Merge pull request #13 from pklimai/upd-eng

Update English version (October 2020)
This commit is contained in:
Alexander Nozik 2020-10-31 20:31:13 +03:00 committed by GitHub
commit 3219af4c4d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
24 changed files with 178 additions and 35 deletions

View File

@ -8,16 +8,20 @@
- Git
## Запуск локально
Клонируем репозиторий, переходим в директорию сайта. Добавляем переменную окружения, в неё прописываем путь до npm. Устанавливаем нужные пакеты командой `npm install`. Открываем командную строку, в ней пишем:
Клонируем репозиторий, переходим в директорию сайта. Добавляем переменную окружения, в неё прописываем путь до npm.
Устанавливаем нужные пакеты командой `npm install`. Gatsby CLI устанавливается командой `npm install -g gatsby-cli`.
Открываем командную строку, в ней пишем:
```shell
gatsby develop
```
При успешном запуске будет виден порт, на котором нужно запускать сайт (обычно это `htpp://localhost:8000`).
При успешном запуске будет виден порт, на котором запускается сайт (обычно это `http://localhost:8000`).
## Содержимое папки
├── src
├── components
├── content
├── files
├── images
├── intl
@ -30,7 +34,6 @@ gatsby develop
├── .gitignore
├── gatsby-config.js
├── gatsby-node.js
├── assets.bat
├── package-lock.json
├── package.json
└── README.md
@ -54,11 +57,10 @@ gatsby develop
Для редактирования сайта существуют два способа: локально и с помощью Netlify CMS.
### **Локально**
1. В папке `/content` вносим изменения в существующие markdown-файлы, добавляем новые, удаляем ненужные.
2. Добавляем при необходимости изображения в папку `/images`.
3. Запускаем `assets.bat` для предотвращения проблем с файлами.
4. В командной строке переходим в директорию сайта, запускаем `gatsby develop`, локально проверяем, как выглядит.
5. Делаем коммит изменений, пушим в репозиторий на Github на ветку dev.
1. В папке `/src/content` вносим изменения в существующие markdown-файлы, добавляем новые, удаляем ненужные.
2. Добавляем при необходимости изображения в папку `/src/images`.
3. В командной строке переходим в директорию сайта, запускаем `gatsby develop`, локально проверяем, как выглядит.
4. Делаем коммит изменений, пушим в репозиторий на Github на ветку dev.
### **С помощью Netlify CMS**
1. К пути сайта добавляем `/admin`, оказываемся в панели администратора.

View File

@ -7,6 +7,6 @@ photo: abramova.jpg
published: true
language: en
---
MIPT student.
Student of HSE.
Participates in software development projects and in BAT collaboration.

View File

@ -6,4 +6,4 @@ order: 16
published: true
language: en
---
INR RAS engineer.
INR RAS engineer. General Physics teacher at MIPT.

View File

@ -0,0 +1,12 @@
---
content_type: member
title: Elya Blinova
id: blinova
order: 550
photo: Elya.jpg
published: true
language: en
---
MIPT student.
Part of the software group. Engaged in site support and input-output systems development.

View File

@ -0,0 +1,12 @@
---
content_type: member
title: Fedor Bukreev
id: bukreev
order: 510
photo: bukreev.jpg
published: true
language: en
---
MIPT student. Teacher of computer science at MIPT.
Part of the software group. Works on distributed computing systems.

View File

@ -7,6 +7,6 @@ photo: chernov.png
published: true
language: en
---
Postgraduate student of INR RAS.
PhD in Physics and Mathematics.
Specialist in data collection systems.
Data acquisition systems specialist. Participates in the Troitsk nu-mass and IAXO experiments.

View File

@ -10,7 +10,7 @@ language: en
**Group leader**
Associate Professor, Department of General Physics, MIPT. Prize winner I.V. Kurchatov. Veteran of nuclear energy and industry. The official expert of Rosatom on isotope technologies. Member of international physical experiments:
Professor, Department of General Physics, MIPT. Laureate of I.V. Kurchatov prize. Veteran of nuclear energy and industry. The official expert of Rosatom on isotope technologies. Member of international physical experiments:
[GERDA — search for neutrinoless double beta decay of Ge-76](https://www.mpi-hd.mpg.de/gerda/home.html)
[EMMA — experiment with multimuon array](http://www.cupp.fi/index.php?option=com_content&view=article&id=4&Itemid=40&lang=en)
Mu-Monitor — investigation of cosmic muon fluxes in underground labs LSC

View File

@ -11,4 +11,3 @@ INR RAS researcher.
Specialist in rare caonic decay, data collection systems and functional programming.
Team leader on [mathematical problems](/projects/math).

View File

@ -7,6 +7,6 @@ photo: klimai.jpg
published: true
language: en
---
Candidate of physical and mathematical sciences.
PhD in Physics and Mathematics.
Supervisor of infrastructure projects.
Head of MIPT-NPM work on software for the BM@N experiment. Supervisor of infrastructure projects.

View File

@ -0,0 +1,11 @@
---
content_type: member
title: Evgeniya Morozova
id: morozova
order: 5
photo: Morozova.jpg
published: true
language: en
---
Laboratory administrator.

View File

@ -2,7 +2,7 @@
content_type: member
title: Alexander Nozik
id: nozik
order: 10
order: 2
photo: nozik.png
published: true
language: en
@ -13,10 +13,12 @@ Candidate of physical and mathematical sciences. Senior researcher at INR RAS (S
Specialist in data analysis in physical experiment. Member of the experiment "Troitsk nu-mass" for the direct measurement of the neutrino mass. [ResearchGate profile](https://www.researchgate.net/profile/Alexander_Nozik)
Head of the software group in [JetBrains Research](https://research.jetbrains.org/researchers/altavir).
Secretary of the council [Society of Scientists](http://onr-russia.ru/)
**Scientific interests:** Mathematical statistics, scientific software, neutrino mass.
<p>
e-mail: <a href='m&#97;ilto&#58;alt%61%76ir&#64;g&#109;&#97;il&#46;%63%6Fm'>altavir&#64;&#103;&#109;ail&#46;c&#111;m</a>
e-mail: <a href="mailto:&#110;&#111;&#122;&#105;&#107;&#046;&#097;&#097;&#064;&#109;&#105;&#112;&#116;&#046;&#114;&#117;">&#110;&#111;&#122;&#105;&#107;&#046;&#097;&#097;&#064;&#109;&#105;&#112;&#116;&#046;&#114;&#117;</a>
</p>

View File

@ -7,4 +7,6 @@ order: 60
published: true
language: en
---
MIPT student.
Laboratory researcher. Postgraduate student at the Higher School of Economics.
Head of Segmented Satellite Detector. The main participant in works on atmospheric physics.

View File

@ -7,4 +7,6 @@ photo: svetlichny.jpeg
published: true
language: en
---
6th course MIPT student, lecturer of department of general physics.
Postgraduate student at MIPT, teacher of the Department of General Physics and Phystech activist.
Eengaged in physics of collisions of high-energy ions under the direction of I. A. Pshenichny.

View File

@ -7,6 +7,6 @@ photo: vyborov.png
published: true
language: en
---
MIPT postgraduate student.
MIPT postgraduate student. Teacher in General Physics at MIPT.
Head of the solar neutrino background working group.

View File

@ -0,0 +1,19 @@
---
content_type: post
title: Statistical Methods 2020
date: 2020-09-06
published: true
slug: /stat_methods_2020
language: en
---
In the fall of 2020, we continue our now traditional course <a href="pages/stat-methods">Statistical Methods in Experimental Physics</a>. As in the previous year, the course is combined with the basic course "Introduction to Data Analysis", read within the framework of "Physics Horizons" for the second year students from the basic department of the INR RAS "Fundamental Interactions and Cosmology".
This year, the course will be partly remote and with minor format changes. Lectures will be more clearly separated from seminars and will be recorded. The workshops will include significantly more demonstrations of the specific program code used for data analysis. In particular, there will be several sessions of the so-called live-coding. Also, due to the transfer of lectures online (and the help of assistants), we plan to supplement the course program with separate lessons devoted to modern aspects of working with data, such as Monte Carlo methods and Bayesian methods.
The course will be announced online on Wednesday, September 9 at 5:05 pm &nbsp;<a href="https://meet.google.com/fqh-izkt-rfu">https://meet.google.com/fqh-izkt-rfu</a>.</p>
<p>To distribute relevant information on the course, as well as for questions and discussion, a telegram group was created: &nbsp;<a href="https://t.me/mipt_statmethods">https://t.me/mipt_statmethods</a>.
Additional course materials will be available <a href="https://npm.mipt.ru/confluence/pages/viewpage.action?pageId=56655879">here</a>.
The course is conducted with <a href="https://research.jetbrains.org/ru/groups/npm/courses/3">JetBrains Research informationcal support</a>.

View File

@ -0,0 +1,19 @@
---
content_type: post
title: Updated projects and new vacancies
date: 2020-10-19
published: true
slug: /physics_update_october_2020
language: en
---
The section with [particle physics projects](/projects/physics/) on the site is updated. Added sections on atmospheric physics and solar particle detector (text for both sections was prepared by Egor).
Published [article on satellite detector](https://arxiv.org/abs/2005.02620). An article on accounting for the number of [runaway electrons in the Gurevich model](https://arxiv.org/abs/2008.05929) was accepted for publication.
In addition, two vacancies were opened. One vacancy in nuclear physics (more details [here](https://npm.mipt.ru/confluence/pages/viewpage.action?pageId=57573638)).
We are looking for a third year or older student interested in this topic.
Second vacancy is in data collection systems field. We are looking for a person who would undertake to master this topic (mainly software + work with protocols of the hardware and transport level) with subsequent work at DESY (Hamburg) on the IAXO experiment.
Contacts [are, as usual, here](/about/).

View File

@ -10,6 +10,8 @@ language: en
---
## Announcements
[2020 announcement](https://npm.mipt.ru/confluence/pages/viewpage.action?pageId=56655894)
[2018 announcement](/files/stat-methods-2017.pdf)
[2017 announcement](/files/npm-2018.pdf)
@ -25,7 +27,9 @@ In our course, we will try to analyze in detail the issues of the practical appl
The course is planned in the optional format once a week, while lectures will be held every second week, and practical classes (seminars) will be held between the lectures, discussing examples and solving problems from modern experimental physics and everyday life (including laboratory work) .
Announcements of important events, as well as a discussion of any issues related to the course, are available in the Google group [mipt-statmethods](https://groups.google.com/d/forum/mipt-statmethods). We recommend you use your Google Account to sign up for a group, as it provides more opportunities to communicate and work with documents. All group members have access to the course materials at the [address](https://drive.google.com/folderview?id=0B9tlm5xMb9Sdbkx2TXY4QXpfX1k&usp=sharing).
Announcements of important events, as well as discussion of any issues related to the course, are available in the Telegram group (<https://t.me/mipt_statmethods>).
All group members have access to the course materials at the [address](https://drive.google.com/folderview?id=0B9tlm5xMb9Sdbkx2TXY4QXpfX1k&usp=sharing).
## Course structure (preliminary program)

View File

@ -0,0 +1,26 @@
---
content_type: project_physics
id: satelite
shortTitle: Satellite detector
title: Satellite detector of solar radiation
order: 7
published: true
language: en
---
Researchers from the Laboratory of Nuclear Physics Methods have developed a prototype detector for solar cosmic ray spectroscopy. The customer for the work was the Space Research Institute of the Russian Academy of Sciences. A prototype detector was assembled and tested at the Institute for Nuclear Research, Russian Academy of Sciences. Research results are published [in JINST](https://iopscience.iop.org/article/10.1088/1748-0221/15/09/T09006).
Structurally, the detector is a scintillation cylinder [segmented into several washers](#sat_detector). The energy release of the particle passing through the detector is removed from each washer separately. This design makes it possible to reconstruct the loss curve of registered particles, which increases the energy resolution of the detector in comparison with classical calorimeters. Moreover, due to segmentation, the detector is able to operate in the so-called integral mode. In this operating mode, the detector records the total loss curve from several incident particles during the exposure. The laboratory staff showed that using the Turchin regularization method, it is possible to reconstruct with good accuracy the spectrum of particles registered by the device from their total loss curve. Integral mode allows the detector to operate when the frequency of particles hitting the detector exceeds the readout speed of the electronics. This gives the device an advantage over existing solar cosmic ray spectrometers.
<figure id="sat_detector">
<img src="/images/projects/physics/satelite/detector.png" alt="detector"/>
<figcaption>Figure 1. Device prototype. 1 — detector body contained from scintillation washers, 2 — shielded fiber optic, 3 — bias voltage control and data acquisition boards developed at JINR, 4 — hull and stand of the prototype (for ground research).</figcaption>
</figure>
<figure id="sat_reconstruction">
<img src="/images/projects/physics/satelite/reconstruction.png" alt="reconstruction"/>
<figcaption>Figure 2. An example of reconstruction of a proton spectrum by a detector in an integrated operating mode. Geant4 simulation data is used.</figcaption>
</figure>

View File

@ -1,17 +1,49 @@
---
content_type: project_physics
id: tge/tgf
id: atmosphere
shortTitle: TGE/TGF
title: TGE and TGF
title: Studying TGE and TGF
order: 4
published: false
published: true
language: en
---
**Terrestrial gamma-ray bursts (TGF) and transition gamma-ray emission (TGE)** are mysterious phenomena occurring in the atmosphere and recorded on the Earth. In order to explain them, the mechanism **RREA** (Relativistic Runaway Electron Avalanche) is used, which can also explain the occurrence of lightning.
Today, there are many unsolved mysteries in the physics of atmospheric lightning discharge. The key one is the problem of lightning initialization: despite the fact that the dynamics of the formation of lightning has been studied in detail, it is not known how the process of development of a lightning discharge begins. To start the formation of lightning, an electrical breakdown is required inside a thundercloud; however, the electric fields observed in the atmosphere are an order of magnitude smaller than the breakdown fields.
The simplest RREA model is the _Gurevich model_. In this scenario, relativistic electrons are elastically scattered along with other electrons, thereby creating an avalanche of relativistic electrons. Electrons emit inhibitory gamma radiation when the interaction with air molecules is slowed down.
Another unexplained phenomenon of atmospheric electricity is gamma-ray bursts observed since 1994 by space gamma-ray observatories (for example, BATSE, [Fermi](#tgf_1)), created for observing gamma radiation from astrophysical sources. Mysterious natural gamma radiation of the earth's atmosphere is called Terrestrial Gamma-ray Flashes (TGFs). It is remarkable for its short duration (on the order of hundreds of microseconds) and high intensity of gamma radiation. Building a consistent TGF model is one of the key challenges for modern scientists.
The _Dwaer Model_ uses the relativistic feedback mechanism. It is based on the RREA process, including the physics of backscattered gamma rays and positrons from the formation of gamma pairs, which propagate to the beginning of the avalanche region and generate new avalanches, causing an exponential increase in their number.
<figure id="tgf_1">
<img src="/images/projects/physics/tgf/Picture1.png" alt="fermi"/>
<figcaption>Figure 1. Fermi Gamma Telescope.</figcaption>
</figure>
The laboratory is studying these models through Monte Carlo simulations using Geant4.
<figure id="tgf_2">
<img src="/images/projects/physics/tgf/Picture2.png" alt="TGF-NASA"/>
<figcaption>Firure 2. Terrestrial Gamma-ray Flashes, according to NASA.</figcaption>
</figure>
Long-term observation of TGF made it possible to establish that, apparently, this natural phenomenon is based on the acceleration of relativistic electrons in the electric fields of thunderclouds. It turns out that in thunderclouds it is possible to form such a large-scale electric field, which is capable of accelerating electrons more than they are decelerated when interacting with atmospheric air. This phenomenon was predicted by the Russian scientist A.V. Gurevich in 1992. Relativistic electrons accelerated by an electric field are called runaway, and the minimum electric field at which the runaway of electrons is possible is called critical. Runaway electrons interacting with air molecules knock out new electrons, which can also become runaway. This process leads to the formation of an avalanche of runaway electrons ([Figure 3] (# tgf_3)). The seed particles for such avalanches are generated by secondary cosmic rays. Avalanches of runaway electrons interacting with air create bremsstrahlung gamma radiation. Spectral analysis of TGF has shown that it is the phenomenon of runaway of relativistic electrons in thunderclouds that is the most likely source of terrestrial gamma-ray bursts. Nevertheless, the construction of the TGF model requires a deeper study of the physics of runaway electron avalanches.
<figure id="tgf_3">
<img src="/images/projects/physics/tgf/Picture3.png" alt="runway"/>
<figcaption>Figure 3. Simulation of runaway electron avalanches on Geant4. Red particle tracks are electrons, green tracks are gamma radiation, blue tracks are positrons.</figcaption>
</figure>
Gamma radiation from thunderclouds is observed not only from space. There are many ground-based observatories studying this natural phenomenon. One of them - [Aragatz station](#tgf_4) on the mountain of the same name in Armenia. Research at the station is carried out by the Cosmic Ray Division of the Yerevan Physics Institute, under the leadership of A. Chilingaryan. The high-altitude location of the experimental complex is convenient for studying thunderstorm clouds, since they pass at a height of one hundred meters or less above the experimental facilities. An important feature for thunderstorm physics of this experimental complex is its location just a hundred meters from the height of thunderclouds. This provides important experimental data on atmospheric gamma radiation. The phenomenon observed on Mount Aragatz was named [Thunderstorm Gamma Enhancement](#tgf_5) (TGE). Its duration, in comparison with TGF, is long, about 30 minutes. Analysis of the TGE observation data showed that it mainly consists of a gamma-ray study of the decay of daughter radon nuclei, which rise with aerosols due to the electric field between the earth's surface and the thunderstorm. This is the soft component of the TGE; the energy of gamma quanta of the soft component does not exceed 3 MeV. However, periodically, powerful fluxes of the hard component of gamma radiation appear in the TGE, the energy of which reaches 100 MeV. The duration of such flashes is about 100 milliseconds, as a rule, they are interrupted by a lightning discharge. It has been reliably established that the source of the hard component of the TGE is an avalanche of runaway electrons accelerated by thunderstorm electric fields.
<figure id="tgf_4">
<img src="/images/projects/physics/tgf/Picture4.png" alt="aragats"/>
<figcaption>Figure 4. Experimental complex on Mount Aragatz.</figcaption>
</figure>
<figure id="tgf_5">
<img src="/images/projects/physics/tgf/Picture5.png" alt="tge"/>
<figcaption>Figure 5. High Energy Atmospheric Physics according to Cosmic Ray Division. The basis of gamma radiation observed during a thunderstorm is the acceleration of relativistic electrons in thunderclouds (hard component), as well as the radioactive decay of daughter radon nuclei (soft component).</figcaption>
</figure>
The study of the dynamics of runaway electron avalanches is not limited to the study of their gamma radiation. Fluxes of relativistic electrons also cause an increased level of ionization within the thundercloud. Increased ionization can significantly contribute to the streamer and leader formation processes that underlie lightning initiation. In addition, thunderclouds are a source of VHF radiation. To register ultrashort waves, the Aragatz station is equipped with an [interferometer](#tgf_6). It is assumed that relativistic particles are also capable of causing processes that lead to VHF radiation. The study of plasma processes associated with the ionization of runaway electrons, together with the analysis of data from VHF interferometers, will shed light on unexplored phenomena of atmospheric physics.
<figure id="tgf_6">
<img src="/images/projects/physics/tgf/Picture6.png" alt="uhf"/>
<figcaption>Figure 6. Antennas of a VHF interferometer located on Mount Aragatz.</figcaption>
</figure>

View File

@ -6,11 +6,12 @@ order: 1
photo: Inzhechik.jpg
published: true
language: ru
---
**Руководитель группы.**
Доцент кафедры общей физики МФТИ. Лауреат премии им. И.В. Курчатова. Ветеран атомной энергетики и промышленности. Официальный эксперт Росатома по изотопным технологиям. Участник международных физических экспериментов:
Профессор кафедры общей физики МФТИ. Лауреат премии им. И.В. Курчатова. Ветеран атомной энергетики и промышленности. Официальный эксперт Росатома по изотопным технологиям. Участник международных физических экспериментов:
[GERDA — search for neutrinoless double beta decay of Ge-76](https://www.mpi-hd.mpg.de/gerda/home.html)
[EMMA — experiment with multimuon array](http://www.cupp.fi/index.php?option=com_content&view=article&id=4&Itemid=40&lang=en)
Mu-Monitor — investigation of cosmic muon fluxes in underground labs LSC

View File

@ -7,6 +7,6 @@ photo: klimai.jpg
published: true
language: ru
---
Кандидат физико-математических наук.
Кандидат физико-математических наук.
Руководитель работ по ПО в эксперименте BM@N. Курирует инфраструктурные проекты.
Руководитель работ лаборатории по ПО для эксперимента BM@N. Курирует инфраструктурные проекты.

View File

@ -13,7 +13,7 @@ language: ru
Специалист в области анализа данных в физическом эксперименте. Участник эксперимента "Троицк ню-масс" по прямому измерению массы нейтрино. [Профиль ResearchGate](https://www.researchgate.net/profile/Alexander_Nozik)
Руководитель направления в [JetBrains Reasrch](https://research.jetbrains.org/ru/researchers/altavir).
Руководитель направления в [JetBrains Research](https://research.jetbrains.org/ru/researchers/altavir).
Секретарь совета [Общества Научных Работников](http://onr-russia.ru/)

View File

@ -9,4 +9,4 @@ language: ru
---
Научный сотрудник лаборатории. Аспирант ВШЭ.
Руководитель работа по сегментированному спутниковому детектору. Основной участник работ по атмосферной физике.
Руководитель работ по сегментированному спутниковому детектору. Основной участник работ по атмосферной физике.

View File

@ -29,7 +29,7 @@ language: ru
<figcaption>Рисунок 3. Моделирование лавин убегающих электронов на Geant4. Красные треки частиц - электроны, зелёные - гамма-излучение, синие - позитроны.</figcaption>
</figure>
Гамма-излучение грозовых облаков наблюдается не только из космоса. Существует множество наземных обсерваторий, изучающих это природное явление. Одна из них - [станция Арагатц](#tgf_4) на одноимённой горе в Армении. Исследования на станции проводятся Отделом космических лучей (Cosmic Ray Devision) Ереванского Физического института, под руководством А. Чилингаряна. Высокогорное расположение экспериментального комплекса удобно для исследования грозовых облаков, так как они проходят на высоте в сто и менее метров над экспериментальными установками. Важной для грозовой физики особенностью этого экспериментального комплекса является его расположение всего в ста метрах от высоты грозовых облаков. Это позволяет получать важные экспериментальные данные по атмосферному гамма-излучению. Явление, наблюдаемое на горе Арагатц, получило название [Thunderstorm Gamma Enhancement](#tgf_5) (TGE). Его длительность, по сравнению с TGF, большая, порядка 30 минут. Анализ данных по наблюдению TGE показал, что он, в основном, состоит из гамма-изучения распада дочерних ядер радона, поднимающихся вместе с аэрозолями за счёт электрического поля между поверхностью земли и грозой. Это мягкая компонента TGE, энергия гамма квантов мягкой компоненты не превышает 3 МэВ. Однако периодически в TGE возникают мощные потоки жёсткой компоненты гамма-излучения, энергия которого достигает 100 МэВ. Длительность таких вспышек составляет порядка 100 милисекунд, как правило, они прерываются разрядом молнии. Надёжно установлено, что источником жёсткой компоненты TGE являются лавины убегающих электронов, ускоряемых грозовыми электрическими полями.
Гамма-излучение грозовых облаков наблюдается не только из космоса. Существует множество наземных обсерваторий, изучающих это природное явление. Одна из них - [станция Арагатц](#tgf_4) на одноимённой горе в Армении. Исследования на станции проводятся Отделом космических лучей (Cosmic Ray Division) Ереванского Физического института, под руководством А. Чилингаряна. Высокогорное расположение экспериментального комплекса удобно для исследования грозовых облаков, так как они проходят на высоте в сто и менее метров над экспериментальными установками. Важной для грозовой физики особенностью этого экспериментального комплекса является его расположение всего в ста метрах от высоты грозовых облаков. Это позволяет получать важные экспериментальные данные по атмосферному гамма-излучению. Явление, наблюдаемое на горе Арагатц, получило название [Thunderstorm Gamma Enhancement](#tgf_5) (TGE). Его длительность, по сравнению с TGF, большая, порядка 30 минут. Анализ данных по наблюдению TGE показал, что он, в основном, состоит из гамма-изучения распада дочерних ядер радона, поднимающихся вместе с аэрозолями за счёт электрического поля между поверхностью земли и грозой. Это мягкая компонента TGE, энергия гамма квантов мягкой компоненты не превышает 3 МэВ. Однако периодически в TGE возникают мощные потоки жёсткой компоненты гамма-излучения, энергия которого достигает 100 МэВ. Длительность таких вспышек составляет порядка 100 милисекунд, как правило, они прерываются разрядом молнии. Надёжно установлено, что источником жёсткой компоненты TGE являются лавины убегающих электронов, ускоряемых грозовыми электрическими полями.
<figure id="tgf_4">
<img src="/images/projects/physics/tgf/Picture4.png" alt="aragats"/>