / 2.;
qmax = Elmax / K - K / 2.;
//
q = qmax;
Fmax = 1. / 2. + 1. / Math.PI * (q / (1. + q * q) + atan(q));
q = qmin;
Fmin = 1. / 2. + 1. / Math.PI * (q / (1. + q * q) + atan(q));
h = Fmax - Fmin;
// Generation of Eloss with the Neumann acceptance-rejection method:
El = 0;
for (j = 1; j < 5000; j++) {
// Generation of q with inverse transform method
// (we use the Newton-Raphson method in order to solve the nonlinear eq.
// for the inversion) :
counter.increase("randomion2");
F = Fmin + h * generator.nextDouble();
y = 0.;
for (i = 1; i <= 30; i++) {
G = 1. / 2. + (y + sin(2. * y) / 2.) / Math.PI;
Gp = (1. + cos(2. * y)) / Math.PI;
y = y - (G - F) / Gp;
if (abs(G - F) < 1.e-8) {
break;
}
}
q = tan(y);
// We have the q value, so we can define El, and calculate the weight:
El = q * K + K * K / 2.;
// First Born approximation formula of Bethe for e-H ionization:
KK = K;
ki = sqrt(2. * T);
kf = sqrt(2. * (T - El));
K2 = 4. * T * (1. - El / (2. * T) - sqrt(1. - El / T) * c);
if (K2 < 1.e-9) {
K2 = 1.e-9;
}
K = sqrt(K2); // momentum transfer
Rex = 1. - K * K / (kf * kf) + K2 * K2 / (kf * kf * kf * kf);
kej = sqrt(2. * abs(El - Ei) + 1.e-8);
st1 = K2 - 2. * El + 2.;
if (abs(st1) < 1.e-9) {
st1 = 1.e-9;
}
arg = 2. * kej / st1;
if (arg >= 0.) {
arctg = atan(arg);
} else {
arctg = atan(arg) + Math.PI;
}
st1 = (K + kej) * (K + kej) + 1.;
st2 = (K - kej) * (K - kej) + 1.;
fE = 1024. * El * (K2 + 2. / 3. * El) / (st1 * st1 * st1 * st2 * st2 * st2)
* exp(-2. / kej * arctg) / (1. - exp(-2. * Math.PI / kej));
D2ion = 2. * kf / ki * Rex / (El * K2) * fE;
K = KK;
//
WcE = D2ion;
Jstarq = 16. / (3. * Math.PI * (1. + q * q) * (1. + q * q));
WcstarE = 4. / (K * K * K * K * K) * Jstarq;
w = WcE / WcstarE;
if (wmax * generator.nextDouble() < w) {
break;
}
}
return new Pair<>(El * 27.2, theta);
}
double gensecelen(double E) {
// This subroutine generates secondary electron energy W
// from ionization of incident electron energy E, by using
// the Lorentzian of Aseev et al. (Eq. 8).
// E and W in eV.
double Ei = 15.45, eps2 = 14.3, b = 6.25;
double B;
double D, A, eps, a, u, epsmax;
int iff = 0;
B = 0;
if (iff == 0) {
B = atan((Ei - eps2) / b);
iff = 1;
}
epsmax = (E + Ei) / 2.;
A = atan((epsmax - eps2) / b);
D = b / (A - B);
u = generator.nextDouble();
a = b / D * (u + D / b * B);
eps = eps2 + b * tan(a);
return eps - Ei;
}
double Del(double E, double c) {
// This subroutine computes the differential cross section
// Del= d sigma/d Omega of elastic electron scattering
// on molecular hydrogen.
// See: Nishimura et al., J. Phys. Soc. Jpn. 54 (1985) 1757.
// Input: E= electron kinetic energy in eV
// c= cos(theta), where theta is the polar scatt. angle
// Del: in m^2/steradian
double[] Cel = {
-0.512, -0.512, -0.509, -0.505, -0.499,
-0.491, -0.476, -0.473, -0.462, -0.452,
-0.438, -0.422, -0.406, -0.388, -0.370,
-0.352, -0.333, -0.314, -0.296, -0.277,
-0.258, -0.239, -0.221, -0.202, -0.185,
-0.167, -0.151, -0.135, -0.120, -0.105,
-0.092, -0.070, -0.053, -0.039, -0.030,
-0.024, -0.019, -0.016, -0.014, -0.013,
-0.012, -0.009, -0.008, -0.006, -0.005,
-0.004, -0.003, -0.002, -0.002, -0.001
};
double[] e = {0., 3., 6., 12., 20., 32., 55., 85., 150., 250.};
double[] t = {0., 10., 20., 30., 40., 60., 80., 100., 140., 180.};
double[][] D = {
{2.9, 2.7, 2.5, 2.1, 1.8, 1.2, 0.9, 1., 1.6, 1.9},
{4.2, 3.6, 3.1, 2.5, 1.9, 1.1, 0.8, 0.9, 1.3, 1.4},
{6., 4.4, 3.2, 2.3, 1.8, 1.1, 0.7, 0.54, 0.5, 0.6},
{6., 4.1, 2.8, 1.9, 1.3, 0.6, 0.3, 0.17, 0.16, 0.23},
{4.9, 3.2, 2., 1.2, 0.8, 0.3, 0.15, 0.09, 0.05, 0.05},
{5.2, 2.5, 1.2, 0.64, 0.36, 0.13, 0.05, 0.03, 0.016, 0.02},
{4., 1.7, 0.7, 0.3, 0.16, 0.05, 0.02, 0.013, 0.01, 0.01},
{2.8, 1.1, 0.4, 0.15, 0.07, 0.02, 0.01, 0.007, 0.004, 0.003},
{1.2, 0.53, 0.2, 0.08, 0.03, 0.0074, 0.003, 0.0016, 0.001, 0.0008}
};
double T, K2, K, d, st1, st2, DH, gam, Delreturn = 0., CelK, Ki, theta;
int i, j;
T = E / 27.2;
if (E >= 250.) {
gam = 1. + T / (clight * clight); // relativistic correction factor
K2 = 2. * T * (1. + gam) * (1. - c);
if (K2 < 0.) {
K2 = 1.e-30;
}
K = sqrt(K2);
if (K < 1.e-9) {
K = 1.e-9; // momentum transfer
}
d = 1.4009; // distance of protons in H2
st1 = 8. + K2;
st2 = 4. + K2;
// DH is the diff. cross section for elastic electron scatt.
// on atomic hydrogen within the first Born approximation :
DH = 4. * st1 * st1 / (st2 * st2 * st2 * st2) * a02;
// CelK calculation with linear interpolation.
// CelK is the correction of the elastic electron
// scatt. on molecular hydrogen compared to the independent atom
// model.
if (K < 3.) {
i = (int) (K / 0.1);
Ki = i * 0.1;
CelK = Cel[i] + (K - Ki) / 0.1 * (Cel[i + 1] - Cel[i]);
} else if (K >= 3. && K < 5.) {
i = (int) (30 + (K - 3.) / 0.2);
Ki = 3. + (i - 30) * 0.2;
CelK = Cel[i] + (K - Ki) / 0.2 * (Cel[i + 1] - Cel[i]);
} else if (K >= 5. && K < 9.49) {
i = (int) (40 + (K - 5.) / 0.5);
Ki = 5. + (i - 40) * 0.5;
CelK = Cel[i] + (K - Ki) / 0.5 * (Cel[i + 1] - Cel[i]);
} else {
CelK = 0.;
}
Delreturn = 2. * gam * gam * DH * (1. + sin(K * d) / (K * d)) * (1. + CelK);
} else {
theta = acos(c) * 180. / Math.PI;
for (i = 0; i <= 8; i++) {
if (E >= e[i] && E < e[i + 1]) {
for (j = 0; j <= 8; j++) {
if (theta >= t[j] && theta < t[j + 1]) {
Delreturn = 1.e-20 * (D[i][j] + (D[i][j + 1] - D[i][j])
* (theta - t[j]) / (t[j + 1] - t[j]));
}
}
}
}
}
return Delreturn;
}
double Dexc(double E, double c) {
// This subroutine computes the differential cross section
// Del= d sigma/d Omega of excitation electron scattering
// on molecular hydrogen.
// Input: E= electron kinetic energy in eV
// c= cos(theta), where theta is the polar scatt. angle
// Dexc: in m^2/steradian
double K2, K, sigma = 0., T, theta;
double EE = 12.6 / 27.2;
double[] e = {0., 25., 35., 50., 100.};
double[] t = {0., 10., 20., 30., 40., 60., 80., 100., 180.};
double[][] D = {
{60., 43., 27., 18., 13., 8., 6., 6., 6.},
{95., 70., 21., 9., 6., 3., 2., 2., 2.,},
{150., 120., 32., 8., 3.7, 1.9, 1.2, 0.8, 0.8},
{400., 200., 12., 2., 1.4, 0.7, 0.3, 0.2, 0.2}
};
int i, j;
//
T = E / 27.2;
if (E >= 100.) {
K2 = 4. * T * (1. - EE / (2. * T) - sqrt(1. - EE / T) * c);
if (K2 < 1.e-9) {
K2 = 1.e-9;
}
K = sqrt(K2); // momentum transfer
sigma = 2. / K2 * sumexc(K) * a02;
} else if (E <= 10.) {
sigma = 0.;
} else {
theta = acos(c) * 180. / Math.PI;
for (i = 0; i <= 3; i++) {
if (E >= e[i] && E < e[i + 1]) {
for (j = 0; j <= 7; j++) {
if (theta >= t[j] && theta < t[j + 1]) {
sigma = 1.e-22 * (D[i][j] + (D[i][j + 1] - D[i][j])
* (theta - t[j]) / (t[j + 1] - t[j]));
}
}
}
}
}
return sigma;
}
double Dinel(double E, double c) {
// This subroutine computes the differential cross section
// Dinel= d sigma/d Omega of inelastic electron scattering
// on molecular hydrogen, within the first Born approximation.
// Input: E= electron kinetic energy in eV
// c= cos(theta), where theta is the polar scatt. angle
// Dinel: in m2/steradian
double[] Cinel = {
-0.246, -0.244, -0.239, -0.234, -0.227,
-0.219, -0.211, -0.201, -0.190, -0.179,
-0.167, -0.155, -0.142, -0.130, -0.118,
-0.107, -0.096, -0.085, -0.076, -0.067,
-0.059, -0.051, -0.045, -0.039, -0.034,
-0.029, -0.025, -0.022, -0.019, -0.016,
-0.014, -0.010, -0.008, -0.006, -0.004,
-0.003, -0.003, -0.002, -0.002, -0.001,
-0.001, -0.001, 0.000, 0.000, 0.000,
0.000, 0.000, 0.000, 0.000, 0.000
};
double Ei = 0.568;
double T, K2, K, st1, F, DH, Dinelreturn, CinelK, Ki;
int i;
if (E < 16.) {
return Dexc(E, c);
}
T = E / 27.2;
K2 = 4. * T * (1. - Ei / (2. * T) - sqrt(1. - Ei / T) * c);
if (K2 < 1.e-9) {
K2 = 1.e-9;
}
K = sqrt(K2); // momentum transfer
st1 = 1. + K2 / 4.;
F = 1. / (st1 * st1); // scatt. formfactor of hydrogen atom
// DH is the diff. cross section for inelastic electron scatt.
// on atomic hydrogen within the first Born approximation :
DH = 4. / (K2 * K2) * (1. - F * F) * a02;
// CinelK calculation with linear interpolation.
// CinelK is the correction of the inelastic electron
// scatt. on molecular hydrogen compared to the independent atom
// model.
if (K < 3.) {
i = (int) (K / 0.1);
Ki = i * 0.1;
CinelK = Cinel[i] + (K - Ki) / 0.1 * (Cinel[i + 1] - Cinel[i]);
} else if (K >= 3. && K < 5.) {
i = (int) (30 + (K - 3.) / 0.2);
Ki = 3. + (i - 30) * 0.2;
CinelK = Cinel[i] + (K - Ki) / 0.2 * (Cinel[i + 1] - Cinel[i]);
} else if (K >= 5. && K < 9.49) {
i = (int) (40 + (K - 5.) / 0.5);
Ki = 5. + (i - 40) * 0.5;
CinelK = Cinel[i] + (K - Ki) / 0.5 * (Cinel[i + 1] - Cinel[i]);
} else {
CinelK = 0.;
}
Dinelreturn = 2. * DH * (1. + CinelK);
return Dinelreturn;
}
double sumexc(double K) {
double[] Kvec = {0., 0.1, 0.2, 0.4, 0.6, 0.8, 1., 1.2, 1.5, 1.8, 2., 2.5, 3., 4., 5.};
double[][] fvec = {
{2.907e-1, 2.845e-1, 2.665e-1, 2.072e-1, 1.389e-1, // B
8.238e-2, 4.454e-2, 2.269e-2, 7.789e-3, 2.619e-3,
1.273e-3, 2.218e-4, 4.372e-5, 2.889e-6, 4.247e-7},
{3.492e-1, 3.367e-1, 3.124e-1, 2.351e-1, 1.507e-1, // C
8.406e-2, 4.214e-2, 1.966e-2, 5.799e-3, 1.632e-3,
6.929e-4, 8.082e-5, 9.574e-6, 1.526e-7, 7.058e-9},
{6.112e-2, 5.945e-2, 5.830e-2, 5.072e-2, 3.821e-2, // Bp
2.579e-2, 1.567e-2, 8.737e-3, 3.305e-3, 1.191e-3,
6.011e-4, 1.132e-4, 2.362e-5, 1.603e-6, 2.215e-7},
{2.066e-2, 2.127e-2, 2.137e-2, 1.928e-2, 1.552e-2, // Bpp
1.108e-2, 7.058e-3, 4.069e-3, 1.590e-3, 5.900e-4,
3.046e-4, 6.142e-5, 1.369e-5, 9.650e-7, 1.244e-7},
{9.405e-2, 9.049e-2, 8.613e-2, 7.301e-2, 5.144e-2, // D
3.201e-2, 1.775e-2, 8.952e-3, 2.855e-3, 8.429e-4,
3.655e-4, 4.389e-5, 5.252e-6, 9.010e-8, 7.130e-9},
{4.273e-2, 3.862e-2, 3.985e-2, 3.362e-2, 2.486e-2, // Dp
1.612e-2, 9.309e-3, 4.856e-3, 1.602e-3, 4.811e-4,
2.096e-4, 2.498e-5, 2.905e-6, 5.077e-8, 6.583e-9},
{0.000e-3, 2.042e-3, 7.439e-3, 2.200e-2, 3.164e-2, // EF
3.161e-2, 2.486e-2, 1.664e-2, 7.562e-3, 3.044e-3,
1.608e-3, 3.225e-4, 7.120e-5, 6.290e-6, 1.066e-6}};
double[] EeV = {12.73, 13.20, 14.77, 15.3, 14.93, 15.4, 13.06};
int n, j, jmin = 0, nmax;
double En, sum;
double[] f = new double[7];
double[] x4 = new double[4];
double[] f4 = new double[4];
//
sum = 0.;
nmax = 6;
for (n = 0; n <= nmax; n++) {
En = EeV[n] / 27.21; // En is the excitation energy in Hartree atomic units
if (K >= 5.) {
f[n] = 0.;
} else if (K >= 3. && K <= 4.) {
f[n] = fvec[n][12] + (K - 3.) * (fvec[n][13] - fvec[n][12]);
} else if (K >= 4. && K <= 5.) {
f[n] = fvec[n][13] + (K - 4.) * (fvec[n][14] - fvec[n][13]);
} else {
for (j = 0; j < 14; j++) {
if (K >= Kvec[j] && K <= Kvec[j + 1]) {
jmin = j - 1;
}
}
if (jmin < 0) {
jmin = 0;
}
if (jmin > 11) {
jmin = 11;
}
for (j = 0; j <= 3; j++) {
x4[j] = Kvec[jmin + j];
f4[j] = fvec[n][jmin + j];
}
f[n] = lagrange(4, x4, f4, K);
}
sum += f[n] / En;
}
return sum;
}
double lagrange(int n, double[] xn, double[] fn, double x) {
int i, j;
double f, aa, bb;
double[] a = new double[100];
double[] b = new double[100];
f = 0.;
for (j = 0; j < n; j++) {
for (i = 0; i < n; i++) {
a[i] = x - xn[i];
b[i] = xn[j] - xn[i];
}
a[j] = b[j] = aa = bb = 1.;
for (i = 0; i < n; i++) {
aa = aa * a[i];
bb = bb * b[i];
}
f += fn[j] * aa / bb;
}
return f;
}
double sigmael(double E) {
// This function computes the total elastic cross section of
// electron scatt. on molecular hydrogen.
// See: Liu, Phys. Rev. A35 (1987) 591,
// Trajmar, Phys Reports 97 (1983) 221.
// E: incident electron energy in eV
// sigmael: cross section in m^2
double[] e = {0., 1.5, 5., 7., 10., 15., 20., 30., 60., 100., 150., 200., 300., 400.};
double[] s = {9.6, 13., 15., 12., 10., 7., 5.6, 3.3, 1.1, 0.9, 0.5, 0.36, 0.23, 0.15};
double gam, sigma = 0., T;
int i;
T = E / 27.2;
if (E >= 400.) {
gam = (emass + T) / emass;
sigma = gam * gam * Math.PI / (2. * T) * (4.2106 - 1. / T) * a02;
} else {
for (i = 0; i <= 12; i++) {
if (E >= e[i] && E < e[i + 1]) {
sigma = 1.e-20 * (s[i] + (s[i + 1] - s[i]) * (E - e[i]) / (e[i + 1] - e[i]));
}
}
}
return sigma;
}
double sigmaexc(double E) {
// This function computes the electronic excitation cross section of
// electron scatt. on molecular hydrogen.
// E: incident electron energy in eV,
// sigmaexc: cross section in m^2
double sigma;
if (E < 9.8) {
sigma = 1.e-40;
} else if (E >= 9.8 && E <= 250.) {
sigma = sigmaBC(E) + sigmadiss10(E) + sigmadiss15(E);
} else {
sigma = 4. * Math.PI * a02 * R / E * (0.80 * log(E / R) + 0.28);
}
// sigma=sigmainel(E)-sigmaion(E);
return sigma;
}
double sigmaion(double E) {
// This function computes the total ionization cross section of
// electron scatt. on molecular hydrogen.
// E: incident electron energy in eV,
// sigmaion: total ionization cross section of
// e+H2 --> e+e+H2^+ or e+e+H^+ +H
// process in m^2.
//
// E<250 eV: Eq. 5 of J. Chem. Phys. 104 (1996) 2956
// E>250: sigma_i formula on page 107 in
// Phys. Rev. A7 (1973) 103.
// Good agreement with measured results of
// PR A 54 (1996) 2146, and
// Physica 31 (1965) 94.
//
double B = 15.43, U = 15.98;
double sigma, t, u, S, r, lnt;
if (E < 16.) {
sigma = 1.e-40;
} else if (E >= 16. && E
<= 250.) {
t = E / B;
u = U / B;
r = R / B;
S = 4. * Math.PI * a02 * 2. * r * r;
lnt = log(t);
sigma = S / (t + u + 1.) * (lnt / 2. * (1. - 1. / (t * t)) + 1. - 1. / t - lnt / (t + 1.));
} else {
sigma = 4. * Math.PI * a02 * R / E * (0.82 * log(E / R) + 1.3);
}
return sigma;
}
double sigmaBC(double E) {
// This function computes the sigmaexc electronic excitation
// cross section to the B and C states, with energy loss
// about 12.5 eV.
// E is incident electron energy in eV,
// sigmaexc in m^2
double[] aB = {-4.2935194e2, 5.1122109e2, -2.8481279e2,
8.8310338e1, -1.6659591e1, 1.9579609,
-1.4012824e-1, 5.5911348e-3, -9.5370103e-5};
double[] aC = {-8.1942684e2, 9.8705099e2, -5.3095543e2,
1.5917023e2, -2.9121036e1, 3.3321027,
-2.3305961e-1, 9.1191781e-3, -1.5298950e-4};
double lnsigma, lnE, lnEn, sigmaB, Emin, sigma, sigmaC;
int n;
sigma = 0.;
Emin = 12.5;
lnE = log(E);
lnEn = 1.;
lnsigma = 0.;
if (E < Emin) {
sigmaB = 0.;
} else {
for (n = 0; n <= 8; n++) {
lnsigma += aB[n] * lnEn;
lnEn = lnEn * lnE;
}
sigmaB = exp(lnsigma);
}
sigma += sigmaB;
// sigma=0.;
// C state:
Emin = 15.8;
lnE = log(E);
lnEn = 1.;
lnsigma = 0.;
if (E < Emin) {
sigmaC = 0.;
} else {
for (n = 0; n <= 8; n++) {
lnsigma += aC[n] * lnEn;
lnEn = lnEn * lnE;
}
sigmaC = exp(lnsigma);
}
sigma += sigmaC;
return sigma * 1.e-4;
}
//////////////////////////////////////////////////////////////////
double sigmadiss10(double E) {
// This function computes the sigmadiss10 electronic
// dissociative excitation
// cross section, with energy loss
// about 10 eV.
// E is incident electron energy in eV,
// sigmadiss10 in m^2
double[] a = {-2.297914361e5, 5.303988579e5, -5.316636672e5,
3.022690779e5, -1.066224144e5, 2.389841369e4,
-3.324526406e3, 2.624761592e2, -9.006246604};
double lnsigma, lnE, lnEn, Emin, sigma;
int n;
// E is in eV
sigma = 0.;
Emin = 9.8;
lnE = log(E);
lnEn = 1.;
lnsigma = 0.;
if (E < Emin) {
sigma = 0.;
} else {
for (n = 0; n <= 8; n++) {
lnsigma += a[n] * lnEn;
lnEn = lnEn * lnE;
}
sigma = exp(lnsigma);
}
return sigma * 1.e-4;
}
//////////////////////////////////////////////////////////////////
double sigmadiss15(double E) {
// This function computes the sigmadiss15 electronic
// dissociative excitation
// cross section, with energy loss
// about 15 eV.
// E is incident electron energy in eV,
// sigmadiss15 in m^2
double[] a = {-1.157041752e3, 1.501936271e3, -8.6119387e2,
2.754926257e2, -5.380465012e1, 6.573972423,
-4.912318139e-1, 2.054926773e-2, -3.689035889e-4};
double lnsigma, lnE, lnEn, Emin, sigma;
int n;
// E is in eV
sigma = 0.;
Emin = 16.5;
lnE = log(E);
lnEn = 1.;
lnsigma = 0.;
if (E < Emin) {
sigma = 0.;
} else {
for (n = 0; n <= 8; n++) {
lnsigma += a[n] * lnEn;
lnEn = lnEn * lnE;
}
sigma = exp(lnsigma);
}
return sigma * 1.e-4;
}
/**
* Полное сечение с учетом квазиупругих столкновений
*
* @param E
* @return
*/
public double sigmaTotal(double E) {
return sigmael(E) + sigmaexc(E) + sigmaion(E);
}
}

View File

@ -1,4 +1,4 @@
package hep.dataforge.trapping;
package inr.numass.trapping;
import java.io.File;
import java.io.FileNotFoundException;
@ -32,7 +32,11 @@ public class Trapping {
int rejected = 0;
int lowE = 0;
List<ElectronTrappingSimulator.SimulaionResult> results = simulator.simulateAll(E, 500000);
simulator.scatter.counter.resetAll();
List<ElectronTrappingSimulator.SimulaionResult> results = simulator.simulateAll(E, 10000);
simulator.scatter.counter.print(System.out);
System.out.printf("%nSimulation complete.%n%n");
for (ElectronTrappingSimulator.SimulaionResult res : results) {
if (out != null) {

View File

@ -0,0 +1,15 @@
/* $Id$ */
/*
* constants.h
*
* written by Sebastian Voecking <seb.voeck@uni-muenster.de>
*
* Constants which are used through out the scatter package
*/
#define C 299792458. /* velocity of light in SI units */
#define CHARGEUNIT 1.602177e-19 /* electron charge (in SI, without sign) */
#define BOLTZMANN 1.380658e-23 /* Boltzmann constant */
#define ELECTRON_MASS 9.109389e-31 /* Electron mass */

View File

@ -0,0 +1,184 @@
/* $Id$ */
/*
* random.c
*
* written by Sebastian Voecking <seb.voeck@uni-muenster.de>
*
* For details see random.h
*/
#include "random.h"
#include <stdlib.h>
static int method = RANDOM_STDLIB;
static int rand_seed=-1; // for random calculation
static double get_random_1_cw();
static void subrn(double* u, int len);
static double random_james();
void random_set_method(RandomMethode meth)
{
method = meth;
}
double random_get()
{
switch(method) {
case RANDOM_STDLIB:
return ((double)rand())/RAND_MAX;
case RANDOM_CW:
return get_random_1_cw();
case RANDOM_JAMES:
return random_james();
default:
return 0;
}
}
void random_seed(int seed)
{
switch(method) {
case RANDOM_STDLIB:
srand(seed);
break;
case RANDOM_CW:
rand_seed = seed;
break;
case RANDOM_JAMES:
break;
}
}
double get_random_1_cw()
// function gives a random value between 0 and 1.
// NO imput value needed.
// numerical rec. version provided by Ch. Weinheimer
{
#define IA 16807
#define IM 2147483647
#define AM (1./IM)
#define IQ 127773
#define IR 2836
#define NTAB 32
#define NDIV (1+(IM-1)/NTAB)
#define RNMX (1.-1.2e-7)
int j, k;
static int iy=0, iv[NTAB];
double temp;
if (rand_seed<=0 || !iy){
if (-rand_seed<1) rand_seed=1;
else rand_seed=-rand_seed;
for (j=NTAB+7; j>=0; j--){
k=rand_seed/IQ;
rand_seed=IA*(rand_seed-k*IQ)-IR*k;
if (rand_seed<0) rand_seed+=IM;
if (j<NTAB) iv[j]=rand_seed;
}
iy=iv[0];
}
k=rand_seed/IQ;
rand_seed=IA*(rand_seed-k*IQ)-IR*k;
if (rand_seed<0) rand_seed+=IM;
j=iy/NDIV;
iy=iv[j];
iv[j]=rand_seed;
if ((temp=AM*iy)>RNMX) return RNMX;
else return temp;
#undef IA
#undef IM
#undef AM
#undef IQ
#undef IR
#undef NTAB
#undef NDIV
#undef RNMX
}
void subrn(double *u,int len)
{
// This subroutine computes random numbers u[1],...,u[len]
// in the (0,1) interval. It uses the 0<IJKLRANDOM<900000000
// integer as initialization seed.
// In the calling program the dimension
// of the u[] vector should be larger than len (the u[0] value is
// not used).
// For each IJKLRANDOM
// numbers the program computes completely independent random number
// sequences (see: F. James, Comp. Phys. Comm. 60 (1990) 329, sec. 3.3).
//
// remark by T. Thuemmler:
// same random numbers appear each time one restarts the whole program
//
static long IJKLRANDOM=100;
static int iff=0;
static long ijkl,ij,kl,i,j,k,l,ii,jj,m,i97,j97,ivec;
static float s,t,uu[98],c,cd,cm,uni;
if(iff==0)
{ ijkl=IJKLRANDOM;
if(ijkl<1 || ijkl>=900000000) ijkl=1;
ij=ijkl/30082;
kl=ijkl-30082*ij;
i=((ij/177)%177)+2;
j=(ij%177)+2;
k=((kl/169)%178)+1;
l=kl%169;
for(ii=1;ii<=97;ii++)
{ s=0; t=0.5;
for(jj=1;jj<=24;jj++)
{ m=(((i*j)%179)*k)%179;
i=j; j=k; k=m;
l=(53*l+1)%169;
if((l*m)%64 >= 32) s=s+t;
t=0.5*t;
}
uu[ii]=s;
}
c=362436./16777216.;
cd=7654321./16777216.;
cm=16777213./16777216.;
i97=97;
j97=33;
iff=1;
}
for(ivec=1;ivec<=len;ivec++)
{ uni=uu[i97]-uu[j97];
if(uni<0.) uni=uni+1.;
uu[i97]=uni;
i97=i97-1;
if(i97==0) i97=97;
j97=j97-1;
if(j97==0) j97=97;
c=c-cd;
if(c<0.) c=c+cm;
uni=uni-c;
if(uni<0.) uni=uni+1.;
if(uni==0.)
{ uni=uu[j97]*0.59604644775391e-07;
if(uni==0.) uni=0.35527136788005e-14;
}
u[ivec]=uni;
}
// cout << endl<< "random: " << u[1] << endl << flush;
return;
}
double random_james()
{
// This function computes 1 random number in the (0,1) interval,
// using the subrn subroutine.
double u[2];
subrn(u,1);
return u[1];
}
///////////////////////////////////////////////////////////

View File

@ -0,0 +1,33 @@
/* $Id$ */
/*
* random.h
*
* written by Sebastian cking <seb.voeck@uni-muenster.de>
*
* The random module is a frontend for different random generators.
*/
/*
* The different generators
*/
typedef enum
{
RANDOM_STDLIB, /* standard c random generator (the default one)*/
RANDOM_CW,
RANDOM_JAMES
} RandomMethode;
/*
* Selects a generator
*/
void random_set_method(RandomMethode method);
/*
* Returns a number between 0 and 1 generated with the selected generator.
*/
double random_get();
/*
* Seeds the random generator if it supports it.
*/
void random_seed(int seed);

File diff suppressed because it is too large Load Diff