model correction
This commit is contained in:
parent
bbfa0483b6
commit
5fcff41db6
@ -2,10 +2,29 @@
|
||||
// Source: ru.inr.mass.data.proto.Point in numass-proto.proto
|
||||
package ru.inr.mass.`data`.proto
|
||||
|
||||
import com.squareup.wire.*
|
||||
import com.squareup.wire.FieldEncoding
|
||||
import com.squareup.wire.Message
|
||||
import com.squareup.wire.ProtoAdapter
|
||||
import com.squareup.wire.ProtoReader
|
||||
import com.squareup.wire.ProtoWriter
|
||||
import com.squareup.wire.ReverseProtoWriter
|
||||
import com.squareup.wire.Syntax
|
||||
import com.squareup.wire.Syntax.PROTO_3
|
||||
import com.squareup.wire.internal.immutableCopyOf
|
||||
import com.squareup.wire.internal.redactElements
|
||||
import com.squareup.wire.WireField
|
||||
import com.squareup.wire.`internal`.immutableCopyOf
|
||||
import com.squareup.wire.`internal`.redactElements
|
||||
import kotlin.Any
|
||||
import kotlin.AssertionError
|
||||
import kotlin.Boolean
|
||||
import kotlin.Deprecated
|
||||
import kotlin.DeprecationLevel
|
||||
import kotlin.Int
|
||||
import kotlin.Long
|
||||
import kotlin.Nothing
|
||||
import kotlin.String
|
||||
import kotlin.Unit
|
||||
import kotlin.collections.List
|
||||
import kotlin.jvm.JvmField
|
||||
import okio.ByteString
|
||||
|
||||
public class Point(
|
||||
|
@ -15,9 +15,10 @@ import kotlin.math.sqrt
|
||||
|
||||
@Suppress("PARAMETER_NAME_CHANGED_ON_OVERRIDE")
|
||||
public class NumassResolution(
|
||||
public val resA: Double = 8.3e-5,
|
||||
public val resA: Double = 1.7e-4,
|
||||
public val resB: Double = 0.0,
|
||||
public val tailFunction: (Double, Double) -> Double = { _, _ -> 1.0 },
|
||||
// Recent formula for adiabacity
|
||||
public val tailFunction: (Double, Double) -> Double = { e, u -> -1.75559e-13 * (e - u) * (e - u) * (e - u) - 5.97479e-11 * (e - u) * (e - u) + 3.26473e-7 * (e - u) + 1.0 },
|
||||
) : DifferentiableKernel {
|
||||
|
||||
// private val tailFunction: Kernel = when {
|
||||
|
@ -54,8 +54,10 @@ public class NumassTransmission(
|
||||
}
|
||||
sum
|
||||
}
|
||||
|
||||
else -> null
|
||||
}
|
||||
|
||||
else -> null
|
||||
}
|
||||
|
||||
@ -63,6 +65,7 @@ public class NumassTransmission(
|
||||
// loss part
|
||||
val thickness = arguments[thickness] ?: 0.0
|
||||
val loss = getTotalLossValue(thickness, ei, ef)
|
||||
//val loss = 0.0
|
||||
// double loss;
|
||||
//
|
||||
// if(eIn-eOut >= 300){
|
||||
@ -76,7 +79,9 @@ public class NumassTransmission(
|
||||
// }
|
||||
|
||||
//trapping part
|
||||
val trap = (arguments[trap] ?: 1.0) * trapFunc(ei, ef, arguments)
|
||||
//
|
||||
//val trap = (arguments[trap] ?: 1.0) * trapFunc(ei, ef, arguments)
|
||||
val trap = 0.0
|
||||
return loss + trap
|
||||
}
|
||||
|
||||
@ -86,7 +91,7 @@ public class NumassTransmission(
|
||||
|
||||
private val cache = HashMap<Int, Function1D<Double>>()
|
||||
|
||||
private const val ION_POTENTIAL = 15.4//eV
|
||||
private const val ION_POTENTIAL = 13.6//eV
|
||||
|
||||
|
||||
private fun getX(arguments: Map<Symbol, Double>, eIn: Double, adjustX: Boolean = false): Double {
|
||||
@ -331,6 +336,7 @@ public class NumassTransmission(
|
||||
val z = eps - pos1
|
||||
A1 * exp(-2.0 * z * z / w1 / w1)
|
||||
}
|
||||
|
||||
else -> {
|
||||
val z = 4.0 * (eps - pos2) * (eps - pos2)
|
||||
A2 / (1 + z / w2 / w2)
|
||||
@ -399,7 +405,7 @@ public class NumassTransmission(
|
||||
// return getSingleScatterFunction(exPos, ionPos, exW, ionW, exIonRatio)
|
||||
// }
|
||||
|
||||
public val trapFunction: (Double, Double) -> Double = { ei: Double, ef: Double ->
|
||||
public val trapFunction: Kernel = Kernel { ei: Double, ef: Double, _ ->
|
||||
val eps = ei - ef
|
||||
if (eps > 10) {
|
||||
1.86e-04 * exp(-eps / 25.0) + 5.5e-05
|
||||
|
@ -3,28 +3,51 @@ package ru.inr.mass.scripts
|
||||
import ru.inr.mass.models.*
|
||||
import ru.inr.mass.workspace.buffer
|
||||
import ru.inr.mass.workspace.fitWith
|
||||
import ru.inr.mass.workspace.generate
|
||||
import space.kscience.kmath.data.XYColumnarData
|
||||
import space.kscience.kmath.data.XYErrorColumnarData
|
||||
import space.kscience.kmath.data.indices
|
||||
import space.kscience.kmath.expressions.Symbol
|
||||
import space.kscience.kmath.expressions.derivative
|
||||
import space.kscience.kmath.misc.UnstableKMathAPI
|
||||
import space.kscience.kmath.operations.asSequence
|
||||
import space.kscience.kmath.optimization.*
|
||||
import space.kscience.kmath.real.step
|
||||
import space.kscience.kmath.structures.asBuffer
|
||||
import space.kscience.plotly.*
|
||||
import space.kscience.plotly.models.ScatterMode
|
||||
import java.io.File
|
||||
import kotlin.math.pow
|
||||
|
||||
fun parse(filename: String): XYErrorColumnarData<Double, Double, Double> {
|
||||
val x: MutableList<Double> = mutableListOf()
|
||||
val y: MutableList<Double> = mutableListOf()
|
||||
val errors: MutableList<Double> = mutableListOf()
|
||||
|
||||
File(filename).forEachLine {
|
||||
val array = it.split("\t").map { it.toDouble() }
|
||||
x.add(array[0])
|
||||
y.add(array[1])
|
||||
//errors.add(array[2])
|
||||
errors.add(1.0)
|
||||
}
|
||||
return XYErrorColumnarData.of(
|
||||
x.asBuffer(),
|
||||
y.asBuffer(),
|
||||
errors.map { it }.asBuffer()
|
||||
)
|
||||
}
|
||||
|
||||
@OptIn(UnstableKMathAPI::class)
|
||||
suspend fun main() {
|
||||
val spectrum: NBkgSpectrum = SterileNeutrinoSpectrum(
|
||||
fss = FSS.default,
|
||||
// resolution = NumassResolution(8.2e-5)
|
||||
// fss = FSS.default,
|
||||
transmission = NumassTransmission(NumassTransmission.trapFunction),
|
||||
resolution = NumassResolution(1.7e-4)
|
||||
).withNBkg()
|
||||
|
||||
val args: Map<Symbol, Double> = mapOf(
|
||||
NBkgSpectrum.norm to 8e5,
|
||||
NBkgSpectrum.bkg to 2.0,
|
||||
NBkgSpectrum.norm to 319034.0,
|
||||
NBkgSpectrum.bkg to 0.029,
|
||||
NumassBeta.mnu2 to 0.0,
|
||||
NumassBeta.e0 to 18575.0,
|
||||
NumassBeta.msterile2 to 1000.0.pow(2),
|
||||
@ -33,46 +56,75 @@ suspend fun main() {
|
||||
NumassTransmission.trap to 1.0
|
||||
)
|
||||
|
||||
listOf(NBkgSpectrum.norm, NBkgSpectrum.bkg, NumassBeta.e0).forEach {
|
||||
println("$it: ${spectrum.derivative(it).invoke(14000.0, args)}")
|
||||
}
|
||||
// listOf(NBkgSpectrum.norm, NBkgSpectrum.bkg, NumassBeta.e0).forEach {
|
||||
// println("$it: ${spectrum.derivative(it).invoke(14000.0, args)}")
|
||||
// }
|
||||
|
||||
val timePerPoint = 30.0
|
||||
// val timePerPoint = 30.0
|
||||
//
|
||||
// val strategy = (12000.0..19000.0 step 100.0).asSequence().associateWith { timePerPoint }
|
||||
|
||||
val strategy = (12000.0..19000.0 step 100.0).asSequence().associateWith { timePerPoint }
|
||||
val data = parse("/home/sabina/Numass/Fit/tr5wobkg")
|
||||
|
||||
val generatedData = spectrum.generate(strategy, args)
|
||||
//val fit: XYFit = data.fitWith(
|
||||
// optimizer = QowOptimizer,
|
||||
// modelExpression = spectrum,
|
||||
// startingPoint = args,
|
||||
// OptimizationParameters(NBkgSpectrum.norm, NBkgSpectrum.bkg),
|
||||
// OptimizationIterations(20)
|
||||
//)
|
||||
|
||||
val fit: XYFit = generatedData.fitWith(
|
||||
optimizer = QowOptimizer,
|
||||
modelExpression = spectrum,
|
||||
startingPoint = args + mapOf(NBkgSpectrum.norm to 8.1e5),
|
||||
OptimizationParameters(NBkgSpectrum.norm, NBkgSpectrum.bkg, NumassBeta.e0),
|
||||
OptimizationIterations(20)
|
||||
)
|
||||
//println("Chi squared/dof: ${fit.chiSquaredOrNull}/${fit.dof}")
|
||||
|
||||
println("Chi squared/dof: ${fit.chiSquaredOrNull}/${fit.dof}")
|
||||
|
||||
Plotly.plot {
|
||||
scatter {
|
||||
name = "Generated"
|
||||
Plotly.page {
|
||||
plot {
|
||||
/* scatter {
|
||||
name = "Data"
|
||||
mode = ScatterMode.markers
|
||||
x.buffer = generatedData.x
|
||||
y.buffer = generatedData.y
|
||||
}
|
||||
x.buffer = data.x
|
||||
y.buffer = data.y
|
||||
}*/
|
||||
|
||||
scatter {
|
||||
name = "Initial"
|
||||
mode = ScatterMode.lines
|
||||
x.buffer = 12000.0..18600.0 step 50.0
|
||||
y.numbers = x.doubles.map { spectrum(it, args) }
|
||||
File("/home/sabina/Numass/Fit/output").printWriter().use { out ->
|
||||
y.numbers.forEach {
|
||||
out.println(it)
|
||||
}
|
||||
|
||||
scatter {
|
||||
}
|
||||
}
|
||||
}
|
||||
/* scatter {
|
||||
name = "Fit"
|
||||
mode = ScatterMode.lines
|
||||
x.buffer = 12000.0..18600.0 step 10.0
|
||||
y.numbers = x.doubles.map { spectrum(it, args + fit.resultPoint) }
|
||||
}
|
||||
}
|
||||
plot{
|
||||
scatter {
|
||||
name = "Residuals"
|
||||
mode = ScatterMode.markers
|
||||
x.buffer = data.x
|
||||
y.numbers = data.indices.map{
|
||||
val value = spectrum(data.x[it], args + fit.resultPoint)
|
||||
val dif = data.y[it] - value
|
||||
dif/data.yErr[it]
|
||||
}
|
||||
}
|
||||
}
|
||||
plot{
|
||||
histogram {
|
||||
x.numbers = data.indices.map{
|
||||
val value = spectrum(data.x[it], args + fit.resultPoint)
|
||||
val dif = data.y[it] - value
|
||||
dif/data.yErr[it]
|
||||
}
|
||||
name = "Res histo"
|
||||
}
|
||||
}*/
|
||||
}.makeFile()
|
||||
}
|
Loading…
Reference in New Issue
Block a user