Direction, density effect and pinch scattering
This commit is contained in:
parent
1f7be09fb2
commit
6b8445b3e1
@ -8,15 +8,7 @@
|
||||
*/
|
||||
package inr.numass.trapping;
|
||||
|
||||
import static java.lang.Math.abs;
|
||||
import static java.lang.Math.acos;
|
||||
import static java.lang.Math.atan;
|
||||
import static java.lang.Math.cos;
|
||||
import static java.lang.Math.exp;
|
||||
import static java.lang.Math.log;
|
||||
import static java.lang.Math.sin;
|
||||
import static java.lang.Math.sqrt;
|
||||
import static java.lang.Math.tan;
|
||||
import static org.apache.commons.math3.util.FastMath.*;
|
||||
import org.apache.commons.math3.random.RandomGenerator;
|
||||
import org.apache.commons.math3.util.Pair;
|
||||
|
||||
@ -31,6 +23,9 @@ public class Scatter {
|
||||
static final double emass = 18780; // Electron mass in atomic units
|
||||
static final double R = 13.6; // Ryberg energy in eV
|
||||
private final RandomGenerator generator;
|
||||
|
||||
boolean debug = false;
|
||||
|
||||
MultiCounter counter = new MultiCounter("Accept-reject calls");
|
||||
|
||||
private double fmax = 0;
|
||||
@ -39,6 +34,12 @@ public class Scatter {
|
||||
this.generator = generator;
|
||||
}
|
||||
|
||||
private void count(String counterName){
|
||||
if(debug){
|
||||
counter.increase(counterName);
|
||||
}
|
||||
}
|
||||
|
||||
public Pair<Double, Double> randomel(double E) {
|
||||
// This subroutine generates energy loss and polar scatt. angle according to
|
||||
// electron elastic scattering in molecular hydrogen.
|
||||
@ -52,7 +53,7 @@ public class Scatter {
|
||||
double[] u = new double[3];
|
||||
int i;
|
||||
|
||||
counter.increase("randomel-calls");
|
||||
count("randomel-calls");
|
||||
if (E >= 250.) {
|
||||
Gmax = 1.e-19;
|
||||
} else if (E < 250. && E >= 150.) {
|
||||
@ -64,7 +65,7 @@ public class Scatter {
|
||||
gam = 1. + T / (clight * clight); // relativistic correction factor
|
||||
b = 2. / (1. + gam) / T;
|
||||
for (i = 1; i < 5000; i++) {
|
||||
counter.increase("randomel");
|
||||
count("randomel");
|
||||
c = 1. + b - b * (2. + b) / (b + 2. * generator.nextDouble());
|
||||
K2 = 2. * T * (1. + gam) * abs(1d - c); // momentum transfer squared
|
||||
a = (4. + K2) * (4. + K2) / (gam * gam);
|
||||
@ -117,7 +118,7 @@ public class Scatter {
|
||||
// (from: Phys. Rev. A51 (1995) 3745 )
|
||||
double[] pC = {1.2e-1, 1.9e-1, 1.9e-1, 1.5e-1, 1.1e-1, 7.5e-2, 5.0e-2,
|
||||
3.3e-2, 2.2e-2, 1.4e-2, 9.3e-3, 6.0e-3, 3.7e-3, 1.8e-3};
|
||||
counter.increase("randomexc-calls");
|
||||
count("randomexc-calls");
|
||||
T = 20000. / 27.2;
|
||||
//
|
||||
xmin = Ecen * Ecen / (2. * T);
|
||||
@ -153,7 +154,7 @@ public class Scatter {
|
||||
// Generation of y values with the Neumann acceptance-rejection method:
|
||||
y = ymin;
|
||||
for (j = 1; j < 5000; j++) {
|
||||
counter.increase("randomexc1");
|
||||
count("randomexc1");
|
||||
y = ymin + (ymax - ymin) * generator.nextDouble();
|
||||
K = exp(y / 2.);
|
||||
fy = sumexc(K);
|
||||
@ -176,7 +177,7 @@ public class Scatter {
|
||||
Dmax = 400.;
|
||||
}
|
||||
for (j = 1; j < 5000; j++) {
|
||||
counter.increase("randomexc2");
|
||||
count("randomexc2");
|
||||
c = -1. + 2. * generator.nextDouble();
|
||||
D = Dexc(E, c) * 1.e22;
|
||||
if (Dmax * generator.nextDouble() < D) {
|
||||
@ -192,7 +193,7 @@ public class Scatter {
|
||||
N = 7; // the number of electronic states in our calculation
|
||||
pmax = p[1]; // the maximum of the p[] values
|
||||
for (j = 1; j < 5000; j++) {
|
||||
counter.increase("randomexc3");
|
||||
count("randomexc3");
|
||||
n = (int) (N * generator.nextDouble());
|
||||
if (generator.nextDouble() * pmax < p[n]) {
|
||||
break;
|
||||
@ -215,7 +216,7 @@ public class Scatter {
|
||||
N = 28; // the number of B vibrational states in our calculation
|
||||
pmax = pB[7]; // maximum of the pB[] values
|
||||
for (j = 1; j < 5000; j++) {
|
||||
counter.increase("randomexc4");
|
||||
count("randomexc4");
|
||||
v = (int) (N * generator.nextDouble());
|
||||
if (generator.nextDouble() * pmax < pB[v]) {
|
||||
break;
|
||||
@ -235,7 +236,7 @@ public class Scatter {
|
||||
N = 14; // the number of C vibrational states in our calculation
|
||||
pmax = pC[1]; // maximum of the pC[] values
|
||||
for (j = 1; j < 5000; j++) {
|
||||
counter.increase("randomexc4");
|
||||
count("randomexc4");
|
||||
v = (int) (N * generator.nextDouble());
|
||||
if (generator.nextDouble() * pmax < pC[v]) {
|
||||
break;
|
||||
@ -275,7 +276,7 @@ public class Scatter {
|
||||
double K2, KK, fE, kej, ki, kf, Rex, arg, arctg;
|
||||
int i;
|
||||
double st1, st2;
|
||||
counter.increase("randomion-calls");
|
||||
count("randomion-calls");
|
||||
//
|
||||
// I. Generation of theta
|
||||
// -----------------------
|
||||
@ -291,7 +292,7 @@ public class Scatter {
|
||||
// Generation of y values with the Neumann acceptance-rejection method:
|
||||
y = ymin;
|
||||
for (j = 1; j < 5000; j++) {
|
||||
counter.increase("randomion1");
|
||||
count("randomion1");
|
||||
y = ymin + (ymax - ymin) * generator.nextDouble();
|
||||
K = exp(y / 2.);
|
||||
c = 1. + b - K * K / (4. * T);
|
||||
@ -350,7 +351,7 @@ public class Scatter {
|
||||
// Generation of q with inverse transform method
|
||||
// (we use the Newton-Raphson method in order to solve the nonlinear eq.
|
||||
// for the inversion) :
|
||||
counter.increase("randomion2");
|
||||
count("randomion2");
|
||||
F = Fmin + h * generator.nextDouble();
|
||||
y = 0.;
|
||||
for (i = 1; i <= 30; i++) {
|
||||
|
@ -1,9 +1,15 @@
|
||||
package inr.numass.trapping;
|
||||
|
||||
import org.apache.commons.math3.analysis.UnivariateFunction;
|
||||
import org.apache.commons.math3.analysis.interpolation.LinearInterpolator;
|
||||
import org.apache.commons.math3.random.ISAACRandom;
|
||||
import org.apache.commons.math3.random.JDKRandomGenerator;
|
||||
import org.apache.commons.math3.random.RandomGenerator;
|
||||
import org.apache.commons.math3.random.SynchronizedRandomGenerator;
|
||||
|
||||
import java.io.PrintStream;
|
||||
import java.util.Map;
|
||||
import java.util.function.Function;
|
||||
import java.util.function.Predicate;
|
||||
import java.util.stream.Stream;
|
||||
|
||||
@ -35,6 +41,21 @@ public class SimulationManager {
|
||||
return this;
|
||||
}
|
||||
|
||||
public SimulationManager withFieldMap(UnivariateFunction fieldMap) {
|
||||
this.simulator.setFieldFunc(fieldMap);
|
||||
return this;
|
||||
}
|
||||
|
||||
public SimulationManager withFieldMap(double[] z, double[] b) {
|
||||
this.simulator.setFieldFunc(new LinearInterpolator().interpolate(z, b));
|
||||
return this;
|
||||
}
|
||||
|
||||
public SimulationManager withDensity(double density){
|
||||
this.simulator.setGasDensity(density);
|
||||
return this;
|
||||
}
|
||||
|
||||
/**
|
||||
* Симулируем пролет num электронов.
|
||||
*
|
||||
@ -47,7 +68,8 @@ public class SimulationManager {
|
||||
System.out.printf("%nStarting sumulation with initial energy %g and %d electrons.%n%n", initialE, num);
|
||||
Stream.generate(() -> getRandomTheta()).limit(num).parallel()
|
||||
.forEach((theta) -> {
|
||||
Simulator.SimulationResult res = simulator.simulate(initialE, theta);
|
||||
double initZ = generator.nextDouble() * Simulator.SOURCE_LENGTH;
|
||||
Simulator.SimulationResult res = simulator.simulate(initialE, theta, initZ);
|
||||
if (reportIf.test(res)) {
|
||||
if (output != null) {
|
||||
printOne(output, res);
|
||||
@ -61,7 +83,8 @@ public class SimulationManager {
|
||||
|
||||
private double getRandomTheta() {
|
||||
double x = generator.nextDouble();
|
||||
return Math.acos(x);
|
||||
// from 0 to 2 Pi
|
||||
return Math.acos(1 - 2 * x);
|
||||
}
|
||||
|
||||
private void printStatistics(Counter counter) {
|
||||
@ -70,7 +93,7 @@ public class SimulationManager {
|
||||
output.printf("The spectrometer acceptance angle is %g.%n", simulator.thetaPinch * 180 / Math.PI);
|
||||
output.printf("The transport reflection angle is %g.%n", simulator.thetaTransport * 180 / Math.PI);
|
||||
output.printf("The starting energy is %g.%n", initialE);
|
||||
output.printf("The lower energy boundary is %g.%n%n", simulator.Elow);
|
||||
output.printf("The lower energy boundary is %g.%n%n", simulator.eLow);
|
||||
|
||||
output.printf("The total number of ACCEPTED events is %d.%n", counter.accepted);
|
||||
output.printf("The total number of PASS events is %d.%n", counter.pass);
|
||||
|
@ -4,40 +4,47 @@
|
||||
*/
|
||||
package inr.numass.trapping;
|
||||
|
||||
import java.io.PrintStream;
|
||||
import java.util.function.Predicate;
|
||||
import java.util.stream.Stream;
|
||||
|
||||
import org.apache.commons.math3.analysis.UnivariateFunction;
|
||||
import org.apache.commons.math3.distribution.ExponentialDistribution;
|
||||
import org.apache.commons.math3.geometry.euclidean.threed.Rotation;
|
||||
import org.apache.commons.math3.geometry.euclidean.threed.SphericalCoordinates;
|
||||
import org.apache.commons.math3.geometry.euclidean.threed.Vector3D;
|
||||
import org.apache.commons.math3.random.MersenneTwister;
|
||||
import org.apache.commons.math3.random.JDKRandomGenerator;
|
||||
import org.apache.commons.math3.random.RandomGenerator;
|
||||
import org.apache.commons.math3.random.SynchronizedRandomGenerator;
|
||||
import org.apache.commons.math3.util.Pair;
|
||||
import org.apache.commons.math3.util.Precision;
|
||||
|
||||
import java.util.function.Function;
|
||||
|
||||
import static org.apache.commons.math3.util.FastMath.*;
|
||||
|
||||
/**
|
||||
* @author Darksnake
|
||||
*/
|
||||
public class Simulator {
|
||||
|
||||
public static final double SOURCE_LENGTH = 3d;
|
||||
private static final double DELTA_L = 0.1; //step for dZ calculation
|
||||
|
||||
private RandomGenerator generator;
|
||||
private Scatter scatter;
|
||||
double Elow = 14000d;//default value
|
||||
double eLow = 14000d;//default value
|
||||
double thetaTransport = 24.107064 / 180 * Math.PI;// default value
|
||||
double thetaPinch = 19.481097 / 180 * Math.PI;// default value
|
||||
double gasDensity = 5e18;// m^-3
|
||||
double bSource = 0.6;
|
||||
private UnivariateFunction magneticField;
|
||||
|
||||
|
||||
public Simulator() {
|
||||
generator = new SynchronizedRandomGenerator(new MersenneTwister());
|
||||
generator = new JDKRandomGenerator();// Be careful here since it is not synchronized
|
||||
scatter = new Scatter(generator);
|
||||
}
|
||||
|
||||
public Simulator(double Bsource, double Btransport, double Bpinch, double Elow){
|
||||
public Simulator(double Bsource, double Btransport, double Bpinch, double Elow) {
|
||||
this();
|
||||
setFields(Bsource, Btransport, Bpinch);
|
||||
setElow(Elow);
|
||||
setELow(Elow);
|
||||
}
|
||||
|
||||
public static enum EndState {
|
||||
@ -49,163 +56,223 @@ public class Simulator {
|
||||
NONE
|
||||
}
|
||||
|
||||
public final void setElow(double elow) {
|
||||
Elow = elow;
|
||||
public final void setELow(double eLow) {
|
||||
this.eLow = eLow;
|
||||
}
|
||||
|
||||
public final void setFields(double Bsource, double Btransport, double Bpinch) {
|
||||
this.bSource = Bsource;
|
||||
this.thetaTransport = Math.asin(Math.sqrt(Bsource / Btransport));
|
||||
this.thetaPinch = Math.asin(Math.sqrt(Bsource / Bpinch));
|
||||
}
|
||||
|
||||
public void setGasDensity(double gasDensity) {
|
||||
this.gasDensity = gasDensity;
|
||||
}
|
||||
|
||||
public void setFieldFunc(UnivariateFunction magneticField) {
|
||||
this.magneticField = magneticField;
|
||||
}
|
||||
|
||||
private State scatter(State pos) {
|
||||
//Вычисляем сечения и нормируем их на полное сечение
|
||||
double sigmaIon = scatter.sigmaion(pos.e);
|
||||
double sigmaEl = scatter.sigmael(pos.e);
|
||||
double sigmaExc = scatter.sigmaexc(pos.e);
|
||||
double sigmaTotal = sigmaEl + sigmaIon + sigmaExc;
|
||||
sigmaIon /= sigmaTotal;
|
||||
sigmaEl /= sigmaTotal;
|
||||
sigmaExc /= sigmaTotal;
|
||||
|
||||
//проверяем нормировку
|
||||
assert Precision.equals(sigmaEl + sigmaExc + sigmaIon, 1, 1e-2);
|
||||
|
||||
double alpha = generator.nextDouble();
|
||||
|
||||
Pair<Double, Double> delta;
|
||||
if (alpha > sigmaEl) {
|
||||
if (alpha > sigmaEl + sigmaExc) {
|
||||
//ionization case
|
||||
delta = scatter.randomion(pos.e);
|
||||
} else {
|
||||
//excitation case
|
||||
delta = scatter.randomexc(pos.e);
|
||||
}
|
||||
} else {
|
||||
// elastic
|
||||
delta = scatter.randomel(pos.e);
|
||||
}
|
||||
|
||||
//Обновляем значени угла и энергии независимо ни от чего
|
||||
pos.substractE(delta.getFirst());
|
||||
//Изменение угла
|
||||
pos.addTheta(delta.getSecond() / 180 * Math.PI);
|
||||
|
||||
return pos;
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculate distance to the next scattering
|
||||
*
|
||||
* @param e
|
||||
* @return
|
||||
*/
|
||||
private double freePath(double e) {
|
||||
//FIXME double cross-section calculation
|
||||
//All cross-sections are in m^2
|
||||
return new ExponentialDistribution(generator, 1 / scatter.sigmaTotal(e) / gasDensity).sample();
|
||||
}
|
||||
|
||||
/**
|
||||
* @param position
|
||||
* @param dl
|
||||
* @return
|
||||
*/
|
||||
private State propagate(State position, double dl, double dz) {
|
||||
//increase l
|
||||
position.l += dl;
|
||||
position.addZ(dz);
|
||||
return position;
|
||||
}
|
||||
|
||||
/**
|
||||
* calculate z coordinate change with known path length. Does not change position.
|
||||
*
|
||||
* @param dl
|
||||
* @return
|
||||
*/
|
||||
private double dZ(State position, double dl) {
|
||||
// if magnetic field not defined, consider it to be uniform and equal bSource
|
||||
if (magneticField == null) {
|
||||
return dl / cos(position.theta);
|
||||
} else {
|
||||
double dz = 0;
|
||||
double curL = 0;
|
||||
while (curL <= dl) {
|
||||
double delta = min(dl - curL, DELTA_L);
|
||||
double b = field(position.z + dz);
|
||||
|
||||
dz += delta / sqrt(1 - pow(sin(position.theta), 2) * b / bSource);
|
||||
curL += DELTA_L;
|
||||
}
|
||||
return dz;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Magnetic field with reflection taken into account
|
||||
*
|
||||
* @param z
|
||||
* @return
|
||||
*/
|
||||
private double field(double z) {
|
||||
if (magneticField == null) {
|
||||
return bSource;
|
||||
} else {
|
||||
while (!(z > 0 && z < SOURCE_LENGTH)) {
|
||||
// reflecting from back wall
|
||||
if (z < 0) {
|
||||
z = -z;
|
||||
} else {
|
||||
z -= SOURCE_LENGTH;
|
||||
}
|
||||
}
|
||||
return magneticField.value(z);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Симулируем один пробег электрона от начального значения и до вылетания из
|
||||
* иточника или до того момента, как энергия становится меньше Elow.
|
||||
* Считаем, что за один проход источника происходит в среднем существенно
|
||||
* меньше одного столкновения, поэтому выход вперед или назад совершенно
|
||||
* симментричны.
|
||||
* иточника или до того момента, как энергия становится меньше eLow.
|
||||
*/
|
||||
public SimulationResult simulate(double initEnergy, double initTheta) {
|
||||
public SimulationResult simulate(double initEnergy, double initTheta, double initZ) {
|
||||
assert initEnergy > 0;
|
||||
assert initTheta > 0 && initTheta < Math.PI / 2;
|
||||
assert initTheta > 0 && initTheta < Math.PI;
|
||||
assert initZ >= 0 && initZ < SOURCE_LENGTH;
|
||||
|
||||
if (initTheta < this.thetaPinch) {
|
||||
if (generator.nextBoolean()) {
|
||||
return new SimulationResult(EndState.PASS, initEnergy, initTheta, initTheta, 0);
|
||||
} else {
|
||||
return new SimulationResult(EndState.REJECTED, initEnergy, initTheta, initTheta, 0);
|
||||
}
|
||||
} else if (initTheta < this.thetaTransport) {
|
||||
return new SimulationResult(EndState.REJECTED, initEnergy, initTheta, initTheta, 0);
|
||||
}
|
||||
// if (initTheta < this.thetaPinch) {
|
||||
// if (generator.nextBoolean()) {
|
||||
// return new SimulationResult(EndState.PASS, initEnergy, initTheta, initTheta, 0);
|
||||
// } else {
|
||||
// return new SimulationResult(EndState.REJECTED, initEnergy, initTheta, initTheta, 0);
|
||||
// }
|
||||
// } else if (initTheta < this.thetaTransport) {
|
||||
// return new SimulationResult(EndState.REJECTED, initEnergy, initTheta, initTheta, 0);
|
||||
// }
|
||||
|
||||
double E = initEnergy;
|
||||
double theta = initTheta;
|
||||
int colNum = 0;
|
||||
EndState state = EndState.NONE;
|
||||
State pos = new State(initEnergy, initTheta, initZ);
|
||||
EndState endState = EndState.NONE;
|
||||
|
||||
boolean stopflag = false;
|
||||
|
||||
while (!stopflag) {
|
||||
colNum++;
|
||||
Pair<Double, Double> delta;
|
||||
|
||||
//Вычисляем сечения и нормируем их на полное сечение
|
||||
double sigmaIon = scatter.sigmaion(E);
|
||||
double sigmaEl = scatter.sigmael(E);
|
||||
double sigmaexc = scatter.sigmaexc(E);
|
||||
double sigmaTotal = sigmaEl + sigmaIon + sigmaexc;
|
||||
sigmaIon /= sigmaTotal;
|
||||
sigmaEl /= sigmaTotal;
|
||||
sigmaexc /= sigmaTotal;
|
||||
//проверяем нормировку
|
||||
assert Precision.equals(sigmaEl + sigmaexc + sigmaIon, 1, 1e-2);
|
||||
double dl = freePath(pos.e); // path to next scattering
|
||||
double dz = dZ(pos, dl); // z coordinate to next scattering
|
||||
double expectedZ = pos.z + dz; // expected z position of next scattering
|
||||
|
||||
double alpha = generator.nextDouble();
|
||||
|
||||
if (alpha > sigmaEl) {
|
||||
if (alpha > sigmaEl + sigmaexc) {
|
||||
//ionization case
|
||||
delta = scatter.randomion(E);
|
||||
} else {
|
||||
//excitation case
|
||||
delta = scatter.randomexc(E);
|
||||
}
|
||||
} else {
|
||||
// elastic
|
||||
delta = scatter.randomel(E);
|
||||
}
|
||||
|
||||
//Обновляем значени угла и энергии независимо ни от чего
|
||||
E -= delta.getFirst();
|
||||
//Изменение угла
|
||||
theta = addTheta(theta, delta.getSecond() / 180 * Math.PI);
|
||||
//следим чтобы угол был от 0 до 90, если он перекинется через границу, считаем что электрон остается в потоке
|
||||
theta = normalizeTheta(theta);
|
||||
|
||||
if (theta < thetaPinch) {
|
||||
//if no scattering on current source pass
|
||||
if (expectedZ < 0 || expectedZ > SOURCE_LENGTH) {
|
||||
//accepted by spectrometer
|
||||
if (pos.theta < thetaPinch) {
|
||||
stopflag = true;
|
||||
if (generator.nextBoolean()) {
|
||||
//Учитываем тот факт, что электрон мог вылететь в правильный угол, но назад
|
||||
state = EndState.ACCEPTED;
|
||||
if (pos.colNum == 0) {
|
||||
//counting pass electrons
|
||||
endState = EndState.PASS;
|
||||
} else {
|
||||
state = EndState.REJECTED;
|
||||
endState = EndState.ACCEPTED;
|
||||
}
|
||||
}
|
||||
|
||||
if (theta >= thetaPinch && theta <= thetaTransport) {
|
||||
//Вылет через заднюю пробку эквивалентен отражению от передней.
|
||||
//это верно при низких концентрациях
|
||||
|
||||
//through the rear magnetic trap
|
||||
if (pos.theta >= PI - thetaTransport) {
|
||||
stopflag = true;
|
||||
state = EndState.REJECTED;
|
||||
endState = EndState.REJECTED;
|
||||
}
|
||||
|
||||
if (E < Elow) {
|
||||
if (pos.e < eLow) {
|
||||
//Если энергия стала слишком маленькой
|
||||
stopflag = true;
|
||||
state = EndState.LOWENERGY;
|
||||
endState = EndState.LOWENERGY;
|
||||
}
|
||||
}
|
||||
if (!stopflag) {
|
||||
// perform scatter
|
||||
propagate(pos, dl, dz);
|
||||
pos.colNum++;
|
||||
scatter(pos);
|
||||
}
|
||||
|
||||
SimulationResult res = new SimulationResult(state, E, theta, initTheta, colNum);
|
||||
}
|
||||
|
||||
SimulationResult res = new SimulationResult(endState, pos.e, pos.theta, initTheta, pos.colNum, pos.l);
|
||||
return res;
|
||||
}
|
||||
|
||||
/**
|
||||
* Сложение вектора с учетом случайно распределения по фи
|
||||
*
|
||||
* @param theta
|
||||
* @param dTheta
|
||||
* @return
|
||||
*/
|
||||
private double addTheta(double theta, double dTheta) {
|
||||
//Генерируем случайный фи
|
||||
double phi = generator.nextDouble() * 2 * Math.PI;
|
||||
//Создаем начальный вектор в сферических координатах
|
||||
SphericalCoordinates init = new SphericalCoordinates(1, 0, theta + dTheta);
|
||||
// Задаем вращение относительно оси, перпендикулярной исходному вектору
|
||||
SphericalCoordinates rotate = new SphericalCoordinates(1, 0, theta);
|
||||
// поворачиваем исходный вектор на dTheta
|
||||
Rotation rot = new Rotation(rotate.getCartesian(), phi, null);
|
||||
|
||||
Vector3D result = rot.applyTo(init.getCartesian());
|
||||
|
||||
// assert Vector3D.angle(result, rotate.getCartesian()) == dTheta;
|
||||
return Math.acos(result.getZ());
|
||||
}
|
||||
|
||||
private double normalizeTheta(double theta) {
|
||||
double res = theta;
|
||||
if (theta < 0) {
|
||||
res = -theta;
|
||||
}
|
||||
if (res >= 0 && res <= Math.PI / 2) {
|
||||
return res;
|
||||
} else if (res > Math.PI / 2 && res <= Math.PI) {
|
||||
return Math.PI - res;
|
||||
} else if (res > Math.PI && res <= Math.PI * 3 / 2) {
|
||||
return res - Math.PI;
|
||||
} else {
|
||||
throw new IllegalStateException();
|
||||
}
|
||||
}
|
||||
|
||||
public void resetDebugCounters(){
|
||||
public void resetDebugCounters() {
|
||||
scatter.debug = true;
|
||||
scatter.counter.resetAll();
|
||||
}
|
||||
|
||||
public void printDebugCounters(){
|
||||
public void printDebugCounters() {
|
||||
if (scatter.debug) {
|
||||
scatter.counter.print(System.out);
|
||||
} else {
|
||||
throw new RuntimeException("Debug not initiated");
|
||||
}
|
||||
}
|
||||
|
||||
public static class SimulationResult {
|
||||
|
||||
public SimulationResult(EndState state, double E, double theta, double initTheta, int collisionNumber) {
|
||||
public SimulationResult(EndState state, double E, double theta, double initTheta, int collisionNumber, double l) {
|
||||
this.state = state;
|
||||
this.E = E;
|
||||
this.theta = theta;
|
||||
this.initTheta = initTheta;
|
||||
this.collisionNumber = collisionNumber;
|
||||
this.l = l;
|
||||
}
|
||||
|
||||
public EndState state;
|
||||
@ -213,6 +280,145 @@ public class Simulator {
|
||||
public double initTheta;
|
||||
public double theta;
|
||||
public int collisionNumber;
|
||||
public double l;
|
||||
}
|
||||
|
||||
/**
|
||||
* Current electron position in simulation. Not thread safe!
|
||||
*/
|
||||
private class State {
|
||||
public State(double e, double theta, double z) {
|
||||
this.e = e;
|
||||
this.theta = theta;
|
||||
this.z = z;
|
||||
}
|
||||
|
||||
/**
|
||||
* Current energy
|
||||
*/
|
||||
double e;
|
||||
/**
|
||||
* Current theta recalculated to the field in the center of the source
|
||||
*/
|
||||
double theta;
|
||||
/**
|
||||
* Current total path
|
||||
*/
|
||||
double l = 0;
|
||||
|
||||
/**
|
||||
* Number of scatterings
|
||||
*/
|
||||
int colNum = 0;
|
||||
|
||||
/**
|
||||
* current z;
|
||||
*/
|
||||
double z;
|
||||
|
||||
/**
|
||||
* @param dE
|
||||
* @return resulting E
|
||||
*/
|
||||
double substractE(double dE) {
|
||||
this.e -= dE;
|
||||
return e;
|
||||
}
|
||||
|
||||
boolean isForward() {
|
||||
return theta <= Math.PI / 2;
|
||||
}
|
||||
|
||||
/**
|
||||
* add Z and calculate direction change
|
||||
*
|
||||
* @param dZ
|
||||
* @return
|
||||
*/
|
||||
double addZ(double dZ) {
|
||||
this.z += dZ;
|
||||
while (!(this.z > 0 && this.z < SOURCE_LENGTH)) {
|
||||
// reflecting from back wall
|
||||
if (z < 0) {
|
||||
z = -z;
|
||||
flip();
|
||||
} else {
|
||||
z -= SOURCE_LENGTH;
|
||||
flip();
|
||||
}
|
||||
}
|
||||
return z;
|
||||
}
|
||||
|
||||
/**
|
||||
* Reverse electron direction
|
||||
*/
|
||||
void flip() {
|
||||
theta = PI - theta;
|
||||
}
|
||||
|
||||
/**
|
||||
* Magnetic field in the current point
|
||||
*
|
||||
* @return
|
||||
*/
|
||||
double field() {
|
||||
return Simulator.this.field(z);
|
||||
}
|
||||
|
||||
/**
|
||||
* Real theta angle in current point
|
||||
*
|
||||
* @return
|
||||
*/
|
||||
double realTheta() {
|
||||
if (magneticField == null) {
|
||||
return theta;
|
||||
} else {
|
||||
return asin(sin(theta) * sqrt(field() / bSource));
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Сложение вектора с учетом случайно распределения по фи
|
||||
*
|
||||
* @param dTheta
|
||||
* @return resulting angle
|
||||
*/
|
||||
double addTheta(double dTheta) {
|
||||
//Генерируем случайный фи
|
||||
double phi = generator.nextDouble() * 2 * Math.PI;
|
||||
|
||||
//change to real angles
|
||||
double realTheta = realTheta();
|
||||
//Создаем начальный вектор в сферических координатах
|
||||
SphericalCoordinates init = new SphericalCoordinates(1, 0, realTheta + dTheta);
|
||||
// Задаем вращение относительно оси, перпендикулярной исходному вектору
|
||||
SphericalCoordinates rotate = new SphericalCoordinates(1, 0, realTheta);
|
||||
// поворачиваем исходный вектор на dTheta
|
||||
Rotation rot = new Rotation(rotate.getCartesian(), phi, null);
|
||||
|
||||
Vector3D result = rot.applyTo(init.getCartesian());
|
||||
|
||||
double newtheta = acos(result.getZ());
|
||||
|
||||
//следим чтобы угол был от 0 до Pi
|
||||
if (newtheta < 0) {
|
||||
newtheta = -newtheta;
|
||||
}
|
||||
if (newtheta > Math.PI && newtheta <= Math.PI * 3 / 2) {
|
||||
newtheta = 2 * Math.PI - newtheta;
|
||||
}
|
||||
|
||||
//change back to virtual angles
|
||||
if (magneticField == null) {
|
||||
theta = newtheta;
|
||||
} else {
|
||||
theta = asin(sin(newtheta) * sqrt(bSource / field()));
|
||||
}
|
||||
return theta;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
@ -1,13 +1,34 @@
|
||||
package inr.numass.trapping;
|
||||
|
||||
import java.io.FileNotFoundException;
|
||||
import java.io.IOException;
|
||||
import java.time.Duration;
|
||||
import java.time.Instant;
|
||||
|
||||
/**
|
||||
* Hello world!
|
||||
*/
|
||||
public class Trapping {
|
||||
public static void main(String[] args) throws FileNotFoundException {
|
||||
public static void main(String[] args) throws IOException {
|
||||
// new SimulationManager().withParameters(0.6, 3.7, 7.2, 18000d, 4000).simulateAll((int) 1e6);
|
||||
new SimulationManager().withParameters(0.6, 3.7, 4.84, 14000d, 4000).simulateAll((int) 1e6);
|
||||
|
||||
// -0.236 3.70754
|
||||
// 0.23 0.62786
|
||||
// 0.746 0.60474
|
||||
// 1.262 0.60325
|
||||
// 1.778 0.60333
|
||||
// 2.294 0.60503
|
||||
// 2.81 0.6285
|
||||
// 3.276 3.70478
|
||||
double[] z = {-0.236, 0.23, 0.746, 1.262, 1.778, 2.294, 2.81, 3.276};
|
||||
double[] b = {3.70754, 0.62786, 0.60474, 0.60325, 0.60333, 0.60503, 0.6285, 3.70478};
|
||||
System.out.println("Press any key to start...");
|
||||
System.in.read();
|
||||
Instant startTime = Instant.now();
|
||||
System.out.printf("Starting at %s%n%n", startTime.toString());
|
||||
new SimulationManager()
|
||||
.withParameters(0.6, 3.7, 4.84, 18000d, 4000)
|
||||
// .withFieldMap(z, b)
|
||||
.simulateAll((int) 1e4);
|
||||
Instant finishTime = Instant.now();
|
||||
System.out.printf("%nFinished at %s%n", finishTime.toString());
|
||||
System.out.printf("Calculation took %s%n", Duration.between(startTime,finishTime).toString());
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user