numass-framework/numass-main/src/main/java/inr/numass/models/EmpiricalLossSpectrum.java

76 lines
2.8 KiB
Java
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright 2015 Alexander Nozik.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package inr.numass.models;
import hep.dataforge.exceptions.NamingException;
import hep.dataforge.exceptions.NotDefinedException;
import hep.dataforge.stat.parametric.AbstractParametricFunction;
import hep.dataforge.maths.integration.GaussRuleIntegrator;
import hep.dataforge.maths.integration.UnivariateIntegrator;
import hep.dataforge.values.NamedValueSet;
import java.util.List;
import org.apache.commons.math3.analysis.BivariateFunction;
import org.apache.commons.math3.analysis.UnivariateFunction;
/**
*
* @author Darksnake
*/
public class EmpiricalLossSpectrum extends AbstractParametricFunction {
public static String[] names = {"X", "shift"};
private final UnivariateFunction transmission;
private final double eMax;
private final UnivariateIntegrator integrator;
public EmpiricalLossSpectrum(UnivariateFunction transmission, double eMax) throws NamingException {
super(names);
integrator = new GaussRuleIntegrator(300);
this.transmission = transmission;
this.eMax = eMax;
}
@Override
public double derivValue(String parName, double x, NamedValueSet set) {
throw new NotDefinedException();
}
@Override
public double value(double U, NamedValueSet set) {
if (U >= eMax) {
return 0;
}
double X = set.getDouble("X");
final double shift = set.getDouble("shift");
//FIXME тут толщины усреднены по длине источника, а надо брать чистого Пуассона
final List<Double> probs = LossCalculator.instance().getGunLossProbabilities(X);
final double noLossProb = probs.get(0);
final BivariateFunction lossFunction = (Ei, Ef) -> {
return LossCalculator.instance().getLossValue(probs, Ei, Ef);
};
UnivariateFunction integrand = (double x) -> transmission.value(x) * lossFunction.value(x, U - shift);
return noLossProb * transmission.value(U - shift) + integrator.integrate(integrand, U, eMax);
}
@Override
public boolean providesDeriv(String name) {
return false;
}
}