249 lines
9.5 KiB
Java
249 lines
9.5 KiB
Java
/*
|
||
* Copyright 2015 Alexander Nozik.
|
||
*
|
||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||
* you may not use this file except in compliance with the License.
|
||
* You may obtain a copy of the License at
|
||
*
|
||
* http://www.apache.org/licenses/LICENSE-2.0
|
||
*
|
||
* Unless required by applicable law or agreed to in writing, software
|
||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
* See the License for the specific language governing permissions and
|
||
* limitations under the License.
|
||
*/
|
||
package inr.numass.models;
|
||
|
||
import hep.dataforge.stat.parametric.AbstractParametricFunction;
|
||
import hep.dataforge.stat.parametric.ParametricFunction;
|
||
import hep.dataforge.names.NamedUtils;
|
||
import hep.dataforge.values.NamedValueSet;
|
||
import hep.dataforge.values.ValueProvider;
|
||
import java.util.ArrayList;
|
||
import java.util.List;
|
||
import org.apache.commons.math3.analysis.BivariateFunction;
|
||
import org.slf4j.LoggerFactory;
|
||
|
||
/**
|
||
* Modular spectrum for any source spectrum with separate calculation for
|
||
* different transmission components
|
||
*
|
||
* @author Darksnake
|
||
*/
|
||
public class ModularSpectrum extends AbstractParametricFunction {
|
||
|
||
private static final String[] list = {"X", "trap"};
|
||
private LossCalculator calculator;
|
||
List<NamedSpectrumCaching> cacheList;
|
||
NamedSpectrumCaching trappingCache;
|
||
BivariateFunction resolution;
|
||
RangedNamedSetSpectrum sourceSpectrum;
|
||
BivariateFunction trappingFunction;
|
||
boolean caching = false;
|
||
double cacheMin;
|
||
double cacheMax;
|
||
|
||
/**
|
||
*
|
||
* @param source
|
||
* @param resolution
|
||
* @param cacheMin - нижняя граница кэширования. Должна быть с небольшим
|
||
* запасом по отношению к данным
|
||
* @param cacheMax - верхняя граница кэширования.
|
||
*/
|
||
public ModularSpectrum(RangedNamedSetSpectrum source, BivariateFunction resolution, double cacheMin, double cacheMax) {
|
||
super(NamedUtils.combineNamesWithEquals(list, source.namesAsArray()));
|
||
if (cacheMin >= cacheMax) {
|
||
throw new IllegalArgumentException();
|
||
}
|
||
this.cacheMin = cacheMin;
|
||
this.cacheMax = cacheMax;
|
||
this.resolution = resolution;
|
||
this.calculator = LossCalculator.instance();
|
||
this.sourceSpectrum = source;
|
||
setupCache();
|
||
}
|
||
|
||
public ModularSpectrum(RangedNamedSetSpectrum source, BivariateFunction resolution) {
|
||
this(source, resolution, Double.NaN, Double.NaN);
|
||
}
|
||
|
||
/**
|
||
*
|
||
* @param source
|
||
* @param resA - относительная ширина разрешения
|
||
* @param cacheMin - нижняя граница кэширования. Должна быть с небольшим
|
||
* запасом по отношению к данным
|
||
* @param cacheMax - верхняя граница кэширования, может быть без запаса.
|
||
*/
|
||
public ModularSpectrum(RangedNamedSetSpectrum source, double resA, double cacheMin, double cacheMax) {
|
||
this(source, new ResolutionFunction(resA), cacheMin, cacheMax);
|
||
}
|
||
|
||
public ModularSpectrum(RangedNamedSetSpectrum source, double resA) {
|
||
this(source, new ResolutionFunction(resA));
|
||
}
|
||
|
||
public void setTrappingFunction(BivariateFunction trappingFunction) {
|
||
this.trappingFunction = trappingFunction;
|
||
LoggerFactory.getLogger(getClass()).info("Recalculating modular spectrum cache");
|
||
setupCache();
|
||
}
|
||
|
||
|
||
|
||
/**
|
||
* Отдельный метод нужен на случай, если бета-спектр(FSS) или разрешение
|
||
* будут меняться в процессе
|
||
*/
|
||
private void setupCache() {
|
||
|
||
//обновляем кэши для трэппинга и упругого прохождения
|
||
//Using external trappingCache function if provided
|
||
BivariateFunction trapFunc = trappingFunction != null ? trappingFunction : LossCalculator.getTrapFunction();
|
||
BivariateFunction trapRes = new LossResConvolution(trapFunc, resolution);
|
||
|
||
ParametricFunction elasticSpectrum = new TransmissionConvolution(sourceSpectrum, resolution, sourceSpectrum);
|
||
ParametricFunction trapSpectrum = new TransmissionConvolution(sourceSpectrum, trapRes, sourceSpectrum);
|
||
/**
|
||
* обнуляем кэш рассеяния
|
||
*/
|
||
cacheList = new ArrayList<>();
|
||
//добавляем нулевой порядок - упругое рассеяние
|
||
|
||
TritiumSpectrumCaching elasticCache = new TritiumSpectrumCaching(elasticSpectrum, cacheMin, cacheMax);
|
||
elasticCache.setCachingEnabled(caching);
|
||
cacheList.add(elasticCache);
|
||
this.trappingCache = new TritiumSpectrumCaching(trapSpectrum, cacheMin, cacheMax);
|
||
this.trappingCache.setCachingEnabled(caching);
|
||
}
|
||
|
||
/**
|
||
* Обновляем кэш рассеяния если требуемый порядок выше, чем тот, что есть
|
||
*
|
||
* @param order
|
||
*/
|
||
private void updateScatterCache(int order) {
|
||
if (order >= cacheList.size()) {
|
||
LoggerFactory.getLogger(getClass())
|
||
.debug("Updating scatter cache up to order of '{}'", order);
|
||
// здесь можно сэкономить вызовы, начиная с cacheList.size(), но надо это?
|
||
for (int i = 1; i < order + 1; i++) {
|
||
BivariateFunction loss = calculator.getLossFunction(i);
|
||
BivariateFunction lossRes = new LossResConvolution(loss, resolution);
|
||
ParametricFunction inelasticSpectrum = new TransmissionConvolution(sourceSpectrum, lossRes, sourceSpectrum);
|
||
TritiumSpectrumCaching spCatch = new TritiumSpectrumCaching(inelasticSpectrum, cacheMin, cacheMax);
|
||
spCatch.setCachingEnabled(caching);
|
||
spCatch.setSuppressWarnings(true);
|
||
//TODO сделать пороверку
|
||
cacheList.add(i, spCatch);
|
||
}
|
||
}
|
||
}
|
||
|
||
@Override
|
||
public double derivValue(String parName, double U, NamedValueSet set) {
|
||
if (U >= sourceSpectrum.max(set)) {
|
||
return 0;
|
||
}
|
||
double X = this.getX(set);
|
||
switch (parName) {
|
||
case "X":
|
||
List<Double> probDerivs = calculator.getLossProbDerivs(X);
|
||
updateScatterCache(probDerivs.size() - 1);
|
||
double derivSum = 0;
|
||
|
||
for (int i = 0; i < probDerivs.size(); i++) {
|
||
derivSum += probDerivs.get(i) * cacheList.get(i).value(U, set);
|
||
}
|
||
|
||
return derivSum;
|
||
case "trap":
|
||
return this.trappingCache.value(U, set);
|
||
default:
|
||
if (sourceSpectrum.names().contains(parName)) {
|
||
List<Double> probs = calculator.getLossProbabilities(X);
|
||
updateScatterCache(probs.size() - 1);
|
||
double sum = 0;
|
||
|
||
for (int i = 0; i < probs.size(); i++) {
|
||
sum += probs.get(i) * cacheList.get(i).derivValue(parName, U, set);
|
||
}
|
||
|
||
sum += this.getTrap(set) * this.trappingCache.derivValue(parName, U, set);
|
||
return sum;
|
||
} else {
|
||
return 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
private double getTrap(ValueProvider set) {
|
||
return set.getDouble("trap");
|
||
}
|
||
|
||
private double getX(ValueProvider set) {
|
||
return set.getDouble("X");
|
||
}
|
||
|
||
@Override
|
||
public boolean providesDeriv(String name) {
|
||
return sourceSpectrum.providesDeriv(name);
|
||
}
|
||
|
||
/**
|
||
* Set the boundaries and recalculate cache
|
||
*
|
||
* @param cacheMin
|
||
* @param cacheMax
|
||
*/
|
||
public void setCachingBoundaries(double cacheMin, double cacheMax) {
|
||
this.cacheMin = cacheMin;
|
||
this.cacheMax = cacheMax;
|
||
setupCache();
|
||
}
|
||
|
||
public final void setCaching(boolean caching) {
|
||
if (caching && (cacheMin == Double.NaN || cacheMax == Double.NaN)) {
|
||
throw new IllegalStateException("Cahing boundaries are not defined");
|
||
}
|
||
|
||
this.caching = caching;
|
||
this.trappingCache.setCachingEnabled(caching);
|
||
this.cacheList.stream().forEach((sp) -> {
|
||
sp.setCachingEnabled(caching);
|
||
});
|
||
}
|
||
|
||
/**
|
||
* Suppress warnings about cache recalculation
|
||
* @param suppress
|
||
*/
|
||
public void setSuppressWarnings(boolean suppress) {
|
||
this.trappingCache.setSuppressWarnings(suppress);
|
||
this.cacheList.stream().forEach((sp) -> {
|
||
sp.setSuppressWarnings(suppress);
|
||
});
|
||
}
|
||
|
||
@Override
|
||
public double value(double U, NamedValueSet set) {
|
||
if (U >= sourceSpectrum.max(set)) {
|
||
return 0;
|
||
}
|
||
double X = this.getX(set);
|
||
|
||
List<Double> probs = calculator.getLossProbabilities(X);
|
||
updateScatterCache(probs.size() - 1);
|
||
double res = 0;
|
||
|
||
for (int i = 0; i < probs.size(); i++) {
|
||
res += probs.get(i) * cacheList.get(i).value(U, set);
|
||
}
|
||
|
||
res += this.getTrap(set) * this.trappingCache.value(U, set);
|
||
return res;
|
||
}
|
||
}
|