Changes in model manager
This commit is contained in:
parent
ec844b7f5c
commit
fd8255a654
@ -113,7 +113,7 @@ public class TimeAnalyzer extends AbstractAnalyzer {
|
||||
|
||||
double countRate = (t1 * cr1 + t2 * cr2) / (t1 + t2);
|
||||
|
||||
double countRateErr = Math.sqrt(Math.pow(t1 * err1 / (t1 + t2), 2) + Math.pow(t2 * err1 / (t1 + t2), 2));
|
||||
double countRateErr = Math.sqrt(Math.pow(t1 * err1 / (t1 + t2), 2) + Math.pow(t2 * err2 / (t1 + t2), 2));
|
||||
|
||||
|
||||
return ValueMap.of(NAME_LIST,
|
||||
|
@ -49,7 +49,7 @@ Meta paramMeta = Grind.buildMeta("params") {
|
||||
trap(value: 1.089, err: 0.05)
|
||||
}
|
||||
|
||||
XYModel model = mm.buildModel(modelMeta)
|
||||
XYModel model = mm.getModel(modelMeta)
|
||||
|
||||
ParamSet allPars = ParamSet.fromMeta(paramMeta);
|
||||
|
||||
|
@ -8,7 +8,7 @@ import hep.dataforge.grind.GrindShell
|
||||
import hep.dataforge.kodex.fx.plots.PlotManager
|
||||
import hep.dataforge.meta.Meta
|
||||
import inr.numass.NumassPlugin
|
||||
import inr.numass.actions.TimeAnalyzedAction
|
||||
import inr.numass.actions.TimeAnalyzerAction
|
||||
import inr.numass.data.NumassDataUtils
|
||||
import inr.numass.data.api.NumassPoint
|
||||
import inr.numass.data.api.NumassSet
|
||||
@ -70,7 +70,7 @@ new GrindShell(ctx).eval {
|
||||
// }
|
||||
// def data = dataBuilder.build()
|
||||
|
||||
def result = new TimeAnalyzedAction().run(ctx, data, meta);
|
||||
def result = new TimeAnalyzerAction().run(ctx, data, meta);
|
||||
|
||||
result.computeAll();
|
||||
|
||||
|
@ -6,7 +6,7 @@ import hep.dataforge.grind.Grind
|
||||
import hep.dataforge.grind.GrindShell
|
||||
import hep.dataforge.kodex.fx.plots.PlotManager
|
||||
import inr.numass.NumassPlugin
|
||||
import inr.numass.actions.TimeAnalyzedAction
|
||||
import inr.numass.actions.TimeAnalyzerAction
|
||||
import inr.numass.data.SimpleChainGenerator
|
||||
import inr.numass.data.api.SimpleNumassPoint
|
||||
import org.apache.commons.math3.random.JDKRandomGenerator
|
||||
@ -39,5 +39,5 @@ new GrindShell(ctx).eval {
|
||||
|
||||
def meta = Grind.buildMeta(plotHist: false)
|
||||
|
||||
new TimeAnalyzedAction().simpleRun(point, meta);
|
||||
new TimeAnalyzerAction().simpleRun(point, meta);
|
||||
}
|
@ -1,33 +0,0 @@
|
||||
package inr.numass.actions;
|
||||
|
||||
import hep.dataforge.actions.OneToOneAction;
|
||||
import hep.dataforge.context.Context;
|
||||
import hep.dataforge.description.TypedActionDef;
|
||||
import hep.dataforge.description.ValueDef;
|
||||
import hep.dataforge.meta.Laminate;
|
||||
import hep.dataforge.tables.Table;
|
||||
import inr.numass.NumassUtils;
|
||||
import inr.numass.data.analyzers.SmartAnalyzer;
|
||||
import inr.numass.data.api.NumassAnalyzer;
|
||||
import inr.numass.data.api.NumassSet;
|
||||
|
||||
import static hep.dataforge.values.ValueType.NUMBER;
|
||||
import static hep.dataforge.values.ValueType.STRING;
|
||||
|
||||
/**
|
||||
* The action performs the readout of data and collection of count rate into a table
|
||||
* Created by darksnake on 11.07.2017.
|
||||
*/
|
||||
@TypedActionDef(name = "numass.analyze", inputType = NumassSet.class, outputType = Table.class)
|
||||
@ValueDef(name = "window.lo", type = {NUMBER, STRING}, def = "0", info = "Lower bound for window")
|
||||
@ValueDef(name = "window.up", type = {NUMBER, STRING}, def = "10000", info = "Upper bound for window")
|
||||
public class AnalyzeDataAction extends OneToOneAction<NumassSet, Table> {
|
||||
@Override
|
||||
protected Table execute(Context context, String name, NumassSet input, Laminate inputMeta) {
|
||||
//TODO add processor here
|
||||
NumassAnalyzer analyzer = new SmartAnalyzer();
|
||||
Table res = analyzer.analyzeSet(input, inputMeta);
|
||||
output(context, name, stream -> NumassUtils.INSTANCE.write(stream, inputMeta, res));
|
||||
return res;
|
||||
}
|
||||
}
|
@ -1,128 +0,0 @@
|
||||
/*
|
||||
* Copyright 2015 Alexander Nozik.
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
package inr.numass.actions;
|
||||
|
||||
import hep.dataforge.actions.GroupBuilder;
|
||||
import hep.dataforge.actions.ManyToOneAction;
|
||||
import hep.dataforge.context.Context;
|
||||
import hep.dataforge.data.DataNode;
|
||||
import hep.dataforge.description.NodeDef;
|
||||
import hep.dataforge.description.TypedActionDef;
|
||||
import hep.dataforge.meta.Laminate;
|
||||
import hep.dataforge.meta.Meta;
|
||||
import hep.dataforge.tables.*;
|
||||
import hep.dataforge.values.Values;
|
||||
import inr.numass.NumassUtils;
|
||||
import inr.numass.data.api.NumassAnalyzer;
|
||||
import inr.numass.data.api.NumassPoint;
|
||||
|
||||
import java.util.*;
|
||||
|
||||
/**
|
||||
* @author Darksnake
|
||||
*/
|
||||
@TypedActionDef(name = "numass.merge", inputType = Table.class, outputType = Table.class, info = "Merge different numass data files into one.")
|
||||
@NodeDef(name = "grouping", info = "The definition of grouping rule for this merge", from = "method::hep.dataforge.actions.GroupBuilder.byMeta")
|
||||
public class MergeDataAction extends ManyToOneAction<Table, Table> {
|
||||
|
||||
public static final String MERGE_NAME = "mergeName";
|
||||
public static String[] parnames = {NumassPoint.HV_KEY, NumassPoint.LENGTH_KEY, NumassAnalyzer.COUNT_KEY, NumassAnalyzer.COUNT_RATE_KEY, NumassAnalyzer.COUNT_RATE_ERROR_KEY};
|
||||
|
||||
@Override
|
||||
protected List<DataNode<Table>> buildGroups(Context context, DataNode<Table> input, Meta actionMeta) {
|
||||
Meta meta = inputMeta(context, input.meta(), actionMeta);
|
||||
List<DataNode<Table>> groups;
|
||||
if (meta.hasValue("grouping.byValue")) {
|
||||
groups = super.buildGroups(context, input, actionMeta);
|
||||
} else {
|
||||
groups = GroupBuilder.byValue(MERGE_NAME, meta.getString(MERGE_NAME, input.getName())).group(input);
|
||||
}
|
||||
return groups;
|
||||
}
|
||||
|
||||
@Override
|
||||
protected Table execute(Context context, String nodeName, Map<String, Table> data, Laminate meta) {
|
||||
Table res = mergeDataSets(data.values());
|
||||
return new ListTable(res.getFormat(), TableTransform.sort(res, NumassPoint.HV_KEY, true));
|
||||
}
|
||||
|
||||
@Override
|
||||
protected void afterGroup(Context context, String groupName, Meta outputMeta, Table output) {
|
||||
output(context, groupName, stream -> NumassUtils.INSTANCE.write(stream, outputMeta, output));
|
||||
}
|
||||
|
||||
private Values mergeDataPoints(Values dp1, Values dp2) {
|
||||
if (dp1 == null) {
|
||||
return dp2;
|
||||
}
|
||||
if (dp2 == null) {
|
||||
return dp1;
|
||||
}
|
||||
|
||||
double voltage = dp1.getValue(NumassPoint.HV_KEY).doubleValue();
|
||||
double t1 = dp1.getValue(NumassPoint.LENGTH_KEY).doubleValue();
|
||||
double t2 = dp2.getValue(NumassPoint.LENGTH_KEY).doubleValue();
|
||||
double time = t1 + t2;
|
||||
|
||||
long total = dp1.getValue(NumassAnalyzer.COUNT_KEY).intValue() + dp2.getValue(NumassAnalyzer.COUNT_KEY).intValue();
|
||||
|
||||
double cr1 = dp1.getValue(NumassAnalyzer.COUNT_RATE_KEY).doubleValue();
|
||||
double cr2 = dp2.getValue(NumassAnalyzer.COUNT_RATE_KEY).doubleValue();
|
||||
|
||||
double cr = (cr1 * t1 + cr2 * t2) / (t1 + t2);
|
||||
|
||||
double err1 = dp1.getDouble(NumassAnalyzer.COUNT_RATE_ERROR_KEY);
|
||||
double err2 = dp2.getDouble(NumassAnalyzer.COUNT_RATE_ERROR_KEY);
|
||||
|
||||
// абсолютные ошибки складываются квадратично
|
||||
double crErr = Math.sqrt(err1 * err1 * t1 * t1 + err2 * err2 * t2 * t2) / time;
|
||||
|
||||
ValueMap.Builder map = ValueMap.of(parnames, voltage, time, total, cr, crErr).builder();
|
||||
|
||||
return map.build();
|
||||
}
|
||||
|
||||
private Table mergeDataSets(Collection<Table> ds) {
|
||||
//Сливаем все точки в один набор данных
|
||||
Map<Double, List<Values>> points = new LinkedHashMap<>();
|
||||
for (Table d : ds) {
|
||||
if (!d.getFormat().getNames().contains(parnames)) {
|
||||
throw new IllegalArgumentException();
|
||||
}
|
||||
for (Values dp : d) {
|
||||
double uset = dp.getValue(NumassPoint.HV_KEY).doubleValue();
|
||||
if (!points.containsKey(uset)) {
|
||||
points.put(uset, new ArrayList<>());
|
||||
}
|
||||
points.get(uset).add(dp);
|
||||
}
|
||||
}
|
||||
|
||||
List<Values> res = new ArrayList<>();
|
||||
|
||||
points.entrySet().stream().map((entry) -> {
|
||||
Values curPoint = null;
|
||||
for (Values newPoint : entry.getValue()) {
|
||||
curPoint = mergeDataPoints(curPoint, newPoint);
|
||||
}
|
||||
return curPoint;
|
||||
}).forEach(res::add);
|
||||
|
||||
return new ListTable(MetaTableFormat.forNames(parnames), res);
|
||||
|
||||
}
|
||||
|
||||
}
|
@ -1,122 +0,0 @@
|
||||
/*
|
||||
* Copyright 2015 Alexander Nozik.
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
package inr.numass.actions;
|
||||
|
||||
import hep.dataforge.actions.GroupBuilder;
|
||||
import hep.dataforge.actions.ManyToOneAction;
|
||||
import hep.dataforge.context.Context;
|
||||
import hep.dataforge.data.DataNode;
|
||||
import hep.dataforge.description.TypedActionDef;
|
||||
import hep.dataforge.description.ValueDef;
|
||||
import hep.dataforge.meta.Laminate;
|
||||
import hep.dataforge.meta.Meta;
|
||||
import hep.dataforge.stat.fit.FitState;
|
||||
import hep.dataforge.tables.ListTable;
|
||||
import hep.dataforge.tables.MetaTableFormat;
|
||||
import hep.dataforge.tables.Table;
|
||||
import hep.dataforge.tables.ValueMap;
|
||||
import hep.dataforge.values.Value;
|
||||
import hep.dataforge.values.Values;
|
||||
import inr.numass.NumassUtils;
|
||||
|
||||
import java.util.Arrays;
|
||||
import java.util.List;
|
||||
import java.util.Map;
|
||||
|
||||
/**
|
||||
* @author Darksnake
|
||||
*/
|
||||
@TypedActionDef(name = "summary", inputType = FitState.class, outputType = Table.class, info = "Generate summary for fit results of different datasets.")
|
||||
@ValueDef(name = "parnames", multiple = true, required = true, info = "List of names of parameters for which summary should be done")
|
||||
public class SummaryAction extends ManyToOneAction<FitState, Table> {
|
||||
|
||||
public static final String SUMMARY_NAME = "sumName";
|
||||
|
||||
@Override
|
||||
@SuppressWarnings("unchecked")
|
||||
protected List<DataNode<Table>> buildGroups(Context context, DataNode input, Meta actionMeta) {
|
||||
Meta meta = inputMeta(context, input.meta(), actionMeta);
|
||||
List<DataNode<Table>> groups;
|
||||
if (meta.hasValue("grouping.byValue")) {
|
||||
groups = super.buildGroups(context, input, actionMeta);
|
||||
} else {
|
||||
groups = GroupBuilder.byValue(SUMMARY_NAME, meta.getString(SUMMARY_NAME, "summary")).group(input);
|
||||
}
|
||||
return groups;
|
||||
}
|
||||
|
||||
@Override
|
||||
protected Table execute(Context context, String nodeName, Map<String, FitState> input, Laminate meta) {
|
||||
String[] parNames;
|
||||
if (meta.hasValue("parnames")) {
|
||||
parNames = meta.getStringArray("parnames");
|
||||
} else {
|
||||
throw new RuntimeException("Infering parnames not suppoerted");
|
||||
}
|
||||
String[] names = new String[2 * parNames.length + 2];
|
||||
names[0] = "file";
|
||||
for (int i = 0; i < parNames.length; i++) {
|
||||
names[2 * i + 1] = parNames[i];
|
||||
names[2 * i + 2] = parNames[i] + "Err";
|
||||
}
|
||||
names[names.length - 1] = "chi2";
|
||||
|
||||
ListTable.Builder res = new ListTable.Builder(MetaTableFormat.forNames(names));
|
||||
|
||||
double[] weights = new double[parNames.length];
|
||||
Arrays.fill(weights, 0);
|
||||
double[] av = new double[parNames.length];
|
||||
Arrays.fill(av, 0);
|
||||
|
||||
input.forEach((String key, FitState value) -> {
|
||||
FitState state = value;
|
||||
Value[] values = new Value[names.length];
|
||||
values[0] = Value.of(key);
|
||||
for (int i = 0; i < parNames.length; i++) {
|
||||
Value val = Value.of(state.getParameters().getDouble(parNames[i]));
|
||||
values[2 * i + 1] = val;
|
||||
Value err = Value.of(state.getParameters().getError(parNames[i]));
|
||||
values[2 * i + 2] = err;
|
||||
double weight = 1 / err.doubleValue() / err.doubleValue();
|
||||
av[i] += val.doubleValue() * weight;
|
||||
weights[i] += weight;
|
||||
}
|
||||
values[values.length - 1] = Value.of(state.getChi2());
|
||||
Values point = ValueMap.of(names, (Object[]) values);
|
||||
res.row(point);
|
||||
});
|
||||
|
||||
Value[] averageValues = new Value[names.length];
|
||||
averageValues[0] = Value.of("average");
|
||||
averageValues[averageValues.length - 1] = Value.of(0);
|
||||
|
||||
for (int i = 0; i < parNames.length; i++) {
|
||||
averageValues[2 * i + 1] = Value.of(av[i] / weights[i]);
|
||||
averageValues[2 * i + 2] = Value.of(1 / Math.sqrt(weights[i]));
|
||||
}
|
||||
|
||||
res.row(ValueMap.of(names, (Object[]) averageValues));
|
||||
|
||||
return res.build();
|
||||
}
|
||||
|
||||
@Override
|
||||
protected void afterGroup(Context context, String groupName, Meta outputMeta, Table output) {
|
||||
output(context, groupName, stream -> NumassUtils.INSTANCE.write(stream, outputMeta, output));
|
||||
super.afterGroup(context, groupName, outputMeta, output);
|
||||
}
|
||||
|
||||
}
|
@ -1,181 +0,0 @@
|
||||
package inr.numass.actions;
|
||||
|
||||
import hep.dataforge.actions.OneToOneAction;
|
||||
import hep.dataforge.context.Context;
|
||||
import hep.dataforge.description.NodeDef;
|
||||
import hep.dataforge.description.TypedActionDef;
|
||||
import hep.dataforge.description.ValueDef;
|
||||
import hep.dataforge.meta.Laminate;
|
||||
import hep.dataforge.meta.Meta;
|
||||
import hep.dataforge.meta.MetaUtils;
|
||||
import hep.dataforge.names.Named;
|
||||
import hep.dataforge.tables.ColumnFormat;
|
||||
import hep.dataforge.tables.ColumnTable;
|
||||
import hep.dataforge.tables.ListColumn;
|
||||
import hep.dataforge.tables.Table;
|
||||
import hep.dataforge.values.Values;
|
||||
import inr.numass.NumassUtils;
|
||||
import inr.numass.NumassUtilsKt;
|
||||
import javafx.util.Pair;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.List;
|
||||
|
||||
import static hep.dataforge.values.ValueType.NUMBER;
|
||||
import static hep.dataforge.values.ValueType.STRING;
|
||||
import static inr.numass.data.api.NumassAnalyzer.COUNT_RATE_ERROR_KEY;
|
||||
import static inr.numass.data.api.NumassAnalyzer.COUNT_RATE_KEY;
|
||||
|
||||
/**
|
||||
* Apply corrections and transformations to analyzed data
|
||||
* Created by darksnake on 11.07.2017.
|
||||
*/
|
||||
@TypedActionDef(name = "numass.transform", inputType = Table.class, outputType = Table.class)
|
||||
@ValueDef(name = "correction",
|
||||
info = "An expression to correct count number depending on potential `U`, point length `T` and point itself as `point`")
|
||||
@ValueDef(name = "utransform", info = "Expression for voltage transformation. Uses U as input")
|
||||
@NodeDef(name = "correction", multiple = true, from = "method::inr.numass.actions.TransformDataAction.makeCorrection")
|
||||
public class TransformDataAction extends OneToOneAction<Table, Table> {
|
||||
|
||||
@Override
|
||||
protected Table execute(Context context, String name, Table input, Laminate meta) {
|
||||
|
||||
List<Correction> corrections = new ArrayList<>();
|
||||
|
||||
meta.optMeta("corrections").ifPresent(cors ->
|
||||
MetaUtils.nodeStream(cors)
|
||||
.map(Pair::getValue)
|
||||
.map(this::makeCorrection)
|
||||
.forEach(corrections::add)
|
||||
);
|
||||
|
||||
if (meta.hasValue("correction")) {
|
||||
final String correction = meta.getString("correction");
|
||||
corrections.add(point -> NumassUtilsKt.pointExpression(correction, point));
|
||||
}
|
||||
|
||||
|
||||
ColumnTable table = ColumnTable.copy(input);
|
||||
|
||||
for (Correction correction : corrections) {
|
||||
//adding correction columns
|
||||
if (!correction.isAnonimous()) {
|
||||
table = table.buildColumn(ColumnFormat.build(correction.getName(), NUMBER),
|
||||
correction::corr);
|
||||
if (correction.hasError()) {
|
||||
table = table.buildColumn(ColumnFormat.build(correction.getName() + ".err", NUMBER),
|
||||
correction::corrErr);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// adding original count rate and error columns
|
||||
table = table.addColumn(new ListColumn(ColumnFormat.build(COUNT_RATE_KEY + ".orig", NUMBER), table.getColumn
|
||||
(COUNT_RATE_KEY).stream()));
|
||||
table = table.addColumn(new ListColumn(ColumnFormat.build(COUNT_RATE_ERROR_KEY + ".orig", NUMBER), table
|
||||
.getColumn(COUNT_RATE_ERROR_KEY).stream()));
|
||||
|
||||
List<Double> cr = new ArrayList<>();
|
||||
List<Double> crErr = new ArrayList<>();
|
||||
|
||||
table.getRows().forEach(point -> {
|
||||
double correctionFactor = corrections.stream()
|
||||
.mapToDouble(cor -> cor.corr(point))
|
||||
.reduce((d1, d2) -> d1 * d2).orElse(1);
|
||||
double relativeCorrectionError = Math.sqrt(
|
||||
corrections.stream()
|
||||
.mapToDouble(cor -> cor.relativeErr(point))
|
||||
.reduce((d1, d2) -> d1 * d1 + d2 * d2).orElse(0)
|
||||
);
|
||||
double originalCR = point.getDouble(COUNT_RATE_KEY);
|
||||
double originalCRErr = point.getDouble(COUNT_RATE_ERROR_KEY);
|
||||
cr.add(originalCR * correctionFactor);
|
||||
if (relativeCorrectionError == 0) {
|
||||
crErr.add(originalCRErr * correctionFactor);
|
||||
} else {
|
||||
crErr.add(Math.sqrt(Math.pow(originalCRErr / originalCR, 2d) + Math.pow(relativeCorrectionError, 2d))
|
||||
* originalCR);
|
||||
}
|
||||
});
|
||||
|
||||
//replacing cr column
|
||||
Table res = table.addColumn(ListColumn.build(table.getColumn(COUNT_RATE_KEY).getFormat(), cr.stream()))
|
||||
.addColumn(ListColumn.build(table.getColumn(COUNT_RATE_ERROR_KEY).getFormat(), crErr.stream()));
|
||||
|
||||
output(context, name, stream -> NumassUtils.INSTANCE.write(stream, meta, res));
|
||||
return res;
|
||||
}
|
||||
|
||||
|
||||
@ValueDef(name = "value", type = {NUMBER, STRING}, info = "Value or function to multiply count rate")
|
||||
@ValueDef(name = "err", type = {NUMBER, STRING}, info = "error of the value")
|
||||
private Correction makeCorrection(Meta corrMeta) {
|
||||
final String expr = corrMeta.getString("value");
|
||||
final String errExpr = corrMeta.getString("err", "");
|
||||
return new Correction() {
|
||||
@Override
|
||||
public String getName() {
|
||||
return corrMeta.getString("name", corrMeta.getName());
|
||||
}
|
||||
|
||||
@Override
|
||||
public double corr(Values point) {
|
||||
return NumassUtilsKt.pointExpression(expr, point);
|
||||
}
|
||||
|
||||
@Override
|
||||
public double corrErr(Values point) {
|
||||
if (errExpr.isEmpty()) {
|
||||
return 0;
|
||||
} else {
|
||||
return NumassUtilsKt.pointExpression(errExpr, point);
|
||||
}
|
||||
}
|
||||
|
||||
@Override
|
||||
public boolean hasError() {
|
||||
return !errExpr.isEmpty();
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
private interface Correction extends Named {
|
||||
|
||||
@Override
|
||||
default String getName() {
|
||||
return "";
|
||||
}
|
||||
|
||||
/**
|
||||
* correction coefficient
|
||||
*
|
||||
* @param point
|
||||
* @return
|
||||
*/
|
||||
double corr(Values point);
|
||||
|
||||
/**
|
||||
* correction coefficient uncertainty
|
||||
*
|
||||
* @param point
|
||||
* @return
|
||||
*/
|
||||
default double corrErr(Values point) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
default boolean hasError() {
|
||||
return false;
|
||||
}
|
||||
|
||||
default double relativeErr(Values point) {
|
||||
double corrErr = corrErr(point);
|
||||
if (corrErr == 0) {
|
||||
return 0;
|
||||
} else {
|
||||
return corrErr / corr(point);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
@ -1,100 +0,0 @@
|
||||
/*
|
||||
* To change this license header, choose License Headers in Project Properties.
|
||||
* To change this template file, choose Tools | Templates
|
||||
* and open the template in the editor.
|
||||
*/
|
||||
package inr.numass.tasks;
|
||||
|
||||
import hep.dataforge.actions.GenericAction;
|
||||
import hep.dataforge.cache.CachePlugin;
|
||||
import hep.dataforge.context.Context;
|
||||
import hep.dataforge.data.DataNode;
|
||||
import hep.dataforge.data.DataTree;
|
||||
import hep.dataforge.description.NodeDef;
|
||||
import hep.dataforge.meta.Meta;
|
||||
import hep.dataforge.meta.MetaBuilder;
|
||||
import hep.dataforge.meta.Template;
|
||||
import hep.dataforge.tables.Table;
|
||||
import hep.dataforge.workspace.tasks.AbstractTask;
|
||||
import hep.dataforge.workspace.tasks.TaskModel;
|
||||
import inr.numass.actions.AnalyzeDataAction;
|
||||
import inr.numass.actions.MergeDataAction;
|
||||
import inr.numass.actions.MonitorCorrectAction;
|
||||
import inr.numass.actions.TransformDataAction;
|
||||
import inr.numass.data.api.NumassSet;
|
||||
|
||||
/**
|
||||
* Prepare data task
|
||||
*
|
||||
* @author Alexander Nozik
|
||||
*/
|
||||
@NodeDef(name = "prepare")
|
||||
@NodeDef(name = "monitor")
|
||||
@NodeDef(name = "merge")
|
||||
@Deprecated
|
||||
public class NumassPrepareTask extends AbstractTask<Table> {
|
||||
|
||||
@Override
|
||||
protected DataNode<Table> run(TaskModel model, DataNode<?> input) {
|
||||
Meta config = model.meta();
|
||||
Context context = model.getContext();
|
||||
|
||||
//acquiring initial data. Data node could not be empty
|
||||
DataNode<NumassSet> data = input.getCheckedNode("data", NumassSet.class);
|
||||
|
||||
//preparing table data
|
||||
Meta prepareMeta = config.getMeta("prepare");
|
||||
DataNode<Table> tables = runAction(new AnalyzeDataAction(), context, data, prepareMeta);
|
||||
|
||||
tables = runAction(new TransformDataAction(), context, tables, prepareMeta);
|
||||
|
||||
//intermediate caching
|
||||
tables = model.getContext().getFeature(CachePlugin.class).cacheNode("prepare", prepareMeta, tables);
|
||||
|
||||
if (config.hasMeta("monitor")) {
|
||||
Meta monitorMeta = config.getMeta("monitor");
|
||||
tables = runAction(new MonitorCorrectAction(), context, tables, monitorMeta);
|
||||
}
|
||||
|
||||
//merging if needed
|
||||
if (config.hasMeta("merge")) {
|
||||
DataTree.Builder<Table> resultBuilder = DataTree.builder(Table.class);
|
||||
DataTree.Builder<Table> tablesForMerge = new DataTree.Builder<>(tables);
|
||||
|
||||
|
||||
config.getMetaList("merge").forEach(mergeNode -> {
|
||||
Meta mergeMeta = Template.compileTemplate(mergeNode, config);
|
||||
DataNode<Table> mergeData = runAction(new MergeDataAction(), context, tablesForMerge.build(), mergeMeta);
|
||||
mergeData.dataStream().forEach(d -> {
|
||||
resultBuilder.putData("merge." + d.getName(), d.anonymize());
|
||||
});
|
||||
});
|
||||
tables = resultBuilder.build();
|
||||
}
|
||||
|
||||
return tables;
|
||||
}
|
||||
|
||||
@Override
|
||||
protected void buildModel(TaskModel.Builder model, Meta meta) {
|
||||
model.configure(
|
||||
new MetaBuilder()
|
||||
.putNode(meta.getMetaOrEmpty("prepare"))
|
||||
.putNode(meta.getMetaOrEmpty("monitor"))
|
||||
.putNode(meta.getMetaOrEmpty("merge"))
|
||||
|
||||
);
|
||||
|
||||
model.dependsOn("select", meta, "data");
|
||||
}
|
||||
|
||||
private <T, R> DataNode<R> runAction(GenericAction<T, R> action, Context context, DataNode<T> data, Meta meta) {
|
||||
return action.run(context, data, meta);
|
||||
}
|
||||
|
||||
@Override
|
||||
public String getName() {
|
||||
return "prepare";
|
||||
}
|
||||
|
||||
}
|
@ -23,7 +23,6 @@ import hep.dataforge.kodex.fx.plots.PlotContainer
|
||||
import hep.dataforge.maths.MathPlugin
|
||||
import hep.dataforge.meta.Meta
|
||||
import hep.dataforge.plots.jfreechart.JFreeChartFrame
|
||||
import hep.dataforge.stat.fit.FitManager
|
||||
import hep.dataforge.stat.models.ModelManager
|
||||
import hep.dataforge.stat.models.WeightedXYModel
|
||||
import hep.dataforge.stat.models.XYModel
|
||||
@ -43,36 +42,35 @@ import org.apache.commons.math3.util.FastMath
|
||||
@PluginDef(
|
||||
group = "inr.numass",
|
||||
name = "numass",
|
||||
dependsOn = arrayOf("hep.dataforge:math", "hep.dataforge:MINUIT"),
|
||||
dependsOn = arrayOf("hep.dataforge:math", "hep.dataforge:MINUIT", "hep.dataforge:actions"),
|
||||
support = false,
|
||||
info = "Numass data analysis tools"
|
||||
)
|
||||
class NumassPlugin : BasicPlugin() {
|
||||
|
||||
|
||||
override fun attach(context: Context) {
|
||||
// StorageManager.buildFrom(context);
|
||||
super.attach(context)
|
||||
context.pluginManager().load(NumassIO())
|
||||
val fm = context.getFeature(FitManager::class.java)
|
||||
loadModels(fm.modelManager)
|
||||
loadModels(context.getFeature(ModelManager::class.java))
|
||||
loadMath(MathPlugin.buildFrom(context))
|
||||
|
||||
val actions = context.pluginManager().getOrLoad(ActionManager::class.java)
|
||||
actions.attach(context)
|
||||
context.getFeature(ActionManager::class.java).apply {
|
||||
putTask(NumassFitScanTask::class.java)
|
||||
putTask(NumassFitScanSummaryTask::class.java)
|
||||
putTask(NumassFitSummaryTask::class.java)
|
||||
put(selectTask)
|
||||
put(analyzeTask)
|
||||
put(mergeTask)
|
||||
put(mergeEmptyTask)
|
||||
put(monitorTableTask)
|
||||
put(subtractEmptyTask)
|
||||
put(transformTask)
|
||||
put(filterTask)
|
||||
put(fitTask)
|
||||
put(plotFitTask)
|
||||
}
|
||||
|
||||
actions.putTask(NumassFitScanTask::class.java)
|
||||
actions.putTask(NumassFitScanSummaryTask::class.java)
|
||||
actions.putTask(NumassFitSummaryTask::class.java)
|
||||
actions.put(selectTask)
|
||||
actions.put(analyzeTask)
|
||||
actions.put(mergeTask)
|
||||
actions.put(mergeEmptyTask)
|
||||
actions.put(monitorTableTask)
|
||||
actions.put(subtractEmptyTask)
|
||||
actions.put(transformTask)
|
||||
actions.put(filterTask)
|
||||
actions.put(fitTask)
|
||||
}
|
||||
|
||||
private fun loadMath(math: MathPlugin) {
|
||||
@ -122,45 +120,45 @@ class NumassPlugin : BasicPlugin() {
|
||||
// return new XYModel(spectrum, getAdapter(an));
|
||||
// });
|
||||
|
||||
manager.addModel("scatter") { context, an ->
|
||||
val A = an.getDouble("resolution", 8.3e-5)!!//8.3e-5
|
||||
val from = an.getDouble("from", 0.0)!!
|
||||
val to = an.getDouble("to", 0.0)!!
|
||||
manager.addModel("scatter") { context, meta ->
|
||||
val A = meta.getDouble("resolution", 8.3e-5)!!//8.3e-5
|
||||
val from = meta.getDouble("from", 0.0)!!
|
||||
val to = meta.getDouble("to", 0.0)!!
|
||||
|
||||
val sp: ModularSpectrum
|
||||
if (from == to) {
|
||||
sp = ModularSpectrum(GaussSourceSpectrum(), A)
|
||||
sp = if (from == to) {
|
||||
ModularSpectrum(GaussSourceSpectrum(), A)
|
||||
} else {
|
||||
sp = ModularSpectrum(GaussSourceSpectrum(), A, from, to)
|
||||
ModularSpectrum(GaussSourceSpectrum(), A, from, to)
|
||||
}
|
||||
|
||||
val spectrum = NBkgSpectrum(sp)
|
||||
|
||||
XYModel(spectrum, getAdapter(an))
|
||||
XYModel(meta, getAdapter(meta), spectrum)
|
||||
}
|
||||
|
||||
manager.addModel("scatter-empiric") { context, an ->
|
||||
val eGun = an.getDouble("eGun", 19005.0)!!
|
||||
manager.addModel("scatter-empiric") { context, meta ->
|
||||
val eGun = meta.getDouble("eGun", 19005.0)!!
|
||||
|
||||
val interpolator = buildInterpolator(context, an, eGun)
|
||||
val interpolator = buildInterpolator(context, meta, eGun)
|
||||
|
||||
val loss = EmpiricalLossSpectrum(interpolator, eGun + 5)
|
||||
val spectrum = NBkgSpectrum(loss)
|
||||
|
||||
val weightReductionFactor = an.getDouble("weightReductionFactor", 2.0)!!
|
||||
val weightReductionFactor = meta.getDouble("weightReductionFactor", 2.0)!!
|
||||
|
||||
WeightedXYModel(spectrum, getAdapter(an)) { dp -> weightReductionFactor }
|
||||
WeightedXYModel(meta, getAdapter(meta), spectrum) { dp -> weightReductionFactor }
|
||||
}
|
||||
|
||||
manager.addModel("scatter-empiric-variable") { context, an ->
|
||||
val eGun = an.getDouble("eGun", 19005.0)!!
|
||||
manager.addModel("scatter-empiric-variable") { context, meta ->
|
||||
val eGun = meta.getDouble("eGun", 19005.0)!!
|
||||
|
||||
//builder transmisssion with given data, annotation and smoothing
|
||||
val interpolator = buildInterpolator(context, an, eGun)
|
||||
val interpolator = buildInterpolator(context, meta, eGun)
|
||||
|
||||
val loss = VariableLossSpectrum.withData(interpolator, eGun + 5)
|
||||
|
||||
val tritiumBackground = an.getDouble("tritiumBkg", 0.0)!!
|
||||
val tritiumBackground = meta.getDouble("tritiumBkg", 0.0)!!
|
||||
|
||||
val spectrum: NBkgSpectrum
|
||||
if (tritiumBackground == 0.0) {
|
||||
@ -169,19 +167,17 @@ class NumassPlugin : BasicPlugin() {
|
||||
spectrum = CustomNBkgSpectrum.tritiumBkgSpectrum(loss, tritiumBackground)
|
||||
}
|
||||
|
||||
val weightReductionFactor = an.getDouble("weightReductionFactor", 2.0)!!
|
||||
val weightReductionFactor = meta.getDouble("weightReductionFactor", 2.0)!!
|
||||
|
||||
val res = WeightedXYModel(spectrum, getAdapter(an)) { dp -> weightReductionFactor }
|
||||
res.meta = an
|
||||
res
|
||||
WeightedXYModel(meta, getAdapter(meta), spectrum) { dp -> weightReductionFactor }
|
||||
}
|
||||
|
||||
manager.addModel("scatter-analytic-variable") { context, an ->
|
||||
val eGun = an.getDouble("eGun", 19005.0)!!
|
||||
manager.addModel("scatter-analytic-variable") { context, meta ->
|
||||
val eGun = meta.getDouble("eGun", 19005.0)!!
|
||||
|
||||
val loss = VariableLossSpectrum.withGun(eGun + 5)
|
||||
|
||||
val tritiumBackground = an.getDouble("tritiumBkg", 0.0)!!
|
||||
val tritiumBackground = meta.getDouble("tritiumBkg", 0.0)!!
|
||||
|
||||
val spectrum: NBkgSpectrum
|
||||
if (tritiumBackground == 0.0) {
|
||||
@ -190,39 +186,37 @@ class NumassPlugin : BasicPlugin() {
|
||||
spectrum = CustomNBkgSpectrum.tritiumBkgSpectrum(loss, tritiumBackground)
|
||||
}
|
||||
|
||||
XYModel(spectrum, getAdapter(an))
|
||||
XYModel(meta, getAdapter(meta), spectrum)
|
||||
}
|
||||
|
||||
manager.addModel("scatter-empiric-experimental") { context, an ->
|
||||
val eGun = an.getDouble("eGun", 19005.0)!!
|
||||
manager.addModel("scatter-empiric-experimental") { context, meta ->
|
||||
val eGun = meta.getDouble("eGun", 19005.0)!!
|
||||
|
||||
//builder transmisssion with given data, annotation and smoothing
|
||||
val interpolator = buildInterpolator(context, an, eGun)
|
||||
val interpolator = buildInterpolator(context, meta, eGun)
|
||||
|
||||
val smoothing = an.getDouble("lossSmoothing", 0.3)!!
|
||||
val smoothing = meta.getDouble("lossSmoothing", 0.3)!!
|
||||
|
||||
val loss = ExperimentalVariableLossSpectrum.withData(interpolator, eGun + 5, smoothing)
|
||||
|
||||
val spectrum = NBkgSpectrum(loss)
|
||||
|
||||
val weightReductionFactor = an.getDouble("weightReductionFactor", 2.0)!!
|
||||
val weightReductionFactor = meta.getDouble("weightReductionFactor", 2.0)!!
|
||||
|
||||
val res = WeightedXYModel(spectrum, getAdapter(an)) { dp -> weightReductionFactor }
|
||||
res.meta = an
|
||||
res
|
||||
WeightedXYModel(meta, getAdapter(meta), spectrum) { dp -> weightReductionFactor }
|
||||
}
|
||||
|
||||
manager.addModel("sterile") { context, meta ->
|
||||
val sp = SterileNeutrinoSpectrum(context, meta)
|
||||
val spectrum = NBkgSpectrum(sp)
|
||||
|
||||
XYModel(spectrum, getAdapter(meta))
|
||||
XYModel(meta, getAdapter(meta), spectrum)
|
||||
}
|
||||
|
||||
manager.addModel("gun") { context, an ->
|
||||
manager.addModel("gun") { context, meta ->
|
||||
val gsp = GunSpectrum()
|
||||
|
||||
val tritiumBackground = an.getDouble("tritiumBkg", 0.0)!!
|
||||
val tritiumBackground = meta.getDouble("tritiumBkg", 0.0)!!
|
||||
|
||||
val spectrum: NBkgSpectrum
|
||||
if (tritiumBackground == 0.0) {
|
||||
@ -231,7 +225,7 @@ class NumassPlugin : BasicPlugin() {
|
||||
spectrum = CustomNBkgSpectrum.tritiumBkgSpectrum(gsp, tritiumBackground)
|
||||
}
|
||||
|
||||
XYModel(spectrum, getAdapter(an))
|
||||
XYModel(meta, getAdapter(meta), spectrum)
|
||||
}
|
||||
|
||||
}
|
||||
|
@ -0,0 +1,128 @@
|
||||
/*
|
||||
* Copyright 2015 Alexander Nozik.
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
package inr.numass.actions
|
||||
|
||||
import hep.dataforge.actions.GroupBuilder
|
||||
import hep.dataforge.actions.ManyToOneAction
|
||||
import hep.dataforge.context.Context
|
||||
import hep.dataforge.data.DataNode
|
||||
import hep.dataforge.description.NodeDef
|
||||
import hep.dataforge.description.TypedActionDef
|
||||
import hep.dataforge.meta.Laminate
|
||||
import hep.dataforge.meta.Meta
|
||||
import hep.dataforge.tables.*
|
||||
import hep.dataforge.values.Values
|
||||
import inr.numass.NumassUtils
|
||||
import inr.numass.data.api.NumassAnalyzer
|
||||
import inr.numass.data.api.NumassPoint
|
||||
|
||||
import java.util.*
|
||||
|
||||
/**
|
||||
* @author Darksnake
|
||||
*/
|
||||
@TypedActionDef(name = "numass.merge", inputType = Table::class, outputType = Table::class, info = "Merge different numass data files into one.")
|
||||
@NodeDef(name = "grouping", info = "The definition of grouping rule for this merge", from = "method::hep.dataforge.actions.GroupBuilder.byMeta")
|
||||
class MergeDataAction : ManyToOneAction<Table, Table>() {
|
||||
|
||||
val parnames = arrayOf(NumassPoint.HV_KEY, NumassPoint.LENGTH_KEY, NumassAnalyzer.COUNT_KEY, NumassAnalyzer.COUNT_RATE_KEY, NumassAnalyzer.COUNT_RATE_ERROR_KEY)
|
||||
|
||||
override fun buildGroups(context: Context, input: DataNode<Table>, actionMeta: Meta): List<DataNode<Table>> {
|
||||
val meta = inputMeta(context, input.meta(), actionMeta)
|
||||
val groups: List<DataNode<Table>>
|
||||
if (meta.hasValue("grouping.byValue")) {
|
||||
groups = super.buildGroups(context, input, actionMeta)
|
||||
} else {
|
||||
groups = GroupBuilder.byValue(MERGE_NAME, meta.getString(MERGE_NAME, input.name)).group(input)
|
||||
}
|
||||
return groups
|
||||
}
|
||||
|
||||
override fun execute(context: Context, nodeName: String, data: Map<String, Table>, meta: Laminate): Table {
|
||||
val res = mergeDataSets(data.values)
|
||||
return ListTable(res.format, TableTransform.sort(res, NumassPoint.HV_KEY, true))
|
||||
}
|
||||
|
||||
override fun afterGroup(context: Context, groupName: String, outputMeta: Meta, output: Table) {
|
||||
output(context, groupName) { stream -> NumassUtils.write(stream, outputMeta, output) }
|
||||
}
|
||||
|
||||
private fun mergeDataPoints(dp1: Values?, dp2: Values?): Values? {
|
||||
if (dp1 == null) {
|
||||
return dp2
|
||||
}
|
||||
if (dp2 == null) {
|
||||
return dp1
|
||||
}
|
||||
|
||||
val voltage = dp1.getValue(NumassPoint.HV_KEY).doubleValue()
|
||||
val t1 = dp1.getValue(NumassPoint.LENGTH_KEY).doubleValue()
|
||||
val t2 = dp2.getValue(NumassPoint.LENGTH_KEY).doubleValue()
|
||||
val time = t1 + t2
|
||||
|
||||
val total = (dp1.getValue(NumassAnalyzer.COUNT_KEY).intValue() + dp2.getValue(NumassAnalyzer.COUNT_KEY).intValue()).toLong()
|
||||
|
||||
val cr1 = dp1.getValue(NumassAnalyzer.COUNT_RATE_KEY).doubleValue()
|
||||
val cr2 = dp2.getValue(NumassAnalyzer.COUNT_RATE_KEY).doubleValue()
|
||||
|
||||
val cr = (cr1 * t1 + cr2 * t2) / (t1 + t2)
|
||||
|
||||
val err1 = dp1.getDouble(NumassAnalyzer.COUNT_RATE_ERROR_KEY)!!
|
||||
val err2 = dp2.getDouble(NumassAnalyzer.COUNT_RATE_ERROR_KEY)!!
|
||||
|
||||
// абсолютные ошибки складываются квадратично
|
||||
val crErr = Math.sqrt(err1 * err1 * t1 * t1 + err2 * err2 * t2 * t2) / time
|
||||
|
||||
val map = ValueMap.of(parnames, voltage, time, total, cr, crErr).builder()
|
||||
|
||||
return map.build()
|
||||
}
|
||||
|
||||
private fun mergeDataSets(ds: Collection<Table>): Table {
|
||||
//Сливаем все точки в один набор данных
|
||||
val points = LinkedHashMap<Double, MutableList<Values>>()
|
||||
for (d in ds) {
|
||||
if (!d.format.names.contains(*parnames)) {
|
||||
throw IllegalArgumentException()
|
||||
}
|
||||
for (dp in d) {
|
||||
val uset = dp.getValue(NumassPoint.HV_KEY).doubleValue()
|
||||
if (!points.containsKey(uset)) {
|
||||
points.put(uset, ArrayList())
|
||||
}
|
||||
points[uset]?.add(dp)
|
||||
}
|
||||
}
|
||||
|
||||
val res = ArrayList<Values>()
|
||||
|
||||
points.entries.stream().map<Values> { entry ->
|
||||
var curPoint: Values? = null
|
||||
for (newPoint in entry.value) {
|
||||
curPoint = mergeDataPoints(curPoint, newPoint)
|
||||
}
|
||||
curPoint
|
||||
}.forEach { res.add(it) }
|
||||
|
||||
return ListTable(MetaTableFormat.forNames(parnames), res)
|
||||
|
||||
}
|
||||
|
||||
companion object {
|
||||
val MERGE_NAME = "mergeName"
|
||||
}
|
||||
|
||||
}
|
116
numass-main/src/main/kotlin/inr/numass/actions/SummaryAction.kt
Normal file
116
numass-main/src/main/kotlin/inr/numass/actions/SummaryAction.kt
Normal file
@ -0,0 +1,116 @@
|
||||
/*
|
||||
* Copyright 2015 Alexander Nozik.
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
package inr.numass.actions
|
||||
|
||||
import hep.dataforge.actions.GroupBuilder
|
||||
import hep.dataforge.actions.ManyToOneAction
|
||||
import hep.dataforge.context.Context
|
||||
import hep.dataforge.data.DataNode
|
||||
import hep.dataforge.description.TypedActionDef
|
||||
import hep.dataforge.description.ValueDef
|
||||
import hep.dataforge.meta.Laminate
|
||||
import hep.dataforge.meta.Meta
|
||||
import hep.dataforge.stat.fit.FitState
|
||||
import hep.dataforge.tables.ListTable
|
||||
import hep.dataforge.tables.MetaTableFormat
|
||||
import hep.dataforge.tables.Table
|
||||
import hep.dataforge.tables.ValueMap
|
||||
import hep.dataforge.values.Value
|
||||
import inr.numass.NumassUtils
|
||||
import java.util.*
|
||||
|
||||
/**
|
||||
* @author Darksnake
|
||||
*/
|
||||
@TypedActionDef(name = "summary", inputType = FitState::class, outputType = Table::class, info = "Generate summary for fit results of different datasets.")
|
||||
@ValueDef(name = "parnames", multiple = true, required = true, info = "List of names of parameters for which summary should be done")
|
||||
class SummaryAction : ManyToOneAction<FitState, Table>() {
|
||||
|
||||
protected override fun buildGroups(context: Context, input: DataNode<FitState>, actionMeta: Meta): List<DataNode<FitState>> {
|
||||
val meta = inputMeta(context, input.meta(), actionMeta)
|
||||
val groups: List<DataNode<FitState>>
|
||||
if (meta.hasValue("grouping.byValue")) {
|
||||
groups = super.buildGroups(context, input, actionMeta)
|
||||
} else {
|
||||
groups = GroupBuilder.byValue(SUMMARY_NAME, meta.getString(SUMMARY_NAME, "summary")).group<FitState>(input)
|
||||
}
|
||||
return groups
|
||||
}
|
||||
|
||||
override fun execute(context: Context, nodeName: String, input: Map<String, FitState>, meta: Laminate): Table {
|
||||
val parNames: Array<String>
|
||||
if (meta.hasValue("parnames")) {
|
||||
parNames = meta.getStringArray("parnames")
|
||||
} else {
|
||||
throw RuntimeException("Infering parnames not suppoerted")
|
||||
}
|
||||
val names = arrayOfNulls<String>(2 * parNames.size + 2)
|
||||
names[0] = "file"
|
||||
for (i in parNames.indices) {
|
||||
names[2 * i + 1] = parNames[i]
|
||||
names[2 * i + 2] = parNames[i] + "Err"
|
||||
}
|
||||
names[names.size - 1] = "chi2"
|
||||
|
||||
val res = ListTable.Builder(MetaTableFormat.forNames(names))
|
||||
|
||||
val weights = DoubleArray(parNames.size)
|
||||
Arrays.fill(weights, 0.0)
|
||||
val av = DoubleArray(parNames.size)
|
||||
Arrays.fill(av, 0.0)
|
||||
|
||||
input.forEach { key: String, value: FitState ->
|
||||
val values = arrayOfNulls<Value>(names.size)
|
||||
values[0] = Value.of(key)
|
||||
for (i in parNames.indices) {
|
||||
val `val` = Value.of(value.parameters.getDouble(parNames[i]))
|
||||
values[2 * i + 1] = `val`
|
||||
val err = Value.of(value.parameters.getError(parNames[i]))
|
||||
values[2 * i + 2] = err
|
||||
val weight = 1.0 / err.doubleValue() / err.doubleValue()
|
||||
av[i] += `val`.doubleValue() * weight
|
||||
weights[i] += weight
|
||||
}
|
||||
values[values.size - 1] = Value.of(value.chi2)
|
||||
val point = ValueMap.of(names, *values as Array<Any>)
|
||||
res.row(point)
|
||||
}
|
||||
|
||||
val averageValues = arrayOfNulls<Value>(names.size)
|
||||
averageValues[0] = Value.of("average")
|
||||
averageValues[averageValues.size - 1] = Value.of(0)
|
||||
|
||||
for (i in parNames.indices) {
|
||||
averageValues[2 * i + 1] = Value.of(av[i] / weights[i])
|
||||
averageValues[2 * i + 2] = Value.of(1 / Math.sqrt(weights[i]))
|
||||
}
|
||||
|
||||
res.row(ValueMap.of(names, *averageValues as Array<Any>))
|
||||
|
||||
return res.build()
|
||||
}
|
||||
|
||||
override fun afterGroup(context: Context, groupName: String, outputMeta: Meta, output: Table) {
|
||||
output(context, groupName) { stream -> NumassUtils.write(stream, outputMeta, output) }
|
||||
super.afterGroup(context, groupName, outputMeta, output)
|
||||
}
|
||||
|
||||
companion object {
|
||||
|
||||
val SUMMARY_NAME = "sumName"
|
||||
}
|
||||
|
||||
}
|
@ -32,7 +32,7 @@ import inr.numass.data.api.NumassPoint
|
||||
NodeDef(name = "plot", info = "Configuration for stat plots")
|
||||
)
|
||||
@TypedActionDef(name = "timeSpectrum", inputType = NumassPoint::class, outputType = Table::class)
|
||||
class TimeAnalyzedAction : OneToOneAction<NumassPoint, Table>() {
|
||||
class TimeAnalyzerAction : OneToOneAction<NumassPoint, Table>() {
|
||||
private val analyzer = TimeAnalyzer();
|
||||
|
||||
override fun execute(context: Context, name: String, input: NumassPoint, inputMeta: Laminate): Table {
|
@ -0,0 +1,175 @@
|
||||
package inr.numass.actions
|
||||
|
||||
import hep.dataforge.actions.OneToOneAction
|
||||
import hep.dataforge.context.Context
|
||||
import hep.dataforge.description.NodeDef
|
||||
import hep.dataforge.description.TypedActionDef
|
||||
import hep.dataforge.description.ValueDef
|
||||
import hep.dataforge.description.ValueDefs
|
||||
import hep.dataforge.meta.Laminate
|
||||
import hep.dataforge.meta.Meta
|
||||
import hep.dataforge.meta.MetaUtils
|
||||
import hep.dataforge.names.Named
|
||||
import hep.dataforge.tables.ColumnFormat
|
||||
import hep.dataforge.tables.ColumnTable
|
||||
import hep.dataforge.tables.ListColumn
|
||||
import hep.dataforge.tables.Table
|
||||
import hep.dataforge.values.ValueType.NUMBER
|
||||
import hep.dataforge.values.ValueType.STRING
|
||||
import hep.dataforge.values.Values
|
||||
import inr.numass.NumassUtils
|
||||
import inr.numass.data.api.NumassAnalyzer.COUNT_RATE_ERROR_KEY
|
||||
import inr.numass.data.api.NumassAnalyzer.COUNT_RATE_KEY
|
||||
import inr.numass.pointExpression
|
||||
import java.util.*
|
||||
|
||||
/**
|
||||
* Apply corrections and transformations to analyzed data
|
||||
* Created by darksnake on 11.07.2017.
|
||||
*/
|
||||
@TypedActionDef(name = "numass.transform", inputType = Table::class, outputType = Table::class)
|
||||
@ValueDefs(
|
||||
ValueDef(name = "correction", info = "An expression to correct count number depending on potential `U`, point length `T` and point itself as `point`"),
|
||||
ValueDef(name = "utransform", info = "Expression for voltage transformation. Uses U as input")
|
||||
)
|
||||
@NodeDef(name = "correction", multiple = true, from = "method::inr.numass.actions.TransformDataAction.makeCorrection")
|
||||
class TransformDataAction : OneToOneAction<Table, Table>() {
|
||||
|
||||
override fun execute(context: Context, name: String, input: Table, meta: Laminate): Table {
|
||||
|
||||
val corrections = ArrayList<Correction>()
|
||||
|
||||
meta.optMeta("corrections").ifPresent { cors ->
|
||||
MetaUtils.nodeStream(cors)
|
||||
.map<Meta> { it.value }
|
||||
.map<Correction> { this.makeCorrection(it) }
|
||||
.forEach { corrections.add(it) }
|
||||
}
|
||||
|
||||
if (meta.hasValue("correction")) {
|
||||
val correction = meta.getString("correction")
|
||||
corrections.add(object : Correction {
|
||||
override fun corr(point: Values): Double {
|
||||
return pointExpression(correction, point)
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
|
||||
var table = ColumnTable.copy(input)
|
||||
|
||||
for (correction in corrections) {
|
||||
//adding correction columns
|
||||
if (!correction.isAnonimous) {
|
||||
table = table.buildColumn(ColumnFormat.build(correction.name, NUMBER)) { correction.corr(it) }
|
||||
if (correction.hasError()) {
|
||||
table = table.buildColumn(ColumnFormat.build(correction.name + ".err", NUMBER)) { correction.corrErr(it) }
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// adding original count rate and error columns
|
||||
table = table.addColumn(ListColumn(ColumnFormat.build(COUNT_RATE_KEY + ".orig", NUMBER), table.getColumn(COUNT_RATE_KEY).stream()))
|
||||
table = table.addColumn(ListColumn(ColumnFormat.build(COUNT_RATE_ERROR_KEY + ".orig", NUMBER), table
|
||||
.getColumn(COUNT_RATE_ERROR_KEY).stream()))
|
||||
|
||||
val cr = ArrayList<Double>()
|
||||
val crErr = ArrayList<Double>()
|
||||
|
||||
table.rows.forEach { point ->
|
||||
val correctionFactor = corrections.stream()
|
||||
.mapToDouble { cor -> cor.corr(point) }
|
||||
.reduce { d1, d2 -> d1 * d2 }.orElse(1.0)
|
||||
val relativeCorrectionError = Math.sqrt(
|
||||
corrections.stream()
|
||||
.mapToDouble { cor -> cor.relativeErr(point) }
|
||||
.reduce { d1, d2 -> d1 * d1 + d2 * d2 }.orElse(0.0)
|
||||
)
|
||||
val originalCR = point.getDouble(COUNT_RATE_KEY)!!
|
||||
val originalCRErr = point.getDouble(COUNT_RATE_ERROR_KEY)!!
|
||||
cr.add(originalCR * correctionFactor)
|
||||
if (relativeCorrectionError == 0.0) {
|
||||
crErr.add(originalCRErr * correctionFactor)
|
||||
} else {
|
||||
crErr.add(Math.sqrt(Math.pow(originalCRErr / originalCR, 2.0) + Math.pow(relativeCorrectionError, 2.0)) * originalCR)
|
||||
}
|
||||
}
|
||||
|
||||
//replacing cr column
|
||||
val res = table.addColumn(ListColumn.build(table.getColumn(COUNT_RATE_KEY).format, cr.stream()))
|
||||
.addColumn(ListColumn.build(table.getColumn(COUNT_RATE_ERROR_KEY).format, crErr.stream()))
|
||||
|
||||
output(context, name) { stream -> NumassUtils.write(stream, meta, res) }
|
||||
return res
|
||||
}
|
||||
|
||||
|
||||
@ValueDefs(
|
||||
ValueDef(name = "value", type = arrayOf(NUMBER, STRING), info = "Value or function to multiply count rate"),
|
||||
ValueDef(name = "err", type = arrayOf(NUMBER, STRING), info = "error of the value")
|
||||
)
|
||||
private fun makeCorrection(corrMeta: Meta): Correction {
|
||||
val expr = corrMeta.getString("value")
|
||||
val errExpr = corrMeta.getString("err", "")
|
||||
return object : Correction {
|
||||
override fun getName(): String {
|
||||
return corrMeta.getString("name", corrMeta.name)
|
||||
}
|
||||
|
||||
override fun corr(point: Values): Double {
|
||||
return pointExpression(expr, point)
|
||||
}
|
||||
|
||||
override fun corrErr(point: Values): Double {
|
||||
return if (errExpr.isEmpty()) {
|
||||
0.0
|
||||
} else {
|
||||
pointExpression(errExpr, point)
|
||||
}
|
||||
}
|
||||
|
||||
override fun hasError(): Boolean {
|
||||
return !errExpr.isEmpty()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
private interface Correction : Named {
|
||||
|
||||
override fun getName(): String {
|
||||
return ""
|
||||
}
|
||||
|
||||
/**
|
||||
* correction coefficient
|
||||
*
|
||||
* @param point
|
||||
* @return
|
||||
*/
|
||||
fun corr(point: Values): Double
|
||||
|
||||
/**
|
||||
* correction coefficient uncertainty
|
||||
*
|
||||
* @param point
|
||||
* @return
|
||||
*/
|
||||
fun corrErr(point: Values): Double {
|
||||
return 0.0
|
||||
}
|
||||
|
||||
fun hasError(): Boolean {
|
||||
return false
|
||||
}
|
||||
|
||||
fun relativeErr(point: Values): Double {
|
||||
val corrErr = corrErr(point)
|
||||
return if (corrErr == 0.0) {
|
||||
0.0
|
||||
} else {
|
||||
corrErr / corr(point)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
@ -0,0 +1,11 @@
|
||||
package inr.numass.models
|
||||
|
||||
import hep.dataforge.stat.models.Model
|
||||
import hep.dataforge.stat.models.ModelDescriptor
|
||||
import hep.dataforge.stat.models.ModelFactory
|
||||
import hep.dataforge.utils.ContextMetaFactory
|
||||
|
||||
|
||||
fun model(name: String, descriptor: ModelDescriptor? = null, factory: ContextMetaFactory<Model>): ModelFactory {
|
||||
return ModelFactory.build(name, descriptor, factory);
|
||||
}
|
@ -12,18 +12,22 @@ import hep.dataforge.kodex.task
|
||||
import hep.dataforge.meta.Meta
|
||||
import hep.dataforge.meta.MetaUtils
|
||||
import hep.dataforge.plots.PlotFrame
|
||||
import hep.dataforge.plots.PlotUtils
|
||||
import hep.dataforge.plots.data.DataPlot
|
||||
import hep.dataforge.plots.data.XYFunctionPlot
|
||||
import hep.dataforge.plots.jfreechart.JFreeChartFrame
|
||||
import hep.dataforge.stat.fit.FitAction
|
||||
import hep.dataforge.stat.fit.FitHelper
|
||||
import hep.dataforge.stat.fit.FitResult
|
||||
import hep.dataforge.stat.models.XYModel
|
||||
import hep.dataforge.tables.ListTable
|
||||
import hep.dataforge.tables.Table
|
||||
import hep.dataforge.tables.TableTransform
|
||||
import hep.dataforge.tables.XYAdapter
|
||||
import hep.dataforge.values.ValueType
|
||||
import hep.dataforge.values.Values
|
||||
import inr.numass.NumassUtils
|
||||
import inr.numass.actions.MergeDataAction
|
||||
import inr.numass.actions.MergeDataAction.MERGE_NAME
|
||||
import inr.numass.actions.MergeDataAction.Companion.MERGE_NAME
|
||||
import inr.numass.actions.TransformDataAction
|
||||
import inr.numass.addSetMarkers
|
||||
import inr.numass.data.analyzers.SmartAnalyzer
|
||||
@ -32,6 +36,8 @@ import inr.numass.data.api.NumassSet
|
||||
import inr.numass.subtract
|
||||
import inr.numass.unbox
|
||||
import inr.numass.utils.ExpressionUtils
|
||||
import java.io.PrintWriter
|
||||
import java.util.stream.StreamSupport
|
||||
|
||||
val selectTask = task("select") {
|
||||
model { meta ->
|
||||
@ -49,8 +55,7 @@ val monitorTableTask = task("monitor") {
|
||||
dependsOn(selectTask, meta)
|
||||
configure(meta.getMetaOrEmpty("analyzer"))
|
||||
}
|
||||
join<NumassSet, Table> {
|
||||
result { data ->
|
||||
join<NumassSet, Table> { data ->
|
||||
val monitorVoltage = meta.getDouble("monitorVoltage", 16000.0);
|
||||
val analyzer = SmartAnalyzer()
|
||||
val analyzerMeta = meta.getMetaOrEmpty("analyzer")
|
||||
@ -89,8 +94,7 @@ val monitorTableTask = task("monitor") {
|
||||
NumassUtils.write(it, meta, res)
|
||||
}
|
||||
|
||||
return@result res;
|
||||
}
|
||||
return@join res;
|
||||
}
|
||||
}
|
||||
|
||||
@ -99,15 +103,13 @@ val analyzeTask = task("analyze") {
|
||||
dependsOn(selectTask, meta);
|
||||
configure(MetaUtils.optEither(meta, "analyzer", "prepare").orElse(Meta.empty()))
|
||||
}
|
||||
pipe<NumassSet, Table> {
|
||||
result { set ->
|
||||
pipe<NumassSet, Table> { set ->
|
||||
SmartAnalyzer().analyzeSet(set, meta).also { res ->
|
||||
context.io().out("numass.analyze", name).use {
|
||||
NumassUtils.write(it, meta, res)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
val mergeTask = task("merge") {
|
||||
@ -118,6 +120,15 @@ val mergeTask = task("merge") {
|
||||
action<Table, Table>(MergeDataAction())
|
||||
}
|
||||
|
||||
//val newMergeTask = task("merge") {
|
||||
// model { meta ->
|
||||
// dependsOn(analyzeTask, meta)
|
||||
// }
|
||||
// join<Table, Table> {
|
||||
// byValue(MERGE_NAME)
|
||||
// }
|
||||
//}
|
||||
|
||||
val mergeEmptyTask = task("empty") {
|
||||
model { meta ->
|
||||
if (!meta.hasMeta("empty")) {
|
||||
@ -189,8 +200,7 @@ val filterTask = task("filter") {
|
||||
model { meta ->
|
||||
dependsOn(transformTask, meta)
|
||||
}
|
||||
pipe<Table, Table> {
|
||||
result { data ->
|
||||
pipe<Table, Table> { data ->
|
||||
if (meta.hasValue("from") || meta.hasValue("to")) {
|
||||
val uLo = meta.getDouble("from", 0.0)!!
|
||||
val uHi = meta.getDouble("to", java.lang.Double.POSITIVE_INFINITY)!!
|
||||
@ -202,7 +212,7 @@ val filterTask = task("filter") {
|
||||
throw RuntimeException("No filtering condition specified")
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
val fitTask = task("fit") {
|
||||
@ -210,5 +220,57 @@ val fitTask = task("fit") {
|
||||
dependsOn(filterTask, meta)
|
||||
configure(meta.getMeta("fit"))
|
||||
}
|
||||
action<Table, FitResult>(FitAction())
|
||||
pipe<Table, FitResult> { data ->
|
||||
context.io().out("numass.fit", name).use { out ->
|
||||
val writer = PrintWriter(out)
|
||||
writer.printf("%n*** META ***%n")
|
||||
writer.println(meta.toString())
|
||||
writer.flush()
|
||||
|
||||
FitHelper(context).fit(data, meta)
|
||||
.setListenerStream(out)
|
||||
.report(log)
|
||||
.run()
|
||||
.also {
|
||||
if (meta.getBoolean("printLog", true)) {
|
||||
log.print(writer)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
val plotFitTask = task("plotFit") {
|
||||
model { meta ->
|
||||
dependsOn(fitTask, meta)
|
||||
configure(meta.getMetaOrEmpty("plotFit"))
|
||||
}
|
||||
pipe<FitResult, PlotFrame> { input ->
|
||||
val fitModel = input.optModel(context).orElseThrow { IllegalStateException("Can't load model") } as XYModel
|
||||
|
||||
val data = input.data
|
||||
|
||||
val adapter: XYAdapter = fitModel.adapter
|
||||
|
||||
val function = { x: Double -> fitModel.spectrum.value(x, input.parameters) }
|
||||
|
||||
val frame = PlotUtils.getPlotManager(context)
|
||||
.getPlotFrame("numass.plotFit", name, meta.getMeta("frame", Meta.empty()))
|
||||
|
||||
val fit = XYFunctionPlot("fit").apply {
|
||||
setFunction(function)
|
||||
setDensity(100, false)
|
||||
setSmoothing(true)
|
||||
}
|
||||
|
||||
frame.add(fit)
|
||||
|
||||
// ensuring all data points are calculated explicitly
|
||||
StreamSupport.stream<Values>(data.spliterator(), false)
|
||||
.map { dp -> adapter.getX(dp).doubleValue() }.sorted().forEach { fit.calculateIn(it) }
|
||||
|
||||
frame.add(DataPlot.plot("data", adapter, data))
|
||||
|
||||
return@pipe frame;
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user