Direction, density effect and pinch scattering

This commit is contained in:
Alexander Nozik 2016-06-08 20:30:51 +03:00
parent 1f7be09fb2
commit 6b8445b3e1
4 changed files with 406 additions and 155 deletions

View File

@ -8,15 +8,7 @@
*/ */
package inr.numass.trapping; package inr.numass.trapping;
import static java.lang.Math.abs; import static org.apache.commons.math3.util.FastMath.*;
import static java.lang.Math.acos;
import static java.lang.Math.atan;
import static java.lang.Math.cos;
import static java.lang.Math.exp;
import static java.lang.Math.log;
import static java.lang.Math.sin;
import static java.lang.Math.sqrt;
import static java.lang.Math.tan;
import org.apache.commons.math3.random.RandomGenerator; import org.apache.commons.math3.random.RandomGenerator;
import org.apache.commons.math3.util.Pair; import org.apache.commons.math3.util.Pair;
@ -31,6 +23,9 @@ public class Scatter {
static final double emass = 18780; // Electron mass in atomic units static final double emass = 18780; // Electron mass in atomic units
static final double R = 13.6; // Ryberg energy in eV static final double R = 13.6; // Ryberg energy in eV
private final RandomGenerator generator; private final RandomGenerator generator;
boolean debug = false;
MultiCounter counter = new MultiCounter("Accept-reject calls"); MultiCounter counter = new MultiCounter("Accept-reject calls");
private double fmax = 0; private double fmax = 0;
@ -39,6 +34,12 @@ public class Scatter {
this.generator = generator; this.generator = generator;
} }
private void count(String counterName){
if(debug){
counter.increase(counterName);
}
}
public Pair<Double, Double> randomel(double E) { public Pair<Double, Double> randomel(double E) {
// This subroutine generates energy loss and polar scatt. angle according to // This subroutine generates energy loss and polar scatt. angle according to
// electron elastic scattering in molecular hydrogen. // electron elastic scattering in molecular hydrogen.
@ -52,7 +53,7 @@ public class Scatter {
double[] u = new double[3]; double[] u = new double[3];
int i; int i;
counter.increase("randomel-calls"); count("randomel-calls");
if (E >= 250.) { if (E >= 250.) {
Gmax = 1.e-19; Gmax = 1.e-19;
} else if (E < 250. && E >= 150.) { } else if (E < 250. && E >= 150.) {
@ -64,7 +65,7 @@ public class Scatter {
gam = 1. + T / (clight * clight); // relativistic correction factor gam = 1. + T / (clight * clight); // relativistic correction factor
b = 2. / (1. + gam) / T; b = 2. / (1. + gam) / T;
for (i = 1; i < 5000; i++) { for (i = 1; i < 5000; i++) {
counter.increase("randomel"); count("randomel");
c = 1. + b - b * (2. + b) / (b + 2. * generator.nextDouble()); c = 1. + b - b * (2. + b) / (b + 2. * generator.nextDouble());
K2 = 2. * T * (1. + gam) * abs(1d - c); // momentum transfer squared K2 = 2. * T * (1. + gam) * abs(1d - c); // momentum transfer squared
a = (4. + K2) * (4. + K2) / (gam * gam); a = (4. + K2) * (4. + K2) / (gam * gam);
@ -117,7 +118,7 @@ public class Scatter {
// (from: Phys. Rev. A51 (1995) 3745 ) // (from: Phys. Rev. A51 (1995) 3745 )
double[] pC = {1.2e-1, 1.9e-1, 1.9e-1, 1.5e-1, 1.1e-1, 7.5e-2, 5.0e-2, double[] pC = {1.2e-1, 1.9e-1, 1.9e-1, 1.5e-1, 1.1e-1, 7.5e-2, 5.0e-2,
3.3e-2, 2.2e-2, 1.4e-2, 9.3e-3, 6.0e-3, 3.7e-3, 1.8e-3}; 3.3e-2, 2.2e-2, 1.4e-2, 9.3e-3, 6.0e-3, 3.7e-3, 1.8e-3};
counter.increase("randomexc-calls"); count("randomexc-calls");
T = 20000. / 27.2; T = 20000. / 27.2;
// //
xmin = Ecen * Ecen / (2. * T); xmin = Ecen * Ecen / (2. * T);
@ -153,7 +154,7 @@ public class Scatter {
// Generation of y values with the Neumann acceptance-rejection method: // Generation of y values with the Neumann acceptance-rejection method:
y = ymin; y = ymin;
for (j = 1; j < 5000; j++) { for (j = 1; j < 5000; j++) {
counter.increase("randomexc1"); count("randomexc1");
y = ymin + (ymax - ymin) * generator.nextDouble(); y = ymin + (ymax - ymin) * generator.nextDouble();
K = exp(y / 2.); K = exp(y / 2.);
fy = sumexc(K); fy = sumexc(K);
@ -176,7 +177,7 @@ public class Scatter {
Dmax = 400.; Dmax = 400.;
} }
for (j = 1; j < 5000; j++) { for (j = 1; j < 5000; j++) {
counter.increase("randomexc2"); count("randomexc2");
c = -1. + 2. * generator.nextDouble(); c = -1. + 2. * generator.nextDouble();
D = Dexc(E, c) * 1.e22; D = Dexc(E, c) * 1.e22;
if (Dmax * generator.nextDouble() < D) { if (Dmax * generator.nextDouble() < D) {
@ -192,7 +193,7 @@ public class Scatter {
N = 7; // the number of electronic states in our calculation N = 7; // the number of electronic states in our calculation
pmax = p[1]; // the maximum of the p[] values pmax = p[1]; // the maximum of the p[] values
for (j = 1; j < 5000; j++) { for (j = 1; j < 5000; j++) {
counter.increase("randomexc3"); count("randomexc3");
n = (int) (N * generator.nextDouble()); n = (int) (N * generator.nextDouble());
if (generator.nextDouble() * pmax < p[n]) { if (generator.nextDouble() * pmax < p[n]) {
break; break;
@ -215,7 +216,7 @@ public class Scatter {
N = 28; // the number of B vibrational states in our calculation N = 28; // the number of B vibrational states in our calculation
pmax = pB[7]; // maximum of the pB[] values pmax = pB[7]; // maximum of the pB[] values
for (j = 1; j < 5000; j++) { for (j = 1; j < 5000; j++) {
counter.increase("randomexc4"); count("randomexc4");
v = (int) (N * generator.nextDouble()); v = (int) (N * generator.nextDouble());
if (generator.nextDouble() * pmax < pB[v]) { if (generator.nextDouble() * pmax < pB[v]) {
break; break;
@ -235,7 +236,7 @@ public class Scatter {
N = 14; // the number of C vibrational states in our calculation N = 14; // the number of C vibrational states in our calculation
pmax = pC[1]; // maximum of the pC[] values pmax = pC[1]; // maximum of the pC[] values
for (j = 1; j < 5000; j++) { for (j = 1; j < 5000; j++) {
counter.increase("randomexc4"); count("randomexc4");
v = (int) (N * generator.nextDouble()); v = (int) (N * generator.nextDouble());
if (generator.nextDouble() * pmax < pC[v]) { if (generator.nextDouble() * pmax < pC[v]) {
break; break;
@ -275,7 +276,7 @@ public class Scatter {
double K2, KK, fE, kej, ki, kf, Rex, arg, arctg; double K2, KK, fE, kej, ki, kf, Rex, arg, arctg;
int i; int i;
double st1, st2; double st1, st2;
counter.increase("randomion-calls"); count("randomion-calls");
// //
// I. Generation of theta // I. Generation of theta
// ----------------------- // -----------------------
@ -291,7 +292,7 @@ public class Scatter {
// Generation of y values with the Neumann acceptance-rejection method: // Generation of y values with the Neumann acceptance-rejection method:
y = ymin; y = ymin;
for (j = 1; j < 5000; j++) { for (j = 1; j < 5000; j++) {
counter.increase("randomion1"); count("randomion1");
y = ymin + (ymax - ymin) * generator.nextDouble(); y = ymin + (ymax - ymin) * generator.nextDouble();
K = exp(y / 2.); K = exp(y / 2.);
c = 1. + b - K * K / (4. * T); c = 1. + b - K * K / (4. * T);
@ -350,7 +351,7 @@ public class Scatter {
// Generation of q with inverse transform method // Generation of q with inverse transform method
// (we use the Newton-Raphson method in order to solve the nonlinear eq. // (we use the Newton-Raphson method in order to solve the nonlinear eq.
// for the inversion) : // for the inversion) :
counter.increase("randomion2"); count("randomion2");
F = Fmin + h * generator.nextDouble(); F = Fmin + h * generator.nextDouble();
y = 0.; y = 0.;
for (i = 1; i <= 30; i++) { for (i = 1; i <= 30; i++) {

View File

@ -1,9 +1,15 @@
package inr.numass.trapping; package inr.numass.trapping;
import org.apache.commons.math3.analysis.UnivariateFunction;
import org.apache.commons.math3.analysis.interpolation.LinearInterpolator;
import org.apache.commons.math3.random.ISAACRandom;
import org.apache.commons.math3.random.JDKRandomGenerator; import org.apache.commons.math3.random.JDKRandomGenerator;
import org.apache.commons.math3.random.RandomGenerator; import org.apache.commons.math3.random.RandomGenerator;
import org.apache.commons.math3.random.SynchronizedRandomGenerator;
import java.io.PrintStream; import java.io.PrintStream;
import java.util.Map;
import java.util.function.Function;
import java.util.function.Predicate; import java.util.function.Predicate;
import java.util.stream.Stream; import java.util.stream.Stream;
@ -35,6 +41,21 @@ public class SimulationManager {
return this; return this;
} }
public SimulationManager withFieldMap(UnivariateFunction fieldMap) {
this.simulator.setFieldFunc(fieldMap);
return this;
}
public SimulationManager withFieldMap(double[] z, double[] b) {
this.simulator.setFieldFunc(new LinearInterpolator().interpolate(z, b));
return this;
}
public SimulationManager withDensity(double density){
this.simulator.setGasDensity(density);
return this;
}
/** /**
* Симулируем пролет num электронов. * Симулируем пролет num электронов.
* *
@ -47,7 +68,8 @@ public class SimulationManager {
System.out.printf("%nStarting sumulation with initial energy %g and %d electrons.%n%n", initialE, num); System.out.printf("%nStarting sumulation with initial energy %g and %d electrons.%n%n", initialE, num);
Stream.generate(() -> getRandomTheta()).limit(num).parallel() Stream.generate(() -> getRandomTheta()).limit(num).parallel()
.forEach((theta) -> { .forEach((theta) -> {
Simulator.SimulationResult res = simulator.simulate(initialE, theta); double initZ = generator.nextDouble() * Simulator.SOURCE_LENGTH;
Simulator.SimulationResult res = simulator.simulate(initialE, theta, initZ);
if (reportIf.test(res)) { if (reportIf.test(res)) {
if (output != null) { if (output != null) {
printOne(output, res); printOne(output, res);
@ -61,7 +83,8 @@ public class SimulationManager {
private double getRandomTheta() { private double getRandomTheta() {
double x = generator.nextDouble(); double x = generator.nextDouble();
return Math.acos(x); // from 0 to 2 Pi
return Math.acos(1 - 2 * x);
} }
private void printStatistics(Counter counter) { private void printStatistics(Counter counter) {
@ -70,7 +93,7 @@ public class SimulationManager {
output.printf("The spectrometer acceptance angle is %g.%n", simulator.thetaPinch * 180 / Math.PI); output.printf("The spectrometer acceptance angle is %g.%n", simulator.thetaPinch * 180 / Math.PI);
output.printf("The transport reflection angle is %g.%n", simulator.thetaTransport * 180 / Math.PI); output.printf("The transport reflection angle is %g.%n", simulator.thetaTransport * 180 / Math.PI);
output.printf("The starting energy is %g.%n", initialE); output.printf("The starting energy is %g.%n", initialE);
output.printf("The lower energy boundary is %g.%n%n", simulator.Elow); output.printf("The lower energy boundary is %g.%n%n", simulator.eLow);
output.printf("The total number of ACCEPTED events is %d.%n", counter.accepted); output.printf("The total number of ACCEPTED events is %d.%n", counter.accepted);
output.printf("The total number of PASS events is %d.%n", counter.pass); output.printf("The total number of PASS events is %d.%n", counter.pass);

View File

@ -4,40 +4,47 @@
*/ */
package inr.numass.trapping; package inr.numass.trapping;
import java.io.PrintStream; import org.apache.commons.math3.analysis.UnivariateFunction;
import java.util.function.Predicate; import org.apache.commons.math3.distribution.ExponentialDistribution;
import java.util.stream.Stream;
import org.apache.commons.math3.geometry.euclidean.threed.Rotation; import org.apache.commons.math3.geometry.euclidean.threed.Rotation;
import org.apache.commons.math3.geometry.euclidean.threed.SphericalCoordinates; import org.apache.commons.math3.geometry.euclidean.threed.SphericalCoordinates;
import org.apache.commons.math3.geometry.euclidean.threed.Vector3D; import org.apache.commons.math3.geometry.euclidean.threed.Vector3D;
import org.apache.commons.math3.random.MersenneTwister; import org.apache.commons.math3.random.JDKRandomGenerator;
import org.apache.commons.math3.random.RandomGenerator; import org.apache.commons.math3.random.RandomGenerator;
import org.apache.commons.math3.random.SynchronizedRandomGenerator;
import org.apache.commons.math3.util.Pair; import org.apache.commons.math3.util.Pair;
import org.apache.commons.math3.util.Precision; import org.apache.commons.math3.util.Precision;
import java.util.function.Function;
import static org.apache.commons.math3.util.FastMath.*;
/** /**
* @author Darksnake * @author Darksnake
*/ */
public class Simulator { public class Simulator {
public static final double SOURCE_LENGTH = 3d;
private static final double DELTA_L = 0.1; //step for dZ calculation
private RandomGenerator generator; private RandomGenerator generator;
private Scatter scatter; private Scatter scatter;
double Elow = 14000d;//default value double eLow = 14000d;//default value
double thetaTransport = 24.107064 / 180 * Math.PI;// default value double thetaTransport = 24.107064 / 180 * Math.PI;// default value
double thetaPinch = 19.481097 / 180 * Math.PI;// default value double thetaPinch = 19.481097 / 180 * Math.PI;// default value
double gasDensity = 5e18;// m^-3
double bSource = 0.6;
private UnivariateFunction magneticField;
public Simulator() { public Simulator() {
generator = new SynchronizedRandomGenerator(new MersenneTwister()); generator = new JDKRandomGenerator();// Be careful here since it is not synchronized
scatter = new Scatter(generator); scatter = new Scatter(generator);
} }
public Simulator(double Bsource, double Btransport, double Bpinch, double Elow){ public Simulator(double Bsource, double Btransport, double Bpinch, double Elow) {
this(); this();
setFields(Bsource, Btransport, Bpinch); setFields(Bsource, Btransport, Bpinch);
setElow(Elow); setELow(Elow);
} }
public static enum EndState { public static enum EndState {
@ -49,163 +56,223 @@ public class Simulator {
NONE NONE
} }
public final void setElow(double elow) { public final void setELow(double eLow) {
Elow = elow; this.eLow = eLow;
} }
public final void setFields(double Bsource, double Btransport, double Bpinch) { public final void setFields(double Bsource, double Btransport, double Bpinch) {
this.bSource = Bsource;
this.thetaTransport = Math.asin(Math.sqrt(Bsource / Btransport)); this.thetaTransport = Math.asin(Math.sqrt(Bsource / Btransport));
this.thetaPinch = Math.asin(Math.sqrt(Bsource / Bpinch)); this.thetaPinch = Math.asin(Math.sqrt(Bsource / Bpinch));
} }
/** public void setGasDensity(double gasDensity) {
* Симулируем один пробег электрона от начального значения и до вылетания из this.gasDensity = gasDensity;
* иточника или до того момента, как энергия становится меньше Elow. }
* Считаем, что за один проход источника происходит в среднем существенно
* меньше одного столкновения, поэтому выход вперед или назад совершенно
* симментричны.
*/
public SimulationResult simulate(double initEnergy, double initTheta) {
assert initEnergy > 0;
assert initTheta > 0 && initTheta < Math.PI / 2;
if (initTheta < this.thetaPinch) { public void setFieldFunc(UnivariateFunction magneticField) {
if (generator.nextBoolean()) { this.magneticField = magneticField;
return new SimulationResult(EndState.PASS, initEnergy, initTheta, initTheta, 0); }
private State scatter(State pos) {
//Вычисляем сечения и нормируем их на полное сечение
double sigmaIon = scatter.sigmaion(pos.e);
double sigmaEl = scatter.sigmael(pos.e);
double sigmaExc = scatter.sigmaexc(pos.e);
double sigmaTotal = sigmaEl + sigmaIon + sigmaExc;
sigmaIon /= sigmaTotal;
sigmaEl /= sigmaTotal;
sigmaExc /= sigmaTotal;
//проверяем нормировку
assert Precision.equals(sigmaEl + sigmaExc + sigmaIon, 1, 1e-2);
double alpha = generator.nextDouble();
Pair<Double, Double> delta;
if (alpha > sigmaEl) {
if (alpha > sigmaEl + sigmaExc) {
//ionization case
delta = scatter.randomion(pos.e);
} else { } else {
return new SimulationResult(EndState.REJECTED, initEnergy, initTheta, initTheta, 0); //excitation case
delta = scatter.randomexc(pos.e);
} }
} else if (initTheta < this.thetaTransport) { } else {
return new SimulationResult(EndState.REJECTED, initEnergy, initTheta, initTheta, 0); // elastic
delta = scatter.randomel(pos.e);
} }
double E = initEnergy; //Обновляем значени угла и энергии независимо ни от чего
double theta = initTheta; pos.substractE(delta.getFirst());
int colNum = 0; //Изменение угла
EndState state = EndState.NONE; pos.addTheta(delta.getSecond() / 180 * Math.PI);
return pos;
}
/**
* Calculate distance to the next scattering
*
* @param e
* @return
*/
private double freePath(double e) {
//FIXME double cross-section calculation
//All cross-sections are in m^2
return new ExponentialDistribution(generator, 1 / scatter.sigmaTotal(e) / gasDensity).sample();
}
/**
* @param position
* @param dl
* @return
*/
private State propagate(State position, double dl, double dz) {
//increase l
position.l += dl;
position.addZ(dz);
return position;
}
/**
* calculate z coordinate change with known path length. Does not change position.
*
* @param dl
* @return
*/
private double dZ(State position, double dl) {
// if magnetic field not defined, consider it to be uniform and equal bSource
if (magneticField == null) {
return dl / cos(position.theta);
} else {
double dz = 0;
double curL = 0;
while (curL <= dl) {
double delta = min(dl - curL, DELTA_L);
double b = field(position.z + dz);
dz += delta / sqrt(1 - pow(sin(position.theta), 2) * b / bSource);
curL += DELTA_L;
}
return dz;
}
}
/**
* Magnetic field with reflection taken into account
*
* @param z
* @return
*/
private double field(double z) {
if (magneticField == null) {
return bSource;
} else {
while (!(z > 0 && z < SOURCE_LENGTH)) {
// reflecting from back wall
if (z < 0) {
z = -z;
} else {
z -= SOURCE_LENGTH;
}
}
return magneticField.value(z);
}
}
/**
* Симулируем один пробег электрона от начального значения и до вылетания из
* иточника или до того момента, как энергия становится меньше eLow.
*/
public SimulationResult simulate(double initEnergy, double initTheta, double initZ) {
assert initEnergy > 0;
assert initTheta > 0 && initTheta < Math.PI;
assert initZ >= 0 && initZ < SOURCE_LENGTH;
// if (initTheta < this.thetaPinch) {
// if (generator.nextBoolean()) {
// return new SimulationResult(EndState.PASS, initEnergy, initTheta, initTheta, 0);
// } else {
// return new SimulationResult(EndState.REJECTED, initEnergy, initTheta, initTheta, 0);
// }
// } else if (initTheta < this.thetaTransport) {
// return new SimulationResult(EndState.REJECTED, initEnergy, initTheta, initTheta, 0);
// }
State pos = new State(initEnergy, initTheta, initZ);
EndState endState = EndState.NONE;
boolean stopflag = false; boolean stopflag = false;
while (!stopflag) { while (!stopflag) {
colNum++;
Pair<Double, Double> delta;
//Вычисляем сечения и нормируем их на полное сечение double dl = freePath(pos.e); // path to next scattering
double sigmaIon = scatter.sigmaion(E); double dz = dZ(pos, dl); // z coordinate to next scattering
double sigmaEl = scatter.sigmael(E); double expectedZ = pos.z + dz; // expected z position of next scattering
double sigmaexc = scatter.sigmaexc(E);
double sigmaTotal = sigmaEl + sigmaIon + sigmaexc;
sigmaIon /= sigmaTotal;
sigmaEl /= sigmaTotal;
sigmaexc /= sigmaTotal;
//проверяем нормировку
assert Precision.equals(sigmaEl + sigmaexc + sigmaIon, 1, 1e-2);
double alpha = generator.nextDouble(); //if no scattering on current source pass
if (expectedZ < 0 || expectedZ > SOURCE_LENGTH) {
if (alpha > sigmaEl) { //accepted by spectrometer
if (alpha > sigmaEl + sigmaexc) { if (pos.theta < thetaPinch) {
//ionization case stopflag = true;
delta = scatter.randomion(E);
} else {
//excitation case
delta = scatter.randomexc(E);
}
} else {
// elastic
delta = scatter.randomel(E);
}
//Обновляем значени угла и энергии независимо ни от чего
E -= delta.getFirst();
//Изменение угла
theta = addTheta(theta, delta.getSecond() / 180 * Math.PI);
//следим чтобы угол был от 0 до 90, если он перекинется через границу, считаем что электрон остается в потоке
theta = normalizeTheta(theta);
if (theta < thetaPinch) {
stopflag = true;
if (generator.nextBoolean()) {
//Учитываем тот факт, что электрон мог вылететь в правильный угол, но назад //Учитываем тот факт, что электрон мог вылететь в правильный угол, но назад
state = EndState.ACCEPTED; if (pos.colNum == 0) {
} else { //counting pass electrons
state = EndState.REJECTED; endState = EndState.PASS;
} else {
endState = EndState.ACCEPTED;
}
}
//through the rear magnetic trap
if (pos.theta >= PI - thetaTransport) {
stopflag = true;
endState = EndState.REJECTED;
}
if (pos.e < eLow) {
//Если энергия стала слишком маленькой
stopflag = true;
endState = EndState.LOWENERGY;
} }
} }
if (!stopflag) {
if (theta >= thetaPinch && theta <= thetaTransport) { // perform scatter
//Вылет через заднюю пробку эквивалентен отражению от передней. propagate(pos, dl, dz);
//это верно при низких концентрациях pos.colNum++;
stopflag = true; scatter(pos);
state = EndState.REJECTED;
} }
if (E < Elow) {
//Если энергия стала слишком маленькой
stopflag = true;
state = EndState.LOWENERGY;
}
} }
SimulationResult res = new SimulationResult(state, E, theta, initTheta, colNum); SimulationResult res = new SimulationResult(endState, pos.e, pos.theta, initTheta, pos.colNum, pos.l);
return res; return res;
} }
/** public void resetDebugCounters() {
* Сложение вектора с учетом случайно распределения по фи scatter.debug = true;
*
* @param theta
* @param dTheta
* @return
*/
private double addTheta(double theta, double dTheta) {
//Генерируем случайный фи
double phi = generator.nextDouble() * 2 * Math.PI;
//Создаем начальный вектор в сферических координатах
SphericalCoordinates init = new SphericalCoordinates(1, 0, theta + dTheta);
// Задаем вращение относительно оси, перпендикулярной исходному вектору
SphericalCoordinates rotate = new SphericalCoordinates(1, 0, theta);
// поворачиваем исходный вектор на dTheta
Rotation rot = new Rotation(rotate.getCartesian(), phi, null);
Vector3D result = rot.applyTo(init.getCartesian());
// assert Vector3D.angle(result, rotate.getCartesian()) == dTheta;
return Math.acos(result.getZ());
}
private double normalizeTheta(double theta) {
double res = theta;
if (theta < 0) {
res = -theta;
}
if (res >= 0 && res <= Math.PI / 2) {
return res;
} else if (res > Math.PI / 2 && res <= Math.PI) {
return Math.PI - res;
} else if (res > Math.PI && res <= Math.PI * 3 / 2) {
return res - Math.PI;
} else {
throw new IllegalStateException();
}
}
public void resetDebugCounters(){
scatter.counter.resetAll(); scatter.counter.resetAll();
} }
public void printDebugCounters(){ public void printDebugCounters() {
scatter.counter.print(System.out); if (scatter.debug) {
scatter.counter.print(System.out);
} else {
throw new RuntimeException("Debug not initiated");
}
} }
public static class SimulationResult { public static class SimulationResult {
public SimulationResult(EndState state, double E, double theta, double initTheta, int collisionNumber) { public SimulationResult(EndState state, double E, double theta, double initTheta, int collisionNumber, double l) {
this.state = state; this.state = state;
this.E = E; this.E = E;
this.theta = theta; this.theta = theta;
this.initTheta = initTheta; this.initTheta = initTheta;
this.collisionNumber = collisionNumber; this.collisionNumber = collisionNumber;
this.l = l;
} }
public EndState state; public EndState state;
@ -213,6 +280,145 @@ public class Simulator {
public double initTheta; public double initTheta;
public double theta; public double theta;
public int collisionNumber; public int collisionNumber;
public double l;
}
/**
* Current electron position in simulation. Not thread safe!
*/
private class State {
public State(double e, double theta, double z) {
this.e = e;
this.theta = theta;
this.z = z;
}
/**
* Current energy
*/
double e;
/**
* Current theta recalculated to the field in the center of the source
*/
double theta;
/**
* Current total path
*/
double l = 0;
/**
* Number of scatterings
*/
int colNum = 0;
/**
* current z;
*/
double z;
/**
* @param dE
* @return resulting E
*/
double substractE(double dE) {
this.e -= dE;
return e;
}
boolean isForward() {
return theta <= Math.PI / 2;
}
/**
* add Z and calculate direction change
*
* @param dZ
* @return
*/
double addZ(double dZ) {
this.z += dZ;
while (!(this.z > 0 && this.z < SOURCE_LENGTH)) {
// reflecting from back wall
if (z < 0) {
z = -z;
flip();
} else {
z -= SOURCE_LENGTH;
flip();
}
}
return z;
}
/**
* Reverse electron direction
*/
void flip() {
theta = PI - theta;
}
/**
* Magnetic field in the current point
*
* @return
*/
double field() {
return Simulator.this.field(z);
}
/**
* Real theta angle in current point
*
* @return
*/
double realTheta() {
if (magneticField == null) {
return theta;
} else {
return asin(sin(theta) * sqrt(field() / bSource));
}
}
/**
* Сложение вектора с учетом случайно распределения по фи
*
* @param dTheta
* @return resulting angle
*/
double addTheta(double dTheta) {
//Генерируем случайный фи
double phi = generator.nextDouble() * 2 * Math.PI;
//change to real angles
double realTheta = realTheta();
//Создаем начальный вектор в сферических координатах
SphericalCoordinates init = new SphericalCoordinates(1, 0, realTheta + dTheta);
// Задаем вращение относительно оси, перпендикулярной исходному вектору
SphericalCoordinates rotate = new SphericalCoordinates(1, 0, realTheta);
// поворачиваем исходный вектор на dTheta
Rotation rot = new Rotation(rotate.getCartesian(), phi, null);
Vector3D result = rot.applyTo(init.getCartesian());
double newtheta = acos(result.getZ());
//следим чтобы угол был от 0 до Pi
if (newtheta < 0) {
newtheta = -newtheta;
}
if (newtheta > Math.PI && newtheta <= Math.PI * 3 / 2) {
newtheta = 2 * Math.PI - newtheta;
}
//change back to virtual angles
if (magneticField == null) {
theta = newtheta;
} else {
theta = asin(sin(newtheta) * sqrt(bSource / field()));
}
return theta;
}
} }

View File

@ -1,13 +1,34 @@
package inr.numass.trapping; package inr.numass.trapping;
import java.io.FileNotFoundException; import java.io.FileNotFoundException;
import java.io.IOException;
import java.time.Duration;
import java.time.Instant;
/**
* Hello world!
*/
public class Trapping { public class Trapping {
public static void main(String[] args) throws FileNotFoundException { public static void main(String[] args) throws IOException {
// new SimulationManager().withParameters(0.6, 3.7, 7.2, 18000d, 4000).simulateAll((int) 1e6); // new SimulationManager().withParameters(0.6, 3.7, 7.2, 18000d, 4000).simulateAll((int) 1e6);
new SimulationManager().withParameters(0.6, 3.7, 4.84, 14000d, 4000).simulateAll((int) 1e6);
// -0.236 3.70754
// 0.23 0.62786
// 0.746 0.60474
// 1.262 0.60325
// 1.778 0.60333
// 2.294 0.60503
// 2.81 0.6285
// 3.276 3.70478
double[] z = {-0.236, 0.23, 0.746, 1.262, 1.778, 2.294, 2.81, 3.276};
double[] b = {3.70754, 0.62786, 0.60474, 0.60325, 0.60333, 0.60503, 0.6285, 3.70478};
System.out.println("Press any key to start...");
System.in.read();
Instant startTime = Instant.now();
System.out.printf("Starting at %s%n%n", startTime.toString());
new SimulationManager()
.withParameters(0.6, 3.7, 4.84, 18000d, 4000)
// .withFieldMap(z, b)
.simulateAll((int) 1e4);
Instant finishTime = Instant.now();
System.out.printf("%nFinished at %s%n", finishTime.toString());
System.out.printf("Calculation took %s%n", Duration.between(startTime,finishTime).toString());
} }
} }