Minor fixes
This commit is contained in:
parent
467f0fadfc
commit
cd227e8465
@ -1,152 +0,0 @@
|
||||
package inr.numass.data.api;
|
||||
|
||||
import hep.dataforge.meta.Meta;
|
||||
import hep.dataforge.tables.*;
|
||||
import hep.dataforge.values.Value;
|
||||
import hep.dataforge.values.Values;
|
||||
import inr.numass.data.analyzers.SmartAnalyzer;
|
||||
|
||||
import java.util.HashMap;
|
||||
import java.util.Map;
|
||||
import java.util.concurrent.atomic.AtomicLong;
|
||||
import java.util.stream.IntStream;
|
||||
import java.util.stream.Stream;
|
||||
|
||||
import static hep.dataforge.tables.Adapters.*;
|
||||
import static inr.numass.data.api.NumassPoint.HV_KEY;
|
||||
|
||||
/**
|
||||
* A general raw data analysis utility. Could have different implementations
|
||||
* Created by darksnake on 06-Jul-17.
|
||||
*/
|
||||
public interface NumassAnalyzer {
|
||||
static NumassAnalyzer DEFAULT_ANALYZER = new SmartAnalyzer();
|
||||
|
||||
short MAX_CHANNEL = 10000;
|
||||
|
||||
/**
|
||||
* Calculate number of counts in the given channel
|
||||
*
|
||||
* @param spectrum
|
||||
* @param loChannel
|
||||
* @param upChannel
|
||||
* @return
|
||||
*/
|
||||
static long countInWindow(Table spectrum, short loChannel, short upChannel) {
|
||||
return spectrum.getRows().filter(row -> {
|
||||
int channel = row.getInt(CHANNEL_KEY);
|
||||
return channel >= loChannel && channel < upChannel;
|
||||
}).mapToLong(it -> it.getValue(COUNT_KEY).numberValue().longValue()).sum();
|
||||
}
|
||||
|
||||
|
||||
String CHANNEL_KEY = "channel";
|
||||
String COUNT_KEY = "count";
|
||||
String LENGTH_KEY = "length";
|
||||
String COUNT_RATE_KEY = "cr";
|
||||
String COUNT_RATE_ERROR_KEY = "crErr";
|
||||
|
||||
/**
|
||||
* Perform analysis on block. The values for count rate, its error and point length in nanos must
|
||||
* exist, but occasionally additional values could also be presented.
|
||||
*
|
||||
* @param block
|
||||
* @return
|
||||
*/
|
||||
Values analyze(NumassBlock block, Meta config);
|
||||
|
||||
/**
|
||||
* Analysis result for point including hv information
|
||||
* @param point
|
||||
* @param config
|
||||
* @return
|
||||
*/
|
||||
default Values analyzePoint(NumassPoint point, Meta config) {
|
||||
Map<String, Value> map = new HashMap<>(analyze(point, config).asMap());
|
||||
map.put(HV_KEY, Value.of(point.getVoltage()));
|
||||
return new ValueMap(map);
|
||||
}
|
||||
|
||||
/**
|
||||
* Return unsorted stream of events including events from frames
|
||||
*
|
||||
* @param block
|
||||
* @return
|
||||
*/
|
||||
Stream<NumassEvent> getEvents(NumassBlock block, Meta meta);
|
||||
|
||||
/**
|
||||
* Analyze the whole set. And return results as a table
|
||||
*
|
||||
* @param set
|
||||
* @param config
|
||||
* @return
|
||||
*/
|
||||
Table analyzeSet(NumassSet set, Meta config);
|
||||
|
||||
/**
|
||||
* Calculate the energy spectrum for a given block. The s
|
||||
*
|
||||
* @param block
|
||||
* @param config
|
||||
* @return
|
||||
*/
|
||||
default Table getSpectrum(NumassBlock block, Meta config) {
|
||||
TableFormat format = new TableFormatBuilder()
|
||||
.addNumber(CHANNEL_KEY, X_VALUE_KEY)
|
||||
.addNumber(COUNT_KEY)
|
||||
.addNumber(COUNT_RATE_KEY, Y_VALUE_KEY)
|
||||
.addNumber(COUNT_RATE_ERROR_KEY, Y_ERROR_KEY)
|
||||
.updateMeta(metaBuilder -> metaBuilder.setNode("config", config))
|
||||
.build();
|
||||
|
||||
//optimized for fastest computation
|
||||
//TODO requires additional performance optimization
|
||||
AtomicLong[] spectrum = new AtomicLong[MAX_CHANNEL];
|
||||
getEvents(block, config).forEach(event -> {
|
||||
if (spectrum[event.getChanel()] == null) {
|
||||
spectrum[event.getChanel()] = new AtomicLong(1);
|
||||
} else {
|
||||
spectrum[event.getChanel()].incrementAndGet();
|
||||
}
|
||||
});
|
||||
|
||||
double seconds = (double) block.getLength().toMillis() / 1000d;
|
||||
return new ListTable.Builder(format)
|
||||
.rows(IntStream.range(0, MAX_CHANNEL)
|
||||
.filter(i -> spectrum[i] != null)
|
||||
.mapToObj(i -> {
|
||||
long value = spectrum[i].get();
|
||||
return ValueMap.of(
|
||||
format.namesAsArray(),
|
||||
i,
|
||||
value,
|
||||
(double) value / seconds,
|
||||
Math.sqrt(value) / seconds
|
||||
);
|
||||
})
|
||||
).build();
|
||||
}
|
||||
|
||||
/**
|
||||
* Get the approximate number of events in block. Not all analyzers support precise event counting
|
||||
*
|
||||
* @param block
|
||||
* @param config
|
||||
* @return
|
||||
*/
|
||||
default long getCount(NumassBlock block, Meta config) {
|
||||
return analyze(block, config).getValue(COUNT_KEY).numberValue().longValue();
|
||||
}
|
||||
|
||||
/**
|
||||
* Get approximate effective point length in nanos. It is not necessary corresponds to real point length.
|
||||
*
|
||||
* @param block
|
||||
* @param config
|
||||
* @return
|
||||
*/
|
||||
default long getLength(NumassBlock block, Meta config) {
|
||||
return analyze(block, config).getValue(LENGTH_KEY).numberValue().longValue();
|
||||
}
|
||||
}
|
@ -6,6 +6,7 @@ import inr.numass.data.api.NumassBlock;
|
||||
import inr.numass.data.api.NumassEvent;
|
||||
import inr.numass.data.api.NumassFrame;
|
||||
import inr.numass.data.api.NumassPoint;
|
||||
import inr.numass.data.legacy.NumassFileEnvelope;
|
||||
import org.jetbrains.annotations.NotNull;
|
||||
import org.slf4j.LoggerFactory;
|
||||
|
||||
@ -13,6 +14,7 @@ import java.io.IOException;
|
||||
import java.nio.ByteBuffer;
|
||||
import java.nio.ByteOrder;
|
||||
import java.nio.channels.ReadableByteChannel;
|
||||
import java.nio.file.Path;
|
||||
import java.time.Duration;
|
||||
import java.time.Instant;
|
||||
import java.util.Iterator;
|
||||
@ -23,6 +25,10 @@ import java.util.stream.StreamSupport;
|
||||
* Created by darksnake on 08.07.2017.
|
||||
*/
|
||||
public class ClassicNumassPoint implements NumassPoint {
|
||||
public static ClassicNumassPoint readFile(Path path) {
|
||||
return new ClassicNumassPoint(NumassFileEnvelope.open(path, true));
|
||||
}
|
||||
|
||||
private final Envelope envelope;
|
||||
|
||||
public ClassicNumassPoint(Envelope envelope) {
|
||||
|
@ -81,7 +81,7 @@ public class ProtoNumassPoint implements NumassPoint {
|
||||
|
||||
@Override
|
||||
public Duration getLength() {
|
||||
return Duration.ofNanos((long) (getMeta().getInt("b_size") / getMeta().getInt("sample_freq") * 1e9));
|
||||
return Duration.ofNanos((long) (getMeta().getDouble("params.b_size") / getMeta().getDouble("params.sample_freq") * 1e9));
|
||||
}
|
||||
|
||||
@Override
|
||||
|
@ -169,9 +169,14 @@ class TimeAnalyzer @JvmOverloads constructor(private val processor: SignalProces
|
||||
* @return
|
||||
*/
|
||||
fun getEventsWithDelay(block: NumassBlock, config: Meta): Stream<Pair<NumassEvent, Long>> {
|
||||
val inverted = config.getBoolean("inverted",false)
|
||||
return super.getEvents(block, config).asSequence().zipWithNext { prev, next ->
|
||||
val delay = Math.max(next.timeOffset - prev.timeOffset, 0)
|
||||
if(inverted){
|
||||
Pair(next, delay)
|
||||
} else {
|
||||
Pair(prev, delay)
|
||||
}
|
||||
}.asStream()
|
||||
}
|
||||
|
||||
|
@ -19,7 +19,6 @@ import hep.dataforge.actions.ActionManager
|
||||
import hep.dataforge.context.BasicPlugin
|
||||
import hep.dataforge.context.Context
|
||||
import hep.dataforge.context.PluginDef
|
||||
import hep.dataforge.fx.plots.PlotContainer
|
||||
import hep.dataforge.maths.MathPlugin
|
||||
import hep.dataforge.meta.Meta
|
||||
import hep.dataforge.plots.jfreechart.JFreeChartFrame
|
||||
@ -280,6 +279,6 @@ class NumassPlugin : BasicPlugin() {
|
||||
fun displayJFreeChart(title: String, width: Double = 800.0, height: Double = 600.0, meta: Meta = Meta.empty()): JFreeChartFrame {
|
||||
val frame = JFreeChartFrame(meta)
|
||||
frame.configureValue("title", title)
|
||||
PlotContainer.display(frame, title, width, height)
|
||||
// PlotContainer.show(frame, title, width, height)
|
||||
return frame
|
||||
}
|
||||
|
@ -8,6 +8,7 @@ import org.apache.commons.math3.random.RandomGenerator
|
||||
import java.time.Duration
|
||||
import java.time.Instant
|
||||
import java.util.*
|
||||
import kotlin.collections.ArrayList
|
||||
|
||||
interface ChainGenerator {
|
||||
|
||||
@ -30,27 +31,84 @@ interface ChainGenerator {
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
private fun RandomGenerator.nextExp(mean: Double): Double {
|
||||
return -mean * Math.log(1 - nextDouble())
|
||||
}
|
||||
|
||||
private fun RandomGenerator.nextDeltaTime(cr: Double): Long {
|
||||
return (nextExp(1.0 / cr) * 1e9).toLong()
|
||||
}
|
||||
|
||||
class SimpleChainGenerator(
|
||||
val cr: Double,
|
||||
private val rnd: RandomGenerator = JDKRandomGenerator(),
|
||||
private val amp: (Long) -> Short = { 1 }
|
||||
private val amp: RandomGenerator.(NumassEvent?, Long) -> Short = { _, _ -> ((nextDouble() + 2.0) * 100).toShort() }
|
||||
) : ChainGenerator {
|
||||
|
||||
override fun next(event: NumassEvent?): NumassEvent {
|
||||
return if (event == null) {
|
||||
NumassEvent(amp(0), Instant.EPOCH, 0)
|
||||
NumassEvent(rnd.amp(null, 0), Instant.EPOCH, 0)
|
||||
} else {
|
||||
val deltaT = generateDeltaTime()
|
||||
NumassEvent(amp(deltaT), event.blockTime, event.timeOffset + deltaT)
|
||||
val deltaT = rnd.nextDeltaTime(cr)
|
||||
NumassEvent(rnd.amp(event, deltaT), event.blockTime, event.timeOffset + deltaT)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
private fun nextExpDecay(mean: Double): Double {
|
||||
return -mean * Math.log(1 - rnd.nextDouble())
|
||||
class BunchGenerator(
|
||||
private val cr: Double,
|
||||
private val bunchRate: Double,
|
||||
private val bunchLength: RandomGenerator.() -> Long,
|
||||
private val rnd: RandomGenerator = JDKRandomGenerator(),
|
||||
private val amp: RandomGenerator.(NumassEvent?, Long) -> Short = { _, _ -> ((nextDouble() + 2.0) * 100).toShort() }
|
||||
) : ChainGenerator {
|
||||
|
||||
private val internalGenerator = SimpleChainGenerator(cr, rnd, amp)
|
||||
|
||||
var bunchStart: Long = 0
|
||||
var bunchEnd: Long = 0
|
||||
|
||||
override fun next(event: NumassEvent?): NumassEvent {
|
||||
if (event?.timeOffset ?: 0 >= bunchEnd) {
|
||||
bunchStart = bunchEnd + rnd.nextExp(bunchRate).toLong()
|
||||
bunchEnd = bunchStart + rnd.bunchLength()
|
||||
return NumassEvent(rnd.amp(null, 0), Instant.EPOCH, bunchStart)
|
||||
} else {
|
||||
return internalGenerator.next(event)
|
||||
}
|
||||
}
|
||||
|
||||
private fun generateDeltaTime(): Long {
|
||||
return (nextExpDecay(1.0 / cr) * 1e9).toLong()
|
||||
override fun generateBlock(start: Instant, length: Long, filter: (NumassEvent, NumassEvent) -> Boolean): NumassBlock {
|
||||
bunchStart = 0
|
||||
bunchEnd = 0
|
||||
return super.generateBlock(start, length, filter)
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
class MergingGenerator(private vararg val generators: ChainGenerator) : ChainGenerator {
|
||||
|
||||
private val waiting: TreeSet<Pair<ChainGenerator, NumassEvent>> = TreeSet(Comparator.comparing<Pair<ChainGenerator, NumassEvent>, Long> { it.second.timeOffset })
|
||||
|
||||
init {
|
||||
generators.forEach { generator ->
|
||||
waiting.add(Pair(generator, generator.next(null)))
|
||||
}
|
||||
}
|
||||
|
||||
override fun next(event: NumassEvent?): NumassEvent {
|
||||
val pair = waiting.first()
|
||||
waiting.remove(pair)
|
||||
waiting.add(Pair(pair.first, pair.first.next(pair.second)))
|
||||
return pair.second
|
||||
}
|
||||
|
||||
override fun generateBlock(start: Instant, length: Long, filter: (NumassEvent, NumassEvent) -> Boolean): NumassBlock {
|
||||
generators.forEach { generator ->
|
||||
waiting.add(Pair(generator, generator.next(null)))
|
||||
}
|
||||
return super.generateBlock(start, length, filter)
|
||||
}
|
||||
}
|
||||
|
||||
|
46
numass-main/src/main/kotlin/inr/numass/scripts/Bunches.kt
Normal file
46
numass-main/src/main/kotlin/inr/numass/scripts/Bunches.kt
Normal file
@ -0,0 +1,46 @@
|
||||
package inr.numass.scripts
|
||||
|
||||
import hep.dataforge.fx.plots.PlotManager
|
||||
import hep.dataforge.kodex.buildContext
|
||||
import hep.dataforge.kodex.buildMeta
|
||||
import inr.numass.NumassPlugin
|
||||
import inr.numass.data.BunchGenerator
|
||||
import inr.numass.data.MergingGenerator
|
||||
import inr.numass.data.SimpleChainGenerator
|
||||
import inr.numass.data.analyzers.NumassAnalyzer
|
||||
import inr.numass.data.analyzers.SmartAnalyzer
|
||||
import inr.numass.data.api.SimpleNumassPoint
|
||||
import java.time.Instant
|
||||
|
||||
fun main(args: Array<String>) {
|
||||
|
||||
val context = buildContext("NUMASS", NumassPlugin::class.java, PlotManager::class.java)
|
||||
|
||||
val cr = 10.0
|
||||
val length = 30e9.toLong()
|
||||
val num = 50;
|
||||
val dt = 6.5
|
||||
|
||||
val regularGenerator = SimpleChainGenerator(cr)
|
||||
val bunchGenerator = BunchGenerator(40.0, 0.1, { 2e9.toLong() })
|
||||
|
||||
val generator = MergingGenerator(regularGenerator, bunchGenerator)
|
||||
|
||||
val blocks = (1..num).map {
|
||||
generator.generateBlock(Instant.now().plusNanos(it * length), length)
|
||||
}
|
||||
|
||||
val point = SimpleNumassPoint(10000.0, blocks)
|
||||
|
||||
val meta = buildMeta {
|
||||
"t0.crFraction" to 0.1
|
||||
}
|
||||
|
||||
println("actual count rate: ${point.events.count() / point.length.seconds}")
|
||||
|
||||
val res = SmartAnalyzer().analyze(point,meta)
|
||||
.getDouble(NumassAnalyzer.COUNT_RATE_KEY)
|
||||
|
||||
println("estimated count rate: ${res}")
|
||||
|
||||
}
|
@ -16,77 +16,72 @@
|
||||
|
||||
package inr.numass.scripts
|
||||
|
||||
import hep.dataforge.description.DescriptorUtils
|
||||
import hep.dataforge.fx.plots.PlotManager
|
||||
import hep.dataforge.kodex.buildContext
|
||||
import hep.dataforge.kodex.buildMeta
|
||||
import hep.dataforge.kodex.replaceColumn
|
||||
import hep.dataforge.plots.data.DataPlot
|
||||
import hep.dataforge.tables.Table
|
||||
import inr.numass.NumassPlugin
|
||||
import inr.numass.data.NumassDataUtils
|
||||
import inr.numass.data.analyzers.NumassAnalyzer
|
||||
import inr.numass.data.analyzers.TimeAnalyzer
|
||||
import inr.numass.data.analyzers.getAmplitudeSpectrum
|
||||
import inr.numass.data.api.NumassPoint
|
||||
import inr.numass.data.analyzers.SmartAnalyzer
|
||||
import inr.numass.data.api.NumassSet
|
||||
import inr.numass.data.storage.NumassStorageFactory
|
||||
|
||||
|
||||
fun main(args: Array<String>) {
|
||||
|
||||
val context = buildContext("NUMASS", NumassPlugin::class.java, PlotManager::class.java) {
|
||||
rootDir = "D:\\Work\\Numass\\sterile\\2017_05"
|
||||
dataDir = "D:\\Work\\Numass\\data\\2017_05"
|
||||
rootDir = "D:\\Work\\Numass\\sterile\\2017_11"
|
||||
dataDir = "D:\\Work\\Numass\\data\\2017_11"
|
||||
}
|
||||
//val rootDir = File("D:\\Work\\Numass\\data\\2017_05\\Fill_2")
|
||||
|
||||
val storage = NumassStorageFactory.buildLocal(context, "Fill_2", true, false);
|
||||
|
||||
val sets = (2..14).map { "set_$it" }
|
||||
val sets = (1..24).map { "set_$it" }
|
||||
|
||||
val loaders = sets.mapNotNull { set ->
|
||||
storage.provide("loader::$set", NumassSet::class.java).orElse(null)
|
||||
}
|
||||
|
||||
val analyzer = SmartAnalyzer()
|
||||
|
||||
val all = NumassDataUtils.join("sum", loaders)
|
||||
|
||||
val t0 = 20e3
|
||||
|
||||
val meta = buildMeta {
|
||||
"t0" to 30e3
|
||||
"inverted" to true
|
||||
"window.lo" to 400
|
||||
"window.up" to 1800
|
||||
"t0" to t0
|
||||
}
|
||||
|
||||
val filter: (NumassPoint) -> Table = { point ->
|
||||
val analyzer = TimeAnalyzer()
|
||||
val sequence = analyzer.zipEvents(point, meta).filter { it.second.timeOffset - it.first.timeOffset > t0 }.map { it.second }
|
||||
//val sequence = analyzer.getEvents(point,meta).asSequence()
|
||||
getAmplitudeSpectrum(sequence, point.length.toMillis().toDouble() / 1000.0, meta)
|
||||
"window.up" to 1600
|
||||
}
|
||||
|
||||
val plots = context.getFeature(PlotManager::class.java)
|
||||
|
||||
val frame = plots.getPlotFrame("differential")
|
||||
val frame = plots.getPlotFrame("differential").apply {
|
||||
this.plots.descriptor = DescriptorUtils.buildDescriptor(DataPlot::class)
|
||||
this.plots.configureValue("showLine", true)
|
||||
}
|
||||
|
||||
val integralFrame = plots.getPlotFrame("integral")
|
||||
|
||||
for (hv in arrayOf(14000.0, 14500.0, 15000.0, 15500.0)) {
|
||||
val basePoint = all.optPoint(hv).get()
|
||||
for (hv in arrayOf(14000.0, 14500.0, 15000.0, 15500.0, 16050.0)) {
|
||||
val point1 = all.optPoint(hv).get()
|
||||
|
||||
val subPoint = all.optPoint(hv + 200.0).get()
|
||||
val point0 = all.optPoint(hv + 200.0).get()
|
||||
|
||||
with(NumassAnalyzer) {
|
||||
|
||||
val baseSpectrum = filter(basePoint).withBinning(50)
|
||||
val spectrum1 = analyzer.getAmplitudeSpectrum(point1, meta).withBinning(50)
|
||||
|
||||
val subSpectrum = filter(subPoint).withBinning(50)
|
||||
val spectrum0 = analyzer.getAmplitudeSpectrum(point0, meta).withBinning(50)
|
||||
|
||||
val res = subtractAmplitudeSpectrum(baseSpectrum, subSpectrum)
|
||||
val res = subtractAmplitudeSpectrum(spectrum1, spectrum0)
|
||||
|
||||
val norm = res.getColumn(COUNT_RATE_KEY).stream().mapToDouble { it.doubleValue() }.sum()
|
||||
|
||||
integralFrame.add(DataPlot.plot("point_$hv", AMPLITUDE_ADAPTER, baseSpectrum))
|
||||
integralFrame.add(DataPlot.plot("point_$hv", AMPLITUDE_ADAPTER, spectrum0))
|
||||
|
||||
frame.add(DataPlot.plot("point_$hv", AMPLITUDE_ADAPTER, res.replaceColumn(COUNT_RATE_KEY) { getDouble(COUNT_RATE_KEY) / norm }))
|
||||
}
|
||||
|
@ -16,108 +16,66 @@
|
||||
|
||||
package inr.numass.scripts
|
||||
|
||||
import hep.dataforge.description.DescriptorUtils
|
||||
import hep.dataforge.fx.plots.PlotManager
|
||||
import hep.dataforge.kodex.buildContext
|
||||
import hep.dataforge.kodex.buildMeta
|
||||
import hep.dataforge.kodex.replaceColumn
|
||||
import hep.dataforge.meta.Meta
|
||||
import hep.dataforge.plots.PlotPlugin
|
||||
import hep.dataforge.plots.data.DataPlot
|
||||
import inr.numass.NumassPlugin
|
||||
import inr.numass.data.NumassDataUtils
|
||||
import inr.numass.data.analyzers.NumassAnalyzer
|
||||
import inr.numass.data.analyzers.TimeAnalyzer
|
||||
import inr.numass.data.analyzers.getAmplitudeSpectrum
|
||||
import inr.numass.data.analyzers.NumassAnalyzer.Companion.AMPLITUDE_ADAPTER
|
||||
import inr.numass.data.analyzers.NumassAnalyzer.Companion.withBinning
|
||||
import inr.numass.data.analyzers.SmartAnalyzer
|
||||
import inr.numass.data.api.NumassSet
|
||||
import inr.numass.data.storage.NumassStorageFactory
|
||||
import kotlin.streams.asSequence
|
||||
|
||||
|
||||
fun main(args: Array<String>) {
|
||||
|
||||
val context = buildContext("NUMASS", NumassPlugin::class.java, PlotManager::class.java) {
|
||||
rootDir = "D:\\Work\\Numass\\sterile2017_05"
|
||||
rootDir = "D:\\Work\\Numass\\sterile\\2017_11"
|
||||
dataDir = "D:\\Work\\Numass\\data\\2017_11"
|
||||
}
|
||||
//val rootDir = File("D:\\Work\\Numass\\data\\2017_05\\Fill_2")
|
||||
|
||||
val storage = NumassStorageFactory.buildLocal(context, "D:\\Work\\Numass\\data\\2017_05\\Fill_2", true, false);
|
||||
val storage = NumassStorageFactory.buildLocal(context, "Fill_2", true, false);
|
||||
|
||||
val sets = (2..14).map { "set_$it" }
|
||||
val sets = (10..24).map { "set_$it" }
|
||||
|
||||
val loaders = sets.mapNotNull { set ->
|
||||
storage.provide("loader::$set", NumassSet::class.java).orElse(null)
|
||||
}
|
||||
|
||||
val all = NumassDataUtils.join("sum", loaders)
|
||||
|
||||
val point = all.optPoint(14000.0).get()
|
||||
|
||||
val t0 = 20e3.toLong()
|
||||
|
||||
val analyzer = TimeAnalyzer()
|
||||
|
||||
val seconds = point.length.toMillis().toDouble() / 1000.0
|
||||
|
||||
val binning = 20
|
||||
val set = NumassDataUtils.join("sum", loaders)
|
||||
|
||||
|
||||
val plots = context.getFeature(PlotPlugin::class.java);
|
||||
val analyzer = SmartAnalyzer()
|
||||
|
||||
val meta = buildMeta {
|
||||
node("window"){
|
||||
"lo" to 300
|
||||
"up" to 2600
|
||||
}
|
||||
// "t0" to 30e3
|
||||
// "inverted" to true
|
||||
"window.lo" to 400
|
||||
"window.up" to 1600
|
||||
}
|
||||
|
||||
with(NumassAnalyzer) {
|
||||
val events = getAmplitudeSpectrum(analyzer.getEvents(point).asSequence(), seconds, meta)
|
||||
.withBinning(binning)
|
||||
val metaForChain = meta.builder.setValue("t0", 15e3)
|
||||
|
||||
val eventsNorming = events.getColumn(COUNT_RATE_KEY).stream().mapToDouble{it.doubleValue()}.sum()
|
||||
|
||||
println("The norming factor for unfiltered count rate is $eventsNorming")
|
||||
|
||||
val filtered = getAmplitudeSpectrum(
|
||||
analyzer.zipEvents(point, Meta.empty()).filter { it.second.timeOffset - it.first.timeOffset > t0 }.map { it.second },
|
||||
seconds,
|
||||
meta
|
||||
).withBinning(binning)
|
||||
|
||||
val filteredNorming = filtered.getColumn(COUNT_RATE_KEY).stream().mapToDouble{it.doubleValue()}.sum()
|
||||
|
||||
println("The norming factor for filtered count rate is $filteredNorming")
|
||||
|
||||
val defaultFiltered = getAmplitudeSpectrum(
|
||||
analyzer.getEvents(point, buildMeta {"t0" to t0}).asSequence(),
|
||||
seconds,
|
||||
meta
|
||||
).withBinning(binning)
|
||||
|
||||
val defaultFilteredNorming = defaultFiltered.getColumn(COUNT_RATE_KEY).stream().mapToDouble{it.doubleValue()}.sum()
|
||||
|
||||
println("The norming factor for default filtered count rate is $defaultFilteredNorming")
|
||||
val metaForChainInverted = metaForChain.builder.setValue("inverted", true)
|
||||
|
||||
|
||||
plots.getPlotFrame("amps").apply {
|
||||
add(DataPlot.plot("events", AMPLITUDE_ADAPTER, events.replaceColumn(COUNT_RATE_KEY){getDouble(COUNT_RATE_KEY)/eventsNorming}))
|
||||
add(DataPlot.plot("filtered", AMPLITUDE_ADAPTER, filtered.replaceColumn(COUNT_RATE_KEY){getDouble(COUNT_RATE_KEY)/filteredNorming}))
|
||||
add(DataPlot.plot("defaultFiltered", AMPLITUDE_ADAPTER, defaultFiltered.replaceColumn(COUNT_RATE_KEY){getDouble(COUNT_RATE_KEY)/defaultFilteredNorming}))
|
||||
}
|
||||
|
||||
// plots.getPlotFrame("ratio").apply {
|
||||
//
|
||||
// add(
|
||||
// DataPlot.plot(
|
||||
// "ratio",
|
||||
// Adapters.DEFAULT_XY_ADAPTER,
|
||||
// events.zip(filtered) { f, s ->
|
||||
// Adapters.buildXYDataPoint(f.getDouble(CHANNEL_KEY), f.getDouble(COUNT_RATE_KEY) / s.getDouble(COUNT_RATE_KEY))
|
||||
// }
|
||||
// )
|
||||
// )
|
||||
// }
|
||||
val plots = context.getFeature(PlotManager::class.java)
|
||||
|
||||
for (hv in arrayOf(14000.0, 14500.0, 15000.0, 15500.0, 16050.0)) {
|
||||
|
||||
val frame = plots.getPlotFrame("integral[$hv]").apply {
|
||||
this.plots.descriptor = DescriptorUtils.buildDescriptor(DataPlot::class)
|
||||
this.plots.configureValue("showLine", true)
|
||||
}
|
||||
|
||||
val point = set.optPoint(hv).get()
|
||||
|
||||
frame.add(DataPlot.plot("raw", AMPLITUDE_ADAPTER, analyzer.getAmplitudeSpectrum(point, meta).withBinning(20)))
|
||||
frame.add(DataPlot.plot("filtered", AMPLITUDE_ADAPTER, analyzer.getAmplitudeSpectrum(point, metaForChain).withBinning(20)))
|
||||
frame.add(DataPlot.plot("invertedFilter", AMPLITUDE_ADAPTER, analyzer.getAmplitudeSpectrum(point, metaForChainInverted).withBinning(20)))
|
||||
}
|
||||
}
|
||||
|
@ -0,0 +1,61 @@
|
||||
/*
|
||||
* Copyright 2017 Alexander Nozik.
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
package inr.numass.scripts
|
||||
|
||||
import hep.dataforge.description.DescriptorUtils
|
||||
import hep.dataforge.fx.plots.PlotManager
|
||||
import hep.dataforge.kodex.buildContext
|
||||
import hep.dataforge.kodex.buildMeta
|
||||
import hep.dataforge.plots.data.DataPlot
|
||||
import inr.numass.NumassPlugin
|
||||
import inr.numass.data.analyzers.NumassAnalyzer.Companion.AMPLITUDE_ADAPTER
|
||||
import inr.numass.data.analyzers.NumassAnalyzer.Companion.withBinning
|
||||
import inr.numass.data.analyzers.SmartAnalyzer
|
||||
import inr.numass.data.storage.ProtoNumassPoint
|
||||
import java.nio.file.Paths
|
||||
|
||||
|
||||
fun main(args: Array<String>) {
|
||||
|
||||
val context = buildContext("NUMASS", NumassPlugin::class.java, PlotManager::class.java)
|
||||
|
||||
val analyzer = SmartAnalyzer()
|
||||
|
||||
val meta = buildMeta {
|
||||
"window.lo" to 800
|
||||
"window.up" to 5600
|
||||
}
|
||||
|
||||
val metaForChain = meta.builder.setValue("t0", 15e3)
|
||||
|
||||
val metaForChainInverted = metaForChain.builder.setValue("inverted", true)
|
||||
|
||||
|
||||
val plots = context.getFeature(PlotManager::class.java)
|
||||
|
||||
val point = ProtoNumassPoint.readFile(Paths.get("D:\\Work\\Numass\\data\\2017_05_frames\\Fill_3_events\\set_33\\p36(30s)(HV1=17000).df"))
|
||||
|
||||
val frame = plots.getPlotFrame("integral").apply {
|
||||
this.plots.descriptor = DescriptorUtils.buildDescriptor(DataPlot::class)
|
||||
this.plots.configureValue("showLine", true)
|
||||
}
|
||||
|
||||
frame.add(DataPlot.plot("raw", AMPLITUDE_ADAPTER, analyzer.getAmplitudeSpectrum(point, meta).withBinning(80)))
|
||||
frame.add(DataPlot.plot("filtered", AMPLITUDE_ADAPTER, analyzer.getAmplitudeSpectrum(point, metaForChain).withBinning(80)))
|
||||
frame.add(DataPlot.plot("invertedFilter", AMPLITUDE_ADAPTER, analyzer.getAmplitudeSpectrum(point, metaForChainInverted).withBinning(80)))
|
||||
|
||||
}
|
Loading…
Reference in New Issue
Block a user